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Abstract

Defensive security operations are tasked with protecting increasingly
larger and more complex digital infrastructures and systems spanning
across the whole fabric of modern societies including health, power,
communication, and transportation. Higher complexity systems are
associated with longer intrusion detection and response times, and higher
costs.

Automation, advanced analytics, and artificial intelligence (AI) can con-
tribute to faster mean time to detection (MTTD) and response (MTTR). To
facilitate these functions in an increasingly complex ecosystem of tools and
processes coupling communication interfaces through customized integra-
tions is not sustainable and cannot scale. Consequently, defenders need to
standardize command and control interfaces for the sake of interoperabil-
ity.

In that regard, OpenC2 is being developed. A standardized language
for the command and control of systems and components that perform
or support cyber security. This thesis evaluates the ongoing work of
developing an extension of the language to support threat hunting, against
criteria relevant to a profile for analytical operations. We find that the
ongoing work does not satisfy the requirements for an analytical extension
of the language but instead aims at facilitating the automatic invocation
of huntbooks, programmable intrusion detection. Further, we argue
that previous extensions addressing technologies like packet filtering and
endpoint response are more in line with important design principles.

Alternative approaches to a profile for analytics are presented and dis-
cussed, using the ongoing work as a starting point. We evaluate the al-
ternatives under criteria such as agnosticism to existing implementations,
the extent to which the models abstract the analytical function or specific
operations, as well as the estimated amount of work to produce a compre-
hensive version of the proposed solution.

We were not able to produce complete, comprehensive versions of our
suggestions in the form of an OpenC2 actuator profile under the time
restrictions of a short master thesis. However, we do hope our discussions
can be of some value to further work with developing a standardized
language for analytics.
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Glossary

Table 1: Acronyms and their full form

OpenC2 Open Command and Control
OASIS Organization for the Advancement of Structured Information

Standards
STIX Standardized Threat Information eXchange
SCO STIX Cyber Observable
SDO STIX Domain Object
CACAO Collaborative Automated Course of Action Operations
CTI Cyber Threat Intelligence
OCA Open Cybersecurity Alliance
EDR Endpoint Detection and Response
AP Actuator Profile
SLPF Stateless Packet Filter
SIEM Security Information and Event Management
SOAR Security Orchestration Automation and Response
APT Advanced Persistent Threat
IoC Indicator of Compromise
IoB Indicator of Behavior
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Chapter 1

Introduction

1.1 Motivation

Modern society sees informational technology integrated into any and all
of its digital services [1][2]. The benefits of digitization and automation
of services do not come without costs. The increase in availability,
interconnectivity, and complexity of our services, digital assets, and
critical infrastructure, at the same time, expose potential vulnerabilities
for exploitation. Cyber security has become integral to the security of
basic needs, as power grids [3], water system facilities [4], healthcare
organizations [5], and other critical infrastructure[6], are areas where
informational and operational technology meet physical processes our
safety depends on.

Adversaries can be resourceful, professional, and well-informed. They
can choose when, what, and how to attack and utilize automation in
their operations. However, defenders are challenged to monitor their
assets, detect intrusions and respond in a timely manner (what experts call
cyber-relevant-time [7]) to prevent actions on objectives. This produces
an advantage to the adversaries, allowing the attackers to execute their
offensive operations faster than defenders can detect and respond.

According to IBM security’s Cost of a Data Breach 2022 report [8], it takes
an average of 207 days to detect an incident and 70 days to contain it. There
is a slight improvement from the previous year but no significant trend in
the last five years. Longer data breach life cycles are associated with higher
total costs in the same report.

One of the explanations for the slow detection and response time is
that defenders still have to perform many of their operations manually,
increasing detection time, response time, and, consequentially, the cost
of attacks. This challenge is increasingly hard to overcome as the
environments that defenders are tasked to protect become increasingly
diversified regarding the composition of technologies and systems. As the
set of distinct tasks defenders are required to solve grows, so does the size
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of their toolbox, referring to specialized software or tools that need to be
integrated into already established procedures and infrastructures. This
can be seen in IBM’s analysis of critical factors associated with the costs
of incidents. Out of the 28 factors analyzed, complex security systems
are the factor associated with the highest average difference in the costs
of incidents.

On the other end of the spectrum, and possibly the remedy to handle
these complex systems, is the factor of artificial intelligence (AI) and
automation platforms. This factor measures the average cost difference
between incidents in systems with advanced security platforms using
AI, machine learning, analytics, and automated security orchestration.
Fully deployed AI and automation programs were associated with 28
days faster identification and containment of breaches on average, with
partially deployed programs also performing significantly better than no
automation[8]. See Appendix A for illustrations.

One way to approach the challenge of implementing AI, advanced
analytics, and automation is to "buy your way out". Different devices
and software produce non-standardized system event logs that need to
be normalized and translated to support the needs of detection and
analytical functions. Security vendors sell Security Information and Event
Management (SIEM) solutions that handle the collection and presentation
of data from relevant sources. The vendors create proprietary solutions
that solve translation and support analytical functions. More advanced
products like Security Orchestration Automation and Response (SOAR)
products solve the problem of integrating tools and support higher
maturity level functions like automated decision-making and response.
However, the "buying your way out" solution does come with problems.
Advanced system-wide security solutions in the SIEM/SOAR categories
can lead to vendor-lock-in issues. The benefits of an out-of-the-box, fully
integrated environment come with the condition that many or all devices,
tools, or technologies are vendor-specific. They use proprietary and non-
standardized solutions, and specific components can be hard to replace.
When a customer wants to integrate a tool or device, either custom-made
or from a competitor, they are not guaranteed that the vendor will support
integrating solutions, especially if the vendor provides a tool or device that
is close to equivalent.

To address the risk of system ossification and to facilitate the orchestration
and automation of cyber security functions, it is a goal to standardize the
command and control (C2) of devices integral to security operations. It is
required that the different functional blocks communicate with each other
using a common language. This standard language would need to capture
an abstract representation of the function and describe its services in a way
that makes them available to other parts of the system. If successful, C2
interfaces can be implemented in accordance with the standard, and plug-
and-play interoperability can be achieved. One ongoing effort to create
such a standard is OASIS OpenC2.
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The OASIS OpenC2 project aims to develop a standardized technology-
and vendor-agnostic language for the command and control of devices in
security operations. Within the OpenC2 project, there is a sub-committee
tasked with creating a threat-hunting actuator profile[9], an extension of the
language for incorporating threat hunting. It is possible that the ongoing
effort toward defining a threat-hunting actuator profile can address at least
some of the challenges described above. The committee has involved
threat-hunting experts associated with IBM security, including renowned
security researcher and founder of Kestrel, Dr. Xiaokui Shu. It is possible
that this cooperation between the OpenC2 technical committee and the
Kestrel researchers can produce an information model that satisfies the
requirements of a standard for analytics.

1.2 Research questions

The first goal of the thesis is to assess to what extent the ongoing work with
developing a threat hunting actuator profile is applicable to the challenges
described above, or:

RQ1: To what extent can the OpenC2 Threat Hunting Actuator
Profile satisfy the requirements for an abstraction of analytical
operations?

After evaluating the ongoing effort, the natural continuation of the work
is to address the potential findings by investigating alternative approaches
and evaluating them.

RQ2: How could alternative approaches address findings from
RQ1 and be more in line with the OpenC2 philosophy and design
principles?

1.3 Research methodology

Solheim and Stølen[10] differentiate between classical research method,
the formulation of hypotheses, experimenting, observing, evaluating, to
understand and explain worldly phenomena, and technology research.
Where classical research is mainly motivated by the search for new know-
ledge, technology research tends to originate from a practical problem,
seeking a solution. "Technology research is research for the purpose of pro-
ducing new and better artifacts" [10].

The iterative process of technology research consists of problem analysis,
identifying requirements for a solution, innovation, designing a potential
solution, evaluation, testing, and proving whether the requirements are
met.

Similarly, this research work evaluates a solution to a part of the problem
of facilitating automation, advanced analytics, and AI in cyber defense
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operations. The part of the problem this thesis focuses on is creating an
information model for analytics. We specifically evaluate the ongoing work
of creating a threat hunting actuator profile but against the requirements
of a profile for analytics. These definitions are discussed in detail in the
background chapter.

To ensure that our evaluation is based on a sound understanding of the
challenges and the ongoing work, that any potential critique has a basis
and is justified, and that our alternative suggestions are credible, we will:

• Participate in OpenC2 technical committee weekly meetings

• Participate in OpenC2 Kestrel Threat hunting actuator profile bi-
weekly sessions

• Survey relevant literature

Though it exists plenty of literature on standardization in cyber security,
the specific issue of abstracting analytical operations is state of the art.
As such, the most relevant information we have found has been in less
formal publications, even documents from the working branch of GitHub
repositories [9]. We have chosen to incorporate the literature review instead
of a dedicated chapter. The main portion supports the background theory
chapter for the readers understanding.

We did get a chance to discuss both the threat hunting profile and Kestrel
with the founder of Kestrel himself, Dr. Xiaokui Shu. This could have
been an opportunity to perform a semi-structured interview to include as
part of the thesis. However, unfortunately, this was rather spontaneous
and close to the deadline for the thesis, and we were not able to adhere
to the academic standards for interview methodology. Instead, we had a
casual thirty-minute conversation that, however valuable to the author’s
understanding of the project, does not meet the ethical requirements to be
a part of the thesis.
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Chapter 2

Background

2.1 OpenC2

2.1.1 OASIS

OpenC2 is developed and maintained under OASIS, an organization
dedicated to open-source development and international standardization.
OASIS has, amongst other fields, projects within the cyber security domain.
They themselves describe their mission as "to advance the fair, transparent
development of open source software and standards through the power of
global collaboration and community" [11].

In addition to getting support from universities, like the University of
Oslo [12], the OASIS foundation has been largely successful in engaging
large tech companies in their work. IBM, Cisco, DELL, Google, and other
influential stakeholders in information and communication technologies
(ICT) give their support, participate in, and contribute to OASIS projects.
One could argue that, in some cases, it is in large tech companies’ self-
interest to work against standardization. Vendor-lock-in is a situation that
benefits the vendor, at least in the short term. Therefore, involving these
types of stakeholders in cooperation, in efforts to increase interoperability,
is a testament to the authority of a standard, and a key factor for producing
standards that eventually get implemented. Amongst other important
standards, OASIS is responsible for the development of STIX and TAXII,
"the de facto standard for sharing threat intelligence" [13].

2.1.2 Overview

The OpenC2 project is a technology- and vendor-agnostic command
and control language for machine-to-machine communication within
the cyber defense domain. In OpenC2, producers generate and send
commands to consumers, which in turn can execute operations and
provide meaningful/informative responses. Messages are constructed as
pairs of actions and targets, with the possibility to include arguments. The
standard is comprised of several specifications. An introduction to general
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structures, design models, and guidelines for developing extensions, are
documented in the architecture specification [14]. The core of the language
is defined in the language specification [15]. Actuator profiles extend
the core language to define actuator-specific actions and targets, but also
to define the correct interpretation of action:target pairs in the context
of a given actuator. Structuring OpenC2 in this manner is a design
choice to achieve extensibility and to stay relevant when new functions
are introduced. In addition to the approved and published specifications,
there is ongoing or planned work on actuator profiles covering a plethora
of central functions within the cyber defense domain.

2.1.3 OpenC2 Design Philosophy

OpenC2 is developed according to a set of design principles to guide con-
tributors. Remembering the process of technology research, the principles
can be thought of as identified high-level requirements for solutions, guid-
ing the actual innovation, and natural criteria for evaluation.

Consise

Commands should be concise, meaning they should not contain redundant
or irrelevant information.

Extensible

Extensibility is an important feature for models in a dynamic and young
research field such as cyber security. The model needs to be designed
in a way that allows additional currently unknown features to be added
without compromising existing work, and without having to build new
structures from scratch. This manifests in a modular design with common
structures defined in the architecture specification, common features
defined in the language specification, and actuator profiles defining
function-specific features.

Vendor- and technology agnosticism

To facilitate interoperability it is important that the language is an
abstraction of functionality. This means that it needs to be relevant and
correct regardless of the underlying implementation.

Information model versus data model

OpenC2 is a collection of information models. An information model is
a conceptual abstract representation of entities and their constraints and
relationships within a domain. The model focuses on the meaning and
context of data and how it is used. Information models guide the process
of implementing the modeled function to what may, should, or must be
implemented, but not how. An implementation of an information model is
called a data model.
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A description of a data model is low-level and rich in details, describing
how a specific instance derived from an information model was imple-
mented. Several data models can derive from a single information model,
as the information model is a higher-level description of the environment,
agnostic to the specific tools or software used or developed for the pur-
pose.

2.1.4 Components

This subsection introduces a few terms that have a specific meaning in the
context of OpenC2.

Architecture Specification

The architecture specification[14] is an overview and high-level description
of OpenC2 components, their structures, and how they relate to each other,
such as commands, responses, and types of devices. Further, it explains
design models used to develop and extend the language, such as the action-
target model and the introspection model.

Language Specification

The language specification[15] defines an abstract set of core functionality,
actions, targets, and other type definitions, common to many devices and
operations within the cyber defense.

An example is how the language specification defines types for represent-
ing points in time, intervals, or durations. Many actuators have this need,
defining new types for each actuator would be redundant work, and could
potentially lead to misunderstandings.

OpenC2 Actuator

An actuator is the implementation, device, or technology that performs a
function in security operations. To put things in perspective, a security
ecosystem could have a device functioning as a firewall. That device is an
actuator.

OpenC2 Action

Action is a mandatory field in OpenC2 commands and a description of
the operation to be performed by the actuator. Commonly a piece of
abstracted functionality essential to the actuator’s function. Present, in
some form, in most implementations. For example, most firewalls have
some implementation of rules that "block X". A different actuator might
call it to deny. Different syntax, but semantically the same. In an OpenC2
information model, there will be one standardized Action.
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OpenC2 Target

The second mandatory field, a target is the object on which the action
is performed. The target can be further specified with Target-Specifiers.
An example target for the endpoint response action "deny" is "file". The
file target can be specified with a Target-Specifier such as a hash of the
file.

Example from the endpoint response actuator profile [16]:

1 {
2 {
3 "action": "deny",
4 "target": {
5 "file": {
6 "hashes": {
7 "sha256": "0a73291ab5607aef7db23863cf8e72f55

bcb3c273bb47f00edf011515aeb5894"
8 }
9 }

10 },
11 "actuator": {
12 "er": {}
13 }
14 }

OpenC2 Action:Target pair

A command always consists of an action:target pair. An unambiguous
interpretation of a given action:target pair in the context of a specific
actuator should be described in the actuator profile.

OpenC2 Command Arguments

A command can be further specified using arguments when necessary. In
an actuator profile, allowed arguments for a given pair should be defined in
a Command Arguments matrix. Further, the interpretation of an argument
being present for a given action:target pair should be defined. Some
arguments require specific responses, such as the packet filter profiles
"insert_rule" argument requiring the response_requested argument to be
"complete".
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OpenC2 Example Command

Example from the packet filtering actuator profile[17], serialized in
JSON:

1 {
2 "action": "deny",
3 "target": {
4 "ipv4_connection": {
5 "protocol": "tcp",
6 "src_addr": "1.2.3.4",
7 "src_port": 10996,
8 "dst_addr": "198.2.3.4",
9 "dst_port": 80

10 }
11 },
12 "args": {
13 "start_time": 1534775460000,
14 "duration": 500,
15 "response_requested": "ack",
16 "pf": {
17 "drop_process": "none"
18 }
19 },
20 "actuator": {
21 "pf": {
22 "asset_id": "30"
23 }
24 }
25 }

OpenC2 Actuator Profile

An abstraction of the functionality that an actuator provides. Extends the
core language specifying actuator-specific components as well as providing
detailed and unambiguous interpretations of action:target pairs. This thesis
evaluates the ongoing work on a specific actuator profile, the threat hunting
profile.

2.1.5 A Profile for Threat hunting

Before we move on to background theory on analytics we explain the
connection to the threat hunting actuator profile. Threat hunter is a term
used to describe a role in security operations. Performing threat hunting
is a process that revolves around proactively gaining an understanding
of the target system, generating relevant threat hypotheses, and testing
them against observations of system and network activities [18]. The
process can require analytical operations such as data retrieval and data

10



enrichment. Other more reactive analytical roles and processes, such as
incident response and classification of alerts in a SOC environment, often
rely on the same operations, only with different motivations.

Figure 1: Cyber security roles, or functions, that rely on analytics

Our research question focuses on evaluating the profile’s success in
abstracting the functionality of analytics. If successful, this could be used to
automate several procedures, roles, or responsibilities, within the domain.
Not just threat hunting. In terms of naming the profile, the name implies to
us that we will attempt to capture an abstraction of analytics because they
rely on the same operations as other roles. However, to stay consistent
with Kestrel and OpenC2 documentation, we also sometimes use "threat
hunting" when we mean analytics.

2.2 Analytics

Analytics can be used to describe processes in security operations that in-
volve retrieving data from a data source, filtering data based on some at-
tribute, sorting or grouping data according to some order description, data
enrichment, and visualization. This section briefly covers some important
terms, as well as goes a little more in-depth on some fundamental intrica-
cies of this function.

2.2.1 General

Data

Data is context-less low-level material used as basis for analysis. Typically
answering ’what’.

Information

Information is organized and structured data. Typically answering ’what’
and sometimes ’how’.
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Intelligence

Contextualized information. Typically answering ’what’, ’how’, ’who’, and
sometimes ’why’.

Security information and event management

SIEM solutions can span several functions within cyber defense. SIEMs
can perform log collection. This involves data ingestion, normalization,
and indexing. SIEMs can also perform both signature-based and anomaly-
based detection, and handle the processing of alerts generated by intrusion
detection systems. Another general function SIEM solution can perform
is analytics through search and visualization. The indexed data can be
queried, inspected, and visualized in dashboards.

Security orchestration automation and response

SOAR solutions are advanced systems for automating procedures in cyber
defense.

Orchestration: SOAR solutions tie together several functions. One
example is automating the consumption of threat intelligence and ingesting
security information. This includes extracting relevant detection signatures
and updating rule sets in the monitored environment. This requires
common languages and standardized threat intelligence formats.

Figure 2: Replacing a firewall in an integrated environment [19]

Response: SOAR solutions can also perform automated decision-making
and response to certain events. For example, if a critical vulnerability is
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announced for a service running on node(s) in a monitored environment, a
SOAR solution could have logic to isolate and/or emergency patch without
the need for human interaction. When a critical vulnerability for software
or hardware is publicly announced a race begins between opportunistic
adversaries and defenders to respectively exploit the vulnerability or
evaluate exposure and take a course of action. SOAR solutions subscribing
to critical vulnerability feeds can match announced vulnerabilities with
inventory and perform automated predefined responses.

Automating procedures across functions in cyber defense systems de-
mands standardized and machine-readable actions. The international com-
munity of cyber defense researchers is working on a standard model for ac-
tion playbooks. Collaborative Automated Course of Action (CACAO) is an
OASIS project working towards enabling organizations to create and share
these playbooks. To put this in the perspective of OpenC2, an orchestrating
device could execute a CACAO playbook that involves several actuators,
communicating with them using OpenC2 commands. Figure 8 illustrates a
use case.

2.2.2 Datatypes

Earlier we defined analytics as a function performing different operations
involving data. In this subsection, we cover some different categories of
datatypes that are necessary to discuss analytics.

Entity

Kestrel documentation defines entities as "a system, network, or cyber
object that can be identified by a monitor" [20]. Entities are the vertices in
a graph showing all monitored events within and between systems. Files,
processes, hosts, network traffic, etc., are all examples of entities.

Attribute

In this context, attributes are additional information describing an entity.
A relevant property. Entity attributes are fields that describe an entity,
and therefore activity on a system or systems, and/or relations between
systems.

Relation

A relation is a relevant connection between entities. Relations often contain
information about why entities exist, and what entity is responsible for an
event. This way, relations tie together observable artifacts into a graph
that holds the information explaining relevant actions and causal effects
both within and between systems. Typically, these relations are directed
edges in a graph with natural counterparts such as created and created
by. Examples: "process1 created process2", and "process2 created network-
trafficA".
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Event

In security operations, an event is an action performed by, and including at
least one, entity. A record is machine-generated data describing the event,
also referred to as an event log entry. Records can include information on
more than one entity, such as when a process creates a child- process, in
which case both processes are separate entities. An entity can also produce
several events. A process can spawn more processes, create files, read files,
and create network connections. These are all typical examples of system
events that monitoring software will create records of.

In some cases, such as the case with network traffic, also called network
flow data, the entity versus event differentiation is somewhat unclear.
Typically flow data contains two entities, source and destination IP
addresses are regarded as host entities. Flow data typically contain
information such as the point in time the traffic started, network ports,
the number of bytes sent, protocols, etc. As such, this datatype seems
to be a perfect example of how we describe events. However, network
traffic can also be considered an entity because it is something that can be
observed by network monitoring devices, and that itself can relate to other
entities.

An important insight is that records of events are a natural choice of the
type of data we wish to create logs of in order to store the information of
what happened in a monitored environment. The reason is that events are
limited in extent by nature. The ability to investigate all information on
a specific entity is valuable to analytics, but storing this information for
all entities in one place is impractical in real life scenarios. For example,
some processes persist for a long time, at what point should a log be made?
What if the system crashes? There are many reasons why event logs are
the obvious choice for storing historical information in monitored systems.
Alternatives to event logging, such as graph databases of entities, could be
a supplementing alternative but unlikely a replacement.

2.2.3 Data storage in cyber security

The following very brief introduction to database models explains a typical
trade-off dilemma in the choice of data models and an important source of
complexity in analytics in security operations.

Relational

Relational databases organize data in tables usually with columns describ-
ing variables and each row an instance of the data stored. The way the
database is designed can follow norms called normal forms. The level of
normalization of the data relates to the possibility of the tables containing
redundant or wrong information. For example, 1NF, or first normal form,
requires that a column can not contain more than one value. If there is a
need to store more than one value for a type of relation to an entity then
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the data will need to be normalized. Meaning a separate table will have to
be made with multiple rows indicating relations.

Simple example:

Table 2: Multiple values in a column (NOT 1NF)

uid pid binary_name Network_Traffic_UID
123123 1234 cmd.exe ABC,BCD,CDE

Table 3: Extract the relations

uid network_traffic_uid
123123 ABC
123123 BCD
123123 CDE

Table 4: Example network traffic

network_traffic_uid src_ip src_port dst_ip dst_port
ABC 1.1.1.1 55550 2.2.2.1 80
BCD 1.1.1.1 55551 2.2.2.2 80
CDE 1.1.1.1 55552 2.2.2.3 80

Failure to normalize relational databases can result in insertion anomalies,
deletion anomalies, or update anomalies. Consequentially the data stored
in a relational database have to be structured according to a defined
schema. An example where this can be impractical is if you want to collect
event logs from a number of different devices that might support a varying
range of debug and log features. Forcing the logs to fit a relational database
might be disadvantageous because of the information that would need to
be excluded in order to normalize.

Scaling

Relational databases scale vertically, typically by adding more resources
such as memory and computational power to a single server. This can
eventually become very cost-inefficient compared to a distributed design.
Non-relational databases, like document storage, are designed to scale
horizontally, meaning they can be distributed over several servers. The
distributed design is preferable for use cases with high demands for
performance and availability, which can be the case for security operations,
and monitored environments. With a distributed design you sacrifice some
of the strong guarantees the relational database gives when it comes to data
consistency to be able to handle larger amounts of data.
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JOINs

Relational databases are optimized for complex queries requiring opera-
tions such as SQL JOINs. The analytical function often requires such quer-
ies to be answered. Take the example from the tables above. Say we get a tip
that ip-address 2.2.2.1 has been involved in malicious activities. We query
for network traffic to this IP with "SELECT * WHERE dst_ip=’2.2.2.1’;".
Now, we want to know more about the process that created this traffic to
understand if our traffic is related to the malicious activities we received a
tip about. To answer the question what is the process id of the process that
created network traffic ’ABC’, we need to join the tables. Luckily, relational
databases are optimized for these types of operations, whilst non-relational
databases are not.

This is a significant downside to non-relational databases. The distributed
design makes join operations, nested complex queries with more than
one hops in relations, "prohibitively expensive" [21]. For example "GET
outgoing network traffic created by some processA created by some
processB with (binary name not equal to ’WinMail.exe’ AND created by
a process with binary name equal to WinMail.exe)", see Figure 4 for
illustration of pattern. Depending on the size of the queried storage in-
efficient beyond tolerance levels. A remedy can be fetching data from a
distributed document storage (hunt)step by step, normalizing the data if
needed, and building temporary relational databases for use in analytical
processes.

Summary of data storage

For security operations, there is a trade-off between non-relational and re-
lational databases. The trade-off is in terms of handling large amounts
of schema-less and unstructured data versus handling complex pattern
matching on the same data. Non-relational databases are not optimized for
advanced analytics. On the other hand, it is not realistic to maintain a re-
lational database for log collection, and monitoring for large environments
in the long term. However, temporary relational databases can provide
valuable functionality to analytical processes.

2.2.4 Patterns and other expressions for data description

When describing an entity we use patterns. Patterns can be comprised
of combinations of small comparison expressions, combined by operators,
and described by other qualities. We use patterns to describe how we want
to filter data retrieved when we query data repositories. The pattern is
matched against entries and positive matches are returned. To explain
these terms in more detail we use the STIX framework definitions of
patterns and their components.
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STIX comparison expression

An expression stating a value for an attribute. Used for matching events or
entities, they are the simplest form of filtering. Here presented as a STIX
comparison expression, but in general composed of an attribute specified
entity:attribute, a comparative operator such as equal to, not equal to, less
than, etc., followed by a value valid for the attribute. Conventionally,
indicators of compromise (IoC) is a term used for simple attribute values
associated with some suspicious behavior, worthy of further investigation,
but often lacking further information or intelligence.

Example: [ipv4-addr:value == ’198.1.1.1/32’]

In the example, we have the format entity:attribute operator ’value’.

STIX observation expression

To express the concept of patterns in activity the STIX framework
uses Observation expressions. These are composed of one or more of
the simpler, more atomic comparison expressions. Several comparison
expressions can be combined using operators such as OR/AND. Several
observation expressions can also be combined by observation operators
such as ’FOLLOWEDBY’. Finally, qualifiers can be included to express
qualities such as the number of repetitions within a certain time frame.
Combined following a set of rules these concepts form a pattern.

STIX pattern

A STIX pattern can include one or more STIX observation expressions com-
bined by observation operators and can include a qualifier as the example
shows. Conventionally, indicators of behavior (IoB) is a term used for lar-
ger patterns describing known or suspected malicious behavior.

Figure 3: STIX 2.0 Part 5: STIX Patterning [22]

2.2.5 Entity graphs

A common way to illustrate and reason around entities is using graphs.
The following are some common types of graphs used in analytics.
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Single node graph pattern

The single node is an entity. There are no edges or other vertices. The
node can have labels describing attributes with values belonging to the
entity.

Extended centered graph pattern

ECGP is a way to represent IoBs, a graph centered around one entity.
Its described using its attributes, but also relations to other entities
and possibly their attributes. A combination of comparison expressions
describing specific events or entities.

Figure 4: Complex pattern illustrating EGCP / IoB

Property graph

A property graph can consist of vertices with labels describing that instance
of an entity. Relations between entities are represented by the edges which
are both directed and can have labels or properties. In other words,
property graphs are graphs where both vertices and edges can have both
labels and attributes.
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2.2.6 Analytical operations

So far, we have covered some concepts and structures necessary to perform
analytics in security operations, but we have not yet fully defined analytical
processes. As a reminder, these processes or operations make up the
functionality we expect a comprehensive version of an OpenC2 actuator
profile for analytics to capture.

We have mentioned data retrieval. Any data repository needs to be able
to output the stored data. We have discussed some categories of databases
and how different models can have benefits and drawbacks when it comes
to complexity in queries. Data transformation is the sorting or grouping of
data. Data enrichment is processing data with external analytics, using
for example threat intelligence or machine learning to add information.
Data visualization and inspection functionality also fall under analytics.
These categories are used by Kestrel to group some of their commands
together.

2.3 Kestrel

Kestrel is an open-source project under the Open Cybersecurity Alliance
(OCA) consisting of two parts. The Kestrel threat hunting language, and
the Kestrel runtime software. It is maintained by IBM security researchers
with two main contributors. One of which is the founder Dr. Xiaokui Shu,
who has also demonstrated Kestrel at security gatherings such as Blackhat
2022[23]. In this section, we give a brief introduction to the most relevant
features.

2.3.1 Overview

First, a short description of how Kestrel fits in security operations, see
figure 5 for illustrations. As a high-level example: take A) monitored
devices producing raw logs, B) a system for collecting and storing the logs
in some data repository, and C) analysts crafting and sending queries to the
data repository to perform different analytical tasks. Kestrel runtime will
fit between the analyst and the data source. Instead of crafting queries in
the query language native to the data source, the analysts will use queries
written in the Kestrel language. The Kestrel runtime will parse the query
and its internal logic decides how to hunt. The Kestrel runtime crafts
queries for a STIX connector in order to receive back a STIX bundle of
observed objects. This requires that there exists a STIX connector for the
data source in question.
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Figure 5: Kestrel in the analytics stack

2.3.2 Kestrel Threat Hunting Language

To our knowledge, Kestrel threat hunting language is the first language
designed specifically to perform cyber threat hunting. In the following, a
few terms defined in the Kestrel documentation will be explained.

Hunt

A threat discovery process, built up of one or more hunt steps. "A
procedure to find a set of entities associated with a threat." [20]

Kestrel variables

Kestrel variables point to table-like data structures describing a homogen-
eous set of entities. Many Kestrel commands have Kestrel variables as out-
put, some have Kestrel variables as input.

Hunt Step

A huntstep is a single Kestrel command. The syntax and vocabulary
seem inspired by both SQL and Python. "variable = GET process FROM
[datasource] WHERE [pattern]."

Figure 6: Kestrel huntstep [24]

Huntflow

Several hunt steps combined is also called a hunt flow. A huntflow can
be expressed in huntsteps and stored in a Kestrel Huntbook. Flows can be
split and merged. See figure 7 [20].
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Figure 7: Kestrel huntflow [20]

2.3.3 Kestrel runtime

The Kestrel runtime is written in Python. It interprets commands written
in Kestrel language and decides how to execute the hunt.

Frontend

Kestrel has several user interfaces such as a command line interface
and python API. It can also be used interactively with Jupyter Note-
book, and has the functionality to export Kestrel huntbook files under
File>Download>Kestrel (.hf). The huntbook files can be stored and executed
as a high-level program language for intrusion detection.

Backend

The runtime interprets commands, executes queries, and caches results us-
ing Firepit, relational database temporary storage to allow faster processing
of results, as well as smart pre-fetching of data to fill information gaps on
entities already in storage.

At the time of writing, Kestrel has two ways of ingesting data; either
through a STIX bundle, which can be stored locally or remotely, or through
a STIX-shifter connector data interface.

2.3.4 STIX-Shifter

The STIX-Shifter[25] project is part of the Open Cybersecurity Alliance[26],
which is an OASIS Open Project. STIX-Shifter is an open-source Python
library defining field mappings from STIX patterns to a wide range of
data repositories used in monitored environments. With many of the
most popular data sources in cyber defense having their own STIX-shifter
module, called STIX connectors, STIX-Shifter works as a federated search
engine, allowing the same STIX pattern to be translated into many different
query languages.
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STIX connectors take STIX patterns as input, translate the pattern to the
underlying technology’s domain-specific query language, and output a
STIX bundle object containing the data resulting from the query translated
into STIX Observed Data objects.

It’s important to note, that while it might exist STIX connectors for many of
the most relevant data sources for cyber security operations today, the level
of functionality you get access to for each of the data sources is restricted
by the respective connector. Meaning, that you are likely to have less than
full access to the normal functionality the repository provides. You might
not have guarantees that the STIX connector is updated and maintained at
the same pace as the underlying technology. This problem is passed along
to the Kestrel runtime as the STIX-shifter data source interface is currently
the only supported way to consume data, in addition to STIX bundle data
source Interface.

STIX Cyber Observable object (SCO) [27]

An SCO holds a piece of structured data documenting something that
existed at a point in time on a system or network. An example of captured
data is the SCO File object, which must include the id and at least one of
two fields filename or hash-value. In addition to the required fields, there
are many optional fields that describe the object.

The SCO is a piece of data, which means it does not necessarily contain
explicit information regarding who is responsible for something or when
something happened, and "never the why" [27].

An SCO is often contained within a STIX observed data object when the
data collector/producer has more information to communicate.

STIX Observed Data object [28]

The STIX observed data object is a STIX domain object (SDO) used to
convey information about SCOs. The object can contain one or more
SCOs as well as information such as timestamps for first seen, last seen,
or the number of times observed. This way the object can be used to
aggregate information. For instance, a firewall could output logs as a list
of all SCOs seen at a time interval. However, its possible to aggregate
the information by wrapping the SCOs in an Observed data object and
including a "number of times observed" value. If a firewall-type device
is experiencing a large number of observations related to a handful of IPv4
addresses, this information can be communicated efficiently, with fewer
bytes, when using the STIX observed data object.

To be precise, a STIX observed data object must not be mistaken as intelli-
gence. The object itself does not contain rich contextual information, only
raw information about SCOs. It is not an attempt to communicate meaning,
it does not describe why certain phenomena are being observed.
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STIX bundle object

A STIX bundle object is a list of arbitrary STIX objects. It’s important
to note that no meaning can be inferred from the presence of an object
or a combination of objects in a given bundle. The bundle conveys no
semantic meaning, it is simply a container for objects. As such it is a flat
structure. Objects within the same bundle could be related to each other,
but information about any such relations must be conveyed by use of other
types of objects such as STIX relationship objects.

2.4 Chapter Summary

This chapter has provided an overview of the OpenC2 project. As
this thesis focuses on the challenge of extending OpenC2 to include
an abstraction of analytics this chapter also hopefully covered how we
define analytics, the basic building blocks, and why it might not be as
straightforward to capture as other functions within the cyber security
domain.

Further, as the committee has involved threat hunting experts and security
researchers from Kestrel to develop the actuator profile this chapter has
introduced some of the theory behind Kestrel and terms relevant for later
discussion.

What follows is a chapter addressing our first research question, an evalu-
ation of the ongoing work with the threat hunting actuator profile.
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Chapter 3

The Threat Hunting Profile

RQ1: To what extent can the OpenC2 Threat Hunting Actuator Profile sat-
isfy the requirements for an abstraction of analytical operations?

3.1 Overview

When it comes to extending the core language and defining actuators for
specific functions it seems OpenC2 so far has found the most progress in
packet filter-related functions. With a published stateless packet filtering
actuator profile[17], and in progress with stateful packet actuator profiles,
intended to be combined in the future[29]. Further, the technical committee
has worked on an actuator profile for endpoint detection and response[16],
efforts led by Martin Evandt, a master’s student from UIO, and his
supervisor Vasileios Mavroeidis. Their work, which was to be combined
with writing a master’s thesis, showed that it can be useful to define
endpoint detection and endpoint response as separate functions. That
endpoint detection’s operations could in some cases have more in common
with an analytical-type function.

To generalize it seems the OpenC2 project so far has seen mostly progress
towards creating actuators that actuate simple atomic commands, changing
the state of devices, and in turn responding with success or failure as
results. Less efforts have so far been directed at analytical functions. This is
a conscious choice by the committee, stating in the language specification
that "aspects of coordinated cyber response such as sensing, analytics, and
selecting appropriate courses of action are beyond the scope of OpenC2".
However, now that the project has found success in abstracting some of the
classical atomic operations it might be time to investigate more complex
functions. There exist many types of data storage solutions and with them
domain specific query languages. It is outside the OpenC2 scope to define
how data should be stored, but the communication to and from a data
source can be argued to be within the scope.

This chapter introduces the ongoing work with creating a OpenC2 threat
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hunting actuator profile. It investigates to what extent the profile addresses
the need for a profile for analytics, and how well the profile adheres to
OpenC2 philosophy. As a point of reference we compare the ongoing work
with previous profiles.

3.2 Disclaimer

The work on the threat hunting actuator profile is an ongoing effort. We
have to use the most recent data we have available, which might not
be representative of the final product but a step in the direction of what
the technical committee wants to achieve. OASIS enforces requirements
for procedures regarding the standards developed under its name. This
provides quality assurance for the product and credibility to the OASIS
name brand. Therefore as the work is yet to be published, it has also
yet to go through the entirety of due process including presentation for
review and public comment. The product is however reviewed internally
within the sub-committee. To get more information than can be read from
the public GitHub we have participated in OpenC2 meetings as well as
reviewed recordings of working sessions between the technical committee
for the threat hunting actuator profile and the Kestrel team. Further,
through a one-on-one interview with Dr. Xioakui Shu, we learned more
about his perspectives and motivation for contributing to the efforts to
develop OpenC2. This is how we have achieved our understanding of the
direction the work is taking at the time of writing, or in other words, this is
what we base the analysis and evaluation in this thesis upon.

3.3 How its made

3.3.1 Participants, forum

OpenC2 is developed through OASIS technical committee (TC) program.
In the TC program members develop specifications through a defined
open process. Subcommittees are appointed if dividing the work is
necessary, such as for the threat hunting AP. The TC meets every week to
present progress on the different work items. Once a month, the weekly
meeting is a voting meeting to vote on matters such as approving pull
requests, voting to send matters up a level to OASIS, etc. All the different
working items, tools, or documents under development have a person in
charge, often called maintainers, as well as contributors. In terms of the
threat hunting actuator profile, Mr. David Lemire is assigned the role of
"contributor". He usually takes care of updating the rest of the OpenC2
TC on developments in the threat hunting subcommittee. Mr. Lemire’s
contributions to the OpenC2 initiative are substantial. Though he is the
only publicly assigned contributor in the official GitHub repository there
are multiple people involved with developing the schemas for the threat
hunting actuator profile, and a larger international community participates
in discussions.
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In addition to the OpenC2 working meetings, the bulk of the actual work
towards producing a document that meets OASIS’s standards is done by
the individual contributors, guided and consulted by a mix of experts
who meet for bi-weekly two-hour discussions. The meeting is often called
OpenC2 Hunt AP (Kestrel) meetup, as it is hosted by threat hunting
experts associated with IBM, and developers and maintainers of the Kestrel
software and threat hunting language. In addition to OpenC2 members
and the Kestrel team, contributors to the Open Cybersecurity Alliance
project are welcome to contribute to the discussion.

3.3.2 Design Goal

The ongoing work with the threat hunting actuator profile started in 2022.
Their vision from the start has clearly been focused on facilitating the
automation of defensive processes, as can be seen from this early-stage use
case diagram. See Figure 8, borrowed with permission from the OCA. The
use case involves a CACAO playbook using OpenC2 commands to execute
a vulnerability scan, followed by targeted threat hunting, as well as other
possible functions.

Figure 8: Use case diagram, CACAO and OpenC2

This figure was presented and discussed during a bi-weekly meeting
between OpenC2 and Kestrel. Enthusiastic comments mentioned how
early visions are still relevant. This particular use case is a fully automated
process using pre-defined pattern matching.

It is important to note that while the figure shows all machine-to-machine
communication as OpenC2, the threat hunting actuator profile only covers
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the communication between the Kestrel Runtime and the CACAO security-
action labeled "Hunt found Threat with predefined books". We can gather
from this that there is information in the output from the previous CACAO
security-action which influences which huntbooks are invoked.

3.4 Analysis

This section covers the current state of the threat hunting actuator profile. It
includes an account of the tables in the working schemas and comparisons
to other actuator profiles. First, we present the list of actions and their
descriptions. Next, we look at action:target pair matrices.

3.4.1 Type: Actions enumerated

Table 5: Action Enumerated Threat Hunting AP

ID Name Description
3 query Initiate a request for information.

30 investigate Task the recipient to aggregate and report informa-
tion as it pertains to a security event or incident.

Table 6: Action Enumerated Endpoint Response AP

ID Item Description
1 scan Initiate a scan for binaries classified as malicious.
3 query Query the ER actuator for a list of available features.
6 deny Deny a process or service from being executed on the

endpoint.
7 contain Isolate a device from communicating with other devices

on a network, quarantine a file.
8 allow Un-isolate a previously isolated device.
9 start Initiate a process, application, system, or activity.

10 stop Halt a system or end an activity.
11 restart Restart a device, system, or process.
15 set Change a value, configuration, or state of a managed

entity (e.g., registry value, account).
16 update Instructs the Actuator to retrieve, install, process, and op-

erate in accordance with a software update, reconfigura-
tion, or other update.

19 create Add a new entity of a known type (e.g., registry entry,
file).

20 delete Remove an entity (e.g., registry entry, file).

Comparing the valid actions for the threat hunting AP to previous actuator
profiles it’s clear that the threat hunting AP is more limited. Remembering
that this work is ongoing, and especially matters such as providing precise
descriptions might have been down-prioritized, it’s still relevant to notice
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Table 7: Action Enumerated stateless packet filter AP

ID Name Description
3 query Initiate a request for information. Used to communicate

the supported options and determine the state or settings
6 deny Prevent traffic or access
8 allow Permit traffic or access

16 update Instructs the Actuator to update its configuration by
retrieving and processing a configuration file and update

20 delete Remove an access rule

that the action investigate is a rather general concept. One could argue an
investigation is more a process than an action.

3.4.2 Command Matrix Threat Hunting AP

An OpenC2 command matrix shows valid action:target pairs for a given
actuator profile. Further details and defined interpretations of the pairs are
defined in dedicated sections of the schemas.

Table 8: Threat hunting AP Command Matrix

Features Datasources Huntbooks Hunt
Query Valid Valid Valid
Investigate Valid

Table 9: Endpoint Response AP Command Matrix
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query x
deny x x x x
contain x x
allow x x x x x
start x
stop x x x
restart x x
set x x x x
update x
create x
delete x x x

The point of showing these tables is to compare previous OpenC2 actuator
profiles with the ongoing work. It’s important here to note that the query
action is an introspective query, simply allowing the consumer to inform
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about its capabilities and available resources. This leaves the threat hunting
AP with a single valid command for performing an actual operation. For
comparison, the ER AP has 22 valid action:target pairs in addition to the
introspective query:features commands.

3.4.3 Pair descriptions

The introspection-model requires the actuator to have functionality to
inform about its capabilities. This is accessed using the query action.

Query:features

This pair must be defined for all actuators. A device is required to be able to
communicate its own features. While not defined for the threat hunting AP
yet, we can see from other APs that this will return which actuator profiles
are available on this device (as some devices perform more than one role)
and information about what other commands/pairs are valid.

Result: Information about actuator features, valid action:target pairs

Query:Datasources

Building on the goal of introspection, a threat hunting actuator is required
to be to be able to inform about the various data sources that can be
queried from the consuming device. This command returns a list of data
sources. The individual data sources can be specified as arguments in
investigate:hunt commands.

Result: Type:Datasource-Array, data source names, and information

Query:Huntbooks

This command returns a list of huntbooks available to the consumer. The
individual huntbooks could potentially be used as arguments in invest-
igate:hunt commands. Based on our understanding of their intentions, the
technical committee intends to add functionality for filtering huntbooks us-
ing tags. The tags could describe either a phenomena that triggered the in-
vestigation such as high-CPU-usage anomalies, or specific types of threats
or vulnerabilities.

Result: Type:Huntbook-Info, Structured data about huntbooks

Investigate:Hunt

The target "Hunt" is described in the documentation as "a procedure to find
a set of entities in the monitored environment that associates with a cyber
threat" [9]. The purpose of this action:target pair is to invoke huntbooks.
This seems to be the only action:target pair which in fact commands an
actual operation under the function the AP represents.
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This command will tell the Kestrel runtime software to run a specific
huntbook, comprised of one or more huntsteps. The response will be a
STIX bundle containing the STIX SCOs resulting from the huntflow.

3.4.4 Threat hunting AP arguments

An OpenC2 message can contain arguments. An actuator profile can define
actuator specific arguments. The language specification defines OpenC2
arguments as properties that provide additional information on how to
perform a command. Some standard arguments will likely be relevant and
included such as the response-requested argument. It can be used to define
what type of response is to be generated. Is the data that was retrieved from
a query desired in the response? Or is a boolean type describing whether
the hunt result was empty or non-empty enough? As such well-defined
arguments can open for implementations to have higher efficiency, in this
example by ending the operation early upon some condition.

The timestamp-type or time range-type arguments will be necessary to
define in order to filter event log searches. Some use cases might encourage
storing logs going years back, as certain APTs can remain hidden in
systems for up to several years [6] stealing information, while they develop
exploits to elevate privileges in or cause harm to, the systems they have
infiltrated. This makes time range filtering a required option when
performing data retrieval operations as searching the entire data repository
will be prohibitively slow.

The threat hunting AP will define argument types specific to this actuator
and the interpretation.

Table 10: Arguments in the threat hunting AP

ID Name Type # Description
1 string_arg String 1 string arguments supplied

as huntargs.
2 integer_arg Integer{0..*} 1 integer arguments supplied

as huntargs.
3 stix STIX-Array 1 STIX arguments supplied as

huntargs.
4 timeranges Timeranges 1 Timeranges used in the exe-

cution of a hunt.
5 datasources Datasource-Array 1 You must identify one or

more available data sources
for hunting. These may be
a host monitor, an EDR, a
SIEM, a firewall, etc.

The arguments will be necessary to provide huntbook input requirements.
For example, when searching for a process with a given attribute, the value
of the attribute to be used in a comparison expression on which to filter has
to be provided to the consumer using arguments. In the following example,
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an argument is provided (uuid) and identified as "hunt_process". This has
to be in response to a description of the huntbook stating the identifier
and the expected type. An alternative that might provide simplification
is describing a huntbook with a count for required arguments, and a
sorted list with descriptions. This will have to be defined in the AP in the
future.

Example command showcasing huntargs:

1 {
2 "action": "investigate",
3 "target": {
4 "th": {
5 "hunt": {
6 "path_relative": "path/name/example"
7 }
8 }
9 },

10 "args": {
11 "response_requested": "status",
12 "th": {
13 "huntargs": {
14 "timerange": {
15 "timerange_relative": {
16 "number": "15",
17 "time_unit": "Minutes"
18 }
19 },
20 "datasource": "Datasource_Name",
21 "hunt_process": {
22 "uuid": "1234567890"
23 }
24 }
25 }
26 }
27 }

3.5 Discussion

3.5.1 Comparing the threat hunting AP to other APs

When we compare the current state of the ongoing work with the threat
hunting actuator profile with other earlier profiles such as Endpoint
Response AP, and stateless packet filter AP, it appears that the previous
profiles are more successful in capturing the semantics/meaning of
atomic cyber operation procedures. Earlier profiles include more actions,
and the actions are conventionally related to the abstracted function it
represents.
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The tasks performed are not any less complex, rather on the contrary. The
meaning of the commands is instead shifted from being contained in the
OpenC2 message to being contained in the huntbooks. The abstraction is
performed by the Kestrel threat hunting language. Further, an argument
could be made that the complexity is shifted additionally one step by the
Kestrel runtime, which is currently the only intended consumer for the
threat hunting AP commands. The Kestrel runtime software parses the
Kestrel commands. The Kestrel command is not necessarily one query,
the runtime might perform many queries, and it might write queries to
pre-fetch information about entities related to entities that are actual direct
results from the query. In the case of other actuator profiles, the semantics
is successfully captured.

3.5.2 Technology agnosticism

OpenC2 is supposed to capture the semantics to express what should be
possible within a function, leaving the how to the actual implementation.
The goal is to facilitate automation, interoperability, and to prevent vendor-
lock-in issues. To succeed in these goals developers of the actuator
profiles have to abstract the functionality commonly found in current
implementations, while also attempting to stay extensible to accommodate
innovation.

Instead, the threat hunting actuator profile seems to rather be tailored
towards interacting with Kestrel runtime. It is a software that according
to the GitHub repository contributions [30] is written and maintained to
a large degree by only two persons. If Kestrel for whatever reason stops
being maintained, the actuator profile has no consumers as far as we
can tell. In fairness, the Kestrel team could be correct when stating that
there exists no technology that does what Kestrel does. A counterpoint
is again that no SIEM solution is exactly the same. The relevant question
to ask is what functionality does Kestrel provide to make it deserving of
its own actuator profile? Whether the AP has utility is currently 100%
dependent on how useful Kestrel is. This should however imply that
Kestrel’s unique functionality could be interesting to abstract into OpenC2.
Instead, the hunting profile is limiting itself to the simple function of
invoking Kestrel.

Kestrel’s utility is again dependent on STIX-shifter to access data reposit-
ories. If the data storage does not have a STIX-shifter module then Kestrel
can not talk to it, and by the transitive property, neither can OpenC2. When
STIX-shifter modules translate STIX patterns to other domain-specific lan-
guages and convert the results to STIX objects, we achieve something that
is key to abstracting analytics. A common structure for the data, and a
common language to write patterns. However, when the threat hunting
actuator profile is implemented to have Kestrel as an intermediary techno-
logy, it could paradoxically make the abstraction that STIX provides less
available. A complete version of the threat hunting profile, as its currently
headed, will require support for STIX objects.
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3.6 Summary

The ongoing work we have examined is presented as a threat hunting
actuator profile. However, the actions included so far only cover the
invocation of pre-defined sequences of Kestrel commands. The Kestrel
language and runtime provide a plethora of analytical functionality that
is not captured in the actuator profile. The fact that this functionality can
be accessed, and automated, is of considerable pragmatical value. On the
other hand, it is not meeting the expectations we have for a profile named
threat hunting actuator profile.

Capturing analytical functionality has proven before to be a challenging
task. It might even prove to be impractically hard to the extent that no
"perfect" one-size-fits-all solution exists. However, the next chapter of this
thesis will attempt to investigate if modifications to the current efforts can
lead to steps in the direction of addressing the issues we have pointed out
in this chapter.
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Chapter 4

Investigating principled
approaches

RQ2: How could alternative approaches address findings from RQ1
and be more in line with the OpenC2 philosophy and design prin-
ciples?

4.1 Overview

In this chapter, we explore alternative approaches to a profile for analytics
that is more in line with the OpenC2 philosophy and design principles. Our
intentions are to expand on the ongoing work of creating a threat hunting
actuator profile. More specifically we want to see how modifications can be
made without disrupting the valuable work they are doing by facilitating
automated invocation of huntbooks. We investigate different approaches
to address the points presented in Chapter 3 and discuss their benefits and
drawbacks.

4.1.1 Disclaimer

We do not have the resources to produce a comprehensive solution.
Instead, we attempt to describe what a principled approach could look
like. We do not claim our descriptions are easily developed or that
the end result necessarily must be better than what is currently being
produced. We simply explore alternatives that potentially make less
compromise on OpenC2 principles and evaluate the consequences of these
approaches.
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4.1.2 Evaluation

We compare our alternatives to the ongoing work and evaluate their
differences under the following criteria:

1. How well are analytical operations abstracted?

2. To what degree is the solution dependent on external technology?

3. How much work would it take to comprehensively develop the
proposed changes?

4.2 "A better shortcut"

Our first option involves adding a second target "hunt step" with the
required fields "language" and "query". As a follow-up, data sources
could return the required language in query:data_source responses. If
the actuator is Kestrel runtime, you can proceed to invoke huntbooks.
Otherwise, the producer can use the information in the response to produce
the next commands.

4.2.1 Define atomic huntstep target

The ongoing work facilitates the invocation of huntbooks, comprised of
one or more hunt steps. This enables OpenC2-compliant orchestrators
access to Kestrel’s predefined hunt flows. It does not abstract analytical
functionality. Since OpenC2 aspires to be technology agnostic, this begs
the question of why it shouldn’t facilitate predefined queries in other
languages as well. We argue that simply invoking Kestrel huntbooks is
a shortcut, and we ask if there exists a slightly better shortcut.

One approach to facilitate more languages would be to define a new target,
the huntstep. An Investigate:huntstep command would send encoded
predefined queries instead of invoking predefined huntbooks stored at the
consumer. When invoking a huntbook, the target is defined as ’hunt’. The
hunt target requires an ID as an argument to identify which huntbook to
invoke, and the huntbook will contain hunt steps in the Kestrel language.
When using the new target, the producer will explicitly send the hunt steps
in the command. Critically, the hunt steps, or queries, do not necessarily
have to be described in Kestrel. Instead, we open up to other languages as
well in an attempt to be more technology-agnostic.

Example:

1 {
2 "action": "investigate",
3 "target": {
4 "th": {
5 "language":"SQL"
6 "query":"BASE64-encoded SQL query =="
7 }
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8 }
9 "args": {

10 "response_requested": "complete"
11 }
12 }

4.2.2 Evaluation

This solution provides practically no abstraction of analytical operations.
We are submitting to include the syntax defined for the underlying
technologies we wish to perform the operation. On the other hand, the
ongoing work, as we have argued, is tailored to a specific technology’s
syntax. The proposed change takes very little work to include and has no
negative impact on the ongoing work.

4.3 Abstracting an analytical operation

In this section, we describe what a committed principled approach to an
attempt to abstract an analytical operation could look like.

4.3.1 Actions

OpenC2 actuators should abstract meaningful functionality. The architec-
ture specification says that an action should represent the task or activity
[14]. The Kestrel threat hunting language has commands that provide dif-
ferent categories of operations, 4 of which could be considered analytical
operations. In our opinion, this is an excellent place to start when thinking
about what actions need to be defined for analytics.

1. Retrieve (Get, Find)

2. Transform (Sort, Group)

3. Enrich (Apply external analytics)

4. Inspect (Display, Metadata, Dashboards)

5. Flow-control (Save, Load, Session-handling)

4.3.2 Targets

The target should refer to the object the action is performed on. There
are several candidates for targets. It’s one of the many facets of analytics
that is hard to abstract. To start with the most basic data retrieval
operations. Following the definition from the architecture specification, the
data retrieval is performed by a data repository. This is a more concrete
mindset, connecting the data retrieval operations to what is performing the
operation. However, in real-life scenarios, this makes little sense as the data
sources available might be many, and of different types.
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We can again look to Kestrel for inspiration, or even a more classic/well-
adopted query language like SQL, which has influenced the Kestrel query
language. In SQL you specify which columns to pull from rows in tables. In
the "SELECT something FROM source WHERE pattern", the "something"
refers to columns in a table. In our case, even though we don’t care about
the underlying data structure implementations, the rows will be records.
Records include information about entities. The natural conclusion
following this analogy would be to specify the targets as entities. This
abstraction works well together with the Kestrel implementation, with its
Kestrel variables containing data on homogeneous entities.

The OpenC2 language specification already has targets that correspond to
entities, like process, file, ipv4-address, etc. All though, these have not
been defined to facilitate analytical requirements, capturing essential data
connected to cyber observables. However, the STIX standard has been
created for this exact purpose. A good place to start could therefore be to
look at the STIX-cyber observables as candidates for targets. This lines up
well with how the current AP returns a STIX bundle with STIX Observed
Data, a container for STIX Cyber Observables. A clean copy of the standard
would not be likely to work. Whether or not this list is extensive enough or
whether the requirements to the objects are strict enough would have to be
evaluated. One example is how the SCO process only requires one of the
fields (other than the two common properties type and the unique id) to
be included. For analytical purposes, this requirement could likely benefit
from being stricter to facilitate minimum functionality. Some examples of
fields for the process type that are common in EDRs and useful in threat
hunting and pattern matching: command-line arguments, reference to the
parent process, current working directory, etc.

We have learned from following the Kestrel-OpenC2 meetings that the
committee agrees that an OpenC2-schema-compliant version of STIX
SCOs will have to be defined for the threat hunting actuator profile. A
comprehensive solution would have to evaluate many things, for now, to
have something to work with, we propose some of the basic entities as
targets.

Examples: process, file, network-traffic, ipv4-address, ipv6-address,
domain-name, URL.

4.3.3 Filtering in data retrieval operations

Since we define our targets as entities, one way to implement filtering in
our data retrieval commands whilst staying true to design principles is
to use OpenC2 target specifiers. From the OpenC2 target definition: "(...)
properties of the Target, called Target Specifiers, further identify the Target
to some level of precision, such as one specific Target, a list of Targets, or
a class of Targets" [15]. Following this definition we could allow for target
specifiers to define the pattern with which we are filtering.

Example:
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1 {
2 "action": "retreive",
3 "target": {
4 "process": {
5 "binary_name": "cmd.exe"
6 }
7 },
8 "args": {
9 "response_requested": "complete"

10 }
11 }

This alternative has the benefit that it’s simple to write and translate
meaning into machine-readable queries. It could however be challenging
to define appropriate attributes. However, a lot of work has already been
done toward this, and again the STIX standard is an excellent starting
point.

Another alternative would be to take advantage of the work put into STIX
patterns. This has the benefit of unlocking interoperability with STIX-
shifter modules for data repositories, just like Kestrel does. To complete
filtering we add arguments for specifying the relevant time window. This
is an especially important feature for data repositories holding telemetry
from large environments for longer time periods. Here the OpenC2
language specification has relevant timestamp data types defined that can
be used to express start and stop for a time window. Alternatively, to only
specify the start, implying that data older than the specified value should
be ignored.

This approach could look something like this when serialized in
JSON:

Example:

1 {
2 "action": "retrieve",
3 "target": "process",
4 "args": {
5 "response_requested": "complete",
6 "th": {
7 "pattern": "encoded STIX -Pattern",
8 "start -time":"timestamp",
9 "stop -time":"older -timestamp"

10 }
11 }
12 }
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4.3.4 Command matrix

We propose expanding the command matrix with the action retrieve
and the target observable, referring to the STIX observable returned
objects.

Table 11: Analytics AP Command matrix

Features Datasources Huntbooks Hunt STIX SCO
Query Valid Valid Valid
Investigate Valid
Retrieve Valid

4.3.5 Evaluation

To create a satisfying abstract representation of analytical operations
common actions performed in relevant implementations need to be
defined. This proposed alternative does so to a higher degree than the
current ongoing work. We evaluate this model to be more in line with what
we expect from an actuator profile for threat hunting activities.

In terms of technology agnosticism, this solution still requires consumers
to translate our choice of syntax for filtering. In this version, consumers
will need to translate STIX Patterns. The benefit of STIX is that it can give
access to a wide range of data sources, but not all. Further, we have not
abstracted the idea of filtering, simply submitted to a standard for data
representation. This is a constraint that is not introduced by us, it is also
present in the ongoing work as Kestrel depends on STIX.

Developing a comprehensive solution following the description that we
have started here would add considerable work compared to the simpler
version which only invokes huntbooks.

There are still advanced analytical operations that software like the Kestrel
runtime can perform that are hard to boil down to a single command.
One example is how the FIND command takes a Kestrel variable as input,
something that could facilitate considerable performance benefits over
constructing longer and more complex nested/join type queries. Kestrel
also has functionality for sending intermediary results to external analytics,
sorting and/or grouping by different values, etc.

4.4 Reverse engineering Kestrel to create an informa-
tion model for analytics

A third option is the idea of using sessions and session management for
analytics. The reason for this is simply put to attempt to facilitate advanced
analytics such as the functionality that Kestrel provides. Addressing the
dilemma of both needing distributed data storage holding records and
wanting complex queries against entities, still leaving the actuator the
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responsibility to decide how, but absorbing the what into OpenC2. Keeping
in mind that OpenC2 is a standard language for command and control
of technology, an information model to guide the design of data models,
the process can be described either as absorbing the Kestrel threat hunting
language or as reverse engineering an information model from the Kestrel
runtime software.

Indicators of behavior, or extended centered graph patterns as Kestrel
calls them, are potentially complex descriptions of patterns in event data.
Patterns describing multiple jumps in relations are computationally heavy
and not recommended in distributed systems. Even worse, in some cases, if
the records the pattern is matched against only contain information on one
relational jump and the pattern expresses two jumps, Kestrel will in some
cases return no matches. Even with its internal relational model, Firepit,
the Kestrel documentation recommends limiting the number of jumps per
huntstep to increase performance [31], similar to ElasticSearch warnings
against joins [21]. Hunters can increase performance by instead expressing
their huntflow over several huntsteps and increase overall performance
by letting Kestrel build temporary data structures optimized for entity
reasoning.

A solution that expands the functionality that the analytics data model
can provide beyond simple data retrieval might have to include some
form of session management and state. We mention this as it could be
a way to build a fully abstracted representation of analytical operations
in the future, admitting that this possibly introduces new compromises to
OpenC2 current guidelines. Although it facilitates advanced analytics and
allows the consumer to implement features such as pre-fetching, consumer-
side internal re-structuring of data, and building relational models to
increase performance for complex queries, it strays away from other typical
design choices of OpenC2, as other actuator profiles aim at defining more
atomic commands.

Example:

1 #Create session
2 {
3 "action": "create",
4 "target": "session",
5 "args": {
6 "response_requested": "complete",
7 }
8 }
9

10 #Session created successfully
11 {
12 "status": 200,
13 "results": {
14 "th": {
15 "session -id":"abc123"
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16 }
17 }
18

19 #First standard query
20 {
21 "action": "find",
22 "target": "process",
23 "args": {
24 "response_requested": "complete",
25 "th": {
26 "session -id":"abc123",
27 "pattern": "encoded STIX -Pattern",
28 "start -time":"timestamp",
29 "stop -time":"older -timestamp"
30 }
31 }
32 }
33

34 #Response: query successful, return meta -data
35 {
36 "status": 200,
37 "results": {
38 "th": {
39 "session -id":"abc123"
40 "meta -data":{
41 "records":"18",
42 "entities":"3"
43 }
44 }
45 }
46

47 #Perform external analytics
48 {
49 "action": "analytics",
50 "target": {
51 "type":"process",
52 "external -analytics":"127.1.1.100:80"
53 }
54 "args": {
55 "response_requested": "complete",
56 "th": {
57 "session -id":"abc123"
58 }
59 }
60 }
61

62 #Response
63 {
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64 "status": 200,
65 "results": {
66 "th": {
67 "session -id":"abc123"
68 "meta -data":{
69 "records":"6",
70 "entities":"1"
71 }
72 }
73 }
74

75 #Retrieve results (STIX SCOs), end session
76 {
77 "action": "retrieve",
78 "target": {
79 "type":"process"
80 }
81 "args": {
82 "response_requested": "complete",
83 "th": {
84 "session -id":"abc123"
85 }
86 }
87 }
88

89 #Final response
90 {
91 "status": 200,
92 "results": {
93 "session -id":"abc123"
94 "th": {
95 "meta -data": {
96 "count":1
97 }
98 STIX -bundle: {
99 "type": "bundle",

100 "id": "bundle --NUMBERS",
101 "objects": [
102 {
103 "type": "process",
104 "spec_version": "2.1",
105 "id": "indicator --numbers",
106 "created_by_ref": "identity --

numbers",
107 "created": "timestamp",
108 "modified": "timestamp",
109 "object_marking_refs": ["marking -

definition --numbers"],
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110 }]
111 }
112 }
113 }
114 }

4.4.1 Evaluation

This third option is the most ambitious in terms of attempting to abstract
analytical operations. When it comes to dependency on existing techno-
logy, session management is to our knowledge not common functionality
for data repositories. Meaning that to adhere to requirements to technology
agnosticism this will likely be part of something like extended features for
advanced analytics. We estimate the amount of work to produce a com-
prehensive version of an analytical session profile to be significantly larger
compared to our other suggestions.

4.5 Summary

In this chapter, we have explored some options that address our findings in
the previous chapter. Section 4.2, is an alternative that takes the approach of
adding support for other languages than Kestrel threat hunting language,
changing as little as possible. Section 4.3 attempts to describe how one
could approach defining analytics in a way that involves less compromise
in regard to OpenC2 philosophy and design principles. It is however a
more comprehensive solution that requires substantial work to develop
a complete version. It could take advantage of STIX-shifter, as Kestrel
already does. Section 4.4 discusses the option of adding a layer on top of the
option described in 4.3. A session layer to facilitate session management
and advanced huntflows, merging and forking flows, sending temporary
results to external analytics, etc.
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Chapter 5

Conclusion

5.1 Answering our research questions

RQ1: To what extent can the OpenC2 Threat Hunting Actuator Profile
satisfy the requirements for an abstraction of analytical operations?
In Chapter 3, we found that the ongoing work with the threat hunting
actuator profile does not satisfy the requirements for a profile for analytics
but instead defines a way to invoke predefined custom intrusion detection
in the form of Kestrel huntbooks. We have discussed how the ongoing
work with the threat hunting actuator profile, when taken as a profile
that should abstract the function of threat hunting, is not yet on par with
previous actuator profiles. When considering the profile as a more narrow
function than the name suggests, the role of invoking Kestrel huntbooks
automatically, we want to acknowledge that the functionality it brings is
valuable in security operations. Especially if successfully integrated with
standards for orchestration such as CACAO [32].

However, we find it appropriate to highlight the limited scope and the lack
of technology agnosticism. As far as we know, no other entity-reasoning
multi-step threat hunting technologies exist, proprietary or open-source,
and Kestrel is not a widely adopted technology yet. This makes the use
case that this work addresses rather specific. Threat hunting is performed
using techniques integral to other sub-categories of analytics. Researching
methods to automate invoking huntbooks, gaining access to only a piece
of the functionality that Kestrel itself provides, not gaining access to any
other technologies, and still relying heavily on other standardization work
through STIX, summarizes to conditions worthy of discussing and possibly
re-evaluating. To some degree, the difficult task of abstracting analytics is
left to the developers of the Kestrel threat hunting language.

RQ2: How could alternative approaches address findings from RQ1 and
be more in line with the OpenC2 philosophy and design principles? We
have proposed some alternative approaches that the technical committee
could consider should they want to further abstract analytical functions
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into OpenC2, expanding on the language specifications defined scope in
alignment with what ongoing work could imply.

We believe it could be valuable to continue exploring an actuator for ana-
lytics. A standardized way to smaller analytical operations, likely leaning
on the STIX standard for data representation and pattern expressions, as
well as more advanced huntflows such as what Kestrel implements. The
Kestrel threat hunting language is a good candidate to be considered ab-
sorbed in order to be able to express technology-agnostic analytical com-
mands in OpenC2.

5.2 Contributions

This thesis has, under the motivation that standardization is essential to
automation and interoperability, and that automation seems to be a key
factor in reducing the mean time to detect intrusions, found OpenC2s
ambitions for the threat hunting actuator profile not sufficient in regards
to abstracting analytical operations. As a follow-up, we have attempted to
describe some promising alternative approaches we hope might be of value
in future work with developing OpenC2.

5.3 Future work

As we merely sketch a way to approach the challenge of abstracting
analytics, it is obvious that future work will include continuing to develop
a comprehensive functioning actuator profile for analytics. Here are some
other topics related to this thesis we think are interesting.

5.3.1 STIX-Shifter

It would be interesting to do a thorough analysis of the quality of STIX-
shifter modules. Since the only work attempting to include analysis
into OpenC2 depends on the STIX standard, it would be interesting
to investigate how well STIX connectors are performing in real life on
different data repositories.

5.3.2 Entity reasoning and future data repositories

Tau-calculus, and threat intelligence computing. In 2018 Dr. Xiaokui Shu
published research on the theory behind Kestrel [33], a new methodology
that models threat discovery as a graph computation problem. Our thesis
has discussed some of the dilemmas with storing and querying data in
security operations. Researching alternative data structures for storing
historical system information as a foundation for analytics is a huge topic
that could impact how we design our systems for security operations in the
future.
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5.3.3 Problems with standardizing too early

Dr. Xiaokui Shu mentions in our conversation with him that in the future,
there should be technologies similar to Kestrel that would be accessible
through the threat hunting AP as its currently being developed. If this
is true, it raises a question about how early standardization of a new
function within any domain currently only being implemented by one, or
a few homogeneous instances, influences potential innovation within the
development of the new function. Look to TCP as an example where new
transport protocols could be wanted, but certain nodes in the internet have
implementations of x/IP where if x does not equal UDP or TCP packets are
dropped. How are new instances of emerging functions within a domain
affected by having to comply with early standardization? Overfitting a
standard to a training sample of the first implementations. It seems it could
hinder innovation and paradoxically contribute to ossification, the evil it
sought to defeat.
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Appendix

Appendix A.1

Figure 9: Factors associated with higher costs [8]

47



Figure 10: Factors associated with lower costs [8]

Appendix A.2
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