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Abstract

Markov chain models are much used for studying event histories that include tran-
sitions between several states. An empirical transition matrix for non-homogeneous
Markov chains has previously been developed, including a detailed statistical theory
based on counting processes and martingales. In this paper we show how to estimate
transition probabilities dependent on covariates. This technique may, for instance, be
used for making estimates of individual prognosis in epidemiological or clinical studies.
The covariates are included through non-parametric additive models on the transition
intensities of the Markov chain. The additive model allows for estimation of covariate
dependent transition intensities, and again a detailed theory exists based on counting
processes. The martingale setting now allows for a very natural combination of the

empirical transition matrix and the additive model, resulting in estimates that can be



expressed as stochastic integrals, and hence their properties are easily evaluated. Two
medical examples will be given. In the first example we study how the lung cancer
mortality of uranium miners depend on smoking and radon exposure. In the second
example we study how the probability of being in response depends on patient group
and prophylactic treatment for leukemia patients who have had a bone marrow trans-
plantation. A program in R and S-PLUS that can carry out the analyses described

here is being developed and will be freely available on the Internet.

1 Introduction

In clinical trials, epidemiology and other fields, one often observes a number of individuals
passing through several states. Fach individual may have a set of covariates measured,
and one may want to estimate probabilities of interesting transitions within the state space
and how these transitions depend on the covariates.

There are two steps in this problem. The first one is to estimate how transition rates
between the various states depend on the covariates. The second one is to combine the
estimated rates for a given set of covariates into appropriate transition probabilities. We
shall point out how certain well-established methods for each of these steps fit very nat-
urally together. For estimating the covariate effects we use the nonparametric additive
regression model, and for calculating the transion probabilities we use an empirical transi-
tion matrix. Both have a crucial dependence on counting process and martingale theory,
and their properties have been developed within this framework. It is precisely the mar-
tingale properties which make it easy to combine the two approaches, and the theory
presented here is an example of how quite complex procedures may be handled elegantly
in the counting process framework.

We shall assume that the transitions on the state space follow a Markov chain. A
very simple example of a Markov chain is the competing risks model; here the Markov
assumption is trivially fulfilled. A slightly more complex example is the illness/death
model where an individual may move from a healthy state to an illness state before he
eventually dies. Here the Markov property is less obvious, but still a common assumption.
Both the models mentioned here are used as examples below.

It can be shown that estimators derived in a Markov context are sometimes less de-



pendent on the Markov assumption than one might think. This seems first to have been
recognized by Datta and Satten (2000). Although most of the paper will be kept within
the Markov framework, the possibility of extending the results to the non-Markov case
will be discussed in Section 7.

The issue of combining covariate information with estimation of transition probabilities
has been studied before, using a Cox proportional hazards model (Andersen, Hansen and
Keiding, 1991; Andersen, Borgan, Gill and Keiding, 1993, Section VI1.2.3). Although
useful, a difficulty with that approach is that no exact martingale properties are achieved.
This considerably complicates the evaluation of the estimation procedure. Furthermore,
the proportional hazards model is non-local, averaging possibly time-dependent covariate
effects over a long time period. It is of interest to use a local model, which immediately
picks up changes in the effects of covariates, and the additive model has this property.

We shall first review the empirical transition matrix for time-continuous Markov chains.
Thereafter we show how to combine it with the additive regression model. Two real
examples are then analyzed in detail. We shall presuppose some knowledge of the counting
process approach to survival analysis (see Fleming and Harrington, 1991, or Andersen
et al., 1993).

A program in R and S-PLUS for analyzing survival data with the additive regression
model is available on the web site www.med.uio.no/imb/stat/addreg. The program is
being developed to fit the counting process framework, and will also be developed to

analyze Markov chain models like those decribed in this paper.

2 The empirical transition matrix

The probability distribution of a Markov process is determined, apart from an initial dis-
tribution, by the transition probability matrix defined on the state space, which will be
assumed to be finite. We will consider processes where time, denoted by ¢, runs continu-
ously. Let us first look at a finite number of increasing time points t; < 9 < ... < t,.
By the Markov assumption, the transition probability matrix from time s = ¢ tot = ¢,

can be written as the following matrix product:

P(S,t)IP(tth) XP(tg,tg) X "'XP(tn_htn) (1)



If the number of time points increase, while the distance between them goes to zero in
a uniform way, the product on the right hand side approaches a limit which is termed
a product integral, see, for instance, Andersen et al. (1993, Section I1.6). The product
integral is most usefully written in terms of the intensity matrix, that is the matrix where
the (i, j)th off-diagonal element equals the transition intensity «;;(t) between states ¢ and
J and the diagonal elements «;;(t) are chosen so that all row sums are zero. Let A(t)
denote the cumulative, or integrated, intensity matrix with elements A;;(t) = fi a;;(u)du,
and let I be an identity matrix. Then P(u,u + du) = I+ dA(u). This explains why we
may write the limit of equation (1) in product integral form as

P(s,1) = TT(1+ dA(u)) @)

(5]

The product integral notation 7T is used to suggest a limit of finite products [], just as
the integral [ is a limit of finite sums .

We will now pass on to the question of estimating the transition probability matrix.
Assume that one observes a number of individuals moving on the Markov chain. In event
history analysis this could, for instance, be people moving between different states of
health including death. One may then want to estimate the probability of moving from an
initial state to some other state during a given time interval, that is, one wants to estimate
the transition probability matrix between two points in time. A complication commonly
arising is that of censoring, that is, individuals are lost to further observation at various
times throughout the observation period.

The estimation may be tackled either within the time-discrete setting or time-continuously,
corresponding to the two product formulas (1) and (2). The time-discrete version corre-
sponds to the life-table (also called actuarial) estimator, while the time-continuous version
generalizes the Kaplan-Meier estimator.

Looking first at equation (1), one would estimate the left hand side, through estimating
each term in the product on the right. In the absence of censoring, the transition prob-
ability matrix over an interval would be estimated simply as the observed proportions of
transition between various states. If censoring occurs, simple modifications can be made
as is done in classical life-table analysis, for instance assuming that censored individuals

are observed on the average over half the time interval.



In order to estimate the product integral in equation (2), a product limit argument
is used just as in the derivation of the Kaplan Meier estimator. It is assumed that just
one transition occurs at any given time, and that this does not coincide with a censoring.
Censoring, however, may occur singly or in batches. Assume that a transition occurs at
time ¢ between states ¢ and j, and that Y;(¢) is the number of individuals at risk in state
¢ just before time t. Then the following “transition matrix” corresponding to this event

may be defined (as an example we give a 5 x 5 matrix):

7

1o 0 0 0
0 0 0 0
it 00 1=y 0 v
00 0 1 0
00 0 0 1

Hence, this is an identity matrix except for row ¢ where a part of the probability mass is
moved to column j. Such matrices are then multiplied together for all transitions over the
relevant time interval. Note that this computation in a highly natural way generalizes the
Kaplan-Meier estimator. The procedure was derived by Aalen and Johansen (1978) and
is sometimes called the Aalen-Johansen estimator. We will here denote it the empirical
transition matriz. A similar procedure, but not in the matrix form presented here, was
studied by Fleming (1978a,b). A non-technical review is given by Borgan (1998).

The empirical transition matrix may be written as a product integral. In equation (2)
one simply replaces A (¢) with an estimate. The simplest way to do this is to substitute, for
each pair of states (i, 7), the cumulative intensity A;;(¢) with the Nelson-Aalen estimate
Ay (1), and define Ay(t) = — Dt Ay (t). The resulting estimated intensity matrix is
denoted Aq(t), which substituted into equation (2) yields the estimate:

Po(s,t) = (7'(:](1 + dAo(u)) (3)

EX
Notice that the product integral in (3) is simply a finite product over the matrices
T+ AAg(u) that arise when there is a transition taking place. Thus (3) is exactly the

estimator discussed above. Based on martingale results, there is a nice theory for the



empirical transition matrix including an estimate of its covariance matrix and asymptotic
results. The reason why this works so well is the combination of the martingale properties
of the Nelson-Aalen estimator with the product integral form, and the fact that prod-
uct stochastic integrals, just like ordinary stochastic integrals, preserve the martingale

structure; see Section IV.4 in Andersen et al. (1993) for a review.

3 Combining the empirical transition matrix with the ad-

ditive regression model

We shall assume that for each transition intensity of the Markov model an additive re-
gression model based on some covariates has been defined, and fitted from follow-up
data for a number of individuals. More specifically, consider a pair of states (i,7) for
which there is a positive transition intensity. Fixing for the moment (¢, j), we intro-
duce the notation «;;(t, Z) for the intensity to indicate that it may depend on covariates,
Z(t) = (Z1(t),..., Zr(t)), that are specific to each individual. In the additive model one

assumes that these covariates determine the intensity in the following way:
aij(t,Z) = Po(t) + Br(t) Z1(t) + - - - + Br(t) Zk(t) (4)

Here, the regression functions [, (t), and possibly also the covariates, will depend on which
pair of states (4, 7) is being considered.

We now define a design matrix Y,;;(¢) where there is one row for each individual. For a
typical individual, if he is still at risk, the row is (1, Z1(¢), ..., Zx(t)), and if the individual
is not at risk, the row consists of zeroes. Then the multivariate intensity process for the
multivariate counting process counting transitions between states ¢ and j for all individuals

can be written in the following matrix form:

Aij(t) = Y5 (t) By (1) (5)

where 3;,(t) is the vector ((o(t), B1(t), ..., Bk(t))’. We introduce the cumulative regression
functions By (t) = fJ Bx(u)du and denote the vector of these functions for given (i,7) by
B;;(t).



Then, following Aalen (1980, 1989), see also Andersen et al. (1993, Section VII.4), the

vector of cumulative regression functions are estimated by means of
. t
Biy(t) = [ X ()N (o (%

Here X;;(t) is a generalized inverse of Y,;;(t) and N;;(¢) is the multivariate counting pro-
cess, considered as a column vector, counting for each individual the transitions from state
¢ to state j. Note that this integral is simply a finite sum over the jumps in the counting
process. Note also that the estimation procedure is only well defined at times for which
Y, (t) has full rank, i.e. rank equal to the number of columns. The most common choice for
generalized inverse is the least square inverse defined by X;(t) = (Y1) Yi;(2)7"Y7(1),
and we will use this choice in the examples in Section 6. With a slight modification to take
care of time intervals when Y;(¢) is not of full rank, By;(t) — By;(t) becomes a martingale,
and this is the basis for the statistical theory of these estimators.

There exists a considerable amount of theory for the cumulative regression estimators
defined above. There are tests for the null hypothesis §1,(t) = 0 over some time interval
(Aalen, 1989; see also Andersen et al., 1993, Section VII.4), and one may estimate the
regression function [, (¢) by smoothing techniques (Aalen, 1993). There also exists residual
plots for checking the fit of the model (Aalen, 1993).

Our aim in this paper is to compute transition probabilities in the Markov chain
dependent on covariate information. Hence, we wish to combine the empirical transition
matrix with the estimators in the regression model. Consider a pair of states (4,7) and
a vector of possibly time-dependent covariates Z?j (), where this denotes a specified (i.e.
fixed) time-dependent covariate history. On the basis of data from a study we estimate
the vectors Bij (t) for all relevant transitions in a Markov chain and then compute the

estimates flij (t, Z°) for the integrated transition intensities by

Aij(t,2°) / Z2,(s) dBi;(s) (7)

Here the integral is again a finite sum.
The question discussed in this paper is the following one: If the matrix Ao(t) in
equation (3) is substituted by a matrix A(f) consisting of the elements Aj;;(t, Z°), what

will be the properties of the corresponding estimator of the transition matrix? Notice



that A(t) depends on the covariate vector ZY, but this is suppressed in the notation in
order not to overburden the formulas below. Because of the martingale property of A(t)
there is reason to assume that this should perform well and have nice theoretical properties.
Hence, we would get an estimator of the transition matrix which is dependent on covariate
information.
The proposed estimator is given as:
P(s,t) = TT (I + dA(u)) (8)
(5]

Just as in equation (3) this product integral is a finite product of matrices, hence again it

generalizes the Kaplan-Meier estimator.

4 Properties of the estimator
Let A*(t) be the cumulative intensity matrix based on the following modified intensities:
o (1, Z°) = Jij (t)eui; (1, Z°)

where J;;(t) is an indicator showing whether there is a sufficient set of individuals at risk
in state ¢ at time ¢ to ensure that Y,;;(¢) has full rank. Since the local estimation principle
applied here can only be used at times when all J;;(t) = 1, all we can sensibly estimate
is A*(t), and the exact martingale properties are also achieved by using this quantity. In
fact A — A* is an exact matrix valued martingale (see e.g. Andersen et al., 1993, Section
VII.4).

The martingale property carries over to the estimator f’(s7 t) through Duhamel’s equa-

tion (see Andersen et al., 1993, p. 91):

~

P(s, 1) P*(s,8) =T = /: P (s, u—)d(A — A%) ()P (s, u)""

where P* is defined as in (2) with A substituted by A*. Since stochastic integration of
a predictable process with respect to a martingale preserves the martingale property, the
left hand side in the above equation is seen to be a martingale. This equation immedi-
ately yields important results. Firstly, under standard assumptions, the martingale central

limit theorem guarantees the asymptotic normality of the estimator f’(s7 t). Secondly, the



estimated covariance matrix may be derived. In complete analogy with results of Ander-
sen et. al. (1993, formula (4.4.14)) one can write up the following estimated covariance

matrix of P(s,1):
t ~ ~ -~ ~ ~
[ Bty @ Pls, wdlA - A P(u, ) & Pis, ) (9)
where @ denotes the Kronecker product. In the above formula [A — A*](t) denotes the
quadratic variation process of the matrix valued martingale A— A~ By standard results

for the additive regression model one has

. t
[Aij = A1) = /0 23, (w) X (u)diag {dN;;(u)} Xij(u)'Z]; (u) (10)
where “diag” denotes the diagonal matrix with the relevant vector on the diagonal. From
these elements the matrix [A — A*](t) may be found as described in Andersen et al.
(1993, pp. 290-293). In fact, the element-wise formula (4.4.16) in this reference is directly

applicable if the factor in the third line of the formula is replaced by d[Agy — A7](u);
cf. (10).

5 Modifications for nested case-control data

The estimators described in the previous sections require information on the values of the
covariates for all individuals under study. For large cohorts, this may be very expensive,
or even logistically impossible. The nested case-control design (Thomas, 1977) offers an
alternative. For this study design, if an « — j transition occurs at time ¢, one selects a
simple random sample of size m; from the Y;(¢) individuals at risk in state ;. Covariate
information is collected for the individual who makes the transition (the case) and for the
sampled controls, but are not needed for the remaining individuals.

Only minor modifications are needed to fit the additive model (4) for nested case-
control data (Borgan and Langholz, 1997; Zhang and Borgan, 1999). For a pair of states
(4,7), the estimator for the vector of cumulative regression functions has the same form as
(6). But now only the case and its controls contribute to Ny;(¢) and Y;;(¢), and the rows
of the latter are multiplied by Y;(t)/m; to compensate for this. The same modifications

apply to (10), while the remaining estimators in the previous sections remain unchanged.



: Dead from
lung cancer

0: Alive

2: Dead from
other causes

Figure 1: A model for competing risks

It is worth noting that even when covariate information is available for all individuals
in a large cohort, it may be advantageous to use a nested case-control sample in order
to reduce the burden of error checking and the numerical difficulties in dealing with high

dimensional matrices.

6 Examples

6.1 Competing risks — lung cancer death for uranium miners

The Colorado Plateau uranium miners cohort data were collected to study the effects
of radon and smoking on mortality. The data have been described in detail in earlier
publications (e.g. Ludin, Wagoner, and Archer, 1971; Hornung and Meinhardt, 1987). We
will focus on lung cancer mortality taking into account death from other causes.

The cohort consists of 3,347 Caucasian male miners recruited between 1950 and 1960.
The cohort was traced for mortality outcomes through December 31, 1982, by which
time 258 lung cancer deaths and 2087 deaths from other cause were observed. Exposure
data include radon exposure, in working level months (WLM), and smoking histories, in
number of packs of cigarettes (20 cigarettes per pack) smoked per day. In our analyses,
we summarize these exposures into cumulative radon and cumulative packs of cigarettes

lagged by two years, which we denote by Z(t) = (R(t), S(t))'.

10



Figure 2: Estimated integrated regression functions for the uranum miners data

We adopt the competing risks model with the three states 0: alive, 1: dead from lung
cancer, and 2: dead from other causes as illustrated in Figure 1. The lung cancer mortality

at age t is assumed to take the form
ao1(t;Z) = Bo(t) + Br()R() + Bs()S(t) + Brs () R(1)S (1), (11)

while the mortality agq(f) from other causes, as an approximation, is assumed not to
depend on the radon and smoking exposures. Note that our model for lung cancer mor-
tality generalizes the semi-parametric relative excess risk model agi(t;Z) = ao(t)(1 +
BrR(t))(1+ SsS(t)) which has been used a number of times in previous analyses of these
data; see Langholz and Borgan (1997) and their references.

In order to simplify the calculations, a nested case-control sample with 40 controls
per case was used to fit (11) as described in Section 5. Figure 2 shows the estimated
integrated regression functions (starting at age 40 years) per 100 WLM radon exposure
and per 1000 packs of cigarettes. The baseline is close to zero for ages below 70 years.

The integrated regression functions for radon, smoking and the interaction are all fairly

11



Figure 3: Estimated cumulative mortality from other causes for the uranum miners and the

corresponding cumulative mortality for US white males

linear after age 50 years, corresponding to fairly constant excess risks: Sr(t) & 0.0050 per
100 WLM, Bs(t) ~ 0.0025 per 1000 packs and Srs(t) = 0.0030. To estimate the cumu-
lative mortality from other causes, a Nelson-Aalen estimator was used. Figure 3 shows
the estimated cumulative mortality from other causes for the uranium miners together
with the corresponding cumulative mortality for US white males (Breslow and Day, 1987,
Appendix IIT). Tt is seen from the slopes of these curves that, for ages below 70 years, the
mortality from other causes among the uranium miners is much higher than in the general
population.

We then compute the integrated hazards and absolute risks of lung cancer death in
the presence of death from other causes for four different radon and smoking histories.
For all situations, we assume a constant exposure intensity for radon between ages 20 to
50. Thus, the two year lagged cumulative radon exposure R(t) is zero for ¢t < 18, then
increases linearly up to the total dose of radon at ¢t = 48, and is constant at the total dose
thereafter. Smoking is described by the number of packs per day, and we assume that
smoking begin at age 20 and continues throughout life at the same level. The following

four exposure histories are considered:

e Total radon dose 960 WLM, smoking 1 pack per day.
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Figure 4: Estimated integrated hazard for lung cancer death for four exposure histories

e Total radon dose 960 WLM, smoking 1/2 pack per day.
e Total radon dose 480 WLM, smoking 1 pack per day.

e Total radon dose 480 WLM, smoking 1/2 pack per day.

Figure 4 shows the integrated hazards (7) for these exposure histories (with lower
integration limit set to 40). It is seen that for ages below 60 years, a doubling of the radon
exposure has a larger effect on the lung cancer death rates than a doubling of the amount
of smoking. After about 60 years of age, the situation is reversed. This is a consequence
of our assumption that radon exposure stops at age 50 years, while smoking continues
throughout life.

At least for ages below 70 years, the integrated hazards in Figure 4 can roughly be
interpreted as absolute risks of lung cancer deaths in the absence of deaths from other
causes (e.g. Breslow and Day, 1987, Section 2.2.b). Absolute risks of lung cancer deaths
in the presence of deaths from other causes are shown in Figure 5 with 95% point-wise
confidence intervals. These are computed using (8) and (9) with s = 40. The effect
of taking deaths from other causes into account substantially changes the death risks,

especially for the higher ages where the risk of death from other causes becomes high.
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Figure 5: Estimated absolute risk of lung cancer death for four exposure histories

6.2 Probability of being in response — bone marrow transplantation for

patients with acute leukemia

Klein and Moeschberger (1997, Section 1.3) describe a study where 137 patients with acute
leukemia got a bone marrow transplantation during the period March 1, 1984 to June 30,
1989. The patients were followed for a maximum of seven years, and times to relapse
and death were recorded. It was also recorded if and when the platelet count of a patient
returned to a self-sustaining level. Such platelet recovery is a beneficial event: the rate
at which the patients are relapsing or dying is smaller after their platelets recover (Klein
and Moeschberger, 1997, p. 272).

The patients were grouped into three risk groups based on their status at the time of
transplantation: acute lymphoblastic leukemia (ALL), low-risk acute myeloctic leukemia
(AML low-risk), and high-risk acute myeloctic leukemia (AML high-risk). In our analysis
the risk groups are represented by the indicators Z; for AML low-risk and 75 for AML

high-risk patients. Other covariates we use are the indicator Z3 of FAB (French-American-
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1: Platelet recovery

0: Transplant

2: Relapse
or death

Figure 6: A Markov model for patients who have got a bone marrow transplatation

British) classification M4 or M5 for AML patients, the indicator 7, of whether a patient
was given a graft-versus-host prophylactic treatment combining methotrexate (MTX) with
cyclosporine and possibly methylprednisolone, and three covariates for the patient’s and
donor’s age: 75 = patient’s age — 28, Zg = donor age — 28, and Z; = 75 X Zg.

We will consider platelet recovery as a response to the bone marrow transplantation,
and we will study how the “probability of being in response function” (Temkin, 1978)
depends on covariates. To this end we adopt the Markov model with the three states
0: transplant, 1: platelet recovery, and 2: relapse or death as illustrated in Figure 6. A
patient starts out in state 0 at time ¢ = 0 when he gets the bone marrow transplant. If his
platelets recover, the patient moves to state 1, and if he then relapses or dies, he moves
on to state 2. If the patient relapses or dies without the platelets returning to a normal
level, he moves directly from state 0 to state 2. We write Py (s, ) for the probability that
a patient who is in state 0 at time s will be in state 1 at a later time ¢{. This transition
probability is the probability of being in response at time ¢ for a patient who has not yet
responded to the treatment at time s.

In order to estimate the probability of being in response for given values of the covari-
ates, we first estimate the intensities for the three possible transitions 0 — 1, 1 — 2 and
0 — 2. (In this estimation, a number tied 0 — 1 transitions as well as a few other tied

events were broken at random.) The first two of these transition intensities are assumed
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Figure 7: Integrated regression functions for the three possible transitions for the bone marrow

transplantation data
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Figure 8: Estimated probability of being in response ( Pp1(s,t)) for AML high risk patients without
use of MTX (drawn lines) and with use of MTX (dotted lines). Left-hand panel: FAB classification
not M4 or M5; right-hand panel: FAB classification M4 or M5. Upper panel: Py (0,1); lower panel:
Po1(3,1)

to be of the additive form (4) depending on the covariates:

e 0 — 1: MTX (Z,), patient’s age (Z5), donor’s age (Zg), and the interaction patient-

donor age (77)

e 1 — 2: AML low-risk (Z1), AML high-risk (73), FAB classification (73), patient’s

age (75), and donor’s age (Zs)

These covariates are the same as the ones used by Klein and Moeschberger (1997,
Section 9.5) in their analysis using proportional hazards models, with one exception. We
do not include the interaction term Z; in our model for the 1 — 2 transition, since this
interaction is not important on the additive scale. The estimated integrated regression
functions for the 0 — 1 and 1 — 2 transitions are shown in Figure 7 with point-wise 95%

confidence intervals.
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For the 0 — 1 transition, one should in particular note the estimates of the integrated
regression functions for MTX and the patient-donor age interaction. As seen from the
slopes of these curves, both reduce the 0 — 1 transition intensity the first 3—4 weeks after
transplantation. Use of MTX seems to have no effect later on, while the size of the age
interaction is clearly reduced after about four weeks. For the 1 — 2 transition, all the
estimated regression functions are fairly linear, corresponding to constant excess intensities
of the covariates. Note in particular that AML low-risk patients have a reduced intensity
for relapse or death, while this intensity is increased for patients with FAB classification
M4 or M5.

As there are less than twenty patients who relapse or die without their platelets re-
turning to a normal level, it is difficult in a meaningful way to estimate the effect of
the covariates on the 0 — 2 transition using the additive model. We therefore adopt a
model without covariates for this transition intensity, and estimate its integral using the
Nelson-Aalen estimator. The estimate is shown in Figure 7. Note that the transition
intensity is low and fairly constant the first 10 weeks after transplantation. Thereafter it
increases to a higher level, but, as there are only 13 patients left in state 0 ten weeks after
transplantation, the estimate now becomes quite uncertain.

To illustrate how (7) and (8) may be used to estimate the probability of being in
response for a patient with specific covariates, we present in Figure 8 estimates for an AML
high-risk patient assuming both patient and donor to be 28 years old (75 = 7g = 77 = 0).
The upper panel shows estimates of Py (0, ) for the first year after transplantation for the
four combinations of MTX and FAB classification. In all cases, the estimated probability
of being in response function increases steeply the first few weeks after transplantation
as the platelets recover for most patients. Then the curves decrease due to relapse and
death. Note that use of MTX reduces the probability of being in response, at least for the
first 15-20 weeks, and that this probability is lower for patients with FAB classification
M4 or M5 than for the other AML high-risk patients. The lower panel of Figure 8 shows
the estimates of Fp1(3,¢). For all four combinations of the covariates, the probability of
being in response is reduced for a patient whose platelets has not yet recovered three weeks
after transplantation. However, use of MTX is no longer of any importance. This clearly

illustrate the value of the present approach which easily takes into account time-dependent
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Figure 9: Estimated probability of being in response (Py1(0,%)) with pointwise 95% confidence
intervals for an AML high risk patients with FAB classification M4 or M5 using MTX

effects of covariates.

Confidence intervals are not shown on Figure 8 in order not to overburden the figure. To
give an indication of the estimation uncertainty, Figure 9 presents the estimate of Py (0,1)
with pointwise 95% confidence intervals for a patient using MTX with FAB classification
M4 or M5.

7 Discussion

We have shown that the empirical transition matrix and the additive model fit very nicely
together. In the examples we have demonstrated that this also gives a useful statistical
methodology. The computation of transition probabilities is often a useful way of summing
up important clinical information, and it is important to be able to do this dependent on
covariate values.

The present approach is an alternative to one based on the Cox model. This is needed
because the proportional hazards idea, which so pervades survival analysis, does not allow
any simple local estimation. It seems that the only way of achieving a local model, and
at the same time preserving the martingale structure, is to assume that the intensities

depend on the covariates in a linear, or additive, fashion. This has been criticized as being
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not in tune with the requirement that the intensities must be non-negative. However,
there seems to be an unavoidable contradiction between guaranteed non-negativity on the
one hand, and locality, martingale structure and simplicity on the other hand. It is clearly
of interest to have a model which is simple, which picks up changes in covariate effects
as time goes along and which preserves the martingale structure. Of course, the validity
of the procedure will depend on whether an additive model can be made to reasonably
approximate the data. In the present paper we had some negative contributions in the
estimates, but they were mostly quite small, and did not seem to contradict the assumption
that the model fitted reasonably well.

As mentioned in the introduction, the Markov assumption made throughout the paper
may not be essential. This has been pointed out by Datta and Satten (2000) and Glidden
(2001), and we shall discuss it briefly here. In order to justify writing up a product of
matrices like the one in equation (1), one usually assumes that the process is Markovian.
However, one would expect an expression of the same kind to be valid also for non-
Markovian processes. We will consider here discrete time, but the same arguments hold
for continuous time as well. Assume any kind of stochastic process on a finite state space.
For each time t; < t3 < ... < t, the process will have a certain probability distribution
on the state space; denote these distributions by the row vectors pi, p2,..., pn. From
one time to the next the probability mass in a given state will be redistributed on the
state space, and a transition probability matrix defines the redistribution that takes place
between two times. Hence, as a purely algebraic result, without referring to any particular
structure of the process, one may write the transition of probability mass from time 1 to

time n in the following way for suitable transition probability matrices P (¢;,t;41):
Pn = P1 X P(t1,t2) X P(lg,t3) X ... X P(ty_1,t,) (12)

Consider now the observation of a number of individuals moving around on the state
space. If individuals are only followed from one step to the next and then one forgets their
history, then each element of the product above may be estimated from the observations
and in particular the empirical transition matrix is still valid when estimating occupation
probabilities.

There is one difficulty, however, and that is censoring. If censoring is entirely random,
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and in particular unrelated to the state the individual might be in, then everything is
all right, and the Markov assumption is unnecessary. However, if censoring is related to
how the process develops, for instance to state, then biases may arise when the process
is not Markovian. If the process is semi-Markov, and censoring is related to state, then,
since individuals who have stayed in a particular state for a long time may have greater
likelihood to be censored, a biased picture of transition probabilities may result.

It is also not clear how the introduction of covariates may modify the arguments con-
sidered here. Since, however, one will often wonder how realistic the Markov assumption

is, it is important to realize that this assumption is less essential than one may think.
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