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Abstract 

Independent data are efficiently integrated by adding their respective log-likelihoods. Instead 
of Bayesian updating of information, we propose to use the likelihood directly as a vehicle for 
coherent learning. Data concerning a one-dimensional interest parameter might be summarised 
in a likelihood function reduced of nuisance parameters. This reduced likelihood is combined 
with the likelihood of future data to update information. In the frequentist tradition, statistical 
reporting is often done in the format of confidence intervals. The confidence distribution, with 
quantiles specifying all possible confidence intervals provides a more complete report than a 
95% interval, say, or the p-value of a test. The concept of confidence distribution is discussed, 
and a new version of the Neyman-Pearson lemma is provided. 

Confidence distributions based on prior data represent frequentist analogues to Bayesian 
priors. These confidence distributions need to be converted to likelihoods before they can 
be integrated with the new data likelihood. It is the statistical model, usually through a 
pivot, that dictates both the confidence distribution and the reduced likelihoods. There is 
not a one-to-one correspondence between the two. Confidence distributions resulting from the 
integrated analysis, along with their probability bases, represent the frequentist analogue to 
the Bayesian posterior distributions. Asymptotics or bootstrapping is used to find pivots and 
their distributions, and hence reduced likelihoods and confidence distributions. A simple form 
of inverting bootstrap distributions to approximate pivots of the abc type is proposed. The 
issue of non-informative Bayesian priors is also visited. 

The material is illustrated in a number of examples and in an application to multiple 
capture data for bowhead whales. Here it is argued that the confidence distribution depends 
on the study protocol, even for identical data from the same statistical model. 

KEY WoRDS: abc correction, bootstrapping likelihoods, capture-recapture data, confidence 
distributions and densities, frequentist posteriors and priors, integrating information, Neyman­
Pearson lemma, pivots, reduced likelihood, study protocols 

1 Introduction 

Confidence intervals and p-values are the primary formats of statistical reporting in the frequentist 

tradition. The close relationship between p-values and confidence intervals allows a unification 

of these concepts in the confidence distribution. Let the one-dimensional parameter of interest 

be '1/J. A confidence distribution for 'ljJ is calculated from the data within the statistical model. 

The cumulative confidence distribution function, C, provides C('I/Jo) as the p-value when testing 

the one-sided hypothesis H0 : 'ljJ ~ '1/Jo whatever value '1/Jo takes. Any pair of confidence quantiles 

constitutes, on the other hand, a confidence interval (C- 1 (a), c-1 (,8)) with degree of confidence 

,8- a. 

The likelihood function is a minimal sufficient statistic. Since it generally is difficult to inter­

pret, the information contained in the likelihood function concerning a parameter of interest needs 

1 



to be extracted in an intelligible format. Distributions are the eminent format of presenting uncer­

tain information. Much of the attraction ofthe Bayesian approach is due to the use of distributions 

as the format of presenting information, e.g. prior and posterior distributions. Fisher (1930) in­

troduced fiducial probability distributions as an alternative to the Bayesian posterior distribution 

as a format of presenting what has been learned from the data in view of the model; see Fisher 

(1973) for his final understanding of fiducial probability and the fiducial argument. Quantiles of 

a fiducial distribution are endpoints of fiducial intervals. Following Neyman rather than Fisher in 

understanding fiducial intervals as confidence intervals, we adopt the term confidence distribution 

from Efron (1998) and others. 

The likelihood function is the pre-eminent tool for integrating diverse data. Bayesians and 

frequentists all agree on this issue. Old and new data are also best integrated via the likelihood 

function. As an alternative to Bayesian updating of information regarding a parameter of interest, 

the likelihood of the old and the new data are thus simply multiplied together. In the presence 

of nuisance parameters, statistical reporting of the information regarding the interest parameter 

1/J might be done both in the format of a confidence distribution and in the format of a reduced 

likelihood function. The confidence provides the interpretation and the reduced likelihood allows 

the essential information in the present data regarding 1/J to be integrated with new data at a later 
stage. Such updating of information might be termed likelihood updating. 

As distinct from the Bayesian view, we will distinguish between probability as frequency, 

termed probability, and probability as information/uncertainty, termed confidence. A prior distri­

bution in our frequentist world is then to be understood as a confidence distribution. To achieve 

likelihood updating, the likelihood representing the prior confidence distribution needs to be iden­

tified. This likelihood is an ordinary likelihood of the past data underlying the prior confidence 

distribution, but reduced to that statistic. There might have been other parameters .involved in 

the model when analyzing those past data, and the full likelihood was then a function of all the pa­

rameters. As Fisher (1922) used a two-stage procedure to obtain the likelihood of cr from N(fl, cr2 ) 

data by reduction to the empirical standard deviation, we use the· term reduced likelihood for the 

likelihood of data suitably reduced to a statistic informative of the interest parameter only. Exact 

reduced likelihoods are only available in nice models. Our proposal is thus to use an approximate 

reduced likelihood when updating the information expressed by the (approximate) prior confidence 

distribution with the likelihood of the new data. As confidence distributions are found from (ape 

proximate) pivots, so are reduced likelihoods. When the pivot is additive and normally distributed, 
as often is the case with large data, the reduced log-likelihood is proportional to the squared nor­

mal score of the confidence distribution. This likelihood, called the normal-based reduced likelihood, 

agrees with the so-called implied likelihood of Efron (1993). 

Only when the pivot is additive in the statistic is the reduced likelihood proportional to the 

confidence density. In the general case, this is not the case. A given confidence distribution can 

arise from a multitude of pivots. By an example, we show that a given confidence distribution 

can berelated to different reduced likelihoods, depending on the pivot it arises from. Sections 2-4 
are devoted to developing this basic material, of updating information by likelihoods, representing 

information in the format of confidence distributions, and of using appropriate (approximate)·· 

pivots to identify both the reduced likelihood and the confidence distribution. 

Efron (1998) expects a revival of the Fisherian paradigm of statistical inference based on the 

concepts of likelihood, fiducial distribution (confidence distribution) and the many other useful 

ideas introduced by Fisher. With bootstrapping and techniques for constructing confidence inter­

vals and thus confidence distributions, Efron has added an important tool for statistical inference of 

the frequentist tradition of Fisher and Neyman. In our context of parametric models and inference, 
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parametric bootstrapping is often the natural technique to use when the information contained in 

a likelihood function is to be converted to a confidence distribution for an interest parameter. To 

allow parametric bootstrapping of the likelihood function obtained by likelihood updating, it is 

necessary to know how to bootstrap the 'prior' likelihood summarising the old data. Together with 

the reduced likelihood to be used in later likelihood updating, sufficient information must be given 

to allow correct bootstrapping. As confidence distributions and reduced likelihoods are found from 

pivotal constructs and their distributions, the pivot provides the key to parametric bootstrapping 

of these statistics. This is dealt with in Section 5. 

In Section 6 a version of the Neyman-Pearson lemma is provided, -explaining the frequentist 

optimality of the confidence distribution in one-parameter models with monotone likelihood ratio. 

This also leads to optimal constructions of confidence distributions in higher~dimensional para- -

metric families of the exponential kind, via conditioning on ancillary statistics. These confidence 

distributions become uniformly most reliable in a sense made precise in Section 6. Other notions 

of optimality are briefly discussed in Section 7, including the use of equivariance. 

It is desirable to develop methods for obtaining approximate confidence distributions in sit­

uations where exact constructions either become too intricate or do not exist. In Section 8 we 

discuss various approximations, the simplest of which being based on the traditional delta method 

for asymptotic normality. Better versions emerge via corrections of various sorts. In particular we 

develop an acceleration and bias corrected bootstrap percentile interval method for constructing 

improved confidence distributions. It has an appealing form and is seen to perform well in terms 

of accuracy. It also leads to good approximations for reduced likelihoods. 

In Section 9 our apparatus is tested on a real data problem involving capture-recapture photo­

identification data for bowhead whales. Finally, supplementing remarks and discussion are found · 

in Section 10. Among the points argued there is the suggestion that the confidence density is a 

very useful summary for any parameter of interest and may serve as the frequentist analogue of the 

Bayesian's posterior density. We also discuss our work in the context of what Hald (1998) terms 

the three (so far) revolutions in parametric statistical inference. 

2 Confidence distributions 

Before relating confidence distributions to likelihoods, it is worthwhile having a closer look at the 
concept as a format of reporting statistical inference. 

2.1 Confidence and statistical inference 

Our context is a parametric model with an interest parameter 1/J for which inference is sought. 

The interest parameter is assumed to be scalar, and to belong to a finite or infinite interval on the 

real line. The space of the parameter is thus linearly ordered. With inference we shall understand 

statements of the type '1/; > 1/Jo', '1/;1 :S 1/J :S 1/;2', etc., where 1/;o, 1/;1 etc. are values usually computed 

from the data. To each statement, we would like to associate how much confidence the data allow 

us to have in the statement. 

As the name indicates, the confidence distribution is related to confidence intervals, which are 

interval statements with the confidence fixed ex ante, and with endpoints calculated from the data. 

A one-sided confidence interval with (degree of) confidence 1- a has right endpoint the correspond­

ing quantile of the confidence distribution. If Cis the cumulative confidence distribution calculated 

from the data, the left-sided confidence interval is ( -oo, c-1 (1- a)). A right-sided confidence in­

terval (C-1(a), oo) has confidence 1- a, and a two-sided confidence interval [C-1(a), c-1(,8)] has 
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confidence f3- a. Two-sided confidence intervals are usually equi-tailed in the sense that a = 1 - f3. 

De:f.i~ition 1 A (one-dimensional) confidence distribution for 'lj; with cumulative distribution func­

tion (cdf) C is a statistic such that C( 'lj;) has a uniform distribution over (0, 1) under the probability 

distribution P.p,x, where x is the remaining (nuisance) parameter. 

By this definition, the (stochastic) confidence quantiles are endpoints of confidence intervals 

with degree of confidence given by the stipulated confidence. For one-sided intervals ( -oo, '!f;c>), 
where .'!f;a = c- 1(a), the coverage probability is, in fact, P.p,x{'lj;::; '!f;a} = P.p,x{C('!f;)::; C('!f;a)} = 
P.p,x{C('!f;)::; a}= a. 

Being an invertible function of the interest parameter, and having a uniform distribution 

independent of the full parameter, C( '!f;) is a pivot (Barndorff-Nielsen and Cox 1994). On the other 

hand, whenever a pivot piv(Y, '!f;) is available, taken to be increasing in 'lj;, and having cumulative 

distribution function F independent of the parameter, 

C('!f;) = F(piv(Y, '!f;)) (1) 

is uniformly distributed and is thus the cdf of a confidence distribution for 'lj;. If the natural pivot 

is decreasing in 'lj;, then C('lj;) = 1- F(piv(Y, '!f;)). 

Exact confidence distributions represents valid inference in the sense of statistical conclusion 

validity (Cook and Campbell, 1979). The essence is that the confidence distribution is free of bias 

in that any confidence interval ('!f;a, '!f;13) has exact coverage probability f3- a. The reliability of 

the inference represented by Cis basically a question of the spread of the confidence distribution. 

We return to the issue of reliability, and optimal reliability, in Section 6. 
Hypothesis testing and confidence intervals are closely related. Omitting the instructive proof, 

this relation is stated in the following lemma. 

Lemma 2 The confidence of the statement ''lj; ::; '!f;o' is the cumulative confidence distribution 

function value C( '!f;o), and is equal to the p-value of a test of Ho: 'lj; ::; 'lj;0 versus the alternative 

H1: 'lj; > '!f;o. 

The opposite statement ''lj; > '!f;o' has confidence 1 - C( '!f;o). Usually, the confidence distributions 

are continuous, and ''lj; ?:. 'lj;0 ' has. the same confidence as ''lj; > 'lj;0 '. 

Some care is needed when calculating and interpreting the confidence for statements deter­

mined ex ante. When 'lj;0 is fixed, the statement ''lj; i= 'lj;0 ' should, preferably, have confidence given 

by one minus the p-value when testing H 0 : 'lj; = 'lj;0 . This can be calculated from the observed 

confidence distribution, and is 1- 2min{C('!f;0 ), 1- C('lj;0 )}. It is, however, questionable whether 

'!f;o = c- 1 (~(1+c)) or '!f;o = c- 1 (~(1-c)), where cis chosen ex ante, makes the statement ''lj; i= '!f;o' 
have confidence c. 

Confidence intervals are invariant w.r.t. monotone transformations. This is also the case for 

confidence distributions. 

Lemma 3 ·Confidence distributions based essentially on the same statistic are invariant with re­

spect to monotone continuous transformationsoftheparameter: Ifp = r('!f;), say, with r increasing, 

and if C"' is based on T while CP is based on S = s(T) where s is monotone, then 

To a large extent statistical inference is being carried out as follows. From optimality or 

structural considerations, an estimator of the parameter of interest, and possibly of the remaining 
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(nuisance) parameters in the model, is determined. Then, the sampling distribution of the esti­

mator is calculated, possibly by bootstrapping. Finally, statements of inference, e.g. confidence 

intervals, are extracted from the sampling distribution and its dependence on the parameter. 

A sharp distinction should be drawn between the (estimated) sampling distribution and the 

confidence distribution. The sampling distribution of the estimator is the ex ante probability 

distribution of the statistic under repeated sampling, while the confidence distribution is calculated 

ex post and distributes the confidence the observed data allow to be associated with different 

statements concerning the parameter. Consider the estimated sampling distribution of the point 

estimator ;f, say as. obtained from the parametric bootstrap. If 7/;* is a random estimate of 1/; 
obtained by the same method, the estimated sampling distribution is the familiar 

The confidence distribution is also obtained by (theoretically) drawing repeated samples, but 

now from different distributions. The interest parameter is, for the confidence distribution, con­

sidered a control variable, and it is varied in a systematic way. When 1/; is a reasonable statistic 

and the hypothesis H 0 : 1j; ~ 1/;0 is suspect when :(f is large, the p-value is Pr{ 7/;* > ;f; 7/;0 }. The 

cumulative confidence distribution is then 

C('lj;) = Pr{'lj;* > ;f;7f;} = 1- F.p(;f). (2) 

The sampling distribution and the confidence distribution are fundamentally different entities. 

The sampling distribution is a probability distribution, while the confidence distribution, ex post, 

is not a distribution of probabilities but of confidence - obtained from the probability transform 

of the statistic used in the analysis. 

The confidence densities we deduce or approximate in the following would presumably be 

equivalent to the infamous fiducial distributions in the sense of Fisher, at least in cases where Fisher 

would have considered the mechanism behind the confidence limits to be inferentially correct; see 

the discussion in Efron (1998, Section 8). In view of old and on-going controversies and confusion 

surrounding this theme of Fisher, and the fact that such fiducial distributions sometimes have been 

put forward in ad hoc fashions and with vague interpretation, we emphasise that our distributions 

of confidence are actually derived from certain principles in a rigorous framework, and with a 

clear interpretation. Our work can perhaps be seen as being in the spirit of Neyman (1941). We · 

share the view expressed in Lehmann (1993) that the distinction between the Fisherian and the 

Neyman-Pearson tradition is unfortunate. The unity of the two traditions is illustrated by our 

version of the Neyman-Pearson lemma as it applies to Fisher's fiducial distribution (confidence 

distribution). Note also that we in Section 3, in particular, work towards establishing confidence 

distributions that are inferentially correct. 

Example 1. Consider the exponentially distributed variate T with probability density 

f(t; 1/;) =(IN) exp(-tN). The cumulative confidence distribution function for 1/; is C(7/;;tobs) = 
exp( -tobsN). The confidence density is thus c( 1/;; fobs) = ([)I a'lj; )C( 7/;; tabs) = tobs7/;- 2 exp(-tobsN), 
which not only has a completely different interpretation from the sampling density of the maximum 

likelihood estimator, T, but also has a different shape. • 

Example 2. Suppose the ratio 1/; = ()2/ ()1 between standard deviation parameters from two 

different data sets are of interest, where independent estimates of the familiar form a] = ()] Wj I v j 

are available, where Wj is a x~1 . The canonical intervals, from inverting the optimal tests for 

single-point hypotheses 1/; = 7/;0 , take the form 
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where ;f = rh/&1 and K = IC2 ,v1 is the distribution function for the F statistic (W2/v2)/(WI/v1). 
Thus c-1(a) = ;f;K-1(1- a) 112. This corresponds to the confidence distribution function 

C('f/;; data)= 1- K(;f2 /'f/;2), with confidence density 

c('f/;;data) = k(;f2 /'f/;2)2;f2 /'f/;3 , 

expressed in terms of the F density k = kv2 ,v1 • See also Section 7.1 for an optimality result 

of the confidence density used here, and Section 8.3 for a very good approximation based on 

bootstrapping. • 

2.2 Linear regression 

In the linear normal model, the n-dimensional data Y of the response is assumed N(X,B, o-2 I). 
With SSR being the .residual sum of squares and with p = rank(X), S2 = SSR/(n- p) is the 
traditional estimate of the residual variance. With S] being the mean-unbiased estimator of the 

variance of the regression coefficient. estimator jjj, 

is a pivot with a t-distribution of v = n - p degrees of freedom. Letting tv (a) be the quantiles of 

this t-distribution, the confidence quantiles for ,Bj are the familiar jjj + tv(a)Sj. The cumulative 

confidence distribution function for ,Bj is seen from this to become 

where Gv is the cumulative t-distribution with v degrees of freedom. Note also that the confidence 

density c(,Bj; data) is the tv-density centred at jjj and with the appropriate. scale. 

Now turn attention to the case where o-, the residual standard deviation, is the parameter of 

interest. Then the pivot SSR/o-2 = vS2 fo- 2 is ax~, and the cumulative confidence distribution is 
found to be 

where r v is the cumulative distribution function of the chi-square with density 'Yv. The confidence 
density becomes 

. _ (vS2 ) 2vS2 _ sv -(v+l) 1 2 2 
c(o-, data)- 'Yv - 2 - 3- - 12 e ( exp(- 2vS fa- ), 

a- a- 2V r 2v 

which again is different from the likelihood. The likelihood, for the SSR part of the data, is the 

density of SSR = o-2x~, which is proportional to 

This is the two-stage likelihood for o-, in the spirit of Fisher (1922), and we term it the reduced 

likelihood for o-. Taking logarithms, the pivot is brought on an additive scale, logS -logo-, and in 

the parameter r = logo- the confidence density is proportional to the likelihood. The log-likelihood 

also has a nicer shape in r than in o-, where it is less neatly peaked. 

It is of interest to note that the improper prior 1r(o-) = o-- 1 , regarded as the canonical 'non­

informative' prior for scale parameters like the present o-, yields when combined with the likelihood 

L the confidence distribution as the Bayes posterior distribution. See also the more general com­

ment in Section 11. 
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2.3 Approximate confidence distributions for discrete data 

To achieve exact say 95% coverage for a confidence interval based on discrete data is usually 
impossible without artificial randomisation. The same difficulty is encountered when constructing 

tests with exactly achieved significance level. Confidence distributions based on discrete data can 

never be exact. Since the data are discrete, any statistic based on the data must have a discrete · 

distribution. The confidence distribution is a statistic, and C( '!f;) cannot have a continuous uniform 
distribution. Half-correction is a simple device to achieve a reasonably approximate confidence 

distribution. When T is the statistic on which p-values and hence the the confidence distribution 
is based, half-correction typically takes the form 

C('!f;) = Pr.p{T >tabs}+ ~Pr.p{T =tabs}· 

For an illustration, let T be Poisson with parameter '1/J. Then the density of the half-corrected 

confidence distribution simplifies to 

provided tabs 2: 1. 

Although the confidence distribution has a discrete probability distribution ex ante, it is a contin­

uous distribution for '1/J ex post. 
A confidence distribution depends on the probability model, not only on the likelihood. The 

Bayesian posterior distribution, depends on the other hand only on the observed likelihood. This 
point is understood by frequentists. It is illustrated by the following. 

Example 3. Let Tx be the waiting time until x poi:o.ts is observed in a Poisson process with 
intensity parameter '1/J, and let Xt be the number of points observed in the period (0, t). The two 
variables are respectively gamma-distributed with shape parameter x and Poisson distributed with 

mean 'lj;t. In one experiment, Tx is observed to be t. In another, Xt is observed to be x. The 
observed log-likelihood is then identical in the two experiments, namely f.( '1/J) = x log(t'!f;) - t'lj;. 

From the identity Pr{Tx > t} = Pr{Xt < x}, and since '1/JTx is a pivot, the confidence distribution 
based on Tx has cdf Ct('l/J) = 1- F(x- 1; 'lj;t) where F is the cdf of the Poisson distribution with 
mean 'lj;t. This is not an exact confidence distribution if the experiment was to observe Xt. It is, 
in fact, stochastically slightly smaller than it should be in that case. In fact, in that experiment 

ECt('l/J) = ~Pr{Xt # Yt} < ~, where yt is an independent copy of the Poisson variate Xt. As 
noted above, no non-randomised exact confidence distribution exists in the latter experiment. • · 

3 Likelihood related to confidence distributions 

To combine past reported data with new data, and also for other purposes, it is advantageous to 
recover a likelihood function or an approximation thereof from the available statistics summarising 

the past data. The question we ask is whether an acceptable likelihood function can be recovered 

from a published confidence distribution, and if this is answered in the negative, how much addi­
tional information is needed to obtain a usable likelihood. An example will show that a confidence 

distributi~n is in itself not sufficient to determine the likelihood of the reduced data, T, summarised 
by C. A given confidence distribution could, in fact, result from many different probability models, 

each with a specific likelihood. 
Frequentist statisticians have discussed at length how to obtain confidence distributions for 

one-dimensional interest parameters from the likelihood of the data in view of its probability basis. 

Barndorff-Nielsen and Cox (1994) discuss adjusted likelihoods and other modified likelihoods based 
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on saddle-point approximations. Efron and Tibshirani (1993) and Davison and Hinkley (1997) 

present methods based on bootstrapping and quadratic approximations. The reverse problem, 

finding an approximate likelihood of the reduced data represented by the confidence distribution, 

has received less interest. Fisher's two-stage likelihood is an exception, and we follow in his 

footsteps. 

By definition, a likelihood is a probability density regarded as a function of the parameters, 

keeping the data at the observed value. A confidence distribution can not be interpreted as a 

probability distribution. It distributes confidence and not probability. The confidence density 

is therefore not usually a candidate for the likelihood function we seek. It is the probability 

distribution of the confidence distribution, regarded as the data, which matters. We will now 

demonstrate by means of a simple example that a given confidence distribution can relate to many 

different likelihoods, according to the underlying statistical model. 

Example 4. Consider a uniform confidence distribution for 't/J over (0, 1). It is based on the 

statistic T with observed value tabs = ~· We shall consider three different models leading to this 

confidence distribution, and we calculate the likelihood function in each case. 

The first model is a shift-uniform model with pivot 'ljJ - T + ~ = U where U has a uniform 

probability distribution over (0, 1). Thus, C('t/J) = 'ljJ for 0 :S 'ljJ :S 1 representing the uniform 

confidence distribution. Further, T is uniform over ( 't/J - ~, 'ljJ + ~) and the likelihood is Lshift ( 't/J) = 
I(a,l)('t/J), the indicator function. 

Second, consider the scale model with pivot ~1/J/T = U. Again, the confidence distribution 

is the uniform. The probability density of T is easily found, and the likelihood based on T = ~ 

comes out as Lscale('I/J) = 21/Jl(o,l)('I/J). 
The third model is based on a normally distributed pivot, <I>- 1 (1/J) - <I>- 1 (T) = Z, where Z 

has a standard normal distribution with cdf <I>. For the observed data, the confidence distribution 

is the same uniform distribution. Calculating the probability density ofT, we find the likelihood 

of the observed data Lnarm('t/J) = exp[-~(<I>- 1 ('1j;)) 2 ). 
These three possible log-likelihoods consistent with the uniform confidence distribution are 

shown in Figure 1. Other log-likelihoods are also possible. • 

In the Poisson/gamma example we saw that different models for the same data lead to different 

confidence distributions, despite the fact that the resulting likelihood functions were identical. This 

is the reverse of the situation in Example 4, where different likelihoods were associated with the 

same confidence distribution. More dramatic examples of this phenomenon are possible. 

Example 5. The data point is again tabs = ~, but now the likelihood function is the flat 

one over ( -2, 2) obtained by a uniform shift model leading to the uniform confidence distribution 

over the same interval. In the alternative model, T has probability density f(t) = 1 + 'lj;(t- ~) 
for 0 :S t :S 1, and the cdf is F(t) = t- ~1j;t(1- t). The observed datum yields a flat likelihood 

over the parameter set ( -2, 2). The cdf of the confidence distribution is found as the .upper 

tail-probability, C('lj;) = 1- t + ~'lj;t(1- t), cf. (2). The observed data thus yield a confidence 

distribution with point mass 1/4 at 't/J = -2 and 't/J = 2, and the remaining confidence uniformly 

distributed over the interior of the parameter set. This example does also illustrate the fact that 

proper confidence distributions are not always available, i.e. when the parameter set is the open 

interval, the confidence distribution has only total mass ~· • 
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0.0 0.2 0.4 0.6 0.8 1.0 
psi 

FIGURE 1: Three log-likelihoods consistent with a uniform confidence distribution over [0, 1]. 'Many 
likelihoods informed me of this before, which hung so tottering in the balance that I could neither 
believe nor misdoubt.'- SHAKESPEARE. 

4 Confidence and likelihoods based on pivots 

Assume that the confidence distribution C('!j;) is based on a pivot piv with cumulative distribution 

function F and density f. Since '1/J is one-dimensional, the pivot is typically a function of a one­

dimensional statistic T in the data X. The probability density of T is then 

P(t;'!j;) = f(piv(t;'!j;)) 18piv8~;'lj;) I· 
Since piv(T; '!j;) = p-1 (C('!j;)) we have the following. 

Proposition 4 When the statistical model leads to a pivot piv(T; '1/J) in a one-dimensional statistic 

T, increasing in '1/J, the likelihood is 

The confidence density is also related to the distribution of the pivot; Since one has C('!j;) = 

F(piv(T; '!j;)), 

c('!j;) = f(piv(T; '!j;)) I dpivd;; '1/J) I· 
Thus, the likelihood is in this simple case related to the confidence density by 

{3) 

There are important special cases. If the pivot is additive in T (at some measurement 

scale), say piv(T; '!j;) = J-t('l/J)- T for a smooth increasing function f.-l, the likelihood is L('!j;; T) = 
f( p-l( C( '1/J))). When furthermore the pivot distribution is normal, we will say that the confidence 

distribution has a normal probability basis. 
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Proposition 5 (Normal-based likelihood) When the pivot is additive and normally distributed, 

the reduced log-likelihood related to the confidence distribution is f.('!f;) = -~ { ~- 1 (C('!f;))} 2 . 

The normal-based likelihood might often provide a good approximate likelihood. Note that 

classical first order asymptotics leads to normal-based likelihoods. The conventional method of 

constructing confidence intervals with confidence 1- a, 

{'!f;: 2(£(~) -f.('!f;)) < ~- 1 (1- ~a)} 

where ~is the maximum likelihood estimate, is equivalent to assuming the likelihood to be normal­

based. The so-called ABC confidence distributions of Efron (1993), concerned partly with exponen­

tial families, have asymptotic normal probability basis, as have confidence distributions obtained 

from Barndorff-Nielsen's r* (Barndorff-Nielsen and Wood, 1998). Efron (1993) used a Bayesian 
argument to derive the normal-based likelihood in exponential models. He called it the implied 

likelihood. 

In many applications, the confidence distribution is found by simulation. One might start 

with a statistic T which, together with an (approximate) ancillary statistic A, is simulated for a 

number of values of the interest parameter '1/J and the nuisance parameter X· The hope is that the 

conditional distribution ofT given A is independent of the nuisance parameter. This question can 

be addressed by applying regression methods to the simulated data. The regression might have 

the format 

p('!f;)- T = r('!f;)V (4) 

where Vis a scaled residual. Then piv(T; '!f;) = (T- p('!f;))/r('!f;), and the likelihood is 

The scaling function T and the regression function p might depend on the ancillary statistic. 

Example 6. Let T be Poisson with mean '1/J. The half-corrected cumulative confidence 

distribution function is 

tabs 

C( '1/J) = 1- L exp( -'1/J)'l/Jj / j! + ~ exp( -'!f;)'!f;tob• /tots!. 
j=O 

Here Y = 2( V'if-VT) is approximately N(O, 1) and is accordingly approximately a pivot for moder­
ate to large '!f;. From a simulation experiment, one finds that the distribution ofY is slightly skewed, 

and has a bit longer tails than the normal. By a little trial and error, one finds that exp(Y/1000) 

is closely Student distributed with df = 30. With Q30 being the upper quantile function of this 

distribution and t3o the density, the log-likelihood is approximately £.('1/J) = logt3o(Q3o(C('!f;)). 
Examples are easily made to illustrate that the f.8 ( '1/J) log-likelihood quite closely approximates the 

real Poisson log-likelihood f.( '1/J) = tabs - '1/J +tabs log( '1/J /tots). Our point here is to illustrate the 

approximation technique; when the exact likelihood is available we will of course that one. • 

Usually, the likelihood associated with a confidence distribution is different from the confi­

dence density. The confidence density depends on the parametrisation. By reparametrisation, the 

likelihood can be brought to be proportional to the confidence density. This parametrisation might 

have additional advantages. 

Let L( '1/J) be the likelihood and c( '1/J) the confidence density for the chosen parametrisation, both 

assumed positive over the support of the confidence distribution. The quotient J('!f;) = L('!f;)/c('!f;) 
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has an increasing integral J.L(,P), with (8/o,P)J.L = J, and the confidence density of J.l = J.L('Ij;) is 
L('lj;(J.L)). There is thus always a parametrisation that makes the likelihood proportional to the 

confidence density. When the likelihood is based upon a pivot of the form J.L( ,P)- T, the likelihood 

in J.l = J.L('Ij;) is proportional to the confidence density of J.l. 

Example 7. Let ¢N be standard exponentially distributed. Taking the logarithm, the pivot 

is brought on translation form, and J.L( ,P) =log 'lj;. The likelihood and the confidence density is thus 

c(J.L) ex L(J.L) = exp(Jl-J.L-exp(Jl-J.L)). Bootstrapping this confidence distribution and likelihood is 
achieved by adding the bootstrap residuals log V* to j1 above, where V* is standard exponentially 

distributed. The log-likelihood has a more normal-like shape in the J.l parametrisation than in the 
canonical parameter 'lj;. Also, being a .translation family in J.l, the likelihood and the confidence 

density are easily interpreted. • 

When the likelihood equals the confidence density, the pivot is in broad generality of the 
translation type. The cumulative confidence distribution function is then of translation type, with 

C = F(J.L- ji), and so is the likelihood, L = c = f(J.L- ji). In this case, bootstrapping amounts 
to drawing bootstrap values from the confidence distribution, and substituting these for the point 
estimate ji. Normal-based confidence distributions that are GauBian are of the translation type, 

and are thus particularly easy to bootstrap, as are their likelihoods. 

5 Bootstrapping confidence distributions 
and red need likelihoods 

Bootstrapping has emerged as an indispensable tool in statistical inference. When working with 

reduced likelihoods it is often desirable to mimic the result of bootstrapping the original data 
underlying the reduced likelihood and the prior confidence distribution. A bootstrap replicate 
would then result in a perturbed confidence distribution, and a perturbed reduced likelihood. 

Assume the pivot to be invertible in the statistic T, allowing the reduced likelihood to exist. 
The obvious parametric bootstrap of this statistic at the parameter ;J solves piv(T*, ;f) == V*, where 
V* is a draw from the pivotal distribution F. Then, the parametric bootstrap of the confidence 
distribution at ;J is C*(,P; ;f) = F(piv(T*, ,P)), and the corresponding parametric bootstrap of the 
reduced likelihood function is 

L*(,P;;f) = f(piv(T*,,P))I 8pi~~:,,P) I· 

In the location and scale model ( 4), T* = J.L( ;f) + r( ;f) V*, and 

L*(,P· ;f)= t(J.l(;f)- J.L(,P) + r(;f)V*) _1_ 
' r(,P) r(,P) · 

When the reduced likelihood is normal-based, the parametric bootstrap of the log-likelihood is 

where Z* "'N(O, 1). This leads to the bootstrap cumulative confidence distribution function 

When the probability basis is normal and the scale r is constant (and then chosen as unity), the 

bootstrapped confidence distribution is 

C*( ,P) = c;r,( c;r,-l ( C( ,P)) + T* - Tobs), 
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FIGURE 2: Normal-based log-likelihood related to a uniform confidence distribution over (0, 1) 
(solid line), along with five replicated bootstrap log-likelihoods (dotted). 

where T* is a bootstrap replicate of the normal score of the original statistic, T. On the normal 
score scale, T* - Tabs is then normally distributed, and since bias has been removed through the 
confidence estim~tion, we may take T* -Tabs = Z* "' N(O, 1). In this case, the bootstrapped 
log-likelihood is 

£*('1/J) = -H q>-l(C(,P)) + Z*} 2. 

Example 4 (cont.). Figure 2 shows the normal-based log-likelihood related to the uniform 
·confidence distribution described in Example 4, together with five bootstrapped log-likelihoods at 

;j = 0.1. • 

6 Confidence level and confidence reliability 

Let C( 'ljJ) be the cumulative confidence distribution. The intended interpretation of C is that 
its quantiles are endpoints of confidence intervals. For these intervals to have correct coverage 
probabilities, the cumulative confidence at the true value of the parameter must have a uniform 
probability distribution. This is an ex ante statement. Before the data have· been gathered, the 
confidence distribution is a statistic with a probability distribution·, often based on another statistic 
through a pivot. 

The choice of statistic on which to base the confidence distribution is unambiguous only in 

simple cases, Barndorff-Nielsen and Cox (1994) are in agreement with Fisher when emphasising 
the structure of the model and the data as a basis for choosing the statistic. They are primarily 
interested in the logic of statistical inference. In the tradition of Neyman and Wald, emphasis 

has been on inductive behaviour, and the goal has been to find methods with optimal frequentist 
properties. In nice models like exponential families it turns out that methods favoured on structural 

and logical grounds usually also are favoured on grounds of optimality. This agreement between the 
Fisherian and Neyman-Wald schools is encouraging and helps to reduce the distinction between 
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the two schools. See, however, Section 9.2 where we argue that the study protocol might dictate 

another inference than that based on Neyman-Pearson optimality or Fisherian logic. Nevertheless, 

the Neyman-Pearson theory is core material in theoretical statistics. This core is in the following 

reformulated in terms of confidence distributions. 

6.1 Reliability and power 

A method is reliable when it leads to similar conclusions for repeated samples. The more reliable, 
the less variability in results. A method that is both exact and reliable gives results that vary 

little, and which are centred at the truth. A cumulative confidence distribution is monotone: at 

'lj; > ¢true, one should have C(.,P) ~ C(¢true), etc. When Cis exact, C(¢true) ''' U. (unifotm on 
the unit interval), and above the true value, C( 'lj;) must be stochastically larger than U (have 

cumulative distribution function less than that of U). Since 1 -~ C(.,P), the more the ex ante 

probability distribution of C(.,P) is shifted towards its upper limit, the less variability it has in 
repeated samples. For 'lj; < ¢true, it is desirable to have the probability distribution of C(.,P) 
concentrated as much as possible towards low values. 

The tighter the confidence intervals are, the better, provided they have the claimed confidence. 
Ex post, it is thus desirable to have as little spread in the confidence distribution as possible. 
Standard deviation, inter-quantile difference or other measures of spread could be used to rank 

methods with respect to their discriminatory power. The properties of a method must be assessed 
ex ante, and it is thus the probability distribution of a chosen measure of spread that would be 
relevant. The assessment of the information content in a given body of data is, however, another 
matter, and must clearly be discussed ex post. 

In the standard Neyman-Pearson theory, the focus is on spread-measures of the indicator 
type, r(t) = I(t > ¢1) etc. When testing Ho: 'lj; = ¢ 0 versus H 1: 'lj; > ¢ 0 , one rejects at level a if 
C(¢0 ) <a. The power of the test is Pr{C(¢0 ) <a} evaluated at a point ¢1 >.,Po. Cast in terms 
of p-values, the power distribution is the distribution at ¢ 1 of the p-value C( ¢ 0). The basis for 

test-optimality is monotonicity in the likelihood ratio based on a sufficient statistic, S, 

LR(.,P1,¢2;S) = L(¢2;S)jL(.,P1;S) is increasing inS for ¢2 > ¢1· 

From Schweder (1988) we have the following. 

(5) 

Lemma 6 (N eyman-Pearson for p-values) LetS be a one-dimensional sufficient statistic with 
increasing likelihood ratio whenever ¢ 1 < ¢ 2 . Let the cumulative confidence .distribution based on 

· S be C 8 and that based on another statistic T be CT. In this situation, the cumulative confidence 

distributions are stochastically ordered: 

and 
S ST(tf;) T 

C (.,Po) ~ C (.,Po) at 'lj; < .,Po. 

Now, every natural measure of spread in C around the true value of the parameter, .,Po, can 

be expressed as a functional 1(C) = f~oo r(.,P- ¢ 0 ) C(d.,P), where r(O) = 0, r is non-increasing to 

the left of zero, and non-decreasing to the right. Here r(t) = J; 1(du) is the integral of a signed 

measure I· 
Agree to say that a confidence distribution C8 is uniformly more reliable in expectation than 

cT if 

holds for all spread-functionals 1 and at all parameter values ¢ 0 . With this definition, the Neyman­

Pearson lemma yields the following. 
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Proposition 7 (Neyman-Pearson for power in the mean) If Sis a sufficient one-dimensional 

statistic and the likelihood ratio (5) is increasing inS whenever 'lj;1 < 'lj;2 , then the confidence dis­

tribution based on S is uniformly most reliable in the mean. 

Proof. By partial integration, 

_"Y(C)= [
0

00 
C('if;+'if!o)(-"Y)(d'if;)+ 100

(1-C('if;+'if!o))"Y(d'if;). (6) 

By the Neyman-Pearson lemma, EC8 ('if!+'if!o) ~ ECT('if!+'if!o) for 'if!< 0 while E(1-C8 ('if;+'if!o)) ~ 

E(1- CT ('if!+ 'if!o)) for 'if! > 0. Consequently, since both ( -')')(d'if;) and "Y(d'if;) ~ 0, 

E.p 0 "Y(C8 ) ~ E.p 0 "Y(CT). 

This relation holds for all such spread measures that have finite integral, and for all reference values 

'if!o. Hence C 8 is uniformly more reliable in the mean than any other confidence distribution. • 

The Neyman-Pearson argument for confidence distributions can be strengthened. Say that a 

confidence distribution C 8 is uniformly most reliable if, ex ante, "Y( C8 ) is stochastically less than 

or equal to "Y( CT) for all other statistics, T, for all spread-functionals ')', and with respect to the 

probability distribution at all values of the true parameter 'if!o. 

Proposition 8 (Neyman-Pearson for confidence distributions) If Sis a sufficient one-di­

mensional statistic and the likelihood ratio (5) is increasing in S whenever 'if!1 < 'if; 2 , then the 

confidence distribution based on S is uniformly most reliable. 

Proof. Let S be probability transformed to be uniformly distributed at the true value of the 

parameter, set at 'if!o = 0 for simplicity. Write LR('if;0 , 'if;; S) = LR('if;; S). By conditioning, and 

using the sufficiency of s, cT('if!) = 1- E.pFo(T IS)= 1- Eo [Fo(T I S)LR('if;; S)]. Thus, from (6), 

"Y( CT) = Eo [ (1- Fo(T IS) [
0

00 
LR( 'if;; S) ( -"Y)(d'if;)] +Eo [ Fo(T IS) 1oo LR( 'if;; S)"Y(d'if;)] 

provided these integrals exist. Now, from the sign of "Y and from the monotonicity of the likelihood 

ratio, h_(S) = f~oo LR('if;; S)(-')')(d'if;) is decreasing inS while h+(S) = J0
00 LR('if;; S)"Y(d'if;) 1s 

increasing in S. The functions 'P- and 'P+ of S that stochastically minimise 

under the constraint that both 'P- (S) and 'P+ (S) are uniformly distributed at 'if!o = 0, are 'P- (S) = 
1- Sand 'P+(S) = S. This choice corresponds to the confidence distribution based on S, and we 

conclude that "Y( C 8 ) is stoc~astically no greater than "Y( CT). • 

6.2 Uniformly most powerful confidence for exponential families 

Conditional tests often have good power properties in situations with nuisance· parameters. In 

the exponential class of models it turns out that valid confidence distributions must be based on 

the conditional distribution of the statistic which is sufficient for the interest parameter, given 

the remaining statistics informative for the nuisance parameters. That conditional tests are most 

powerful among power-unbiased tests is well known, see e.g. Lehmann (1959). There are also other 

broad lines of arguments leading to constructions of conditional tests, see e.g. Barndorff-Nielsen 

and Cox (1994). Presently we indicate how and why also the most reliable confidence distributions 

are of such conditional nature. 
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Proposition 9 Let '!(; be the scalar parameter and x the nuisance parameter vector in an expo­

nential model, with a density w.r.t. Lebesgue measure of the form 

p(y) = exp{'IPS(y) + X1A1 (y) + · · ·+X pAp (y) - k( '!(;, X1, ... , Xp )}, 

for data vector yin a sample space region not dependent upon the parameters. Assume('!(;, x) is 

contained in an open (p +I)-dimensional parameter set. Then, for'!(; and hence for all monotone 

transforms of'!(;, there exist exactly valid confidence distributions, and the uniformly most reliable 

of these takes the conditional form 

Cs!A('l/J) = Pr..p,x{S >Sobs lA = Aobs}· 

Here Sobs and Aobs denote the observed values of Sand A. 

A minordiscontinuity correctio1;1 amendment is called for in case of a discret·e distribution, as 

discussed in Section 2.3 .. 
Proof. The claim essentially follows from previous efforts by a reduction to the one-dimensional 

parameter case, and we omit the details. A key ingredient is that A is a sufficient and complete 
statistic for x when '!(; = 1(;0 is fixed; this parallels the treatment of Neyman-Pearson optimality 

of conditional tests for the exponential family, as laid out e.g. in Lehmann (1959). Note that the 

distribution of S given A = Aobs depends on '!(; but not on x1 , ... , Xp. • 

Example 8. Consider pairs (Xj, }j) of independent Poisson variables, where Xj and }j have 
parameters Aj and Aj'l/J, for j = 1, ... , m. The likelihood is proportional to 

m m 

exp{LYilog'f/;+ L(xj+Yj)log>.j}· 
j=l j=l 

Write S = I::j=1 }j and Aj = Xj + }j. Then A1, ... , Am become sufficient and complete for the 
nuisance parameters when .,Pis fixed. Also, }j I Aj is a binomial (Aj, 'f/;/(1 + 'f/;)). It follows from 
the proposition above that the (nearly) uniformly most reliable confidence distribution, used here 
with a half-correction for discreteness, takes the simple form 

Cs IA(tP) = Pr..p{S >Sobs I Al,obs, ... , Am,obs} + ~Pr..p{S =Sobs I Al,obs, .. ' , Am,obs} 

= 1 - Bin (Sobs I f Aj ,obs, l 'f/; .!.) + ~bin (Sobs I f Aj ,obs, l 'f/; .!, ) , · 
j=l +'I' j=l +'I' 

where Bin(·ln,p) and bin(·ln,p) are the cumulative and pointwise distribution functions for the 

binomial. • 

The optimality of the conditional confidence distribution, and thus of conditional tests and 
confidence intervals, hinges on the completeness of the ancillary statistic A. By completeness, 
there cannot be more than one exact confidence distribution based on the sufficient statistic. The 
conditional confidence distribution is exact, and is thus optimal since it is the only exact one. The 

question is then whether some approximate confidence distributions dominate the conditional one 
in overall performance in some specified sense. This might be the case in some situations; see 

Section 9.2. 

6.3 Large-sample optimality 

Consider any regular parametric family, with a suitable density f(x, B) involving a p-dimensional 

parameter (}. Assume data X 1 , ... , Xn are observed, with consequent maximum likelihood esti­

mator Bn. Let furthermore (}0 denote the true value of the parameter. It is well known that Bn is 
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approximately distributed as a normal, centred at 80 , for large n. The following statement is loosely 

formulated, but may be made precise in various ways. The above situation, for large n, is approxi­

mately the same as that of observing On from the model with density exp{I:;~=l Bjuj(x)- nB(B)}, 
where Uj(x) = 8 log f(x, B0 )/8Bj, and nB(B) the appropriate normalisation constant. This goes to 

show that the inference situation is approximated with the form described in Proposition 9. Thus, 

broadly speaking, the ordinary confidence interval constructions based on maximum likelihood ma­

chinery become asymptotically optimal. Section 8.1 offers some insight in first order asymptotics, 

while Sections 8.2 and 8.3 discuss asymptotic methods that aim at being second order correct. 

7 Equivariant and minimax confidence distributions 

There are complementary approaches towards constructions of and comparisons between confidence 

distributions. This section briefly sets down some theory for equivariant confidence distributions 

and discusses minimax strategies under a natural loss function. 

7.1 Equivariance 

Suppose data X in sample space X follow a distribution modelled as P9 , where (} E 0 is the 

unknown parameter, and let 7/J = h(B) be the interest parameter for which a confidence distribution 

is sought. Assume that transformations g E Q are such that the problem is left equivariant; when 

X,...., Pe, g(X) follow distribution Pg(9), where g: X---+ X and g: D---+ Dare 1-1 and surjective. 

See Lehmann (1983, Ch. 3) for such a framework (for different purposes). In such a situation, it 

makes sense to restrict attention to confidence distributions C('lj;) = C('lj;; X) that are equivariant, 

in the sense that 

C('lj;;X) = C(¢;g(X)), where¢= h(g(B)), for all g E Q. (7) 

Constructions obeying (7) have the property that they give the same result each time the statisti­

cian is faced with the model and type of data in question. 

Equivariance helps to reduce data down to a one-dimensional statistic in fortunate situations. 

When a pivot exists in this statistic, it determines the confidence distribution. In this connection 

see also Fraser (1968, 1996). The pivot also determines the reduced likelihood and dictates how to 

bootstrap these statistics. 

Example 9. Assume there are two independent normal samples of sizes n1 and n 2 , with 

respectively X; ,...., N (Jtl, O'i) and }j ,...., N (Jl2, 0'~), and assume that interest focusses on 7/J = d2/ 0'1. 

Transforming data to XI = aX; + b and Yj = c}j + d, where a and c are positive, keeps the model 

as such intact, with transformed parameters (aJtl + b, a0'1, CJl2 + d, C0'2). Write X, Y, Sx, Sy for the 

sample means and standard deviations. An equivariant confidence distribution based on this set 

of sufficient statistics must then obey 

C('lj;; X, Y, Sx, Sy) = C((c/a)'lj;; aX+ b, cY + d, aSx, cSy) for all a, b, c, d. 

Setting b = -aX and d = -cY, and then for example a = 1/Sx = c, leads to C('lj;) being a 

function of {i; = Sy/Sx alone. Proposition 8 then implies that C('lj;) = 1- I<({i;2 j'lj;2 ) is uniformly 

most reliable among all equivariant confidence distributions, with J( the cdf of the F distribution 

with n2 - 1 and n1 - 1 degrees of freedom, as in Example 2. The reduced equivariant likelihood 

becomes L('lj;) = k({i;2 N 2)N 2 , where k = K' is the density of the F distribution. • 
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7.2 Admissible and minimax methods 

When data X give rise to a confidence set A = A(X) for the parameter 'lj; = h(O), consider the 

loss function L(O, A) = k m(A) + 1{¢ rf_ A}. Here m is Lebesgue measure (typically measuring 
the length of the interval A) while k is a fixed positive constant, possibly modified by a further 

scale parameter, balancing the two desiderata of good confidence intervals. Using such a loss 

function amounts to assessing the quality of confidence procedures via their risk functions R(A, 0) = 
k Eem(A)+1-Pre {¢ E A}. This is accordingly within the usual decision-theoretic setup, where one 
may find Bay~s solutions, minimax and admissible confidence interval methods, the best invariant 

procedures, and so on. 
As a simple example, consider a sample X 1 , ... ,Xn from N(J.t,u2); and let (k/u)m(A) + 

I{p. rf_ A} be the loss function for confidence intervals for p.. The risk function for the particular· 

method A = X± bS, where X and S are mean and standard deviation, becomes R(A, p., u) = 
nl/2b . , . 

2kben-1 + 1- 2 fa · fn-1(u) du, where fn-1 is the t density with n- 1 degrees offreedom and 
en_ 1 = E{X~-d(n-1)}1 12 . This expression can easily be minimised over b, giving the best interval 
of this type, say Ao =X± b0 (k)S. One may show that this interval is minimax and admissible, 
under the given loss function. It is also of interest to work out Bayes solutions under relevant 

priors for the parameters. 
To connect such an approach to the present development of confidence distributions, one needs 

to work with a class of loss functions of the above type, where the k in question becomes a function 
of confidence level a. 

8 Approximate confidence distributions 
and reduced likelihoods 

Uniformly most reliable exact inference is only possible in nice models. In a wider class of models, 
exact confidence distributions are available. The estimate of location based on the Wilcoxon 
statistic has for example an exact known distribution in the location model where only symmetry 

is assumed. In more complex models, the statistic upon which to base the confidence distribution 
might be chosen on various grounds: the structure of the likelihood function, perceived robustness, 
asymptotic properties, computational feasibility, perspective and tradition of the study .. In the 

given model, with finite data, it might be difficult to obtain an exact confidence distribution based 
on the chosen statistic. There are, however, various techniques available to obtain approximate 
confidence distributions and reduced likelihoods. 

Bootstrapping, simulation and asymptotics are useful tools in calculating approximate con­
fidence distributions and in characterising their power properties. When an estimator, often the 
maximum likelihood estimator of the interest parameter, is used as the statistic on which the con­

fidence distribution is based, bootstrapping provides an estimate of the sampling distribution of 

the statistic. This empirical sampling distribution can be turned into an approximate confidence 
distribution in several ways. The simplest and most widely used method of obtaining approxi­
mate confidence intervals is the delta method. This will lead to first order accuracy properties in 

smooth models. A more refined method to obtain confidence distributions is via acceleration and · 
bias corrections on bootstrap distributions, as developed below. This method, along with several 

other venues for refinement, will usually provide second order accuracy properties. 
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8.1 The delta method 

In a sample of size n, let the estimator en have an approximate multinormal distribution centred 

at ()and with covariance matrix of the form Sn/n, so that Vi!S;; 112 (en- ()) --+d N(O, I). By the 

delta method, the confidence distribution for a parameter 7/J = h(()) is based on linearising hate, 
and yields 

(8) 

in terms of the cumulative standard normal. The variance estimate is 0:~ = !/rSnfi/n where g 
is the gradient of h evaluated at e. Again, this estimate of the confidence distribution is to be 

displayed post data with ;j; equal to its observed value ;fobs· 

This confidence distributionis known to be first order unbiased under weak conditions. That 

Cdelta(7/J) is first order unbiased means that the coverage probabilities converge at the rate n- 112 , 

or that Cdelta( 7/Jtrue) converges in distribution to the uniform distribution at the n 112 rate. Note 

also that the confidence density as estimated via the delta method, say Cdelta(7/J), is simply the 

normal density N ( ;j;, 0'~). 
The additivity of the asymptotically normal pivot implies that the reduced likelihood is 

GauBian and actually identical to the confidence density Cdelta ( 7/J). That the reduced likelihood of 

a linear parameter in a multivariate normal location model is obtained from the marginal normal 

distribution of its maximum likelihood estimator also makes good sense in view of the factorisation 

of the joint likelihood. 

8.2 The t-bootstrap method 

For a suitable monotone transformation of 7/J and ;j; to "( = h( 7/J) and 9 = h( ;f), suppose 

t = (9- "f)fT is an approximate pivot, (9) 

where r is proportional to an estimate of the standard deviation of 9. Let R be the distribution 

function oft, by assumption approximately independent of underlying parameters (7/J,x). The 

approximate confidence distribution for "( is thus C ("f) = 1 - R( (9 - "() /T), yielding in its turn 

C(7jJ) = 1- R((h(;f;)- h(7/J))/T)for 7/J, with appropriate confidence density c(7/J) = C'(7/J). Now R 
would often be unknown, but the situation is saved via bootstrapping. Let 9* = h(e*) and 7'* be 

the result of parametric bootstrapping from the estimated model. Then the R distribution can be 

estimated arbitrarily well as R, say, obtained via bootstrapped values of t* = (9* - 9) /T*. The 

confidence distribution reported is then as above but with R replacing R: 

Ctboot(7/J) = 1- R((h(;f;)- h(7fJ))jT). 

Example 10. Figure 3 illustrates the t-bootstrap method for the case of the correlation 

coefficient in the binormal family, using Fisher's zeta transformation h(p) = ~ log{(1 + p)/(1- p)} 
and a constant for r. The density Ctboot(P) is shown rather than its cumulative, and has been 

computed via numerical derivation. We note that the exact confidence distribution for p involves 

the distribution of the empirical correlation coefficient p, which however is quite complicated and 

is available only as an infinite sum. • 

This t-bootstrap method applies even when tis not a perfect pivot, but is especially successful 

when it is, since t* then has exactly the same distribution R as t. Note that the method auto­

matically takes care of bias and asymmetry in R, and that it therefore aims at being more precise 
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FIGURE 3: Approximate confidence density for a binormal correlation coefficient, having observed 
p = 0.667 from n = 20 data pairs, via the t-bootstrap method. The confidence density curve is 
computed via numerical derivation of the Ctboot(P) curve, using 5000 bootstrap samples. 

than the delta method above, which corresponds to zero bias and a normal R. The problem is 

that an educated guess is required for a successful pivotal transformation h, and that the interval 

is not invariant under monotone transformations. The following method is not hampered by these 

shortcomings. 

8.3 The acceleration and bias corrected bootstrap method 

Efron (1987) introduced acceleration and bias corrected bootstrap percentile intervals, and showed 

that these have several desirable aspects regarding accuracy and parameter invariance. Here we 

will exploit some of these ideas, but 'turn them around' to construct accurate bootstrap-based 

approximations to confidence distributions. 

Suppose that on some transformed scale, from 'lj; and ;J to 1 = h( 'lj;) and 9 = h( ;J), one has 

(J- 9)/(1 + a1)- b,...., N(O, 1) (10) 

to a very good approximation, for suitable constants a (for acceleration) and b (for bias). Both 

population parameters a and b tend to be small; in typical setups with n observations, their 

sizes will be O(n- 112) .. Assuming a9 > -1, the pivot in (10) is increasing in 1 and C(J) = 
<1>((1- 9)/(1 + a1)- b) is the confidence distribution for I· Thus 

C('¢) = <I>(h('¢)- h(;J) -b) 
1 + ah('¢) 

(11) 

is the resulting confidence distribution for '¢. This constitutes a good approximation to the real 

confidence distribution, say Cexact('¢), under assumption (10). It requires h to be known, however, 

as well as values of a and b. 

19 



To come around this, look at bootstrapped versions 9* = h( :J;*) from the estimated parametric 

model. If assumption (10) holds uniformly in a neighbourhood of the true parameters, then also 

(9*- 9)/(1 + a9) ""N(-b, 1) 

with good precision. Hence the bootstrap distribution may be expressed as 

which yields h(t) 
formula 

G(t) = Pr*{:J;* ~ t} = Pr*{9* ~ h(t)} = ~(h?l : 99 +b), 

(1 + a9){~- 1 (G(t))- b} + 9. Substitution in (11) is seen to give the abc 

c (1/>)- ~ ( ~-l(G(1f>))- b -b) 
abc - 1 + a(~- 1 (G(1J>))- b) ' 

(12) 

since ~- 1 (G(:J;)) =b. Note that an approximation Cabc(1/>) to the confidence density emerges too, 

by evaluating the derivative of Cabc· This may sometimes be done analytically, in cases where 

G( 1/>) can be found in a closed form, or may be carried out numerically. 

The reduced abc likelihood is from (10) equal to L(!) = ¢((1- 9)/(1 + a'Y))/(1 +a')'), which 
yields the log-likelihood 

since the unknown proportionality factor 1 + a9 appearing in h(t) is a constant proportionality 

factor in L abc ( h ( 1/>)) . 
It remains to specify a and b. The bias parameter b is found from G(:J;) =~(b), as noted above. 

The acceleration parameter a is found as a = iskew, where there are several ways in which to 
calculate or approximate the skewness parameter in question. Extensive discussions may be found 

in Efron (1987), Efron and Tibshirani (1993, Chs. 14 and 22) and in Davison and Hinkley (1997, 
Ch. 5). One option is via the jackknife method, which gives parameter estimates :J;(i) computed 

by leaving out data point i, and use 

Here 1/>o is the mean of the n jackknife estimates. Another option for parametric families is 

to compute the skewness of the logarithmic derivative of the likelihood, at the parameter point 

estimate, inside the least favourable parametric subfamily; see again Efron (1987) for more details. 

Note that when a and b are close to zero, the abc confidence distribution becomes identical to 

the bootstrap distribution itself. In typical setups, both a and b will in fact go to zero with speed 

of order 1/n112 in terms of sample size n. Thus (12) provides a second order non-linear correction 

of shift and scale to the immediate bootstrap distribution. 

Example 11. Consider again the parameter 1/> = (]'2/(]'1 of Example 2. The exact confidence 

distribution was derived there and is equal to C(1j>) = 1- K(:J;2 j1j> 2 ), with J{ = Kv,,v,· We shall 

see how successful the abc apparatus is for approximating the C(1j>) and its confidence density 

c(1f>). 
In this situation, bootstrapping from the estimated parametric model leads to :J;* = &'2/cri 

of the form :J;F 112 , where F has degrees of freedom v2 and v1 . Hence the bootstrap distribution 

is G(t) = K(t 2 j:J;2 ), and G(:J;) = K(1) = ~(b) determines b. The acceleration constant can be 
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FIGURE 4: True confidence density along with abc-estimated version of it (dotted line), for param­
~er '¢; = u2/ui with 5 and 10 degrees of freedom. The parameter estimate in this illustration is 
'!/! = 0.50. The agreement is even better when VI and v2 are closer or when they are larger. 

computed exactly by looking at the log-derivative of the density ;{, which from ;j; = ¢F 112 is equal 

to p(r, '¢;) = k(r2 /'¢;2)2rN3 . With a little work the log-derivative can be expressed as 

1 { (v2/vi);{2 N 2 } _ VI + v2 { I I v2 } -::i: -v2 +(vi+ v2) ~ -d '!/! Beta(2v2, 2vi)- . 
'f' 1 + (v2/vi)¢2 N 2 VI + v2 

Calculating the three first moments of the Beta gives a formula for its skewness and hence for a. 

(Using the jackknife formula above, or relatives directly based on simulated bootstrap estimates, 

obviates the need for algebraic derivations, but would give a good approximation only to the a 

parameter for which we here found the exact value.) 

Trying out the abc machinery shows that Cabc(¢) is amazingly close to C(¢), even when the 

degrees of freedom numbers are low an.d imbalanced; the agreement is even more perfect when VI 

and v2 are more balanced or when they become larger. The same holds for the densities Cabc(¢) 

and c(¢); see Figure 4. • 

. 8.4 Comparisons 

The delta method and the abc method remove bias by transforming the quantile function of the 

otherwise biased normal confidence distribution, cp( '¢; - ;{). The delta method simply corrects the 

scale of the quantile function, while the abc method applies a shift and a non-linear scale change to 

remove bias both due to the non-linearity in '¢; as a function of the basic parameter e as well as the 

effect on the asymptotic variance when the basic parameter is changed. The t-bootstrap method 

would have good theoretical properties in cases where the '¢; estimator is a smooth function of 

sample averages, but has a couple of drawbacks compared to the abc method. It is for example not 

invariant under monotone transformations. Theorems delineating suitable second-order correctness 

aspects of both the abc and the t-bootstrap methods above can be formulated and proved, with 
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necessary assumptions having to do with the quality of approximations involved in (9) and (10). 

Methods of proof would for example involve Edgeworth or Cornish-Fisher expansion arguments. 

Such could also be used to add corrections to the delta method (8). 

Some asymptotic methods of debiasing an approximate confidence distribution involves a 

transformation of the confidence itself and not its quantile function. From a strict mathematical 

point of view there is of course no difference between acting on the quantiles or the confidence. 

But methods like the abc method above are most naturally viewed as a transformation of the 

confidence for each given value of the parameter. 

There are still other methods of theoretical and practical interest for computing approximate 

confidence distributions, cf. the broad literature on constructing accurate confidence intervals. 

One approach would be via analytic approximations to the endpoints of the abc interval, under 

suitable assumptions; the arguments would be akin to those found in DiCiccio and Efron (1996) 

and Davison and Hinkley (1997, Ch. 5) regarding 'approximate bootstrap confidence intervals'. 

Another approach would be via modified profile likelihoods, following work by Barndorff-Nielsen 

and others; see Barndorff-Nielsen and Cox (1994, Chs. 6 and 7) and Barndorff-Nielsen and Wood 

(1998). Clearly more work and further illustrations are needed to better sort out which methods 

have the best potential for accuracy and transparency in different situations. At any rate the abc 

method (12) appears quite generally useful and precise. 

9 Confidence inference for capture-recapture data 

Consider a closed population of N individuals. Captured individuals might be marked in the course 

of the study, or they might have unique natural marks that are observed, say on photographs. Cap­

tures are made on four occasions, with Xt different individuals captured on occasion t = 1, 2, 3, 4 

and with X unique captures made in the combined sample. We seek a confidence distribution and 

a likelihood for the population size N. 

9.1 A multinomial recapture model 

Assuming captures to be stochastically independent between occasions and letting all individuals 

having the same capture probability Pt on occasion t, we have the multinomial multiple-capture 

model of Darroch (1958). The likelihood is 

and { Xt} is thus ancillary for N. By Fisher's inductive logic, inference on N should therefore be 

based on the conditional distribution of X given { Xt}. For fixed N, { Xt} is sufficient and complete 

for {pt}. The conditions of the extended Neyman-Pearson lemma are therefore satisfied, except 

that the data are discrete and not continuously distributed. The confidence distribution for N based 

on X in the conditional model given {Xt} is therefore also suggested by the extended Neyman­

Pearson lemma. With half-correction due to discreteness, the cdf of the confidence distribution 

-IS 

C(N) = PrN{X > Xobsl {Xt}} + ~PrN{X = Xobsl {Xt}}. 

It is nearly optimal in the sense of being uniformly most powerful among exact confidence distri­

butions. Since the data are discrete, the conditional confidence distribution is not exact, and we 

are precluded from stating exact optimality. 
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x1 
Immature 15 
Mature 44 

x2 x3 X4 x 
32 9 11 62 
20 49 7 113 

Table 1: Observed numbers of individuals. 

The conditional distribution is computed via the hypergeometric distribution. Let Rt be the 

number of recaptures on occasion t relative to previous captures. Set R 1 = 0. The total number 

of recaptures is R = I:i=l Rt = X - I:i=l Xt. Given the number of unique captures previous 

tot, I:;;;;;i (X; - R;), Rt has a hypergeometric distribution. In obvious notation, the conditional 

distribution is therefore 

The present approach generalises to an arbitrary number of recaptures, but it assumes the 

population to be closed and homogeneous with respect to capturing, which is independent over 

capturing occasions. We will return to this multinomial multiple-recapture model in Section 9, 

noting that conditioning on the numbers of captures over occasions is sensible for one type of 

study protocol. For other protocols for such studies, quite different pivots and resulting confidence 

distributions and reduced likelihoods are appropriate, despite the near 'optimality'. 

Application: Bowhead whales in Alaska. In the summers and autumns of 1985 and 

1986, photographs were taken of bowhead whales north of Alaska (see da Silva et al., 2000 and 

Schweder, 2000). We shall mainly be concerned with the immature component of the population 

that had natural marks on their bodies. The numbers of identified individuals in photographs 

taken on each of the four sampling occasions and in the pooled set of photographs are given in 

Table 1. The table also gives data for the marked mature whales. The confidence distribution 

for number of immature whales is C(N) = PrN{X > 62} + ~PrN{X = 62}, calculated in the 

conditional distribution ( 13). 

The conditional probability provides a reduced likelihood for N, L(N) = PrN{X = 62}. The 

likelihood happens to be extremely close to the normal-based likelihood calculated from C(N). See 

Figure 5. It is also quite close to the profile likelihood. This agreement is due to the underlying con­

ditional pivot being in the conditional maximum likelihood estimate which is approximately normal 

and additive in a function of N. To an amazing accuracy, we findC(N) ~ <I>(5.134-87.307N- 112). 

The natural parameter is thus J..L(N) = 1/ N 112 . Due to the nonlinearity in the natural parameter, 

the likelihood is different from the confidence density (taking N to be continuous); in this case the 

difference is actually substantial, see Figure 5. 

The same picture emerges for mature whales. Here we find the conditional confidence dis­

tribution to be rather accurately given by N- 112 '""N(0.03734, 0.00642). Again, the conditional 

likelihood L(N) = PrN{X = 113} is well approximated by the normal-based reduced likelihood. 

Passing now to the total number of marked whales, N = N; + Nm where N; is the number of 

marked immatures and Nm the number of marked mature whales, the problem is to estimate N. 

A simple approach is now to bootstrap each of the two normal-based likelihoods and to calculate 

the maximum likelihood estimate of N for each replicate. Due to the additivity of the pivots in the 

two natural parameters, this amounts to drawing bootstrap replicates from the joint confidence 

distribution for (N;, Nm) and then add. 

23 



0 

Exact likelihood and 

Log confidence density 

200 400 600 800 1000 

Number of marked immature whales 

FIGURE 5: The exact likelihood is shown together with the normal scores likelihood, for the number 
of marked immature whales; these curves are almost identical. Also shown is the log-confidence 
density (dotted). 

9.2 On the importance of the study protocol 

The Bayesian approach is to integrate the prior distribution with the likelihood, as if they both 

were probability distributions over the joint space of the parameter and the data. In practice, the 

Bayesian posterior distribution is based on the observed likelihood function. What could have been 

observed is of no consequence. The same applies to the purist likelihoodist. They both agree that 

the observed likelihood function carries all the information, and contrafactual thoughts of data 

that could have been realised but were not, is of no concern. The frequentist departs from this by 

insisting that his 95% confidence interval should cover the true parameter with probability 0.95 in 

a hypothetical repetition of the experiment, regardless of the true state of nature, i.e. the value of 

the unknown parameter. The confidence distribution is a truly frequentist concept, and it is not a 

function of the observed likelihood alone. As seen in Examples 3 and 5 a given observed likelihood 

can lead to a different confidence distribution when the model is changed. Whether a Poisson 

process is observed in t units of time until x points have been realised, or whether the number of 

points xis what is observed over a given time period of length t, should have been decided ahead of 

the experiment and stated in the study protocol (we prefer 'study protocol' over the synonymous 

'experimental design' since many sets of data are generated by an observational process rather 

than a manipulated experiment). The study protocol is a description of the observer, and a good 

statistical model reflects the study protocol as well as characteristics of the system under study. 

The study protocol mattered in the Poisson process situation, but not a great deal. In some 

situations, the statistical model is formally identical across studies, but the study protocol dictates 

how to use the model and thus how to obtain a confidence distribution and a reduced likelihood as 

the case may be. The study protocol might matter a great deal, as seen in the following example. 

Application (cont.). Consider four different hypothetical study protocols for the multino­

mial multiple-recapture process of immature marked whales. The situation is as discussed above. 
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Protocol Pivot c C.025 c.5 c.975 

Xt = Xt N-1/2- aN-1/2 = a.Z N-t "'.0588 + .014Z 152 289 752 

EXt= Xt fJ-1/2- aN-1/2 = aZ N- t "' .0596 + .0127 Z 140 282 830 

EXt= Xt(N/289) 112 (N/N)112 - a= aZ Nt "'16.8+3.67Z 92 282 575 
EXt = XtN /289 0 281 495 

Table 2: Results for immature marked whales under four hypothetical study protocols. The last 
columns gives confidence quantiles. 

Under the first protocol, sampling continues on occasion t until Xt = Xt, where Xt is the observed 

sample size given in Table 1. In the second case, the expected sample size is given, EXt = N Pt = Xt. 
The third protocol ai~s at a given precision in the resulting abundance estimate. This entails 

Pt = ct/N112 where Ct are fixed constants. For comparison, assume EXt = Xt(N/289) 112. The 

fourth protocol is that of a given sampling effort (perhaps determined by the budget of the study).· 

Now, Pt is independent of N, and we set EXt= XtN/289 for easy comparison. The first and last 

protocols are practical, while the middle two are more difficult to deploy in practice. 

The four protocols are given in Table 2, together with approximate pivots, confidence dis­

tributions and confidence quantiles. Whatever the protocol, assume the observed data to be the 

same. The statistical model for the study is formally unaffected, and given by (13). To proceed 

with conditional inference given {Xt} is sensible under the first two protocols. It is, however, 

less sensible under the two other protocols. Then the expected number of individuals captured 

on a given occasion tends to increase in N. It is thus not obvious that conditional inference is 

sensible, even though {Xt} is ancillary for N, despite Fisher's inductive logic, as supported by 

Barndorff-Nielsen and Cox (1994) and others, and despite the extended Neyman-Pearson lemma. 

Table 2 is obta:ined as follows. In the first case, the pivot is found from a simulation study 

with N as the conditional maximum likelihood estimator, and the confidence distribution is found 

from the half-corrected tail probability as discussed above. In the remaining cases, N is the 

maximum likelihood estimator, and simulation is carried out to identify the pivot and the confidence 

distribution. The search for a pivot was unsuccessful in the constant effort case. The confidence 

distribution is found to be improper, with a point mass larger than 0.025 at 0, and no closed form 

was found. 

Conditional inference (first protocol) leads essentially to the same results as when expected 

sample size is .fixed (second protocol). The confidence distribution is slightly less dispersed when 

conditioning, as expected. The confidence distribution is markedly skewed, with a long tail to the 

right. This makes sense, since if the population is large, the fixed number of captured will lead to 

very few recaptures, and eventually 2::: Xt = X with high probability, with very little information 

on N. The other two confidence distributions are centred at the same point estimate, but they 

are differently skewed. Under the last protocol of constant sampling effort, there is hardly any 

information in the data if the population is small and hence the number of captures is small. It 

is therefore sensible to be cautious towards small values. On the other hand, many captures will 

be made if the population is large, with consequent high information on the population size. This 

explains the short right tail of the confidence distribution in this case. 

10 Discussion 

The confidence distribution is an attractive format for reporting statistical inference for parameters 

of primary interest. To allow future good use of the results it is desirable to allow a likelihood to be 
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constructed from the confidence distribution. An alternative is to make the original data available, 

or to present the full likelihood. However, the work invested in reducing the original data to a 

confidence distribution for the parameter of interest would then be lost. To convert the posterior 

confidence distribution to a likelihood, and to allow future correct bootstrapping, the probability 

basis for the confidence distribution must be reported. This is often achieved by reporting the 

underlying pivot and its distribution. Our suggestion is accordingly to extend current frequentist 

reporting practice from only reporting a point estimate, a standard error and a (95%) confidence. 

interval for the parameters of primary interest. To help future readers, one should report the 

confidence distribution fully, and supplement it with information on its probability basis. 

10.1 Advantages with our approach 

The advantages of representing the information contained in a confidence distribution in the format 

of (an approximate) likelihood function are many and substantial. 

By adding the log-likelihoods of independent confidence distributions for the same parameter, 

a combined confidence distribution is obtained, usually by bootstrapping the integrated likelihood 

and using the maximum likelihood estimator as the basic statistic. The merging of independent 

confidence intervals has attracted considerable attention, and the use of reduced likelihoods presents 

a solution to the problem. One might, for example, wish to merge independent confidence intervals 

for the same parameter to one interval based on all the data. When the probability basis and the 

confidence distribution are known for each data set, the related log-likelihoods can be added, and 

an integrated confidence distribution, accompanied by its pivot and likelihood, is obtained. 

A related problem is that of so-called meta-analyses. If independent confidence distributions 

are obtained for the same parameter, the information is combined by adding the reduced log­

likelihoods. A frequent problem in meta-analysis is, however, that the interest parameter might 

not have exactly the same value across the studies. This calls for a model that reflects this variation, 

possibly by including a random component. In any event, the availability of reduced likelihood 

functions from the various studies facilitates the meta-analysis, whether a random component is 

needed or not. 

Studies in fields like ecology, economics, geophysics etc. often utilise complex models with 

many parameters. To the extent results are available for some of these parameters, it might be 

desirable to include this information in the study. If these previous results appear in the format 

of confidence distributions accompanied by explicit probability bases, their related likelihoods 

are perfectly suited to carry this information into the combined likelihood of the new and the 

previous data. If a confidence distribution is used that is not based on (previous) data, but 

on subjective judgement, its related likelihood can still be calculated and combined with other 

likelihood components, provided assumptions regarding its probability basis can be made. This 

subjective component of the likelihood should then, perhaps, be regarded as a penalising term 

rather than a likelihood term. Schweder and lanelli (2000) used this approach to assess the status 

of the stock of bowhead whales subject to inuit whaling off Alaska. 

Finally, being able to obtain the implied likelihood from confidence distributions, and being 

able to calculate confidence distributions from data summarised by a likelihood within a statisti­

cal model, a methodology parallel to and competing with Bayesian methodology emerges. This 

methodology is frequentist in its foundation. As the Bayesian methodology, it provides a frame­

work for coherent learning and its inferential product is a distribution: a confidence distribution 

instead of a Bayesian posterior probability distribution. 
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10.2 Differences from the Bayesian paradigm 

It is pertinent to compare our frequentist approach' with the Bayesian approach to coherent learn­

ing. Most importantly, the two approaches have the same aim: to update distributional knowledge 

in the view of new data within the frame of a statistical model. The updated distribution could then 

be subject to further updating at a later stage, etc. In this sense, our approach could be. termed 

'frequentist Bayesian' (a term both frequentists and Bayesians probably would dislike). There are, 

however, substantial differences between the two approaches. Compared to the Bayesian approach, 

we would like to emphasise the following. 

Distributions for parameters are understood as confidence distributions and not probability 

distributions. The concept of probability is reserved for (hypothetically) repeated sampling, and is 

interpreted frequentistically. To update a confidence distribution it must be related to its probabil­

ity basis, to obtain the likelihood related to the confidence distribution. To update a distribution 

for a parameter the frequentist needs more information than the Bayesian, namely its probability 

basis. Furthermore, the distinction between probability and confidence is basic in the frequentist 

tradition. 

We would like to stress as a general point the usefulness of displaying the confidence density 

c( 'ljJ), computed from the observed data, for any parameter 'ljJ of interest. This would be the 

frequentist parallel to the Bayesian's posterior density. We emphasise that the interpretation 

of c( 'ljJ) should be clear and non-controversial; it is simply an effective way of summarising and 

communicating all confidence intervals, and does not involve any prior. 

One may ask when the c('¢) curve is identical to a Bayesian's posterior. This is clearly answered 

by equation (3) in the presence of a pivot; the confidence density agrees exactly with the Bayesian 

updating when the Bayesian's prior is 

(14) 

In the pure location case the pivot is 'ljJ- T, and 7ro is constant. When 'ljJ is a scale parameter and 

the pivot is '1/J/T, the prior becomes proportional to '1/J- 1 . These priors are precisely those found to 

be the canonical 'non-informative' ones in Bayesian statistics. In the correlation coefficient example 

of Section 8.2, the approximate pivot used there leads to 7ro(p) = 1/(1- p2 ) on (-1, 1), agreeing 

with the non-informative prior found using the so-called Jeffrey's formula. Method (14) may be 

used also in more complicated situations, for example via abc or t-bootstrap approximations in 

cases where a pivot is not ea~jily found. 

It is possible for the frequentist to start at scratch, without any (unfounded) subjective prior 

distribution. In complex models, there might be distributional information available for some of 

the parameters, but not for all. The Bayesian is then stuck, or she has to construct priors. The 

frequentist will, however, not have principle problems in such situations. The concept of non­

informativity is, in fact, simple for likelihoods. The non-informative likelihoods are simply flat. 

Non-informative Bayesian priors are, on the other hand, a thorny matter. In general, the frequentist 

approach is less dependent on subjective input to the analysis than the Bayesian approach. But if 

subjective input is needed, it can readily be incorporated (as a penalising term in the likelihood). 

In, the bowhead assessment model (Schweder and Ianelli, 2000) there were more prior distribu­

tions than there were free parameters. Without modifications of the Bayesian synthesis approach 

like the melding of Poole and Raftery (1998), the Bayesian gets into trouble. Due to the Borel 

paradox (Schweder and Hjort, 1996), the Bayesian synthesis will, in fact, be completely determined 

by the particular parametrisation. With more prior distributions than there are free parameters, 
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Poole and Raftery (1998) propose to meld the priors to a joint prior distribution of the same dimen­

sionality as the free parameter. This melding is essentially a (geometric) averaging operation. If, 

however, there are independent prior distributional information on a parameter, it seems wasteful 

to average the priors. If, say, all the prior distributions happen to be identical, their Bayesian 

melding will give the same distribution. The Bayesian will thus not gain anything from k indepen­

dent pieces of information, while the frequentist will end up with a less dispersed distribution; the 

standard deviation will, in fact, be the familiar u / k112 . . 

Non-linearity, ~on-normality and nuisance parameters can produce bias in re.sults, even when 

the model is correct. This is well known, and has been emphasised repeatedly in the frequentist · 

literature. Such bias should, as far as possible, be corrected in the reported results; The confidence 

distribution aims at being unbiased: when it is exact, the related confidence intervals have exactly 

the nominal coverage probabilities. Bias correction has traditionally not been a concern in the 

Bayesian tradition. There has, however, been some recent interest in the matter. To obtain 

frequentist unbiasedness, the Bayesian will have to choose her prior with unbiasedness in mind. 

Is she then a Bayesian? Her prior distribution will then not represent prior knowledge of the 

parameter in case, but an understanding of the model. Our 'frequentist Bayesianism' solves this 

problem in principle. It takes as input (unbiased) prior confidence distributions converted to 

reduced likelihoods and delivers (unbiased) posterior confidence distributions. 

Hald (1998) speaks of three revolutions in parametric statistical inference due to Laplace in 

1774 (inverse probability, Bayesian methods with flat priors), GauB and Laplace in 1809-1812 and 

Fisher in 1922. This is not the place to discuss Fisher's revolution in any detail, other than to 

note that it partly was a revolt against the Laplacian Bayesianism. When discussing Neyman's 

1934 paper on survey sampling, Fisher stated, "All realized that problems of mathematical logic 

underlay all inference from observational material. They were widely conscious, too, that more 

than 150 years of dispute between the pros and the cons of inverse probability had left the subject 

only more befogged by doubt and frustration." To come around the problems associated with 

prior distributions, Fisher proposed the fiducial distribution as a replacement for the Bayesian 

posterior. Efron (1998) emphasises the importance of the fiducial distribution, which he prefers 

reformulated to the confidence distribution discussed in the present paper. The fiducial argument 

is not without problems (see e.g. Brillinger, 1962, Wilkinson, 1977, Welsh 1996) and has often 

been regarded as "Fisher's biggest blunder" (see Efron, 1998). By converting to the confidence 

formulation, as Neyman did in 1941 but which Fisher resisted, Efron holds that the method can 

be applied to a wider class of problems and that it might hold a key to "our profession's 250-year 

search for a dependable objective Bayes theory". We agree, and we hope with Efron (1998) and 

also with Fraser when discussing Efron (1998), that fiducial or confidence distributions will receive 

renewed inte.rest. By introducing the reduced likelihood associated with a confidence distribution, 

and by pointing out the importance of the underlying (approximate) pivot for future parametric 

bootstrapping, a form of objective Bayes methodology has been sketched. Our form of 'frequentist 

Bayesianism' does not involve Bayes' formula, although we have nothing against using Bayesian 

techniques to produce confidence distributions with correct frequentist properties. But it 13eeks to 

deliver digested statistical information in the format of distributions, and it provides a method for 

rational updating of such statistical information. 
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