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Abstract 
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a theoretical point of view. Some general comments are made on the motivation 
as seen by a statistician for this kind of studies, and the concept of soft mod­
elling is criticized from the same angle. Various aspects of the PLS algorithm 
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of the prediction error are briefly discussed, and the relation to other regression 
methods are commented upon. Results indicating positive and negative prop­
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and others which seem to show that PLSR can not be an optimal regression 
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1 Introduction. 

I am grateful for this opportunity to say something about partial least squares re­

gression from a statistician's point of view. Statisticians on the one hand and on 

the other hand certain groups of data analysts, including those working with PLS­

regression, now seem to be on their way to develop completely separate cultures. It 

may well be that this development can be fruitful for some limited time, but my own 

conviction is that in the long run it would be best for all parties if we tried to find 

some kind of synthesis between the various cultures. 

My colleague Emil Spj!Zltvoll often used to say that 'things can be understood 

on many different levels'. This was usually said in some pedagogical setting, but it 

does make sense in, say, methodological research, too. In particular, when new ideas 

are being developed, the most fruitful approach is often to let rigor rest for a while, 

and let intuition reign - at least in the beginning. New methods may require new 

concepts and new approaches, in extreme cases even a new language, and it may 

then be impossible to describe such ideas precisely in the old language. Also, we 

all have a limited brain capacity, and if every effort is spent on rigor and precision, 

there may be no room left for innovation. 

I think it is right to say that this point has not always been quite appreciated by 

those of my collegues that work within theoretical statistics. Mathematical statistics, 

which should be the umbrella of a large body of methodological research, has at least 

to some degree developed into a purely deductive science. To a certain extent this is 

appropriate, when research is made in areas where the conceptual foundation is well 

established. However, there do exist areas, also in statistics, where it is wise to have 
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an open mind towards different solutions, even if these, at least in the beginning, 

and at least from a mathematical point of view, may have to be formulated in a 

slightly intuitive way. 

As a consequence of this way of thinking, I have felt for many years that it is im­

portant for mathematical statisticians to be open to impulses from the outside. This 

was my main reason for catching interest when seeing the initial empirical success of 

the PLS-algorithm in regression, and this was also my reason for bringing with me 

several preprints by Harald Martens, Svante Wold and other chemometricians on a 

sabbathical to Edinburgh in 1986, where I spent some time trying to find a structure 

in it all, as seen from a statistician's point of view. Since then I have returned to the 

PLS-algorithm from several mathematical directions, some of my colleagues would 

say more often than the algorithm - which I may agree is after all not more that an 

algorithm - deserves. 

It is important to say at this point that this for me has never been primarily 'an 

attempt to help chemometricians' - or worse: an endeavour to make chemometrics 

more academic and respectable. To me this has more been an attempt to extract 

all the structure from the method that I was able to find, in order to investigate the 

link to the world of mathematical statistics. And of course the general urge to look 

for good prediction methods was there in addition, but this has never been the only 

motivation. 

To be very brief, the main structural idea for mathematical statistics which in 

my view have emerged from this process is simply this: In certain cases it seems 

to pay to replace the full statistical model with a particular reduced model. The 

full consequences of this as a general principle in a statistical setting remain to be 
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explored fully. If some general theory of model reduction could be developed, several 

areas of applied statistics would be affected; there even seems to be some possibility 

of finding a link towards quantum theory. However, many problems remain to be 

investigated here. 

For a more conventional discussion from the statistical point of view of the use 

of PLS and related methods, see Brown (I993). The most popular book on the 

use of such methods in chemometry is still Martens and Nces (I989). Some technical 

results on PLS have been presented recently in the chemometrical journals, in several 

statistical journals and also in journals on linear algebra. We will mention some of 

these, but will concentrate on the main developments. 

2 Statistical models, prediction and PLSR. 

All real data contain noise, and the statistician's way to model this is through prob­

ability models. In my view here exist no other really successful alternative to this 

approach. In particular, the concept of 'soft modelling' seems to be very difficult to 

make precise. I will try to articulate this critique in a few brief remarks. First, take 

the soft model concept in its absolutely crudest form: Writing a regression model as 

y = Xf3 + e (I) 

without saying anything more, it is completely empty of content: With data (X, y) 

we can let f3 be anything, and then we can always define e by e = y- X/3. Then 

(I) will hold true, trivially. In practice, most soft modellers will probably want 

to say something about the error term: 'small', 'uncorrelated', 'unbiased' or other 
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characteristics of noise, but it is difficult to make these characterizations precise 

without using probability models in some way or other. 

A more common way to try to make (1) precise in a soft modelling context, is 

through saying that f3 should be 'found' by least squares estimation. This gives a 

prescription for finding numbers on both sides of (1), but is still far from what most 

people would call a model. In particular, the distinction between the parameter 

in the model and the estimate of this parameter becomes very difficult to retain. 

For most statisticians it is crucially important to be able to distinguish between 

the data themselves and the hypothetical world behind, which the data should give 

information about. 

Thus, from a statistical point of view, it is difficult to regard Partial Least Squares 

Regression - based as it is on a series of least squares fittings- as anything else than 

an algorithm. Thus it must at the outset be looked upon as a regression method, 

and be compared to other regression methods, not - at least not to begin with - as 

any radical new approach to regression or to model building. (We will later come 

back to how a particular form of model reduction can be motivated by PLS.) 

On the other hand, in some sense one might say that the words 'soft modelling' 

point towards an aspect of statistical modelling that some statisticians seem to ne­

glect: Most ordinary statistical models are idealizations, and thus say more than 

what we can read from data. We must even expect in practice that different re­

searchers will use different models on the same data. Therefore, in a prediction 

context, we may hope that the statistical method used possesses certain robustness 

properties with respect to the detailed choice of model. This is a very difficult aspect 

of statistical methodology, which in practice is neglected in many investigations. But 
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in my view the chemometrician's 'soft modelling' concept does not solve this prob­

lem in any way. On the contrary, an imprecise modelling concept may even give a 

context where it to some extent is difficult to state the problem precisely. 

In this paper I will concentrate on PLSR as a prediction/ regression method, 

and say less directly about the use of PLS in finding latent 'loadings' and 'scorings', 

although these aspects will be touched upon several times. These methods inspired 

by factor analysis seem to function fairly well in practice, partly because the output 

given by necessity must be interpreted fairly crudely, but mainly because the methods 

can be coupled to the same population model as PLSR; see below. Historically, the 

PLS type latent variable soft models precede the regression method, see Wold (1985). 

3 The algorithm. 

Many chemometricians regard the PLSR1 algorithm as a very simple regression 

methods, and I agree that more difficulties emerge when we consider the PLSR2-

algorithm with several y-variables or if algorithms with several blocks of variables 

are considered. My defense for concentrating on the simples case, is twofold: First, 

the PLSR1 algorithm is much used. Secondly, if you do not understand the simplest 

case, the hope that you will ever understand the more complicated case, is very 

meager. 

The paper Helland (1988) started by proving formally the equivalence of two 

algorithms for PLSR1: The original algorithm with orthogonal scorings proposed in 

regression context by Wold et al. (1983) and the algorithm with orthogonal loadings 

proposed by Martens (1985). Both can be looked upon as special procedures where 
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one wants to link then-vector y of centered y-values to then Xp matrix X of centered 

x-values through k 'latent vectors': 

(2) 

(3) 

For example, the ordinary PLSRl-algorith can be defined by a successive use of 

(2) and (3) for k = 0, 1, 2, ... together with a definition 

(4) 

and where the loadings are determined by least squares fit: 

(5) 

(6) 

The least 'logical' part of this definition of the algorithm is the determination of 

the weights in ( 4). Other possibilities can easily be imagined here. 

If xo = (x01, x02, ... , Xop)' is a set of x-measurements on a new unit, one can use 

this to define new scorings tjo in a similar way as in the algorithm above, and then 

predict the corresponding y-observation in step k by 

k 

Yko = Y + 2::)jo(tjtj)-1tjy. 
j=l 

(7) 

It turns out that this prediction can be written in several equivalent ways. One 

is terms of the matrix of weights 
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Using this, we can write 

iiko =f)+ (xo- x)'bk, (8) 

where 

(9) 

A completely different-looking equivalent formula turns out to be 

(10) 

in terms of the loadings. 

An important side result which comes up during the derivation of these results, 

is that the weights w1, ... , Wk span the same space as the Krylov sequence 

S Sk-1 s, s, ... ' s, 

where S = X'X and s = X'y. 

4 The population model. 

Let us now turn to the statistician's way of viewing the world. 

A crucial concept in all statistical modelling is that of a parameter or a set of 

parameters: The unknown reality behind our observations which we try to find out 

as much as possible about. One way to approach the parameters is to look at the 

idealized situation where we have infinite amount of information, i.e., we let the 

amount of data tend to infinity. The simplest example is an. expectation J.l, which 

can be looked upon as the limit of the mean x as the number n of observations tend 

to infinity. 
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In other cases it is more natural to look upon the statistical model as a deliberate 

idealization. For instance: No real data are exactly normally distributed, but even 

so, regression models with Gaussian error terms have turned out to be very useful 

idealizations. 

In the same way as in the case of the mean, if we want to look for a statistical 

model behind the PLSR-algorithm, the parameters of that model should be found 

by letting n-+ oo. Then, in particular, in the notation of the last paragraph of the 

previous Section, n-1s will tend to the covariance matrix :E of the x-variables, while 

n-1s tends to the covariance vector a between y and x. The ordinary regression 

vector is then (3 = :E-1a. Note, however, that taking the PLSR 'model' with k < p 

components seriously, turns out to imply a special structure for this regression vector. 

This is in fact the essence of the PLS population model. 

One way to procede, is by taking a principal component decomposition of :E, 

which we always can do: 
p 

:E = LVJ'flj'T/J· 
j=l 

(11) 

Here Vj are the eigenvalues and 'T/j the eigenvectors of :E. From the results of the 

previous Section one can convince oneself that the population version of the space 

spanned by the PLSR weights is also spanned by 

(12) 

where 
p 

:Ek-la = L(vj)k-l'T/j'T/ja. (13) 
j=l 

Using known results on Vandermonde determinants and principal components, 

several results on the population version of PLSR were proved from this in Helland 
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(1990), among other things: The population PLSR space has dimension m if and 

only if there are m different eigenvalues Vj with corresponding eigenvectors T/j such 

that TJj a f- 0. 

This should be compared to the formula for the population version of the principal 

component regression vector: 

k 

f3PcR = L(vj)-1TJjTJja. (14) 
j=l 

In this equation we naturally want to have as few terms as possible. This can be 

achieved in two ways: By deleting terms with TJja = 0 and by rotating in eigenspaces 

with equal eigenvalue Vj such that we get only one eigenvector, hence only one term 

in (14) for each different eigenvalue. Doing this, we see from the previous result that 

the (minimal) number of terms in the sum (14) will always be equal to the dimension 

of the PLSR-space. 

The next result may perhaps at the outset be even more surprising, but is proved 

from the same basis: When this minimal number of terms is used, the population PLS 

regression vector and the population PCR regression vector are numerically equal. 

Two empirically well known results on the ordinary PLSR and PCR vectors may 

be understood heuristically from this: 1) The two methods will very often give similar 

results. 2) PLS regression may tend to require fewer components. The last result 

can be understood from the fact that the population version of PLSR automatically 

selects the minimal number of terms when eigenvalues are equal; there is no such 

automaticity in PCR. 

This minimum number of terms in population PLSR/ PCR is called the num-

her of relevant components. If R is the corresponding matrix of PLSR population 
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weights, then the part of the x-space spanned by R'x is called the space of relevant 

components for the regression. These spaces can be characterized in a number of 

ways. Here is one from N ;:es and Helland (1993): The space spanned by R is the 

minimal space such that 1) The vector (3 belongs to this space, 2) The same space 

is also spanned by :ER. A simpler characteristic is perhaps 1) together with the 

requirement that the space should be spanned by some set of eigenvectors of :E. 

Finally, a compact way of characterizing a model with m relevant components, 

is the following; see N;:es and Martens (1985) and N;:es and Helland (1993): We can 

write 

x=Rz+Uv, (15) 

where R and U are fixed matrices of full column rank of dimension p X m and 

p X (p- m), respectively, and where R'U = 0, cov(v, y) = 0 and cov(z, v) = 0. 

Then the columns of R span the same space as the PLSR population weights, and 

R'x, or equivalently, z, span the space of relevant components for the regression. 

It is shown in Helland (1990) that the sample PLS algorithm as n--+ oo converges 

to a corresponding population PLS algorithm, and that (2), (3) with m terms under 

the model with m relevant components can be translated into a factor type model 

with uncorrelated errors. This gives a way of making the latent structure interpre­

tation of PLS precise, and it is not too difficult to see the connection to (15). The 

sample loadings and scores that are used in practice are estimates of the loadings 

and scores in the population model. 

Like in all statistical modelling, this population structure gives only probability 

distributions for the result of the (sample) PLSR algorithm; in addition it says 

something approximately about the result for the case when n is very large. The 
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role of the population model is very important from a theoretical point of view, 

however: It gives a precise formulation of the ideal reality that lies behind a PLS 

regression with m terms: A population model with m relevant components. As 

indicated before, every statistical model is an idealization; in a very specific way, 

this is the particular idealization which is coupled both to PLS regression and to 

PLS latent analysis. 

5 Prediction error. 

The next thing a statistician would do when an ideal model is established and it is 

known that some given estimator converges towards a model parameter as n --+ oo, is 

to try to study closer the distance between estimator and parameter. In the present 

case the parameter of interest is the regression vector f3, and the estimator is the 

corresponding vector b found by, say PLSR or PCR. A natural way to measure the 

distance between the parameter and estimator in this case, is by 

d = E(b- f3)':E(b- {3), (16) 

which is closely related to prediction error. 

For ordinary multiple regression, a straightforward, but but not quite trivial 

calculation shows that 

d = 7 2 p ' 
n-p-2 

(17) 

where 7 2 is the error variance of the regression equation (cp. Helland and Almoy, 

1994). An obvious observation here is that this error can be quite big when the 

number p of x-variables is large; it will even get infinite when p approaches the 
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number n of observations. An obvious remedy might be to the reduce the number of 

variables, but this will usually lead to an increase in r 2 • What PCR and PLSR do, is 

in effect to use a reduced number of linear combinations of x-variables as regressors. 

The fact that these linear combinations have to be estimated from data, again leads 

to an increase in the variance. The resulting asymptotic distances are calculated in 

Helland and Alm0y (1994). Simulations related to the same distances are carried 

out in Alm0y (1996). In all these cases an ideal model is assumed where the number 

of relevant components is fixed at some number m. 

The asymptotic expressions turn out to be relatively complicated, and will not 

be reproduced here. Qualitatively, it turns out that the difference between PCR and 

PLSR in most cases is relatively small. No method dominates the other. PCR does 

best when the irrelevant eigenvalues are relatively small or relatively large; PLSR 

does best for intermediate irrelevant eigenvalues. Since the difference is very small 

for small irrelevant eigenvalues, and since large irrelevant eigenvalues seem to be 

very rare, this can be interpreted as an, admittedly relatively weak, argument for 

PLSR in this comparison. The conclusions above are confirmed in the systematically 

designed simulation study by Alm0y (1996). 

6 Links to other regression methods. 

There exist a large number of regression methods that have been proposed for near 

collinear data: In addition to PCR and PLSR we have ridge regression, latent root 

regression, various methods suggested by calibration theory or by Bayesian theory, 

variable selection methods, James-Stein shrinkage etc.. Often these methods give 
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fairly similar results, as already discussed for PCR and PLSR. This fact may make 

the situation somewhat easier for the user of regression methods, but of course 'often' 

here does not mean 'always'. One may perhaps still have the hope that with so many 

similar regression methods available, it might in some future be possible to find one 

selected method which turns out to be optimal in a fairly natural canonical way. 

Stone and Brooks (1990) have proposed a regression method which contains 

ordinary least squares (OLS), PCR and PLSR as special cases. It is a stepwise 

procedure, where a generalized criterion is maximized in each step. This criterion 

depends on a parameter a, where 0 ~ a ~ 1 and a = 0 gives OLS, a = 1/2 gives 

PLSR and a = 1 gives PCR. The method was demonstrated to perform well on some 

selected examples, but a weak point in practice is that crossvalidation has to be used 

to determine both a and the number of steps. Since crossvalidation already is an 

Achilles' heel in all stepwise procedures like PLSR, this becomes a double problem 

in continuum regression. 

The criterion used by Stone and Brooks (1990) 1s m reality well known when 

specified to the three methods: OLS is based on maximizing the empirical correlation 

between y and /J'x, PCR is based u pan maximizing the variance of the normalized 

linear combination of x-variables at each step, while PLSR can be derived from 

maximizing at each step the covariance between y and such a linear combination. 

(See also Hoskuldsson, 1988.) A heuristic comparison of the three methods together 

with ridge regression on the basis of such characterizations can be found in Frank 

and Friedman (1993). Their qualitative discussion using this point of departure 

can be looked upon as an explanation why these methods are so similar in their 

performance. 
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In Sundberg (1993) and Bji::irkstri::im and Sundberg (1999) it was shown that the 

first step in continuum regression can be written in the form of a generalized ridge 

regression. Unfortunately, the PLSR case corresponds to a ridge parameter tending 

to infinity. 

7 Known positive and negative properties of PLSR. 

Most of the comparisons between regression methods have been done via simula­

tion studies. The simulations by Almoy (1996) using the model with m relevant 

components have already been mentioned. An extensive discussion of PLSR from a 

statistical point of view, including systematic Monte Carlo simulations, is given in 

Frank and Friedman (1993). In these simulations ridge regression comes out best in 

an overall assessment, followed closely by PLSR and PCR, while variable selection 

does not perform as well as the other methods. The small difference between PLSR, 

PCR and ridge regression is commented upon by the authors by saying that one 

would not sacrifice much average accuracy over a lifetime by using one of them to 

the exclusion of the other two. In the discussion, Svante Wold gives arguments to 

the effect that ridge regression would probably have performed differently under a 

different simulation design. 

Aldrin (1997) demonstrates by using simulation that regression methods, in par­

ticular ridge regression, can be improved on by adjusting the length of the regression 

vector so that a measure of the prediction error is minimized. In particular, his 

length modified ridge regression dominates PLSR in the simulations. His discussion 

also takes into account relations to the continuum regression by Stone and Brooks 
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(1990). 

In fact, it is a well known characteristic of biased regression methods that the 

length of the corresponding regression vector in general tends to be not too large, 

and that this aspect has a positive effect on the prediction error. For PLSR a 

definite mathematical result in this direction can be shown: In de Jong (1995) and 

in Goutis (1996) it is shown that PLSR shrinks in the sense that one always have 

Another nice mathematical property of PLSR has been proved by de Jong (1993): 

With the same number of components, PLSR will always give a higher coefficient of 

determination R 2 than PCR. 

However, taking a closer look on the shrinkage properties of PLSR turns out to 

expose that the regression method has some serious defects. To understand this, 

we first do a decomposition of the mean square error of a general regression method 

with regression vector b, where we (in contrast to what was done in Section 5) follow 

the common statistical tradition and regard the x-variables as non-stochastic: 

MSE = E(b- ,8)'S(b- (3) = (Eb- f3)'S(Eb- {3) + tr(SV(b)) 
p p 

= L Ai(Eai- ai) 2 + L AiVar(ai), (18) 
i=l i=l 

where we have used the eigendecomposition 

and have defined 

p 

s = X'X = L AiUiU~, 
i=l 

It is easy to see that for ordinary least squares, the random variables ai, say a? 
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for this method, satisfy E( a?) = ai, so the first sum on the righthand side of (18), 

the bias part, vanishes. 

For ridge regression and for PCR, it is also easy to see that we get ai = j(>..i)a?, 

where j().i) =.Xi/(/\+,.,;), respectively f(.Xi) = 1 or 0. Here,.,; is the ridge parameter, 

and for the PCR case f(.Xi) = 1 for the terms included in the regression. 

Thus in both these cases we have 0 ::; j(.Xi) ::; 1, which is a very good thing, for if 

we had j(.Xi) > 1 for some i, then both the corresponding bias term and the variance 

term in (18) would increase relative to ordinary least squares, and the method could 

have been easily improved on by simply replacing f(.Xi) by 1 for this particular i. 

Since this is not the case, both ridge regression and PCR are true shrinkage methods 

in this very satisfying strong sense. 

Now the question is: Is PLSR a shrinkage method in this sense? Heuristic 

discussions and calculations made by Frank and Friedman (1993) seemed to indicate 

that this was not the case. This suspicion has recently been confirmed by rigorous 

detailed mathematical calculations independently by Butler and Denham (2000) and 

by Lingjcerde and Christophersen (2000): The functions j(.Xi) (which must be made 

stochastic for PLSR) are in fact quite often larger than 1. This strongly indicates 

that PLSR nearly always can be improved in principle, so the regression method as 

such is not optimal in any reasonable way. 

This strong and important negative result for PLSR can also be elucidated by 

using the population model of Section 4: The population model with m < p steps is 

equivalent to a definite restriction of the original model parameters, say, by stating 

that the population weight at step m + 1 is zero. In a way it is true that the sample 

PLS loadings, weights etc. give reasonable estimates of the corresponding population 

17 



quantities, but these .estimates have a very important defect: The sample estimates 

do not satisfy the restrictions implied by the population model. For instance, the 

probability that the sample weight at step m + 1 should vanish, is zero. 

Thus any question about finding out in which sense the ordinary PLS algorith 

should be optimal, is in fact meaningless. The most we can do, is to state the 

following two questions: 

1) In what settings are the model reduction assumed by the population PLS 

model the most meaningful one? 

2) Given the population PLS model with m steps, what are the best possible 

estimates of the parameters of this model? 

In Helland (2000c) a fairly satisfying answer to 1) is given, and a discussion of 

2) is also started. 

8 Model reduction and PLSR. 

For centered data (x, y) the covariance structure in itself gives a model containing 

(p + 1)(p + 2)/2 parameters. For multinormal data the whole model is completely 

specified by these parameters; we may assume this as a simplification, or simply 

ignore the rest of the structure, which is relatively unimportant in the search for a 

good predictor (Helland, 2000a). 

The population PLS model with m relevant components corresponds to a definite 

restriction of this model having a net number of parameters equal to p(p+ 1) /2+m+ 1. 

For m = 0 there is no correlation between x and y in this model, for m = p we get 

back the full model. Going from m = 0 to m =pin steps gives a simple hierarchy 
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of models. 

In practice, nearly every statistical model is a simplification, and it is far from 

uncommon in statistics to reduce a model by reducing the number of parameters in 

order to try to explore some specific structure. One major difficulty is that the joint 

covariance model as such can be reduced in a large number of ways. An important 

problem is then to find out under what conditions the particular reduction implied 

by population PLS is natural. From a latent variable point of view it seems to be 

possible to say something about this. We will here be more interested in attacking 

the question in a regression/prediction setting. 

In Helland (2000a) the prediction error itself was taken as a point of departure. 

Then it may be more natural to consider different conditionings of the joint model 

instead of different model reductions; for prediction purposes this can be shown to 

be equivalent. Hence assume that we want to predict y by regressing on a linear 

combination R'x of the x-data, where R is a fixed p X k matrix of rank k. Then, in 

in the same way as we found (17) the prediction error can be shown to be 

PRE= 72 n - 1 , 
n-k-1 

(19) 

For fixed n and k this prediction error is as small as possible if and only if f 

attains its minimal value T, which happens if and only if f3 is in the space spanned 

by R. This is the first condition needed to give the population PLS model, the 

second one (span(:ER) = span(R)) can be argued for qualitatively by looking at the 

reduction in f from step to step as k increases. A detailed discussion is given in 

Helland (2000a), where it is shown that under an extra technical condition PLSR 
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gives the best model reduction from step to step. The technical condition seems to 

be unavoidable here. 

The approach of Helland (2000c) is completely different. The point of departure 

is: Nearly all known regression methods are equivariant (i.e., the estimated regression 

vector transforms in the same way as the parameter vector) under rotations in the 

x-space. Thus this group of rotations seems to be of some significance when studying 

regression methods. 

As a first step, the orbits of this group in the parameter space was determined: 

The set of parameter values g00 , where ()0 is some fixed parameter value (in this 

case a vector of parameters), and where g runs through the elements of the rotation 

group. It is known from theory that on each orbit one can in principle find a unique 

optimal estimator; this was given as a rather complicated multiple integral for the 

regression case in Helland (2000c). The parameters that are left to estimate, are 

then the indices of the orbits; all sensible model reductions must also be done on 

these parameters. 

For the rotation group in the regression problem, the orbit indices turn out to be 

coupled in a natural way to the eigenspaces of :E with different eigenvalues Vj. Going 

closer into this approach, turns out to give a very satisfying solution from a PLS 

modelling point of view: The best regression estimator, given the orbit, as explained 

above, turns out not to depend upon the whole orbit index. It may depend upon 

the residual variance r 2 , on the number m of relevant components which we defined 

from a population model point of view earlier, and on some symmetric function of 

the parameters(>.j, /"j); j = 1, ... , m, where /"j is the norm of the projection of the 

regression vector upon the eigenspace corresponding to Aj. 
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This means that the simplest and most obvious solution of the model reduction 

problem is just to say that the number of eigenspaces with ')'j =f 0 should be specified 

to some fixed number m. This specification leads directly to the population PLS 

model with m relevant components, now apparently motivated in a purely theoretical 

setting. A similar solution can be devised for the PLS discriminant analysis model. 

Thus it seems natural to accept the PLS population model. The remaining 

theoretical problem is to find the best possible estimator of the parameters under 

the model with m relevant components. The maximum likelihood estimator of the 

model was discussed in Helland (1992). This turns out to be rather cumbersome to 

calculate, and more seriously, performs poorly in simulations (Almoy, 1996). The 

reason for this is probably straightforward: Maximum likelihood is a very good 

general procedure when the number of observations in a model is large compared to 

the number of parameters. For the population PLS model, even though the number 

of parameters has been slightly reduced for better prediction performance, the total 

number of parameters is still large, so a very large number of observations is required 

for maximum likelihood to perform well. 

A more promising approach seems to be to use invariance as above, which may 

be shown to lead to a proven optimal estimator of a large part of the parameter 

space, namely for each fixed orbit. Several problems need to be solved before this 

approach can be made practical, however. The most serious problem is probably 

to find an efficient way to compute the multiple integral mentioned above; another 

problem is to find good estimates for the orbitparameters (().i, 'Yi); i = 1, ... , m). 

Most people will of course stick to the ordinary sample PLS algorithm, and regard 

the search for better estimators as rather academical. The sample PLS method is 
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definitely known to be suboptimal, however, and perhaps more seriously: Very little 

seems to be known in the context of PLSR about the ability of cross validation as a 

procedure to find the best number of components. A possible side result if one was 

able to find a workable estimation procedure based on statistical theory, might be 

that one could replace cross validation with some simple test procedure with known 

properties. Again, however, it is not clear that any workable solution in this direction 

can be found. 

9 Discussion. 

In general, it is clear to me that the ordinary tool of statisticians: probability models 

indexed by unknown parameters, has turned out to be very useful in a large number of 

applications. At present I see no way in which concepts like soft modelling can replace 

this tool fully or partly, even though developments using such loose concepts might 

indeed lead to useful methods. One problem is that without a precise modelling 

concept, it is very difficult to make assessments of the different methods. Thus in 

my view the only consistent way to proceed in the long run will be to try to connect 

such methods to statistical model of the ordinary kind. 

However, I do feel that the statistician's tool may have to be supplemented in 

various directions. One example of an activity which falls outside the ordinary 

theoretical statistical paradigm, is model reduction, which has been done informally 

for a long time by applied statisticians, but for which no general theory exists. The 

population model for PLSR may provide one particular case which may give us a 

clue to such a general theory. Other possible clues exist, for instance symmetry, 
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which can be explored systematically by using group theory; a survey of this area 

from the point of view of theoretical statistics has recently been given in Helland 

(2000b). 

As I see it, it is essentially important for the development of theoretical statis­

tics that one tries to keep in touch with various applications, and also with other 

groups working with inference and stochastic modelling, like financial analysts, geo­

physicists, control engineers, quantum physicists and chemometricians. It is also of 

course a hope that these groups may, at least to some extent, benefit from contact 

with statisticians. Some of these inference groups have other traditions and may be 

partly speak other languages than ours. So translation is an important task. To put 

it simply: The purpose of science, also methodological science, is to seek the truth. 

And when you look for something, it is often wise to look several places. 

One of my hopes for the future is that more scientists with different background, 

statisticians and non-statisticians, will engage in interdisciplinary work on method­

ological questions. This is a work that takes time and efforts, but there is very much 

which remains to be done. Setting it all in a wider context, and perhaps exagerating 

a little, this is a kind of activity which may feel extra meaningful in the world as we 

know it, where cultural antagonisms are the sources of some of our most serious and 

devestating problems. 

The ultimate goal of an activity of this kind should perhaps not primarily be 

compromises between different schools, but where possible something much more 

ambitious, namely syntheses betwBen various ways of thinking. Such goals must by 

necessity take long time to reach, and it requires researchers who during the pro­

cess are able to understand the set of explicit and implicit values of all scientific 
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communities involved. In the meantime, the concept of complementarity, inherited 

from quantum theory, may perhaps have something to offer in this setting: It may 

make sense sometimes to look at one and the same problem from several different 

angles, even if these different viewpoints are not at the outset mutually consistent. 

Typically, however, the inconsistency may be due to the following: Each point of 

view is necessarily connected to some simplification, but we can often imagine that 

different simplifications of the same basic paradigm are used for the different view­

points. Thus model reduction - or something related - may seem to be the issue 

again. 
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