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ABSTRACT. A family of random probabilities is defined and studied. This family 

contains the Dirichlet process as a special case, corresponding to an inner point in 

the appropriate parameter space. The extension makes it possible to have.random 

means with larger or smaller skewnesses as compared to skewnesses under the 

Dirichlet prior, and also in other ways amounts to additional modelling flexibility. 

The usefulness of such random probabilities for use in nonparametric Bayesian 

statistics is discussed. The posterior distribution is complicated, but inference can 

nevertheless be carried out via simulation, and some exact formulae are derived 

for the case of random means. The class of nonparametric priors provides an 

instructive example where the speed with which the posterior forgets its prior 

with increasing data sample size depends on special aspects of the prior, which 

is a different situation from that of parametric inference. 

KEY WORDS: consistency, Dirichlet process, jump sizes, non parametric Bayes, 

random means, speed of memory loss, stochastic equation 

1. Introduction and summary 

The Dirichlet process, introduced in Ferguson (1973, 1974), continues to be a cornerstone 

of nonparametric Bayesian statistics, where it may be used as a prior for an unknown 

probability distribution for data. Various generalisations have been proposed and inves­

tigated in the literature, making the Dirichlet a special favourite case of P6lya trees, of 

Beta processes, of neutral to the right and of tailfree processes and of Dirichlet mixtures; 

see Walker, Damien, Laud and Smith (1998) and Hjort (2001) for recent overviews. The 

purpose of this article is to provide yet another generalisation of the Dirichlet process and 

to study some of its properties. 

Write P rv Dir(b, Po) to signify that P is a Dirichlet process with parameters (b, Po) on 

some sample space n, where b is positive and Po a probability distribution; in particular, 

for each set A, the random probability P(A) has a Beta distribution with parameters 

(bP0 (A), b{1 - P0 (A)} ). For a function g of interest, consider the random mean () = 

E{g(X) I P} = J g dP. Its moments are most conveniently given in terms of a variable 

Y = g( e) with e being drawn from Po. Then 

EO= 80 , Var () = 1 : b E0 (Y -80 ) 2 and E(0-80 ) 3 = (1 + b)~2 +b) Eo(Y -8o) 3 , (1.1) 

where 80 = E0 Y; here 'Eo' signifies expectations with respect to the base distribution 

Q0 = P0g- 1 for Y. The two first results are in Ferguson (1973) while the third may be 
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proved using similar arguments; in Section 3 below we actually give a method for finding 

the full moment sequence. For g the indicator function of a set A, ( 1.1) specialises to 

EP(A) = p0 , Var P(A) = Po(1- Po) 
1+b 

and E{P(A) _ } 3 = 2po(1- Po)(1- 2po) 
Po (1+b)(2+b) ' 

where p0 = P0 (A), agreeing by necessity with moment calculations from the Beta distri­

bution (bp0 , b- bp0 ). These equations make clear that there is a good amount of modelling 

flexibility with the Dirichlet prior, as one may centre the random P at any chosen prior 

mean distribution Po and attune b to a desired level of variability. One is then stuck with 

the consequences, however, regarding all further aspects of the prior, such as the implied 

skewnesses of random probabilities and of random means. 

The generalised class of nonparametric priors to be worked with below makes it pos­

sible to adjust to further aspects of prior knowledge, for example regarding the skewnesses 

of random means. Let B 1 , B 2 , ••. be independent from a suitable distribution on (0, 1 ), 

and define random probabilities /1 = B1, /2 = fhB2, /3 = B1B2B3 and so on, where 

Bi = 1- Bi. Here 1- "2":/j=1 /i = B1 ···En, making it easy to show that the /jS sum to 1 

with probability 1. This allows us the possibility of defining a random probability 

= 
p = L /jo(ej), with independently drawn ejs from Po. 

j=1 

(1.2) 

Here o(e) indicates the measure giving full mass 1 to location e. In other words, P(A) for 

a set A can be represented as a random sum of random probabilities l:ei EA /j· As demon­

strated in Sethuraman and Tiwari (1982), the Dirichlet process can also be represented in 

such a form, corresponding to the particular case where the distribution for Bj is chosen 

as the Beta(1, b); see also Sethuraman (1994). 

The prior process given in (1.2) is described by two distributions, the prior mean Po 
and the distribution H on (0, 1) governing the Bjs. Below some properties of this general 

prior, say GD(H; P0 ), are investigated. An attractive class of priors emerges by allowing 

Bj the Beta(a,b) distribution. We write P ,...._, GD(a,b,P0 ) to indicate this particular 

extension of the Dirichlet, which corresponds to having a = 1. It is important to note that 

the Dirichlet becomes an 'inner point' in the enlarged class, in contrast to what is the case 

for some other proposals, where the Dirichlet is at 'a corner' of the underlying parameter 

space; see Hjort and Ongaro (2001) for some constructions of that type. 

In Section 2 we demonstrate that the prior (1.2) has large support in the space of 

probability measures on the sample space, indicating that these priors are genuinely non­

parametric. Section 3 deals with Markov chain Monte Carlo simulation methods for P 

and for random means thereof, and uses stochastic identities to derive formulae for the full 

moment sequence of such random means. This is used in Section 4 to show that the added 

flexibility afforded by the GD( a, b, Po) class, and a fortiori the more general GD( H, Po) 
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class, indeed allows skewnesses a larger range than that dictated by the Dirichlet. In Sec­

tion 5 the posterior mean estimator for P is exhibited, leading also to explicit expressions 

for Bayes estimators of mean parameters. These are convex combinations of prior means 

and sample averages. This is supplemented in Section 6 with posterior variance formulae, 

which are used in Section 7 to show that not only the posterior mean estimator but also the 

posterior distribution as such becomes consistent, in the sense of being able to recapture 

any true distribution underlying the data, as the sample size increases. Interestingly we 

find that the speed with which this convergence takes place depends on aspects of the prior 

process; in particular, this speed is sometimes faster and sometimes slower than the rate 

O(n-1 ) found for all models with a finite number of parameters. The posterior process 

itself is somewhat complicated. It is exhibited in Section 8. Then in Section 9 some results 

for distributions of random means are given before we offer a list of concluding remarks in 

Section 10. 

2. Large supports 

In parametric Bayesian statistics a prior is in effect placed on some set of densities, say 

on Mo = {fa(·): o: E R}, where R is a finite-dimensional parameter set indexing the fa 

densities on the sample space n. But this set is a thin one in the space M of all distributions 

on n, topologically speaking; natural neighbourhoods around given distributions are given 

zero prior probability. The situation is different for genuinely nonparametric priors, as 

demonstrated for example by Ferguson (1973) for the Dirichlet process prior. We show 

here that the generalised priors (1.2) continue to have such large supports in the space 

M. The support is the set of probability distributions Q such that every neighbourhood 

around it has positive probability. 

In this section we take the distribution H of Bjs to have full support [0, 1]. The key 

observation is that if only Po(A) > 0, then the possible outcomes of P(A) = I:~jEA /j fill 

out all of ( 0, 1). More generally, if A1, ... , Ak are disjoint sets with positive Po probability 

and union probability less than 1, then the distribution of ( P( A1), ... , P( Ak)) has a density 

being positive on the k-simplex of (p1 , . .. , Pk) with positive components and sum less 

than 1. 

2.1. SUPPORT UNDER STRONG CONVERGENCE. Strong or set-wise convergence Qn--+ 

Q, for probability measures on n, means that Qn(A) --+ Q(A) for all sets A. A basis for 

neighbourhoods around a given Q is the class of 

U = U ( Q; A1 , ... , Am, c1 , ... , c m) = { Q': I Q' (A j) - Q (A j) I < c j for j = 1, ... , m}, ( 2.1) 

where m is any integer, the Ajs are measurable subsets, and the EjS positive. Here 

supp{GD(H, Po)}= {Q: Q <<Po}, (2.2) 

the set of measures absolutely continuous with respect to P0 . To see this, let Q < < P0 . It 

suffices to show that U has positive probability when the Ajs form a measurable partition. 
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If Po(Aj) = 0 then Q(Aj) = 0 and P(Aj) = 0 too. Hence U has positive probability 

if U' has, where U' = {Q':IQ'(Aj)- Q(Aj)l < Ej for j = i1 , ... ,ik}, where these are 
the indexes for which P0 (Aj) > 0. But it follows from the comment made above that 

GD(H, P0 ) gives positive probability to this event. Hence Q is in the support. If on the 

other hand Q is such that Q(A) > 0 but P0 (A) = 0 for some A. Then P(A) = 0 a.s., and 

{P: IP(A)- Q(A)I < !Q(A)} does not have positive probability. 

2.2. SUPPORT UNDER WEAK CONVERGENCE. Assume now that the sample space 

has a metric and study the topology determined by weak convergence, where Qn --+ Q 

means convergence in distribution. A basis for neighbourhoods under this topology is the 

class of (2.1) type sets, but with the restriction that the Aj sets are Q-continuous, that is, 

Q( 8A1) = 0, where 8A1 is the boundary set of Aj. Here 

supp{GD(H,Po)} = {Q:supp(Q) C supp(P0 )}. (2.3) 

Let Q have a support contained in the support of P0 . In general P0 (A) = 0 does not imply 

Q(A) = 0, but this is seen to hold when the set A is Q-continuous. Hence the arguments 

used to prove (2.2) can be used with small modifications to prove (2.3). 

3. Stochastic equations, MCMC and random means 

In this section a fruitful stochastic equation is exhibited which characterises the GD( H, Po) 
prior process. This is used to give a Markov chain Monte Carlo method for simulating 

realisations of the processes and to derive results about random means. If one only needs 

simulated realisations for one or more random means a simpler Monte Carlo Markov chain 

suffices. 

3.1. STOCHASTIC EQUATIONS AND MCMC SIMULATION. Let P have the prior given 

in (1.2), with a general distribution H for the Bjs. Then 

P = B1o(6) + B1Bzo(6) + B1BzB3o(6) + · · · 
= B1o(6) + B1 {Bzo(6) + BzB3o(6) + BzB3B4o(e4) + · · ·} 
= B1a(6) + B1P', 

where P' is constructed in the very same manner P. Letting '=d' mean equality in distri­

bution there is accordingly a stochastic equation 

P =d Bo(e) + BP, (3.1) 

where on the right hand side B, e, P are independent, with B rv H and e rv P0 . One 

may show that this identity fully characterises the distribution of P. Applying (3.1) to 

a random mean functional () = J g dP one finds that this variable, which may also be 

expressed as 2..:}:1 {jg(ej), satisfies the stochastic equation 

() =d BY+ EO, where Y = g(e) rv P0g- 1 and B rv H. (3.2) 
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A Markov chain P1 , P2 , ... may be constructed in the space of probability measures 

on the sample space via 

Pn = Bno(en) + BnPn-1, 

where (Bn, en) are independent copies of (B, e). With arguments parallelling those in 

Feigin and Tweedie (1989) the equilibrium distribution for the chain may be shown to 

be exactly that of our prior process (1.2). For a random mean functional, the Markov 

chain scheme becomes Bn = BnYn + BnBn-1, with the distribution of 8 under (1.2) as 

its equilibrium. This is akin to similar simulation strategies for means of the Dirichlet 

process, worked with in Feigin and Tweedie (1989), Guglielmi and Tweedie (2000) and 

Guglielmi, Holmes and Walker (2001). See also Paulsen and Hove (1999) for precise results 

about speed of convergence and quality of approximation to the real distribution with the 

empirical one observed from simulations. 

Note that when interest lies in one or more random means the simpler simulation 

scheme suffices, as there is no need for the full process P. We also point out that the 

moment-correcting methods used in Hjort and Ongaro (2000) apply here too and amount 

to ways of easily improving the simulation-based approximations of Paulsen and Hove 

(1999), Guglielmi and Tweedie (2000) and Guglielmi, Holmes and Walker (2001). The key 

is that the full moment sequence may be uncovered, as we demonstrate next. 

3.2. FINDING THE MOMENTS. A recursive method of finding all moments for such a 

8, in terms of moments for the null distribution Q0 for Y = g(e), emerges by writing 

which implies 

p-1 

E(B- x)P = 1 ~ EBp-j jj) E0 (Y- x)p-j E(B- x)( 
1-EBP ~ 

j=O 

(3.3) 

This is valid for all p 2 1 for which EIYIP is finite, and for all x. One finds in particular 

EB = Bo = EoY and 

EB2 

Var (} = 2 0"6, 
1-EB 

EB3 

E(B- Bo) 3 = 1 _ EB3 Eo(Y- Bo) 3 , (3.4) 

4 1 { 4 4 2 -2 EB2 4} E( 8 - 80 ) = 1 _ EB4 EB Eo (Y - Bo) + 6 EB B 1 _ EB2 O" 0 , 

in terms of 0"5 = E0 (Y- 80 ) 2 . Further formulae for centralised moments follow from (3.3), 

expressed in terms of 

(3.5) 
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With g the indicator of a set A, the () becomes the random probability P(A), for which 

we therefore have found EP(A) = Po(A) =Po and 

M2o 
Var P(A) = 1 M Po(1- Po) 

- 0,2 

{ } 3 M3 o 
and E P(A)- Po = M Po(1- Po)(1 - 2po). 

1- 0 3 
' 

4. Skewness factors and added flexibility 

In this section the increased flexibility of the nonparametric prior class is discussed in 

relation to the skewness of random means. 

4.1. SKEWNESSES UNDER THE GD(a,b,P0 ) PRIOR. When His the Beta(a,b), 

M· . = EBi[Jj = r(a +b) r(a + i)r(b + j) = a[iJb[j] . 
z,J r(a)r(b) r(a+b+i+j) (a+b)[z+J] 

for integers i,j, where x[i] = x(x + 1) · · · (x + i- 1) = r(x + i)lr(x). This may be used to 

derive moment formulae under the GD(a, b, Po) prior. From (3.4) one finds 

M2,o 2 a+ 1 2 a6 
Var () = a0 = a - --

1 - Mo 2 a + 2b + 1 ° - 1 + b* ' 
' 

. b* 2b With = --, 
1+a 

( 4.1) 

and similarly Var P(A) = P0 (A){1- P0 (A)}I(1 + b*). Furthermore, 

E(() _ () )3 = a( a+ 1)(a + 2)1{(a + b)(a + b + 1)(a + b + 2)} E (Y _ () )3 
0 1 - b( b + 1) ( b + 2) I {(a + b) (a + b + 1) (a + b + 2)} 0 0 

(a+1)(a+2) E(Y-8)3 
a2 + 3a(b + 1) + 3b2 + 6b + 2 ° 0 · 

The Dirichlet case is a= 1 for which the skewness factor is 2l{(b + 1)(b + 2)}; cf. (1.1). 
Assume a Dir( b0 , Po) has been chosen, and consider using a more general G D (a, b, Po) 

instead; using the same base measure Po automatically ensures that the expected values 

of any random mean are being matched for the two priors. We may also precisely match 

all pairs of variances of random means through putting 2b I ( 1 +a) = b0 , compare ( 4.1) and 

(1.1). This amounts to a= 2blbo -1 = 2x-1 as a function of x = blbo; notice that x > ~' 
or b > ~b0 , is required. We may then study the skewness of () under the Dirichlet versus 

its value under the GD( a, b, Po). The ratio of skewnesses becomes 

(a+1)(a+2) / 2 
p(x) = a2 -1 + 3a(b + 1) + 3(b + 1)2 (bo + 1)(bo + 2) 

2x(2x + 1) (bo + 1)(bo + 2) 
(2x- 1)2- 1 + 3(2x- 1)(b0 x + 1) + 3(b0 x + 1)2 2 

This is a decreasing function, starting for b = ~bo with ratio value Pmax and ending for 

large b with ratio value Pmin, say, where 

(bo + 1)(b0 + 2) 
Pmax = 2 + 3bo + (3l4)b6 

and 2(bo + 1)(bo + 2) 
Pmin = 4 + 6bo + 3b6 · 
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This interval contains the value 1 as an inner point, corresponding to b = b0 and a = 1, 

the Dirichlet case, and otherwise portrays the added flexibility through the additional a 

parameter. With b < b0 and accompanying a= 2b/bo- 1, the GD(a,b,Po) prior leads 

to skewnesses bigger in absolute size for all random means than with the correspondingly 

matched Dirichlet prior; similarly, with b > b0 the skewnesses are reduced in absolute size. 

The interval of skewness ratios stretches from 2/3 to 4/3 when b0 becomes large. 

4.2. MoRE FLEXIBLE KURTOSIS. A similar exercise is to compute E(tl- 610 )4, first 

under the Dirichlet prior (b0 , P0 ), and compare it with the value obtained under the 

GD(a, b, Po) process, having fixed 2b/(1 +a) = b0 to have the same mean and same vari­

ance. This gives a suitable kurtosis ratio curve K(x)/K(1) to study, where K(x) is E(6l-6lo)4 

computed with a = 2x- 1 and b = b0 x, for x > !· This ratio curve depends on b0 and 

the underlying population kurtosis Eo (Y - Oo) / o-6 - 3. Carrying out this exercise one finds 

that the kurtosis is larger than under the Dirichlet for a < 1 and smaller than under the 

Dirichlet for a > 1. The ratio interval spans for each bo a reasonable interval containing 1. 

5. Marginal distributions and posterior means 

Conditionally on the random P, let XI, ... ,Xn be independently sampled from Pin the 

sample space n. In this section we consider the marginal distribution of data and go on 

to a formula for the predictive distribution, that is, the posterior mean of P. 

5.1. MARGINAL DISTRIBUTIONS. The simultaneous distribution of P and the random 

sample is given by 

Pr{P E C,XI E AI, ... ,Xn E An}= EI{P E C}P(AI) · · · P(An), (5.1) 

required to hold for measurable subsets C of the space of probability measures on the space 

and for all measurable subsets Ai; see e.g. Ferguson (1973). Here I denotes an indicator 

function. In particular, 

For n = 1 one finds 

Pr{Xi E A}= EP(A) = Po(A), 

adding significance to the interpretation of Po as the marginal distribution of a single 

observation. For n = 2, 

EP(A)P(B) = E 2:: /'j/ki {ej E A, ek E B} 
j,k 

= L Ef'] Po(A n B)+ 2 L Ef'j/'k Po(A)Po(B) 
j j<k 

= (1- a2)Po(A n B)+ a2Po(A)Po(B), 

where a2 = Pr{X2 "1- XI}= 1- M2,o/(1- Mo,2) = 2MI,I/(1- Mo,2)· 
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The following identity will be useful. 

LEMMA. Let P come from the GD(H, Po) prior (1.2) and let A1, ... , An be disjoint 

sets. Then 
n-l 

II M1 · 
EP(Al) · · · P(An) = n! u'1 Po(Al) · · · Po(An) 

j=l 1 - O,j+l 
(5.2) 

for all n 2: 2, in terms of the product moments Mi,j of (3.5). 

PROOF. The (1.2) definition leads to the formula 

EP(At) .. · P(An) ~ Po(Al) .. · Po(An) n! L Ef'i 1 .. '!'in, 
i1<···<in 

which indeed may be worked further by careful cataloguing of Bk and fh factors entering 

the product of /'js; one finds for example that EP(A1)P(A2 ) = a 2 P0 (At)P0 (A2 ) with the 

a2 exhibited above. It is easier, however, to use the simultaneous stochastic equations 

P(Ai) =dB~+ BP(Ai) fori = 1, ... , n, 

where ~ = I{~ E Ai} for a ~ drawn from Po, independently of B rv H. That these 

equations hold simultaneously follows from (3.1). All products of two or more Yjs vanish 

since the Ajs are disjoint. This simplifies the structure of 

n n n n 

i=l i=l i=l i=l 

writing ()(i) for the product of those n- 1 terms P(Aj) for which j-/=- i. Hence 

This may now be used to demonstrate (5.2) by induction on n, noting that the formula 

was seen to hold for n = 2 above. • 

5.2. THE POSTERIOR MEAN. For the next development, define 

(5.3) 

We take the sample space to be a metric space, for example a subset of any Euclidean 

space, where we condition on the information in a data point Xi = Xi via conditioning 

on the information Xi E S(xi, c;), say, an c;-neighbourhood around Xi, and then letting 

c; --+ 0. For an observed sample, consider the predictive distribution P given by P(A) = 

E{ P (A) I data}; this is also the Bayes estimator of P under squared error loss. 
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PROPOSITION. Let P follow the prior process GD(H,P0 ) with an atom-free prior 

mean measure Po, and assume data points XI = XI, ... , Xn = Xn have been observed, and 

that these are distinct. Then the Bayes estimator of P can be represented as 

(5.4) 

a convex combination of prior mean and the empirical distribution. 

PROOF. From (5.1) one may show that 

E¢(P)P(AI) · · · P(An) 
E{ ¢(P) I XI E AI, ... , Xn E An}= EP(AI) ... P(An) 

for all bounded measurable functions ¢, provided the Ais have positive Po measure. In 

particular, therefore, 

EP(A)P(AI) · · · P(An) 
E{P(A) I XI E AI, ... , Xn E An}= EP(AI) ... P(An) . 

Take first a set A not meeting the data, which means that it is outside the union of data 

windows Ai = S (Xi, c:) for small enough c:. Then the above quotient, by the use of the 

lemma, reduces to 

E{P(A) I infoe} = (n + 1){MI,n/(1- Mo,n+I)} Po(A), 

where infoe signifies the information Xi E S( Xi, c:) for i = 1, ... , n. Since the answer is 

independent of c:, the probability measure P must be equal to wnPo on n- {XI, ... , xn}, 
that is, outside the data values. 

Being a probability measure it must distribute its remaining mass 1 - Wn on the n 

data values XI, ... , Xn. With these being distinct there must be full symmetry, and P must 

assign value (1- wn)/n to each of these. This proves assertion (5.4). • 

5.3. NONPARAMETRIC BAYES ESTIMATION OF MEANS. Consider Bayesian estimation 

of a random mean() = J g dP. Under squared error loss and with the GD(H, Po) prior, 

for which the prior guess is ()0 = J g dP0 , the estimator is 

B = E(() I data)= J g dP = WnBo + (1- Wn)9n 
n 

with 9n = n-I Lg(xi)· 
i=I 

(5.5) 

This follows from (5.4), again under the assumption on there being no ties in data. With 

a little more formality, this concerns 

E(Bidata) = !M B(P)P(dP !data), 
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where P(·l data) is the posterior distribution on the space M of probability measures on 

the sample space, and an ingredient is existence and measurability of() = B(P). A more 

careful argument, therefore, starts with g equal to a simple function, a linear combination 

of indicator functions. For such a g the result follows directly from (5.4). Then pass to the 

limit via monotone convergence to make formula (5.5) valid for all g for which J lgl dPo is 

finite. Measurability comes from it being a limit of linear combinations of P(A) variables, 

and existence is guaranteed under the minimal condition J log(1 + lgl) dP0 , see Hjort and 

Ongaro (2000). 

As a special case, when an unknown distribution function F of one-dimensional data 

is to be estimated, the Bayes estimator takes the form F(t) = wnFo(t) + (1 - wn)Fn(t), 
where Fo is the distribution function of Po and Fn is the empirical distribution function. 

REMARK. The Dirichlet case corresponds to a Beta(1, b) distribution for the Bjs, and 

a little algebra on (5.3) shows that for this case Wn = bj(b + n). This is a well-known 

formula for the weight a posterior Dirichlet distribution still attaches to its prior, also 

lending strength to the 'prior sample size' interpretation of the b parameter. More nuances 

are at play for the general GD(H, Po) case, however, as shown in section 7. • 

6. Posterior variance 

The aim of the following efforts is to supplement the posterior mean result above with 

an explicit formula for the posterior variance of P, and more generally for the posterior 

variance of a J g dP parameter. This makes construction of credibility intervals possible, 

and is used to assess full posterior consistency in the next section. 

6.1. PosTERIOR VARIANCE OF P(A). To do the posterior mean calculation, formula 

(5.2) sufficed. To calculate posterior variances requires a little list of further formulae. Let 

AI, ... , An be disjoint sets, and let ()i = P( Ai) with prior mean Po ( Ai) = Pi. We show 

later that the various means-of-products take the following form: 

E()I Bz · · · Bn = anPI · · · Pn, 

EBi 82 · · · Bn = bnPI · · · Pn + CnPiPz · · · Pn, 

EBr Bz 83 · · · Bn = dnPIP2P3 · · · Pn + enPiPzP3 · · · Pn + f nP~P2P3 · · · Pn, 

EBiBi · · · Bn = gnPIP2 · · · Pn +hnPIPz(PI + pz) · · · Pn + inPiP~ · · · Pn· 

Here an, ... , in are sequences of constants, to be returned to below. 

(6.1) 

Take a prior mean distribution Po free of atoms, and consider a set A not meeting 

the data, which we again take to be n distinct values XI, •.. , x n. Then, with notation as 

in Section 5.2 and with Po = Po(A), 

E{p( A) 
1

. £ } = EP(A)P(AI) · · · P(An) 
mOe EP(AI) · · · P(An) 

an+IPOPI ... Pn an+I 
= --po, 

anPI · · · Pn an 
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while 

E{P(A ) 1· f, } = EP(Ak)P(AI) · · · P(An) = bn + CnPk = bn O( ) 
k mOe EP(AI) · · · P(An) an an + c ' 

showing that E[P{xk} I data) = bn/an. Ingredients required for second moment calcula­
tions include 

E{P(A)2I data}= bn+IPOPI · · · Pn + Cn+IP6PI · · · Pn = bn+I Po+ Cn+I p6, 
. anPI ... Pn an an 

E{P(Ak)21 infoe} = EP(Ak): Ili~k P(Ai) = dn + enPk + fnP~ = dn + O(c), 
E Ili=l P(Ai) an an 

E{P(A)P(Ak) I infoe} = bn+IPo + Cn+IPOPk = bn+I Po+ O(c). 
an an 

These and similar efforts entail 

E[P{xk}2 1 data)= dn/an and E[P{xk}P{xz} I data)= gn/an fork #l, 
while E[P{xk}P(A) I data)= (bn+I/an)Po· 

Let now A be any set, containing say j of the data values, and split it into An data = 

{xiu ... , Xii} and Ao = A- data. Then P(A) = P{xiu ... , XiJ + P(Ao) and, with 

Po= Po(A), 

E{P(A) I data}= (an+I/an)Po + jbn/an = WnPo + (1- Wn)(j /n), (6.2) 

agreeing of course with (5.4). Next, collecting together the various contributions to P(A) 2 , 

{ (A) 2 I d } . dn .( . ) gn bn+I Cn+I 2 . bn+I (6.3) E P at a = J- + J J - 1 - + --po + --p0 + 2J --po. 
an an an an an 

We also record a formula for the cross-moment for two disjoint sets A and B, catching 

respectively j and k data points: 

{ ( ) ( ) I ·} . gn . bn+I ( ) bn+l ( ) an+2 ( ) ( ) EPA P B data =Jk- +J--Po B +k--Po A +--Po A Po B. 
an an an an 

6.2. POSTERIOR VARIANCE OF A RANDOM MEAN. We have found formulae for 

posterior variance of a P(A) = J IA dP. More generally we need the posterior variance 

of a random mean 8 = J g dP, for which the posterior mean is given in (5.5). Start with 

a simple g = 2:::}:1 YjlAi with disjoint sets Aj, so that 8 = I:j=1 yjP(Aj)· With a little 
work, 
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which in terms of On = J g dPn and Oo = J g dPo simplifies to 

Used here is the fact that Cn = an+b proved below. 

That this gives a formula E(02 I data)- {E(O I data)P for the posterior variance also 

for the case of any random J g dP, provided only that J g2 dP0 is finite, follows by passing 

to the limit via simple functions and multiple uses of the monotone convergence theorem. 

6.3. FORMULAE FOR THE CONSTANTS. It remains to give formulae for the an, ... , in 

sequences of (6.1). We have already found that an = n! 8n-1 · · · 81, in terms of 8j = 
M1,j/(1- Mo,j+d· For (bn, en), write Bi =d B 2Y1 + 2BBY1 + B2Bi and ()j =d BYj + B()j 
for j = 2, ... , n, as in the arguments used to prove (5.2) above. Writing out the product 

Oi02 ···On in a distributional identity and discarding all terms involving two or more Yjs 

gives an expression for its mean, which after simplification delivers 

Finding EOi explicitly gives start values b1 = M2,o/(1- Mo,2) and c1 = 2M1,1/(1- Mo,2) 

for these recursive relations. Some investigations lead to bn = (n- 1)! 8n-1 · · · 81(1- wn) 

and to Cn = (n + 1)! 8n · · · <h = an+1· Working similarly with Of02 ···On gives 

with start values 

determined from EOf. Finally, studying Oi0~()3 ···On leads to 

1 
9n = M. {2M2,nbn-1 + (n- 2)M1,n+19n-d, 

1- O,n+2 
1 

M. {M2,nCn-1 + 2M1,n+1bn + (n- 2)M1,n+1hn-d, 
1- O,n+2 

1 {4M1,n+1Cn + (n- 2)M1,n+1in-d 
1- Mo,n+2 
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for n 2: 2, where 

One may easily compute the dn, ... , in constants via these recursive schemes. 

To learn more about these sequences, observe that formula (6.3) implies 

(6.5) 

simply by letting A be the full sample space. Other helpful formulae for the constants 

involved in ( 6.1) emerge as follows. Let A 1 , ... , An form a measurable partition and 

write Oi = P(Ai)· Then equating E(l:~=1 Oi)01 ···On with E01 ···On leads to nbn + 
Cn = an, which with nbn = an(1 - wn) gives Cn = an+1 (again). Similarly, equating 

E(l:~= 1 Oi) 2 01 ···On with E01 ···On gives 

(6.6) 

Since this is an identity valid for all PiS summing to 1, and since bi:;t:j PiPi = 1- 2:~= 1 p:, 
one must have fn = in for all n 2: 2. Helped by this, one may show by induction, using 

the recursive relations, that 

Combining (6.5) with (6.6) it is also clear that (2n + 1)bn+I/an + Cn+dan = en/an+ 

fn/an + 2(n- 1)hn/an. 
Let us work out what happens to the iteratively defined sequence dn. It is helpful to 

write 

with (n -1)! Yn-1 = M3,n-1(1- Mo,n+z)- 1an-1 for n 2: 1. Some minutes of investigation 

yield dn = (n -1)! l:j==-g Yj0j+3 ... On+1· Going back to Yn, one sees that Yi = EjOj ... 01, 

where Ej = M3,j/(1- Mo,j+z). Hence dn = (n -1)! On+1 · · · 01 l:j==-g Ejj(oj+10j+z), which 

with an = n! On-1 · · · 01 leads to 

ndn ~ , , ~ Ej-1 
- Un+1Un ~ i' i' • 

an . u3·u3"+1 J=1 

We may similarly work out an expression for the 9n sequence. Write 

9n = (n- 2)! Zn-1 + (n- 2)on+29n-1 for n 2: 2, 

13 
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where (n- 2)! Zn-1 = 2M2,n(1 - Mo,2+n)-1 bn-Ii in particular, g2 

expressions for g3 , g4 , ... , and the general pattern is discovered to be 

n-1 

z1. This gives 

gn = (n- 2)! (zn-1 + On+IZn-2 + · · · + On+I · · · 04Z1) = (n- 2)! L On+I · · · Oj+3Zj. 
j=l 

Going back to Zn, which may be expressed as TljOj-1 · · · 01 for 'r/j = 2M2,J+I(l- Wj)/(1-

Mo,Hj), one finds gn = (n- 2)! On+I · · · 01 L:,j:;:{ 'r/j/(ojOJ+IOJ+2)· In conjunction with 

an = n! On-1 · · · 01 this implies 

n-1 
n(n- 1)gn _ , , '"""' 'r/j 

- Un+I Un ~ .r .r r · 
an j=l UjUj+l Uj+2 

It will be seen in the next section that of the parts summing to 1 in (6.5) and (6.6), the 

n(n- 1)gnfan is the dominant one. 

7. Consistency, and how quickly do we forget? 

Assume data X 1 , ... , Xn in reality follow some underlying distribution Ptrue· It is well 

known that the empirical distribution Pn converges to Ptrue with probability 1, even uni­

formly over all subsets, as the data volume increases. A question of importance is whether 

the Bayes estimator P matches this feat, and, more generally, whether the posterior dis­

tribution converges to the measure concentrated in Ptrue· 

For parametric models it is known that Bayes inference agrees for large samples with 

that based on maximum likelihood. A more informative statement is that for Bayes 
~ ~ 

and likelihood estimators OB,n and OL,n based on the n first data points, it holds that 

n 112(ifB,n - OL,n) -+p 0, even when the parametric model used to generate these likeli­

hoods and posteriors is incorrect, under very mild regularity assumptions; see Hjort and 

Pollard (1993). It is furthermore the case that the posterior 'forgets its prior' at a speed 

linear with n, in the sense that aspects of the posterior traceable to the prior has weight 

exactly or approximately equal to b/ (b + n) for a suitable b, which then can be interpreted 

as 'prior sample size'. The very same behaviour is observed for the Dirichlet process prior, 

as shown in Ferguson (1973, 1974). We shall see that the situation can be quite different 

for other members of the GD(H, Po) class. 

7 .1. CONSISTENCY OF THE POSTERIOR MEAN. In what follows take Ptrue to be free 

of atoms on its sample space, making all realisations X 1 ,X2 , ••. a.s. distinct. From (5.4) it 

is clear that P also goes to Ptrue almost surely provided only that Wn --+ 0. Under this key 
~ 

condition P and the nonparametric frequentist estimator Pn agree asymptotically. It turns 

out that indeed Wn --+ 0, but with a speed depending upon aspects of the distribution H 
of the Bjs. 

LEMMA. For any distribution H forB, Wn of (5.3) goes to zero with growing n. 
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PROOF. It suffices to show 

EEn+1 = 11 
(1- st+1 dH(s)--+ 0, 

(n + 1) EBEn= 11 (n + 1)s(1- st dH(s)--+ 0. 

The first follows quickly by dominated convergence, as does actually also the second. The 

point is that the integrand (n + 1)s(1- s)n goes pointwise to zero, and has a maximum 

value bounded in n. Inspection shows that the maximum occurs for s0 = 1/(n + 1) and 

that the resulting maximum value converges to e-1 . Hence there is uniform integrability 

and the claim follows. • 

Consider next the GD( a, b, P0 ) case, for which (3.5) and (5.3) yield 

ab[n] I b[n+1] 
Wn = (n + 1) (a+ b)[n+1] { 1- (a+ b)[n+1]} 

= ( ) ar(b + n) /{ r(a + b + n + 1) - r(b + n + 1)} 
n+ 1 r(b) r(a+b) r(b) 

(7.1) 

n+1 a/{ r(a+b+n+1) 1 } 
= n + b r(b) r(b + n + 1 )r( a+ b) - r(b) . 

This answer generalises the well-known formula Wn = b / ( n +b) valid for the posterior mass 

outside data points for the Dirichlet process. Formula (7.1) gives the precise weight the 

Bayes estimator attaches to outside-of-data information, that is, as caused by the prior. 

The speed with which Wn--+ 0 is different from the traditional O(n-1 ), when a #1, as we 

shall see. 

Since the denominator of (5.3) goes to 1 it suffices for large n to study Un = (n + 

1) EBEn and the speed with which this sequence tends to zero. For the GD( a, b, Po) case, 

r(a+b) r(b+n) 
Un=(n+ 1)a r(b) r(a+b+n+1)' 

and we may use the Stirling approximation, for example in the form of 

logr(x) = (x- ~)log x- x + ~ log(27r) + 1/(12x) + 0(1/x2 ) for large x, 

to assess its size. Some algebra efforts reveal log Un = -a log n + log{ ar( a + b) jr(b)} -

2(a + 1) + O(n-1 ), which means 

Un = n-a{ar(a + b)jr(b)} exp{ -2(a + 1)}{1 + O(n-1 )} when n grows. 

Hence, only for the Dirichlet case a = 1 does the posterior process forget its origin with 

speed O(n-1 ), which is the traditional speed with which memory loss sets in for Bayesian 
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parametric statistics. For a > 1 the prior is forgotten more quickly and for a < 1 more 

slowly than the traditional rate. 

These calculations also lead to 

n 112 {P(A)- Pn(A)} -+p 0 provided a> ~-

Under this condition, inferential statements made by the Bayesian, such as credibility 

intervals, will agree asymptotically with those of the frequentist using the empirical dis~ 

tribution. For smaller values of a, however, the speed with which the posterior is able to 

forget where it came from is really too slow; the predictive distribution is consistent, but 

converges slowly, and credibility intervals will not match frequentist confidence intervals, 

even for large n. 

7.2. CONSISTENCY OF THE POSTERIOR DISTRIBUTION. We wish to find out whether 

the posterior distribution as such is consistent, in the sense that for any small neighbour­

hood around Ptrue, the posterior probability of such a set converges to 1 as n grows. This is 

a stronger statement than merely knowing that the posterior mean is a consistent estimator 

of Ptrue· 

PROPOSITION. Assume X1, X2, ... are independent from some atom-free Ptrue, and 

consider(}= J g dP for an arbitrary g for which g* = J g dPtrue is finite. Then, for almost 

all sample paths, (} I data -+p g*. 

PROOF. We know that the empirical mean 8n = J g dPn goes a.s. to g*, and as 

above it is clear that E( (}I data) -+ g* a.s. in that Wn -+ 0. It will suffice to show that 

E( 82 I data) -+ (g*) 2 a.s.; this implies that the posterior variance goes to zero, and there is 

convergence in probability by the usual Chebyshov inequality argument. 

To this end we work with expression (6.4), and aim to demonstrate that n 2gnfan-+ 1 

while the other terms go to zero. This causes E( 82 I data) to go to (g* )2 for exactly those 

sample paths for which 8n -+ g*. From established formulae for an, bn, Cn we see that the 

third and fourth terms of the right hand side of (6.5) go to zero; this also secures that the 

terms fn/an, en/an and 2(n- 1)hn/an of (6.6) go to zero. It will therefore be enough to 

show that also the first term there goes to zero. For this we use formula (6.7). Note that 

Jj :::::: Jj+I, and one finds Ej ::::; Jj. A constant K can be found such that Jj-I/Jj ::::; K for 

all j. This implies 

which goes to zero since Wn does. • 

Inspection of the details in these calculations show that the speed with which the 

variance goes to zero is 0( Wn). As we have seen, this corresponds to the traditional 

0( 1/ n) variance rate· for the Dirichlet process, whereas the speed may be both slower and 

faster for the more general prior process. 
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8. Bayesian inference and the posterior process 

Let P rv GD( H, Po) and assume data x1, ... , Xn have been observed. This section looks 

into aspects of the posterior process, which turns out to be quite complicated. Only in the 

Dirichlet case, where His the Beta(1, b), does the posterior seem to have an easy structure. 

Bayesian inference can nevertheless be carried out via stochastic simulation. 

8.1. ONE DATA POINT. We may take the view that P of (1.2) is described in terms of 

(B, e), where B is the sequence of Bjs from H, leading in their turn to probability weights 

/j = .Bl ... Bj-lBj, and where e is the sequence of ejs from Po. Let in addition J be 

a random variable in {1,2,3, ... } which conditionally on (B,e) has distribution given by 

these /js, and define X = eJ. Then X given P has distribution P. The task is to pass 

from this simultaneous representation of (P, X) to the conditional process P given X = x. 

When X = eJ = X and J = j' one has ej = x, without further knowledge about 

the other eks. Furthermore, the fact that this happened with probability /j upgrades the 

information about the distributions B1 , ... , Bj, but does not affect the prior information 

about Bk for k > j. Using arguments partly parallelling those in in Sethuraman (1994, 

Section 4), one finds that 

00 

pI {X= x, J = j} rv Px,j = L ~~o(eU, (8.1) 
k=l 

where on the right hand side the { ~~} sequence is formed from a {B~} sequence independent 

of the e~, which are independently drawn from Po with the exception of ej, which is equal 

to the fixed x. Now B~ rv H~ for k = 1, 2, ... , where these H~s are not equal anymore; 

dH£(s) ex: (1- s)dH(s) fork :S j- 1, dH~(s) ex sdH(s) fork= j, while H~ = H for 

k 2:: j + 1. Thus there is a mixture representation of the posterior as 

00 00 

PI {X = x} "' L q(j I x )Px,j, or Pr{ P E C I x} = L q(j I x) Pr{ Px,j E C}, 
j=l j=l 

valid for measurable subsets C of the space of probability measures on the sample space 

(the Borel subsets under the topology of set-wise convergence). It remains only to identify 

q(j I x) = Pr{J = j I X= x} = E{j = Ml~1 M1,0 for j = 1, 2,.... (8.2) 

This is since the information X = x from a single data point does not change the marginal 

distribution J has from the (P, J) model. Notice that in (8.1) there is dependence on x in 

the e~, without overburdening the notation to indicate this. 

8.2. THE POSTERIOR IN THE GENERAL CASE. Conditionally on (B, e), the two 

sequences determining P, let J1 , ... , J n be independent integer variables with distribu­

tion given by the /jS, and define X1 = eJ1 , ... , Xn = eJn. Then, given P, these really 
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form an independent n-sample from P. This provides a simultaneous representation of 

(P,X1, ... ,Xn)· 
Suppose for representational simplicity that the data points x1 , ... , Xn are distinct. 

One may generalise the first result above to 

00 

PI{XI =XJ, ... ,Xn =Xn,JI =Jl?···,Jn =)n} rvPdata,]l, ... ,jn = L1~8(e~), 
k=I 

where the { 1D is formed from a sequence of independent variables { B~} and independently 

ofthe { eD; these are such that ej1' ... 'ejn are fixed at values X}' ... 'Xn' respectively, while 

the remaining e~s are independent from P0 . The upgraded distributions H~ for B~ are 

given by 
dH£(s) =canst. (1- s)Y(k)-l:l.N(k)sl:l.N(k) dH(s), 

in which Y(k) = L:~=l I{ji ~ k} and !:1N(k) = L:~=l I{ji = k}. Hence 

P 1 data rv q(ji, ... , Jn I data)Pdata,]l , ... ,jn · 
]1 , ... ,jn distinct 

It remains to give the posterior distribution of indexes. Say that G has a geometric 

distribution with parameter M if Pr{ G = g} = (1 - M)MU for g = 1, 2, .... 

PROPOSITION. Let there be n distinct data points, and order the random indexes 

J1, ... , Jn as J(I) < · · · < J(n)· Then 

where G1, ... , Gn are independent and geometric with parameters Mo,n, ... , Mo,I, respec­

tively. 

PROOF. Knowledge of data values ej; = Xi does not change the distribution of the 

labels as long as these are distinct. For the ordered labels one therefore finds the distribu­

tion 

ij(j}' ... 'Jn) = n! E/]1 ... lJn I Pr(Dn) 

n! IJoo -Y(k)-l:l.N(k) l:l.N(k) n! IJoo 
= Pr(Dn) E k=I Bk Bk = Pr(Dn) k=I Ml:l.N(k),Y(k)-l:l.N(k) 

for JI < · · · < Jn, where Dn is the event that data points are distinct. The product may 

be expressed as 

Mj1-1 M M]2-j1-I M MJn-1-Jn-2-I M Mjn -jn-1-I M 
o,n l,n-1 o,n-1 l,n-2 · · · 0,2 1,1 0,1 1,0, 

while it is shown in Section 10.2 that Pr(Dn) is equal to the an of formula (5.2). Combining 

these facts one is left with 

(1-M )Mh-1(1-M - )Mh-12-1 ... (1-M )MJn-1-Jn-2-1(1-M )Mjn-Jn-1-I O,n O,n O,n 1 O,n-1 0,2 0,2 0,1 0,1 ' 

which is seen to be equivalent to the claim. • 
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REMARK. The description above is valid for the general GD(H, Po) case, and can 

even be generalised further to the case of different distributions H1, H2 , ... for B1, Bz, . .. 

in the prior. Note that for the particular GD(a, b, Po) family, in which the Dirichlet is the 

a = 1 case, at least the H to H~ updating is easy, in that H~ ,....., Beta( a + f::l.N ( k), b + 
Y(k)- !::l.N(k)). Fork larger than the largest Ji the H~ is the same as the original H. 

For the Dirichlet case the posterior can of course be described in a much simpler way 

than the scheme above. One may deduce from (8.1) and (8.2) that PIx is simply another 

Dirichlet with total measure bP0 + o( x ), via various identities for Beta distributions; see 

Sethuraman (1994, Section 4). 

9. Distribution of random means 

Recently there has been much attention given to studying aspects of the distributions of 

random Dirichlet means; see Diaconis and Kemperman (1996), Regazzini, Guglielmo and 

di Nunno (2000) and Hjort and Ongaro (2000) for discussion and references. Here we look 

at the more general version of this problem, where Pis a generalised Dirichlet process. 

9.1. GENERAL TRANSFORM IDENTITIES. That equation (3.2) characterises the distri­

bution of() uniquely can be seen as in a parallel situation in Hjort and Ongaro (2000); see 

also Lemma 3.3 in Sethuraman (1994). Exhibiting this distribution is however a difficult 

task and can rarely be done in closed form. The list of explicit solutions to this prob­

lem for the Dirichlet case is very short, so a fortiori one cannot expect explicit answers 

for the more general GD(H, P0 ) case. We point out, however, that equation (3.2) trans­

lates into an identity for characteristic or moment generating functions and which can be 

worked with to extract information about the () distribution. Let L( u) = E exp( iu()) and 

Lo(u) = E0 exp(iuY). Via conditioning on (B, Y) and then integrating over Y one finds 

from (3.2) that 

L(u) = 11 
L0 (us)L(u(1- s)) dH(s). (9.1) 

In principle L is determined from knowledge of L 0 . Similarly a convolution-type identity 

can be put up for the density f of() in terms of the density fo for Y under Po. 

An exception admitting a straight answer is when Y is Cauchy. One then sees that 

the Cauchy distribution for () fits the stochastic equation (3.2), and is hence the answer; () 

is Cauchy when Y is. This is valid for any distribution H for the Bjs, as can also be seen 

via ( 9.1), and therefore generalises a classic result for the Dirichlet process. 

9.2. RESULTS FOR NORMAL AND STABLE LAWS. Another situation of interest where 

some progress can be made is the case of a normal base measure. Let W = I:j:1 "'J 
in (1.2); this is a well-defined variable on (0, 1) with a distribution determined via its 

stochastic equation 

W =d B 2 + (1- B) 2W, where B,....., H in (0, 1). (9.2) 
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This follows from (1.2) in the same way as (3.1) was derived. If now Po is standard normal, 

() = L:j:1 1/Yj is for given weights a normal (0, W). This shows that() is a scale-mixture of 

normals, with density of the form J0
1 0'-1 4>(0'-1t)p(O') dO', the p density in question being 

the density of W 112 . This density cannot be written down in closed form, but may be 

arbitrarily well approximated via its moment sequence, which may be found in a simple 

recursive manner; see Hjort and Ongaro (2000) for illustrations for the special Dirichlet 

process case. 

These arguments also work for general stable laws.· For a E (0, 2] and c positive, 

say that Y is stable (a, c) if its characteristic function .is Eexp(iuY) = exp( -calula); 
notice that Yjc then is stable (a, 1). Now take P"' GD(H,P0 ) where Po is stable (a, 1), 
and consider()= J xdP(x). This random mean can be expressed as L:j:1 /jYJ where 

}j "' Po. Let W = (L:_j:1 1f)1/a. Then () given { /j} is a stable (a, W). It follows that () 

is a scale mixture of such stable laws; its density is J0
1 w-1ga(w-1t)pa(w) dw, where Pais 

the density of W and Pa the density of a stable (a, 1) variable. 

10. Concluding remarks 

In these final remarks a couple of further uses of the generalised Dirichlet process are 

identified, and possibilities for further research are noted. 

10.1. BAYESIAN ROBUSTNESS. If a statistician uses the Dirichlet (bo, Po) process as 

a prior, or as an element in a more complicated prior, one may supplement such analysis 

with that using the GD(a, b, Po) prior, preferably with the proviso 2b/(1 +a) = b0 , as 

indicated in Section 4. Answers derived under the Dirichlet should then be compared to 

those obtained with the more general prior, say corresponding to values of a inside ( ~' t ). 
Small variation in results indicates Bayesian robustness. 

10.2. MARGINAL DISTRIBUTION WHEN DATA ARE DISTINCT. Let P "' GD(H, Po) 
with consequent observations X 1, X 2, . . .. Consider Dn, the event that the n first observa­

tions are distinct. From the definition (1.2), 

Pr(Dn) = n! Pr{X1 < ·· · < Xn} = n! L E/i1 ··'lin· 
i1<···<in 

But from the proof ofthelemma of Section 5.1 it is clear that Pr(Dn) =an = n! on-1 · · · o1 , 

in the notation of Section 5.3. It also follows that for disjoint sets A1 , ... , An, 

that is, conditional on data points being distinct, the observations form an i.i.d. sequence 

from P0 . This generalises a result for the Dirichlet process due to Korwar and Hollander 

(1973). 

10.3. A SEMIPARAMETRIC PRIOR GIVING DENSITY ESTIMATES. Assume that }i = 

() + Ei for i = 1, ... , n with E1, ... , En being independent from a P centred at zero. For 
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this signal plus noise model a sensible prior could be to give () a prior 7r( ()) d() and P an 

independent GD(H, Po) process prior, where Po has a density p0 centred at zero. Then 

calculations similar to but more general than those of Section 5 show that () given observa­

tions YI' 0 0 0 'Yn has posterior density 7r( ()I data) = c 7r( ()) rr~=I Po(Yi - ()), which is also the 

posterior computed under the simple parametric model where P = Po. It is assumed here 

that the YiS are distinct. Since knowing data and() amounts to knowing the cis, results of 

Sections 5 and 6 apply, giving 

n 

E{P(A) I data,()}= WnPo(A) + (1- wn)n-I L I{yi- () E A}. 
i=I 

But this gives 

n 

P(A) = E{P(A) I data}= WnPo(A) + (1- wn)n-I L Pr{() E Yi- A I data}, 
i=I 

which is found to be an integral of a smooth density estimate, 

n 

p(t) = WnPo(t) + (1 - wn)n -I L 7r(Yi - t I data). 
i=I 

This is a mixture of the prior guess density and a kernel type density estimator, with 

bandwidth approximately proportional to n-I/Z. The construction here can be generalised 

to include scale parameters and covariates. 

10.4. PRIOR PROCESS WITH DIFFERENT Bi DISTRIBUTIONS. As the complicated 

posterior indicates, it may be useful to allow different distributions HI, Hz, . .. for the 

BI, Bz, ... in (1.2). A condition guaranteeing a.s. convergence of BI · · · Bn to zero is 

needed. Tsilevich (1997) has actually worked with a particular construction of this type, 

but in a different probabilistic framework, and she does not discuss applications or impli­

cations for Bayesian statistics. For the general prior process indexed by HI, Hz, ... the 

posterior of P given a set of data becomes of the same type, with updated Hf, H~, ... , 

following the lines of Section 8. Accordingly, at least in a technical sense of the term, we 

have constructed a large conjugate class of nonparametric priors. 

10.5. TIES IN DATA. Formulae for posterior mean and variance were derived above 

for the case of data points XI, ... , Xn being distinct, as they would be if stemming from 

an underlying atom-free distribution. When the Xis really come from a P chosen by the 

generalised Dirichlet process there will be multiple ties with positive probability, however. 

A more complete description should therefore include generalised versions of say (5.4) and 

(6.4) for multiplicities among the data points. This is possible but requires cumbersome 

extensions of arguments and recursive schemes developed in Section 6.3. To illustrate, and 

to compare issues of data weighting with the distinct case and with the Dirichlet case, we 
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indicate here results for the case of x1 = x2 distinct from n - 2 distinct values x3 , ... , Xn. 

Let infoe indicate the information X1,Xz E S(x1,t:) and Xi E S(xi,t:) fori= 3, ... ,n, 
and write Bi = P(S(xi,t:)). With arguments and notation as in Section 6.1 one first finds 

that 

for sets A not meeting the data, which means that P = E{ P( ·) I data} is the same as 

(bn/bn-1)Po outside thedata set. Furthermore, 

E{P(AJ) I infoe} = EfJ~f)~ · · · Bn = gn-1 + hn-1(P1 + P3) + in-1P1P3 = gn-1 + O(t:). 
EfJ1 83 · · · Bn bn-1 + Cn-1P1 bn-1 

Accordingly, E[P{ xl} I data] = dn-1/bn-1 while E[P{ Xi} I data] = gn-1/bn-1 for then- 2 
other data points. 

For the GD(a, b, Po) process one learns that for a < 1, there is slightly less weight 

bn/bn-1 to the outside-the-data set with the x1 = Xz tie than without such a tie; the 

situation is reversed for a > 1. The expected weight dn-1/bn-1 given to the double data 

point x1 can similarly be compared with 2bn/ an, the expected weight given to { x1, Xz} 
when these are distinct. Here sometimes the first is bigger than the second and sometimes 

the other way around, for a given a =1- 1. Quite generally, these probability weights given 

to the outside-the-data set and to the individual data points are independent of ties if and 

only if the process is a Dirichlet, that is, the H distribution is a Beta( 1, b) for some b. 

10.6. OTHER NONPARAMETRIC PRIORS. One sees from the results of Section 8 that 

the posterior distribution of an arbitrary random mean f)= J g dP has the structure 

n 

f) I data rv DoT+ L Dig( xi), (10.1) 
i=1 

where Do, D1, ... , Dn are random weights summing to 1 and T is a variable with mean 

Bo = J g dPo. The distribution of (D1, ... , Dn) is symmetric when the data values are 

distinct, securing equal weight to each data point. The distribution is more complicated 

with ties in the data, as indicated above. It is interesting that several different unrelated 

nonparametric priors lead to the structure (10.1), among them two constructions of Hjort 

and Ongaro (2001 ), and, of course, the Dirichlet. For each such prior the predictive 

distribution takes the form wnFo + (1- wn)Fn, say, where Wn = EDo and Fn is a 'modified 

empirical distribution function', being equal to the empirical Fn when data are distinct and 

otherwise awarding somewhat modified weights to data points with different multiplicities. 

22 



A characterisation theorem of Lo (1991) implies that only when the prior is a Dirichlet do 

these weights become proportional to the multiplicities, that is, only then is Fn equal to 

Fn for all data configurations. 
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