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Abstract 

In this paper we consider two bootstrap algorithms for testing unit 
roots under the condition that the differenced data are stationary. The 
first method consists of generating the resampled data after fitting an au­
toregressive model to the first differences of the observations. The second 
method consists of applying the stationary bootstrap to the first differ­
ences. Both procedures are shown to give methods that approach the 
correct asymptotic distribution under the null hypothesis of a unit root. 
We also present a Monte Carlo study comparing the two methods for some 
ARIMA models. 
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1 Introduction 

Assume that the observations Yi_, ... , Yr are generated according to the autore­
gressive scheme 

Yi = a Yi-1 + Ut, ( t = 1, ... , T), a = 1 

where Ut is a strictly stationary process with mean zero. 
The initial value in (1), Yo, is assumed to satisfy 

Assumption 1 
Yo has a fixed distribution not depending on T. 

(1) 

Consider the estimator & for a defined in Fuller (1996) as & = L-[=2 YiYi-d "L-[=2 ~:_ 1 . 
Phillips (1987) showed, under a mixing condition, that as T --+ oo, the dis­
tribution of T( & - 1) converges towards the distribution: of the random vari-

able HW(1) 2 - :~)/ f~W(s) 2ds where W(s) is a standard Wiener process on 
C[O, 1], the space of continuous functions defined on the interval [0, 1], O"~ = 

E(un and 0"2 = limr-+oo Var(_)r L-[=1 Ut)· For the t-statistic based on &, ta = 

("L-[=2 ~:._ 1 ) 1 12 ( &r -1 )/ su where sb = L,[=2 (Yi- &rYi-1) 2 j(T- 2), a similar result 
exists. 

The asymptotic distribution depends on the unknown parameters 0" 2 and O"~ 
even under the null hypothesis of a unit root, H0 : a = 1. There are several 
ways to deal with this. The most popular is the augmented Dickey-Fuller test 
proposed in Dickey and Fuller (1979) and Said and Dickey -(1984) which consists 
of fitting an autoregressive process of appropriate order and base the test on the 
estimated coefficients. In Said and Dickey (1984) this was shown to yield a test 
which is asymptotically similar for general ARMA processes {Ut} provided the 
order of the fitted autoregression increases as o(T113 ). · 

Phillips (1987) suggested a nonparametric modification of the estimator & 
which also has the asymptotic distribution ~(W(1) 2 -1)/ f~ W(s) 2ds. Using the 
modified statistics therefore yields a test which is asymptotically similar. 

The alternative we shall consider is to estimate the distribution of T( & - 1) 
by a bootstrap procedure, which will adapt automatically and approximate the 
distribution involving the unknown parameters. This is shown to be feasible in a 
recent paper by Ferretti and Romo (1996) in the case where the stationary process 
{Ut} is an AR(p) process of known order. The bootstrap sample is constructed 
based on the estimated errors of the autoregression using the recursive scheme 
defined by the model. They also demonstrated in a simulation study that the 
finite sample properties were satisfactory. This procedure is an example of what 
Li and Maddala (1997) calls the recursive bootstrap. 

It is well known that bootstrapping in this situation is non-standard and 
present some special problems. Basawa et. al. (1991a) showed that in the case 
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where {Ut} are independent identically distributed variables and the bootstrap 
sample is constructed from the recursion~* = &~:._ 1 + Ut, the asymptotic distri­
bution is random. Following Basawa et. al. (1991b), Ferretti and Romo (1996) 
therefore used the recursion ~* = ~:_ 1 + Ut. As usual Ut denotes the variables 
that are resampled. Ferretti and Romo (1996) used resampled variables based on 
centering the least squares residuals yt- &yt_1 . 

What makes bootstrapping of particular interest in testing unit roots, and 
in a multivariate setting cointegration analysis, is that often the asymptotic dis­
tribution of common statistics involves nonstandard distributions and nuisance 
parameters. Considerable effort have been spent to find estimators that are at 
least asymptotically similar. The implications of bootstrap based methods may 
therefore be quite far reaching, if it turns out that the approach to deal with 
nuisance parameters is satisfactory. 

A problem using model-based resampling is that the structure of the data 
is unknown and must be identified from the observations. To ensure that the 
resampled data have the same structure as the original this identification must 
be correct. We shall therefore show that the conclusions from Ferretti and Romo 
(1976) are true for quite general processes {Ut} provided the recursive residuals 
are constructed using autoregressive approximations where the order is o(T113 ) 

as T--+ oo. 
In addition to the recursive bootstrap there has been other suggestions how 

to exploit the bootstrap ideas for dependent data with the explicit purpose of 
avoiding the assumption that the generating model is known up to some unknown 
parameters. The block bootstrap methods consist of splitting the series in blocks 
of equal length and sample these with replacement. These resampled time series 
are not stationary conditional on the original data, which motivated Politis and 
Romano (1994) to introduce the stationary bootstrap, where the blocks are no 
longer of a fixed size but are determined according to a fixed, usually a geometric, 
distribution. A price for obtaining the conditional stationarity seems to have to 
be paid however. In estimating the unknown mean in a stationary time series 
Lahiri (1999) shows that the stationary bootstrap has larger mean square error 
than the other block bootstrap methods. As far as asymptotic distributions are 
concerned, we shall demonstrate that under quite general conditions using the 
stationary bootstrap yields the same limit as the recursive bootstrap. 

The plan for the paper is as follows. In section 2 we treat the recursive 
bootstrap and provide results from some simulations to evaluate the performance 
of the method in finite samples. In section 3 the stationary bootstrap is similarly 
treated. Technical proofs can be found in section 4. 
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2 The recursive bootstrap 

In this section we assume that the time series {Yt}~1is generated by (1) and that 
{Ut} can be written as a one sided moving average process of infinite order 

00 

Ut = L 7/JjEt-j 
j=O 

where the random variables { Et} are independent, identically distributed and the 
weights satisfy some regularity conditions that will be specified below. 

2.1 Algorithm and asymptotic distribution 

The bootstrap algorithm that we shall consider is defined as follows. Let Yi, ... , Yr 
be the observations. Compute the differences ~Yt = Yt- yt_1 , t = 2, ... , T. Fit 
an autoregressive process of order k to the differences by the usual Yule -Walker 
procedure. Thus, let ~ k = (1( 0), ... , ')'( k -1) )' be the empirical co variances based 
on the differences and r k be the estimated covariance matrix 

The estimators <J>k = ( ¢1k, ... , ¢kk)' are then estimated by <J>k = fk" 1 ~k and the 

variance by 6-z = ')'(0) - ¢~ ~k· The residuals are given by 

k 

Et,T = ~Yt- L ¢ik~Yt-i, (t = k + 2, ... 'T) 
i=l 

where ¢ok = 1, and the centered residuals by 

Et,T = Et,T- T- 1 - k t Et,T, (t = k + 2, ... 'T). 
1 t=k+2 

Consider T observations from the stationary autoregressive process 

k 

Ut = L ¢ik Ut-i + f_;' t = 1' ... ' T (2) 
i=l 

where the errors { E;}, (t = 1, ... , T) are randomly sampled from the centered 
residuals with replacement. The use of stationary realizations follows a suggestion 
by, Biihlmann (1997). As he points out, in practice one obtains the bootstrap 
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sample Ut, t = 1, ... , T by running the recursion (2) for a while to eliminate the 
influence from the initial conditions. For notational purpose we do not indicate 
the dependence of {Ut} and { t:;} on T, but it is important to realize that the 
resampled residuals will now have a triangular array structure. The bootstrap 
sample 1";_*, ... , Yy is then defined by 

~* = ~':_ 1 + Ut, t = 1, ... , T 

where Yo* is a random variable generated according a fixed distribution which 
should reflect the distribution of Assumption 1. The conditional distributionof 
(1";_*, ... , YT) given (Yl, ... , Yr) will, as is usual in the literature, be denoted by 
an *, so that P*, E* etc. refer to this distribution. 

It may be worth mentioning that the scheme above is a modification of the 
procedure in Ferretti and Romo (1996) in three respects. First we use the differ­
ences .6.yt where they employ the least squares residuals Yt- &rYt-1. In addition 
we use stationary realizations from the recursion (2). Finally, the coefficients of 
the fitted autoregressions are estimated by the Yule-Walker procedure, not by 
ordinary least squares. 

We then compute 

(3) 

and the corresponding t-statistic 

T 

t* = ("' Y:*2 )1/2(&* - 1)/s a.,T ~ t-1 T U (4) 
t=2 

where sb = I:f=2(Yt- &rYt-1)2 /(T- 2). 
The bootstrap approximations to the distributions of T( &r - 1) and ta.,T are 

the distributions of &r and t:, and these distributions can be approximated by 
the empirical distributions of the two statistics based on B bootstrap samples 
constructed as described above. 

We shall now find the asymptotic distributions of o:T and t: T when T-+ oo. 
Before we state the necessary technical assumptions we recall th~t if {Ut} also has 
an AR( oo) representation so that Et = 2:::~0 </JiUt-j where c/Jo = 1, the following 
two properties are equivalent, see Lemma 2.1 in Biihlmann (1997), (i)<I>(z) = 
l:~ocPjZj -j. 0 for lzl:::; 1 and I:~oJic/Jjl < 00 and (ii) 'lf(z) = l:~o'l/JjZj #- 0 for 
lzl:::; 1 and I:~oJI'I/Jjl < oo. 

Assumption 2 
(i) The random variables { Et}~-oo are independent and identically distributed 
with E(t:t) = 0, E(t:D = O"; and E(t:i) < oo; 
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{ii) The power series iP ( z) = 'L.'f=o <Pi zi is non-zero for I z I :::; 1 and 'L.'f=o j I <Pi I < 
oo· ! 

{iii) k = k( T) satisfies ~ ---+ 0 as T ---+ oo. 

We also remind that the spectral density of {Ut} is given by 

where a; = E( c;). 
Then the following theorem is valid 

(5) 

Theorem 1 Suppose Yj_, ... , Yr is a time series generated according to {1) and 
satisfies Assumptions 1 and 2. Then for all x as T ---+ oo! 

(i) P*(T(a~- 1):::; x)---+ P(HW(1) 2 - :~ )/ f~ W(s) 2ds:::; x) 

(ii) P*(t:,r:::; x)---+ P( 2~JW(1)2- ~)/(J~ W(s) 2ds) 112 :::; x) 

in probability! where W is a standard Brownian motion. 

A test having correct asymptotic level for H 0 : a = 1 against H1 : a < 1 
can now be constructed based on whether #{b : ay :::; &r} / B is less than the 
prescribed level. Using ta an analogous test can be constructed. Band b refer to 
the number of bootstrap replications that are used. 

Remark 1. Under reasonable conditions the bootstrap distribution can be 
used as an approximation to the sampling distribution of &r and ta,T· Thus 
the result due to Phillips (1988) referred to earlier will togethe~ with Theorem 1 
imply that for all x 

P*(T(a~ -1):::; x)- P(T(ar -1):::; x)---+ 0 in probability as T---+ oo 

with a similar result for ta,T and t~,T· 
Remark 2. There are also other statistics than &rand ta,T that are of interest. 

Often one will fit models of the type 

Yt = f-l + alt-1 + Ut, (t = 1, ... , T), 

where f-l and a are estimated by ordinary least squares. When the distribution of 
{ Yt} is governed by ( 1) there will be analogous results as those in Theorem 1 for 
this version of the estimator for a. 

Remark 3. By estimating a~ and a 2 one can modify ay and t: T so that the 
limit distributions do not depend the unknown parameters a~ and a 2 , i.e. the 
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modifications are asymptotic pivots. This may be an advantage, since it is a 
conclusion from other situations that the approximations are improved by basing 
the bootstraps on pivotal- or approximate pivotal quantities. In the present case 
the situation may be more problematic since the modification involves estimating 
the variance a 2 which can be difficult. For more discussion on this important 
issue see Li and Maddala (1997, p. 304). 

Remark 4- In practice the order of the autoregressive approximation will 
often have to be data based. The methods that are used for the augmented 
Dickey-Fuller test, see e.g. Ng and Perron (1995), are natural candidates. A 
more informal procedure is to choose k so large that the estimated residuals are 
well behaved. 

2.2 Finite-sample simulations 

To get some idea of the finite sample performance of the methods of the previous 
section we have conducted some Monte Carlo experiments. Although the result 
from Theorem 1 only cover the distributions under the hypothesis we use the 
simulations to consider the performance of the test also under some reasonable 
alternatives. The observations were generated according to the recursion 

Yt = alt-1 + Ut, t = 1, ... , T, Yo= 0. 

for a= 0.7,0.8,0.9,0.95,0.99 and 1.0. The series {Ut},t = -19, ... ,T is an 
ARM A(1, 1) process Ut = <PUt_1 + Et + BEt-1 started at 0 and with the 20 first 
observations deleted to approximate the stationary initial distribution of U1 . The 
sequence { Et} consists of independent standard normal variates generated by the 
random number generator ran2 in Press et. a1.(1992). Thus, in constructing the 
recursive bootstrap samples the recursion defined by (2) is started at 0.0 and the 
first 20 values are discarded in order to approximate the stationary distribution. 

The tables are based on 10000 samples and 10000 bootstrap replications in 
each sample and show the fraction of samples for which the unit root hypothesis 
is rejected at significance level 0.05 using the &'" and the t: tests. 

For all specifications of {Ut}that we consider the difference between the power 
of two bootstrap tests are small. 

Table 1 approximately here 

Table 1 shows the result where the stationary process {Ut} is independent 
standard normal random variables for T =50 and 100. For comparison also the 
power of the tests based on & and ta are included. The critical values are taken 
from the simulations in Tables 10.A.1 and 10.A.2 in Fuller (1996). 
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For both the &* and the t~ tests the power functions decrease with increasing 
k and using larger values ofk than the correct one, k = 0, can lead too substantial 
loss of power. 

In Table 2 M A(1) processes are considered. For positive and moderately 
negative values of () it is possible to find values of k such that the level is correct 
and at the same time the power is reasonable. However, the result for () = -0.8 
indicates that it is necessary with k as large as 12 to obtain a reasonable nominal 
level. 

Table 2 approximately here . 

Table 3 confirms the impression from Table 2 for moderately large coefficients. 

Table 3 approximately here 

3 The stationary bootstrap 

3.1 Algorithm and asymptotic distribution 

The bootstrap algorithm we consider is defined as follows. 
Compute the T ~ 1 differences 

Ut = ~Yt = Yt- Yt-1, (t = 2, ... , T) 

where Yi, ... , Yr are observations from a time series satisfying (1). Define the 
- - T 

centered differences Xt = Xt,T = Ut- Ur where Ur = Lj=2 'Ujj(T- 1). Let 
Bt,b = BT,b = { Xt, ... , Xt+b-d be a block consisting of b succeeding centered 
differences starting with time t. To take care of the case where s > T define 
Xs = Xt when s - t is a multiple of T - 1. 

A bootstrap sample is generated in the following way. Let 11 , 12 , ... be inde­
pendent random variables uniformly distributed on {2, ... , T} and independent 
of the independent geometrically distributed random variables L1, L2, ... which 
have frequency distribution P(Li = m) = p(1- p)m-1 , (m = 1, 2, ... ). Then form 
the blocks Bh,L1 , Bh,L2 , ••• until T elements are included. Denote the set by 
{X;, ... ,XT}. Now the bootstrap sample, which we again denote by~*, ... , Y;, 
is computed by the recursion 

t 

~* = Yo* + L x:' ( t = 1' ... ' T) 
s=1 
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where Yo* is generated according to a fixed distribution which should reflect the 
distribution in Assumption 1. The conditional distribution of ~*, ... , YT' is also 
in this case denoted by P*. 

We can then compute &:Z, and t:,T from the formulas (3) and ( 4) and obtain a 
bootstrap approximation to the distribution of T(&r ,.--- 1) and ta,T based on the 
stationary bootstrap. 

We shall consider the asymptotic distribution of the stationary bootstrap 
under the following conditions, see Politis and Romano (1994), 

Assumption 3 
(i) The time series {Ut} is strictly stationary with E(Ut) = 0 for all t; 
(ii) If!(k) = E[UtUt+kL then !(0) + 2:~0 lr1(r)l < oo; 
(iii) l:r,s,t ~4(r, s, t) = K < oo where ~4(r, s, t) is the fourth joint cumulant of the 
distribution of ( Uj, Uj+r, Uj+r+s, Uj+r+s+t). 

The assumption (iii) above is the usual one to ensure that the variance of 
~ l:t Ut2 tends to zero, see e.g. Priestley (1981, p. 325), and implies that a 2 = 
limr--+= Var(T- 112 2:'[=1 Ut) can be consistently estimated. 

The asymptotic properties of the bootstrap approximations are described in 
the following theorem. 

Theorem 2 Suppose Yi_, ... , Yr is a time series generated according to (1) and 
satisfies Assumptions 1 and 3. Then for all x! if p = PT ~ 0 and Tp3 ~ oo as 
T~ oo 

(i) P*(T(ar -1) ~ x) ~ P(!(W(1) 2 - ~)If~ W(s) 2 ds ~ x) 

(ii) P*(t:,r ~ x) ~ P( 2;u (W(1) 2 - ~ )l(f~ W(s) 2ds)112 ~ x) 

in probability! where W is a standard Brownian motion. 

As for the recursive bootstrap tests having correct asymptotic level for H0 : 

a= 1 against H1 :a< 1 can now be constructed based on whether #{b: &r ~ 
&r} I B and #{ b : t:,r ~ ia,T} I B are less than the prescribed level. 

Remark 1. The tuning parameter p plays a role which in many respect 
is similar to the length of the fitted autoregression in the recursive bootstrap. 
Politis and Romano (1994) contains some advice on how p may be chosen. It 
seems to be more problematic to determine than the lag length k. 
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3.2 Finite-sample simulations 

We use the same setup as described for the recursive bootstrap. Again we re­
mark the small differences between the power of the two bootstrap tests for all 
specifications of the stationary process in ( 1). 

From Table 4 we see that when the time series {Ut} is independent standard 
normal variables choosing small values of p will lead to loss of power and to 
empirical levels that are smaller than the nominal 0.05. In this respect p has the 
same property as the order of the fitted autoregressive process, k, in the recursive 
bootstrap. 

Table 4 approximately here 

In Table 5 M A( 1) processes are considered. Since the dependence is limited in 
this kind of processes one should expect the stationary bootstrap to perform well. 
The performance is satisfactory when the parameter () is positive or moderately 
negative. For the problematic case with large negative values of () the choice of 
p is critical. This is not so surprising since it is known that the unit root tests 
behave badly in this situation, see e.g. Schwert (1989). But even for () = -0.4, 
the mean block length 1/p has to be at least 10 to ensure that the size of the 
test is less than the nominal level, that is, much longer than the dependence may 
suggest. 

Table 5 approximately here 

Table 6 shows the performance for stationary processes that also has an au­
toregressive component. We see that in these cases the presence of autoregressive 
components can lead to substantial loss of power due to low empirical levels of the 
tests. This is regardless the choice of p. This confirms our statement in remark 4 
after Theorem 1, that for the stationary bootstrap specification of p can be more 
difficult than the autoregressive lag, k, for the recursive bootstrap. 

Table 6 approximately here 
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4 Proofs 

The proofs of both theorems use the following well known expression for &T, see 
e.g. Phillips (1987), 

!.{(-1 Y,:*)2 _ ~ _ I:;~Yt"2 } 
2 VT T T T 

L:~~l 
(6) 

~ 

We shall consider weak convergence in D[O, 1], the space of functions defined 
on the interval [0, 1] being continuous from the right and having left limits. Pol­
lard (1984) stressed that, when the limiting distribution is concentrated on the 
continuous functions, it is convenient to consider the uniform metric in D[O, 1]. 
In our case the limit will be a Brownian motion and we therefore work with the 
uniform metric. 

Proof of Theorem 1. By definition Ut = ~* - ~:_ 1 , (t = 2, ... , T) where 
~*, ( t = 1, ... , T) is the bootstrap sample. If u; = ( Ut, ... , Ut-k+1 )' and 
E; = ( rc;, 0, ... , 0 )', the recursion for constructing the bootstrap can be written 

where 

. . . 1 ll 
Solving the recursion backwards yields 

t-1 

u; = l:At E;_i + A.~u~ (7) 
i=O 

so that 
t t-1 j t 

I:u; = l:l:At E;_j + I:A.{u~. 
j=1 j=Oi=O j=1 

Here U~ = (U;, ... , U~k+1 )'is a vector of k stationary random variables satisfying 
(2). 

From the identity 
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it follows that the sum may be written, when I- Ak is nonsingular, 

t-1 t-1 

(I- Akt1 L E;_j - (I- Akt1 Ak LA{ E;_j +(I- Akt1 Ak(I- At)V~. 
j=O j=O 

This can be simplified. Inserting (7) the expression becomes after some algebra, 
since r;*- Yo* = I:j=1 e~ u; when e1 = (1, o, ... , o)', 

t-1 

r;*- Y0* = e~(I- Akt1 L E;_j + e~(u;- U~)- e~(I- Akt1(V;- U~) (8) 
j=O 

for (t = 1, ... ,T). 
Now use that 

so that 
t 

e~(I- A.kt1 2: 
j=1 

Under the conditions in the theorem it is shown in Theorem 2 in Berk (1972) 
that 

1/(1- ~1k- · · ·- ~kk)-+ J27rfu(O)/O": = O"jO"t iri probability 

where fu is the spectral density of the time series {Ut} defined in (5). 
Now consider the random function Sf(s) = JTL:}'!:s{t:j,O :=; s :=; 1 in D[0,1]. 

As usual [·] denotes the integer value. From Theorem V.19 in.Pollard (1984) it 
follows that for all bounded continuous functions f defined on D[O, 1] 

E*[f(Sf )] -+ E[f( O"W)] (9) 

in probability. W denotes the standard Brownian motion. 
To see that we first remark that ST(O) = 0. Also Sf has independent incre­

ments given the observations Yi, ... , Yr, i.e. if 0 :=; s < t < u :=; 1 

for all real x1 and x2 . This is a direct consequence of the definition of Sf. 
Furthermore, for all real r 

E*[exp{ir(ST(u)- ST(t)}] 
= (1- E*(t:~2)/2T + op(1))T(u-t) 

11 

[ E* { exp( irtU vT)} J([TuJ-[Tt]) 

-+ exp{r( u- t)O"; /2} 



--·------

in probability since E* ( c;j) ---+ E( t{), (j = 2, 4) in probability from Lemma 5.3 in 
Biihlmann (1997). Hence the increments ST(u)- ST(t), (t < u) converge in P* 
distribution to the distribution of O"~(W(u)- W(t)). Finally, if 6 > 0 

P*(IST(u)- ST(t)l ~ 6/2) ~AE* {ST(u) -Sf(t.)V /62 = 4([Tu]- [Tt])E*( t~2 )/T62 · 

which tends to 4( u - t)O"; /62 in probability as T ---+ oo. This concludes the 
verification of the conditions necessary to justify (9). 

From Lemma 1 below it follows that P(I - Ak singular) ---+ 0. 
Finally, we must consider the two last terms in (8). Define random elements 

in D[0,1] as described above, i.e. let R 1 (s) = e~(U[Ts]- U~)/VT and R2(s) = 
e~(I- Akt1 (U[Ts]- U~)/VT when 0 ~ s ~ 1. It follows from Lemma 2 and 3 
that for all 7] > 0 P*(sup0 <s<1 IRi(s)l > ry), (i = 1, 2) tend to zero in probability as 
T---+ oo. This means, since -we use the uniform norm, that the random functions 
tend to zero as elements in D[O, 1], i.e. E*(J(Ri)] ---+ 0 in probability for all 
bounded continuous functions f defined on D[O, 1]. 

Hence, it follows from Assumption 1 and the continuous mapping theorem 
that in probability the conditional distribution of ( ~ y,p, ]2 "I:,f=1 ~*2 ) converges 
in distribution towards ( 0"2 W(1 )2 , 0"2 J01 W( s )2ds ). 

We can then use the expression in the beginning of this section to complete 
the proof of the theorem by appealing to Slutsky's theorem, since from Theorem 
3.1(i) in Biihlmann (1997) for all ry > 0 

P* (I~ L Ut 2 - 0"~ I > 'l]) ---+ 0 

in probability. Also sb---+ O"~ in probability, where sb is defined after (4). 

Lemma 1 Under Assumption 21 P(I - Ak singular) ---+ 0 as T ---+ oo 

Proof. Since deti.XI- Akl = _xk - ¢1k_xk-1 - · · · - ¢kk, I- Ak is nonsingular if 
and only if 1- ¢1k- · · · - ¢kk -=/= 0. But as proved in Theorem 2 in Berk (1972), 
1-¢1k- · · · -¢kk---+ (27r fu(0)/0";)- 112 -=/= 0 in probability where fu is the spectral 
density of the time series {Ut}· 

Let </J]k, (j = 1, ... , k) be the coefficients minimizing E(Ut- c1Ut_1 - · · · -

ckUt-k) 2 with minimum O"~. Then O"~ ---+ O"; as k ---+ oo, see Berk (1972). In the 
proof of the following lemmas we shall also make use of the fact that the fitted 
autoregressions are always causal, see e.g Brockwell and Davis (1991, p.240). The 
random variable Ut therefore has an M A( oo) representation Ut = L~o ~j,TE;_j· 
where I: l~j,TI < oo and the coefficients are defined by the power series Wr(z) = 
I: ~j,TZj = 1/ I:j=0 ¢j,kZj. Finally we shall need a result proved in Theorem 3.1 
in Biihlmann (1995) where it is shown that there exists a random variable T0 so 
that SUPT>To L~o l~j,TI < oo almost surely. 
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Lemma 2 Under Assumption 2! for all 'f] > 0! P*(max_k+IstsT IUt /vTI > 
'f]) -+ 0 in probability as T -+ oo. 

Proof. Since k = o(T113 ), (T + k)/T -+ 1. Furthermore, by the well known 
equality, see e.g. Hall and Heyde (1980, p. 53), 

P*( max IUt/V(T + k)l > ry) 
-k+l:-:;t:O:::T 

P'( (T ~ k) t=t.+l u;' I[U; > ~,j(T +k)] > ~') 
< : 2 E*(U{2 I(U{ > ryj(T + k)) ~ "74 (T1 + k) E*(U{4 ). 

But E*(U;4 ) ~ Lj ~J,TE*( fr4 )+(Lj ~J,T )2(E*( fr 2)2 and Lj ~j,T ~ supj l~j,Tik-l Lj l~j,TI 
~ (Lj l~j,TI)k, (k = 2, 4). By using the result in Theorem 3.1 in Biihlmann (1995) 
referred to above the conclusion of the Lemma follows. 

Lemma 3 Under Assumption 2! for all 'f] > 0! P*(lmaXI:-:;tsTel'(I -Akt1V;/VTI > 
'f]) -+ 0 in probability as T -+ oo. 

Proof. Using the expression for e'(I- Ak)-1 we may write 

By the argument used in Lemma 1 the denominator converges in probability. 
Consider the numerator. Then 

k k k k 
2: I 2: cPzkl + 2:2: IJ>zk- cPzkl 

j=2 l=j j=2 l=j j=2 l=j 
k k k 

~ LJicPikl + LJIJ>ik- cPikl < LJicPikl + (k(k + 1)/2)maxiskiJ>ik- cPikl· 
j=2 j=2 j=2 

Now I:j=2JicPikl < oo where the bound is independentof k ask varies. This fol­
lows from Baxter's inequality, see e.g. Hannan and Deistler (1988, p.269) and the 
assumption that I:j=2jlcPil < oo. Also k = o(T113 ), hence k = o((Tjlog(T)) 112 ), 

and therefore maxiSkiJ>jk- cPikl = O((log(T)/T) 112 ) almost surely by Theorem 
7.4.5 in Hannan and Deistler (1988). Hence I:j=2 1 I:7=j+l J>zkl increases as 

k k 

L I L J>zk I = o( (log(T) )112T 116) 

j=2 l=j 
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almost surely. The proof is now concluded arguing as in Lemma 2 by noting that 
ry may be allowed to depend on T and decrease at the rate o(T-114 ). 

In fact, a more careful inspection will reveal that :Z::::j=2 I :z::::?=j ¢zk I increases at 
rate o((log(T)/T)112P), and this has to be bounded by T 114, which is satisfied if 
P = o(T~/4""'-15) for some 8 > 0. Taking 8 = I/12 so that k = o(T113 ) does the job. 

Proof of Theorem 2. The general outline of the proof follows Politis and Romano 
(1994). In particular Lemma 4 below is an invariance principle version of their 
central limit theorem. 

The samples (11;_*, ... , Y:f) and the distribution P* in the present proof always 
refer to the stationary bootstrap defined in section 3. 

We recall the following facts which can be found in Politis and Romano (1994). 
Let St,b = S[b be the sum of the elements in block Bt,b· If the random vari­
ables I = lr and L = Lr are independent, where I is uniformly distributed 
on {2, ... , T} and L is geometrically distributed with mean 1/pr, the random 
variable SI,L has expectation E*[SI,L] = E*[E*[SI,LIL]. But E*[SI,LIL = l] = 
r~ 1 :Z::::~=1 :Z::::J=2 Xk+j = y~ 1 :Z::::]=2 Xj = 0 from the definition of Xs, s > T and the 
centering of the differences used for the construction of the bootstrap samples. 
Furthermore, E*[SJ,LIL = l] = l[Cr(O) + 2:Z::::~;;;~(l- f)Cr(i)]. Hence 

E*[SJ,Ll = _!_[Cr(O) + 2 f=o- Pr )iCr(i)]. 
PT i=1 

Here Cr( ·) is the so called circular covariance defined by 

A 1 ~ -
Cr(i) = T _ 1 L.J Xj,TXj+i,T whereXj,T = Uj- Ur, (j =:= 2, ... , T) 

J=2 

and Xj,T = Xj-(T-1),T when j > T. 
In Politis and Romano (1994, p.1302) it is also shown that 

00 

Cr(O) + 2 2:(1 - PT )iCr( i) -+ a 2 (10) 
i=1 

in probability as T -+ oo. 
Now let L1, L 2 , •• • be the independent geometrically distributed random vari­

ables used to define ~*, (t = 1, ... , T). Define Mt = inf{k : L1 + · · · + Lk ~ 
t}, (t = 1, ... , T) and let N = Nt = :Z::::f:!\ Li. Then define 

~** = Y.z(;-, (t = 1, ... , T) 

as the sum of observations in N blocks of observations of lengths L1, ... , LN 
an9. starting at observation I 1, ... , IN. Also notice that the process { Mt - 1} 
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may alternatively be represented as indicating the number of successes in t - 1 
Bernoulli trials with probability of success PT. 

The processes ~* and ~** depend on T, but for notational reasons we do 
not index these processes on T in the sequel. Let R = Rr = Mr - T. Then 
R is geometrically distributed and Zr = ~YT+l + · · · + ~YT+R has the same 
distribution as S1 L· 

' 
Now, to prove Theorem 2 we write the right hand side of the expression (6) 

as 
1 "'Y:**2 l(Y,:** - Z )2 - Y?* - l:::~Y/2 
_ L... t-1 T T T T T 

2 I: ~~1 I: yt~f 
T2 

From the continuous mapping theorem and Lemma 4 below it follows that 
in probability the conditional distribution of ( ~ Yr*2, ,A I: ~**2 ) given Yi, ... , Yr 
converges in distribution towards ( a-2W(1 )2, a-2 J~ W( s )2ds ). 

. 2:Y .. 2 

Furthermore, from Lemma 5 1t follows that P*(l L~~: - 11 > t:) -+ 0 for all 

t: > 0 in probability when PT -+ 0 and Tp} -+ oo and from Chebychev's inequality 
we get P*(IZri/VT > t:)-+ 0. 

Slutsky's theorem now implies that in probability the conditional distribution 
ofT(&r-1) given Yi_, ... , Yr tends to the distribution of ~(W(1) 2-~ )/ J~ W(s) 2ds 
since from Lemma 6 for all t: > 0 

P*(l I: ~~*2 - 0"~ I > t:) -+ 0 

in probability as T -+ oo. A similar result also holds for t~ T· 
' It remains to verify Lemmas 4-6. Remark that in Lemmas 4 and 6 we only 

need Tpr -+ oo. Define Xf* by Xf*( s) = )rYM-~TsJ, 0 :::; s :::; 1. Then Xf* is 
an element in D[O, 1]. The weak convergence result we need is. contained in the 
following lemma. 

Lemma 4 Let W is a standard Brownian motion in D[O, 1]. Under Assumptions 
1 and 3 

E*[f(X;*)] -+ E[f(a-W)] 

in probability if PT -+ 0 and Tpr -+ oo for all bounded, continuous functions f 
on D[O, 1]. 

Proof. The process Xf* has independent increments. To verify this property let 
0 :::; u < v < w :::; 1 and let Vj, (j = 1, ... ) be the sum of observations in the 
blocks of length Lj starting at observation Ij. Then for real numbers x1 and x2 

P*(X;*(v)- x;*(u):::; x1,x;*(w)- x;*(v):::; x2) = 
L:m,n P*(Vi + ... + Vm :::; X1 v'T, V{ + ... + v~ :::; x2v'TIM[Tv] - M[Tu] = m, M[Tw] - M[Tv] = n) 

P( M[Tv] - M[Tu] = m, M[Tw] - M[Tv] = n) 
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where Vi and Vi' refer to independent pairs (h Li), (If, LD, (i = 1, ... ). Now, use 
the alternative representation of the process Mt - 1 as indicating the number of 
successes in t -1 Bernoulli trials with success probability PT. Then clearly M[Tv]­
M[Tu] and M[Tw]- M[Tv] are independent. Using this result in the expression above 
it is seen to reduce to P*(X;*(v)- X:T(u} :::;· x1)P*(X;*(w)- X;*(v) :S x2). 

From Pollard (1984), Theorem V.19, the result will then follow from the fol­
lowing two properties 

(i) The P* distribution of the increments X;*(s)- X;*(r) for each pair r < s 
converge in probability towards a N(O, (s- r)a2 ) random variable for each 
pair r < s, 

(ii) for all 6 > 0 the probabilities P*(IX;*(s)- X;*(r)l > 6) are arbitrarily 
small when s- r--+ 0, uniformly in r, s belonging to [0, 1]. 

The property (ii) follows from Markov's lemma since for all 6 > 0 

From the definition of x;* it follows that x;*(s)- x;*(r) = Jr L:~~iTr]+l Vj. 
The random variables Vj, (j = 1, ... ) are independent identically distributed as 
SI,L· Since E(SI,L) = 0, "I:j=1 Vj is therefore a martingale with respect to the a­
algebras a(Vj, Ij, Lj, j :S n ). The random variables M[Tr] and M[Ts] are stopping 
times so that by reasoning as in the proof of Wald's equation in Neveu (1975, 
Proposition IV-4-21), 

M[Ts] · 

E*[{X;*(s)- x;*(r)} 2] = ~E*[. L Vj] 2 = ~E(M[Ts]- M[Tr])E*[S},Ll· 
J=M[Tr]+l 

By applying Wald's equation on the sum L1 + · · · + Ln, (n = 1, ... ) we get 
IE(M[Ts]- M[Tr])- T(s- r)prl:::; 1. Thus by (10) property (ii) follows. 

The property (i) can as explained in Politis and Romano (1994), be deduced 
from an extension of the central limit theorem for a sum with a random number 
of terms, see e.g Chung (1974), to a triangular array setting. 

Lemma 5 Under Assumptions 1 and 3 for any f > 0 

in probability if PT --+ 0 and Tp~ --+ oo as T --+ oo. 
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Proof We start from the equality 

Y:**2 - Y:*2 - 2(Y:** - Y:*)Y:** - (Y:** - Y:*)2 t t- t t t t t 

From Cauchy-Schwarz's inequality 

It follows from Lemma 4 that the distribution of the random variable ] 2 ~ ~**2 

converges in distribution. 
Hence it is sufficient to show that 

in probability for any f > 0. 
Let Wj,k denote the k'th ( k = 1, ... ) observation in the block starting at 

observation Ij. Then, with M = Mr and I = IM, 

1 L1+ .. +LM 

+ T2 (M- T)2( L WI,k)2 
k=T-Ll + .. +£M-l +1 

(11) 

which we write 

1 M-1 Lj-1 1 M Lj-1 

T 2 2:: ( 2:: kWt,k) 2 + z2 + z3 = T 2 2::( 2:: kWj,k) 2 - z1 + z2 + z3. (12) 
j=1 k=O j=1 k=O 

To bound the first term in (12) define, suppressing the index T, 

b-1 

stb = L:lxi+j 
j=O 

so that SP,b = Si,b is the sum of the elements in the block B[b. Defining the corre­
sponding random variables ~k, (j = 1, ... ) for the block defined by (Ij, Lj), (j = 

1, ... ). Then the expectation of the first term in (12) can be written 

Now for fixed T the random variables ~1 , ( i = 1, ... ) , are independent, so that 

n 

2::(~1 )2- E*[(~1 )2] 
j=1 
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is a sum of independent, identically distributed random variables with expectation 
zero. Then we can argue as in the proof of Lemma 4 using Wald's equation so 
that 

M 

E* [I:(vf)2J E* [MJE* [( S},£)2] 

j=1 

< (TPT + 1)E*[(S},L)2]. 

Furthermore, from the Cauchy-Schwarz inequality 

1 T oo 1-1 

E*[(S},£)2] = T -1 LL(L)Xi+j)2PT(1- PT)I-1 
i=2 1=0 j=1 

1 T oo 1-1 1-1 

< T _ 1 I: L(L l)(L: xi2+JPT(1 - PT )1- 1 

i=2 1=0 j=1 j=1 

oo 1-1 1 T 

< const. Ll3 L(r- L:Xl+j)PT(1- PT)1- 1 . 
1=0 j=1 - 1 i=2 

Due to the definition of Xs, s > T, the sum T~ 1 "L-[=2 Xl+j is independent of j 
and equals T~ 1 "L-[=2 Xl. Hence, 

Since E[ L4] = const.pY,4 , this means that the first term in (12) is bounded 
by const.( T~ 1 "L-[=2 Xl)(TpT + 1)/T2p} which tends to zero in probability since 

1 '\"T X2 1 '\"T (U u:- )2 2 . b b'l' ' 
T-1 ~i=2 i = T-1 ~i=2 i- T --+ rJu m pro a 1 1ty. 

Using the Cauchy-Schwarz inequality again it is seen that EIZil, (i = 1, 2, 3) 
also are bounded by const.(T~ 1 "L-[=2 Xl)E*[L4 ]/T2. 

Lemma 6 Under Assumptions 1 and 3 for any E > 0 

in probability if PT --+ 0 and TpT --+ oo as T --+ oo. 

Proof Denote MT by M. Consider the random variable Z = 'L,f,:-J Xj+j/ L- CJ~ 
defined on the block of Br,L, and let Zj, (j = 1, ... ) be similarly defined on the 
blocks defined by the pairs (Ij,Lj). Then 'L,!:l.Y-/2 /T may be written 

2 "L-%1 Lj "L-%1 LjZj "L-:!T+l 1:1~*2 
(Ju T + T - T (13) 
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Since T:::; "L~1 Lj :::; T + LM and E[LM]/T = 1/Tpr ---+ 0, the first term in (13) 
converges in probability to a-~. 

By using arguments from the previous Lemmas E*[l "L~1 LjZj IJ :::; E*["Li';!;1 LjiZiiJ = 

E[M]E*[LIZI] = (T + 1)prE*[LIZI]. Also E*[LIZI] = E*["Lf,:-~ Xj+i - La-~1] = 

L~1 I "Lf=z XJ+tf(T -1)- o-~llpr(1- PT )1- 1 = I "Lf=2 XJ /(T -1)- o-~1/PT· Since 
"Lf=2 XJ/(T -1) = "Lf=2 (Uj- Ur) 2 /(T -1)---+ a-~ in probability, it then follows 
that the expectation of the absolute value of the second term in (13) tends to 
zero in probability. 

The last term also clearly tends to 0 in probability, which concludes the proof 
of the Lemma. 
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--------------------- ---~ -------------------

. ~ 

T k Test a 
0.7 0.8 0.9 0.95 0.99 1.0 

50 
A 

0.98 0.78 0.33 0.15 0.07 0.05 a 
fa 0.97 0.78 0.34 0.15 0.07 0.05 

1 0:* 0.90 0.65 0.27 0.12 0.05 0.04 
t* a 0.89 0.65 0.27 0.12 0.06 0.04 

4 0:* 0.49 0.29 0.11 0.05 0.02 0.02 
t* a 0.50 0.30 0.11 0.05 0.02 0.02 

12 0:* 0.08 0.03 0.01 0.00 0.00 0.00 
t* a 0.07 0.03 0.01 0.00 0.00 0.00 

100 
A 1.00 1.00 0.77 0.31 0.07 0.05 a 
fa 1.00 1.00 0.77 0.32 O.U8 0.05 

1 0:* 1.00 0.99 0.69 0.29 0.07 0.05 
t* a 1.00 0.99 0.70 0.29 0.08 0.05 

4 0:* 0.98 0.88 0.47 0.19 0.05 0.03 
t* a 0.98 0.89 0.48 0.20 0.05 0.03 

12 0:* 0.59 0.39 0.14 0.05 0.01 0.01 
t* a 0.59 0.39 0.15 0.05 0.01 0.01 

Table 1: Stationary process { Ut} in ( 1); independent standard normal variables. 
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e k Test 0: 

0.7 0.8 0.9 0.95 0.99 1.0 
0.8 1 &* 1.00 1.00 0.87 0.50 0.16 0.10 

t* a 1.00 0.99 0.85 0.49 0.15 0.10 
4 &* 0.93 0.77 0.37 0.14 0.04 0.02 

t* a 0.93 0.77 0.37 0.15 0.04 0.02 
12 &* 0.50 0.33 0.13 0.04 0.01 0.01 

t* a 0.51 0.34 0.14 0.05 0.01 0.01 
-0.4 1 &* 1.00 1.00 0.94 0.57 0.18 0.12 

t* a 1.00 1.00 0.95 0.58 0.18 0.12 
4 &* 1.00 0.96 0.58 0.24 0.06 0.04 

t* a 1.00 0.96 0.58 0.24 0.06 0.04 
12 &* 0.78 0.55 0.21 0.07 0.02 0.01 

t* a 0.78 0.56 0.21 0.07 0.02 0.01 
-0.8 1 &* 1.00 1.00 1.00 1.00 0.87 0.68 

t* a 1.00 1.00 1.00 1.00 0.87 0.68 
4 &* 1.00 1.00 0.99 0.83 0.36 0.23 

t* a 1.00 1.00 0.99 0.84 0.36 0.23 
12 &* 0.99 0.95 0.69 0.34 0.10 0.07 

t* a 0.99 0.96 0.70 0.35 0.10 0.07 

Table 2: Stationary process {Ut} in (1); MA(1), T = 100. 
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¢ () k Test a 
0.7 0.8 0.9 0.95 0.99 1.0 

0.4 0.4 1 a* 1.00 0.98 0.79 0.43 0.14 0.09 
t* 

Ci 
1.00 0.97 0.76 0.42 0.13 0.09 

4 a* 0.92 0.77 0.40 0.17 0.04 0.03 
t* 

Ci 
0.91 0.75 0.40 0.18 0.05 0.03 

12 a* 0.44 0.30 0.12 0.05 0.01 0.01 
t* 

Ci 
0.45 0.31 0.14 0.06 0.02 0.01 

-0.4 -0.4 1 a* 1.00 1.00 0.99 0.77 0.29 0.20 
t* 

Ci 
1.00 1.00 0.99 0.78 0.29 0.20 

4 a* 1.00 0.98 0.66 0.28 0.07 0.05 
t* 

Ci 
1.00 0.99 0.67 0.28 0.08 0.05 

12 a* 0.90 0.73 0.32 0.11 0.03 0.02 
t* 

Ci 
0.90 0.73 0.32 0.12 0.03 0.02 

0.4 0.0 1 a* 1.00 0.97 0.63 0.27 0.07 0.04 
t* 

Ci 
1.00 0.96 0.62 0.27 0.07 0.04 

4 a* 0.95 0.81 0.43 0.18 0.05 0.03 
t* 

Ci 
0.94 0.81 0.43 0.19 0.05 0.03 

12 a* 0.47 0.31 0.12 0.04 0.01 0.01 
t* 

Ci 
0.47 0.32 0.14 0.05 0.01 0.01 

Table 3: Stationary process {Ut} in (1); ARMA(1, 1), T = 100. 
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T p Test a 
0.7 0.8 0.9 0.95 0.99 1.0 

50 
A 0.98 0.78 0.33 0.15 0.07 0.05 a 
ta 0.97 0.78 0.34 0.15 0.07 0.05 

0.2 &* 0.77 0.48 0.16 0.07 0.03 0.03 
t* a 0.77 0.49 0.17 0.07 0.03 0.03 

0.1 &* 0.54 0.30 0.10 0.05 0.02 0.02 
t* a 0.54 0.30 0.11 0.05 0.02 0.02 

0.05 &* 0.38 0.24 0.10 0.05 0.03 0.02 
t* a 0.37 0.23 0.10 0.05 0.02 0.02 

100 
A 1.00 1.00 0.77 0.31 0.07 0.05 a 

ta 1.00 1.00 0.77 0.32 0:08 0.05 
0.2 &* 1.00 0.97 0.56 0.21 0.05 0.03 

t* a 1.00 0.97 0.58 0.22 0.05 0.03 
0.1 &* 0.99 0.87 0.40 0.14 0.03 0.02 

t* a 0.99 0.87 0.41 0.14 0.03 '0.02 
0.05 &* 0.86 0.63 0.25 0.08 0.02 0.01 

t': a 0.87 0.64 0.26 0.09 0.02 0.01 

Table 4: Stationary process {Ut} in (1); independent standard normal variables. 
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' " 

() p Test a 
0.7 0.8 0.9 0.95 0.99 1.0 

0.8 0.2 &* 0.99 0.91 0.45 0.15 0.03 0.02 
t* 

Cl' 
0.99 0.90 0.45 0.15 0.04 0.02 

0.1 &* 0.95 0.78 0.34 0.11 0.03 0.02 
t* 

Cl' 
0.94 0.77 0.35 0.12 0.03 0.02 

0.05 &* 0.78 0.55 0.21 0.07 0.02 0.01 
t* 

Cl' 
0.77 0.55 0.22 0.08 0.02 0.01 

-0.4 0.2 &* 1.00 1.00 0.88 0.47 0.14 0.09 
t* 

Cl' 
1.00 1.00 0.89 0.48 0.14 0.09 

0.1 &* 1.00 0.99 0.68 0.28 0.07 0.05 
t* 

Cl' 
1.00 0.99 0.69 0.29 0.07 0.05 

0.05 &* 0.98 0.87 0.42 0.16 0.04 0.03 
t* 

Cl' 
0.99 0.87 0.43 0.16 0.04 0.03 

-0.8 0.2 &* 1.00 1.00 1.00 1.00 0.73 0.54 
t* 

Cl' 
1.00 1.00 1.00 1.00 0.74 0.54 

0.1 &* 1.00 1.00 1.00 0.95 0.50 ·0.33 
t* 

Cl' 
1.00 1.00 1.00 0.95 0.50 0.33 

0.05 &* 1.00 1.00 0.98 0.74 0.28 0.18 
t* 

Cl' 
1.00 1.00 0.98 0.75 0.28 0.19 

Table 5: Stationary process {Ut} in (1); MA(1), T = 100. 
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rP () p Test 0: 

0.7 0.8 0.9 0.95 0.99 1.0 
0.4 0.4 0.2 &* 0.96 0.79 0.32 0.10 0.02 0.01 

t* 
0' 

0.94 0.77 0.33 0.11 0.02 0.02 
0.1 &* 0.88 0.66 0.26 0.09 0.02 0.01 

t* 
0' 

0.86 0.65 0.28 0.10 0.02 0.01 
0.05 &* 0.67 0.46 0.17 0.06 0.01 0.01 

t* 
0' 

0.66 0.45 0.19 0.07 0.02 0.01 
-0.4 -0.4 0.2 &* 1.00 1.00 0.99 0.78 0.30 0.20 

t* 
0' 

1.00 1.00 0.99 0.79 0.30 0.20 
0.1 &* 1.00 1.00 0.90 0.52 0.16 0.10 

t* 
0' 

1.00 1.00 0.91 0.52 0.16 0.10 
0.05 &* 1.00 0.98 0.66 0.30 0.09 0.05 

t* 
0' 

1.00 0.98 0.67 0.30 0.08 0.05 
0.4 0.0 0.2 &* 0.98 0.84 0.36 0.11 0.03 0.02 

t* 
0' 

0.97 0.83 0.37 0.12 0.03 0.02 
0.1 &* 0.91 0.70 0.28 0.09 0.02 0.01 

t* 
0' 

0.90 0.70 0.29 0.10 0.02 0.01 
0.05 &* 0.71 0.48 0.18 0.06 0.01 0.01 

t* 
0' 

0.71 0.48 0.19 0.07 0.02 0.01 

Table 6: Stationary process {Ut}in (1); ARMA(1, 1), T = 100. 
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