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Abstract

Two new different stochastic models for earthquake occurrence are discussed. Both models are focusing

on the spatio-temporal interactions between earthquakes. The parameters of the models are estimated from

a Bayesian updating of priors, using empirical data to derive posterior distributions. The first model is a

marked point process model in which each earthquake is represented by its magnitude and coordinates in

space and time. This model incorporates the occurrence of aftershocks as well as the build-up and subsequent

release of strain. The second model is a hierarchical Bayesian space-time model in which the earthquakes are

represented by potentials on a grid. The final ambition of the models is to make predictions on the occurrence

of earthquakes.

1 INTRODUCTION

Earthquake forecasting in the strict sense with the exact prediction of the time, the location, and the

magnitude of an earthquake has been a difficult area of research for several decades. One outcome of

this research, however, is that we today know much more about why earthquake prediction is difficult

(e.g., Kagan, 1997). This difficulty is in part tied to concepts such as self-similarity, criticality and

nucleation processes: All earthquakes start small, and while we know much about the limits to growth,

we do not know in sufficient details when and why a rupture stops before that.



In this paper we outline two new different stochastic models for earthquake occurrence which both

are focusing on the spatio-temporal interactions between earthquakes. We believe that by including

the increased knowledge of earthquake processes in more advanced stochastic models the prediction

capabilities for earthquakes can be improved. Both models are based upon Bayesian approaches with

user specified prior distributions for all parameters, while empirical data are used for deriving posterior

distributions.

The first model is a marked point process model (e.g., Cressie, 1993) in which each earthquake is

represented by its magnitude and coordinates in space and time. The marked point process model

has the advantage that it represents each earthquake separately. This gives a fine resolution making it

feasible to include known physical quantities connected to each single earthquake. At this point the

model includes the effects of aftershocks as well as the build-up and subsequent release of strain.

The second model is a hierarchical Bayesian space-time model (seeWest and Harrison, 1997), in which

the earthquakes are represented by potentials in a grid. The hierarchical model represents areal effects

efficiently since the primary variables are related to properties of regions or grid blocks.

In both models there are many possible parametrizations. The principles behind the estimation and

algorithms are independent of a particular parametrization. Another freedom of the models is the

choice of prior distributions. If the choice of priors turns out to be controversial it is always possible to

choose flat priors. This, however, gives less information and subsequently may lead to less precision

in the predictions. The models are quite preliminary in that they solely are based upon data from an

earthquake catalog and as such do not incorporate any known geophysical or geological information

from the earthquake region.

It is a primary aim to develop the marked point process model further by including more detailed

geological information such as faults and weakness zones, rupture characteristics and stress drops

connected to the larger earthquakes in a catalog, tectonic processes in the region, etc. This model

is a very flexible one and is well suited for the incorporation of such information and other kinds of

changes. We believe that with such improvements the marked point process model will be a well suited

tool for a better understanding of occurrence characteristics of earthquakes in various regions.
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2 MARKED POINT PROCESS MODEL

Marked point processes are commonly used stochastic models for representing a finite number of

events located in space and time. Earthquake occurrence can very well be fitted into a marked point

process model. Each earthquake has, in addition to a location in space and time, parameters repre-

senting the magnitude and quite often also information about the earthquake fault lines. Point process

models for earthquakes have previously been discussed by Vere-Jones (1995) and Ogata (1998). The

model presented in this paper treats aftershocks in a similar fashion to the work by Ogata. In addition,

the model takes into account the effect of strain build-up. The ultimate goal is to include as much as

possible of known physical processes into the model.

2.1 THE MODEL

In our notation an earthquake is represented by and , where is the

hypocenter coordinates ( = longitude, = latitude, = depth), is the moment magnitude, and

is the time. An earthquake catalog consists of all observed

earthquakes above a certain magnitude in a specified region, and in a given time period .

The two major assumptions made in the proposed model are:

The intensity of earthquakes is a function of the parameters ,

all previous earthquakes in the region, and some parameters to be determined by Bayesian

updating. If additional data or physical information is available, this should be included in this

intensity.

The time averaged intensity as a function of magnitude and location is

known.

The time independent intensity represents the average number of earthquakes per unit time and

unit volume. We have here estimated from a catalog. It may, however, be possible to estimate
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from geological data of earthquakes, or a combination of such data and a catalog. This is believed

to give a more stable estimate since a catalog may have completeness problems. In particular, it may

not cover sufficiently many large earthquakes in each region to give the stability that is desired. This

aside, it is a natural choice to let be determined by the well-known Gutenberg-Richter law for

the distribution of magnitudes such that , where the value of the scaling parameter

usually is in the interval (e.g., Vere-Jones, 1995).

We will assume that the intensity is given by

(1)

where is the background intensity, represents the effect of strain build-up, and represents

the increase in the intensity after an earthquake used for modeling the aftershocks. The background

intensity depends implicitly on the parameters through the requirement that

averaged over time equals . If the strain build-up is omitted, , while if the aftershock

treatment is omitted, . In the case that both and the model is just reduced to a

simple Poisson model.

The intensity is used to model the aftershocks. It can be used also to model foreshocks but we

have not pursued this idea in the current paper. Let be the magnitude of a shock in the catalog

at the time , and the magnitude of a subsequent shock. Aftershocks are then modeled by

for earthquakes for . We will assume that has the form

(2)

where

(3)

The functions , and represent magnitudial, temporal, and spatial effects, respectively. Note

that the summation implies that if there is a large earthquake followed by a series of smaller

earthquakes all of these earthquakes contribute to the intensity. A typical form of is

, in accordance with the Gutenberg-Richter law. This gives the

same magnitude distribution as the time averaged intensity. For the temporal effect we assume that
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. The spatial effect can be represented by a function based on the

distance between the hypocenters, i.e., .

It seems to be generally accepted that there is more regularity in the occurrence of earthquakes than can

be accounted for in a Poisson model (Working Group on California Earthquakes Probabilities, 1995).

The assumption is that in any particular region strain is slowly building up and then released due to

earthquakes. This effect can be incorporated into a point process model. We first define a state variable

that can be connected to strain, or to stress for that matter. The interpretation of may be different

than the standard definition of strain (or stress), but its general nature will be such that it reflects the

spatio-temporal release of strain/stress energy. For simplicity we refer to as strain in the following.

We define by

(4)

with

(5)

and

(6)

Here represents the average strain build-up per unit time and the release of strain for each earth-

quake. We have made the assumption that the mean strain release equals the mean strain build-up.

The strain release is factored into two terms related to the magnitude of the earthquake and a spatial

effect, respectively. Thus, represents the strain at any point in space and time, given all the

previous earthquakes contained in the catalog . It is assumed that builds up linearly and then de-

creases instantaneously with each earthquake. The strain has a variability that is independent of time,

and is an increasing function of given by

(7)

It is implicitly given through this parametrization that the time-averaged intensity of earthquakes equals

. The effect of is to reduce the variability in the time periods between very large earthquakes
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compared to the simple Poisson model. The variability in time periods between large earthquakes

becomes smaller and smaller with increasingly large values of and . The parameter specifies

the surrounding region of an earthquake in which strain is released.

2.2 POSTERIOR DISTRIBUTIONS FOR THE PARAMETERS

From the real catalog of the period it is possible to find the posterior distributions of the

parameters . These posterior distributions represent the best guesses for the parameters and should be

used in all predictions. The posterior distributions for the parameters , given the data in the catalog

, are defined by the equation

(8)

The likelihood can be calculated from

(9)

where the factor is approximated by a constant . This factor is

due to periods without earthquakes, while the factor represents the in-

tensities for the actual earthquakes. The posterior distributions for the parameters are found by Markov

chain Monte Carlo simulation from (8). In Markov chain Monte Carlo simulation one defines a chain

of parameter sets that after a sufficient number of iterations satisfies the specified distributions. The

maximum likelihood estimates for the parameters are the parameters that maximizes the expression (9).

2.3 SIMULATIONS AND PREDICTIONS

Simulation from the model is fairly straightforward. The simulated earthquakes are generated one at a

time in chronological order, and the intensity for each new earthquake is given by (1). An example of

a simulatin is given in the next section.
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Predictions can be done by first sampling values of the parameter set from the distributions (8)

using the most recent earthquake catalog for the region. These parameter sets can be found by

Markov chain Monte Carlo simulation. For each of these sets of parameters new earthquakes are

simulated based upon the intensity , where is continuosly updated during simulation.

Probabilistic predictions are then obtained simply by counting the number of earthquakes in the differ-

ent simulations. For short-term predictions and when the intensity is low it is also possible to use the

intensities directly.

2.4 RESULTS

As a first step we have implemented an algorithm for estimating the maximum likelihoods of the

parameters . The empirical data we have used are based on an earthquake catalog over the time span

1932 – 1999 compiled by the Southern California Earthquake Center, SCEC (2000), and limited to the

region – N, – W. We have also limited the data to include only the epicenter coordinates

= longitude and = latitude, thus neglecting the hypocenter coordinate = depth. In Fig. 1 (left)

is shown the location of all quakes of magnitudes for this region and the given time span.

We have included all earthquakes of magnitude in our data set, which comprises 15804

earthquakes over the time-span of 24837 days, giving an average intensity of 0.636 earthquakes per

day. A simple time-magnitude plot in Fig. 1 (right) shows that the completeness seems to be reasonable

back to 1942. The degree area is divided into 1600 grid cells, with each cell corresponding to a

size of about km. The intensity for each grid cell is calculated from the empirical data.

An average -value of 0.93 for the Gutenberg-Richter relation is estimated from the data.

Using the 58-year period 1942–99 of the catalog, the estimation of the maximum likelihoods yields

, and when the strain build-up is

omitted and hence . In the calculation we have assumed that the contributions to

for each quake go no more than 10 years back in time. Hence, the 10-year period 1932–41 of the

empirical data is used indirectly in the calculation giving contributions to for quakes in the period

1942–51. A detailed analysis of the parameters indicates that 60.3% of the quakes in the period 1942–

99 are due to aftershock activity while the remaining 39.7% of the quakes are due to background
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Figure 1: The location of earthquakes with plotted together with the major faults (left), and the

magnitude vs. time for earthquakes with (right) in Southern California in the period 1932 – 1999.

activity. An interpretation of the parameter is that the increased intensity due to an earthquake of

magnitude is twice that of a earthquake. The values of and indicate that the

increase of intensity is halved 20 minutes after an earthquake. Finally, the value of indicates that the

increased intensity is halved at a distance of 1.9 km from the epicenter of the earthquake. Including the

build-up of strain the calculation of the maximum likelihoods yields

, and . Turning on the strain build-

up hence yields minor corrections to , and , while and both vanish. The direct

interpretation of is that the build-up and release of strain (note that this is not strain energy) is

independent of the magnitudes of the individual earthquakes, and that it is the number of earthquakes

(the cumulative effect) that matters in this context. Indirectly, however, a large earthquake has a greater

impact than a small one because it triggers a larger number of aftershocks.

Finding the parameter means that each earthquake in the catalog has a global effect on the

build-up and release of strain. This is difficult to interpret physically but a plausible explanation of the

result is that we so far in the model have used epicentral distances instead of the smallest distance to
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the causative fault (the rupture plane). Another significant source of error may be related to our crude

assumption that at the beginning and the end of the catalog. This assumption was made from

simplicity and from the lack of knowledge about the actual state of strain in the various regions and

different points of time. It is also clear that the earthquake catalog we have used in estimating the

parameters of the model covers a too short time span (1932 – 1999) to carry sufficient information on

the build-up and release of strain. Hopefully, in a refined model where these issues are taken better

care of, the problem with the vanishing of will be resolved. The vanishing of suggests that this

parameter, as given by the expression (6), is superfluous in the model. A better representation of the

strain release might therefore be given by , in accordance

with the empirical fact that the spatial extension of an earthquake usually behaves like

(implying self-similarity), except for larger earthquakes where (e.g., Stock and Smith,

2000). In this expression for the old has been replaced by a new , i.e., advantageously

there is one less parameter in the model to be estimated.
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Figure 2: Earthquakes of in the period 1990 – 1999 in Southern California (left), and simulated

earthquakes over the same 10-year period using the marked point process model (right). The simulation is based

on data from the time period 1932 – 1999.
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Figure 3: Magnitude vs. time of actual earthquakes in the period 1990 – 1999 (left), and simulated earthquakes

over the same 10-year period (right) in Southern California.

At the next step we have implemented an algorithm for simulating earthquakes in the region of interest,

given the estimated values of the ’s. An example of a simulation over the 10-year period 1990–99 in

the case of is shown to the right in Figs. 2 and 3. This particular simulation thus does not take the

build-up and release of strain into account but is a result of the background activity due to the 1932–99

catalog and aftershock activity due to the 1980–89 data. The simulation resulted in 2315 earthquakes

over 3652 days, corresponding to 0.634 earthquakes per day. Of the 2315 earthquakes, 1419 of them,

or 61.3%, were afterquakes. For a comparison with observed data, the corresponding data from the

period 1990–99 are shown to the left in Figs. 2 and 3. Except for the fact that the period 1990–99 is a

period of higher than average intensity, we see from Fig. 2 that the simulation produces earthquakes

with a similar spatial distribution as the observed data. In addition it can be seen that the simulated

catalog reflects features in the 1932–99 data that are not present in the 1990–99 data. The simulation

results also display aftershock activity indicated by event sequences following the larger earthquakes

as shown in Fig. 3 (right), although this effect is not as pronounced as for the observed data in Fig. 3

(left).

Simulations where the build-up and release of strain are taken into account produce results that are

similar to those displayed in Figs. 2 and 3. This is not so surprising since we do not expect to see any

real periodicity pattern on the occurrence of large earthquakes over the time-span of only 10 years. The

return period for the largest earthquakes in this region is much longer than this. In Fig. 4, however,

we have shown the typical behavior of the strain function during a given simulation. The
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Figure 4: The strain function for a typical simulation taking into account the build-up and release

of strain. increases when the activity is below the average background intensity and drops suddenly

due to the aftershock activity following a large earthquake. The abrupt increase of over the first

500 days is due to a low value.

sudden drops in the graph correspond to the release of strain due to the aftershocks following a large

earthquake. To demonstrate the pure effect of the strain function in our model, we have

done simulations where the aftershocks treatment have been omitted by setting , effectively

giving . The other parameters are left unchanged, except that in the first simulation we set

(unchanged), while in the second simulation we take to be a factor 1000 higher.

The effect of varying in this manner is shown in Fig. 5 where the graphs show the frequency of

earthquakes for each 30-day period of the simulation period. A greater value of yields a more even

release of strain in each time interval, and hence a more even frequency of earthquakes in each 30-day

period. The model is not particularly sensitive to the value of since it was necessary to multiply

with a factor 1000 to achieve a significant difference. However, an improved estimate of the parameter

may imply a greater sensitivity to .
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Figure 5: The frequency of earthquakes in intervals of 30 days for a given simulation. The left figure shows the

frequency when the parameter , while to the right is shown the frequency when .

2.5 DISCUSSION AND CONCLUSIONS

In conclusion we have by maximum likelihood optimization estimated the parameters of the marked

point process model, using earthquake data from Southern California from the period 1932 – 1999. The

first 5 parameters are connected to the term and represent the aftershock activity.

The estimated values for these parameters seem reasonable. For instance, we may compare the results

and with the corresponding estimates found by Ogata (1998) in various

extensions of his Epidemic Type Aftershock-Sequences model. Applied to data from two different

districts of Japan, Ogata estimated a parameter (corresponding to in our model) to be in the range

0.900–1.136 and a parameter (corresponding to ) to be in the range 0.00172–0.0357. The last 3

parameters are connected to the factor , which represents the build-up and release of strain

in the model. Surprisingly, we found both and to vanish in the maximum likelihood estimation.

The vanishing of suggests that the release of strain locally is independent of the magnitude of the

earthquakes. The release of total strain energy, however, does depend on the size of the earthquake

since a large earthquake causes release of strain over a much larger area than a small earthquake.

Because of this, the parameter seems superfluous in the model and could be omitted by a slightly

different representation of the strain release, as indicated earlier. The vanishing of in our estimation

is difficult to interpret physically, however. This implies that all earthquakes in the catalog have a global
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effect on the release of strain for the region considered. This in not what we would have expected and

suggests that the given parametrization has been too crude to handle the spatial dependencies between

the release of strain and the individual earthquakes. One explanation for this may simply be that we

have used epicentral distances instead of the distances to the rupture plane. Clearly, more work needs

to be done on this point.

At the current stage we have done simulations from the model which demonstrates that it is able to

display both the spatio- and temporal interactions between earthquakes. In order for the model to gen-

erate as realistic earthquake patterns as possible, however, it is desirable to incorporate as much of the

seismological, geological and geodetic knowledge as possible in the model. To this end it is important

to keep in mind that the main aim of these efforts is to provide a probabilistic modeling of earthquakes

based on present multidisciplinary understanding and knowledge, and not to replace this knowledge

by a stochastic model. By use of Bayesian techniques it is possible to use empirical data to quantify

the relationships between different physical measurements. Some of the most important potential ex-

tensions of the current marked point process model would be:

Extended earthquake source representations

By making a representation of the entire earthquake rupture plane and seismic moment release over

the fault instead of just the hypocenter and the magnitude, it should be possible to delineate in more

details the larger earthquakes and thereby also get a better representation of the spatial distributions of

aftershocks and strain release connected to each earthquake.

Mapped faults and other structural geological features

Using mapped faults as an additional delineation of earthquake potentials will provide more realistic

estimates of local intensities and orientations of earthquake rupture characteristics. The fault orienta-

tions may, in a preliminary model, be considered as having a static probability distribution depending

simply on the location of the epicenter. It may also be possible to make it time dependent, depending

also on the value and the orientation of the local strain along the mapped faults. A realistic strain

build-up model should be related specifically to the mapped faults, incorporating both long-term and

short-term geodetic information.
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Strain release and build-up after earthquakes

An earthquake results in the release of strain. However, it may also increase the strain in certain regions

depending on the character of the earthquake rupture and the local structural geology. The incorpora-

tion of a realistic strain release (and build-up) model should also consider potential regions for aseismic

slip.

Improved triggering models and spatially dependent parameters

An improved modeling of potential triggering connections will be useful. The model can also be im-

proved by using parameters that are spatially dependent, i.e., both the s and the b-value from the

Gutenberg-Richter law may depend on the location, as well as vary with time.

Use data from before the beginning of a catalog

The average time independent intensities and perhaps also the strain build-up models may be improved

by using in particular paleoseismic information, addressing in particular uncertainties related to poten-

tial ‘earthquake deficit’ situations. It would also be possible to extend the catalog back in time based

on other types of simulations.

Use of other kinds of geo-information

One may let the intensities depend on other kinds of data of potential importance for earthquake oc-

currence. By using a Bayesian technique it is only necessary to provide the data and specify a prior

distribution for the relationship between the measurement and the intensities. A posterior distribution

is then derived from the data.

3 HIERARCHICAL BAYESIAN SPACE-TIME MODEL

The basic theory for Bayesian forecasting and dynamic models is presented in the book West and

Harrison (1997). A part of this theory is known in the engineering community as Kalman filtering. In

the excellent paper Wikle, Berliner and Cressie (1998) this basic theory is used to develop hierarchical

Bayesian space-time models, and it is suggested that this gives more flexible models and methods

for the analysis of environmental data distributed in space and time. The model is implemented in a

Markov chain Monte Carlo simulation framework using Gibbs sampling and applied to an atmospheric
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data set of monthly maximum temperatures.

Inspired by the work above we will in the following present a hierarchical Bayesian space-time model

to be applied to an earthquake catalog. Although Vere-Jones (1995) is very much concerned with a

marked point process approach to earthquake prediction he is stating at the end of the paper: “ ,

and it is possible that something like a hidden Markov model (for the strain regime) could provide a

more flexible modeling framework within which such precursory features could be explored.” We feel

that the present approach is just a full consequence of this line of thought.

3.1 THE MODEL

In the following, let an index denote space location and denote time. and will be discrete.

Typically, space locations will be situated on a grid where the distance between nearest grid points is

of the order 20 kilometers whereas the distance between points in time is of the order 10 days.

We now introduce the following unobserved (hidden) system state variable:

earthquake potential at space location and time

It is natural to consider as an unknown, continuously distributed random quantity. If it were dis-

cretely distributed, a hiddenMarkov model approach might have been possible. Furthermore, introduce

the observation corresponding to :

observed earthquake magnitude at space location and time

We also introduce a corresponding noise (shock) term:

noise (shock) at space location and time

In the following, all noise terms, with generic notation , are independent in space and time, each

having a normal distribution , where is a random quantity. These noise terms are also

assumed to be totally independent of all other noise terms.

The basic link between the earthquake potential and the observed earthquake magnitude at space loca-
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tion and time is given by the so-called observation equation:

(10)

where for an event
if occurs

otherwise

Here is a detection limit, being for instance . may be replaced by , which depends on time.

The main reason for such a sophistication is a change in data quality with time. The basic idea behind

the observation equation (10) is simple. If the sum of the potential and shock term at space location

and at time exceeds the detection limit, we observe an earthquake at and with magnitude equal

to this sum. If the sum does not exceed the detection limit, nothing is observed. Since has a

distribution involving truncation from below at , standard Bayesian dynamic model theory cannot be

applied and we have to rely on efficient Markov chain Monte Carlo simulation techniques.

The earthquake potential at and is now assumed to be decomposed in the following way:

(11)

Here is a time independent contribution, a short term contribution, a strain contribution

and a long term contribution. is a noise term linked to the system state .

We now give the so-called system equations for respectively the short term contribution, the strain

contribution and the long term contribution. These equations link the system state variables at the time

to the corresponding variables at the previous point in time and to information on observed

earthquakes at .

We start by the short term contribution. Introduce the notation north, east, south,

west, above, below. Furthermore, let location north of (if any) and define

correspondingly . Extending the corresponding contribution in the model

of Wikle, Berliner and Cressie (1998) to 3-dimensional space, we have

(12)
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Hence the short term contribution to the system state at and is linked linearly to the corresponding

contribution to the system state at time and to the contributions to the system states of its nearest

neighbors at time . We assume :

The s are assumed independent with expectations and variances to be considered as fixed param-

eters that must be specified.

We next consider the strain contribution given by

(13)

where we set and . is an incremental growth term (positive or

negative) added to the strain at and to give the strain at and , if there is no observed earthquake

at and . If such an earthquake has occurred, we assume that all strain has been released, and

hence the strain at and is assumed to be zero and a new build-up of strain is started. We model the

distributions of the s and s completely parallel to the ones of the s given above.

Since and depend on the observation in addition to the dependence on and

again standard Bayesian dynamic model theory cannot be applied enforcing the reliance on efficient

Markov chain Monte Carlo simulation techniques (see West and Harrison 1997, p. 565).

Finally, consider the long term contribution, which might be excluded from the model if it is not

supported by the earthquake catalog. Let

the period of the long term cycle at space location

Then, assuming to be odd, it follows from West and Harrison (1997), sections 8.6.3, 8.6.4, 8.6.6,

that we have the following reduced Fourier form model:

(14)
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and are interpreted as Fourier coefficients at and . The latter is only used to update the

former. It should be noted that (14) is more general than the corresponding contribution in the model

of Wikle, Berliner and Cressie (1998), where we would get

having for all and no noise terms to ensure a random development in time.

Wikle, Berliner and Cressie (1998) introduce simple spatial trends in various parts of their modeling

due to results of some exploratory data analyses. We will not make such restrictions in our model. We

simply model the distributions of the s and s completely parallel to the ones of the s given

above.

We now consider the time-independent term, , in (11). Extending the corresponding contribution

in the model of Wikle, Berliner and Cressie (1998) to 3-dimensional space, we have the following

Markov Random Field model:

(15)

where is a random quantity. Furthermore :

The s are assumed independent with expectations and variances to be considered as fixed parameters

that must be specified. Finally, the spatial dependence parameters and are assumed

independent and normally distributed with expectations respectively equal to and and

variances respectively equal to and . These parameters are again fixed and must be

specified.

Returning to (12), is modelled completely parallel to in (15) as a Markov Random Field. Hence,

(16)
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Having introduced a proper notation, the rest is straightforward. Furthermore, we assume that the

nearest neighbor parameters in (12) and are independent and normally distributed

with expectations respectively equal to and and variances respectively equal to

and . Again these parameters are fixed and must be specified.

Finally, following Wikle, Berliner and Cressie (1998) the random variances , , , , ,

, , and are assumed independent and inverse gamma (IG) distributed with parameters

respectively equal to . These parameters are fixed and must be specified.

The basic approach now is to start out from observations:

Here is the number of spatial locations on the grid. These observations are then used to find the cor-

responding uncertainty, measured by posterior probability distributions, in the system state variables:

Finally, we arrive at predictions on:

Details on the simulation approach are given in Section 3.3 and in the Appendix.

3.2 IMPLEMENTATION

As has already been pointed out our model and simulation approach is very parallel to the one of

Wikle, Berliner and Cressie (1998). Their atmospheric data set of monthly maximum temperatures

covered 20 years (1974–1993) measured at 131 stations. Hence, in our notation , .

With this size of the data set they had no problems with the implementation of the Gibbs sampling.

It should be mentioned that they used an exploratory data analysis to assess the fixed parameters that

must be specified in the prior distributions. This means that the data set is used twice, both à priori and

à posteriori, which is not in accordance with a strict Bayesian approach.
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For our earthquake catalog from Southern California (see Fig. 1) we suggest starting out in 1932 with

non-informative prior distributions and run the Gibbs sampling for data until and including 1970; i.e.

covering 39 years. We then use the posterior distributions based on this run as the prior distributions

in the next run starting out in 1971 covering 25 years until and including 1995. Then we use the

posterior distributions from the second run to make earthquake predictions for 1996, 1997, 1998 and

1999. These predictions are then compared with the observed earthquake data for the same years.

To make the data set manageable we suggest as a start a distance between time points for the first run to

be a month, giving , and half a month for the second run, giving .

We also suggest starting out dropping the depth dimension and consider a grid of

planar locations with distance between nearest grid points equal to 20 kilometer. Furthermore, as a

start we suggest dropping the long term contribution in (11) since this is the most speculative

one due to the need of assessing, , the period of the long term cycle at space location . Finally, for

simplicity we suggest starting out with a detection limit of M4.0 for the first run and M3.0 for

the second run due to improved data quality.

3.3 SIMULATION

As in Wikle, Berliner and Cressie (1998) the Markov chain Monte Carlo simulation technique to be

used is Gibbs sampling; see Casella and George (1992) and Gilks et al. (1996). With generic notation,

let be an vector of the random quantities , . Also following Wikle, Berliner

and Cressie (1998) for random and , let represent the conditional density of , given .

Furthermore, let be our initial prior information at , and let .

Our first aim is to get samples from the posterior distribution . Such samples follow

immediately by taking out samples of from samples from the corresponding posterior

distribution of all random quantities involved in the model until . To arrive at the latter samples

by Gibbs sampling full conditional distributions of any random quantity, given all the other and , are

needed. In general, full conditional distributions are determined by writing the full joint distribution

of all random quantities and the observations, divided by the appropriate normalizing constants. In

hierarchical models, such as the one dealt with in the present paper, this process is typically simplified
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due to the various conditional independence assumptions that are made. In particular, all components

of the full joint distribution that do not depend on the specific random quantity, whose full conditional

distribution is considered, “cancel” from the numerator and denominator of the latter distribution. The

derivations in Wikle, Berliner and Cressie (1998) and in the present paper begin after such simplifica-

tions.

Having samples from the posterior distribution of all random quantities in the model until , given

, samples of the additional random quantities at are arrived at by applying (11)–(14).

Especially, we get samples of , which can be used for prediction. Furthermore, having samples

of along with samples of , samples of are arrived at by applying (10). Again these

samples can be used for prediction. Proceeding like this samples of , , are

arrived at.

Since, as in Wikle, Berliner and Cressie (1998) we have chosen Gaussian distributions with conju-

gate priors, the derivation and implementation of the full conditional distributions needed for Gibbs

sampling are mostly straightforward. One exception concerns the full conditional distribution for each

of the Markov Random Field spatial dependence parameters . Ex-

actly, as in the latter paper we employ a Metropolis-Hastings step in the Gibbs sampling; see Chib and

Greenberg (1995) and Gilks (1996). In the Appendix all these full conditional distributions are given

and implemented. Furthermore, due to the Gaussian distributions, the antithetic coupling of two Gibbs

sampling chains given in Frigessi, Gåsemyr and Rue (2000) could be applied to increase the speed of

the algorithm.

To illustrate the derivations of the full conditional distributions, we will consider the ones of ,

, , and . These are the most challenging ones due to the appar-

ent complex relations (10) and (13), which are key relations in our earthquake prediction modeling.

The generic notation is used to represent the full conditional distribution of given all the other

random quantities until , and .

We start by establishing , . Let be the cumulative distribution function of the
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distribution and let

be the mixture distribution having a probability mass in 0 and a contribution

for values not less than . From (10) we have

Furthermore, from (11) we have

By standard algebraic manipulations, we then get, :

Note that this result implies that , are conditionally independent given all random

quantities except for , and .

Since no explicit expression for exists, a normalizing constant for the case

cannot be found. Hence, this is not a straightforward distribution to sample from. However,

can be computed numerically by a standard routine and hence we can employ a

Metropolis-Hastings step in the Gibbs sampling. As a proposal distribution we use the one above

corresponding to , i.e. with no truncation in (10), which is just a product of normal distribu-

tions.
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A probably better method for each case has been suggested by our colleague Jørund Gåsemyr.

First draw a fictitious earthquake magnitude, , from the conditional distribution of such a magnitude

less than the detection limit. Secondly, draw a from the same normal distribution used for the case

, but with replaced by .

We next turn to , . From (11) and (13) we have

where

Similarly, we get:

where

where
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, are straightforward to sample from. Again note that , are

conditionally independent given all random quantities except for , and .

We finally consider . From (10) we have:

This is obviously not straightforward to sample from. Again we can employ aMetropolis-Hastings step

in the Gibbs sampling with proposal distribution equal to the one above corresponding to ,

which in fact is . However, here the suggestion

of Jørund Gåsemyr seems just excellent. For each , just use the already drawn fictitious .

Then draw a from the inverse gamma distribution above, but with replaced by everywhere

where .

4 CONCLUDING REMARKS

We have in this report introduced two different stochastic models for earthquake occurrence, both

focusing on the spatio-temporal interactions between earthquakes. Both models employ Bayesian

updating of prior distributions for all parameters of the models, while empirical data are used for

deriving posterior distributions. The first model is a marked point process model in which individual

earthquakes are represented by their magnitudes and locations in space and time. In the second model

the earthquakes are represented as potentials on a grid. At the current stage we have implemented

an algorithm for simulating earthquakes only for the first model. This has been fairly straightforward

because of the explicit representation of each earthquake in this model. An algorithm for simulations

from the second model is planned and will be presented in a future report.
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APPENDIX: THE FULL CONDITIONAL DISTRIBUTIONS IN THE HIERARCHICAL

BAYESIAN SPACE-TIME MODEL

In this Appendix we give the full conditional distributions needed for Gibbs sampling in the hierarchi-

cal Bayesian space-time model. Remember that , , , and

are given in Section 3.3. Completely parallel to the deduction of , , we

get

where

We now turn to , and following Wikle, Berliner and Cressie (1998), write (12) in the form

Here is an diagonal matrix with six off diagonals given by the nearest neighbor parameters

and a main diagonal containing . For edge sites, some of the off-diagonals

have corresponding zeros. Completely parallel to the deduction of (A.8), (A.10) and (A.12) in Wikle,

Berliner and Cressie (1998), we get
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where

Let be the diagonal matrix containing . Then

We next turn to , and :

where for
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where for

where

Next consider and . Parallel to (16) of Wikle, Berliner and Cressie (1998) we have from

(15)

where is a symmetric matrix with six off-diagonals given by (see Cressie

1993, p. 434). Completely parallel to the deduction of (A.14) in Wikle, Berliner and Cressie (1998)

we get

where

As an alternative, the fast and exact simulation algorithm for general Gaussian Markov Random Fields

given in Rue (1999) could be applied to arrive at .
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Let be the diagonal matrix containing . Then

where

We now consider and . As in Wikle, Berliner and Cressie (1998) let be the matrix

with zeros on the main diagonal instead of and let be the diagonal matrix containing .

Also define completely parallel to with replaced by and . Then

completely parallel to (A.28) of the latter paper, correcting for a misprint, we get:

where

Again, the algorithm of Rue (1999) could be applied to arrive at . is identical to

by everywhere replacing and by .

Turning to , , , , and , we consider the first one since the

results for the rest are completely parallel. As in Wikle, Berliner and Cressie (1998) let be the

matrix with zeros on the off-diagonal of ’s, let be an matrix with ones on the off-diagonal

of ’s and zeros elsewhere and let . Then completely parallel to the deduction

of (A.31) of the latter paper, again correcting for a misprint, we get

where
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The Markov Random Field spatial dependence parameters , , , , , have

already been commented on in Section 3.3. We consider the first one since again the results for the rest

are completely similar. Parallel to (A.32) of Wikle, Berliner and Cressie (1998), we have

where is on two of the six off-diagonals of . The presence of in the determinant term

makes this a difficult distribution to sample from. Instead as in the latter paper we employ aMetropolis-

Hastings step in the Gibbs sampling with the following proposal distribution:

where

Note that when considering and these random quantities are replacing , and

, whereas otherwise is replaced by .

What is left are the remaining variances and we get completely parallel to the deductions in Wikle,
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Berliner and Cressie (1998):
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