
.

Master’s thesis

Reinforcement learning with
the TIAGo research robot
Manipulator arm control with actor-critic reinforcement learning

Markus Toverud Ruud

Robotics and Intelligent systems
60 ECTS study points

Department of Informatics
Faculty of Mathematics and Natural Sciences

Spring 2023

Markus Toverud Ruud

Reinforcement learning with the
TIAGo research robot

Manipulator arm control with actor-critic
reinforcement learning

Abstract

Control of robotics for object grasping and manipulation is still a complex
problem with many different approaches and solutions. This project
examines the usage of actor-critic reinforcement learning methods in
an attempt to teach reinforcement learning agents to control a robotic
manipulator arm attached to a mobile research robot. The agent
controlling the arm is trained to attempt to reach for and assume a pre-
grasp position around an object placed on a table in a simulated world.
Different agents are trained with various degrees of utilization of the
robot’s sensory systems and with varying definitions of the parameters
associated with reinforcement learning, such as the state space, action
space, and reward function definitions. Comparative experiments are
conducted in the same simulated environment, comparing the different
reinforcement learning agents with each other, as well as comparing the
best-performing agent with a traditional motion planning algorithm. The
results indicate that the best-performing agent’s proficiency at reaching
and assuming a pre-grasp position in its initial simulation environment
(PyBullet) peaks at 92%. However, when transferred to and retrained
in the same environment in which the motion planning algorithm is
implemented (Gazebo), its accuracy reduces significantly to 55.8%. In
contrast, the motion planning algorithm achieves a success rate of 76%
for the same task. Although the results suggest that the best-performing
trained agent’s accuracy is worse than that of the traditional motion
planning algorithm for the task presented in the Gazebo environment, it
is significantly faster at reaching the object because it does not require pre-
planning the motion. Additionally, different simulation environments are
discussed, highlighting the differences between using Gazebo, the most
common simulation environment for robotics development, and PyBullet
a physics engine implemented for ease of use in Python.

i

Contents

1 Introduction 1
1.1 Research goals . 2
1.2 Scope and limitations . 2
1.3 Outline . 3

2 Background 5
2.1 Robotics in society . 5

2.1.1 The industry of modern robotics 5
2.1.2 Human-robot interaction 6
2.1.3 The TIAGo research robot 7

2.2 Robot perception and scene understanding 7
2.2.1 TIAGo’s visual sensory systems 8

2.3 Robotic modeling and control 8
2.3.1 Rigid body transformations/Coordinate frame as-

signments . 8
2.3.2 Set-point control . 10
2.3.3 Trajectory and motion planning 10
2.3.4 Motion planning algorithms 11

2.4 Machine leaning . 13
2.4.1 Neural networks . 13
2.4.2 Neural network weight updates 14

2.5 Reinforcement learning . 16
2.5.1 The Markov decision process 17
2.5.2 Model-based and model-free free reinforcement

learning . 18
2.5.3 Action-value functions and the bellman equation . . 19
2.5.4 Deep reinforcement learning 19
2.5.5 Actor-Critic reinforcement learning 20
2.5.6 Offline reinforcement learning 21
2.5.7 Transfer learning . 22
2.5.8 Reinforcement learning in robotics 23

2.6 Image classification and object detection 24
2.6.1 Convolutional layers 24
2.6.2 YOLO (you only look once) object detection 25

ii

3 Methods 27
3.1 Primary simulation environment 27

3.1.1 Actionlib . 27
3.1.2 TF . 28
3.1.3 OpenCV . 29

3.2 Secondary simulation environment 30
3.3 Reinforcement learning setup 30

3.3.1 Inspiration . 31
3.3.2 The state space . 31
3.3.3 The action space . 33
3.3.4 Action space constraining 34
3.3.5 The reward mechanism 35
3.3.6 Reward scaling . 41
3.3.7 The state-transition memory 41
3.3.8 The optimizer . 42
3.3.9 Neural network structure 42
3.3.10 Rate of control . 43

3.4 Algorithms . 44
3.4.1 DDPG . 44
3.4.2 SAC . 45
3.4.3 Algorithm comparison 46

3.5 Naive object center-point detection procedure 46

4 Preliminary experiments 51
4.1 Simulation environment . 51
4.2 Early stage simulations . 51

4.2.1 First round . 52
4.2.2 Second round . 54
4.2.3 Third round . 55

4.3 Conclusions of the early results 56

5 Results 57
5.1 Training data . 58
5.2 Simulated performance test 59
5.3 Retraining results . 61
5.4 Example motion planning algorithm comparison 61
5.5 Object position estimation accuracy test 64

6 Discussion and conclusion 66
6.1 Performance results . 66
6.2 Simulation environments . 66

6.2.1 Simulating in Gazebo 66
6.2.2 Simulating in PyBullet 67
6.2.3 Environment comparison 68

6.3 Transfer leaning between the environments 69

iii

6.4 Results comparison to example motion planning algorithm . 69
6.5 The effect of position estimation on the fully trained agent . 70
6.6 Learned collision avoidance 70
6.7 Configuration space as action space 71
6.8 Future work . 72
6.9 Ethical considerations . 72
6.10 Conclusion . 73

A Packages and setup 75
A.1 Python setup for RLlib . 75
A.2 Tutorials . 76

A.2.1 How to run the trained agents 76
A.2.2 How to visualize in rviz 77

B Brief forward kinematics example 80
B.1 The denavit-hartenberg conventions 80
B.2 Deriving forward kinematics 81

C TIAGo constraints 84

D Example motions 86

iv

List of Figures

2.1 Select coordinate frames of the TIAGo robot 8
2.2 Example set-point controller step-response 10
2.3 Left: 2-link manipulator in an environment with obstacles

in a planar world. Right: The configuration space of the
same world where the blacked-out regions are CO obstacle
regions. Adapted from [39]. 12

2.4 Simple neural network illustration 13
2.5 Simple neural network neuron illustration 15
2.6 Reinforcement learning illustration 16
2.7 Deep Reinforcement learning illustration 20
2.8 Actor-critic Reinforcement learning illustration 21
2.9 Image convolution example of a 5x5 image with 3x3 kernel,

stride = 1, no padding. 24
2.10 YOLO architecture. From [37]. 25

3.1 Actionlib control visualization 28
3.2 TF tree of TIAGo with only used frames highlighted 29
3.3 Depth image and RGB image captured by TIAGos camera,

viewed through OpenCV. 30
3.4 Inferring the preferred direction of the Z-axis of the end-

effector’s coordinate frame. 37
3.5 Inferring the preferred direction of the X-axis of the end-

effector’s coordinate frame. 38
3.6 Reward based on direction and rotation of end-effector. . . . 39
3.7 Gripper direction examples 40
3.8 The effect of rate when the agent is exploring. Left: The

next configuration is sampled at a rate of 20 Hz. Middle:
The next configuration is sampled at a rate of 10 Hz. Right:
The next configuration is sampled at a rate of 1

2 Hz. 43
3.9 Mapping of object detection to center-point coordinates . . . 47

4.1 Gazebo simulation environment 52
4.2 Closeness to object placement in initial simulation. 53
4.3 Closeness to object placements in the second round of

simulation results . 54

v

4.4 Closeness to object placements in the third round of simu-
lation results . 55

5.2 Avg. reward of the agents during training 58
5.3 Normalized reward comparison of agents 58
5.4 Avg. reward of the retrained agent 61
5.5 Boxplot of object displacement 62
5.6 Boxplot of the object center-point approximation procedure

errors . 64
5.1 Motion sequences generated by the agent for two positions

of the object . 65

A.1 Rviz interface . 78
A.2 Model of TIAGo in Rviz . 78

B.1 Spherical wrist frame assignment. Adapted from [40]. 81
B.2 Point coordinate transform . 82

C.1 Body parts of TIAGo with frames 85

D.1 Example motion executed by the retrained SAC agent 86
D.2 Example motion executed by the retrained SAC agent 87
D.3 Example motion executed by the retrained SAC agent 87
D.4 Example motion executed by the retrained SAC agent 88
D.5 Example motion executed by the example motion planning

algorithm . 89
D.6 Example motion executed by the example motion planning

algorithm . 90
D.7 Example motion executed by the example motion planning

algorithm . 91
D.8 Example motion executed by the example motion planning

algorithm . 92

vi

List of Tables

4.1 Key points and shortcomings of initial simulation. 53

5.1 Performance results of the fully trained agents 60
5.2 Performance results of retrained agent compared to an

example motion planning algorithm. 61

6.1 Simulation environment comparison 68

A.1 Programs used in setup . 75

B.1 DH parameters . 80
B.2 DH parameters for spherical wrist 81

C.1 TIAGo’s controllable joints and their constraints 84

vii

Preface

This master’s thesis is submitted to the Department of Informatics at the
University of Oslo as part of the author’s master’s degree in the study pro-
gram Informatics: Robotics and Intelligent Systems. The main supervisor
of this project is Professor Jim Tørresen, group leader of the Robotics and
Intelligent Systems (ROBIN) research group at the Department of Inform-
atics at the University of Oslo. The work is partially supported by The
Research Council of Norway (RCN) as a part of the projects: Vulnerability
in the Robot Society (VIROS) under grant agreement no. 288285 and Pre-
dictive and Intuitive Robot Companion (PIRC) under grant agreement no.
312333.

Aknowledgements

I would like to sincerely thank my parents for letting me live in their
basement while writing this thesis and not having to endure the economic
strain of being a student in the Oslo rent market.
I would also like to thank my co-students and the staff at the ROBIN
research group for providing a good study environment.

viii

Chapter 1

Introduction

The fields of robotics and AI (artificial intelligence) powered systems have
seen formidable growth in recent years. Researchers all around the world
are attempting to figure out how to best combine the fields to utilize the
promising results of AI-based methods to create and control robots that
can be of great utility in a variety of tasks.
In Norway, there is a growing lack of workforce personnel in vital roles in
society, such as health care professionals. According to estimates by the
Norwegian Department of Health in 2021, different fields of healthcare
are understaffed by approximately 10,000 workers [19]. Part of a solution
to issues like this is theorized to be found in automation, using robots
and other autonomous or semi-autonomous machinery to assist with
and reduce the workload and number of personnel needed to provide
adequate care to patients. Development is generally split into two main
categories, affective and effective [42], concerning either caring for the
emotional well-being of the user or assisting with repetitive or strenuous
physical tasks. At this point in time, no cost-effective solution exists to the
problem, yet a variety of robotic research platforms are being developed
to find and research solutions to it. One such research platform is the
TIAGo robot, recently purchased by the robotics and intelligent systems
research group (ROBIN) at the University of Oslo. Falling mostly into
the effective category of robot development platforms, TIAGo features
a mobile base, a manipulator arm, a variety of sensory systems, and
some pre-programmed functionality, provided by the manufacturers of
the robot. The platform serves as a great foundation to research AI-based
manipulator control methods. Of those methods, reinforcement learning
(RL) is a promising approach to address complex manipulator control
tasks, as it allows the robot to learn from its own experiences and improve
its performance over time. Developments in RL research have produced
methods that can be utilized for control problems in dynamic, continuous
environments, and can thus possibly be harnessed to approach complex
real-world scenarios.
This project is based on attempting to utilize the TIAGo research platform.

1

With object manipulation in mind, an attempt is made to wield and train
reinforcement learning agents to control TIAGo’s arm in relation to objects
on a table. It is planned with the width of ROBIN’s study program
in mind, to utilize both machine learning techniques and some robotics
expertise in the same project.

1.1 Research goals

Throughout this project, two core questions are being studied.

Q1: Is it possible to utilize actor-critic reinforcement learning
techniques to facilitate object picking with the TIAGo robot?

Q2: How does the resulting behavior of the reinforcement learning
techniques compare to a motion planning approach already

implemented for the robot?

Even though techniques and algorithms already exist for object
handling and manipulation in TIAGo’s packages, none of them include
controllers that are completely machine-learning-based. The approach
in this project is utilizing reinforcement learning techniques combined
with varying degrees of sensory feedback to teach the agent controlling
the arm to regulate the arm’s movements on the go while the arm is in
motion. While working on a problem that is already solved by classic
trajectory and motion planning techniques, it is worth addressing through
a reinforcement learning perspective as it may prove to solve the problem
in novel or interesting ways.

1.2 Scope and limitations

In this thesis some somewhat unsuccessful attempts are first made to teach
the agent controlling the arm to learn to dynamically reach for objects on
a table, utilizing depth information gathered by TIAGo’s depth camera
to simultaneously avoid collision with the table itself and other objects
it is not supposed to reach for. All the initial attempts are conducted in
the Gazebo simulation environment [26], a simulation environment that
is commonly used for robotics simulations and development because of
its close ties to ROS (Robot Operating System) [36], the most common
platform for development of robotics. Later, the simulation environment
is replaced by the PyBullet [9] environment, in which agents are trained
more successfully, but lack any sense of collision detection, as simulation
of the depth camera of the robot is not implemented. The agents in the new
environment learn to control the arm to reach for objects and are trained
to become successful at reaching them, and semi-successful at reaching
and assuming a pre-grasp position. By successfully reaching a pre-grasp

2

position the object is not displaced by the arm’s movements and the end-
effector grippers of the arm end up around the object, ready to grasp
it. The trained agents of the PyBullet environment are also evaluated
in the Gazebo environment, to observe how the trained skills transfer
directly from one simulated environment to another. The best-performing
agent is also retrained in the Gazebo environment and compared to an
example motion planning algorithm, provided in the software packages
of the robot. The topics of object detection and position estimation are
also briefly addressed in the context of the reinforcement learning agents
presented.

1.3 Outline

First, some background information will be presented, starting with some
general information about robotics and robotic development. Moving on
to the fundamentals of robotic modeling and control, with topics such as
coordinate frame assignment and set-point control. In addition, trajectory
and motion planning will be introduced as a comparison to AI-based con-
trol. Moving on to the basics of machine learning and going a little more
in-depth on the topic of reinforcement learning.
After the background section, the methods used in the practical applica-
tions will be introduced, including the most useful ROS libraries, the setup
for the reinforcement learning agents, and the reasoning for the choices of
state spaces, action spaces, and reward functions designed for the tasks
presented. The specific reinforcement learning algorithms used by the
agents are also presented on a surface level. Lastly, a naive object position
estimation procedure is presented, utilizing an object detection package
that has been created for use in ROS.
In the preliminary experiments section, the first rounds of simulated ex-
periments are presented, including the somewhat unsuccessful attempts
and the thought process moving forward from them.
In the results section, the main results are presented, including the agents
trained in the PyBullet environment, their performances when directly
transferred to the Gazebo environment, the performance of the retrained
agent, the comparison between the retrained agent and an example mo-
tion planning algorithm, and lastly a quick evaluation of a naive object
position estimation procedure.
In the discussion section, the results are discussed along with discus-
sions about the choice of simulation environments, safety concerns of the
trained agents, proposed future work, and ethical considerations.
In the appendix, some technical specifications concerning the software
packages utilized in this project are presented, along with some quick tu-
torials on how to run the trained agents in the Gazebo environment.
Appendices on select topics required to understand robot modeling and

3

TIAGo’s specific constraints are also included, along with example mo-
tion sequences generated by the best-performing reinforcement learning
agent and the example motion planning algorithm.

4

Chapter 2

Background

2.1 Robotics in society

2.1.1 The industry of modern robotics

Making robots and other intelligent systems do simple day-to-day tasks in
a safe and sustainable manner is still an unsolved problem for many tasks
and use cases. The market for privately owned robotics is growing, yet
the trend seems to go towards more specialized devices such as robotic
lawnmowers, vacuum cleaners, and window cleaning systems and not
fully- or semi-autonomous service robots [43].
A care robot is by definition a machine that can do tasks related to physical
or emotional care, either autonomously or at least semi-autonomously
[14]. The vision of having care robots to facilitate elderly caregiving
and patient rehabilitation is not a new one. Scientific research teams
from all over the world have been working on the problem for years.
Some working development platforms have been made such as the ’Care-
O-bot’[2], Hector [20], and the HOBBIT project [11], yet none of these
prototypes has led to any commercially available product, despite some of
the projects’ over two-decade longevity. There are still roadblocks in terms
of having functional robotic units in health care, such as public spending,
as some of the most modern development solutions are quite expensive
and of course, most important of all, safety standards. The need to meet
safety regulations has led designers to simplify their goals, as simplified
goals are easier to accomplish and monitor. It has also split development
into two main categories, ’effective’ and ’affective’, in which the effective
branch focuses on the utility of the care robot, such as fetching items,
helping with loads, and cooking, while the affective branch focuses on
emotional support, such as robotic pets or interactive screens that a user
can communicate with.

5

2.1.2 Human-robot interaction

An important topic when considering the implementation and deploy-
ment of robotics is human-robot interaction. HRI is in broad terms how
the machine interacts with and is perceived by individuals in its surround-
ing environment. The field can range from topics such as safety of opera-
tion, as well as robotics’ broader impact on society, as jobs have been and
will continue to be replaced by computing machinery. HRI also involves
the acceptance of relying on computer systems in settings where a per-
son would previously be in full control, such as with fully autonomous
vehicles. It can also involve rules, regulations, and norms created by so-
ciety to regulate and guide to which extent robotic units are allowed to
operate.
In an article from 2016 [38], some of these topics are discussed. It is evident
that on some fronts, technology already exists to replace certain jobs. For
instance, computer systems that negate the need for a copilot on a com-
mercial aircraft or the coming of fully autonomous vehicles. However,
public opinion on the safety of these systems is somewhat skewed from
that of professionals and researchers in the fields as some of the technolo-
gies are viewed as somewhat ’risky’ and more dangerous than they truly
are. It is also questioned if it might be more advantageous for some tasks
to develop systems that greatly aid and make jobs easier than replacing
them entirely. Systems that augment the user such as radar-augmented
cruise control, run-off-the-road alarms, and vehicle-to-vehicle communic-
ation in cars does a good job of keeping traffic more safe, while still keep-
ing the human driver.
In the context of health care and rehabilitation, many back-breaking tasks
have to be performed, such as carrying and moving around injured or eld-
erly patients. It is found that workers in the field spend much of their time
doing manual labor or administrative tasks instead of taking care of the
emotional needs of the residents/patients[27]. It would thus be very help-
ful to have some assisting systems in place so that they could spend their
time making sure the residents/patients have their emotional needs met
rather than spend most of their time taking care of the most basic physical
needs.
A proposed solution to this is having a robotic assistant take care of the
most repetitive and basic tasks, such as cleaning, cooking, carrying items,
and patient checkups. However, tasks like that require very complex ma-
nipulation skills, and it requires the skills to be utilized in very dynamic
and differing environments. Effective motion planning algorithms already
exist, but often rely on lengthy planning steps before executing any action,
and are often dependent on the environment being static while moving or
the planned action will fail. Instead, AI agents could be used to control the
movements of the robotic manipulators, possibly allowing them to learn
how to solve complex tasks in dynamic environments.

6

2.1.3 The TIAGo research robot

TIAGo is a mobile service robot designed to work in indoor environments.
It features an extendable torso, a manipulator arm designed to grab
objects, and a mobile base. The arm can be fitted with several different
gripper options and has seven degrees of freedom(7-DOF), and can handle
a payload of up to 3 kg. It features a sensor suite that allows it to perceive,
plan and navigate in its own environment through the use of lasers,
sonars, and a depth camera. It also comes with ROS(Robot Operating
System) integration.
Because of its purpose as a research platform, it is also highly customizable
and can be controlled in a multitude of ways. A plethora of tutorials
exist for free on high-level control of the robot and its Gazebo simulation
implementation is freely available to anyone interested in testing and
developing software for the platform. While the software packages for
TIAGo include navigation packages for self-localization and mapping
(SLAM), obstacle avoidance, and topological localization, they are not
utilized in this project. Instead, lower-level control such as set-point
control for the manipulator arm is used and integrated into AI-based
control, as it allows the reinforcement learning agent to have total control
of the manipulator arm.

2.2 Robot perception and scene understanding

Robot perception systems are generally a combination of input sensory
data that feeds into an AI/Machine Learning (ML) model that utilizes
the sensory data stream for decision-making or control. The integration
of sensory data is a crucial component of multiple functions such
as object detection, scene understanding, and more [33]. It is also
important to recognize that different kinds of robotic systems utilize
a variety of different sensors, manufactured by different companies,
resulting in differences in sensory readings and utilization. In the case of
environmental mapping, an indoor robot can usually naively assume flat
terrain, and thus does not have to include intricate systems for calculating
the terrain it has to move upon. For outdoor robots it is quite the opposite
case, it has to include very robust systems to map its sensory data to a
complex terrain if it is to succeed in its tasks. Environmental conditions
also have to be considered when implementing a robotic system. A sensor
might work very well in indoor lighting or in broad daylight but struggles
when reading values if lighting conditions are poor. It is thus important to
know which sensors to use in certain situations and why. In the context of
object grasping and manipulation, the visual sensory systems are most
important as they are vital in the detection, location, and tracking of
objects.

7

2.2.1 TIAGo’s visual sensory systems

The TIAGo research robot is equipped with an RGB-D camera. The camera
works by processing two separate image streams. The first image stream
captures a standard RGB image, while the second captures a depth image
or point cloud, providing depth information throughout the camera’s field
of view. The combination of the two streams enables advanced computer
vision techniques, such as self-localization and mapping [10]. In addition,
they also allow for the deployment of state-of-the-art object detection
models on the RGB image, which can be projected on the depth image to
determine the position of objects in the world, allowing for precise object
manipulation.

2.3 Robotic modeling and control

In order to fully comprehend the decision-making process of designing the
reinforcement learning agents trained in this project and how they control
the robot, it is necessary to possess a basic understanding of how modern
robotics are modeled and implemented, as well as an understanding of
how each joint is controlled. To compare with how the reinforcement
learning agents operate, it is also important to know the basics of how
motion planning algorithms are utilized.

2.3.1 Rigid body transformations/Coordinate frame as-
signments

Figure 2.1: Select coordinate frames of the TIAGo robot

8

Modern robots are usually modeled as a chain of reference coordinate
frames that are designed in such a way that a transformation from one
frame to the next in the chain only involves one dynamic variable. This
can be achieved by following the Denavit-Hartenberg conventions [40].
These conventions state that the homogenous transformations between
one coordinate frame and the next can be characterized by first, a rotation
around the z-axis, then a translation along the z-axis, a translation along
the x-axis, and lastly a rotation around the x-axis. Transforming in this
order results in a matrix A that describes the homogenous transformation
in only four variables. When used in the context of robotics only one of
these variables is usually dynamic and controllable, and the other three
are static and determined by the physical design of the robot.
By having many ’simple’ matrices describing the transformations from
one frame to the next, a tree of interlinked coordinate frames can be built,
describing the chain of transformations required to transform from one
node of the tree to another. Some of TIAGo’s assigned coordinate frames
can be viewed in fig. 2.1 and most of TIAGo’s coordinate frame tree can
be viewed later, in fig. 3.2. Having such a tree removes the necessity
to transform through each and every coordinate frame by sequentially
multiplying the homogenous transformation matrices with each other. If,
for instance, a depth camera is utilized that captures a point Pcam in the
reference frame of the camera and it is valuable to know the point in
relation to the base of the robot, and not the camera, a transformation
matrix can be built using the tree. Assume there are three reference frames,
one for the camera, an intermediate reference frame in the middle, and one
for the base of the robot. The transformation from the reference frame of
the camera of the robot to the intermediate frame can be characterized by
the homogenous transformation Aintermediate

cam and the transformation from
the intermediate frame to the reference frame of the base of the robot
can be characterized by the homogenous transformation Abase

intermediate. The
direct homogenous transformation from the reference frame of the camera
to the reference frame of the base of the robot can then be found as the
transformation matrix Tbase

cam = Abase
intermediate Aintermediate

cam . The point Pcam can
then easily be transformed to be described in the base reference frame by
first padding the point and then multiplying the transformation matrix
Tbase

cam with it.
In practice, this is called forward kinematics, when joint angles or
displacements are known and used in homogenous transformations to
calculate the positions of the robotic links in three-dimensional space and
in a common reference frame. The joint angles and linear displacements
are readily available through proprioceptive sensors [39] such as ring
encoders, which read and keep track of the robot’s prismatic and revolute
joints. See appendix B for a practical example.

9

2.3.2 Set-point control

Figure 2.2: Example set-point controller step-response

In the context of manipulator control, it is possible to control each joint
by setting a desired position, velocity, acceleration, or torque/force.
However, only one parameter can be regulated at a time. To do so requires
the use of a set-point controller. A set-point controller is a controller that
regulates the system’s output to a desired or set-point value. It does so
by continually measuring the system’s output and comparing it to the set-
point value, generating an error.

Error = desired value − measured value

The controller then adjusts the system’s effort in order to minimize the
error and bring the output closer to the input. The controller does
so by utilizing control systems such as proportional-integral-derivative
(PID) control to regulate the response of the system to the input signal.
A controller such as this usually has to be manually tuned to achieve
critical damping, where the system reaches the desired value as quickly
as possible without overshooting and oscillations. With TIAGo, the set-
point controller parameters are already pre-configured and can directly
be utilized by motion planning algorithms or AI agents. In fig. 2.2, the
response curve of setting a desired angle for one of TIAGo’s revolute joints
can be observed.

2.3.3 Trajectory and motion planning

The goal of trajectory planning is to produce a sequence of reference in-
puts to the manipulator such that it executes a planned motion while also
considering the timing of the movements. The act of planning a motion re-
quires several stages. First, a path has to be determined, which represents

10

the desired trajectory of the end-effector of the manipulator. The path can
be designed as a continuous polynomial or a sequence of connected points
in space. The operating space of the manipulator is a crucial factor when
the path/trajectory is to be determined. The operating space describes the
permissible or reachable positions in the space the manipulator occupies,
and thus constraints and limits the motion the manipulator physically can
perform. The planned motion has to be within the manipulator’s operat-
ing space for the entirety of the planned motion.
The next part of the planning consists of inverse kinematics. Inverse kin-
ematics is the act of figuring out the necessary joint space configurations to
reach a point in space with the end-effector. In most cases, a single point in
space in the manipulators’ operating space can be reached with multiple
different configuration space parameters. This assumption holds for most
permissible configurations in a manipulator’s operating space unless the
point is at the border of the space. In these scenarios the manipulator has
to be fully extended to reach the point, resulting in what is called a sin-
gularity, a configuration where the robotic manipulator loses one or more
degrees of freedom.
After establishing a permissible path and identifying the necessary con-
figuration space parameters to reach the desired end position through in-
verse kinematics, functions for each controllable joint can be described.
For an arm of n controllable joints, each function qn(t) describes the set-
point value required of joint n at time t to reach the final, planned config-
uration. Each function qn(t) can thus be used as the input of the set-point
controller controlling joint n, causing the joints to actuate.

2.3.4 Motion planning algorithms

In the previous section, the process of generating a trajectory is discussed.
However, it is often a challenging task to find a suitable path from the
starting configuration of a manipulator to the goal configuration, requir-
ing complex algorithms and a detailed model of the environment. A
general way to model the environment is to start with the manipulator’s
configuration space C, containing all permissible configurations q ∈ Rn,
where n is dictated by the dimension of the configuration space which
usually coincides with the number of controllable parameters (prismatic
or revolute) of the manipulator. Obstacles are added to the configuration
space. A real-world obstacle’s image in the configuration space is called
COi and is a subspace of C in which all configurations q cause collision
between the manipulator and an obstacle Oi. COi regions are also defined
as regions in which the manipulator collides with itself, making them in-
accessible. The subspace CO of C is the union of all obstacles images and
regions of self-collision in the manipulator’s configuration space.

11

Figure 2.3: Left: 2-link manipulator in an environment with obstacles in
a planar world. Right: The configuration space of the same world where
the blacked-out regions are CO obstacle regions. Adapted from [39].

With the definition of the configuration space C and the obstacle region
CO, a subspace C f ree = C − CO is defined, a region that is free of obstacles
and in which configurations q has no collisions. A goal for the motion
planning algorithm can thus be defined. For a starting configuration qs
and a goal configuration qg, find a continuous path through C f ree from qs
to qg.

Sampling based methods

Probabilistic motion planning methods are algorithms that are useful for
efficiently solving high-dimensional configuration space problems. As a
manipulator’s configuration space increases in dimensionality and thus
complexity, it becomes too computationally expensive to exhaustively
search the whole space for a roadmap from the starting configuration
to the goal configuration. Sampling-based methods avoid having to
search the whole space by randomly sampling configurations q from C
and checking for collisions to build up an adequate image of C f ree. The
sampled configurations can be used in different ways, depending on the
algorithm. Probabilistic Roadmap (PRM) uses the sampled configurations
to build a graph structure approximation of the whole C f ree, connecting
each new collision-free configuration with its k closest neighbors and
when a large enough area of C is searched, uses a search algorithm
such as Dijkstra’s algorithm to search the graph and find the shortest
path from the starting configuration to the goal. Other sampling-based

12

methods, such as Rapidly-exploring random tree (RRT) use the sampled
collision-free configurations to grow a space-filling tree, terminating when
a path is found from the starting configuration to the goal configuration.
While both methods are probabilistically complete, guaranteeing that if a
path exists from the starting to the goal configuration, it will be found,
they vary in efficiency. PRM is a multi-query method, meaning that the
approximation of C f ree generated by using the method can be reused to
find other paths as long as the obstacles in the configuration space remain
static. RRT, on the other hand, is single-query, requiring a new search of C
each time a new path is to be found, it is however, much faster than PRM
when called for only a single path. Additionally, it is worth noting that
optimal versions of both PRM and RRT have been developed [24], which
guarantees finding the optimal path.

2.4 Machine leaning

To understand the learning process of reinforcement learning agents, it
is important to know the fundamentals of neural networks and their
iterative updating process.

2.4.1 Neural networks

Figure 2.4: Simple neural network illustration

Neural networks are computational models, used for decision-making
or predictions based on information they receive. A neural network must
always consist of an input and an output layer but requires one or more

13

hidden layers to be considered ’deep’. Deep neural networks are primarily
split into three main parts, an input layer, a hidden layer or multiple
hidden layers, and an output layer. The input layer receives some sort of
information, known as features, similar to covariates in a statistical model.
The features are numerical values that represent information about what
the network is attempting to predict, or often in the case of reinforcement
learning, information about the environment an agent operates in.
The hidden layer or layers contain nodes that sum up all the input nodes
and applies a function to the result, then pass the result into the next layer.
It is also common to see some form of bias b applied to the summation.
The output of the summation in each node is as follows:

ŷ =
n

∑
i=1

wixi + b

Where n is the number of inputs going into the node, xi is the input
value for input i, wi its trainable, scalar weight, and b is the optional bias
term. After the summation, a function is applied to the sum, called the
activation. The function most commonly used as an activation function
for a hidden layer is the ReLU (Rectifying linear unit) function or a leaky
ReLU. The output of a neuron in the hidden layer with a ReLU activation
function is given as:

y = f (ŷ) = max(0, ŷ)

The output layer receives the outputs of the last hidden layer and produces
a prediction/decision based on the information processed through the
network. Each node in the output layer functions similarly to the nodes
of the hidden layers except that the activation function used is selected
according to the specific usage of the network. For instance, if the
network is to be interpreted as a classifier, the output could be the percent-
confidence of the network that the presented data belongs to a certain class
and thus the output layer needs to use an activation function that squishes
the output to be between 0 and 1, this can be achieved by using a sigmoid
activation function for binary classification or softmax for multi-class.

2.4.2 Neural network weight updates

The purpose of neural networks is to learn patterns and relationships in
the data so that they can be used as predictors, either for classification or
as shown later, for a reinforcement learning agent to choose actions for
a given state in an environment. To achieve this, the network needs a
method to update the weights between the nodes of its layers (denoted
w1, w2, w3 in fig. 2.5). The update process is most clearly defined in
what is called supervised learning. In supervised learning, the network
is trained with labeled data, in which the correct output of the network is
known. Because the correct output is known, the actual output received

14

Figure 2.5: Simple neural network neuron illustration

from the network is directly comparable to it. Because of this fact, a loss
function can be used to calculate the accuracy of the network’s output. The
choice of loss function depends on what kind of network is being trained
and what kind of prediction or classification the network is doing. Some
common and useful loss functions include MSE(mean square error), which
is the summed square difference between the true values of the output and
the values generated by the network, CE-loss(cross-entropy loss), which
calculates the difference in each class or labels probability contrary to the
true labels or classes, and KL-divergence(Kullback–Leibler divergence),
which is a measurement of how two probability distributions are different
from one another. For a network of N output layer nodes with outputs
ŷi, i ∈ {1, ..., N} and corresponding ground truths yi, i ∈ {1, ..., N}, some
of the most common loss functions are as follows:

MSE =
N

∑
i=1

(ŷi − yi)
2, CE− loss = −

N

∑
c=1

yi log(ŷi), KL− div =
N

∑
c=1

ŷc log
ŷc

yc

The two main purposes of a loss function are:

1. To measure to which degree the prediction of the neural network is correct.
2. To be used to update the weights of the networks in a manner that enables

future predictions to be more accurate.

In order for a network to improve its predictions, a backpropagation
algorithm is utilized. This algorithm starts at the output of the network
and calculates, through the gradient of the loss function, how much it
should adjust the weight of each node connected to it. This process is
then repeated for every layer until the network input. For a weight w of
the network, the prediction ŷ, and the error E of the prediction, calculated

15

through the loss function, find:

δE
δw

=
δE
δŷ

δŷ
δw

And update the weight by:

w = w − η
δE
δw

The update is scaled by a learning rate η, which determines how much the
weight is allowed to update at a time and often decreases during training.
The decrease is to ensure that the update process becomes deterministic
and the weights converge over the duration of the training. The learning
rate is often high at the beginning of training, resulting in large changes
to the weights of the network, which causes large and quick performance
increases, but makes it unable to fine-tune to optimal weight values. When
the rate is later adjusted down, the performance increases also slow down
while the network parameters are being fine-tuned. Most modern neural
networks also use optimization algorithms, which often store a decaying
average of the past partial derivatives of every weight w to smooth out the
large parameter jumps caused by using only the current gradient of the
loss and to give momentum when the current partial derivatives become
very small.

2.5 Reinforcement learning

Figure 2.6: Reinforcement learning illustration

Reinforcement learning(RL) [41] is a machine learning approach used
to teach systems how to learn a policy by exploring the system’s
environment and optimizing its behavior over time, through trial and
error. The policy is a function that maps states of the environment to
actions taken by the agent, thus dictating an agent’s behavior. The system
receives feedback from the environment in the form of rewards, which
can either be negative, a punishment for performing an action that is

16

deemed as bad for the current state of the agent in the environment,
or positive, a reward for performing an action that is deemed good for
the current state of the agent in the environment. The reinforcement
learning agent uses the feedback received in the form of rewards to
mathematically optimize its choice of actions over time and thus learns
how to better act in situations similar to or identical to situations it has
encountered before. The environment itself is described in the form
of a Markov decision process(MDP). A mathematical framework used
for decision-making problems. Combining reinforcement learning with
deep neural networks has not only made it possible for reinforcement
learning algorithms to learn from large and complex data such as pixel
values from video games or live camera feeds [32], but also learn to
optimize behavior in continuous environments, in which the environment
cannot be described by a finite number of states. Realistically, many
complex real-world problems, such as manipulator control, cannot easily
be abstracted and thus require the environment to be continuous. Some of
the most popular and well-known reinforcement learning algorithms are
Q-learning [44] and SARSA [35].

2.5.1 The Markov decision process

A Markov decision process is a discrete-time stochastic control process
[34], that is useful for studying optimization problems like reinforcement
learning. It is mathematically stated as tuple M = (S, A, Pa, Ra), in
which S is a set of states s ∈ S called the ’state space’ or ’observation
space’ in reinforcement learning, A is a set of actions a ∈ A, called the
’action space’ in reinforcement learning, Pa(s, s′) = Pr(st+1 = s′|st =
s, at = a) is the probability that action a in state s at a time t leads to
a state s′ at time t + 1 and Ra(s, s′) is the reward or expected reward
from going from state s to state s′ due to action a. The goal of a Markov
decision process is to find an optimal policy π, a function π(s) = a that
finds the optimal action a at a given state s. The discrete-time nature
of Markov decision processes can make them harder to apply to real-
world control problems because the problems may require continuous
control signals. If a continuous control signal is to be determined via a
Markov decision process such that the control signal q(t) = a(t), it can be
troublesome because of the Markov decision process’s inability to produce
a continuous function a(t). However, the issue can be somewhat mitigated
by sampling the environmental state st and receiving the optimal action at
from the decision process at a high rate, causing the discrete set of actions
{a1, ..., an} to approximate a continuous action signal a(t).

17

2.5.2 Model-based and model-free free reinforcement
learning

The term ’model’, in reinforcement learning, refers to whether or not
the agent utilizes or learns an explicit model or distribution of the
environment, that has all the transition dynamics and probabilities
calculated [21]. In these cases, the agent can quickly sample this
distribution and pick the state transition that gives the most expected
future reward, e.g. picking a move in a chess game that can be
calculated to have the highest probability of leading to a win later in the
game. For instances where no such model of the environment exists, the
reinforcement learning agent can attempt to build or approximate its own
model of the transition dynamics and probabilities of the environment,
labeled as ’model-based’ reinforcement learning algorithms. However,
methods of this family require the agent to adequately learn how to predict
how every available action at in every possible state st leads to the next
state st+1. A task that is doable for environments that are well-understood
and predictable, such as board games, in which it is trivial to predict
the state of the board after performing an action. On the other hand,
actions in real-world environments, in which both the action and state
spaces are continuous, are much less predictable and thus it would require
immense computational power and incredibly large models to accurately
predict the next state st+1 for all available actions a at a given state st.
Instead, ’model-free’ approaches can be utilized to negate the need for
future predictions.
Model-free reinforcement learning methods are typically categorized into
two slightly different approaches:
1. Policy optimization: The goal of policy optimization methods is to learn
a policy function πθ(s), with parameters θ, which outputs the best possible
action a for a given state s. Updates to the function are typically performed
’on-policy’, meaning that the parameters θ are only updated using data
collected while acting according to the current policy.
2. Q-learning: The goal of Q-learning methods is to learn an action-value
function Qθ(s, a), with parameters θ, or table Q(s, a), which outputs the
expected return of choosing an action a at state s. Updates to the function
parameters or table are typically performed ’off-policy’, meaning that the
updates to the parameters θ can be done using data collected at any point
during training. The next action of the agent is then chosen by considering
all available actions a at state s and finding:

a(s) = arg max
a

Qθ(s, a)

While both methods attempt to learn how to best pick an action a at a
given state s, policy optimization methods do so by learning a policy
directly, making them more stable but less efficient because the methods

18

cannot reuse old samples. Q-learning methods do not directly learn how
to best choose actions for given situations, and the performance of the
agent is only indirectly increased by learning the Q-function. However,
since all training samples can be utilized, the methods are more efficient
for learning but tend to be less stable and dependent on good exploration
strategies.

2.5.3 Action-value functions and the bellman equation

In the previous section, an action-value function Q(s, a) is presented. The
action-value function adheres to what is called the Bellman equation[5].
In principle, the equation describes how the value of a state-action pair
relates to the values of the next states and actions that can be taken. There
are two slightly different definitions of the action-value function that ad-
here to this principle:
1. The ’on-policy’ action-value function Qπ(s, a), describing the value of
taking an arbitrary action a in a state s and forever continuing to perform
actions defined by the policy π for every next state the agent lands in.

Qπ(s, a) = E
s′∼P

[r(s, a) + γ E
a′∼π

[Qπ(s′, a′)]]

Where s′ ∼ P indicates that the next state s′ is sampled from the
environment and a′ ∼ indicates that the next action a′ is determined
by the current policy π. The term γ is called the discount factor and
determines how much the expected future rewards should be weighted
in relation to the immediate reward r(s, a) received from the environment
for performing the action a in state s.
2. The optimal action-value function Q∗(s, a), describing the value of
taking an arbitrary action a in a state s and forever continuing to perform
the action that is deemed as most optimal in the given next states st+n.

Q∗(s, a) = E
s′∼P

[r(s, a) + γ max
a′

Q∗(s′, a′)]

Where all the terms indicate the same as in the ’on-policy’ definition,
except the next action a′ is determined as the action that maximizes future
return, rather than adhering to a defined policy π.

2.5.4 Deep reinforcement learning

Deep reinforcement learning is the practice of combining reinforcement
learning agents with deep neural networks. The deep neural network
can serve multiple purposes. Approaches of this category are particularly
useful when one would want the agent to learn directly from a complex
data source such as a direct image feed. The process works because
of the deep neural network’s property of being able to find compact,

19

Figure 2.7: Deep Reinforcement learning illustration

low-dimensional representations or approximations of high-dimensional
data[4]. Coupling a state-of-the-art convolutional neural network(CNN)
with an agent that utilizes a live camera feed as input for environmental
mapping could for instance let the agent view the environment as labeled
objects instead of just pixel values, decreasing the perceived complexity
of the agent’s state space and allowing the agent to more easily and
effectively learn the optimal policy or value function.
Additionally, deep neural networks can be used to represent the policy or
value functions themselves, especially useful for reinforcement learning
problems with continuous action and state spaces, requiring very complex
policy or value functions, as deep neural networks have proven to be
universal function approximators[29].

2.5.5 Actor-Critic reinforcement learning

Actor-Critic reinforcement learning algorithms are a subset of deep,
model-free reinforcement learning techniques that use multiple deep
neural networks [15] and combine the model-free approaches of policy op-
timization and Q-learning. Approaches in this category are characterized
by the interaction between the actor, a deep neural network learning the
policy function, similar to policy optimization, and the critic, a deep neural
network learning the action-value function of the environment, similar to
that of Q-learning. With deep neural networks, a loss function needs to
be utilized to update the parameters of the networks. For the critic net-
work Qθ(s, a), the output is directly comparable with the reward received
from the environment, and can directly be updated through the use of a
loss function comparing the output with the received reward and apply-

20

Figure 2.8: Actor-critic Reinforcement learning illustration

ing backpropagation. However, the actor-network πθ(s) outputs an action
a, which is not directly comparable to the reward received from the en-
vironment. Instead, the actor-network is updated by sampling the critic
network to extract the expected return of choosing actions according to
the current policy, which is then used to perform gradient ascent on the
network’s parameters to maximize the expected return.

2.5.6 Offline reinforcement learning

Offline reinforcement learning[28] is a data-driven version of reinforce-
ment learning. Its main purpose is to allow reinforcement learning
agents to be deployed in environments in which exploratory behaviors
are deemed to be dangerous, which is the case for many robotic manip-
ulation tasks because of the dangers of allowing a robotic manipulator
to randomly move throughout the space it operates in. The object of the
agent is still the same, for the agent to learn an optimal policy with a spe-
cific task or goal in mind. Learning is achieved by providing a static data
set that the unit has to sample from instead of using an exploratory ap-
proach where the agent is allowed to interact with its environment freely
to obtain experience in the domain. The agent must thus learn its optimal
policy from the state transitions provided in the data set, which makes the
approach more closely resemble standard supervised learning.
Negating exploration has its own set of problems. Since the agent has to
entirely rely on the given data set, it will most likely not have access to the
entire state transition space, and thus not contain action-transition pairs
that are viable and good action choices for certain situations. Furthermore,
it completely removes the agent’s ability to learn when encountering novel

21

situations in which appropriate actions cannot be inferred from the given
data set, making the method less resilient to changes in the environment.
Some of the problems that offline reinforcement learning methods attempt
to negate can also be partially negated by training the reinforcement learn-
ing agent in a simulated environment. Training in a simulated environ-
ment does however also pose its own set of problems when the agent is
transferred to the real world.

2.5.7 Transfer learning

Transfer learning is a method of using previously attained knowledge
from a specific task or environment to achieve accelerated learning speed
and accuracy in a new task or environment, sufficiently similar to the task
or environment the agent was originally trained for. The approach offers
an alternative to offline reinforcement learning, as it negates dangerous ex-
ploratory behavior by having the agent sufficiently trained in a simulated
environment before being deployed in the real world. Transfer learning
seeks to overcome generalization problems, in which an agent becomes
so specialized at high performance on a single task or in a single environ-
ment that its learned behavior cannot be utilized in similar tasks and in
similar environments. Some strategies to mitigate this problem are men-
tioned in an article from 2018[12], the most relevant of which is lifelong
learning and data augmentation when considering initially training a re-
inforcement learning agent for manipulator control in a simulated envir-
onment. In a simulated environment, it is possible to achieve good gener-
alization through data augmentation, which is slightly altering the agent’s
input data in such a way that the agent and its trained networks do not
overfit to the particular task. However, on tasks that require dexterous
manipulation ability, a slight alteration in the input data may often cause
an agent to fail in its task. Instead of altering the input data of the agent
for each step in the reinforcement learning process, the initial conditions
of the simulated experiment could be slightly altered each time an episode
is instantiated, forcing the agent to learn the general solution to the task
instead.
The other relevant form of transfer learning that is mentioned is lifelong
learning, which is described as the capability of a system to learn mul-
tiple tasks over a lifetime in one or more domains. This is possible due
to having multiple tasks sharing network parameters. The proposed way
of achieving lifelong learning is training the agent sequentially, having it
learn in one environment or one task at a time, then continue the learning
process in another environment or on another task. However, the process
can be problematic because of catastrophic forgetting, in which an update
to the network’s parameters overrides the previous weights in a manner
that causes the agent to no longer be able to perform a specific task. An

22

approach for mitigating this is to include an experience replay memory
for the agent, which is a memory of previously experienced interactions
with the environment. The memory can be sampled from so that it no
longer matters if important parameters in the network are overwritten by
interaction in the new environment. The inclusion of such an experience
replay memory is already mandatory for many reinforcement learning ap-
proaches, especially approaches that include value functions Q, such as
actor-critic methods or deep Q-learning. The problem can also somewhat
be mitigated by going back and retraining on previously learned or similar
tasks to re-learn the parameters that were overridden, but this approach
also risks catastrophic forgetting of the newly trained task.

2.5.8 Reinforcement learning in robotics

Some tasks, such as many robotic manipulation tasks, might seem intuit-
ive because of the ease an average adult human has at performing them.
However, they quickly become increasingly complex when having to con-
sider how to sufficiently describe the problem, and design a reinforcement
learning agent that is capable of solving it. The engineer has to take into ac-
count dynamic environments, human interaction, and other obstacles that
real-world deployment may bring. One often used term for this increase
in complexity and often hard transition from a simulated or theoretical en-
vironment to the real world is the ’reality gap’[23]. Most often used in the
context of evolutionary robotics, in which the problem derives from the ro-
bot’s controllers being evolved or generated in a simulated environment
where parameters like gravitational force, surface tension, and other phys-
ical force simulations are only approximations of their real-world counter-
parts. For the same reasons, the term is also highly relevant in the field
of reinforcement learning, especially when considering transfer learning
from a simulated environment to a real-world manipulator.
In a paper from 2018[31], an attempt was made to benchmark some re-
inforcement learning algorithms’ performances on specific tasks when de-
ployed on real-world robotic manipulators. It was found that the perform-
ance of the deployed reinforcement learning agents was highly sensitive to
their given hyper-parameters, such as learning rates, sample batch sizes,
and update rates, which often required re-tuning when a new task was
presented. However, some agents achieved effective learning for a wider
range of hyper-parameters, showing that an agent could potentially learn
multiple tasks using the same hyper-parameters as long as the ranges for
effective learning for the respective tasks somewhat overlap.
In another article from 2021[22], the authors discuss how deep reinforce-
ment learning agents can be deployed to a wider range of different robotic
setups and the challenges of making them perform and learn efficiently

23

in the real world. The article highlights the fact that even though deep
reinforcement learning is regarded by some as being too inefficient for
real-world scenarios, advances made in the field have shown that it is
in fact fully feasible for a reinforcement learning agent to learn complex
tasks ranging from quadrupedal locomotion to dexterous manipulation,
but doing so may require careful and deliberate design of the agents. .

2.6 Image classification and object detection

The focus of the project is not primarily image classification and object
detection, but the procedures are essential components of TIAGo’s
perception and understanding of the environment it operates in. Thus
the topics are only presented on a surface level to understand the specific
object detection network utilized.

2.6.1 Convolutional layers

Figure 2.9: Image convolution example of a 5x5 image with 3x3 kernel,
stride = 1, no padding.

In neural networks used for image classification or object detection,
the most commonly used technique is convolutional layers. Image
convolution is the mathematical operation of multiplying every pixel
of an image with a fixed-size kernel or filter, represented by a matrix,
that contains values that define a specific operation. The convolution is
performed by sliding the kernel center over every pixel of the image and
calculating the sum of all the kernels values multiplied by the pixel value
it overlaps on the image, the sum is then placed at the pixel coordinate
of the pixel the center of the kernel overlaps in the resulting image. The
operation can be adjusted to only include pixel coordinates of the image in

24

which the kernel fully overlaps it, resulting in the output of the operation
having a smaller height and width than the original image, as can be seen
in fig. 2.9.
A single convolutional layer in a convolutional neural network(CNN) is
made up of many kernels, performing the convolution operation on its
input, replacing the nodes described in sec. 2.4. The resulting structure
after a convolution operation has been applied is called a ’feature map’
and thus the output of a convolutional layer is many feature maps. The
values that fill the kernels of the layers are weights that are iteratively
updated using backpropagation. In addition, a parameter called stride s
can be included, causing the kernel to move s pixels along the image’s
axis between each calculation, skipping some positions and resulting in
an even smaller output. An additional operation, called ’pooling’ is also
utilized, replacing a group of neighboring pixels or values of a feature map
with a singular value, often chosen as either the minimum, the maximum,
or the average value in the neighborhood, resulting in a downsampling
of the image or feature map. Typically, each convolution layer iteratively
shrinks the height and width dimensions of the preceding image or feature
maps but introduces new feature detectors, resulting in a larger number of
smaller feature maps. The last collection of feature maps is usually fed into
a fully connected layer, allowing each feature map to represent a higher-
level feature of the original image, which can be used to classify the whole
image or identify objects in the image. An example of the process can be
seen in the architecture of the YOLO object detection network in fig. 2.10.

2.6.2 YOLO (you only look once) object detection

Figure 2.10: YOLO architecture. From [37].

YOLO [37] is a single-network, real-time, object-detecting network that
has been adapted to be used with ROS [6]. Its architecture is composed of
24 sequential convolutional layers with some pooling layers in between,

25

followed by 2 fully connected layers. The output of the network is a
number of bounding boxes, one for each detected object, along with
their corresponding predicted object class and prediction confidence. The
network is built with real-time detection in mind and supports framerates
up to 45 frames per second. Since the architecture is mainly built for
speed and robustness, the authors state that it can struggle with limitations
such as detecting similar objects in groups, objects in new and unusual
aspect ratios, and bounding box errors for small objects. The bounding
box precision errors make the network unable to accurately be used to
find the exact position of the detected objects alone. However, this issue
can somewhat be mitigated by the utilization of TIAGo’s depth camera, as
presented later.

26

Chapter 3

Methods

3.1 Primary simulation environment

Both ROS and TIAGo’s ROS implementation offer valuable tools that are
utilized in this project. At the core, ROS’s topic and messaging systems
are largely useful as it allows for a modular approach when creating the
scripts and programs utilized in the simulation of the robot. While most
of ROS and TIAGo’s modules are written in C++, a lot of modern and
widely used machine learning libraries are written for Python. Some of
the Python libraries required for effective reinforcement learning training
are made for newer versions of Python, and will not directly work with
packages and libraries written for older versions. Computer vision librar-
ies, such as the openCV version utilized in TIAGo’s software packages,
will only work for older, deprecated versions of Python. However, even
though the libraries and packages themselves are incompatible, scripts
can concurrently be run, communicating with each other via ROS topics,
through the use of ROS messages, overcoming software incompatibilities.
This section briefly explains some of the key packages, and why they are
relevant.

3.1.1 Actionlib

Actionlib is the library used in this project to control TIAGo’s joints in
the Gazebo simulation environment. It works similarly to a setpoint
controller; for a timestep, set a goal for each joint in the arm, this could
for instance be "rotate arm joint number 2 to π", and is called an action
request. For the control of TIAGo’s arm, a single request must contain
seven values representing the angular displacement each of the arm’s
revolute joints should reach in the selected timestep. The action request
is then sent and the robot will try to execute the action by interpolating
between the current state of the joint or joints requested and the goal.

27

A result is returned that contains information about the execution of the
action; it can be successful or a failure. A failed action could for instance
be if the action request given described a motion that was too large for
the given timestep to be properly executed, or it could be that a hindrance
in the environment stopped the arm from reaching its goal. Checking the
result is a component of how one of the reward functions described later
is calculated.
By controlling the manipulator in this fashion, by choosing discrete ’goal’
values for each controllable joint, the actual control function qn(t) for a
joint n can be described by interpolating between the goal values. To
approximate smooth movements, the timestep chosen for each action
must be small to achieve a high rate of discrete control points. In fig.
3.1 the approximation of a sine function is visualized through the use
of discrete control points and interpolation. On the left, the actionlib
controller is called at a rate of 4 Hz, resulting in a reasonably bad
approximation of the function, on the right, the actionlib controller is
called at a rate of 10 Hz, resulting in a much-improved approximation.

Figure 3.1: Actionlib control visualization

3.1.2 TF

Tf is the package that lets the agent keep track of all the moving and inter-
linked coordinate frames of the robot/manipulator. It provides real-time
updates on the relationships between all the different coordinate frames
and provides real-time updated homogenous transformations between
them. In this project, the package is used to keep track of the position
of TIAGo’s arm in space, the spatial relationship between the end-effector
and objects or hindrances in the robot’s environment, and to transform

28

Figure 3.2: TF tree of TIAGo with only used frames highlighted

data recorded by TIAGo’s sensory suite, such as data recorded by the
RGB-D camera, to a common reference frame. In fig. 3.2, TIAGo’s TF
tree is provided. The frame called ’xtion_depth_optical_frame’ contains
the reference frame for the camera’s depth information while the frame
called ’gripper_link’ contains the reference frame of the end-effector. The
frame called ’base_footprint’ is used as the common reference frame, and
referred to later as the ’base coordinate frame’.

3.1.3 OpenCV

With cv_bridge it is possible to fully integrate OpenCV into ROS. It is used
to decipher and utilize the data recorded by the camera of the robot. It is
a core package used in image-related tasks and is thus also a core com-

29

Figure 3.3: Depth image and RGB image captured by TIAGos camera,
viewed through OpenCV.

ponent in object detection. Both YOLO object detection and point cloud
utilization are dependent on this package. TIAGo’s image streams can be
seen in fig. 3.3.

3.2 Secondary simulation environment

In addition to the simulation environment provided in the ROS imple-
mentation and software packages of TIAGo, implemented in Gazebo, a
secondary simulation environment is also utilized. The secondary simu-
lation environment is implemented in the PyBullet simulation engine [9],
and is implemented to allow for rapid testing of different tunable paramet-
ers and prototyping of different definitions of the state space, action space,
and reward function for the reinforcement learning agents trained. The
PyBullet simulation environment allows for parallelism, allowing mul-
tiple agents to train concurrently using the same reinforcement learning
algorithm and policy. Additionally, it is easy to speed up, allowing for
environmental steps to be made as soon as the hardware running the sim-
ulation allows it. The downside of this simulation environment is that in
its current implementation, only proprioceptive sensory systems can be
accurately simulated. This heavily limits the usage of TIAGo’s full capab-
ilities as it does not allow for its full sensory suite to be accurately simu-
lated.

3.3 Reinforcement learning setup

In this section, the designs of the reinforcement learning agents are presen-
ted. The design of some of the reinforcement learning agents’ components
varies depending on which simulation environment is utilized for training

30

them, thus subsections concerning the state spaces and reward functions
are split in two to allow for explanations of how and why the different
components are designed as they are, and in which simulation environ-
ments the designs are applicable.

3.3.1 Inspiration

At the beginning of the planning process, a few papers on manipulator
control through the use of reinforcement learning were selected as
sources of inspiration for the implementation. Of those, a paper on
control of a 7-DOF manipulator, somewhat similar to TIAGo’s arm,
through the use of actor-critic reinforcement learning methods [7] was
sourced to determine which reinforcement learning algorithms to attempt
to implement for TIAGo. The authors of the paper present actor-
critic methods, such as deep deterministic policy gradient (DDPG), first
introduced in [30] and soft actor-critic (SAC), first introduced in [18]
as viable methods of learning manipulator control. However, in their
paper, dexterous control of the gripper is not included, and they do not
attempt to control the manipulator directly in its configuration space
C, opting for the use of an Inverse kinematics (IK) solver to determine
the configuration space parameters necessary to control the robot while
the trained agents determined operating space positions for the end-
effector of the manipulator to reach. In a sense, the agents trained in
the project do not learn to directly control the manipulator, but rather
generate a path that the IK-solver is responsible for following. While
their results in themselves do not explicitly show promise for dexterous
manipulation using actor-critic methods, the authors of the soft actor-critic
(SAC) method have presented a paper[17] in which they train dexterous
manipulation skills and legged locomotion by allowing the agent to
directly control the robot in robotic setups less similar to TIAGo’s arm.

3.3.2 The state space

In reinforcement learning the state space or observation space represents
the available information that the agent has to determine its actions.
Depending on what behavior is required from the agent and what
environment it should operate in, the state space needs to be designed
to contain enough information for learning the intended behavior while
also reducing noise by restricting the available information in such a
way that the agent does not get the information it does not necessarily
need to determine its actions. Two state space schemes are presented,
one of which is designed to utilize the full sensory suite of TIAGo and
for the same reason are restricted to only be simulated in Gazebo. The
other is more loosely designed and does not utilize TIAGo’s full sensory

31

capabilities, but is able to be used in simulation environments in which
TIAGo’s exteroceptive sensory suite is not implemented.
For the first part of this project, a continuous state space that contains
the distance of every joint in Tiago’s manipulator arm to the closest
environmental obstacle is used. The state space scheme is designed with
simulation in Gazebo in mind and requires the simulation environment
to be able to accurately simulate exteroceptive sensory components of
TIAGo. The position of the joints in space is calculated through kinematic
transformations from each joint’s respective coordinate frame to the base
frame of the robot and the position of environmental elements is found
by transforming the point-cloud depth image generated by Tiago’s RGB-
D camera, from the camera’s coordinate frame and to the base frame of
the robot. This results in having a point cloud, containing environmental
obstacles and points of each of the joints of the manipulator’s arm in the
same coordinate frame. A vector describing the distance and direction
from each joint to the closest obstacle, found in the point cloud, can be
found by calculating the Euclidean distance between the joint and all the
points in the cloud and selecting the point pPC in the point cloud that
minimizes the distance and calculating v = pPC − pjoint, in which pjoint
is the center of the joint.
To incentivize learning to reach a target object, the state space must also
contain the distance and relative position of the target object in relation to
the end-effector. As long as the position of the target object is available,
either through the use of pose and position approximation utilizing
TIAGo’s camera, or gathered directly from the simulated environment, the
relative position and direction of the object in relation to the end-effector of
TIAGo’s arm can be calculated in the same manner as the environmental
obstacles in relation to TIAGo’s joints.
With this information in mind, the state space is represented as a matrix:

S1 =



d0 x0 y0 z0
d1 x1 y1 z1
d2 x2 y2 z2
d3 x3 y3 z3
d4 x4 y4 z4
d5 x5 y5 z5
d6 x6 y6 z6
d7 x7 y7 z7


Where d0 denotes the distance to the target object, [x0 y0 z0]

T denotes the
vector from the end-effector to the target object, dn, n ∈ {1, ..., 7} denotes
the distance from the manipulator’s arm to the closest environmental
obstacle, and [xn yn zn], n ∈ {1, ..., 7} denotes the vector from each
respective joint in the manipulator’s arm to the closest environmental
obstacle of the respective joint.

32

The second state space scheme utilized in this project is designed to only
concern the position of the end-effector in relation to the target object
and does not include information about environmental obstacles. It is
designed to only rely on proprioceptive sensory data and information
from the simulation environment itself, allowing it to be utilized in both
simulation environments:

S2 = {q, q̇, pee, p̄obj}

The state space contains q ∈ R7, the angular displacement of each of
TIAGo’s links, q̇ ∈ R7, the angular velocity of each of TIAGo’s links,
Pee ∈ R3, a vector containing the position of the midpoint between
TIAGo’s grippers in the coordinate frame of the robot’s base and p̄obj ∈ R3,
a vector describing the relative position of the target object in relation to
Pee in the coordinate frame of the robot’s base. The state space can also
be extended to include two additional parameters θ and α, concerning the
direction of the end-effector in relation to the target object, described later
in sec. 3.3.5.

3.3.3 The action space

The action space is designed in an attempt to leverage some of the already
implemented modules for robotics control in ROS and TIAGo. Using the
ROS library called ’actionlib’, described earlier, the agent chooses a goal
joint value for each joint in the robot’s arm, which the controller will
attempt to reach in a defined time. The allotted time is decided by the
rate at which the agent is called. For instance, a rate of 4 Hz would require
the goal joint values chosen by the agent to be reached within a quarter of
a second. The action space is thus defined as:

A =



q1
q2
q3
q4
q5
q6
q7


Where qn, n ∈ {1, ..., 7} is the desired joint space configuration of joint
n at the end of a single action. The values of qn are constrained by the
permissible range of motion of each joint and cannot have values outside
of them (see appendix C). This choice of action space and action execution
opens the possibility for very large and sudden movements. However,
these movements can be disincentivized through the use of punishments
in the reward function or limited by redefining the interaction between the
action space and the controller.

33

3.3.4 Action space constraining

In [16], SAC is used to teach a four-legged mobile robot to walk. In
that endeavor, it is stated that constraining the actions of the RL agent
in some manner for the first n episodes is useful to prevent the agent from
performing explosive and jerky actions at the beginning. This concept
can loosely be extended to the manipulator arm of this project. As
presented in the last section, giving the agent the ability to choose any
next configuration qt+1 at time t from any configuration qt, will result in
explosive movements when actions are chosen at random. The agent can
learn to restrict itself if incentivized to do so. However, the exploration
done by the agent at the beginning of training requires random actions
to be chosen and will mostly consist of movements that are too explosive
in nature and either knock the robot down or displace it. The agent is
thus left with a replay memory in which the overwhelming majority of
state transitions are useless in terms of learning to reach a desired point
in space with the end-effector of the arm. When these samples are fetched
in mini-batches to be used to update the neural networks responsible for
controlling the agent, the batches are unlikely to contain samples that are
useful for learning the intended behavior, to reach for an object. Instead,
the best sample in a batch will likely be a sample in which the robot is not
knocked over or displaced, but also not moving toward the goal object in
a meaningful manner. As a result, the agent learns to control the arm in
a manner that avoids knocking over or displacing the robot but fails in
learning to reach for the target object.
To mitigate this issue a simple change can be made to the action space
and how the controller interacts with it. Instead of letting the agent pick
any action q from the arms configuration space C, it is instead necessary
to constrain each action. Let qMIN and qMAX be vectors containing
the minimum and maximum angular displacements of each joint of the
arm. qDIFF = |qMIN − qMAX| is then the maximum amount of angular
displacement the agent can possibly perform in a single move. The
interaction between the action and the controller can be redefined. Instead
of letting qt+1 = a, a ∈ A, the next configuration is picked as qt+1 =
qt + a, a ∈ A, where A = wa[−qDIFF, qDIFF] and wa ∈ [0, 1], named the
’action space constraining coefficient’, is a scalar weight defining how far
away from the current configuration qt the next configuration qt+1 can be
chosen from in the configuration space C. This allows the explosiveness of
the moves to be manually tuned, and with a fairly low wa, forces the agent
to pick actions that lead to the next configuration qt+1 being fairly near the
current configuration qt in the configuration space C.

34

3.3.5 The reward mechanism

Designing a functional reward mechanism for the reinforcement learning
agent requires leveraging the available information of each planned step in
the robotic arm’s movement and finding a way to give constructive feed-
back to the reinforcement learning loop. Finding an appropriate reward
function is case-dependent and as such, there is no other way to design a
good reward function than to take inspiration from other successful pro-
jects, iterate over ideas, and attempt to implement incentives for the agent
to learn the behavior that is intended. Additionally, the reward function
has to rely on information that is available in the state space of the agent,
so that the changes in the received reward given by performing an action
can directly be related to changes in the state space. In this project, differ-
ent reward functions are used depending on what simulation environment
the agent is trained in and what qualities that environment can measure.

Gazebo simulation environment

The first reward function discussed is primarily made for training and
simulation in Gazebo. It is comprised of three parts, each with its own
intention.

r1 = −1
2

d2

The first part, r1 is designed to encourage the agent to move the arm to a
desired point in space. d is the distance from the end-effector to the posi-
tion of the target object.

r2 = −C

The second part, r2 is used to check if any part of the arm is close to or
colliding with the environment, represented by the point cloud of Tiago’s
RGB-D camera. C is a boolean, True if any part of the arm is close to or
colliding with the environment.

r3 = −S

The third and final part, r3 is used to check if the action given to the joint
controller is close enough to its current joint configuration to be completed
within the allotted time frame. S, for step completion, is a boolean, True if
the action given to the controller was fully completed within the set step
time. The inclusion of the r3 term ensures that the RL agent learns to con-
strain the movement given to the controller to a range that is physically
and safely possible to do in a single timestep.

R = w1r1 + w2r2 + w3r3

35

The total reward is the sum of each of the reward function’s parts
multiplied by tunable scaling factors w1, w2, w3, which dictates how much
each part is weighted against the others.

PyBullet simulation environment

The reward functions designed to work with the PyBullet environment
are designed to be easily transferable to Gazebo. In this environment, the
RGB-D camera of the robot is not implemented and it is thus impossible to
simulate collision detection in a meaningful way that would be transfer-
able to the real robot without further integration of perception modules.
Instead, only the internal and measurable state of the robotic arm is used.
The position of the object, which in this case is gathered directly from the
simulated environment, can also easily be derived by the camera of the
robot. Two versions of this reward function are presented, one of which
only considers the position and state of the robotic arm, while the other
also considers the rotation of the arm’s end-effector in relation to the tar-
get object.

r1 =
dt − dt+1

dt

Where dt is the distance from the end-effector to the object before the ac-
tion a at time t is executed, and dt+1 is the distance from the end-effector
to the object after the action is executed. r1 thus measures the percentage
of the distance before the action is executed that the chosen action is able
to close. Using the percentage of the distance that the action is able to
close, rather than the distance itself, makes the reward scale better with
distance, giving equal reward and weighting for large movements when
the arm is far from the target object and small, precise movements when
the end-effector is approaching the target object.

r2 = −|qt+1 − (qt + at)|
r2 measures the error of the executed action, giving a penalty for choosing
actions that are too large to be executed within the allotted time frame of
the step. The error definition requires actions to be chosen in the manner
presented in sec. 3.3.4.
The total error of the reward function only considering the position of the
end-effector in relation to the target object is given by:

R = w1r2 + w2r2

Where w1, w2 are scalar weight parameters to tune the different parts of
the reward function in relation to each other. R thus only considers the
distance of the end-effector in relation to the object but also puts some
weight on learning to pick actions that are achievable within the allotted

36

time frame of each step.

Another reward term can be added to motivate the agent to control the
end-effector’s direction in relation to the object. Doing so first requires a
few new parameters to be introduced. Why this is necessary is visualized
in fig. 3.7.

Figure 3.4: Inferring the preferred direction of the Z-axis of the end-
effector’s coordinate frame.

To find a suitable way to calculate a reward for the direction of the
end-effector in relation to the target object, preferred directions for two of
the coordinate frame axis of the end-effector have to be inferred. First,
the preferred direction of the end-effector’s Z-axis has to be defined.
Since information about the target object’s position in relation to the end-
effector already exists in the state space, a preferred direction can easily be
inferred. Ignoring the elevation of the end-effector (Z-axis of the world),
the vector from the end-effector to the target object can be projected down
on the XY-plane of the world. Doing so allows the preferred Z-axis of the
end-effector’s coordinate frame to stay perpendicular to the Z-axis of the
object, and thus negates the end-effector hitting the object at a steep angle
if the preferred direction is followed. See fig. 3.4. The difference between
the unit vector representing the direction of the Z-axis of the end-effector’s
coordinate frame Zee, given in the base coordinate frame, and the preferred
Z-axis of the end-effector Zpre f , also given in the base coordinate frame, is

37

θ ∈ [−π, π], and can be found with:

θ = arccos(
Zee ∗ Zpre f

|Zee| ∗ |Zpre f |
)

Figure 3.5: Inferring the preferred direction of the X-axis of the end-
effector’s coordinate frame.

The second part of calculating the reward incentive involves inferring
a preferred direction of the X-axis of the end-effectors coordinate frame.
Since the preferred Z-axis described earlier lies on the XY-plane of the
world, it will always be perpendicular to the Z-axis of the world. Thus
if the X-axis of the end-effector’s coordinate frame is parallel to the Z-axis
of the world, and the Z-axis of the end-effector is pointing directly at the
object on the XY-plane of the world, by following the preferred direction
of its Z-axis, the grippers will be in a position to wrap around the abject
and not collide with it. α is thus defined as the angular difference between
the unit vector describing the X-axis of the end-effector’s coordinate frame
and the Z-axis of the world. It is worth noting that it does not matter if the
X-axis of the end-effector’s coordinate frame points upward along the Z-
axis of the world, or downward, as both allow the end-effector’s grippers
to be rotated such that they can wrap around the object. Thus α ∈ [−π

2 , π
2]

See fig. 3.5.

38

Figure 3.6: Reward based on direction and rotation of end-effector.

With both θ and α defined, an incentive has to be added to the reward
function, such that the agent is incentivized to minimize them. For this
purpose, a two-dimensional Gaussian is fitting, see fig. 3.6:

r3(θ, α) = exp (−(
θ2

2(π
2)

2 +
α2

2(π
2)

2))− 1

Using a Gaussian results in the added punishment for not following the
preferred directions being in the [−1, 0] range, allowing for easier tuning
of the weight associated with it. This change results in the reward function
being:

R = w1r1 + w2r2 + w3r3

Where wn and rn, n ∈ {1, 2} are the same weightings and terms described
earlier, r3 is the new term concerning the direction of the end-effector and
w3 is its weighting.

39

Examples of end-effector directions, color-coded vectors are as follows; red is the
direction of the x-axis in the respective coordinate frame, blue is the direction of
the z-axis in the respective coordinate frame, green is the direction of the y-axis
in the respective coordinate frame and yellow is the vector from the end-effector

to the target object. The semi-transparent blue and red vectors represent the
preferred directions of the end-effector’s coordinate frame.

Example A: Bad direction, the end-
effector is pointing away from the ob-
ject.

Example B: Bad direction, the end-
effector is pointing towards the object
but the grippers are not lined up to
wrap around it.

Example C: Good direction, the end-
effector is pointed towards the object,
and the grippers are lined up to wrap
around the object.

Example D: Good direction, same as
Example C, except the end-effector is
rotated π radians.

Figure 3.7: Gripper direction examples

40

3.3.6 Reward scaling

The importance of properly scaling the reward function for efficient
learning is discussed in [16]. It is found that for SAC, most of the
benchmark reinforcement learning problems attempted by the authors
were most efficiently solved with a reward scale of 0-100, implying that
the reward function should be adjusted to provide the agent with rewards
in that range to optimize learning. However, this finding was not absolute,
and some problems required the reward function to be tuned to provide
rewards in orders of magnitudes higher. Reward scaling is thus case-
dependent, but should be designed to provide rewards in a clearly defined
range. The weights of the reward functions presented in the previous
section should thus be tuned by this principle.

3.3.7 The state-transition memory

When doing model-free deep reinforcement learning with continuous
action and state spaces it is vital for the agent to be able to build some
sort of notion of how the environment operates. Since both the action
space and state spaces are continuous, a discrete structure such as a table
cannot be utilized. Instead, a state-transition memory or replay memory is
built. In most algorithms utilizing a replay memory, each state transition
is stored in the replay memory D as a tuple:

et = (st, aa, rt, st+1)

Where each experience e at time t is stored as the state st at time t when an
action was taken, the action at the time at, the reward that was received by
performing the action rt and the state of the environment after the action
was performed st+1.
The replay memory is sampled from when updating the deep neural
networks implemented in the reinforcement learning agent. The idea
behind using a replay memory instead of updating sequentially is that
if the networks are updated sequentially and the experiences et are
discarded as the agent trains, each subsequent experience would be
highly correlated with the last, which would lead to inefficient training.
Instead, the memory unit is built upon and randomly sampled from when
updating the networks. In this fashion, a batch of samples randomly
selected from the memory should contain experiences that are not as
correlated and thus lead to more efficient training. The replay memory can
also play a role in transferring the agent from one environment to another,
as described in sec. 2.5.7.

41

3.3.8 The optimizer

Since the reinforcement learning agent contains deep neural networks, a
way to update and maintain these networks has to be implemented. To do
so, an optimization algorithm is utilized. The goal of the optimization
algorithm is to update the parameters of the network as efficiently as
possible. For this task, ADAM, first introduced in [25] is used. The
two features that make ADAM a better choice than other optimization
algorithms are adaptive momentum and adaptive learning rates. Firstly,
when updating the network parameters, ADAM does not only use the
currently calculated gradient but also an exponentially decaying average
of the past gradients. This feature allows past gradients to contribute
and ’push’ network parameters out of local minima or optima when
the current gradients become small. Secondly, since the exponentially
decaying average of the past gradients is stored, it is also utilized to
perform parameter-wise updates to the learning rate of every network
parameter. This allows learning rates in parameters with few updates and
many zero gradients to be adaptively turned up and learning rates for
volatile parameters that are changing too quickly to be tuned down.

3.3.9 Neural network structure

Different reinforcement learning problems can often require different
neural network structures, even when using the same reinforcement learn-
ing method. The structures of the networks utilized in training the agents
in this project are set by the authors of the actor-critic methods used for
training. Both primary algorithms use similar network depths but use
slightly different parameters in their networks. For SAC [17], it is stated
that using two hidden layers with a size of 256 each, with RelU works well
for some robotics problems. For DDPG [30] it is stated that the authors
used two hidden layers with ReLu activations, with sizes 400 and 300
respectively for direct input problems, and three convolutional layers +
2x200 hidden layers for camera input problems. Other publications using
these methods, such as [7], do not explicitly state their network structures
and are thus assumed to use the same structures and hyperparameters as
presented in the original papers.

42

3.3.10 Rate of control

Figure 3.8: The effect of rate when the agent is exploring. Left: The
next configuration is sampled at a rate of 20 Hz. Middle: The next
configuration is sampled at a rate of 10 Hz. Right: The next configuration
is sampled at a rate of 1

2 Hz.

As described in sec. 3.1.1, the actionlib controller controlling TIAGo
should be called at a defined rate, requiring another hyperparameter to
be tuned. In the section, it is described how a high rate is required to ap-
proximate smooth movements when controlling the manipulator. How-
ever, smooth control might not be a goal in itself. The chosen rate has to
balance the interaction between discrete state transitions, the reward func-
tions’ response to the state transitions, and the smoothness of movement.
Having a high rate will not in itself guarantee smoother movements when
the movements are controlled by a reinforcement learning agent, and will
most likely induce shakiness during the exploration process at the be-
ginning of training when movements are completely random, caused by
many quick subsequent changes in direction. On the other hand, a rate
that is too low might allow the agent to move the arm to any place in its
operating space in a single time step, not allowing for any adjustments to
be made while moving. Thus a rate has to be picked such that the agent is
able to adjust its movement at a rate that allows it to react to the environ-
ment but also experience state transitions that are meaningful for learning
how to behave in the environment. In fig. 3.8, three different rates of con-
trol are visualized when the next state is chosen at random for values in
the range [−1, 1] over 10 seconds. To the left, a rate of 20 Hz is shown,
showing rapid changes in the direction of the control function, possibly
inducing shakiness and instability to the manipulator, producing samples
that are not optimal for training. In the middle, a rate of 5 Hz is shown,

43

showing some rapid changes in the direction of the control function, but
also showing a few, more controlled state transitions. To the right, a rate
of 1

2 Hz is shown, showing very slow and controlled transitions between
states, but exploring fewer states during the 10 seconds.

3.4 Algorithms

Two actor-critic algorithms are tested in this project, one is stochastic and
one is deterministic. In practice, this means that the output of the policy
neural network in the agent is interpreted differently. With a deterministic
policy, an action at at time t is deterministically chosen as a function µθ(st),
given the neural network weights θ and current state st. In a fully trained
agent where no noise is added for exploration, the chosen action is always
the same for a state st. On the other hand, with a stochastic policy, an
action is chosen from a probability density function. In this case, the out-
put of the policy network of the agent is not an action itself, but rather the
mean actions µθ(st) and log standard deviations log σθ(st), that are used to
build the probability density functions an action is sampled from. Action
sampling from a distribution is done as at = µθ(st) + σθ(st) ⊙ z, where
⊙ denotes element-wise multiplication and z represents a vector of noise
from a spherical Gaussian (z ∼ N(0, 1)). Notation wise, at = µθ(s) means
an action is chosen deterministically and at ∼ πθ(·|s) means an action is
sampled from a probability density function.

3.4.1 DDPG

Deep deterministic policy gradient(DDPG)[30] is an actor-critic, model-
free algorithm. It is based on a deterministic policy, and thus noise is
added to the deterministic action decision in the early stages of training
to provide for some exploration. Because of the deterministic nature of
DDPG, it might struggle when determining actions for states that slightly
deviate from what it has previously encountered.
The goal of the algorithm is to learn the optimal action-value function
Q∗(s, a) and optimal policy µ∗(s) through the use of deep neural networks
Q(s, a|θQ) and µ(s|θµ), with parameters θQ and θµ. The parameters of the
action-value network θQ are updated by the mean squared bellman-loss
(MSBE) of the network, derived from the bellman equation for the optimal
action-value function, described in sec. 2.5.3, and found by sampling
previously experienced state transitions sampled from a replay memory
D:

L(θQ, D) = E
(s,a,r,s′)∼D

[(Q(s, a)− (r + γ max
a′

Q(s′, a′)))2]

44

In which (s, a, r, s′) ∼ D indicates that the state s, action a, reward r
and next state s′ is sampled from the replay memory D and that γ is
the discount factor. However, the current state of the loss function is
unstable because the target r + γ maxa′ QθQ(s′, a′)) depends on the same
parameters θQ as the network itself. Instead, a trick is utilized. By also
including a target network Q′, with parameters θQ′

, initialized to be equal
to the parameters of the actual action-value network Q, and updating it
by setting the parameters θQ′

= τθQ′
+ (1 − τ)θQ with τ ∈ [0, 1] each time

the actual network is updated by backpropagation. The update method
results in the target action-value network always lagging behind the actual
action-value network. With the same trick also applied to the policy
network µ, creating a target policy network µ′, that also lags behind the
actual network, the loss function can be redefined to be:

L(θQ, D) = E
(s,a,r,s′)∼D

[(Q(s, a)− (r + γQ′(s′, µ′(s′)))2]

In which the action-value network Q is updated by calculating the target
from the target networks instead of itself.
The policy network µ is updated by performing gradient ascent on the
network’s parameters θµ, with respect to the action-value network Q
by calculating the action-value estimations QθQ(s, µθµ(s)) for actions a
produced by the sampled states s from the replay memory, using the
current policy. The algorithm is described in alg. 1.

3.4.2 SAC

Soft actor-critic(SAC)[18] is a stochastic actor-critic, model-free reinforce-
ment learning approach based on maximizing entropy while training.
This is done by including an entropy and temperature parameter in the
policy definition. In practice, it means that the goal of the algorithm is
to train the agent to reach the goal in an entropic manner, resulting in a
policy that is trained to more robustly handle slight deviations from what
it has previously been trained on. It also utilizes two action-value func-
tions instead of one, as described in [13]. This trick is shown to reduce
value function overestimation which commonly occurs when using only
one action-value function.
The goal of the algorithm is to learn the optimal action-value function
Q∗(s, a) and optimal stochastic policy π∗(s) through the use of deep
neural action-value networks Q1(s, a|θQ1), Q2(s, a|θQ2), with parameters
θQ1 , θQ1 , and the stochastic policy network π(s|θπ) with parameters θπ.
Target networks Q′

1(s, a|θQ′
1) and Q′

2(s, a|θQ′
2) are also utilized and up-

dated in the same manner as the target networks used in DDPG. The net-
work update process is very similar to DDPG, except for the inclusion of
the entropy term and the utilization of two action-value networks instead

45

of one. The entropy term H(πθπ(·|s)) = − log πθπ(a|s) denotes the en-
tropy of an action a given the probability density function produced by
the stochastic policy network π(s|θπ) for a state s. The agent gets the cal-
culated entropy of the action a given the policy π as a bonus in addition
to the reward received due to the reward function. This, in turn, causes
the definition of the loss function used in DDPG to be somewhat changed.
Instead of calculating the targets as r + γQ′(s′, µ′

θµ′ (s
′), as presented in

DDPG, the targets in SAC are computed as:

r + γ(min
j=1,2

Q′
j(s

′, ã′)− α log π(ã′|s′)), ã′ ∼ π(·|s′)

In which minj=1,2 Q′
j(s

′, ã′) denotes that the lowest value produced by
the target action-value networks are used, α log π(ã′|s′) denotes that the
entropy term is included, with a parameter α which determines how
much the entropy term should weight in the calculation, and ã′ ∼ π(·|s′)
denoting that the action ã′ is not experienced during training, but rather
sampled from the current policy network. The gradient ascent performed
to update the policy function is also altered to include the entropy term
and utilize the minimum of the two action-value functions instead of just
a single one. The algorithm is described in alg. 2.

3.4.3 Algorithm comparison

The two actor-critic reinforcement learning algorithms that are utilized to
train the agents used in this project, SAC and DDPG, are very similar.
The main difference between them is how the policy is defined and the
inclusion of the entropy term. It is stated [18] that SAC is more sample
efficient and less prone to be heavily dependent on hyperparameter
tuning, in other words, more robust. This can be explained by the way
actions are picked by the trained policy, since SAC is more entropic
and depends on a stochastic policy definition, a SAC agent executes
a larger variety of actions for given states during training, thus filling
its replay memory with a higher variety of actions, resulting in a more
diverse distribution to be sampled and learned from. The action diversity
produced by the entropy and stochasticity becomes more prevalent as
training goes on as DDPG starts to converge towards determinism,
resulting in much less diverse pools of samples.

3.5 Naive object center-point detection proced-
ure

As object detection is not the main topic of this project, a naive solution
to finding a center-point of a target object is presented. The procedure

46

Step 1+2 Step 3

Step 4 Step 5

Figure 3.9: Mapping of object detection to center-point coordinates

assumes that the object is uniform and utilizes YOLO (sec. 2.6.2) object
detection in addition to TIAGo’s RGB-D camera. It utilized the inaccurate
boundary boxes generated by YOLO to approximate the left and right
edges of the object, which are then used to calculate an approximated
center-point. The procedure is as follows:
Step 1: Use YOLO object detection to generate boundary boxes of the
objects seen by TIAGo’s camera. Multiple objects can be detected at once,
so the correct one has to be chosen. YOLO’s generated boundary boxes are
too large and sometimes inaccurate and thus have to be shrunken down
to .
Step 2: Find the center pixel coordinate of the generated boundary box.
Step 3: Use the center pixel coordinate and boundary box to scan vertically

47

along the y-axis of the depth image, through the center pixel coordinate,
inside the boundary box. Compare neighboring depth values and store
the index where the largest change happened. This is the true top of the
object.
Step 4: Calculate the new center value for the Y coordinate using the true
top of the object found in step 3. Scan horizontally through this Y-value,
inside the boundary box. Compare neighboring depth values and store
the indexes of the two places where the depth value changed the most
between two neighboring measurements, these represent the left and right
edges of the object.
Step 5: Use the depth camera and coordinate frame transformations
available through ROS TF to calculate the two horizontal edge points in
the coordinate frame of the base of the robot. The midpoint between the
two calculated horizontal edge points is the approximated center-point of
the object.

48

Algorithm 1 DDPG as described in [1] and [7]
Initialize batch size B, smoothing coefficient τ and discount factor γ.
Initialize critic network Q(s, a|θQ), and actor network µ(s|θµ) with
weights θQ and θµ.
Initialize target network Q′ and µ′ with weights θQ′ → θQ, θµ′ → θµ

Initialize replay memory D
for each episode do

Initialize exploration noise N
Receive initial observation s0
for each time step t do

Select action at = µ(st|θµ) + Nt
Execute action at and observe reward rt and next state st+1
Store transition (st, at, rt, st+1) in D
if time to update then

Sample random batch of B transitions (si, ai, ri, si+1) from D
Compute targets:

yi = ri + γQ′(st+1, µ′(st+1))

Update critic by one step of gradient descent using:

∇θQ
1
B ∑

i
(yi − Q(si, ai|θQ))2

Update the actor by one step of gradient ascent using:

∇θµ
1
B ∑

i
Q(s, µ(s))

Update the target networks:
θQ′ → τθQ + (1 − τ)θQ′

θµ′ → τθµ + (1 − τ)θµ′

end if
end for

end for

49

Algorithm 2 SAC as described in [1] and [7]
Initialize batch size B, smoothing coefficient τ and discount factor γ.
Initialize critic networks Q1(s, a|θQ1), Q2(s, a|θQ2), and actor network
π(s|θµ) with weights θQ1 , θQ1 and θπ.
Initialize target networks Q′

1 and Q′
2 with weights θQ′

1 → θQ1 andθQ′
2 →

θQ2

Initialize replay memory D
for each episode do

Receive initial observation s0
for each time step t do

Select action at ∼ π(st|θπ)
Execute action at and observe reward rt and next state st+1
Store transition (st, at, rt, st+1) in D
if time to update then

Sample random batch of B transitions (si, ai, ri, si+1) from D
Compute targets:

yi = ri + γ(min
j=1,2

Q′
j(st+1, ãt+1)− α log π(ãt+1|st+1)), ãt+1 ∼ π(·|st+1)

Update critics by one step of gradient descent using:

∇
θ

Qj

1
B ∑

i
(yi − Qj(si, ai|θQ))2, f or j = 1, 2

Update the actor by one step of gradient ascent using:

∇θµ
1
B ∑

i
(min

j=1,2
Qj(s, ã(s))− α log π(ã(s)|s))

Update the target networks:

θ
Q′

j → τθQj + (1 − τ)θ
Q′

j , f or j = 1, 2

end if
end for

end for

50

Chapter 4

Preliminary experiments

4.1 Simulation environment

The Gazebo simulation environment is set up as shown in fig. 4.1. TIAGo
is placed in front of a table where four objects are randomly initialized and
TIAGo’s arm is extended to its side. This is the position each episode starts
in. The objects on the table are randomly shuffled between each episode,
and the arm is randomly reset to be extended at either side.
At the start of each episode, TIAGo collects visual information from its
depth camera to generate the point cloud that is utilized in the reward
function structure designed for simulation in the Gazebo environment, as
described in sec. 3.3.5. The agent also gathers the center-point position
of the target object it is supposed to move the gripper to directly from
the simulated environment. The agent then starts training, choosing
actions defined by its policy. Each episode terminates when the empty
space between the tip of the grippers is close to the target object or a
threshold is met for the number of steps an agent is allowed to perform
before resetting, the closeness threshold required for episode termination
is tunable.

4.2 Early stage simulations

The early-stage simulations consisted of simulations in Gazebo where
parameters were not properly tuned. The action space was as described
in sec. 3.3.3, and did not utilize the action space changes described in sec.
3.3.4 to reduce volatile movements. The reward function was as presented
in sec. 3.3.5, accompanied by the state space presented in sec. 3.3.2 for
simulations in Gazebo. Actions were chosen at a rate of 2 Hz.
The initial simulated tests were done to observe and iterate over possible
configurations and parameter tunings and to see if the learned policy of
the agent became as intended. The runs are included to highlight the
initial failures encountered when attempting to train the reinforcement

51

Figure 4.1: Gazebo simulation environment

learning agents to control the manipulator and why the failures led to the
introduction of a second simulation environment.

4.2.1 First round

The first round of simulation was done using a SAC-based RL agent. It
was done to validate if the environment was set up correctly to enable
learning. It was ran until the average episodic rewards started to slightly
converge, then tested to see if the end-effector of TIAGo’s manipulator
arm could reach a variety of object placements on the table. In this initial
simulation, the threshold for closeness to the object was somewhat relaxed
as the purpose of it was to validate learning and to gain insights for further

52

Figure 4.2: Closeness to object placement in initial simulation.

training. In fig. 4.2 it is shown at which x- and y- target object positions
the arm was able to get close to. A ’hit’ was defined as the end-effector
being less than ten centimeters from the center-point of the target object.
In table 4.1, some key insights from the initial observations can be found.

Key insights - The agent learned to stop twisting and displacing
itself by picking motions that would not lead to
collisions with the table and the objects on it.
- The agent learned to pick smaller movements so
that it mostly stopped being penalized for planning
motions that were too large for the time frame of each
step.
- The agent learned to somewhat follow the vector
pointing to the target object, especially if the object was
placed somewhere near the middle of the table.

Shortcomings - The agent did not learn to move toward the target
object if it was placed on the side of the table.
- The agent did not learn to slow down or emphasize
getting the grippers around the target object in the
cases where it got close to it, resulting in the target
object being displaced.
- The accuracy of getting close to the target object
was low in the global context, but higher for a clearly
defined region of the table.

Table 4.1: Key points and shortcomings of initial simulation.

53

4.2.2 Second round

Figure 4.3: Closeness to object placements in the second round of
simulation results

After observing the training of the first round of the simulations, a second
round was started from scratch. Three major changes were made. Firstly,
the definition of closeness was changed, a ’hit’ now constituted the empty
space between the end-effector’s grippers being within five centimeters of
the center of the object. Secondly, some hyperparameters were tuned, such
as the coefficients of the reward function, to put more weight on the part
that concerned reaching the target object, rather than the parts that concern
collision avoidance and sudden movements. This was done because it
could be observed that the agent quickly learned to move the arm in ways
that negated being punished for collision or sudden movements, but was
somewhat lacking in following the target object. Thirdly, the agent would
be trained for a longer period of time.
In fig. 4.3, 1000 subsequent episodes are shown that were captured at the
end of training. On the left side of the figure, the full range of possible
object placements on the table is shown, on the right side, only the ranges
where the agent was successful at least once are shown. The global hit
accuracy was 20.4%, while the hit accuracy in the restricted area was
40.1%. It became quite evident from the recorded data that the agent
was not able to generalize enough for the whole range of possible object
placements on the table.

54

4.2.3 Third round

Figure 4.4: Closeness to object placements in the third round of simulation
results

With the observations of the second round of simulations in mind, a third
was started. Two major changes were made, both as attempts to reduce
redundancy. Firstly, a change was made to the agent’s state space. The first
column of the 8X4 state space matrix described in sec. 3.3.2 was removed.
The change was made because each row contained both the distance from
the links of the arm to either the target object or some hindrance in the
environment and a vector from the same point on the arm to the same
environmental object. Since the vector itself also inherently describes the
distance, having the distance included separately was redundant, leaving
the state space description as follows:

S =



x0 y0 z0
x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5
x6 y6 z6
x7 y7 z7


Where the first row describes the vector from the end-effector to the
goal object and each subsequent row describes a vector from each of the
manipulator arm’s coordinate frames to the closest obstacle in the point
cloud. Secondly, the range of possible x- and y-coordinates for the objects
on the table were reduced to fit the x- and y-ranges where the agent was

55

able to reach the object in the previous simulation round. This was done
to reduce redundant training rounds in which the agent previously had
proven to be unsuccessful.
In fig. 4.4, the results of these changes can be seen. The ’hit’ accuracy in
the area improved from 40.1% in the previous round, to 49.2%.

4.3 Conclusions of the early results

What became evident after observing the results and emergent behavior
of the agent was that larger changes had to be made if the agent
controlling the robotic arm were to be able to learn how to control the
arm in a manner that would enable gripping. Simulating in Gazebo was
also too slow for rapid prototyping and testing of different state-space
and reward structures. This led to the implementation of the PyBullet
simulation environment, described in sec. 3.2. The change in simulation
environments also required the goal of the agent to be changed. Instead
of focusing on teaching the agent to control the manipulator arm to move
toward a target object while simultaneously avoiding other obstacles, the
goal was changed to teaching the agent controlling the manipulator to
move toward the target object and assume a pre-grasp position. This
describes a motion in which the grippers of the manipulator’s arm are
placed around the target object in a manner that does not displace it and
allows for further manipulation. The main reason for the change of goal
was the inability of the PyBullet simulation environment to accurately
simulate TIAGo’s RGB-D camera.

56

Chapter 5

Results

In this section, the final results of the trained agents are presented. In addi-
tion to the agents being initially trained in a different simulation environ-
ment than the previous section, the action space definition is also changed
in the manner described in sec. 3.3.4. The state spaces and reward func-
tions are also changed according to the definitions presented for the Py-
Bullet environment, presented in sections 3.3.2 and 3.3.5. The changes in
state spaces and reward functions represent the goal of teaching the agent
to control the manipulator to assume a pre-grasp position, while not being
concerned about avoiding obstacles.
Additionally, transfer learning is attempted as the trained agents of the
PyBullet environment are transferred and tested in the Gazebo environ-
ment. The best-performing agent is additionally retrained in the Gazebo
environment and its performance is compared to a motion planning al-
gorithm that is implemented in TIAGo’s software packages. Lastly, the
object center-point approximation procedure’s (sec. 3.5) accuracy is com-
pared to obtaining the target object’s center-point directly from the simu-
lated environment, as a center-point approximation procedure would be
necessary to deploy the trained agents on a real-world setup.

57

5.1 Training data

Figure 5.2: Avg. reward of the agents during training

Figure 5.3: Normalized reward comparison of agents

58

The initial training is done in the PyBullet environment. The state space
of the agents denoted ’position only’ are s = {q, q̇, pee, p̄o}, as presented in
sec. 3.3.2. The state space of the agents denoted ’position and angular’ are
the same as the agents denoted ’position only’ except that it also contains
the angular differences between the end-effector and the object, α and θ,
described in sec. 3.3.5.
The action space is as described in sec. 3.3.4, with an action space
constraining coefficient of 0.1 and the reward functions are as described in
sec. 3.3.5, with weighting tuned to output rewards in the range [−50, 50].
Each episode is set to terminate either when the grippers assume a pre-
grasp position, measured as the empty space between the end-effector
grippers being within 2 cm of the center of the object, or when 40 timesteps
have passed. A time step is set to be a quarter of a second. The agent thus
reevaluates the environment and chooses the next action at a rate of 4 Hz.
The environment is reset after each episode, placing TIAGo in its initial
pose, and randomly shuffling the table object in the same x- and y-ranges
as in the preliminary experiments.
The training data represented in fig. 5.2 shows how the average reward
of the training episodes evolves over time. It can be observed that,
as time goes on, all of the agents reach comparable performance in a
similar amount of time. However, both the DDPG agents’ performances
eventually degenerate, and they are unable to return to performances
similar to their peaks. On the other hand, both SAC agents reach their
optimal policy and mostly stay there. Observing the plot for the ’SAC
position only’ agent, it is shown that the agent sometimes escapes its
optima, but is quickly able to find its way back. In fig. 5.3, the normalized
reward curves is compared, where an episodic reward of 1.0 represents the
maximum achieved episodic reward any of the agents received in a single
episode.

5.2 Simulated performance test

The results found in table 5.1 are gathered by running 1000 episodes of
each respective trained agent with no exploration and no updates. The
agents are originally trained in the PyBullet environment and the results
from the Gazebo environment utilize the trained weights of the neural net-
works trained in the PyBullet environment. Both the SAC agents tested are
using the state of the agent at the end of the training, while both the DDPG
agents are using the state of the agent as it was when each of them was at
their maximum avg. episode reward as seen in fig. 5.2. This choice is
made because the SAC agents’ performances are at a maximum at the end
of their respective training runs, while the performance of both the DDPG
agents’ deteriorate after a certain amount of time.

59

Simulation en-
vironment

Agent al-
gorithm

Episode com-
pletion(%)

Pre-grasp suc-
cess(%)

Avg. time

SAC position
only

100 86.3 12.414 steps /
3.103 s

PyBullet SAC position
and angular

100 92.0 9.924 steps /
2.481 s

DDPG position
only

78.3 0.6 21.834 steps /
5.459 s

DDPG position
and angular

98.7 46.2 12.382 steps /
3.095 s

SAC position
only

78.9 2.9 10.371 steps /
2.593 s

Gazebo (direct
transfer from
bullet)

SAC position
and angular

90.6 0.8 14.004 steps /
3.501 s

DDPG position
only

18.3 0.0 26.342 steps /
6.586 s

DDPG position
and angular

2.1 0.0 24.429 steps /
6.107 s

Table 5.1: Performance results of the fully trained agents

Simulation environment: The environment in which the test was
conducted, not necessarily the environment the agent was trained in.
Agent algorithm: The algorithm and version used to train the agent.
Episode completion: The number of times the agent was able to complete
an episode before the step limit. Completion is set to when the empty
space between the end-effectors’ grippers is within a radius of 2 cm from
the perceived center of the object. The spatial coordinates of the object
center are found at the beginning of the episode and remain static, thus if
the object is moved by the robotic arm during the episode, the perceived
center is not moved with it, meaning that the object might not be within
the grippers at the termination of an episode.
Pre-grasp success: The number of times the episode terminated with an
ideal result. Measured as the empty space between the end-effector’s
grippers being within a radius of 3 cm from the center of the object at the
termination of the episode. In this measurement, the center of the object is
gathered directly from the simulation environment, meaning that in this
scenario the agent was able to place the grippers around the object in a
manner that did not knock over or displace it, resulting in it still being
between the gripper fingers.
Avg. time: The average time of completed episodes, counted as the
average number of steps used in episodes the agent was able to terminate
before the step limit.

60

5.3 Retraining results

Figure 5.4: Avg. reward of the retrained agent

The best-performing agent trained in PyBullet is also retrained in the
Gazebo environment. The training results are shown in fig. 5.4, and the
performance test results are found in Table 5.2. Only the best-performing
agent is chosen for retraining, as retraining in Gazebo takes several days.
Retraining consists of loading the previously trained agent’s weights into
Gazebo and initiating with all parameters set to be as was when the agent’s
state was saved in the PyBullet environment. As shown in fig. 5.4, training
the agent for ∼ 550 000 steps in the PyBullet environment takes 3,1 hours
while retraining for ∼ 80 000 steps in the Gazebo environment takes 51,7
hours on the same workstation.

5.4 Example motion planning algorithm com-
parison

Method Episode com-
pletion

Pre-grasp suc-
cess

Mean object
displacement

Avg. time

SAC agent re-
trained

100% 55.8% 2.54 cm 1.772 s

Example mo-
tion planning
algorithm

88.2% 76.0% 0.986 cm 11.984 s

Table 5.2: Performance results of retrained agent compared to an example
motion planning algorithm.

61

Figure 5.5: Boxplot of object displacement

The results were gathered in the same environment as the SAC agent was
retrained, by placing TIAGo in front of a table and placing an object on
that table. Between each reset the object is randomly shuffled within a
finite range of x- and y-coordinates on the table. The motion planning
algorithm (similar to what is described in sec. 2.3.4) used for comparison
to the trained agent is a demo that can be found in TIAGo’s software
packages. The demo is described on TIAGo’s wiki page1. In brief, the
motion planning algorithm is ran by TIAGo estimating the pose of the
object by a specified marker placed on top of it. The geometry of the object
must be known beforehand. To make the comparison fair, the algorithm
is changed to instead receive the center-point of the target object directly
from the simulated environment, as the RL agent has no pose estimation
component, and errors made by the example algorithm’s pose estimation
would be unfair to compare directly to the agent. A motion planning
framework called MoveIt[8] is then called to first, estimate sample final
poses of the grippers, generate trajectories that end in said final poses,
and lastly choose the optimal trajectory generated. When the planning
phase is over, the motion is executed. Examples of motions generated by
the retrained SAC agent and the example motion planning algorithm can
be found in appendix D.
In fig. 5.5 the displacement of the object from when the agent or algorithm
is first called to when the agent or algorithm is in their pre-grasp positions
is shown. The recorded parameters in table 5.2 are:

1http://wiki.ros.org/Robots/TIAGo/Tutorials/MoveIt/Pick_place

62

http://wiki.ros.org/Robots/TIAGo/Tutorials/MoveIt/Pick_place

Episode completion: Measured as the empty space between the grippers
being within 2 cm of the algorithm or agent’s goal position. The goal
position is set as the center of the object at the start of an episode.
Pre-grasp completion: Measured as the object still being within the
grippers of the robot when the robot has executed its motion and is in
a pre-grasp position.
Mean displacement: The mean displacement of the center of the object
after the SAC agent or the motion planning algorithm is done placing the
grippers in their pre-grasp positions.
Avg. time: The average amount of time used by either the SAC agent or
the motion planning algorithm from when it is first called, to the grippers
are placed in their respective pre-grasp positions. Note that the average
time of the example motion planning algorithm is hard to measure, as
calling it includes a lengthy reset routine. The time presented in the table
is found by measuring the average amount of time it takes from when the
algorithm is called to when it reaches the target object, which is 33.663s,
and subtracting the time of the reset sequence, which is ∼ 21.68s, found
by capturing the motion on video and visually timing the sequence by
cropping the video frame-by-frame.

63

5.5 Object position estimation accuracy test

Figure 5.6: Boxplot of the object center-point approximation procedure
errors

The target object center-point estimation accuracy test is conducted to
observe if the center-point of the target object can be easily deduced
by TIAGo’s camera and a naive procedure. This is to emphasize that
even though the agents are trained by gathering the center-point of the
target object directly from the simualted environment, it could be possible
to instead employ TIAGo’s RGB-D camera to estimate the value if the
reinforcement learning agents are transferred to a real-world robotic setup.
The test is conducted by placing TIAGo in front of a table with the camera
in the same position as the reinforcement learning agent was trained from
and randomly placing the same cylindrical object on the table in the same
x- and y-ranges as in the reinforcement learning agent training runs. The
center of the object is approximated using the procedure described in sec.
3.5 and compared to the actual center-point of the object gathered directly
from the simulation environment. In fig. 5.6, the total error is presented,
along with the errors for each coordinate axis.

64

Figure 5.1: Motion sequences generated by the agent for two positions of
the object

65

Chapter 6

Discussion and conclusion

6.1 Performance results

The performance results reported in chapter 5 and visualized in fig. 5.3
imply that the agents, when utilized at their maximum average episodic
rewards, should perform similarly. However, as table 5.1 reports, it
is evident that there exist significant differences in their performances.
Although the SAC agent trained with only the position of the end-effector
in relation to the object marginally outperforms the SAC agent trained
with both the position and angle of the end-effector in terms of average
episodic reward, it shows worse performance in the metrics measured in
table 5.1. This is because the agent trained with both position and angle
in mind is penalized if the direction of the end-effector is not optimal,
leading to a marginally smaller average episodic reward for the agent.
The reward curves for both DDPG agents indicate that if they are restored
to the moment of their highest average episodic rewards, they should
perform similarly to the SAC agents, which they do not. This observation
suggests that the episodic reward return does not necessarily have a
high correlation with the metrics presented in the table, even though the
reward function designed to train the agents are specifically designed to
encourage high performance on the specific measurements.

6.2 Simulation environments

6.2.1 Simulating in Gazebo

Due to the widespread usage of ROS in modern robotic platforms, Gazebo
is often used as the default simulation environment for ROS development
and is also utilized in this project. However, while Gazebo provides
several advantages for robotics development, it may not be the optimal
choice for reinforcement learning development. One issue is the inability
to reset the robot’s joints quickly, which can lead to sub-optimal reset

66

routines, such as having to manually move TIAGo to another place in the
simulated world so the pose of the robot’s arm can be manually moved
to its initial position. This is done to ensure that the arm can reach
its initial position without being blocked by obstacles such as the table.
Routines such as this are very time-consuming and negatively impact
training efficiency.

As well as having to perform convoluted reset routines to ensure that
each episode starts correctly, the simulation speed of Gazebo might also
impact efficient learning. As an agent requires thousands of episodes
to properly learn, each taking a minute or more to complete in real-
time, it would be beneficial to scale the simulation speed up to perform
much faster than real-time. However, this is challenging with Gazebo
since the update rate of various sensors and systems, which are pre-
programmed to behave like their real-world counterparts, cannot be
reliably sped up. Though the physics update rate of the simulation can
be increased to achieve a higher real-time factor, it is generally considered
unreliable to speed up simulations containing multiple independent
control and sensory systems, such as TIAGo. Thus, it is not found safe
to speed up simulations in Gazebo beyond real-time for this project, as it
would require a significant degree of in-depth knowledge of the physical
components, which is outside the scope.

As a result, training a reinforcement learning agent from scratch using
the methods presented in this project is a time-consuming process that
takes several days. This makes it challenging to prototype new ideas
and tune the plethora of hyperparameters associated with training the
reinforcement learning agents.

6.2.2 Simulating in PyBullet

A solution to mitigate the disadvantages of training reinforcement learn-
ing systems directly in Gazebo is to reproduce the simulation environ-
ment as closely as possible in another simulation engine. However, this
approach requires simplifying the utilization of the robot’s sensory sys-
tems due to the challenges of simulating the exteroceptive sensory systems
without a detailed understanding of every component, which is beyond
the scope of this project. Nonetheless, proprioceptive sensory systems that
provide information about the internal states of the robotic manipulator,
such as joint displacements and velocities, are readily available. Extero-
ceptive information can also be utilized if it can be ensured that the inform-
ation is transferrable to the real sensory systems. For instance, the position
of the center-point of the target object in the environment can be directly
obtained from the simulated environment. Since the location can be estim-
ated with the use of the robot’s depth camera combined with pose estim-
ation algorithms, the position gathered directly from the simulated envir-

67

onment can be used directly. However, simulating the point cloud gener-
ated by TIAGo’s RGB-D camera in the PyBullet environment is a complex
task, and beyond the scope of this project. Therefore, agents trained in Py-
Bullet cannot utilize the depth information this camera provides, and thus
cannot utilize the collision detection originally planned for this project as
described in sec. 3.3.2, which could have been properly utilized if trained
directly in Gazebo. Another advantage of running simulated experiments
in the PyBullet environment is parallelism. The framework used to train
the agents allows for parallel episodes to be run while training, which
significantly speeds up the training process and is mostly limited by the
hardware of the computer that is used.

6.2.3 Environment comparison

Simulation en-
vironment

Trained steps Time Avg. steps per
second

Most limiting
factor

PyBullet 550 000 3,1 hours 49,3 steps per
second

Hardware

Gazebo 80 000 51,7 hours 0,43 steps per
second

The environ-
ment

Table 6.1: Simulation environment comparison

In this project, two simulation environments are utilized, each with its
own advantages and disadvantages. Fig. 5.4 shows the training process
of training an agent in one environment, followed by retraining it in
another. The process of training the agent in the PyBullet environment
requires about 3,1 hours for approximately 550 000 steps of training while
retraining in Gazebo takes about 51,7 hours for only approximately 80 000
training steps. Despite training for 550 000 steps in the first environment,
it can be observed that the average episodic return begins to converge at
only approximately 150 000 environmental steps and that further training
only marginally improves the average return. Assuming training for only
150 000 steps, the training time would be approximately 0.8 hours. On
the other hand, training the same amount of steps from scratch in Gazebo
would take 96, 9 hours, assuming the average time per step found in table
6.1 is true for all phases of training. However, this might not be the
case as the Gazebo environment’s convoluted reset routine is a significant
limiting factor. At the beginning of training, each episode is longer than
in the end because the policy has not yet been trained to a point where
episodes terminate before the step limit. As a result, earlier in training, the
average number of steps per second is higher because the reset routine
is called less often. Despite this, the time required to train an agent
until the rewards start to converge shows significant benefits to utilizing

68

the PyBullet simulation environment instead of training the agent from
scratch in Gazebo, if applicable to the problem.

6.3 Transfer leaning between the environments

Transfer learning is attempted by copying a fully trained agent from the
PyBullet environment and retraining it in the Gazebo environment. Due
to the long retraining time described in the previous section, only one
agent is chosen for retraining. By comparing the retrained agent with
its predecessor that was directly copied, but not retrained, significant
performance improvements can be observed. The predecessor agent,
which is not retrained, is only able to terminate 90.6 % of the episodes
before the step limit and does so without displacing the object in less than
1% of the trials. On the other hand, the retrained agent is able to terminate
in all tested episodes, with the object being minimally displaced and still
being within the grippers in 54,5% of the tests. The retrained agent also
becomes more efficient in terminating episodes and does so on average in
about half the number of steps compared to before retraining. Despite the
improvement in performance caused by retraining, the agent is not fully
able to achieve the same accuracy it did in the PyBullet environment it was
initially trained in when considering the parameters described in table 5.1.

6.4 Results comparison to example motion plan-
ning algorithm

In table 5.2, the retrained SAC agent is compared to an example motion
planning algorithm from TIAGo’s software packages. The results indicate
that while the motion planning algorithm is slower, it achieves a higher
success rate in reaching a pre-grasp position without displacing the object.
It is also shown in fig. 5.5 that when the algorithm fails, the object is
displaced to a lesser degree than it is when the reinforcement learning
agent fails, making it more precise, even when failing. On the other
hand, it is quite ineffective in comparison to the SAC agent, because the
example algorithm has to first generate possible final poses of the arm,
trajectories to reach them, and then find the best possible solution out
of many generated samples, it has to wait before being able to execute
any movement. However, if the environment is static and the robotic
manipulator has to execute the same task repeatedly, the planning stage
only has to be done once. A weakness of this approach is if changes
happen in the environment after the planning stage is complete, as only
a subtle change in the position of the object would cause the planned
trajectory to no longer be up to date, and the executed motion would
fail. The reinforcement learning agent has no planning stage and thus

69

starts moving toward the object immediately after it is called. It does
on-line calculations while moving at a specified rate, in the case of the
agent trained and presented here, at 4 Hz. The agent thus reevaluates the
current state of TIAGo’s arm in the environment and picks a new set-point
configuration four times every second. The reevaluation process could
potentially allow the agent to adapt to changes in the environment while
they are happening, unlike the motion planning algorithm, if trained to do
so.

6.5 The effect of position estimation on the fully
trained agent

The results from table 5.1 were gathered using agents that obtained the
position of the target object directly from the simulated environment. In
fig. 5.6, the error associated with using the object center-point detection
procedure described in sec. 3.5 is presented. The results show that with the
naive approximation procedure, the median error is 1.16 cm from the true
center of the object. The distribution of the error along the three coordinate
axes is also presented. It can be observed from fig. 5.6 that the largest
contributor to the total error is the error along the Z-axis. In situations
where the robot’s grippers are similar to those of TIAGo, the Z-axis is most
resilient to errors. If errors along the x- and y-axes become significant,
the grippers will displace the object. However, if the Z-error becomes
large the grippers will only slide up and down along the object, but not
displace it. Even so, the data presented contains several obvious outliers,
and even though the median error may be acceptable for many situations,
the procedure is not robust enough. Its use may result in situations where
the approximated object center-point is far from the actual center.

6.6 Learned collision avoidance

The results suggest that learning collision avoidance can impact accuracy.
In this project, the first reinforcement learning agents trained starts with a
state space that is configured to contain information about environmental
collision, using the point cloud generated by TIAGo’s RGB-D camera. By
providing the RL agent with a vector from every joint of the robot’s arm to
the closest point in the point cloud and punishing it for coming too close
to said object, it quickly learns to not collide with the environment. The
result is an agent that has learned to over-emphasize collision avoidance
and thus restricts its movements. The results from the early simulation
runs, found in sec. 4.2, suggest that the agent would rather perform small
movements at the middle of the table, where the punishment for being far
off from the object was statistically lowest, while not attempting to move

70

after the target object if it is far off from the middle. The emergent behavior
makes sense considering that the table objects are uniformly distributed
on the table and that if the agent has not learned to follow the object it is
supposed to be targeting, the reward can be statistically maximized over a
large number of episodes by targeting the middle of the table every time.
In the second iteration, the agent is trained in the PyBullet environment
with no form of collision detection. Even with no collision detection
implemented, the agents still learn to avoid the table in the environment.
They do so, not because they learn to avoid obstacles, but because they
have experienced that moving the manipulator arm in a manner that
causes collisions with the table results in a lower reward feedback from the
environment. The result is that the agent only has indirect knowledge of
where the table is in the environment, and would not be able to avoid any
additional obstacles or be able to avoid obstacles in other environments.

6.7 Configuration space as action space

In this project, the action space of all the trained reinforcement learning
agents is directly linked to the configuration space C of the manipulator.
In [7], a paper where the researchers train actor-critic methods on a robotic
arm similar to the one attached to TIAGo, the researchers use a much
less complex action space. In their project, they use an action space A =
{∆x, ∆y, ∆z}, in which each value represents the change in x-, y- and z-
direction the manipulator’s end-effector position is to do for the next time
step, and in which ∆x, ∆y, ∆z ∈ [−0.1, 0.1], as to restrict the manipulator’s
ability to move too far between each time step. From these action
values, they use an inverse kinematics solver to calculate the configuration
space parameters necessary to achieve the change in end-effector position
described by their action space. They report success in teaching the
manipulator to approach a virtual point in space while avoiding either
static or moving obstacles, but do not attempt manipulation. While their
setup seems quite effective at controlling a robotic manipulator arm and
avoiding obstacles, similar setups might not work at all for manipulation
tasks, because they do not consider the posture of the arm and the
end-effector. For grasping and object handling, the posture of the end-
effector in relation to the target object is paramount, and thus abstractions
that reduce the agent’s direct control of the posture of the manipulator
and only consider the end-effector’s position should not be made when
considering training an agent for dexterous manipulation.
On the other hand, in [17] the authors explicitly state that their action
space is the same as the configuration space of their robotic manipulator, a
dexterous hand, and that the agent achieved the ability to learn dexterous
hand manipulation with actor-critic reinforcement learning methods.
While their robotic manipulator has a much smaller operating space

71

than what is utilized in this project and was focused on a different task,
their hand’s configuration space has more dimensions than TIAGo’s arm
has. Their results, combined with the results gathered from training the
actor-critic reinforcements agents of this project, suggest that having an
agent’s output directly linked to the configuration space of the robotic
manipulator is a good design choice for learning manipulation skills
directly.

6.8 Future work

Further development of the agents presented in this project could be
made. The most natural next step would be to attempt ways to further
increase the accuracy of the retrained SAC agent as the accuracy drops
when transferred to the Gazebo environment. If the accuracy can be
successfully restored to the same level as it was in the initial simulated
environment, other endeavors could be attempted. Inclusion of collision
detection schemes in the reward function, such as the one described in
sec. 3.3.5 could be implemented and the agent trained from scratch.
This would however require work to be done on the PyBullet simulation
environment, as collision detection would be dependent on exteroceptive
sensory systems. The agent could also be retrained from scratch using
object detection and pose estimation instead of getting the position of
an object directly from the simulated environment, which would allow
the agent to better adapt to the errors of the specific object detection
and pose estimation method used, but this would also require the same
exteroceptive sensory systems to be accurately replicated in the PyBullet
simulation environment as with collision detection. It would also be
interesting to attempt to train the agent to adapt to small changes in the
environment while the manipulator is moving. The possibility is there
due to the agent’s capability of performing on-line calculations and could
provide novel insights into the agent’s dynamic capabilities.

6.9 Ethical considerations

The advent of more advanced and robust AI raises a number of both
legal and ethical issues that are not easily resolved. Fields such as
XAI (explainable AI)[3] attempt to provide a way for AI models to be
understandable and not considered a ’Black-Box’ where both users and
sometimes even the creator may not understand how and why and AI
model arrives at a given conclusion for a given input, a case that is quite
common for large deep neural networks. This problem is however not
as prevalent for reinforcement learning models, as they usually do not
feature networks with as many layers as for instance generative networks,

72

and can thus offer more transparency. For the particular implementation
in this project, the reinforcement learning agents can be viewed as
navigating the configuration space C of the robotic manipulator’s arm,
and the weights of the policy networks are used to navigate the path from
the initial configuration qs, to a final configuration qg with C and qg not
explicitly given and the robotic manipulator’s image of C being generated
by the value functions of the networks.
A primary concern when developing methods that are to be used in
robotic units is privacy, security, and safety. Privacy concerns the
collection and handling of data gathered by the robotic unit’s sensory
systems. In this project, the camera is somewhat utilized in the
preliminary experiments. The camera must be on to collect the point-cloud
data required to determine the agent’s state space. While the camera data
may not be stored directly on the robot, there are still security concerns.
Since the data is being recorded live, there is a possibility of hacking
into the robotic unit if it is connected to the internet or other devices
in which its data may be vulnerable. As a result, security protocols
may need to be established if agents such as this are to be deployed on
robotic units, although it is not part of this project. It is also important to
consider the potential safety risks associated with deployment. Deployed
reinforcement learning models may potentially damage property or cause
harm if utilized in a manner in which the agents were not originally
trained. It is also important to note that an uninformed user might
mistakenly assume that the results presented for the agents trained in this
project can be generalized to other objects or environments. Presumptions
such as this might result in the agents being utilized in a manner they
were not trained for and thus control the robot to perform unpredictable
actions.

6.10 Conclusion

In this project, a number of different approaches have been applied to train
an agent to control a manipulator arm attached to a mobile robot using
actor-critic reinforcement learning methods. The agents are first trained
in the Gazebo simulation environment, where the robot’s sensory suite
is fully implemented, to reach for a target object placed on a table while
avoiding collisions with other objects on the table and the table itself. The
results show that the agent fails to learn to reach the target object but learns
to control the manipulator arm to avoid collisions with the environment
and itself.

Later, the simulation environment is changed from Gazebo to PyBul-
let, and agents are trained using two slightly differing actor-critic rein-
forcement learning approaches to learn to control the manipulator arm to
reach for and assume a pre-grasp position around a target object. One of

73

the trained agents is shown to be very successful at performing the task.
The successful agent is transferred to and retrained in the original Gazebo
environment and compared to an example motion planning algorithm.

The results from the comparison between the best-performing agent
in the Gazebo environment and an example motion planning algorithm
show that while the agent is more effective at reaching the pre-grasp
position quickly, the motion planning algorithm is more accurate at
performing the same task. In addition, the target object is shown to be
less displaced when the motion planning algorithm fails than when the
trained agent fails, indicating that the motion planning algorithm may be
safer to use in situations where a failure could be dangerous or expensive.
However, the accuracy of the best-performing agent before it is transferred
to the Gazebo environment indicates that it is possible to train the agent
to be more accurate than the example motion planning algorithm for the
task presented.

Overall, this study shows that it is possible to train reinforcement
learning agents to control TIAGo’s manipulator arm to reach for objects,
although the accuracy of the trained agents may be lower than that of
traditional motion planning algorithms. Additionally, it highlights the
trade-offs of the simulation environments employed, showing that being
able to rapidly train agents might be more important than being able to
utilize the full sensory suite of the robot. It enables rapid prototyping
of various state space definitions, action space definitions, and reward
functions, as well as making the process of tuning the hyperparameters
associated with complex reinforcement learning tasks, of which there are
many, more effective.

74

Appendix A

Packages and setup

Ubuntu Linux version 18.04.2
ROS version Melodic
Python version(s) 2.7, 3.8
Required Python packages (Standard ROS packages and libraries for

Python), OpenAI Gym, OpenCV, Ray RL-
lib, Numpy, Tensorflow (Or Torch).

Table A.1: Programs used in setup

ROS and TIAGo’s ROS implementation is installed on a fresh install of
Linux as described on the TIAGo ROS wiki1. Different Python versions
are installed as some of the standard ROS packages for Python are deprec-
ated for version 3.+, while some of the packages utilized for reinforcement
learning require newer Python versions. Which version is needed can be
seen at the top of each Python script. Note that if using libraries that are
incompatible with the same version of Python, it is possible to make two
separate scripts and have them talk to each other through the ROS topics
and messaging system. This is widely used in the scripts.

A.1 Python setup for RLlib

After installing the ROS TIAGo packages it is necessary to install a couple
of python packages to make the simulations work properly, some of the
packages are highly version-specific and will throw errors if not installed
correctly. Start by installing python 3.8 as described in the article linked
here 2.

1https://wiki.ros.org/Robots/TIAGo/Tutorials/
2https://linuxize.com/post/how-to-install-python-3-8-on-ubuntu-18-04/

75

https://wiki.ros.org/Robots/TIAGo/Tutorials/
https://linuxize.com/post/how-to-install-python-3-8-on-ubuntu-18-04/
https://linuxize.com/post/how-to-install-python-3-8-on-ubuntu-18-04/

This will install Python 3.8 but not overwrite the Python 2.7 version
already installed, as having the version that comes with the ROS packages
as a baseline is necessary for TIAGO’s software packages to function
properly.
Installation of the next packages needs to be done for Python 3.8 and
not the version that came with ROS. Packages such as numpy, ray RLlib,
TensorFlow, and TensorFlow probability need to be installed. They can be
installed using the following commands:

$ python3 . 8 −m pip i n s t a l l tensorf low
$ python3 . 8 −m pip i n s t a l l tensorf low − p r o b a b i l i t y
$ python3 . 8 −m pip i n s t a l l numpy
$ python3 . 8 −m pip i n s t a l l gym
$ python3 . 8 −m pip i n s t a l l −U " ray [d e f a u l t] = = 2 . 1 . 0 "
$ python3 . 8 −m pip i n s t a l l −U " ray [r l l i b] = = 2 . 1 . 0 "

The last part is to import the ROS package created for this project from the
repository containing the code utilized for his project3. It is also necessary
to read the README file included with the code repository, as it contains
important information on some structural changes that need to be made
in order for the scripts to work. Rebuild the workspace by going to the
root folder and run:

$ c a t k i n bui ld

The repository also contains a YOLO ROS object detection implementation
that works well with TIAGo, alternatively, YOLO ROS can be downloaded
from the YOLO ROS repository4, but the current main branch is not fully
compatible with ROS melodic and Ubuntu 18.04.

A.2 Tutorials

A.2.1 How to run the trained agents

Note: Due to the size of and number of files, only the agents that are fully trained
and tested in the results chapter (chap. 5) are included in the repository.
Open at least three separate terminal windows and go to the Catkin
Workspace where ROS and TIAGo’s components are installed. Source the
setup file in all the windows.

$ cd { Tiago ROS c a t k i n workspace }
$ source ./ devel/setup . bash

In the first window, launch ROS and the simulation environment through
Gazebo:

3https://github.uio.no/markustr/markustr-master-project-code
4https://github.com/leggedrobotics/darknet_ros

76

https://github.uio.no/markustr/markustr-master-project-code
https://github.uio.no/markustr/markustr-master-project-code
https://github.com/leggedrobotics/darknet_ros

$ roslaunch t i a g o _ r l env_simple . launch

Wait for the simulation environment to launch, and for TIAGo to tuck its
arm.
In the second window, run:

$ rosrun t i a g o _ r l i n i t _ p o s . py

This will cause TIAGo to point its head toward the table so that it can
observe it, while also moving its arm to the initial position. Wait for this
command to finish, then in the same window run:

$ rosrun t i a g o _ r l EVAL_env_handler_ { arg } . py

In which {arg} is either ’pos_only’ or ’pos_and_ang’, depending on the
state space structure designed for the agent that is going to be utilized.
This will run a script that is used to communicate between the RL envir-
onment and Gazebo. It serves the state space by making the necessary
coordinate frame transformations by communicating with the /TF topic
and receiving the necessary kinematic chains.

In the last terminal window, run:

$ rosrun t i a g o _ r l EVAL_{ arg } . py

In which {arg} can be ’DDPG_pos_and_ang’,’ DDPG_pos_only’, ’SAC_pos_and_ang’,
’SAC_pos_only’ or ’SAC_retrained’, depending on which agent is going to
be utilized.

A.2.2 How to visualize in rviz

There are multiple ways to visualize in ROS. This tutorial is based on rviz.
Open two new terminal windows, go to your TIAGo install directory and
source the environment in both.

$ cd { Tiago ROS c a t k i n workspace }
$ source ./ devel/setup . bash

In the first terminal window, run.

$ rosrun r v i z r v i z

Opening rviz this way will open it in a blank state, this will throw an error
because no global map is selected. To fix this, go to global options and
change the fixed frame from map to ’base_footprint’, see fig. A.1.
After this is done we are free to add visualizations to rviz, start by adding
the robot. This can be done by pressing the ’add’ button and choosing
’RobotModel’ in the list that pops up. A good idea might be to change
the ’alpha’ option of the robot from 1 to 0.5 so that it becomes somewhat
transparent and it is easier to see the visual aids later. The point-cloud
image generated by TIAGo’s RGB-D camera can also be added, this can

77

Figure A.1: Rviz interface

be done by pressing ’add’, choosing to add by topics, and adding the topic
’/xtion/depth_registered/points/Pointcloud2’.
Now, to add more visual aids go to the second terminal window and run:
Note that the following script requires the agent to already be running as it
depends on being served the state space of the agent.

$ rosrun t i a g o _ r l frame_viz . py

Figure A.2: Model of TIAGo in Rviz

Now go back to the rviz window and press ’add’ again, choose
to add by topic. This time a new option has popped up called
’/env_viz_markers/Marker’. Choose to add this option. Adding this

78

causes rviz to show the vector from the end-effector to the target object,
as well as show the coordinate frames of the end-effect, the object, and the
preferred directions of the end-effector, described in sec. 3.3.5.

79

Appendix B

Brief forward kinematics example

B.1 The denavit-hartenberg conventions

The transformation between two coordinate frames in a robotic manipu-
lator can be expressed as a combination of only four variables if the co-
ordinate frames are made following these rules:

DH1: The axis of xi+1 is perpendicular to the axis of zi.
DH2: The axis of xi+1 intersects the axis of zi.

By following these two rules it is possible to represent the homogeneous
transform between the two coordinate frames by four variables:

Link length Link twst Link offset Joint angle
ai αi di θi

Table B.1: DH parameters

Using the four variables, the homogenous transformation matrix can
be represented as:

A = Rotz,θi Transz,di Transx,ai Rotx,αi

=


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 d1
0 0 0 1




1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1



=


cθi −sθi cαi sθi sαi aicθi
sθi cθi cαi cθi sαi aisθi
0 sαi cαi d1
0 0 0 1


Typically, the approach for constructing coordinate frame trees involves
limiting only one of the four DH parameters to be variable between

80

each coordinate frame. This design allows each frame to represent either
a pure rotation or a pure translation, making it necessary to utilize
multiple interconnected frames to represent more complex movement.
For instance, a spherical wrist that has three degrees of freedom can
be modeled as three overlapping coordinate frames, each representing a
single degree of freedom.

B.2 Deriving forward kinematics

Figure B.1: Spherical wrist frame assignment. Adapted from [40].

Link ai αi di θi
1 0 −90◦ 0 θ∗1
2 0 90◦ 0 θ∗2
3 0 0 d3 θ∗1

* = variable

Table B.2: DH parameters for spherical wrist

Following the DH conventions, a set of coordinate frames has been
established, making it possible to track the end-effector’s position in space.
By utilizing the configuration in fig. B.1 and its DH table (table B.2), it is
possible to determine the homogenous transformation matrices between

81

each frame as:

A1 =


cθ1 0 −sθ1 0
sθ1 0 cθ1 0
0 −1 0 0
0 0 0 1

 , A2 =


cθ2 0 sθ2 0
sθ2 0 −cθ2 0
0 −1 0 0
0 0 0 1



A3 =


cθ3 −sθ3 0 0
sθ3 cθ3 0 0
0 0 1 d3
0 0 0 1


Through the use of the frame-to-frame transformations, it is possible to
determine the forward kinematic transformation from the end-effector
to the base by multiplying each homogenous transformation matrix An
sequentially.

T0
3 = A1A2A3

=


cθ1cθ2cθ3 − sθ1sθ3 −cθ1cθ2sθ3 − sθ1cθ3 cθ1sθ2 cθ1sθ2d3
sθ1cθ2cθ3 + cθ1sθ3 −sθ1cθ2sθ3 + cθ1cθ3 sθ1sθ2 sθ1sθ2d3

−sθ2cθ3 sθ2sθ3 cθ2 cθ2d3
0 0 0 1


Additionally, this method provides a way for transforming points that are
referenced in a particular frame to another. This is particularly useful in
scenarios where a camera is mounted on the robot and it is necessary to
express the features captured by the camera in the global context of the
environment or the robot, rather than only in relation to the camera itself.

Figure B.2: Point coordinate transform

Suppose a point pe is provided in reference to the end-effector’s
coordinate frame. It is possible to convert it to the base coordinate frame

82

by first padding it to make its shape multipliable with the transformation
matrix. Next, the padded point is post-multiplied with the transformation
matrix describing the homogenous transformation from the end-effector’s
coordinate frame to the base. Lastly, the padding is removed from the
result of the multiplication, resulting in a point pb, describing the same
point as pe, but expressed in the base coordinate frame.

pe =

xe

ye

ze

 , Pe =

[
pe

1

]
=


xe

ye

ze

1


Pb = Tb

e Pe, Pb =

[
pb

1

]

83

Appendix C

TIAGo constraints

Body part Link name,
(P)rismatic or
(R)evolute

Minimum dis-
placement

Maximum dis-
placement

Head head_1_joint(R) -1.24 rad 1.24 rad
head_2_joint(R) -0.98 rad 0.72 rad

Torso torso_lift_joint(P) 0.0 m 0.35 m
Arm arm_1_joint (R) 0.07 rad 2.68 rad

arm_2_joint(R) -1.50 rad 1.02 rad
arm_3_joint(R) -3.46 rad 1.50 rad
arm_4_joint(R) -0.32 rad 2.29 rad
arm_5_joint(R) -2.07 rad 2.07 rad
arm_6_joint(R) -1.39 rad 1.39 rad
arm_7_joint(R) -2.07 rad 2.07 rad

Gripper left_finger_joint(P) 0.0 m 0.04 m
right_finger_joint(P) 0.0 m 0.04 m

Table C.1: TIAGo’s controllable joints and their constraints

84

The arm, link 6 and 7 overlaps The gripper

The head The prismatic torso

Figure C.1: Body parts of TIAGo with frames

85

Appendix D

Example motions

Some executed motion sequences of the retrained SAC agent and the
example motion planning algorithm discussed in sec. 5.4 are included.
Each included SAC agent-generated motion consists of six frames, and
each motion executed by the example motion planning algorithm consists
of 12 frames, this is to emphasize that the motions executed by the example
motion planning algorithm are slower than those generated by the SAC
agent.

Figure D.1: Example motion executed by the retrained SAC agent

86

Figure D.2: Example motion executed by the retrained SAC agent

Figure D.3: Example motion executed by the retrained SAC agent

87

Figure D.4: Example motion executed by the retrained SAC agent

88

Figure D.5: Example motion executed by the example motion planning
algorithm

89

Figure D.6: Example motion executed by the example motion planning
algorithm

90

Figure D.7: Example motion executed by the example motion planning
algorithm

91

Figure D.8: Example motion executed by the example motion planning
algorithm

92

Bibliography

[1] Joshua Achiam. ‘Spinning Up in Deep Reinforcement Learning’. In:
spinningup.openai.com (2018). URL: spinningup.openai.com.

[2] Evan Ackerman. ‘Care-O-bot 4 Is the Robot Servant We All Want
but Probably Can’t Afford’. In: Spectrum IEEEE 29 (2015). URL: https:
//spectrum.ieee.org/care-o-bot-4-mobile-manipulator.

[3] Plamen P. Angelov et al. ‘Explainable artificial intelligence: an
analytical review’. In: WIREs Data Mining and Knowledge Discovery
11.5 (2021), e1424. DOI: https: / /doi .org/10.1002/widm.1424. eprint:
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1424. URL:
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1424.

[4] Kai Arulkumaran et al. ‘Deep Reinforcement Learning: A Brief
Survey’. In: IEEE Signal Processing Magazine 34.6 (2017), pp. 26–38.
DOI: 10.1109/MSP.2017.2743240.

[5] E.N. Barron and H. Ishii. ‘The Bellman equation for minimizing the
maximum cost’. In: Nonlinear Analysis: Theory, Methods Applications
13.9 (1989), pp. 1067–1090. ISSN: 0362-546X. DOI: https://doi.org/10.
1016/0362- 546X(89)90096- 5. URL: https: / /www.sciencedirect .com/
science/article/pii/0362546X89900965.

[6] Marko Bjelonic. YOLO ROS: Real-Time Object Detection for ROS.
2016–2018. URL: https://github.com/leggedrobotics/darknet_ros.

[7] Lienhung Chen et al. ‘Deep Reinforcement Learning Based Traject-
ory Planning Under Uncertain Constraints’. In: Frontiers in Neuroro-
botics 16 (2022). ISSN: 1662-5218. DOI: 10.3389/ fnbot .2022.883562.
URL: https://www.frontiersin.org/articles/10.3389/fnbot.2022.883562.

[8] David Coleman et al. Reducing the Barrier to Entry of Complex Robotic
Software: a MoveIt! Case Study. 2014. arXiv: 1404.3785 [cs.RO].

[9] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. 2016–2022. URL:
http://pybullet.org.

[10] Felix Endres et al. ‘3-D Mapping With an RGB-D Camera’. In: IEEE
Transactions on Robotics 30.1 (2014), pp. 177–187. DOI: 10.1109/TRO.
2013.2279412.

93

spinningup.openai.com
https://spectrum.ieee.org/care-o-bot-4-mobile-manipulator
https://spectrum.ieee.org/care-o-bot-4-mobile-manipulator
https://doi.org/https://doi.org/10.1002/widm.1424
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1424
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1424
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/https://doi.org/10.1016/0362-546X(89)90096-5
https://doi.org/https://doi.org/10.1016/0362-546X(89)90096-5
https://www.sciencedirect.com/science/article/pii/0362546X89900965
https://www.sciencedirect.com/science/article/pii/0362546X89900965
https://github.com/leggedrobotics/darknet_ros
https://doi.org/10.3389/fnbot.2022.883562
https://www.frontiersin.org/articles/10.3389/fnbot.2022.883562
https://arxiv.org/abs/1404.3785
http://pybullet.org
https://doi.org/10.1109/TRO.2013.2279412
https://doi.org/10.1109/TRO.2013.2279412

[11] David Fischinger et al. ‘Hobbit, a care robot supporting independent
living at home: First prototype and lessons learned’. In: Robotics and
Autonomous Systems 75 (2016). Assistance and Service Robotics in a
Human Environment, pp. 60–78. ISSN: 0921-8890. DOI: https : / /doi .
org/10.1016/j.robot.2014.09.029. URL: https://www.sciencedirect.com/
science/article/pii/S0921889014002140.

[12] Vincent François-Lavet et al. ‘An Introduction to Deep Reinforce-
ment Learning’. In: Foundations and Trends ® in Machine Learn-
ing 11.3-4 (2018), pp. 219–354. ISSN: 1935-8237. DOI: 10 . 1561 /
2200000071. URL: http://dx.doi.org/10.1561/2200000071.

[13] Scott Fujimoto, Herke van Hoof and David Meger. ‘Addressing
Function Approximation Error in Actor-Critic Methods’. In: Proceed-
ings of the 35th International Conference on Machine Learning. Ed. by
Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine
Learning Research. PMLR, Oct. 2018, pp. 1587–1596. URL: https : / /
proceedings.mlr.press/v80/fujimoto18a.html.

[14] Moritz Goeldner, Cornelius Herstatt and Frank Tietze. ‘The emer-
gence of care robotics — A patent and publication analysis’. In: Tech-
nological Forecasting and Social Change 92 (2015), pp. 115–131. ISSN:
0040-1625. DOI: https://doi.org/10.1016/j.techfore.2014.09.005. URL:
https://www.sciencedirect.com/science/article/pii/S0040162514002753.

[15] Ivo Grondman et al. ‘A Survey of Actor-Critic Reinforcement Learn-
ing: Standard and Natural Policy Gradients’. In: IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42.6
(2012), pp. 1291–1307. DOI: 10.1109/TSMCC.2012.2218595.

[16] Tuomas Haarnoja et al. Learning to Walk via Deep Reinforcement
Learning. 2019. arXiv: 1812.11103 [cs.LG].

[17] Tuomas Haarnoja et al. Soft Actor-Critic Algorithms and Applications.
2019. arXiv: 1812.05905 [cs.LG].

[18] Tuomas Haarnoja et al. ‘Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor’. In:
Proceedings of the 35th International Conference on Machine Learning.
Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of
Machine Learning Research. PMLR, Oct. 2018, pp. 1861–1870. URL:
https://proceedings.mlr.press/v80/haarnoja18b.html.

[19] Helsedirektoratet. ‘Estimert mangel på helsepersonell - en grafisk
framstilling av resultatene fra NAVs bedriftsundersøkelser [nettdok-
ument]’. In: Oslo: Helsedirektoratet (2021). URL: https : / / www .
helsedirektoratet.no/rapporter/estimert-mangel-pa-helsepersonell.

[20] Jennifer Hicks. Hector: Robotic Assistance for the Elderly. Forbes. Aug.
2012. URL: https : / /www. forbes.com/sites / jenniferhicks /2012/08/13/
hector-robotic-assistance-for-the-elderly/?sh=d50664724437.

94

https://doi.org/https://doi.org/10.1016/j.robot.2014.09.029
https://doi.org/https://doi.org/10.1016/j.robot.2014.09.029
https://www.sciencedirect.com/science/article/pii/S0921889014002140
https://www.sciencedirect.com/science/article/pii/S0921889014002140
https://doi.org/10.1561/2200000071
https://doi.org/10.1561/2200000071
http://dx.doi.org/10.1561/2200000071
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/https://doi.org/10.1016/j.techfore.2014.09.005
https://www.sciencedirect.com/science/article/pii/S0040162514002753
https://doi.org/10.1109/TSMCC.2012.2218595
https://arxiv.org/abs/1812.11103
https://arxiv.org/abs/1812.05905
https://proceedings.mlr.press/v80/haarnoja18b.html
https://www.helsedirektoratet.no/rapporter/estimert-mangel-pa-helsepersonell
https://www.helsedirektoratet.no/rapporter/estimert-mangel-pa-helsepersonell
https://www.forbes.com/sites/jenniferhicks/2012/08/13/hector-robotic-assistance-for-the-elderly/?sh=d50664724437
https://www.forbes.com/sites/jenniferhicks/2012/08/13/hector-robotic-assistance-for-the-elderly/?sh=d50664724437

[21] Qingyan Huang. ‘Model-Based or Model-Free, a Review of Ap-
proaches in Reinforcement Learning’. In: 2020 International Confer-
ence on Computing and Data Science (CDS). 2020, pp. 219–221. DOI:
10.1109/CDS49703.2020.00051.

[22] Julian Ibarz et al. ‘How to train your robot with deep rein-
forcement learning: lessons we have learned’. In: The International
Journal of Robotics Research 40.4-5 (2021), pp. 698–721. DOI: 10 .
1177 / 0278364920987859. eprint: https : / / doi . org / 10 . 1177 /
0278364920987859. URL: https://doi.org/10.1177/0278364920987859.

[23] Nick Jakobi, Phil Husbands and Inman Harvey. ‘Noise and the
reality gap: The use of simulation in evolutionary robotics’. In:
Advances in Artificial Life. Ed. by Federico Morán et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1995, pp. 704–720. ISBN:
978-3-540-49286-3.

[24] Sertac Karaman and Emilio Frazzoli. Sampling-based Algorithms for
Optimal Motion Planning. 2011. arXiv: 1105.1186 [cs.RO].

[25] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG].

[26] Nathan Koenig and Andrew Howard. ‘Design and use paradigms
for Gazebo, an open-source multi-robot simulator’. In: Proceedings
of the 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2004) 3 (2004), pp. 2149–2154. DOI: 10 . 1109 / IROS.
2004.1389727.

[27] Päivi Lavander, Merja Meriläinen and Leena Turkki. ‘Working time
use and division of labour among nurses and health-care workers in
hospitals – a systematic review’. In: Journal of Nursing Management
24.8 (2016), pp. 1027–1040. DOI: https://doi.org/10.1111/jonm.12423.
eprint: https: / /onlinelibrary.wiley.com/doi /pdf /10.1111/ jonm.12423.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/jonm.12423.

[28] Sergey Levine et al. ‘Offline Reinforcement Learning: Tutorial, Re-
view, and Perspectives on Open Problems’. In: CoRR abs/2005.01643
(2020). arXiv: 2005.01643. URL: https://arxiv.org/abs/2005.01643.

[29] Shiyu Liang and R. Srikant. ‘Why Deep Neural Networks?’ In: CoRR
abs/1610.04161 (2016). arXiv: 1610.04161. URL: http://arxiv.org/abs/
1610.04161.

[30] Timothy P. Lillicrap et al. Continuous control with deep reinforcement
learning. 2015. DOI: 10.48550/ARXIV.1509.02971. URL: https://arxiv.
org/abs/1509.02971.

95

https://doi.org/10.1109/CDS49703.2020.00051
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://arxiv.org/abs/1105.1186
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/https://doi.org/10.1111/jonm.12423
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jonm.12423
https://onlinelibrary.wiley.com/doi/abs/10.1111/jonm.12423
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/1610.04161
http://arxiv.org/abs/1610.04161
http://arxiv.org/abs/1610.04161
https://doi.org/10.48550/ARXIV.1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971

[31] A. Rupam Mahmood et al. ‘Benchmarking Reinforcement Learning
Algorithms on Real-World Robots’. In: Proceedings of The 2nd
Conference on Robot Learning. Ed. by Aude Billard et al. Vol. 87.
Proceedings of Machine Learning Research. PMLR, 29–31 Oct 2018,
pp. 561–591. URL: https: / /proceedings.mlr.press/v87/mahmood18a.
html.

[32] Martijn van Otterlo and Marco Wiering. ‘Reinforcement Learning
and Markov Decision Processes’. In: Reinforcement Learning: State-
of-the-Art. Ed. by Marco Wiering and Martijn van Otterlo. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 3–42. ISBN: 978-
3-642-27645-3. DOI: 10 . 1007 / 978 - 3 - 642 - 27645 - 3 _ 1. URL: https :
//doi.org/10.1007/978-3-642-27645-3_1.

[33] Cristiano Premebida, Rares Ambrus and Zoltan-Csaba Marton.
‘Intelligent Robotic Perception Systems’. In: Applications of Mobile
Robots. Ed. by Efren Gorrostieta Hurtado. Rijeka: IntechOpen, 2019.
Chap. 6. DOI: 10.5772/intechopen.79742. URL: https://doi.org/10.5772/
intechopen.79742.

[34] Martin L. Puterman. ‘Chapter 8 Markov decision processes’. In:
Stochastic Models. Vol. 2. Handbooks in Operations Research and
Management Science. Elsevier, 1990, pp. 331–434. DOI: https : / /doi .
org/10.1016/S0927-0507(05)80172-0. URL: https://www.sciencedirect.
com/science/article/pii/S0927050705801720.

[35] Wang Qiang and Zhan Zhongli. ‘Reinforcement learning model,
algorithms and its application’. In: 2011 International Conference on
Mechatronic Science, Electric Engineering and Computer (MEC). 2011,
pp. 1143–1146. DOI: 10.1109/MEC.2011.6025669.

[36] Morgan Quigley et al. ‘ROS: an open-source Robot Operating
System’. In: ICRA workshop on open source software. Vol. 3. 3.2. Kobe,
Japan. 2009, p. 5.

[37] Joseph Redmon et al. ‘You Only Look Once: Unified, Real-Time
Object Detection’. In: CoRR abs/1506.02640 (2015). arXiv: 1506 .
02640. URL: http://arxiv.org/abs/1506.02640.

[38] Thomas B. Sheridan. ‘Human–Robot Interaction: Status and Chal-
lenges’. In: Human Factors 58.4 (2016). PMID: 27098262, pp. 525–532.
DOI: 10 .1177 /0018720816644364. eprint: https : / /doi .org /10 .1177 /
0018720816644364. URL: https://doi.org/10.1177/0018720816644364.

[39] Bruno Siciliano et al. Robotics: Modelling, Planning and Con-
trol. Springer Publishing Company, Incorporated, 2010. ISBN:
9781846286414. URL: https: / /books.google.no/books?id=jPCAFmE-
logC.

96

https://proceedings.mlr.press/v87/mahmood18a.html
https://proceedings.mlr.press/v87/mahmood18a.html
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.5772/intechopen.79742
https://doi.org/10.5772/intechopen.79742
https://doi.org/10.5772/intechopen.79742
https://doi.org/https://doi.org/10.1016/S0927-0507(05)80172-0
https://doi.org/https://doi.org/10.1016/S0927-0507(05)80172-0
https://www.sciencedirect.com/science/article/pii/S0927050705801720
https://www.sciencedirect.com/science/article/pii/S0927050705801720
https://doi.org/10.1109/MEC.2011.6025669
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://doi.org/10.1177/0018720816644364
https://doi.org/10.1177/0018720816644364
https://doi.org/10.1177/0018720816644364
https://doi.org/10.1177/0018720816644364
https://books.google.no/books?id=jPCAFmE-logC
https://books.google.no/books?id=jPCAFmE-logC

[40] M.W. Spong, S. Hutchinson and M. Vidyasagar. Robot Modeling and
Control. Wiley, 2005. ISBN: 9780471649908. URL: https://books.google.
no/books?id=A0OXDwAAQBAJ.

[41] Richard S Sutton, Andrew G Barto et al. Introduction to reinforcement
learning. MIT press Cambridge, 1998. ISBN: 9780262303842. URL:
https://books.google.no/books?id=U57uDwAAQBAJ.

[42] Turja Tuuli and Parviainen Jaana. ‘The Use of Affective Care Ro-
bots Calls Forth Value-based Consideration’. In: 2020 29th IEEE In-
ternational Conference on Robot and Human Interactive Communication
(RO-MAN). 2020, pp. 950–955. DOI: 10.1109/RO- MAN47096.2020.
9223336.

[43] Lina Van Aerschot and Jaana Parviainen. ‘Robots responding to care
needs? A multitasking care robot pursued for 25 years, available
products offer simple entertainment and instrumental assistance’.
In: Ethics and Information Technology 22.3 (Sept. 2020), pp. 247–256.
ISSN: 1572-8439. DOI: 10 . 1007 / s10676 - 020 - 09536 - 0. URL: https :
//doi.org/10.1007/s10676-020-09536-0.

[44] Christopher J. C. H. Watkins and Peter Dayan. ‘Q-learning’. In:
Machine Learning 8.3 (May 1992), pp. 279–292. ISSN: 1573-0565. DOI:
10.1007/BF00992698. URL: https://doi.org/10.1007/BF00992698.

97

https://books.google.no/books?id=A0OXDwAAQBAJ
https://books.google.no/books?id=A0OXDwAAQBAJ
https://books.google.no/books?id=U57uDwAAQBAJ
https://doi.org/10.1109/RO-MAN47096.2020.9223336
https://doi.org/10.1109/RO-MAN47096.2020.9223336
https://doi.org/10.1007/s10676-020-09536-0
https://doi.org/10.1007/s10676-020-09536-0
https://doi.org/10.1007/s10676-020-09536-0
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

	Introduction
	Research goals
	Scope and limitations
	Outline

	Background
	Robotics in society
	The industry of modern robotics
	Human-robot interaction
	The TIAGo research robot

	Robot perception and scene understanding
	TIAGo's visual sensory systems

	Robotic modeling and control
	Rigid body transformations/Coordinate frame assignments
	Set-point control
	Trajectory and motion planning
	Motion planning algorithms

	Machine leaning
	Neural networks
	Neural network weight updates

	Reinforcement learning
	The Markov decision process
	Model-based and model-free free reinforcement learning
	Action-value functions and the bellman equation
	Deep reinforcement learning
	Actor-Critic reinforcement learning
	Offline reinforcement learning
	Transfer learning
	Reinforcement learning in robotics

	Image classification and object detection
	Convolutional layers
	YOLO (you only look once) object detection

	Methods
	Primary simulation environment
	Actionlib
	TF
	OpenCV

	Secondary simulation environment
	Reinforcement learning setup
	Inspiration
	The state space
	The action space
	Action space constraining
	The reward mechanism
	Reward scaling
	The state-transition memory
	The optimizer
	Neural network structure
	Rate of control

	Algorithms
	DDPG
	SAC
	Algorithm comparison

	Naive object center-point detection procedure

	Preliminary experiments
	Simulation environment
	Early stage simulations
	First round
	Second round
	Third round

	Conclusions of the early results

	Results
	Training data
	Simulated performance test
	Retraining results
	Example motion planning algorithm comparison
	Object position estimation accuracy test

	Discussion and conclusion
	Performance results
	Simulation environments
	Simulating in Gazebo
	Simulating in PyBullet
	Environment comparison

	Transfer leaning between the environments
	Results comparison to example motion planning algorithm
	The effect of position estimation on the fully trained agent
	Learned collision avoidance
	Configuration space as action space
	Future work
	Ethical considerations
	Conclusion

	Packages and setup
	Python setup for RLlib
	Tutorials
	How to run the trained agents
	How to visualize in rviz

	Brief forward kinematics example
	The denavit-hartenberg conventions
	Deriving forward kinematics

	TIAGo constraints
	Example motions

