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Abstract
The last decade has witnessed tremendous advances within the realm
of industrial applications, at the core of which stands a recent fusion
between sensing and artificial intelligence (AI) technologies. By design,
deep learning models are particularly well-suited at capturing hidden
patterns and correlations in masses of heterogeneous data, displaying
exceptional performance compared to other traditional learning meth-
ods. Their powerful predictive ability is however eclipsed by their large
computational requirements. Offloading segments or entire computa-
tional processes onto the cloud is not always feasible due to privacy con-
cerns, limited bandwidth and minimal latency tolerance. To overcome
these challenges, a promising strategy involves moving all computa-
tions near or at the edge level, reducing transmission costs. Contrasted
to cloud servers, edge devices operate under constrained conditions, and
are characterized by reduced memory, power and computational capac-
ities. Accommodating deep learning models on resource-constricted de-
vices thus translates to finding those optimization strategies that best
balance the trade-off between predictive power and resource utilization.
Existing implementations concentrate on increasing the model accu-
racy, and often neglect reducing resource footprint. Although many
edge intelligence-enabling hardware and software optimizations have
been proposed, they are often tailored to specific architectures and con-
texts. This thesis proposes a framework for finding a one-fits-all solu-
tion for efficient edge deployment and inference, by exploring different
compression techniques across various model architectures and com-
plexities. The design and implementation choices we make are based on
a literature review on latest optimization trends. This serves as a guide
for research aimed at fitting trained models onto resource-constricted
devices. A critical ingredient to our approach is the comparative analy-
sis between full-size and optimized model counterparts, that allows us
to better capture the relationship between predictive accuracy and re-
source utilization. Among many possible use cases, we select a health-
care application scenario where we deploy models built for stress detec-
tion, a non-linear time-series analysis problem, onto an edge device.
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1 Introduction

In the light of the fourth industrial revolution, more and more industry

sectors undergo a gradual transition to a greater digitally-empowered

workforce, as innovative technologies emerge providing quicker and more

reliable solutions to workplace-related problems. Such novel technolog-

ical developments often register the application of AI, particularly Ma-

chine Learning (ML) models that can be employed in order to make fast,

ideally real-time, high-grade predictions based on behavioral and phys-

iological data collected within the work environment. Generating a pre-

diction or an output is also commonly known as inference and typically

entails having access to a pre-trained model. Nevertheless, the infer-

ence process may not only be computationally intensive, but also use

significant amounts of resources in terms of energy, power and memory

footprint. This is all the more true for models of high-complexity such as

neural networks where time and space complexity is magnified by input

dimensions and model architecture choice. Cloud servers can deal with

computation-heavy processes, but cloud computing will sometimes be

unfeasible and disadvantageous due to various factors, such as network

outages, increased server or network costs and risks related to privacy.

On top of this, data transmission remains constrained by the limita-

tions of the network bandwidth, making cloud computing more prone

to training bottlenecks and inference latency, thus less compatible with

processing time-sensitive data.

On-device deployment and inference of ML models offer a potential

workaround to the aforementioned issues. Edge devices are however

prohibitive due to memory, power and computational requirements. The

solution to this issue constitutes in resource optimization strategies ap-

plied at the hardware and at the software level respectively. Neverthe-

less, these too carry an associated cost, which translates to a degree of

accuracy loss. The challenge at hand consists in balancing the trade-off

between edge resource utilization and model performance preservation.

While current research efforts are focused on optimization strategies
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for specific scenarios, there is a clear lack of research aimed towards

finding a widely-applicable optimization strategy that covers not only

several model architectures, but also adds a complexity dimension.

The purpose of this study will be to give an answer to the question

of whether it is possible to find a generalized set of optimization tech-
niques that allows efficient model deployment and inference on resource-
constricted devices. To this intent, we design and implement a Proof

of Concept (PoC) framework by taking architectural, hardware- and

evaluation-related decisions grounded in a comprehensive investigation

on state-of-the-art techniques. This framework helps us acquire an one-

fits-all solution to the issues mentioned previously. Our area of interest

is centered exclusively around model optimizations and design choices

that lead to so-called “lightweight” architectures, as they appear in cur-

rent research. Drawing upon these insights, we propose a framework

that allows us to find whether a subset of these optimization techniques

can be generally applied across model architectures, highlighting those

that are most successful in balancing out the trade-off between perfor-

mance preservation and resource utilization.

We increase robustness by running two separate experiments, af-

ter generating a large set of learning models belonging to a wide range

of architectures and displaying multiple degrees of complexity. The

full-sized models are then subjected to various optimization techniques,

“lightweight” versions emerging as byproducts of this process. To this

pipeline we then add deploying these models to a widely-used edge de-

vice and simulating inference on it. A shared set of key performance

indicators is then used to extract relevant inference evaluation metrics

for both the full-sized models and their lightweight counterparts. This

evaluation scheme lies at the very core of our PoC and enables us to set

up a tight comparative analysis that considers all specified dimensions.

Our search for widely-applicable optimizations prompts an extensive

discussion at the end of the thesis, where we validate our results by

defining a set of success criteria.
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In this whole process one crucial step is fitting our models, but to do

so we must first find an appropriate data set. Time-series data process-

ing will be prioritized in this thesis not only because it allows us to cover

a broader range of model architectures, but it is also found at the base

of many valuable real-time industrial applications. To this end, we will

use the WESAD data set which provides quantitative variables acquired

by a suite of wearable devices, with multiple applications belonging to

affective computing. In this data set the physiological characteristics

of an individual at any given time can be used as an indicator of their

psychological state, whether it is neutral, amused, or stressed. With the

thesis objective in mind, our efforts will be directed towards preserving

the initial performance of the full-sized models after optimizations are

applied.

In the subsequent sections, we will follow the above steps imple-

menting a PoC that aims to fulfill all defined success criteria, allowing

us to answer the posed research question and fill in multiple research

gaps. This means achieving a better understanding of how the envi-

sioned framework is built, how it allows us to discover whether ML

optimization can be applied across several dimensions, but also which

techniques stand out the most in this respect.
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1.1 Thesis Outline

The thesis structure reflects the evolving nature of the thesis starting

from planning, going through the implementation and ending with eval-

uation. Section 2 pieces together an all-encompassing thesis statement

in subsection 2.1, which is a clear definition as to what our PoC is ex-

pected to be and do. In subsection 2.2 the thesis statement is later

characterized by two success criteria. Next we have section 3 which cov-

ers the necessary background. Subsection 3.1 provides a deeper under-

standing of thesis-relevant AI/ML concepts. This is followed by subsec-

tion 3.2, which illustrates the usage of AI/ML-fused technology across

various industries. Subsection 3.3 offers a description of time-series

data. Section 4 is concerned with planning and performing the litera-

ture review. Subsection 4.1 initializes the process by describing a liter-

ature review protocol showcasing the steps needed to perform a system-

atic literature review. Here we present some initial results as we follow

the protocol actions. A fuller report on findings can be found in sub-

section 4.2, where we extract relevant knowledge about current trends

and state-of-the-art architectures, edge hardware, evaluation strategies

and resource-oriented optimizations. This is followed by subsection 4.3

where research gaps are highlighted, and lastly subsection 4.4 where

our contributions are listed. Section 5 showcases the developmental

stages and documents these. Subsection 5.1 goes over the data set par-

ticularities, the model generation and training phases, while subsection

5.2 explains how these models are optimized. The next subsection is

5.3, which goes over the details of the deployment and inference phases.

Next to last we have section 6 where we present the experimental re-

sults of full-sized models and the comparative analysis between full-size

models and their optimized counterparts. Finally, section 7 provides a

discussion on findings linked to our PoC. We follow this by a take on

faced limitations of our approach, describing also how our efforts helps

pave a path for future work.
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2 Thesis Statement and Success Criteria

2.1 Thesis Statement

Before equipping ourselves with a deeper understanding about better-

ing deployment and inference on edge devices, we should focus on the

type of framework that we envision being built. We base our PoC de-

scription on an intuition around its qualities and desired functionality,

then we encompass these thoughts into a simple thesis statement. As

mentioned in the introduction, by the end of the thesis we should be able

to find a rather generalized set of optimization techniques which can to

a certain degree be reused under different scenarios with the goal of re-

ducing the load on resources with minimal performance loss. In more

technical terms, this set could be ascribed to a tool which outputs an

efficiently optimized version of an input model, regardless of its original

architecture and complexity. Finding a fair balance between the avail-

able computing resources and the performance of the predictive models

can be regarded as the most vital component of this tool, and thus we

regard this optimization set as sufficient proof of its existence. Let us

now formulate the problem statement in more general terms. The state-

ment constitutes the basis on which we build our success criteria in the

next subsection, so it should be short and concise. We will thus make

the following statement, and claim that:

It is possible to develop a practical ML-based approach for
time-series data analysis, in such a way that the model can be

deployed and executed on resource-constricted devices.

We want to support this statement by implementing and evaluating the

PoC. This involves following a series of steps that take consideration

of current trends and technology. Being able to support this statement

and finding ways of fulfilling it is however not possible without under-

standing all of the terms that are embedded in the statement. We take

a closer look at our thesis statement and try to solve some term ambigu-

ities in order to get a complete understanding of what our final goal is.
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In the statement, the term practical can be interpreted in several ways.

So what exactly do we mean by practicality in this context? In subse-

quent sections we will see that our design entails generating full-sized

models and then applying optimizing techniques post-training, result-

ing in new, optimized models. A practical solution in this context refers

to the ability of preserving resources on the targeted environment and

minimizing model performance loss once the model is deployed and ex-

ecuted. To be more precise, we argue that a practical model should be

able to preserve most if not all of its accuracy once optimized, and use

minimal device resources by keeping a low footprint. The next term we

consider is “approach”. Approach should not be interchanged with “opti-

mization set”, because while we are indeed employing the use of various

optimizations, an approach carries much more meaning and includes

the investigation of various techniques and all decision-making prior to

building the framework. Time-series data is merely a mention of the

type of data we wish to process, and its choice will be further justified

in coming sections. The model term here stands for any architecture of

neural network from those that we will cover. Lastly, we highlight that

the approach should return models that are deployable and executable.

These two terms connect to our previous description of “practical”. We

will see how everything translates to the success criteria.

2.2 Success Criteria

Success criteria point to the sort of attributes that we want to have

present in our optimized models, and provide a method of validating

whether our approach has been successful. Checking against these cri-

teria determines whether our framework does what it is expected to,

and if our thesis goal has been met. These connect to our previous state-

ment, as we are going to define what a “practical” solution would be in

terms of model qualities and requirements. We can now describe these

success criteria, as follows:
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1. Accuracy Success Criteria: The optimized model should pro-

vide predictions with an accuracy comparable to that of its full-size

model.

2. Resource Success Criteria: The optimized model should min-

imize resource utilization so that it is below that of the full-size

model.

For the first criteria, the optimized model accuracy is comparable to the

full-size counterpart if it is equal, higher, or if it reduced by a small

predetermined value given in terms of accuracy loss points. We choose

a threshold of 0.1, and claim that anything above this accuracy drop

should not be permitted, as models need to have a similar accuracy to

that of their full-sized counterparts. To fulfill this requirement, this has

to be true across all of the model architectures, and across all of the

complexities (i.e model sizes). For the second criteria, the performance

of the optimized model here is related to its resource utilization. This

is a requirement to minimize its impact on device resources. In quan-

titative terms, the optimized model should optimally use less resources

than its full-sized counterpart in order to be deemed practical. Which

resources are deemed relevant for various constricted devices is one of

topics to be discussed in later sections. If there are several optimizations

that fulfill this requirement, then the ones that uses least resources are

preferred. Note that while these two are listed separately, the trade-off

between the two is also a dimension of interest, since we do not want to

compromise too much on one for the other. Even if not listed explicitly

as a success criteria, it should be possible to deploy the optimized model

on devices where the full-size model fails to do so. This is imperative for

highly resource-constricted devices.

All in all, we have several important success criteria which we want

to fulfill and which we will have to take consideration of when imple-

menting our PoC. Evaluating the PoC will be done in respect to these

success criteria. Note that the actual evaluation is done on the opti-

mized models, however finding these optimizations in the first place

supports our thesis statement.
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3 Research Context and Motivation

Before we dig deeper into the topic of resource-efficient optimization and

the actual implementation and evaluation stages of our PoC, we first

have to highlight the use and importance of AI/ML technologies in an

industrial setting by discussing how deployment on resource-constricted

devices has unlocked new types of applications, but also briefly outline

some of the challenges that are met. We follow this up by a few elemen-

tary notions on time-series data processing. To familiarize the reader

with some of the terminology occurring in later sections and establish a

solid knowledge foundation on AI and ML, we begin this section with a

short introduction around these concepts.

3.1 Artificial Intelligence and Machine Learning

Although we assume that the reader has some basic understanding on

topics of this field, this section will go over key concepts and further

introduce the AI, ML, neural network and deep learning terms, as they

are featured frequently in later sections.

AI has been defined as a system’s ability to interpret external data

correctly and to achieve specific goals and tasks through flexible adap-

tation (Kaplan and Haenlein, 2019), a capability that can be embedded

into machines, giving them learning abilities without needing to be ex-

plicitly programmed (Karthikeyan et al., 2019). This learning ability

is usually the result of a process called training, which means fitting

a model to a data set. Once trained, the model can be used to predict

outcomes based on previously seen data, a process called inference.

ML is a subdomain of AI, which according to Marsland, 2011 en-

compasses a set of four learning paradigms: supervised learning, unsu-
pervised learning, reinforcement learning and evolutionary algorithms.

In this section and overall thesis we will consider only algorithms be-

longing to the first category. Supervised learning refers to methods that

are trained using data where instances are associated with one or more

labels. These labels can either belong to a discrete set of classes, or
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take the form of numerical values. The first type of labels are used in

classification problems, where we make a discrete prediction by map-

ping instances to one or several classes, normally after finding a good

decision boundary that separates the different classes. The second type

of labels are used in regression tasks where we wish to predict con-

tinuous numerical values, usually by fitting a shape as closely to the

training data as possible. Supervised methods can be very effective at

determining the label of any unseen data point, given that the sampled

data set is well representative of the population and the model has been

properly trained. This ability is called generalization. Models should

be able to generalize well for new instances, meaning that they should

capture the overall structure in the training data (otherwise the model

is considered underfit) and avoid capturing its peculiarities (otherwise

the model is considered overfit). Some algorithms are instance-based

and need no prior training before outputting a prediction, going under

the category of lazy learning algorithms (Aha, 2013). These differ from

eager learning algorithms which have to be trained prior to making any

predictions.

Another distinction should be made between traditional ML learn-

ing and deep learning. The first is characterized by the use of hand-

crafted features, or features selected by means of feature engineering,

which are often a prerequisite to good performance. Deep learning al-

gorithms decipher on their own which parts of the input weigh most

in the correction of prediction outcomes. This section and thesis will

feature only deep learning models. There are three main reasons for

this. The first is that handcrafted features have a few drawbacks: they

typically require domain knowledge and developers have to go through

many selection trials before picking a good set. Secondly, many tradi-

tional ML models are also limited to achieving good performance only

for linearly separable data sets, but such data sets are not as prevalent.

Deep learning models are thus preferred due to their strong nonlinear

representation learning capabilities (Zhong et al., 2016). Lastly, com-

plex deep learning models are also more heavily parameterized, and

so resource optimization is of higher interest for this category of mod-
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els. Although there are cases where smaller, non-neural models outper-

form neural ones (Thompson et al., 2020), deep learning models usually

show outstanding performance compared to traditional ML models in

many different applications, for example sentiment analysis (Kansara

and Sawant, 2020, Hassan and Mahmood, 2017), face recognition (Se-

tiowati et al., 2017), disease detection (Sahu et al., 2020, Iqbal et al.,

2021, Shruthi et al., 2019), to name a few. Another choice for our thesis

will be the focus on inference. While the main reason for this is nar-

rowing our study field, Intel predicted that by 2020 the ratio between

training and inference will increase five times for inference alone, with

inference taking up to 80% of the AI workflows (Intel, n.d.), suggesting

that research directed towards improving inference is indeed of high im-

portance. We also focus on classification only, primarily because, struc-

turally speaking, the deep learning model architectures do not change

much between regression and classification (the output layer registers a

change in activation function). There is also a possibility of turning re-

gression tasks into classification by setting problem-dependent thresh-

olds for learned probabilities, a technique called thresholding (Google,

2022), however the previous consideration still applies. On the other

hand, the number of output neurons changes and has a bigger impact

on the overall size and complexity of the model when moving from a

binary to a multi-class task.

The purpose of learning is to get better at predicting labels for un-

seen data points. In order to be able to learn, we have to know whether

or not our predictions are close or equal to the ground truth, which for

supervised tasks is done by comparing predicted outputs to the existent

labels. We thus need a way to measure for how well the current trained

model generalizes, so that we can decide whether or not the training has

been sufficient. The most straightforward way is to measure the model

accuracy or performance in terms of prediction successes. The confu-

sion matrices shown in figure 1 can be a helpful tool in understanding

how performance evaluation metrics are calculated for both the binary

and the multi-class classification tasks. These will be used later when

we define our performance indicators. Here TP (True Positive) and TN
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Figure 1: Confusion matrices: a) binary, b) multi-class.

(True Negative) stands for the number of correct predictions of positive

and negative class, respectively. FN (False Negative) and FP (False Pos-

itive) are the numbers of actual positive predictions missed by the model

and false predictions to the positive class. For the multi-class case, we

can consider all values on a row (except the true class) as FP values,

while all values on a column (except the true class) are FN values for

that specific class.

Armed with a better understanding of AI, ML and deep learning, we

will present some common deep learning architectures. Artificial Neu-
ral Networks (ANNs) are considered eager learning algorithms. They

have gained immense momentum in the past years, kicked off by the

high growth and availability of data generated by ubiquitous devices

(Pouyanfar et al., 2018). In this thesis we will consider two types of

ANNs: acyclical or feed-forward ANNs, and cyclical or recurrent ANNs.

In short, we can distinguish them by their connections: feed-forward

network connections do not form cycles, while connections in recurrent

networks do (Graves, 2012). Deep learning models can have different

depths and widths, from networks of low complexity displaying very

few layers and units, also called shallow networks, to very large ones

called deep networks. There is a general agreement that large models

with many parameters are better performance achievers (Thompson et

al., 2020), feed-forward multi-layer networks even earning the name

universal function approximators (Hornik et al., 1989). But overparam-
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eterizing, if not properly regularized, might lead to networks that learn

too much about about the particularities of the training data, and be-

come overfit. This is observed in practice when the network performs

well on the training set but much worse on the validation set. Con-

versely, if a model is too small or not trained long enough, it has higher

chances of being underfit. We observe this in practice when the network

has low performance on both the training and validation data sets. In

addition to that, deep networks may also suffer from the vanishing gra-
dient problem which causes the computed gradients to get smaller and

smaller during training thus making the process very slow. On the other

hand we also have the exploding gradient problem which causes weights

to be become very large, thus making the network sensitive to changes

in input. These two issues can even happen concomitantly, however

there are a few strategies used to avoid these problems, which we will

address in the developmental phase of our PoC.

For now we will consider three variants of ANNs: the feed-forward

Multi-Layer Perceptron (MLP), the Convolutional Neural Network (CNN),

and the Long Short-Term Memory (LSTM), the latter being a type of

Recurrent Neural Network (RNN). Vanilla RNNs are often subjected

to exploding and vanishing gradients, but also memory constraints as

long-term dependencies are difficult to handle. The chain of gradient

multiplication becomes too long to model long-range dependencies and

causes the vanishing gradient (Pal and Prakash, 2017). This is why

other variants of RNNs have been proposed, which prove to be more suc-

cessful in mitigating these issues, such as Gated Recurrent Units (GRU)

(Cho et al., 2014), Echo State Networks (ESN) (Jaeger, 2001), or LSTMs

(Hochreiter and Schmidhuber, 1997). This section and thesis considers

LSTMs only, as their popularity exceeds that of other recurrent archi-

tectures, but also due to the mentioned benefits. For more information

about our selection, we recommend reading the respective chapters and

subchapters in Goodfellow et al., 2016.
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3.1.1 Multi-Layer Perceptron

The feed-forward MLP is a fully-connected ANN, composed of one in-

put layer, one or more hidden layers and one output layer. The units

in a MLP are called neurons or perceptrons. The input layer contains

as many neurons as there are input variables, while the output layer

contains as many neurons as the number of classes or labels. The num-

ber of neurons on the hidden layers can vary. All layers are fully con-

nected, which means that each node from each layer (except for the

input layer) has connections to all of the neurons on the previous layer,

and each connection has a weight attributed to it. All computations

take place in these neurons, first by applying a bias, then summing the

weighted inputs from the previous layer, and finally transforming the

result by applying an non-linear activation function whose output indi-

cates whether that specific neuron has been activated or not. Activated

neurons produce output signals which are equal to their contributions

to the final output of the network. The network is trained end-to-end

by back-propagation, updating weights by gradient descent in terms of

minimizing a loss function, starting from the weights going from the last

layer into the output layer and down to the weights connecting the in-

put layer to the first layer of neurons. To predict, we feed the new inputs

through a trained MLP, do a forward pass by computing activations in

all neurons and observe which label is predicted by the output node(s).

Thus, a MLP is specified by the number of hidden layers the number of

layers, the number of nodes within each layer, and the non-linearities

that are used. When it comes to efficiency in processing time-series

data, we will see that MLP is a slightly weaker candidate. For more in-

formation on back-propagation, we recommend reading Nielsen, 2015.

3.1.2 Convolutional Neural Network

The CNN is a very popular type of ANN, typically employed in visual

imagery tasks (e.g. image and video processing), but some variants are

successfully used for processing time-series data as well. The typical

CNN consists of at least one convolutional layer, followed by one or sev-
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eral fully-connected layers. In the MLP layer every output unit inter-

acts with every input unit, while in the convolutional layer, that is not

necessarily true. This is due to sparse interactions: filters (or kernels),

typically smaller than the input itself, are shifted over the input data

and across input channels, outputting feature maps which contain the

resulting dot products. Filter parameters are learned during training

and allow us to capture important patterns that lead us to correct pre-

dictions. It is common practice to further reduce the size of the con-

volutional layer output by the use of pooling functions. What pooling

does is summarize the values belonging to a neighborhood. This neigh-

bourhood can either be a local or global, the former considering part of

the input as neighbourhood and the latter considering the whole input.

Apart from reducing the number of computations, pooling layers also

help make the representation approximately invariant to small trans-

lations or shifts of the input (Goodfellow et al., 2016). The reduction

criteria is empirically chosen, whether we want to keep the maximum

values (i.e max pooling) or their average (i.e average pooling) depends a

lot on the specific task and what kind of features we want to preserve.

Lastly, we have the fully-connected layer(s), or the classification part of

the architecture where the output from the last convolutional layer is

first flattened and then used to make actual predictions. While imple-

menting CNNs, we will see that the input shape determines the dimen-

sions of the filters used in the convolutional layers. For time-series data

we are mainly interested in learning one-dimensional filters.

3.1.3 Long Short-Term Memory

The LSTM is a sequence-specialized type of ANN architecture, well

suited for capturing temporal phenomena such as in the case of time-

series data and natural language. The LSTM is an optimized type

of RNN. Although the inner workings are very similar to those of the

MLP, the forward and backpropagation phases are slightly different. In

the forward phase the hidden layers take input from both the current

and previous timestep. This is possible because in this architecture the
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hidden units have recurrent connections that allow outputs from previ-

ous states to be inserted into current state calculations. This creates

a form for memory. Because of this, learning through backpropaga-

tion (here called backpropagation through time) for recurrent networks

also considers the current weight influence on the hidden layer at the

next timestep. Initially proposed in 1997 (Hochreiter and Schmidhu-

ber, 1997), the LSTM mitigates the issues that follow with vanishing

gradient problems in vanilla RNNs. In addition to the outer recurrence

of the RNN, LSTM networks contain “LSTM cells” with internal recur-

rence (self-loop) (Goodfellow et al., 2016). The LSTM has an unique

additive gradient structure and uses forget, input and output gates to

selectively forget or retain information from previous timesteps. In this

architecture, the input gate takes in sequences of information or data

and updates the cell. The output gate controls the flow of information

leaving one LSTM cell to another. Lastly, we have the forget gate which

controls the amount of information propagated to the next block. It

uses the sigmoid value to decide this amount, a sigmoid value closer to

one means that more historical information is stored, while a sigmoid

value closer to zero means that less past information will be saved by

the LSTM unit, thus “forgetting” or dropping parts of it. This is the

main difference to a standard RNN, as the output gates of a LSTM net-

work do not need to have all historical memory stored. An important

takeaway here is that LSTM cells have in turn more parameters than

RNNs, even when their architectural composition (number of layers/u-

nits) is the same. This number increases significantly with the dimen-

sion of input features and hidden units.

Now that we have a deeper understanding of the inner workings of

AI concepts and various ML models, we can shift our attention to the

actual use of AI/ML technology. In the next subsection we explain why

ANNs are good candidates in handling data within several industrial

use cases and also why their resource-targeted optimization is neces-

sary in real-life contexts.
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3.2 Intelligence at the Edge

First coined in 2011 (Kagermann et al., 2011), Industry 4.0 encapsu-

lates the digitization and improvement of traditional industrial pro-

cesses, as a consequence of recent advancements in technology. Cloud
computing, which virtually offers unlimited computing power and stor-

age, mobile computing, which facilitates wireless communication be-

tween devices, Internet of Things (IoT) characterized by the large array

of cooperating objects such as general-purpose devices, and Big Data
(BD), which represents large, growing volumes of structured or unstruc-

tured data collected from multiple sources, are considered to be key en-

ablers of the fourth industrial revolution (Lee and Lim, 2021). These

factors allow for continuous collection and analysis of physical phenom-

ena via embedded and standalone sensors.

Some of the industries that have experienced a high impact due to

these changes are manufacturing (Zheng et al., 2021, Rai et al., 2021),

healthcare (Aceto et al., 2020) and logistics (C. S. Tang and Veelenturf,

2019). Under the IoT umbrella we find wearable IoT, defined by Hire-

math et al., 2014 as a technological infrastructure that manages to in-

terconnect wearable sensors with the goal of monitoring different hu-

man factors (health, wellness, behaviour) where the collected data can

improve everyday quality of life. Wearable IoT devices represent only a

small part of the available sensing technology, an overarching term for

all devices that have the ability to acquire information by sensors. This

type of technology supports the development of smart systems charac-

terized by actionable intelligence, often registering the use of AI/ML

technology. In fact, IEEE Innovation at Work predicts that AI and in-

dustrial IoT technologies will both be positioned in the top of trending

topics of 2023 (IEEE, 2022). Wearable IoT and AI are highly preva-

lent topics in the health and manufacturing sector. A review by Mazzei

and Ramjattan, 2022 highlights the primary topics and most common

ML techniques pertaining to Industry 4.0 literature, indicating a trend

towards neural network architectures used to improve production for

industrial machines. A lot of sensor-collected data is used for inference

16



applications (Van Nguyen et al., 2021). Particularly in the health sector,

we find many AI/ML-based applications created with the goal of per-

forming otherwise human-dominated tasks, such as assisting clinician

decision-making and treatment planning by predictive analytics (Siccoli

et al., 2019), expertise assessments (Fard et al., 2018, Watson, 2014),

drug development (Bannigan et al., 2021, Takagaki et al., 2010), de-

tecting fatigue (Bai et al., 2020), stress (Garcia-Ceja et al., 2015, Plarre

et al., 2011) and depression (Little et al., 2021), among others. There

is however some skepticism towards interleaving AI capacities into an

established system, on one side caused by the lack of a shared data in-

frastructure between organizations (Panch et al., 2019), and on another

side due to different interests of the involved actors, such as privacy

for users and explainability for practitioners (Shaw et al., 2019). Com-

putational resources are also listed as a challenge, since health care

organizations might not have the funds to secure resources or properly

store and process data (Shaw et al., 2019).

In recent years, workplaces across industries make use of sensing

technology paired with predictive technology in order to protect and pro-

mote health according to specific work group needs (Patel et al., 2022).

Such an example is reducing the number of work-related accidents by

various means of monitoring, tracking, and supporting workers (Sver-

toka et al., 2021). In a survey by the International Labour Organization

(ILO), it is found that over 2.5 million people die from work-related acci-

dents, and around 374 million suffer nonfatal injuries each year (Inter-

national Labour Office, 2019). Only economic losses due to work-related

accidents are estimated annually at around 4 percent of the global gross

national product (Leppink, 2015). In order to avoid these repercussions

at the individual and organizational level, it is important to discuss

possible causes. In an infographic (Christ, 2016) we find that 60-80%

of all work-related accidents are considered to be the result of different

stress-induced manifestations having a negative impact on the work-

ers’ ability to safely perform duties. Health promotion and prevention

programs are designed to boost productivity and reduce health-related

costs and worker absenteeism (Hillier et al., 2005). But measures which
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rely on self-reports are subjective, unreliable and may even be consid-

ered burdensome by those that perform them (Plarre et al., 2011). To

overcome these challenges, latest advancements move towards a fusion

between sensing and predictive technology, making health monitoring

in workers more accessible and more objective (Bangaru et al., 2022,

Escobar-Linero et al., 2022). Although we have centered this discussion

around health monitoring applications it should be noted that it is just

one of many perspectives from which we could have started this conver-

sation. Time-series is a data type resulting from sensor readings un-

der many other scenarios. Various time-series-based applications found

across industries like finances (Ghasemzadeha et al., 2020), agriculture

(Bı́na et al., 2022, G. Liu et al., 2022) and arts (Huang and Wu, 2016)

show how deep learning technology can assist, take over otherwise cum-

bersome tasks, or even generate new artifacts.

Contrasted to human capabilities, computers are able to store, ac-

cess, find hidden patterns and correlations in large amounts of data

at a faster pace. On the other hard, deep learning models are typi-

cally computationally-intensive, have high memory, power and energy

requirements, which not all types of computers can meet. Many start-

ups and larger companies adopt cloud computing (H. Liu, 2013), that is,

processing data on a remote server, as it allows them to harvest benefits

such as “elastic” capacity which gives the illusion of indefinite resources

(Buyya et al., 2010). But not all tasks can be efficiently performed this

way. Limited network bandwidth can limit or restrict the transmis-

sion of essential training sensor data to the cloud. These bandwidth-

induced delays can negatively impact interactions between people and

applications, reducing usability (Satyanarayanan et al., 2009). Send-

ing data to the cloud also introduces privacy and security risks such

as exposure to Denial of Service (DoS) attacks, injection of cloud mal-

ware and communication interception, which is highly concerning for

applications that handle sensitive data (Parikh et al., 2019). Parikh et

al., 2019 contrasts traditional cloud computing to fog and edge comput-

ing and motivates its replacement. In recent years, developers rely on

various optimizations to allow deep model training and inference place-
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ment on or near edge devices (Chen and Ran, 2019). Computing on

edge devices allows continuous operation, reducing latency as network

availability no longer becomes a hinder, and allowing sensitive data can

be stored and processed locally, thus shielding users from unfortunate

or malicious events. The intersection between AI and edge computing

has been coined edge intelligence (D. Liu et al., 2022). D. Liu et al.,

2022 also speaks of the computational gap separating complex AI mod-

els from less-capable edge devices. Dhar et al., 2021 enumerates four

critical resource constraints that challenge edge learning: processing

speed, memory, power and energy consumption. Accommodating the re-

source requirements of AI models on low-power devices is currently a

high-interest area of research (Chen and Ran, 2019), and also a main

consideration in our thesis.

Time-series data is outputted by many ubiquitous devices, from wear-

ables to industrial sensors. This highlights the need for further research

in optimizing time-series processing technology.

3.3 Sensors and Time-series Data

The IoT paradigm together with BD, are closely related to AI since

they represent ways of obtaining heterogeneous input data necessary

for training various ML models (Kaplan and Haenlein, 2019). With an

increase in sensor technology popularity, data often takes the form of

a sequence of quantitative observations which have to be taken at con-

secutive points in time for one or several entities/processes (Pal and

Prakash, 2017). This data is either irregularly or regularly observed, so

the space between the point recordings can either be equal or not. In

Pal and Prakash, 2017 we find a distinction between three categories:

cross-sectional data, time-series data and panel data. Cross-sectional

data are observations from several individuals which are taken at the

same point in time, while time-series data consists of quantitative ob-

servations on one or more measurable characteristics of one individual

entity/process taken at multiple points in time. Panel data is obtained

by observing multiple entities over multiple points in time.
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Pal and Prakash, 2017 describes characteristics of time-series data

and shows how any data point can be represented by the presence or ab-

sence of general trend, seasonality, cyclical movements, and irregular-

ity. Cipra, 2020 describes trend as long-term increase or decrease in val-

ues of a time-series, seasonality as periodic changes in time series that

repeat at given intervals, cyclical movements as fluctuations around

the trend where increasing phases alternate with decrease phases, and

irregular (or residual) variations as formed by random fluctuations of

time series, often coined white noise. Another important practice is

checking for outliers. Real monitoring applications where data is ac-

quired through sensing technology is prone to sensor faults. Some of the

most commonly seen faults are outliers or spikes, missing data, noise,

“stuck-at” or constant values (Teh et al., 2020). Low battery, environ-

mental or malicious interferences, uncalibrated sensors and unstable

wireless/network connection are some of the factors that can cause such

faults (K. Ni et al., 2009, Y. Li and Parker, 2014). If the collected data

shows signs of missing or abnormal values, it is common to use anomaly

detection methods in order to remove or repair inconsistencies. Further

preprocessing of time-series data involves other steps, such as employ-

ing a windowing approach, shifting across a number of values.

All in all, we can say that AI/ML optimization is an area of re-

search which deserves more attention as its utilization has extended

across many industries. We underline that the deployment of AI within

the edge computing paradigm with high real-time performance expec-

tations and high accuracy requirements is a pressing Industry 4.0 mat-

ter, and finding an effective solution to this has many practical implica-

tions. To connect all dots, we remind our readers that the final goal is

finding a generally-applicable set of optimizations in order to improve

AI/ML-augmented systems whom employ the use of sensing technology,

which often translates to time-series analysis. These three background

sections contribute to the motivation behind our thesis. Now that we

have a wider picture of the research field, the technology and the type

of data of interest we can continue the discussion on resource-efficient

techniques by exploring prior contributions to this research area.
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4 State of the Art

We want to capture the essence of current solutions, and find those that

are commonly used across considered architectures, which will serve

our intuition while designing the final framework. Exploring current

literature on the topic of resource-focused optimization is also neces-

sary to identify neglected areas of research, and so our take on research

gaps and thesis contributions can be found at the very end of this sec-

tion. Inspired by Kofod-Petersen, 2012, we embark onto a three-stage

review process, first by planning, then performing and lastly reporting

the literature review. The overall process flow is pictured in figure 2,

starting from the leftmost column and finalizing the review by follow-

ing all the steps leading to the rightmost column. In short, we develop

a literature review protocol which facilitates a systematic approach for

relevant literature collection. From this collection of papers we will ex-

tract core knowledge, necessary in answering posed research questions

and identifying potential research gaps.

4.1 Planning and Performing the Literature Review

Conducting a well-planned research literature review increases repro-

ducibility. The goal of the planning phase is developing a literature

review protocol, which provides step-by-step instructions. We begin

by setting some objectives. The end goal with our literature review

is grasping current trends, tools and existing technologies that aim to

improve time-series data-processing ANNs, and as a result aid deploy-

ment and inference on resource-constricted devices. In order to obtain

more knowledge about the above-mentioned, a practical idea is to split

this exercise into smaller and more manageable parts, around which

we formulate research questions. In short, what we are interested in is

finding which deep learning models, devices, performance metrics and

techniques have been given attention in previous works. We can thus

reformulate our initial review goal by considering all of its parts. By

doing this we end up with four research questions, as follows:
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Figure 2: Systematic Literature Review Process.
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Research Question 1 (RQ1)
Which ANN architectures typically process sensor data?

Research Question 2 (RQ2)
Which devices are typically targeted for deployment and infer-

ence?

Research Question 3 (RQ3)
Which device resources are typically impacted by inference and

how are they measured?

Research Question 4 (RQ4)
Which optimization techniques are typically employed to realize

deployment and inference?

Answers to the above-mentioned questions provide insights in the gen-

eral statistics around the collected articles, helping us get a picture of

the overall trend. But more importantly, these answers allow us to find

common optimizations that can be applied across architectures, or dis-

cover papers that attempt doing so. Thus, apart from understanding

status quo, the answers to all of these questions are meant to support

finding a general way of optimizing neural networks which can be ap-

plied across architectures and complexities. From a different perspec-

tive, we see that these answers also help uncover whether this area of

research has been sufficiently explored.

The next step is specifying literature sources. We choose to sample

publications from three different sources: the ACM Digital Library1,

IEEE Xplore2 and lastly Oria3, which is a cluster of scientific databases.

We will narrow our search by allowing only publications from January

2018 up to January 2023, thus keeping the pool of research papers closer

to current date (≈ 5 years). Right away, we filter out papers not written

in English, and those that are not accessible. To define our query string,

we group topic-related keywords together by synonymous relations. In
1https://dl.acm.org.
2https://ieeexplore.ieee.org.
3https://oria.no.
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this query string the ∨ symbol stands for the logical OR operator and

the ∧ symbol for the logical AND operator, and we assume that the role

of wildcards are known. The ¬ symbol stands for logical NOT opera-

tor, which is used to filter out papers which contain the terms in this

category. These terms have been chosen by refining the query string

multiple times in order to reflect our thesis goal. Keep in mind that the

query string format may vary as libraries use different search conven-

tions, however the same logic applies.

(inferenc* ∨ “post training” ∨ “post-training” ∨ deploy* ) ∧
(“neural network” ∨ “deep learning”) ∧

Query (“light-weight” ∨ “lightweight” ∨ resource* ∨ “optimi*”) ∧
String (edge ∨ device*) ∧

(“time-series” ∨ “time series” ∨ sensor ∨ wearable) ∧
(¬ federat*) ∧ (¬ distribut*) ∧ (¬ accelerator)

The query string searches through document abstracts only, except

for the ¬ terms, which target only document titles since we do not want

to filter away papers that employ a combination of optimizations. Note

that federated learning, computational distribution and the use and im-

provement of accelerators will not be the focus of our thesis, which is the

reason we filter away papers where these are main contributions. We

will however keep a short mention of these in section 4.2, as they are

popular in minimizing resource utilization on edge devices. To complete

the literature review protocol, we must incorporate inclusion (IC) and

exclusion criteria (EC), which help us filter out low-relevance papers in

the next stage of the process. We are suppressing all inclusion criteria

into one criteria (IC). Additional filtering is facilitated through exclu-

sion criteria, where papers that fulfill at least one exclusion criteria are

removed from the pool. Inclusion and exclusion criteria applied in this

review can be found in table 1.

Performing the review begins with the initial search for relevant pa-

pers using the query string together with the filtering tweaks specified

in the protocol. This returns a set of 299 published papers. Out of the

total, 21 stem from Oria, 210 from IEEE Xplore and 68 papers from
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Inclusion and Exclusion Criteria
Type Criteria description
IC1-
IC4

The paper concerns itself with or helps answering any of
the research questions from above (RQ1 - RQ4).

EC 1 Papers focused solely on distribution, decentralization,
scheduling, offloading of computations across devices,
privacy concerns, fog or federated learning.

EC 2 Papers focused solely on hardware-related optimiza-
tions.

EC 3 Papers where no resource-efficient optimizations have
been presented or used.

Table 1: Inclusion (IC) and exclusion (EC) criteria.

ACM Digital Library. After removing duplicates, we perform the first

screening which will reduce this number substantially, using the inclu-

sion and exclusion from Table 1. For the first screening, only titles and

abstracts are considered. After the screening, a total of 215 papers are

eliminated due to their low level of relevancy (or if any exclusion crite-

ria has been fulfilled), and 84 remain in this intermediary set of papers.

We then perform the full-text literature screening of the primary stud-

ies, extracting core information necessary for answering the research

questions proposed earlier.

Extracting core knowledge is facilitated through tagging each pa-

per with the type of model architecture, the training and deployment

environment, the set of performance and evaluation metrics used, the

applied optimizations, and the scenario or use case in which it is used.

There are some exceptions where not all variables are present, such as

in the case of surveys where device specifications and metrics are not

explicitly specified. After the full-text screening, we end up with a final

collection of 66 papers with high relevancy. We make use of this infor-

mation to answer the previously posed research questions in the next

subsection.
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Figure 4: Google Trends search popularity plot for “machine learning
optimization” query (2018-2023).

4.2 Main Findings of the Literature Review

Figure 3: Number of published pa-
pers per year.

A first step into reporting find-

ings from the collected literature

is capturing the overall trend for

the research area. This is better

observed by plotting the number

of papers against the publishing

year, as shown in figure 3. For our

small sample of relevant papers,

we register an almost consistent

increase in interest for resource-

efficient ML research during the

last 5 years, with higher occur-

rence as one gets closer to current

date (note that the 2023 bar only

considers the first month of the

year).

A possible explanation for this

is that while deep learning tech-

nology applications have gained more and more popularity, the issue of

ML resource optimization is just currently gaining attention in the re-

search space. We observe that “machine learning optimization” as a

search query also has a similar distribution when plotted by Google

Trends (see figure 4), reinforcing our previous statement. Based on
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literature review findings, multiple technological advancements within

various industries are represented by real-life applications where sens-

ing technology is coupled with the predictive ability. Some of the most

prevalent use cases are found within the health sector, it examples such

as identifying various heart anomalies (Burrello et al., 2022, Sakib et

al., 2020, Tesfai et al., 2022, Ukil et al., 2021, Sun et al., 2021, Faraone

and Delgado-Gonzalo, 2020, Faraone et al., 2021, J. Wu et al., 2019,

Wong et al., 2022a, Burrello et al., 2021, Mirsalari et al., 2021), blood

glucose prediction (Zhu et al., 2021), detecting stress (Ragav et al., 2019)

and other mental states (Dey and Roy, 2020), epileptic seizures (S. Zhao

et al., 2021), fall detection (S. Li et al., 2022, Putri et al., 2021), and

gait disorders in elderly (S. Y. Tang et al., 2019), among others. We also

find a large series of lightweight applications related to human activity

recognition (Bian et al., 2022, Daghero et al., 2022, Coelho et al., 2021,

X. Cheng et al., 2022, Bohra et al., 2021). A smaller set of applications

are found within the transportation (Mishra et al., 2020, Sajjad et al.,

2020, Hussain et al., 2021) and security (Zouridakis and Dinakarrao,

2022) domains. Some interesting but very domain-specific use cases are

found for marine mammal recognition systems (Y. Zhao et al., 2022),

recognizing ocean wave patterns (H. Wu et al., 2020), coffee plant dis-

ease detection (De Vita et al., 2020), natural hazard monitoring (Meyer

et al., 2019) and fire detection (Thomson et al., 2020).

Our efforts now will be directed towards answering the research

questions from section 4.1 based on extracted core knowledge.

4.2.1 Common neural network architectures (RQ1)

By tagging papers with the type of model architecture during the full-

screening, we are able to determine which model architectures attract

most interest. Note that some papers can have several tags, if more

than one architecture has been considered. There are also models cre-

ated by fusing together two different architectures (here, we will use the

+ symbol to represent fusion). As shown in figure 5, CNNs are by far

one of the most popular type of model, followed after by the LSTM. We
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Figure 5: Popularity of model architectures.

note that fusion architectures which contain a CNN are also quite pop-

ular, especially is combination with LSTMs. Temporal Convolutional

Networks (TCNs) and other variants of the CNN have been tagged as

such. In this plot, DNN refers to papers which include optimizations

that can be used across several architectures, or where authors only re-

fer to models as deep neural networks. Although the TRN (Temporal

Relation Network) contains some convolutional layers, we will process

it individually, since it is a complex architecture that also has a tem-

poral module with a self-attention mechanism. FastGRNN is a gated

recurrent network architecture, very similar to the GRU architecture.

According to our findings, the most popular model architectures used for

processing time-series or sensor data are CNNs and LSTMs. It should

be noted that some of the MLP papers were removed in the filtering

process, not because of their lack of optimizations for resources, but due

to the fact that their optimizations involved topics from the exclusion

criteria.

4.2.2 Common deployment targets (RQ2)

A common theme in our literature is deployment onto low-power or even

battery-free edge environments. Thanks to deep learning optimizations,

off-the-shelf, small-footprint devices can be turned into deployment and

processing environments for various inference tasks. By tagging our
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papers with the type of device and the technical specifications, we ob-

serve that IoT end-nodes are typically based on general purpose central

processing units (CPUs) due to their high programmability, low power

consumption and low cost. Edge devices that occur in more than one pa-

per are the Raspberry Pi 3B/3B+/4B, NVIDIA Jetson TX2, Nexus 5, and

other smaller hardware pieces that include processing units from either

the ARM-Cortex M or the ARM-Cortex A family of microcontrollers and

respective processors. In the ARM-Cortex M microcontroller family we

find variants such as M0+/M3/M4F/M4/M7 while in the ARM-Cortex

A processor family we find variants with A53/A57/A73 cores. We note

that most of these are used in low-cost, portable systems. For example

ARM-Cortex M family devices have a flash memory that is limited to

few MBs, and a SRAM size that ranges from tens to hundreds of KBs

only. Some of the devices we have named previously belong to these

families (e.g. Raspberry Pi 3B+ has a quad-core ARM-Cortex A53 with

an operating frequency of 1.4GHz), however the actual device specifica-

tions are not always specified in the papers. One important takeaway

here is that many experiments run on different versions of Raspberry

Pi (e.g. S. Liu et al., 2020, S. Liu et al., 2021, Chauhan et al., 2018,

Sakib et al., 2020, Zouridakis and Dinakarrao, 2022, Ragav et al., 2019,

Sajjad et al., 2020).

4.2.3 Common resource constraints (RQ3)

By answering RQ3, we should get a picture of what type of resources

we want to preserve once our models are deployed, but also understand

how these and prediction performance are measured under various use

cases. Another goal here is understanding how the two categories are

contrasted against each other. This is critical when setting up an analy-

sis with respect to accuracy and resource utilization. We aid this process

by tagging the core literature with the most common evaluation metrics

employed in scenarios where resource utilization and model accuracy

have been measured.
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Resource constraints given by hardware architecture, such as pro-

cessing speed, memory constraints, energy and power consumption should

be main considerations when designing an AI/ML model for on-device

inference (Dhar et al., 2021). ML development that considers reliability,

security, and other social aspects has also attracted attention (Shafique

et al., 2018), however these characteristics are beyond the scope of our

thesis. Apart from model performance in terms of number of good pre-

dictions (i.e accuracy), we are interested in how we can quantify re-

source performance at inference for inference time, memory utilization,

energy and power consumption. We have found six categories of met-

rics relevant to our thesis goal. While we have attempted to match the

metrics found in literature to one of these six categories, there might

be some overlaps or ambiguities. Some of this stems from the fact that

some papers do not make a clear separation between resource perfor-

mance and accuracy performance, and may use a combination of these

to compute overall performance. There will be thus some assumptions

on our part as to where they can be inserted in our taxonomy:

• Prediction performance Depending on the task type, there are

various ways of quantifying predictive performance. Most papers

that we have considered in this review use accuracy as a predic-

tion performance metric. Accuracy calculates the fraction of the

total number of correct predictions divided by the total number of

model predictions. We note that the term accuracy is also used

in some papers (as in this paper) to refer to overall predictive

performance. However, given an imbalanced data set or a situa-

tion where getting false predictions is very costly, this metric may

not be a good choice as it can over-represent the majority class.

In such cases we see the use of balanced accuracy (Daghero et

al., 2022) and/or other metrics such as precision, recall and the

harmonic precision-recall mean (Tesfai et al., 2022). In quantify-

ing model performance, another frequent occurrence is a combina-

tion between accuracy, precision, recall and F-score. For example,

Thomson et al., 2020 uses F-score, precision, accuracy together
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with true and false positive rate to compare performance of vari-

ous architectures. Under the context of fall detection, Putri et al.,

2021 uses accuracy, recall, precision, F-score and area under the

curve (AUC) in comparing performance between reccurrent archi-

tectures. De Vita et al., 2020 uses accuracy, precision and recall

to compare a full-sized model to four optimized versions. In Zebin

et al., 2019 F-score is found to be a better indicator for cases where

recall and precision are uneven. Another way of quantifying infer-

ence error is calculating the root mean square error (RMSE) and

mean absolute error (MAE), where smaller values are desired (Zhu

et al., 2021, Nizam et al., 2022). A wide variety of error measures

are also used in Peluso et al., 2021 as evaluation metrics.

• Inference latency Shuvo et al., 2022 defines latency as the speed

by which an inference engine can accomplish a complete inference.

Latency is argued to be dependant upon the number of interdepen-

dent layers, number of neurons/computations per layer, latency of

memory accesses, number of memory accesses and latency of the

computing modules (Shafique et al., 2018). Inference time can be

measured by simply timing the process from the inference request

to the point where the prediction has been made (e.g. by subtract-

ing timestamps), and the measurement unit is typically seconds

or milliseconds. However, there seem to be cases where measuring

inference time can take a different approach, such as by summing

up the processing time of each layer in order to create an latency

estimate (Yang et al., 2021), or using frames-per-second for video

comprehension frameworks (Y. Cheng, Li, et al., 2020, Shafique

et al., 2018, Y. Cheng, Huang, et al., 2020, Thomson et al., 2020).

Others choose to also keep track the number of CPU cycles per

inference, and use the ratio between cycles and MACs to quantify

implementation efficiency (De Vita et al., 2020). Execution time

can also be estimated from FLOPs (Mishra et al., 2020).

• Memory utilization The devices presented in subsection 4.2.2

are generally equipped with two types of memories, a volatile static
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or dynamic random-access memory (SRAM or DRAM) and a non-

volatile flash memory. In regards to the constraints posed by mem-

ory size, one should also keep in mind that the AI model does not

only have to fit on the read-only memory (e.g. flash), but also on

the read/write memory which contains mutable states during ex-

ecution (Kumar et al., 2020). The non-volatile memory stores the

actual code and static data such as learned parameters of the neu-

ral network. The evaluation benchmark in Profentzas et al., 2021

uses memory allocation for RAM and flash for quantifying model

memory footprint. Flash usage is also used in Kumar et al., 2020

to check if compression allows models to fit onto devices, while

RAM usage is estimated from the sizes of temporary variables.

The work by Wang et al., 2020 uses an estimation of the required

memory using the number of neurons, layers, weights and size

of data buffer to evaluate network size for further mapping onto

the cache closest to the processing unit. To check memory con-

sumption Y. Cheng, Li, et al., 2020 makes use of the htop tool in

Ubuntu. In a survey by Lalapura et al., 2021 memory savings are

calculated by using the number of parameters, but also by the ac-

tual size of the model (in kilobytes). Memory is listed as a quality

metric for edge inference performance in Shuvo et al., 2022, who

states that memory requirements are contingent upon the model

size, the number of memory access, and memory types. In Risso

et al., 2022 the actual model size (in kilobytes) is used to capture

the memory use. The memory allocation analysis in Zebin et al.,

2019 lists the number of nodes, their allocated memory, and their

average execution time.

Memory consumption can also be estimated from FLOPs (Mishra

et al., 2020). Memory footprint in Faraone and Delgado-Gonzalo,

2020 is computed by looking at the memory allocated for static

data and RAM-allocated data. De Vita et al., 2020 uses memory

allocation on flash and RAM as a metric for performance as well.

After quantization, Meyer et al., 2019 uses the number of param-
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eters to determine whether or not the model fits in SRAM, fulfill-

ing the memory requirements. Peluso et al., 2021 uses RAM allo-

cation as a memory footprint metric, categorizing it as an extra-

functional metric.

• Power consumption Power consumption reflects the total power

required to execute the inference (Shuvo et al., 2022). Power con-

sumption is usually expressed in watts, such as milliwatt (mW)

or microwatt (µW) (as seen in Wang et al., 2020, Y. Cheng, Li, et

al., 2020, among others). To analyze the power consumption Y.

Cheng, Li, et al., 2020 makes use of a DC-regulated power supply.

In Bian et al., 2022 power consumption is measured by a power

analyzer. As exemplified in Y. Zhao et al., 2022, the most common

way of computing power consumption is by multiplying the cur-

rent and the voltage on the running device, as it is connected to a

power supply. According to Shuvo et al., 2022 power consumption

(and implicitly energy) is highly impacted by the number of com-

putations and off-chip memory accesses. In Faraone and Delgado-

Gonzalo, 2020 the power efficiency is equal to the ratio between

throughput and power, where throughput is equal to the number

of operations divided by execution time.

• Energy consumption Energy consumption equals the rate of

operations that an edge node can process per watt of power con-

sumption (Shuvo et al., 2022). We observe that energy and power

consumption are related, although not proportional. Energy con-

sumption is usually measured in joules (as seen in Wang et al.,

2020, Burrello et al., 2022, Daghero et al., 2022, Y. Zhao et al.,

2022, Risso et al., 2022, among others). In Profentzas et al., 2021

energy consumption is measured based on the average electric cur-

rent, the inference time and the operating voltage. The same for-

mula is given by De Vita et al., 2020, where average energy con-

sumption for each inference is equal to the product between the

supply voltage, the average inference time and average absorbed

current per millisecond. S. Liu et al., 2020 validated their frame-
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work efficiency by measuring energy consumption by means of us-

ing an external power monitor. The energy efficiency estimation in

S. Liu et al., 2021 considers also parameter and activation arith-

metic intensity.

Apart from the limited storage issue seen above, the number of

read accesses to these types of memory should also be kept min-

imal, as it consumes energy (Meyer et al., 2019). In an overview

by Shafique et al., 2018, we find that one challenging aspect to

the power and energy efficiency of a constricted device is that

each multiply and accumulate operation (MAC) is normally cou-

pled with three memory reads and one memory write, which even

in the case of simpler models would result in millions of mem-

ory read and write operations. According to Shuvo et al., 2022,

energy efficiency is impacted mostly by the number of memory ac-

cesses, model size and other computation needs. The study by Lu

et al., 2019 shows that energy consumption is expected to affect

a user’s quality of experience, and so they design an energy func-

tion that takes in parameters such as number of nodes, number of

layers, the CPU and RAM capacity. While evaluating energy con-

sumption on microcontrollers, Coelho et al., 2021 lists the current

value and mean current value when generating one classification

per second as metrics. Energy consumption can be estimated from

FLOPs (Mishra et al., 2020). In their experiment Sajjad et al.,

2020 makes use of an USB detector to calculate various energy-

related parameters, such as current, voltage, power and energy.

• Model complexity Shuvo et al., 2022 considers the size of the

model as an important metric in edge inference evalution, since

low-complexity, compact network architectures are better suited

for edge deployment. They state that aside from actual hyperpa-

rameters (number of layers, neurons, activations, losses and so

on), one can also use the number of learnable parameters since

it reflects memory requirements. To compare models with simi-

lar complexities, Cerina et al., 2020 adjusts the number of active
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neural units by making sure that the number of parameters is

approximately the same for all considered architectures. The pa-

per by Burrello et al., 2022 shows that model complexity can also

be expressed by the number of parameters and MAC operations.

The number of parameters is also used as a complexity proxy in

comparing baseline models to their compressed versions (Xiong et

al., 2020). We observe that the number of parameters, together

with the average bitwidth and actual model size (in bytes) are also

used for getting a better understanding of the compression effect

on model layers (Sun et al., 2021). Coelho et al., 2021 argues that

MACs are a good metric for understanding CNN complexity, since

they account for a large part of the operations, and uses these to-

gether with the model size (in kB) and the number of parameters

to map models of various complexities. For CNNs, Wong et al.,

2022a uses MACs for quantifying algorithm complexity.

We can clearly differentiate between accuracy-related metrics and

resource-related metrics. Members belonging to either of these two cat-

egories are also often compared against each other, in order to capture

the trade-off between accuracy and resource utilization. Our analysis

between the full-sized and optimized model should also aim to capture

these relations. In contrast to using a combination of metrics for one

specific goal, some papers evaluate performance in terms of trade-offs

between metrics, typically mapping accuracy against a resource perfor-

mance metric. One such example is found in Daghero et al., 2022, a

study which identifies two sets of Pareto-optimal architectures consid-

ering accuracy versus memory occupation and accuracy versus num-

ber of cycles per inference. Pareto fronts considering accuracy versus

number of parameters are explored in Risso et al., 2022 for TCN mod-

els. Chandna et al., 2023 considers the trade-off between accuracy and

model size for binarized models. A similar approach where comparisons

between models resulting from several levels of applied optimizations

using accuracy versus model size is found in Yu et al., 2022. We con-

clude that the presence of a single metric might not always be sufficient
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Figure 6: Model prediction performance indicators.

to effectively measure performance in terms of either accuracy or re-

source use, but their combination might spark new insights about the

overall performance, and help us understand their relationship better.

Based on everything we have seen in this subsection, it is possi-

ble to distinguish some common patterns in the way that researchers

choose to evaluate performance for either accuracy or resource use. We

can use this to motivate our own performance indicator choices. These

are called key performance indicators (KPI). These are critical compo-

nents to our envisioned PoC because they are used to evaluate both the

full-sized models and their lightweight counterparts. First we will con-

struct a list of performance indicators that reflect efficiency in terms

of successful predictions for classification tasks (KPI1 - KPI3, figure 6).

The choice is justified by information extracted from the core knowledge

here and other readings where classification tasks are tackled (Ghosh

et al., 2022, Uddin and Canavan, 2019). Note that for the multi-class

classification task we adapt our formulas so that predictions from sev-

eral classes are considered into one metric. That is, we will average the

previously mentioned metrics for all classes, treating each class equally.

This is because in the evaluation phase we will choose an evaluation in-

ference set where each label appears equally, but also because all classes

are equally important to detect. When calculating macro-precision and

macro-recall in the multi-class case, we substitute the TP, FP and FN

values as explained in section 3.1.
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Figure 7: Model resource efficiency indicators.

With a better understanding of common resource-related metrics

used across current literature, we will also update our KPI list with

resource utilization indicators based on the findings from this section.

KPI4 - KPI10 assess resource utilization efficiency in the deployment

environment in terms of inference latency, memory utilization, power

consumption, energy consumption and model complexity. Their identi-

fication number, metric description and the formulas needed for calcu-

lations can be found in figure 7. Note the addition of KPI6, which has

been recommended when comparing full-sized and optimized models in

Tensorflow (Tensorflow, 2022).

37



4.2.4 Common optimizations and techniques (RQ4)

This subsection introduces concepts linked to resource-focused optimiza-

tion through the lenses of current research. Our goal with this subsec-

tion is to provide a high-level taxonomy of the most common optimiza-

tion techniques. This process is facilitated by tagging core literature

with found optimizations.

While training a deep model may require millions of parameters to

be refined over and over again, deployment and inference are also ex-

pensive with regards to the previously-listed performance metrics nec-

essary to complete a forward pass (i.e inference). Shuvo et al., 2022

enumerates three popular use cases in deep learning: 1) training and

inference on the cloud, 2) training and inference on the edge and 3)

training on the cloud and inference on edge. In this subsection we will

consider optimizations that can be applied to models that fall within the

third category, with a focus on edge inference.

We find two research directions: one towards more efficient hard-

ware platforms that are able to efficiently store and run complex ML al-

gorithms and another towards optimizing ML models so that we reduce

the resource requirements of the target device. This review sets a big-

ger focus on the latter. One reason for this is that customizing hardware

accelerators has high manufacturing costs and limited generalization,

while the software itself is more flexible to optimize and less expensive

(D. Liu et al., 2022, Thompson et al., 2020). The study by Thompson et

al., 2020 shows a clear sustainability issue with scaling deep learning

computation by scaling up hardware, which leads to environmental and

monetary constraints. As deep learning computational constraints are

getting more and more difficult to fulfill by current technology, hard-

ware specialization becomes less popular (Thompson et al., 2020). D.

Liu et al., 2022 states that innovative deep learning techniques will re-

main “key ingredients” in supporting edge intelligence, when contrasted

to hardware optimizations.

We find a real need for ML models to be optimized in order to tackle

the memory and computational constraints of the targeted devices. These

38



optimization techniques can be applied at different stages in the model

development process. Note however that some optimizations can cross

these temporal categories, but also that general practice involves us-

ing a set of techniques falling within either of the aforementioned cate-

gories. We present the following three-folded taxonomy over optimiza-

tions:

4.2.4.1 Hardware Optimizations, Distributed Computing When

it comes to hardware optimizations, current efforts explore paths to-

wards more energy-efficient computing architectures (Van Nguyen et

al., 2021). According to Cerina et al., 2020, the most promising ap-

proaches to improve the performance of ultralow-power processors are

parallelism, low-power fixed-function hardware accelerators, memory

access optimization, and near-threshold technology. In a overview of

current optimization trends by Shafique et al., 2018 we also find listed

designing specialized hardware accelerators, using hardware capable of

AI acceleration and near threshold computing. Thus, hardware can be

improved by allowing parallel implementation of multiple cores, as seen

in the case of microcontrollers (Wang et al., 2020). Gupta et al., 2020

states that process-in-memory architectures provide significant paral-

lelism while reducing data movement between the memory and process-

ing cores. Their study implements row-parallel operations internally in

a crossbar memory. In Van Nguyen et al., 2021 we see a DL implemen-

tation over memristor crossbars instead of the typical Von Neumann ar-

chitecture. The way that memory is allocated to different processes on

hardware is also an important consideration in Kumar et al., 2020. En-

abling single instruction/multiple data (SIMD) operations are optimiza-

tions which too enable concurrent core execution (Sajjad et al., 2020,

Schneider et al., 2020). Constricted IoT systems are sometimes aug-

mented with Field-Programmable Gate Arrays (FPGAs). Shuvo et al.,

2022 defines FPGA as a fine-grained reconfigurable architecture with

programmable logic blocks and configurable interconnections, that can

be programmed through hardware description languages. These sys-

tems thus benefit from more computational power, some studies focus-
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ing on generating specialized accelerators that optimize their perfor-

mance (Qian et al., 2022, Bahrebar et al., 2021). Wong et al., 2022b also

uses FPGA for inference by partitioning allocated memory. Parallelism

aided by FPGA hardware accelerator is also employed in S. Y. Tang et

al., 2019. Neural network processing units (NPU) can also be present

in hardware, aiding in processing computational loads (Y. Cheng, Li, et

al., 2020). AI cores (S. Li et al., 2022), or specialized embedded AI de-

vices (Putri et al., 2021) are also present in other studies, accelerating

computations. The work in Yu et al., 2022 is aided by GPU acceleration.

Distributed computing is one way of reducing the high processing

costs is enabling fine-grained latency/energy-aware distribution of com-

putations across the system edge-to-cloud stack (Shafique et al., 2018).

In Shuvo et al., 2022, edge offloading is considered one major edge AI

component that boosts edge inference by offloading the computation-

intensive task to the cloud or partitioning it. For example Nizam et

al., 2022 improves the model over time by offloading to cloud. A disad-

vantage is that this process can have a data transmission bottleneck. In

Yao et al., 2019 this process is improved by compressing and then recon-

structing transmitted data at the edge server by the use of a decoder.

4.2.4.2 Training-time Optimizations Probably the most obvious

optimization for resource utilization at training-time is the use of smaller

models, or improved architectures. One way of keeping models small is

input representation. Lower sampling rates and reducing the number

of variables helps for example in reducing filter size for CNNs (Coelho

et al., 2021). Other techniques include using principal component anal-

ysis for input reduction (Wei and Radu, 2019) and converting to other

data types, for example by converting video to time-series (Y. Cheng,

Li, et al., 2020, S. Li et al., 2022), or converting time-series to two-

dimensional images (J. Ni et al., 2022) thus leading to simpler and more

energy-efficient architectures.

One dominant strategy to reducing model complexity and control-

ling memory footprint is to utilize network architecture search (NAS)

mechanisms. NAS explore a large design space comprised of combina-
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tions of layers and/or hyper-parameter values, choosing the best solu-

tions for optimizing a specific loss/cost metric. The work by Wong et al.,

2022a shows how best-performance and low-power model designs can be

found through Monte Carlo simulations. Other implementations make

use of multi-objective optimization methods that consider both accuracy

and inference latency (Yang et al., 2021). Burrello et al., 2022 derives

TCNs by the use of MorphNet, a NAS tool which they enhanced to focus

on low latency and energy consumption architectures. The use of grid

search for hyperparameter tuning is seen throughout several papers

(Daghero et al., 2022, Sakib et al., 2020, Coelho et al., 2021). Another

study adopts exhaustive search to find the best configuration (Tesfai

et al., 2022). Current research points however to NAS still being in its

infancy and to its high computational requirements (Shuvo et al., 2022).

Architectural design is also linked to hyperparameter tuning, how-

ever it is an optimization we relate to improved or augmented archi-

tectures and modules that increase performance and use less computa-

tional resources. For instance, Wong et al., 2022a designs and imple-

ments a binary CNN (bCNN), that not only simplifies multiplications

and reduces MAC operations but its structure can reduce the number

of registers and clock cycles. Binary designs thus trade MAC operations

for bitwise XNORs, typically allowing for faster processing (Daghero et

al., 2021). On the other side, there are at least two main disadvan-

tages to binary ANNs: limiting network weights and activations to a

1-bit precision can lead to unnecessarily large architectures and accu-

racy drops (Daghero et al., 2022). Other architectural choices include

implementing ESNs instead of RNNs due to better memory and com-

putational time (Cerina et al., 2020), or LSTMs over CNNs for video

processing models (S. Li et al., 2022) and over MLPs (Chauhan et al.,

2018), GRU instead of LSTM (Faraone and Delgado-Gonzalo, 2020), us-

ing depthwise convolutional operations instead of traditional ones for

CNNs (Yang et al., 2021, Tesfai et al., 2022, Ay et al., 2022, Kalgaonkar

and El-Sharkawy, 2021, S. Zhao et al., 2021) and the use of group con-

volutions (Tesfai et al., 2022, Qian et al., 2022). Other architectural

choices include function-merging and block-reuse technique to reduce
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registers and clock cycles (Wong et al., 2022a), the use of attention mod-

ules (S. Liu et al., 2020), linear bottleneck blocks (S. Zhao et al., 2021),

and pyramidal network design using less hardware requirements and

leading to shallow models (Peluso et al., 2021).

Lastly, there are other optimizations that can be applied at training-

time. The paper by Coelho Jr et al., 2021 shows how streamlining layer-

wise quantization during training can reduce model size and energy use

while effectively maintaining accuracy. Training-aware quantization is

in fact popular and appears in many of the considered papers, but we

observe this happens mostly for CNNs (Van Nguyen et al., 2021, Qian

et al., 2022, Burrello et al., 2022, Daghero et al., 2022, Chandna et al.,

2023, Schneider et al., 2020).

4.2.4.3 Inference-time Optimizations Increased feasibility for de-

ployment and inference on resource-constricted devices can be achieved

by optimizing models after they have been trained. Most recent de-

velopments aimed at providing efficient ML deployment are essentially

compression techniques that help us limit the memory usage and com-

putation requirements by reducing the memory requirement for storage

and computation costs respectively. According to Lalapura et al., 2021,

compression follows a two-step process: first by reducing the redun-

dancy in the network, and secondly by reducing the redundancy in the

bits representing the network. A disadvantage to compressing methods

is that they are lossy, sacrificing performance (Coelho Jr et al., 2021).

The most popular compression method we have seen in our review is

quantization. Quantization is a promising optimization step in achiev-

ing lightweight versions of pretrained models. Quantization reduces the

sizes of the learned parameters (i.e weights, activations) to a lower float-

ing point precision or a fixed-point precision. In the survey by Shuvo et

al., 2022, quantization is said to have three benefits: memory saving

due to the low-bit representation, reduced complexity of arithmetical

operations which results in reduces latency, and improved energy ef-

ficiency. It is possible to convert learnable parameters into the same

low-bit representation in all layers, filters, channels, weights and acti-
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vations, or apply a mixed-precision quantization strategy, if the hard-

ware supports this. The quantization degree varies and can even be

sub-byte, for example binary (weights constrained to -1,+1) or ternary

(weights constrained to -1,0,+1), turning the networks into what we call

binarized/ternary networks, which may come at high performance ex-

pense. A clear limitation is that their performance is acceptable only

for small datasets (Shuvo et al., 2022). A combination of both sub-

byte and mixed-precision quantization can help find optimal accuracy-

memory architectures (Daghero et al., 2022). Quantization enables de-

ployment onto low-power resource-constricted devices such as Arduino

Uno (Kumar et al., 2020). We see that one popular quantization choice

is quantizing learnable parameters to 8-bit precision (Chauhan et al.,

2018, Zebin et al., 2019, Ukil et al., 2021, Bian et al., 2022, Wong et

al., 2022b), however other variations are also considered, such as 16-bit

floating point (Thomson et al., 2020), or sub-byte (S. Zhao et al., 2021).

Although quantization leads to small degradation in accuracy, studies

like Ribeiro et al., 2022 find improved inference time, and a significant

reduction in model size. 8-bit quantization is not only efficient as it can

enable a reduction by four times the memory footprint from the 32-bit

representation, but for some low-power hardware devices might even

be necessary in order to allow parallel computations via 2-way SIMD

(Peluso et al., 2021). Some hardware might not have a floating-point

processing unit, so fixed-point implementations are necessary, which

also turn out to be around 15% times faster than their floating-point

counterparts Wang et al., 2020. Challenges that follow with the use of

quantization are increased possibility for information loss due to low bit

width representation, distorted network architecture, and complicated

differentiation in backpropagation (Shuvo et al., 2022).

Another popular method for compression especially efficient in over-

parametrized models is pruning. Pruning strategies aim to identify and

remove minimal-impacting learnable parameters (e.g. by setting val-

ues to zero). This means removing redundant nodes and/or connections.

A pruned model is typically retrained in order to ensure that remain-

ing weights are still able to capture the pattern in data. In D. Liu
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et al., 2022 two branches of pruning are exemplified: structured and

unstructured. Unstructured pruning removes the weights with mag-

nitude lower than a given threshold, and their corresponding connec-

tions, but it is done in a irregular manner, increasing sparsity (sparsity

is the ratio between zero and non-zero parameters). Structure pruning

sets whole groups of weights to zero, removing actual structures from

the model, thus being able to accelerate inference. Pruning is typically

done iteratively, using a magnitude-based approach where importance

of the weights or nodes are determined by their magnitude or abso-

lute value. Magnitude-based pruning is used in Dey and Roy, 2020,

where pruning hyperparameters like sparsity and scheduling are also

further explained. By using various sparsity settings S. Zhao et al.,

2021 achieves energy-efficient architectures of only few kilobytes. The

work in Yu et al., 2022 focuses on using iterative unstructured prun-

ing on top of a model which has been subjected to structured pruning,

reducing the number of parameters even further. A pruning method us-

ing dropout-based sensitivity analysis is used in Bahrebar et al., 2021.

Structured weight pruning is employed in Risso et al., 2022 in order to

find optimal TCNs. When it comes to LSTMs, Xiong et al., 2020 shows

how sparse weight matrices resulting from pruning can be followed by a

cluster-based weight sharing strategy, reducing computations and stor-

age needs. Pruning is considered orthogonal to quantization (Peluso

et al., 2021), being often used together, in which case we talk about

“joint compression” (Shuvo et al., 2022). S. Zhao et al., 2021 compresses

NAS-found CNNs by quantization to various bit lengths (i.e. 16,8,4,2,1

bits) and applies pruning as well. Two advantages of pruning are mini-

mizing the physical size of parameters and reducing the inference time

(Shuvo et al., 2022). While in shallow networks, weight pruning might

compress weights with negligible accuracy loss, however in deeper net-

works, it may introduce significant loss of accuracy (Shuvo et al., 2022).

Singular value decomposition (SVD) is a compression technique where

the weight matrix is decomposed into three blocks: left and right singu-

lar vectors and a diagonal matrix (Lalapura et al., 2021). The diagonal

elements are a good representation of the original matrix, thus reducing
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the memory required to store the whole matrix (Chauhan et al., 2018).

Tensor decomposition is generalized to high-dimensional tensors. Ten-

sor decomposition is used in various video-processing works (Y. Cheng,

Li, et al., 2020, S. Li et al., 2022, Y. Cheng, Huang, et al., 2020).

Another optimization is knowledge distillation. Shuvo et al., 2022

defines it as a method that transfers learned knowledge from a larger

teacher model to a smaller, shallow student model, which mimics its

behavior. This uses soft-targets produced by the teacher model to as

ground truth to training the student model. This technique is used in

J. Ni et al., 2022 to build a student model with smaller computational

overhead and improved performance in the context of human activity

recognition. Knowledge distillation on fully CNNs is further investi-

gated for time-series classification in Ay et al., 2022, showing that dis-

tillation on smaller models can be beneficial in most cases. The work

in Ukil et al., 2021 creates a shallow student using piecewise linearly

approximation, which given a input trained model and training data ob-

tains a compressed model suitable for deployment on edge. Bohra et al.,

2021 highlights benefits to employing knowledge distillation for both

LSTMs, CNN-LSTMs and one-dimensional CNNs, such as maintaining

accuracy and the high compression rate. This technique can also be

used together with quantization, as seen in Faraone et al., 2021 and

Peluso et al., 2021.

Lastly, we have some techniques which occur less in literature, such

as the use of a two-level classifiers, where a lighter model checks whether

or not if should activate the bigger one (Coelho et al., 2021). Early exit

is another technique for deeper models, where predictions happen using

only the early layers of a network. In Zouridakis and Dinakarrao, 2022

a performance-aware algorithm that determines the exit dynamically

during runtime is implemented.

A very last remark for all of the optimizations above is that many

papers adopt Tensorflow as backbone in their implementation. One ex-

planation is that the selection is driven by the availability of Tensorflow

Lite (TF-Lite), which allows authors to more easily implement optimiza-

tions that lead to deployment of neural networks on low-power devices
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(e.g. Nizam et al., 2022, Zebin et al., 2019, Ukil et al., 2021, Bian et

al., 2022, De Vita et al., 2020, Bohra et al., 2021). Few papers explore

several platforms (an example being Y. Cheng, Li, et al., 2020).

To summarize the findings above, we see that optimizations can be

applied both at the hardware and at the software level. It is worth not-

ing that these categories are not mutually exclusive and most strate-

gies involve matching several together, with respect to the use case and

what is permitted on the specific hardware. We have seen both advan-

tages and disadvantages to these approaches. While all optimizations

align with our thesis goal of improving or preserving edge resources,

the actual benefits are observed only when these methods are tuned ac-

cordingly, using mostly trial and error strategies at several steps in the

implementation. We also note that even widely-used optimizations such

as quantization and pruning are lossy, and come with the risk of losing

information or vital connections in the trained model. The downstream

consequence is a smaller or bigger drop in model accuracy.

4.3 Related Works and Research Gaps

Before concluding our literature review we initiate a discussion on ob-

served works that have a similar approach to ours, their findings and

encountered challenges. We will also list the research gaps existent in

current literature.

While many demonstrate the effectiveness of using deep learning

algorithms across a broad spectrum of applications, few papers focus

on deploying and running these models on actual edge devices, mostly

because of prohibitive characteristics (i.e battery, memory, latency re-

quirements). This literature review has only regarded papers that at-

tempt this. By doing so we are more likely to find contributions that

have a similar goal to ours, but also determine whether or not there are

areas of research which require more attention.

In a review by Shuvo et al., 2022 the authors present a more com-

plete picture of realizing DL inference on edge, and enumerate common

neural network design optimizations, such as NAS and compact net-
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work design for CNNs and RNNs. This paper explains a large array of

model compression techniques such as pruning, quantization, joint com-

pression, KD and others. They find that there is a significant research

gap in developing tools that can automatically map ANNs to hardware

and assessing edge inference performance through benchmarks. How-

ever hands-on optimization implementation and inter-optimization re-

lationships are not explored. There are also other surveys included in

this review, such as Lalapura et al., 2021 who focuses on RNN compres-

sion techniques at edge, and the work by Shafique et al., 2018 which

is focused on current design and implementation challenges for ML on

IoT devices, but the same conclusions can be drawn. A more practical

example by Yao et al., 2019 shows the steps to creating a execution time

profiling tree based on many runs of different operations (pertaining to

CNNs, RNNs and MLPs) and different devices, which holds informa-

tion that can be used to compress input models based on the ones seen

previously. However their work tackles inference latency only. Another

contribution by Bohra et al., 2021 has a more generalized approach,

performing measurements of accuracy, memory and time utilization on

both traditional ML algorithms and classical DNNs on a publicly avail-

able dataset. However, their approach only considers KD as a compres-

sion mechanism, and does not explore relations between various model

sizes.

All in all, when designing and optimizing a model architecture for

a given application, one needs a good understanding of the relation-

ship between the accuracy, memory, power, energy and time resources.

While conducting the literature review we show that there has not been

a generalizing approach that captures optimization performance across

several types of ANNs and across model complexities. We observe that

most papers focus either on one architecture only or one architecture

at a time within the same study. On another note, the attention is

typically directed towards performance improvement for a given task,

while resource optimization is only performed as a minimum necessity

for deployment or neglected entirely. There are only a few papers that

make use of more than one inference-time optimization, so the poten-
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tial of this approach is not fully explored. Only a few papers have pro-

vided benchmarks for comparison between non-optimized models and

their optimized counterparts. We may thus state that the adoption of

resource-aware optimization techniques is in its early stages and re-

quires more attention, especially from a more general point of view.

Consequently, a clear research gap emerges as current literature fo-

cuses mostly on specialized architecture implementations but fail to dis-

cuss general ways of improving deployment and inference on edge.

4.4 Thesis Contributions

We communicate our contributions to this area of study. We want to

provide an answer to whether it is possible to find a optimal set of op-

timizations that can be applied across architectural and complexity di-

mensions, with the goal of achieving practical models.

At this point, we are able to make a distinction between “one for

most” and “one for one” strategies. What has often been encountered in

this literature review is the so-called “one for one” approach, that is, op-

timizing a model for a specific target and scenario. While this is suitable

for that particular setting, it suffers from poor scalability since it does

not guarantee good performance in other scenarios (Lu et al., 2019).

Nonetheless, a “one for most” strategy is also lacking in the following

sense: it is difficult to address model and edge device heterogeneity, or

the large diversity of use case scenarios. While we are indeed limited

under these terms, our effort in providing a more generalized approach

is grounded in executing a throughout and multifaceted literature re-

view that reflects common use of techniques. This approach narrows

the exploration path to those optimizations that are generally applica-

ble over a series of model architectures. This is how this process guides

our PoC design and implementation choices towards a framework that

is aimed for more general use. We argue that many works could benefit

from eliminating tedious tuning and compression processes by using the

knowledge gained from this thesis. Proving our thesis statement helps

build a bridge over the gaps highlighted in the previous subsection. We
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also enlarge the stock of knowledge around supporting industrial edge

intelligence by using deep learning-based techniques fused with sensor

technology. This thesis brings a five-fold contribution as follows:

• We perform a detailed literature review which captures novel and

general trends used to enable and perform edge intelligence.

• We implement both MLPs, CNNs and LSTMs for a real-world ap-

plication scenario that processes time-series data from a series of

wearable devices and simulate their deployment, varying not only

over model architectures but also model complexities.

• We compress our models using common inference-time optimiza-

tions, varying over their settings and combining them together.

• We construct a benchmark for comparing full-sized models and

their optimized counterparts, by defining a set of performance and

resource-relevant KPIs, and identifying relevant relationships be-

tween these.

• We search for a general, optimal set of resource-focused ML op-

timizations that can be used across architectures, by capturing

the trade-off and relationship between accuracy and resource ef-

ficiency for various optimization techniques applied at multiple

levels and choosing those that minimize both resource use and per-

formance loss.

The next section walks through the actual implementation of the PoC,

where design choices are based on the findings from this section.
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Figure 8: Model development workflow.

5 Proposed Approach

The PoC development process entails a multifaceted approach, where

we not only have to consider model development under the bounds of

our use case, but also development of the framework for finding a gen-

eralized set of optimizations. We can now connect the dots from the

previous sections, and offer a brief description of the steps necessary

to build our framework. For a full PoC characterization, we recommend

the reader to return to the overarching thesis statement and success cri-

teria from section 2. We will separate our framework building activities

into three phases: the model development phase, the model optimiza-

tion phase and lastly, the model deployment and inference phase. In

this section we will however only discuss the implementation, and not

the actual interpretation, which is a topic reserved for later sections.

5.1 Model Development

The process commences with model development, that is, constructing

the full-sized models following what one might consider a typical ML

recipe: data collection, data preprocessing, architecture and hyperpa-

rameter selection, model generation, fitting the models to the data and

finally, saving the models to a proper format, prior to further optimiza-

tion and deployment. Figure 8 represents the entire model development

process workflow.
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5.1.1 Data Collection

We begin with presenting, profiling and processing a time-series data

set, a necessary step prior to fitting models. Here, time-series data

preparation techniques will be harnessed.

Our data collection journey has essentially started with a data set

search procedure, in which several candidate data sets have been con-

sidered (see appendix A). Having the possibility of using a ready-to-load

data set evades the need to invest time and other resources in collecting

data, but it also trades at a cost. Consequently, we pay in increased cau-

tiousness around data quality and assuring that the collection process

adheres to standards, principles and good scientific practices. While

transparency and trustworthiness are taken for granted, the best option

at hand will be to explore the data and see whether or not we observe

any discrepancies. Our initial problem analysis had envisioned a task

using wearable sensor data as the main use case for our tool, and so

relevant data sets were suggested in this direction.

After comparing properties of candidate data sets, we eventually de-

cided to use Wearable Stress and Affect Detection (WESAD), an open-

access data set intended for wearable stress and affect detection. Re-

garding the choice of the data set, it was driven by three requirements.

The first requirement is choosing a time-series data set. This choice al-

lows us to employ various architectures, including time-series special-

ized ones. As seen in section 3.2, this is also a very popular type of data,

seen in many industrial applications. The second requirement involves

the label type. We are interested in doing binary and multi-class classi-

fication, and so we want to have discretely labelled instances to enable

supervised learning. Third and last, we wish to have a data set of good

quality and size. Fulfilling this requirement allows the models to train

on representative data and avoid overfitting.

To collect the WESAD data, a laboratory study was performed where

affective stimuli were used to elicit stress and amusement states in 15

participants (12 males, 3 females, age in years: 27.5 ± 2.4) by the use of

two devices: one wrist-worn device (Empatica E4) and one chest-worn
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device (RespiBAN Professional). The RespiBAN sensors capture accel-

eration (ACC), electrocardiogram (ECG), electrodermal activity (EDA),

electromyogram (EMG), and temperature (TEMP) information at 700

Hz sampling frequency, while Empatica E4 records blood volume pulse

(BVP), ACC, TEMP, and EDA, at the following sampling frequencies: 64

Hz, 32 Hz, 4 Hz and 4 Hz respectively. Further details on the process

of data collection can be found in the introduction paper on WESAD

(Schmidt et al., 2018), where an overview over engineered features, a

benchmark using traditional ML models and other details are listed.

Participants were subjected to four different states: sitting at a table

reading magazines which constitutes the baseline, an amusement con-

dition by showing funny video clips, a stress condition where they had

to participate in a public speaking and do a mental arithmetic task, and

a “de-excite” period called meditation where breathing exercises were

performed. The study had an approximative timeline of two hours. In

the actual data set, all conditions are identified by their corresponding

labels: 1 for baseline, 2 for stress, 3 for amusement, and 4 for medita-

tion, while 0,5,6,7 were ignored as they are not defined. The WESAD

provides a synchronized data file for each participant, where the raw

data for all devices are already aligned.

WESAD is thus a multimodal data set that has been collected in

such a way that makes it a collection of time-series data, fulfilling our

first requirement. Both labels and self-reports are provided for each in-

stance in the data set, fulfilling the second requirement. This makes

this data set not only suitable for stress-prediction tasks, that is, bi-

nary classification where all instances are labelled either as stress or

non-stress, but also suited for multi-class classification task between

stress, amusement and neutral states. Self-reports add another dimen-

sion to what this data can be used for (e.g. personalized predictions,

assessing positive and negative affect states, anxiety levels and type of

stress), but we will use manually defined labels, while the rest goes be-

yond the scope of our thesis. Some of the data has been discarded due

to sensor malfunction, resulting thus in a cleaner data set. There is

also a separate file that includes the synchronised data from both the
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RespiBAN and the Empatica E4 devices, which simplifies the data pro-

cessing phase. While the raw data set size is reasonable, we will see

that adjusting the window size and the overlapping area between win-

dows of data can increase or decrease its size, adding more flexibility.

All three requirements have been fulfilled by this point.

The benchmark in Schmidt et al., 2018 achieves up to 93.12% accu-

racy in the binary classification task (stress vs non-stress) when trained

on a linear model using RespiBAN features. It should also be noted that

recent studies using ANNs on the WESAD data achieve even higher

accuracy and unlock new insights about the data. A CNN-based ap-

proach where raw time-series are encoded into images achieves an even

higher accuracy of 94.77% in a multi-class stress level prediction task,

using purely features related to the chest (Ghosh et al., 2022). Another

deep ANN generated by NAS manages to achieve an accuracy of 93.14%

based only on recordings from the Empatica E4 wristband (Huynh et al.,

2021). Lightweight deep neural networks trained on the WESAD data

set also achieve results that are comparable or better than state-of-the-

art approaches (Chatterjee et al., 2022).

This is indeed a motivating factor to explore the use of deep learning

architectures on time-series data and reap the benefits that come with

this technology. However, our framework is not built with the intention

of maximizing prediction power, but rather concerned with preserving

performance while lowering resource utilization.

5.1.2 Data Preprocessing

In this subsection we will go through our design choices and assump-

tions made for the data preprocessing step.

As a first step we load the raw WESAD data, fetching both Respiban

and Empatica variables (total of 14 variables). For simplicity, we will

stick to using raw data values in our implementation, whilst agreeing

that feature engineering can indeed be a powerful step in reducing in-

put data complexity. However, as we have explained in 3.1, neural net-

works are typically good candidates at processing raw data. Due to
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the fact that these two devices use different sampling frequencies, we

choose to do a linear interpolation of the values not covered by the orig-

inal sampling, removing non-numeric values and keeping the highest

sampling frequency of 700 Hz as a reference. In this case, 700 lines of

data are equivalent to one second of recording. In this initial phase we

also set the labels for both binary and multi-class tasks. For the binary

case we combine the non-stress states and into one state (i.e 0), while

the instances belonging to the stress state are labelled as such (i.e 1). A

similar approach is done for the multi-class case: here instances belong-

ing to stress and amusement conditions get their own labels (i.e 1 and

2), while all other instances are combined into one state (labelled as 0).

The next step involves splitting the data into training, validation

and test data. The training set is used for the actual learning process,

the validation set will be used as a stopping criteria while training to

avoid overfitting the model, and the test set will be hold out for some

intermediary testing and for the inference data. Prior to splitting the

data, we randomize the order of the participants to remove any biases.

We decide to keep data from two participants for the test set, while

the rest of the data is split into a 80-20% proportion for training and

validation, respectively. Now what we have three separate data sets,

we move on to scaling the data.

According to Chatterjee et al., 2022 normalization helps reduce the

inter-subject variation and suppresses noise. Two scalers were tested:

the min-max and the standard scaler. The min-max scaler converted all

values to a range between 0 and 1, while the standard one mapped all

values to a normal distribution, allowing negative values as well. The

scalers were first initiated on the training data and then the rest of the

data was transformed using the same scaler. In practice we observed

that the standard scaler resulted in less overfitting for some model ar-

chitectures, which is why we chose it for the data processing.

Then we moved to creating sequences of data, which represent the

inputs to our models. We will use a sliding window technique, typically

used in sequencing time-series. According to Wei and Radu, 2019 there

are two main reasons to use samples overlapping. The first is to en-
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hance dependency between consecutive instances by exposing repeated

information in the overlapping parts, and secondly, a higher overlap

allows us to generates more unique instances for training. Especially

for recurrent models, this has a strengthening effect through memory

adjacent actions and features over consecutive inputs. For the CNN,

overlapping windowed data helps convolutional filters explore temporal

relationships between the samples within an activity. Our choice for

the most optimal window size was done in an empirical manner, trying

out several window sizes. While sequencing we also make a choice as

to how each window will be labelled. For the binary task, we choose to

label the whole sequence as stress if at least one instance is labelled as

such, while for the multi-class case we choose the label that occurs more

often. We then encode these labels to their one-hot representation. By

picking a window size of 3 seconds (or 2100 lines) with an overlapping

area of 50%, the sequencing results in a training data set containing

19953/19951 instances, a validation data set of 6011/6017 instances and

a test set of 4004/3999 instances for binary and respectively multi-class

tasks. The small variation in number of instances comes from the par-

ticipant randomization prior to splitting data sets for both tasks.

In a study by Ghosh et al., 2022, it is stated that ML algorithms per-

form better when numerical input variables and output variables have a

standard probability distribution. To verify this and whether or not our

data contains outliers or noise and/or is skewed, we run some profiling

on the data. We use the ydata-profiling package to report unwindowed

data statistics (all reports are included in our repository referenced at

the end of this section). By inspecting the data this way, we made sure

that there are no missing values. We also find that the data is im-

balanced for both binary and multi-class cases (approximately 77.8%

non-stress data for the binary task, while multi-class has 65.3% non-

stress instances and only 12.4% amusement data). Most features follow

an approximately Gaussian distribution (see figure 9 for Respiban fea-

tures, and figure 10 for Empatica features), although others are clearly

skewed (e.g. chest and wrist EDA). Some outliers are present, however

using the IQR elimination rule resulted in a significant reduction in
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Figure 9: Chest-device variables distributions (binary train set).

non-neutral labelled data, so we decided to keep all instances. We have

also computed heatmaps over feature correlations, however the train

set was too large to enable this function, so we have created a heatmap

separately for the first half of its content (see figures 11, 12, 13). We

observe that some correlations are more accentuated in the validation

and test set, however this is normal given that fewer participants are

considered. We also observe more negatively correlated variables in the

training and test test than in the validation set but the general pattern

is still maintained. An explanation to this is the fact that the number

of participants is quite small, so differences between participants are

more accentuated when profiled.

5.1.3 Model Generation

We continue the development with model generation, which in short is

the step where we create various models of different complexities and

architectures. By answering RQ1, we argue that considering and im-

plementing variations over CNNs, LSTMs and MLPs is sufficient to
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Figure 10: Wrist-device variables distributions (binary train set).

provide knowledge around the most common architectures. These ar-

chitectures have also been presented in section 3.1. We also remind

that some models perform better for specific problems, which is better

portrayed in coming evaluations. We might not find a very accurate

model, but this is also not the goal of our study, so there is no need for

an extensive search after the best performing model.

Now that we have the preprocessed dataset and a set of architec-

tures in mind, we want to choose hyperparameters that result in simi-

lar model complexities. Hyperparameters are configuration parameters

that define the model and control the training process. They are speci-

fied before training the model and eventually tuned, which is where the

validation set comes into the picture. Both architectural choices and

hyperparameter selection are vital in addressing issues such as vanish-

ing/exploding gradients, overfitting and escaping local minima.
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Figure 11: Binary train data heatmap.

Figure 12: Binary validation
data heatmap.

Figure 13: Binary test data
heatmap.
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We use the number of learnable parameters as reference to model

complexity/size, based on the RQ3 answer from section 4.2. We will con-

sider six model sizes, from thousands of parameters up to over a mil-

lion. These ranges are chosen as follows: 50-100k, 200-300k, 400-500k,

600-700k, 800-900k and lastly 1-1.1M. This selection is based on find-

ings from literature, where we have seen models ranging from a couple

thousand parameters to very large ones, but also it was our intention to

have models where the full-size versions can be deployed to the device

of choice, in order to enable our comparative analysis. We thus generate

one model within each one of these ranges, for each model architecture,

covering a wide array of sizes. Notation-wise, we will use a underscore

for model names to refer to their sizes: for example MLP1 reads as the

MLP with a number of parameters belonging to the first range. Table

2 goes over the actual parameter count for each model for the binary

task (the multi-class task has a tiny increase in parameters depending

on how many units are found in the last layers, but remains still within

the range interval).

Size Parameter range MLP CNN LSTM
1 50,000-100,000 58,805 61,601 73,345
2 200,000-300,000 235,217 277,761 235,713
3 400,000-500,000 470,561 497,921 474,753
4 600,000-700,000 647,479 678273 606,337
5 800,000-900,000 884,111 862,721 885,057
6 1,000,000-1,100,000 1,061,765 1,049,409 1,003,905

Table 2: Number of parameters present in each architecture.

The architecture is different for each model, but there are some com-

mon design choices taken along the way. We varied the number of lay-

ers in the proposed models from 1 to 4, contributing to the depth (for

the CNN this is without the fully-connected module). For all models, a

0.5 drop-out rate has been added as a regularization method between

various layers. The hidden activation is ReLU for all models apart from

the LSTM which uses tanh, and the output activation is the same (sig-

moid for binary, softmax for multi-class). Crossentropy loss is used as

a loss function for both tasks. We adopt adaptive learning rates by the
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use of the “adam” optimizer, with the default learning rate of 0.001.

There are also some model-specific hyperparameters: for the CNN this

is reflected by the number of filters, kernel sizes, and pooling layer spec-

ifications. The kernel size allows capturing temporal correspondence

between neighbouring data points within the filter, so we should keep

them big enough in the first layers as to not lose temporal relationships.

We choose to always use a global pooling layer after the last convolu-

tional layer, as we have seen benefits to this approach (S. Zhao et al.,

2021, Faraone and Delgado-Gonzalo, 2020). We also use max pooling

for some of the previous convolutional layers. For all the CNNs we use

the same flatten layer plus a two-layered fully-connected module (each

followed by drop-out and displaying 64 and 32 nodes respectively) to

convert feature maps into actual outputs. A fuller overview of hyperpa-

rameter and architectural choices can be found in table 3, table 4 and

table 5. These architectures are shared for both binary and multi-class

tasks. All models are implemented using Tensorflow.

Table 3: MLP architectural layouts.

Size Number Number Layer followed
layers units by dropout

1 1 2 1
2 1 8 1
3 2 16-8 2
4 3 22-16-16 1-3
5 3 30-32-32 1-3
6 4 36-32-32-32 2-4

Table 4: LSTM architectural layouts.

Size Number Number Layer followed
layers units by dropout

1 1 128 1
2 1 256 1
3 2 256-128 2
4 3 256-128-128 1-3
5 3 256-256-64 1-3
6 4 256-256-128-64 2-4
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Table 5: CNN architectural layouts.

Size Number Number Kernel Pooling Layer Pooling
Conv filters size type followed size
layers by pooling

1 1 32 128 Global max 1 -
2 1 64 256 Global max 1 -
3 2 64-64 256-64 Global max 2 -
4 3 128-64-64 64-64-8 Global max 3 -
5 3 128-128-128 256-16-8 Max, global max 1-2-3 64-1
6 4 128-32-64-32 256-128-4-4 Max, global max 2-4 64

5.1.4 Model Training

During training, the model goal is to optimize learnable parameters so

that predicted labels match the true labels as much as possible, using

a loss function to measure the difference between predictions and true

labels. Before training we set a termination criteria so that we do not

end up overfitting the models. This is also where the validation set

comes in, which is fed into a early stopping callback where a patience

of 20 epochs has been set that monitors changes in validation accuracy.

All models train a minimum of 20 epochs, and a maximum of 100, using

a batch size of 64 samples, apart from the LSTM which always stops

training after maximum 25 epochs due to its long training time. While

larger batch sizes are computationally efficient, smaller batch sizes lead

to better generalization. Higher numbers could of have been chosen for

epochs, but we are talking about a large number of models, so epoch

number was reduced to keep to the planned thesis timeline. We also

reshape the input for the MLP from the windowed shape (X, 2100, 14)

to (X, 2100*14), that is, X samples and 2100*14 features per sample. X

depends on the task.

This phase results in a set of full-sized models, of varying perfor-

mance. The highest accuracy found on the entire test set reaches 0.88

for the CNN5 in the binary task and 0.675 for MLP4 in the multi-class

task. We have also plotted the accuracy and loss on both training and

validation for all of the models, to further investigate the training pro-

cess. We will only give an example for the best performing model for

each architecture (see figure 14): MLP1, CNN5 and LSTM5, however

all other plots can be found in the repository. For MLP1, we observe
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(a) MLP1 training accuracy. (b) MLP1 training loss.

(c) CNN5 training accuracy. (d) CNN5 training loss.

(e) LSTM5 accuracy plot. (f) LSTM5 training loss.

Figure 14: Accuracy and loss for best performance models at training.

62



Figure 15: Model optimization, deployment and inference phases.

that even if the accuracy is quite high (i.e 0.777), the model is stuck into

a local minima and cannot escape. We saw that its recall and precision

(and implicitly F-score) are in fact zero. This is because it chooses to la-

bel everything as a non-stress value. It also seems that CNN5 has been

luckily initialized, since its accuracy is high starting already from the

first epoch. LSTM5 does not have the best accuracy overall, but there

is at least variation between epochs, and one could argue that training

for 25 epochs might not be sufficient. All in all we see that most models

have low-to-average accuracy and may not be very stable, however, as

mentioned in earlier stages, our thesis goal is not achieving high-quality

models, but rather bring attention to the impact various optimizations

have on models of different complexities.

As a final activity, we save all of the trained full-sized models in a

default Keras format. The model architecture, the trained weights and

the optimizer state are thus saved, and ready to be accessed at a later

time.

63



Table 6: Model optimization descriptions.

Optimization ID Optimization Short Description
baseline Dynamic range quantization

int8 Quantization integer only (8-bit)
int16 Quantization integer with float fallback (16-bit)
int32 Quantization integer with float fallback (32-bit)

float16 Quantization float (16-bit)
prun Magnitude-based weight pruning

prunint8 Magnitude-based weight pruning
+ Quantization integer only (8-bit)

prunint16 Magnitude-based weight pruning
+ Quantization integer with float fallback (16-bit)

prunint32 Magnitude-based weight pruning
+ Quantization integer with float fallback (32-bit)

prunfloat16 Magnitude-based weight pruning
+ Quantization float (16-bit)

5.2 Model Optimization

An essential phase to our PoC is the optimization phase where indi-

vidual or combinations between resource-focused optimizations are ap-

plied to the previously trained full-sized models (see figure 15). These

optimizations are found by scanning the list of post-training optimiza-

tions from answering RQ4, for those optimizations that can be applied

over several types of model architectures. Quantization and pruning are

most prevalent in literature, and also observed being applied over var-

ious architectures. We pick these as candidates to our set of generally-

applicable optimizations. Although only two types of compression tech-

niques are considered, we will have ten different optimization varia-

tions (more details in table 6). At a minimum we aim to include the

most common variations found by answering RQ4 in subsection 4.2.

Our goal in this subsection is to optimize our full-sized models, and

thus for each trained full-sized model from subsection 5.1, we apply the

entire array of optimizations presented in table 6. Our network count

by the end of this process is 18 full-sized models, each optimized 10

times, resulting in 180 lightweight models, adding to a total number of

198 models per task (or 396 models including both binary and multi-
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class tasks). We will now briefly detail the implementation of these

techniques, and also explain any assumptions that have been made:

• baseline: A dynamic approach to quantizing a model post-training,

recommended as an initial optimization step by Tensorflow. Weights

are quantized post-training and activations are quantized dynam-

ically at inference, by doing estimations based on a representative

data set. The converter applies a scale factor to each weight and

activation given these estimations. We have not provided this data

set ourselves, however a default set of random tensors with the

same shape as our inputs is used instead. The quantization aims

for a fixed-point model with 8-bit integer precision. We see that all

other quantization techniques build on this.

1 converter_baseline = tf.lite.TFLiteConverter.

from_keras_model(model)

2 converter_baseline.optimizations = [tf.lite.Optimize.

DEFAULT]

3 tflite_model_baseline = converter_baseline.convert()

4

Listing 1: Optimization implementation (baseline).

• int8: This is a full integer quantization approach, and estimating

the range of all tensors, including variable ones (e.g. input, out-

put) in the model requires a representative data set for calibra-

tion. In our implementation, representative data gen stands for a

generator function looping through and yielding all instances of

the actual training data. This type of optimization is necessary to

create compatible models for deployment on 8-bit devices such as

microcontrollers.

1 converter_int8 = tf.lite.TFLiteConverter.from_keras_model

(model)

2 converter_int8.optimizations = [tf.lite.Optimize.DEFAULT]

3 converter_int8.representative_dataset =

representative_data_gen

4 converter_int8.target_spec.supported_ops = [tf.lite.

OpsSet.TFLITE_BUILTINS_INT8]
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5 converter_int8.inference_input_type = tf.uint8

6 converter_int8.inference_output_type = tf.uint8

7 tflite_model_int8 = converter_int8.convert()

8

Listing 2: Optimization implementation (int8).

• int16, int32: The quantization to 16-bit and 32-bit integer are

similar to the int8 technique seen before, but we instead of quan-

tizing all tensors to integer, we use a float fallback (meaning that

the input and output tensors still use float precision). We will use

the default representative dataset.

1 # int16:

2 converter_int16 = tf.lite.TFLiteConverter.

from_keras_model(model)

3 converter_int16.optimizations = [tf.lite.Optimize.DEFAULT

]

4 converter_int16.target_spec.supported_types = [tf.int16]

5 tflite_model_int16 = converter_int16.convert()

6 # int32:

7 converter_int32 = tf.lite.TFLiteConverter.

from_keras_model(model)

8 converter_int32.optimizations = [tf.lite.Optimize.DEFAULT

]

9 converter_int32.target_spec.supported_types = [tf.int32]

10 tflite_model_int32 = converter_int32.convert()

11

Listing 3: Optimization implementation (int16 and int32).

• float16: The code below shows the implementation steps for en-

abling float16 quantization on model weights.

1 converter_float16 = tf.lite.TFLiteConverter.

from_keras_model(model)

2 converter_float16.optimizations = [tf.lite.Optimize.

DEFAULT]

3 converter_float16.target_spec.supported_types = [tf.

float16]

4 tflite_model_float16 = converter_float16.convert()
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Listing 4: Optimization implementation (float16).

• prun: Below we will present the implementation steps for magnitude-

based weight pruning. This technique iteratively eliminates model

weights during the training process, starting with an initial pro-

portion of weights (here, 40%) that are set to zero (sparsity) and in-

creasing it using a polynomial decay function under training (here,

to a maximum of 60%). Under the training process for pruning, we

have chosen to use our original training data, however 20% of has

been used as validation data in this process. We run 5 epochs and

use a batch size of 128. The loss and optimizer is the same as the

one used for training the full-size models.

1 prune_low_magnitude = tfmot.sparsity.keras.

prune_low_magnitude

2 validation_split = 0.2 # 20% used for validation

3 num_data = repr_data_X.shape[0] * (1 - validation_split)

4 end_step = np.ceil(num_data / batch_size).astype(np.int32

) * epochs

5 pruning_params = {’pruning_schedule’: tfmot.sparsity.

keras.PolynomialDecay(initial_sparsity=0.40,

final_sparsity=0.60, begin_step=0, end_step=end_step)}

6 pruned_model = prune_low_magnitude(model, **

pruning_params)

7 pruned_model.compile(optimizer=’adam’, loss=loss,metrics=

metrics)

8 callbacks = [tfmot.sparsity.keras.UpdatePruningStep()]

9 pruned_model.fit(repr_data_X, repr_data_y, epochs=epochs,

10 validation_split=validation_split,

batch_size=batch_size,

11 callbacks= callbacks, verbose=1)

12 pruned_model = tfmot.sparsity.keras.strip_pruning(

pruned_model)

13 converter_prun = tf.lite.TFLiteConverter.from_keras_model

(pruned_model)

14 tflite_model_prun = converter_prun.convert()

15

Listing 5: Optimization implementation (prun).
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• prunint8, prunint16, prunint32, prunfloat16: Given that these

techniques imply a combination between the pruning method pre-

sented earlier and any of the quantization techniques above, the

implementation of these is quite straightforward. That is, we first

prune our model following the steps above and then replace the

model variable from each quantization technique by the variable

representing the pruned model (i.e. pruned model).

Note that when optimizing LSTMs, we have to disable an experi-

mental feature and add a set of operations supported by TF-Lite for

LSTMs. This code and other non-critical code bits have not been in-

cluded here, to increase readability (the full implementation file can be

accessed by vising the repository referenced at the end of this section).

5.3 Model Deployment and Inference

The last phase is the deployment and inference phase. In this phase we

capture full-size and optimized model edge performance by deploying

models to a resource-constricted device (see figure 15). By addressing

RQ2, we observed that one of the more popular edge devices considered

across literature is the Raspberry Pi. Because of this we will aim to

deploy models to this type of device. Other motivations for this choice

are also its availability and reduced market costs. We then collect the

key performance indicators presented in figure 6 and figure 7, resulting

from answering RQ3. This is the backbone of our framework, granting

us the ability to set up a comparative analysis in the next section.

We will begin this subsection with an overall description of our ex-

periment setup. A picture of the overall setup is found in figure 16.

We aim to deploy our models to a Raspberry Pi 4 Model B device with

4GB RAM, and 64-bit quad-core Cortex-A72 processor. This device is

connected to a Raspberry keyboard, mouse and a screen. Between the

device power input and its power supply we attach a Uni-T USB tester.

The USB tester allows us to monitor the voltage level (shortened as

VDD) using volts (V) and the electric current flow (shortened as Curr)

using amperes (A), among other features. On the Raspberry device we
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Figure 16: Raspberry Pi setup.

install the 64-bit Debian GNU/Linux 11 (Bullseye) operating system,

following all necessary steps. We then install the necessary packages

and dependencies for running the inference file. We send our models

over to the device and store them together with the inference data, a

list over executable lines, and the actual inference file that collects all

metrics mentioned above. We make sure that the device is disconnected

from the Internet, and that any unnecessary applications that may in-

terfere with the model computations are closed in advance.

The inference process has been simplified so that we only need to run

one command to perform inference on a given data set for a given model.

Once the command is run, the inference process commences with load-

ing the data set and the called model. When it comes to the inference

data, we remind the reader about the test set that contains data from

two participants. We derive our inference data from this test set, by

selecting 10 (or 30 seconds) continuous windows of data for each type of

label, from both its first and its last occurrence in the test data set (we

do this because the data is concatenated sequentially and we want to se-
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lect data from both participants). We have later used a larger set of 50

continuous windows of data to calculate accuracy-related performance

metrics only, as prediction performance on 10 windows of data for each

label proved to be difficult to interpret for unstable models. Note that

if the called model is optimized by int8 quantization, we need to change

the inference data precision to int8 as well as other representations are

not allowed. We then load the model, however we note that optimized

models make use of an interpreter.

The first metric we collect is the CPU usage (KPI8), which is mon-

itored in parallel as we are running inference on data points. We col-

lect an array of CPU values during the inference process, remove zero

values and take the average over all CPU values for the final metric.

The next step is performing the actual predictions for all inference data

points, and at the same time profiling this process by placing times-

tamps around the inference calls (KPI4). It must be mentioned that a

little time overhead might be introduced due to looping over inputs and

storing predictions into numpy arrays, however this happens for both

full-sized models and their optimized counterparts. Once all predictions

have been stored, we can calculate the prediction performance metrics

(KPI1 − KPI3). We have implemented these manually, as we tried to

keep the list of unnecessary installations on the hardware device to a

minimum. In the binary task, we choose 0.5 as a classification thresh-

old, while the highest probability or value is chosen for the multi-class.

Next we calculate the number of parameters (KPI5). This is easy for

the full-sized models, as Tensorflow offers a function which returns the

number of learnable parameters for a given Keras model. On the other

hand, for optimized models we can estimate these by using the sizes of

the model tensors. Our next metric is the size of the compressed model

file (KPI6), which is collected by compressing our models and using a

gzip file format. We then get the file size for this file and express it in

terms of kilobytes (KB). The memory allocation on the device for the un-

compressed models is also collected and expressed in terms of kilobytes

(KPI7). Power consumption (KPI9) is measured by running continuous

inference (i.e looping over inference data points) for about 10 seconds
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and at the same time checking the USB tester to obtain electric current

flow value (i.e Curr). The terminal then asks for a input for the current

value. We observe that voltage does not fluctuate, and so we choose a

permanent value of 5.25V. For the current value, we take the average

of values that come on the screen, as we register that different inputs

have small fluctuations in current. By obtaining KPI9, we also are able

to calculate KPI10. Lastly, all of these metrics are written to a .csv file

and saved locally, ready for further profiling.

All of phases above contribute to creating a framework that outputs

an array of KPIs. With a richer picture of the inner workings of the

model training, model optimization, model deployment and inference

phases, we can continue to the next and most vital part of this thesis,

the analysis over the collected metrics.

All models, code files, plots and reports can be accessed by visiting:

https:/github.uio.no/adelaann/Artifact.

Note: accessible only to UiO students and employees!

6 Experimental Results and Evaluation

This section provides a presentation of experimental results, or perfor-

mance evaluations, for full-sized models alone and together with their

optimized counterparts. In this section our goal is to present and shortly

explain observations, where visual representations are used to essen-

tially frame steps in the PoC approach. At the end of this section we use

our success criteria to drive our choice for optimizations, constituting

the evaluation phase. All of our findings from this section can be found

in the Jupyter Notebook file in the repository referenced in section 5.

6.1 Full-sized Model Analysis

In order to better understand the challenges posed by deploying and

running inference using full-sized models, we begin the analysis by tak-
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Figure 17: Full-size analysis: predictive performance versus model com-
plexity.

ing a first look at full-sized models. First we do this through the con-

trastive lens of predictive performance and model complexity, as seen

in figure 17. We use F-score as a measure for predictive power, as it

is a balanced value between precision and recall. We see that being

a larger model with more learnable parameters does not necessarily

mean achieving better performance. When it comes to F-score read-

ings, the models achieve similar results across architectures, with few

exceptions, which may be due to lucky weight initializations (e.g. bi-

nary CNN5) or models that label most data to one class (we note that

MLP6 achieves a high F-score thanks to its high recall of 0.98). Another

observation is that multi-class models are consistently worse perform-

ers in terms of accurate predictions. The worst performance on infer-

ence data is seen for the binary MLP1, and best performance for binary

CNN5. In figure 18 we note that although the number of parameters is

close to each other across all model complexities, the actual memory re-

quirements for storing the full-sized models are slightly different across

architectures, with LSTMs being the most memory-hungry models.

Next, we plot the inference time in figure 19. We would like to see a

roughly similar inference latency even when models become deeper and

more complex. However, we can observe that this is not always the case,

and model complexity can pose a constrain leading to latency, especially
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Figure 18: Full-size analysis: file size versus model complexity.

Figure 19: Full-size analysis: inference time versus model complexity.

for LSTMs whose inference time is much higher than all of the other

architectures. Full-sized CNNs and MLPs use only up to a few seconds

to perform inference on inference data, and CNNs use more time than

MLPs. Another interesting takeaway is that even if some models are

larger in terms of number of parameters, they can have lower inference

time than smaller ones (e.g. binary LSTM4 uses more time than both

LSTM5 and LSTM6, and similarly for CNN5). We will see that CPU us-

age can offer an explanation to this. In terms of CPU usage (see figure

20), we note that most values lay within a similar range for both bi-

nary and multi-class scenarios, using less than one CPU core, with the

exception of a spike for LSTM6 and for CNN5, which appears in both

tasks. These two models appear to trigger the use of multiple cores,

which could be an explanation as to why CNN5 and LSTM6 have less
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Figure 20: Full-size analysis: CPU usage versus model complexity.

Figure 21: Full-size analysis: power consumption versus model com-
plexity.

inference latency than kin models of lower complexities.

A different perspective on the full-sized models shows how power

consumption differs across architectures and complexities (figure 21).

MLPs use the least electric current, followed by LSTMs. But the most

power-inefficient architecture turns out to be the CNN. Multi-class mod-

els tend to have a higher power consumption than their binary counter-

parts. For energy consumption, we see a change in distribution (figure

22). While MLPs prove to be both power and energy efficient, CNNs use

less energy compared to the LSTM due to faster inference. We see that

due to lower inference time, some LSTM architectures use less energy

even when the number of parameters is higher than other LSTMs.

Our findings point to the fact that different architectures have dif-

ferent optimization needs. We highlight a need for reducing power con-

sumption for CNNs, and reducing inference time and memory require-
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Figure 22: Full-size analysis: energy consumption versus model com-
plexity.

ments for more complex LSTMs. We argue that out of all architectures

considered, MLPs are the most resource-efficient, however their accu-

racy tends to be on the lower side for time-series analysis. Finding a

middle-way solution that efficiently addresses all issues above across

architecture and complexities without a big compromise in accuracy is

thus motivated. Applying such resource-targeted optimizations would

evade the necessity of searching for a smaller architecture and trying

out multiple optimizations in an exhaustive manner. We move on to the

comparative analysis between full-sized and optimized models.

6.2 Comparative Analysis and Evaluation

This subsection showcases the analysis part of the framework which is

necessary in order to support our thesis statement. Equipped with em-

pirical knowledge on full-sized architecture challenges and their impact

on device requirements, we may begin exploring model optimizations

and search for those that fulfill all our success criteria from subsection

2.2. In this thesis we perform this comparative analysis for both tasks

(i.e binary and multi-class) separately, however only the binary task

will be plotted here, to reduce redundant information. The multi-class

experiment points towards the same conclusions. This further proves

that even a task with slightly different models used on another ran-

domization of the data set achieves the same results, strengthening our

conclusions.
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Figure 23: Comparative analysis: F-score difference versus model com-
plexity.
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The first success criteria is linked to accurateness. To fulfill it we

aim for a optimization set leading to F-score difference values (i.e differ-

ence between full-sized and optimized F-scores) close to (given thresh-

old), equal or higher than zero. All F-score differences are found in

figure 23. Most purely quantized models stand on the zero line, with

the exception of int8 models which distribute values on both sides of the

zero line. A less accentuated but similar behaviour is seen for pruning.

Pruning employs some retraining of the model, so we actually see that

accuracy tends to increase slightly for some joint compression optimiza-

tions. Compared to int8, individual pruning and pruned combinations

keep values closer to zero, and tend to be more robust as we see a similar

shift in values for all architectures. We find that for all pruned models

MLP2 experiences a high drop in F-score. Some LSTM variants are also

impacted when pruned and the drop in accuracy is considered substan-

tial (approximately 0.2). Even if int8 optimized binary MLP1 reaches

an increase by approximately 0.5 points, all other binary MLPs are neg-

atively affected. Interestingly, larger LSTMs achieve a better accuracy

when quantized by int8, which remains the case even after pruning.

One may assume that overparametrized LSTMs are less affected by this

optimization, but this pattern is not seen in the multi-class experiment

so this reason is not founded.

We argue that quantization methods (excluding int8) are most prac-

tical, however if the use case allows a drop in accuracy, individual prun-

ing and/or joint compression (excluding prunint8) could even reach higher

accuracies than their full-sized counterparts (CNNs in particular are

better performers after applying this optimization). Sometimes int8 is

the only possible approach if the hardware itself and supported opera-

tions do not allow other precisions. However, our approach has to con-

sider all architectures and a good solution across all model sizes.

Consequently, int8 optimization and pruning strategies are removed

from the set of candidate optimizations. Note that we make this elimi-

nation based on an assumption that we cannot allow high drops in ac-

curacy (criteria threshold of 0.1), as we would end up with models that

differ a lot from their full-sized counterparts in terms of performance.
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Figure 24: Comparative analysis: CPU usage versus model complexity.

The second criteria is the resource criteria, that is, the optimization

should minimize resource utilization so that it is at least below that of

the full-size model. In previous sections we have put efforts into finding

those resources which are typically targeted in edge environments. We

thus list these resources as: computational (CPU Usage), power con-

sumption, memory allocation, inference time and energy consumption.

In order to investigate the trade-off between these and accuracy, we will

also plot these against the F-score.

In figure 24 we are plotting the CPU utilization values across ar-

chitectures and across complexities for multiple optimizations, includ-

ing full-sized models as well (i.e null). We find that all optimizations

use less than one CPU core for inference. This means that even the

spikes seen previously (e.g CNN5) can be reduced so that only one core

is performing operations. An interesting observation is that full-sized

LSTMs use less CPU than all optimized variations, however the gap is

very small. We then investigate the relationship between CPU usage

and prediction performance across architectures and complexities, for

all model types (see figure 25). What we aim for here is finding those

optimizations that do not decrease F-score substantially and are equal

or lower in CPU utilization when compared to the full-sized values. We

see that the baseline, float16, int16, int32 techniques are safe choices in

this regard.
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Figure 25: Comparative analysis: CPU usage versus F-score.

Figure 26: Comparative analysis: power consumption versus model
complexity.

Next, we move to power consumption (see figure 26). We observe

that power consumption for the full-sized MLP is the lowest across

all model sizes, and that optimizations use slightly more power. This

could be due to inner working of the interpreter, since it has a differ-

ent prediction mechanism. However, full-sized LSTMs and especially

CNNs register a clear power consumption reduction if optimized, which

is true across all complexities. We find that the range of power con-

sumption for all optimized models lays between approximately 3.5W to

4.5W. Since the power consumption difference between MLPs and the

optimized models is not big and we have determined that MLPs are

the most power-efficient out of all considered architectures, we choose

to keep remaining optimizations in the set of potential candidates. In

figure 27 we use a similar plot to check F-score against power consump-

tion, where see no significant loss in prediction performance for any of

the remaining optimizations.
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Figure 27: Comparative analysis: power consumption versus F-score.

Figure 28: Comparative analysis: file size versus model complexity.

Figure 29: Comparative analysis: compression rate for each model.
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Figure 30: Comparative analysis: file size versus F-score.

Next on the resource list is memory allocation. A model that is too

big cannot be loaded onto a device, and so reducing the model file size

is imperative for deployment on constricted edge platforms. As can be

clearly nuanced in figure 28, across all model architectures and com-

plexities, our remaining optimizations manage to achieve better file

sizes. Notice that optimized LSTM files in particular are reduced sub-

stantially from their full-sized counterparts, coming close to the opti-

mized MLP and CNN sizes. All of these models, including full-sized

ones, can be further compressed. We calculate compression rate (com-

pressed file size divided by the file size of the full-sized model counter-

part), and see which optimizations manage to achieve highest compres-

sion (see figure 29). We note that the compression power is superior

for the baseline and float16 compression techniques. Baseline performs

best, since it allows even 8-bit precisions by its dynamic nature. An

interesting find is that int16 achieves a worse compression rate than

float16. One explanation could be attributed to the compression algo-

rithm and the way it processes 16-bit float values. Note that compressed

full-sized models achieve very similar if not equal compression rate to

int16 and int32 optimized models, so we prioritize baseline and float16

optimizations as they lead to smaller models. In figure 30 we follow

the same steps as before and set up a plot where F-scores are mapped
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Figure 31: Comparative analysis: inference time versus model complex-
ity.

Figure 32: Comparative analysis: inference time versus F-score.

against file size values. Our goal here is to make sure that prediction

performance is not lost by optimizing models, and only file size becomes

lower. We agree that this is the case for all optimizations.

We continue by plotting inference time (in figure 31). A first remark

is that optimized MLPs and CNNs inference time is comparable to that

of the full-sized model. But for LSTMs, it is clear that optimization

leads to an increase in time needed for inference, especially for more

complex models. We believe a reason for this might be the addition of

conversion operations between quantized and full-precision values at

runtime. Another reason may be the way that Raspberry Pi does its

memory accesses for LSTM operations. Some predictions over the infer-
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Figure 33: Comparative analysis: energy consumption versus model
complexity.

ence set take more than 5 minutes over the full-sized time for LSTMs.

No matter which reason, whether these models are practical depends

indeed on the use case and whether the system is time-critical, however

the inference time is high enough for us to conclude that no optimization

has managed to achieve less resource utilization than their full-sized

counterparts without much loss of accuracy across all architectures and

complexities. In figure 32 we plot the F-score against inference time.

A similar plot is found for the energy consumption, due to the way

this metric is calculated (see figure 33). We can also plot the F-score

against energy consumption (see figure 34), however for both views we

get a similar distribution to what we have seen before for the inference

time, drawing the same conclusion.

All in all, we have seen how using our success criteria has served as

a proximate factor for filtering out (or retaining) techniques according

to whether they fulfill these criteria. The trade-offs between individual

resources and predictive performance have also been framed within our

analysis. A larger discussion on how these results can be interpreted,

challenges and final conclusions drawn from this analysis is necessary.
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Figure 34: Comparative analysis: energy consumption versus F-score.

7 Conclusion

This last section includes some retrospective insights about the thesis

progress so far. We conclude our thesis with a short discussion on the

findings from the previous section, communicate encountered limita-

tions to our approach and create a plan for future work.

7.1 Discussion

Every step in the construction of this PoC has been motivated by pre-

vious works towards edge inference optimization, investigating status

quo and aiming to bridge over encountered research gaps in current

literature. Our efforts aim to advance research towards achieving au-

tonomous resource-aware optimization by searching for a practical one-

fits-all solution for ANN optimization for edge deployment and infer-

ence. By comparing several deep learning model architectures of vari-

ous structural complexities to their optimized counterparts, we enable

a deeper exploration of the trade-offs between prediction performance

and resource utilization, which is an important aspect of this thesis. We

have set a couple requirements in the form of success criteria which

tell us what our framework should be and do. The framework is com-

pleted by performing the comparison analysis seen in the previous sec-
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tion, however it also includes the steps leading to our design decisions.

In our last section we have commenced with a detailed analysis of

full-sized models for both tasks, and how their performance is regis-

tered at deployment to the edge device. This analysis is done in order

to explore areas in which these architectures challenge the resource re-

quirements of the device. Our proposed solution should address all en-

countered challenges, and so evidencing what these challenges are is

vital in understanding the benefits to our approach. In this analysis

we observe that all considered architectures have different demands re-

garding the available edge device resources. We have found that CNN

models are characterized by higher power consumption, while LSTMs

are characterized by high memory utilization, inference time and en-

ergy consumption. Full-sized MLPs have less resource demands, but

their accuracy variation under optimization will prove to be the most

unstable. Current literature does not explore solutions over all of these

dimensions, but focuses typically on each challenge separately.

The comparative analysis is a core component to our PoC and helps

the search for general solutions. We use the success criteria to evalu-

ate whether the candidate optimizations picked by exploring common

strategies in current literature fulfill the requirements. Searching for

an optimization set which leads to lightweight models using less re-

sources over all considered dimensions proves to be difficult, as opti-

mizations themselves introduce some resource demands. For example,

while quantization techniques such as baseline, float16, int16 and int32

provided efficient optimization with regards to accuracy versus CPU us-

age, power consumption, and memory utilization, they introduced sub-

stantial latency and implicitly energy consumption for LSTMs. We are

thus talking not only about a accuracy versus resource trade-off, but

also a resource versus resource trade-off, under optimization.

Regarding accuracy alone, there are optimizations which have main-

tained full-size performance, but there are also a few that have super-

seded it thanks to some retraining (i.e pruning). Indeed, some have

also introduced high accuracy drops, but one main reason to this could

be that the models haven’t had enough retraining to recover accuracy
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(e.g int8). From the beginning we have made an assumption that opti-

mized model accuracy must not drop beyond a 0.1 mark. We however

agree that this value depends on the application, but also on the initial

full-size model accuracy. If one can allow a higher drop, then pruning

models could of have been kept in the candidate set.

Another assumption has been made for what we consider to be a

practical model in terms of latency. While MLPs and CNNs benefit from

our last set of optimizations (using baseline, float16 especially, but also

int16 and int32), LSTM latency was much higher for the optimized mod-

els than its full-size version. Our initial goal was to have it optimally

below that of the full-size model, and so because of this our last op-

timization set did not fulfill the resource criteria. However, as before,

what is regarded a practical in a real setting depends on the application,

and whether or not the system is time-critical. If one can allow a higher

latency, then these optimizations could of have remained as candidates.

Our PoC is not use case dependent and attempts to provide a general

optimization set. While our findings find no such set in the models that

we have provided, we strongly believe that this PoC has the potential to

achieve this goal. We see in fact that for the CNN and MLP, baseline,

float16, int16 and int32 strategies achieve resource-efficient inference

across all model complexities. We will thus present some of the lim-

itations of our approach and also pave the way for future work that

improves the current framework. This thesis thus contributes not only

to enlarging the stock of knowledge around more efficient edge platform

inference, but offers a first exploration step in this direction, building a

road to autonomous AI.

7.2 Limitations and Future Work

We register a few areas in which our framework could use more im-

provement.

• We note that it is important to work with stable models. In our

experiment we find that the optimized versions of full-sized mod-

els with low initial prediction performance tend to be subjected to
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higher negative F-score differences than models where this per-

formance is higher. This pattern is observed comparing the binary

and multi-class tasks. To avoid this issue, our model generation

phase registers the introduction of early stopping and drop-out

regularization to avoid overfitting. In future work it would be in-

teresting to approach this from a transfer learning perspective,

where one deploys models that already have been trained, with

some eventual tuning to fit the use case.

• This thesis limits itself to analysis over neural networks, however

exploring inference for traditional models (such as logistic regres-

sion, support vector machine, decision trees, naive Bayes) may also

offer interesting insights. We considered three architectures due

to their popularity. Initial steps in expanding our approach have

already been implemented in our code, where we include the model

generation code for RNNs and two-dimensional CNNs.

• Our thesis has chosen the two most popular optimization tech-

niques, however adding several variations over these techniques

or including other (e.g. knowledge distribution, tensor decomposi-

tion) increases the possibility of finding a general set of optimiza-

tions. However it also increases the dimension of the study, and

so we argue that an exhaustive approach is avoided by prioritiz-

ing common techniques. We have provided a throughout taxonomy

over all visited optimizations, which is a first step for future work

considerations.

• Being a PoC, our deployment environment constitutes of one de-

vice. Deployment to multiple devices with different configurations

would add a third dimension to the thesis goal: a general set of op-

timizations across architectures, model complexities and devices.

This is indeed an exciting area to explore, to achieve even better

generalization. We remind that in this thesis we have enumerated

which edge devices are typically targeted for deployment, and so a

first step into exploring this area is provided.
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• Our approach considers the popular performance indicators, how-

ever there are many variations as to how these can be computed.

For example, MACs/FLOPs are commonly used for measuring com-

putational load, but we chose to use CPU usage as an alternative

measure for how running inference affects computational power

on device. Future work should include further exploration of per-

formance metrics to get improved estimations about resource uti-

lization.

Future work should thus be dedicated to completing the above-mentioned

tasks, as they are aimed towards a more robust framework.
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Figure 35: Candidate data sets
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