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Abstract. Some new inequalities for characteristic functions of absolutely contin­
uous distributions, whose densities have bounded variation, are obtained. The 
inequalities concern behaviour of a characteristic function both in a neighbour­
hood of the origin and for large values of the argument. They can be used in 
stability problems, local limit theorems, and statistics. 
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1. Introduction and results 

Let f ( t) be the characteristic function of an absolutely continuous unimodal distri­
bution function F(x) (a distribution function F(x) is called unimodal if there ex­
ists x0 such that F(x) is convex on (-oo,x0 ) and concave on (x0 ,oo)). Prokhorov 
(1962) obtained the following inequalities for f(t): if F(x) is symmetric about x0 

and supx F'(x) :Sa, then 

(1) 

for ltl :S 1ra and 
2a 

lf(t)l :::; Ttl (2) 

for all real t. Later Ushakov (1981) proved that (1) and (2) hold without the 
symmetry condition. The unimodality condition proved to be more essential: 
without it (1) and (2) are not true (generally speaking). However, at least for 
large t, the same order of decreasing ("" 1/ltl) holds for characteristic functions of 
a wide class of non-unimodal distributions. Kent (1975) proved that if the density 
function p( x) of F ( x) is a function of bounded variation, then 

f(t) = o c~~) , It I ---+ 00. (3) 
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In this work, we obtain inequalities of the form (1) and (2) for characteristic 
functions of non-unimodal distributions which, in particular, include (1)-(3) as 
partial cases. 

Let f ( x) be a real-valued function defined on an interval [a, b] of the real line. 
The total variation of f ( x) on [a, b] is defined as 

b n 

V(f) =sup L lf(xi)- f(xi-I)I 
a 

i=I 

where sup is taken over all n and all collections x 0 , XI, ... , Xn such that a = x 0 < 
XI < ... < Xn = b. The total variation on the whole real line is defined as 

00 X 

V (f)= lim V (!). 
-oo x->oo -x 

We also denote 

a a oo x 
V (f) = lim V(f) and V(f) = lim V(f). 

-oo x--->-oo x a x->oo a 

For V~00 (f) we will omit limits and write V(f). 
A function f ( x) is said to be a function of bounded total variation if V (f) < oo 

(V~ (f) < oo if it is considered on an interval [a, b]). 
Theorem 1. Let p(x) be a probability density of bounded variation with 

characteristic function f ( t). Then 

for ltl::; 7rV(p)/2, and 

for all real t. 

lf(t)l < sin(t/ V(p)) 
- tj V(p) 

lf(t) I ::; ~;f) 

(4) 

(5) 

Ifp(x) is unimodal, then 2supxp(x) = V(p), therefore (1) and (2) are partial 
cases of Theorem 1. 

Estimates ( 4) and (5) are sharp: for an arbitrary v > 0 and any fixed t 0 such 
that ltol ::; 1rvj2, there exists a probability density p(x) such that V(p) = v and 

where f ( t) is the characteristic function corresponding to p( x), and a similar fact 
holds for inequality (5). 

Theorem 1 implies in particular the following estimate. 
Corollary 1. Let the conditions of Theorem 1 be satisfied. Then 

4t2 

lf(t) I ::; 1- 31r2 v2(P) 
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for ltl:::; 7rV(p)/2. 
To obtain the corollary it suffices to imply the elementary inequality 

sinx 4 2 -- < 1--x 
X - 37r2 

which holds for lxl :::; 1r /2 (see for example Ushakov, 1997). 
Inequality (5) can be improved if a density function p(x) is one or several 

times differentiable. More exactly, the following inequality holds. 
Theorem 2. Let p(x) be a probability density and f(t) be the corresponding 

characteristic function. If p(x) is n - 1 times differentiable, and p(n-1) (x) is a 
function of bounded variation, then 

If ( t) I < _V--=::-(p-:-( n -_1_:_) ) 

- ltln 
(6) 

for all real t. 
Some examples of applications of inequalities given by Theorems 1 and 2 are 

contained in Glad, Hjort and Ushakov (1999). 

2. Auxiliary results 

A set of characteristic functions B is said to be closed with respect to translation 
if the condition f(t) E B implies that f(t)eitb E B for any real b. 

Lemma 1. (Ushakov, 1997) Let B be a class of characteristic functions 
closed with respect to translation, B be an arbitrary set of the real line, g(t) be a 
real valued function defined on B. If for any f E B and any t E B, 

I Ref(t)l:::; g(t), 

then 
lf(t)l :::; g(t), t E B. 

Lemma 2. Let h(x), h(x) and g(x) be integrable functions defined on the 
interval [a, b]. Suppose that g(x) is non-increasing on [a, b], 

1b h(x)dx = 1b h(x)dx, 

and there exists c E (a, b) such that h(x) 2: h(x) for x E [a, c), and h(x)::; h(x) 
for x E [c, b]. Then 

1b h(x)g(x)dx 2: 1b h(x)g(x)dx. 
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Proof. 

1b h(x)g(x)dx -1b h(x)g(x)dx = 1b[h(x)- h(x)]g(x)dx 

= 1c[h(x)- h(x)]g(x)dx -1b[h(x)- h(x)]g(x)dx 

~ g(c) 1c[h(x)- h(x)]dx- g(c) 1b[h(x)- h(x)]dx 

= g(c) 1b[h(x)- h(x)]dx = 0. 

D 

Lemma 3. Let p(x) and q(x) be two probability density functions, and r(x) 
be their convolution: 

r(x) = /_: p(x- u)q(u)du = /_: p(u)q(x- u)du. 

Then 
V(r) 'S min{V(p), V(q)}. 

Proof. Let x 0 < x 1 < ... < Xn be arbitrary points of the real line. We have 

n 

2:::: lr(xi)- r(xi-1)1 
i=1 

= t.II: p(x;- u)q(u)du-I: p(x,_1 - u)q(u)du 

= t.II: [p(x;- u)- p(x;-1- u)]q(u)dul 

1= n 1= 'S -= ~ lp(xi- u)- p(xi-1- u)lq(u)du 'S V(p) -= q(u)du = V(p). 

Since nand xo, x1 , ... , Xn are arbitrary, this implies that 

V(r) 'S V(p). 

Analogously we obtain 
V(r) 'S V(q). 
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Lemma 4. Let p(x) and q(x) be two probability density functions, and r(x) 
be their convolution. If p( x) is n times differentiable, then 

Proof of the lemma is analogous to that of Lemma 3: taking n derivatives of 
both sides of the equality 

r(x) =I: p(x- u)q(u)du 

we obtain 

r(n)(x) =I: p(n)(x- u)q(u)du 

and now we can repeat the proof of Lemma 3 replacing p( x) by p( n) ( x). 

3. Proofs of the theorems 

Proof of Theorem 1. Prove the first inequality. Since the set of densities, 
having a given total variation, is closed with respect to translation, it suffices, due 
to Lemma 1, to prove that 

(2) 

for It I ::; 1r V(p) /2. Let us fix an arbitrary to such that Ito I ::; 1r V(p) /2. Without 
loss of generality assume that t 0 > 0. The cases Re f(t 0 ) ;:::: 0 and Re f(to) < 0 
should be considered separately. We consider only the first one: it will be seen 
that the second case can be treated in a similar way. 

Thus, suppose that Re f(to) ;:::: 0. Denote 

B _ { . 1rn 1r ( n + 1) } 
n - x. -<x< , 

to - - to 

Mn = sup p(x), mn = inf p(x), In= f p(x)dx, n = 0, ±1, ±2, .... 
xEBn xEBn } Bn 

We have 

Re f(to) = 1: cos(tox)p(x)dx = nf;oo Ln cos(tox)p(x)dx. (3) 

Prove that 1 cos(tox)p(x)dx::; r cos(tox)rn(x)dx, 
Bn }Bn 

(4) 
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where 
( ) { M - m for x E [1rn/to, 1rn/to + Zn], rn X = 0 n n 

otherwise 

for even n and 

rn(x) = { 
0
Mn- mn for x E [1r(n + 1)/to- Zn, 1r(n + 1)jt0], 

otherwise 

for odd n, where 

Suppose that n is even (for odd n the proof is analogous). We have 

r cos(tox)p(x)dx = r cos(tox)[p(x)- mn]dx. 
}En }En 

Consider separately two cases: 

( J - !!_m ) < ..!!.._ 
to n - 2to 

and 
1 ( 7r ) 7r 2) I- -mn > -. 

Mn- mn to 2to 

1) In this case, 

and, evidently, 

for 1rn 1rn 
-<x<-+z to - - to n 

and 
rn(x) = 0 :S p(x)- mn 

for 
1rn 1r(n + 1) 
- +zn <X< . 
to - to 

Therefore, due to Lemma 2 (cos(t0 x) decreases on the interval Bn), 

r cos(tox)rn(x)dx ~ r cos(tox)[p(x)- mn]dx. 
}En }En 
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Taking into account (5), we obtain (4). 
2) In this case, since cos(t0x) is negative on the interval 

( _!!__ + 1rn, 1r(n + 1)) 
2to to to 

and positive on the interval 

we have 

1 111" /2to+1rn/to 

cos(tox)[p(x)- mn]dx:::; cos(tox)[p(x)- mn]dx 
Bn 1rn/to 

111" /2to+1rn/to 1 
:::; cos(tox)[Mn- mn]dx = cos(tox)rn(x)dx. 

1rn/~ Bn 

Again, taking into account (5), we obtain (4). 
Now, define functions Pn(x) as follows. If n is even, then 

Pn(x) = { rn(x + 7rn/to) for 0 <. x:::; 1r /2t0 , 

0 otherwise. 

If n is odd, then 

( ) _ { rn(x + 1r(n + 1)/to) for -7r/2to:::; x < 0, 
Pn X -

0 otherwise. 

It is easy to see that 

or, since cos is an even function, 

Consider the function 

( ) _ ( Pn (X) + Pn (-X) ) 
qn X - 2 · 

It has bounded support, the interval [ -1r /2to, 1r /2to], and 
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Indeed, Pn(x) and Pn( -x) have non-intersecting supports, therefore 

max(pn(x) + Pn( -x)) =max {maxpn(x), maxpn( -x)} = Mn- mn. 
X X X 

In addition, evidently, i: qn(x)dx :SIn. (8) 

From (3), (4) and (6) we obtain 

Ref(to) :S 1: cos(tox) (J== qn(x)) dx. (9) 

Define 

(10) 

Then, due to (8), 

I= i: q(x)dx :S 1, 

and, due to (7), 

1 = 1 
s~pq(x)::; 2 L (Mn- mn) :S 2 V(p). 

n=-= 

In addition, since each Pn ( x) vanishes outside the interval [ -1r /2to, 1r /2to], the 
support of q(x) belongs to this interval as well. Applying Theorem 2 of Ushakov 
(1997), we obtain 

1= V(p) It V(p) t 
cos( tx )q( x) dx :S -- sin -( -) ::; -- sin -( -) 

-= . t v p t v p 

for all ltl :S 2 (7r/2to) =to, in particular, 

1= V(p) t 
cos(tox)q(x)dx :S --sin -(0 ). 

-= to V p 
(11) 

From (9), (10) and (11) we finally obtain (2). 
Now let us prove inequality (5). First we prove it in the case when p(x) is 

differentiable. We have 

f(t) = eitxp(x)dx =-:- p(x)deitx 1= 11= 
-= 'tt -= 

= --:- eitxdp(x) = --:- eitxp'(x)dx 11= 11= 
rt -= rt -= 
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which implies 

11= lf(t)l:::; ftT -= IP'(x)ldx. 

Now it suffices to observe that 

Now let us consider the general case: p( x) is not obligatory differentiable. 
Consider the convolution 

Pc:(x) = i: p(x- u)nc:(u)du 

where 

nc:(x) = - 1- exp {- x2 
} 

v'27fc 2c2 

is the normal density function with zero mean and variance c2 . The function Pc: ( x) 
is differentiable because nc: ( x) is differentiable hence 

or, taking into account Lemma 3, 

Let c -t 0, then we finally obtain 

lf(t)l:::; ~~f). 
D 

Proof of Theorem 2. The proof is analogous to that of inequality (5). 
First, suppose that p(n-l)(x) is differentiable (i.e. p(x) is n times differentiable). 
The procedure, which was used in the proof of inequality (5) can be repeated as 
many times as many derivatives of p(x) exist. More exactly, if p(x) is n times 
differentiable, and its first n - 1 derivatives satisfy the condition 

then 

lim p ( k) ( x) = 0, k = 1, 2, ... , n - 1, 
lxl--->= 

11= 1 1= 1 1= f(t) = --:- eitxp'(x)dx = --.-2 p'(x)deitx = -.-2 eitxdp'(x) 
~t -= (zt) -= (~t) -= 
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1 100 
( 1 ) n 1oo = -.-2 eitxp"(x)dx = ... = --;- eitxp(n)(x)dx. 

( 2t) _00 2t _00 

This implies that 
V( (n-1)) 

l f(t)i < p . 
- !tin 

Transition to the case when pC n-1) ( x) is not differentiable can be performed 
in exactly the same way as in the proof of inequality (5). 
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