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Abstract

The popularity of quantum computing has led to the creation of various Quantum
Software Platforms (QSP), which include various components, such as a standalone or
library-based quantum programming language, an optimizing compiler that translates
high-level quantum circuit code into gate instructions, a quantum simulator that
emulates these instructions on a classical device, and a software controller that sends
analog signals to quantum hardware based on quantum circuits.

As their usage continues to increase, the underlying platforms are becoming more
complex and capable; however, questions of robustness and correctness still remain.
A buggy and non-robust platform could hinder adoption and potentially deter users
from quantum computing altogether. For example, Qiskit1, a popular platform, has
40% bug-labelled issues2. Since these platforms are foundational to the quantum
computing revolution, it is crucial to test them for both robustness and cross-platform
compatibility. Unfortunately, testing these platforms is challenging due to a lack of
diverse quantum-specific testing techniques, limited availability of the same quantum
programs using different platforms, and varying levels of inter-platform compatibility.
Additionally, the oracle problem in testing poses a challenge, as there is a lack of
specifications for the expected behavior of programs.

We present QCross, a cross-platform differential and metamorphic testing approach
for testing quantum computing platforms. We build on top of MorphQ and attach a
converter that translates quantum circuits from one platform to another. Furthermore,
we also present a Python library, bloqs, that makes Qiskit quantum gates available
in PyQuil, and Cirq. By evaluating the approach with 1500+ randomly-generated
quantum programs on three platforms (Qiskit, PyQuil, and Cirq), we discovered
several new real-world bugs in each platform. QCross expands the limited range of
available testing techniques and aims to play an important role in developing a more
dependable software stack for this rapidly growing field.

1https://github.com/Qiskit/qiskit-terra/issues
2Issues are a user-based reporting mechanism that tracks ideas, feedback, tasks, or bugs for a GitHub

repository.
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Chapter 1

Introduction

A Quantum Computer (QC) is a computational device capable of performing calcula-
tions using the principles of quantum physics. It is important to note that even tra-
ditional computers, often referred to as classical computers1, adhere to the laws of
physics. However, QCs exploit fundamental quantum-mechanical principles, such as
quantum entanglement, to drive computation and achieve results that are unattainable
for classical computers within the same time or space constraints. Essentially, it is a
distinct type of computer [21]. An unattributed quote exemplifies this:

We shouldn’t be asking ‘where do quantum speedups come from?’ we
should say ‘all computers are quantum, [...]’ and ask ’where do classical
slowdowns come from?’

A common question that arises when learning about QCs is, "Will they replace
traditional computers?". The short answer is: No. A QC can be regarded as specialized
hardware designed to solve a narrow set of problems that pose challenges for classical
computers. This concept is akin to a Graphics Processing Unit (GPU), which assists
and accelerates the rendering of game graphics and images. In this context, the term
"Quantum Computer" is somewhat misleading, and "Quantum Co-processor" [21] or
Quantum Processing Unit (QPU) might be more appropriate.

Initially proposed in the 1980s by Richard Feynman and Yuri Manin [35], a
surge of research activity has since transformed quantum computers from science
fiction to reality. Within two decades of its inception, a functional two quantum
bit (qubit) quantum computer was constructed in the late 90s, which demonstrated
an experimental solution to Deutsch’s problem [12]. Today, quantum computers
containing 100+ qubits exist, such as in IBM Quantum Experience program.

Owing to their unique computational paradigm, quantum computers can solve cer-
tain problems exponentially faster and more efficiently than their classical counterparts.
For instance, the well-known Shor’s algorithm computes prime factors of a number in
polynomial time. Currently, the fastest classical prime factorization algorithm is the
General number field sieve, which exhibits non-polynomial time complexity. Another

1Following the same distinction as Quantum and Classical Physics

3



Company Platform Name Release Date
IBM Qiskit March 2017

Rigetti Forest June 2017
Microsoft Q# December 2017

Google Cirq July 2018
Quantinuum TKET -

Table 1.1: Partial List of Quantum Platforms

example is Grover’s algorithm, which searches for an item in an unsorted database with
a
√

N speedup. Additional examples of potential impacts from quantum computers in
fields as diverse as finance and chemistry are presented in [16].

Numerous industries are increasingly recognizing the potential of quantum com-
puting and its capacity to solve problems that are intractable for classical computers.
The past decade has witnessed substantial corporate momentum in quantum comput-
ing. As of 2022, it is estimated that over 80 companies2 are involved in QCs in some
capacity, including prominent entities such as IBM, Microsoft, and Google. These com-
panies have introduced QC platforms, alternatively referred to as Quantum Software
Platforms (QSP) or Quantum Development Kits (QDK), which facilitate the design and
execution of quantum programs or quantum circuits, either through emulation or on
actual hardware. A partial list of quantum platforms is provided in Table 1.1. For addi-
tional options, an extensive list of open-source projects, numbering well over fifty, can
be found at [5], and a compilation of quantum computer simulators is available in [26].

Although significant progress has been made over the years, publicly accessible
and user-programmable quantum computers remain in their nascent stages and are
quite costly. At the time of writing, a 5-qubit system from IBM is available for
public use as part of the IBM Quantum Experience program. Amazon, through its
Amazon Braket service, offers one complimentary hour of simulation time per month.
Nonetheless, the lengthy waiting times and 5-qubit limitations, as in IBM’s case, deter
many users. Furthermore, quantum hardware is rapidly evolving. It is highly likely
that improved hardware, featuring an increased number of qubits, enhanced error-
correction capabilities, or a superior native quantum gate set, will emerge within a few
years. Despite potential hardware advancements, the software necessary for interfacing
with quantum computing technology is expected to remain consistent. Utilizing these
new quantum computers is anticipated to be a straightforward process, necessitating
only minor adjustments to a few lines of code while preserving the same existing syntax
for generating and executing quantum circuits. For instance, in Qiskit, one could
simply modify the backend’s name (backend refers to the actual quantum hardware
or simulator) when executing the circuit:

2https://thequantuminsider.com/2022/09/05/quantum-computing-companies-ultimate-list-for-
2022/
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execute( quantum_circuit , backend =... )

These quantum software platforms are employed by researchers and programmers
alike to efficiently design, develop, execute, and troubleshoot their quantum programs,
for research and commercial purposes as outlined above. Consequently, it is imperative
that these platforms be free of any bugs or instabilities that could compromise the
accuracy of their outputs.

1.1 Motivation

A cursory examination of popular platforms’ GitHub repository pages reveals the
prevalence of issues users encounter3. In Qiskit, 40% of the 3800 total issues are labeled
as bugs. Similarly, more than 15% of Cirq issues bear the bug label while Microsoft’s Q#
quantum runtime has 30% bug-labeled issues. Empirical studies [32] have conducted
comprehensive analyses of these issues, demonstrating that numerous bugs continue
to afflict these platforms. Nevertheless, it is evident that these development kits are not
without flaws, and testing them further may uncover additional shortcomings.

Moreover, guaranteeing the robustness of these platforms is crucial for the rapid
adoption of quantum programs by a broader audience. Ensuring cross-platform
compatibility, in this case for Qiskit, Cirq, and PyQuil, is also of great importance since
a user should not be bound to a single platform. A quantum circuit should exhibit
consistent behavior across multiple platforms, akin to a website being accessible on any
browser or a program behaving similarly on an Intel CPU or Apple’s M1 CPU (albeit
with different compilations).

1.1.1 Challenges in Cross-Platform Testing

Cross-platform testing of quantum software platforms presents several challenges for
various reasons. These include:

1. C1: The requirement for a substantial number of test quantum programs. As the
field is still nascent, only a limited number of popular programs are frequently
utilized. Furthermore, the same program is needed for all platforms under test to
ensure cross-platform compatibility.

2. C2: Due to the platforms’ varying levels of support and distinct APIs, it is difficult
to test the same program without manually porting them from one platform to
another.

3. C3: The presence of stochasticity. When the outputs of the same program on two
different platforms differ, determining the extent to which the difference can be
attributed to noise or pure randomness becomes challenging.

3at the time of writing
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1.1.2 Challenges in testing quantum programs

Apart from the above-mentioned challenges in testing QC platforms, a single quantum
program has its own set of challenges. Unlike testing of classical programs, quantum
programs pose certain novel challenges:

• Quantum computation is fundamentally probabilistic and non-deterministic due
to quantum indeterminacy. Therefore, a single known correct output cannot
be compared with the output of a quantum circuit. For example, a super-
positioned quantum state can either be 0 or 1 with 50% probability each. Running
this program multiple times would result in a probability distribution (50% 1
outcomes and 50% 0 outcomes) and not the same output at every run. This is
different from a classical program which produces a definite answer on every
execution. Hence, equality comparisons of circuit outputs become impossible.

• Quantum computers today are noisy and fault-tolerant, that is, fully error-
corrected QCs don’t exist as of now. Therefore, if an observed probability
distribution of qubits differs from the expected probability distribution, then what
percentage of that is due to noise and/or natural randomness?

• The No-Cloning theorem [31] prohibits making a copy of an arbitrary unknown
quantum state. Therefore, reading or asserting on intermediate quantum states is
impossible.

• Simulating quantum programs on classical computers take an exponential
amount of memory. For example, consider a system of electrons where electrons
can be in any of, say 40 positions. The electrons, therefore may be in any of 240

configurations. To store the quantum state of the electrons in a conventional
computer memory would require in excess of 130 GB of memory[35]! For
45 positions, classical computers would require more than 4000 GB. Therefore,
testing large quantum programs on simulators is currently impossible.

1.2 Existing Work in Quantum Platform Testing

Given its nascent stage, quantum software testing lags behind traditional software and
compiler testing in terms of available software tools and research output. There appear
to be only two prior studies in this area: QDiff [41] and MorphQ [33].

QDiff is a differential testing approach in which six existing well-known and pre-
written source programs are modified to generate semantically equivalent but distinct
programs. These are then executed and tested on various QSSes (Qiskit, Cirq, PyQuil)
and IBM’s quantum hardware.

MorphQ is a metamorphic testing framework that comprises (i) a program gener-
ator that creates a large and diverse set of valid (i.e., non-crashing) quantum programs,
and (ii) a set of program transformations that exploit quantum-specific metamorphic re-
lationships to generate equivalent follow-up programs. The metamorphic relationship

6



1.3. Research Question

helps in addressing the Oracle problem of testing. That is, MorphQ does not require the
specification of a test program. Since two programs are metaphorically related, they are
expected to produce the same output even though the program structures differ from
each other. Although QDiff begins with a small set of manually written programs,
MorphQ enhances it by generating random programs, thereby improving the test cov-
erage criteria [33].

We believe that both studies have potential shortcomings. As noted in [33], QDiff’s
non-random programs do not sufficiently stress the system. Moreover, they are less
likely to utilize all available gates (or other features) in each of the platforms, as
the programs were predefined and pre-written. Consequently, they may not test
intricate corner cases that only occur with a (random but valid) combination of specific
gates and/or features. MorphQ improved upon these aspects by generating random
programs and establishing metamorphic relationships between them. However,
MorphQ’s limitation lies in generating only Qiskit programs, and it was evaluated
solely on that specific platform.

QCross aims to address the limitations of both QDiff and MorphQ. We build upon
and combine the differential and metamorphic testing techniques of MorphQ and QDiff
in an effort to conduct cross-platform testing, as described further in the "Contributions
of the thesis" section.

1.3 Research Question

We have identified these following research questions to focus on:

• RQ1: How many syntactically different but correct programs can be translated by
QCross’s converter?

• RQ2: What has QCross found via cross-platform testing of the widely-used
QSSes? i.e., how many warnings and errors do QCross produce?

• RQ3: How does QCross compare to prior work on testing quantum computing
platforms?

• RQ4: How useful is Bloqs?

1.4 Contribution of the thesis

The thesis builds on top of MorphQ and attaches a program converter that translates a
MorphQ Qiskit circuit to either a Cirq or PyQuil circuit while maintaining the original
metamorphic transformations of the source input. The converter can be extended to
allow support for other platforms in the future. This covers challenge C1.

We also modify and extend the original 10 metamorphic relations with newer and
different relations. For example, we add a QASM 3 (an intermediate representation

7
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of quantum programs) round-trip and QPY (a binary serialization format) round-
trip for Qiskit. Moreover, as part of translation, we provide concrete techniques
and implementation for converting every MorphQ metamorphic relation in all three
platforms.

For the challenge C2, we presents an open-source library called bloqs. This library
helps in achieving parity in a number of quantum gate operations supported by each
platform. For example, Qiskit has 50+ named Quantum gates. Cirq and PyQuil have
∼25 named gates. We implement more than 20 Qiskit gates in both Cirq and PyQuil,
for a total of 40+ specific implementation to achieve quantum gate parity. This is done
using the platform’s own ability to create a custom quantum gate.

In this thesis, quantum circuits are not executed on real hardware. Therefore, the
noise part challenge C3 is not relevant. We only use a noise-less simulator provided
by each platform. Hence, we don’t have to deal with noise. However, any statistical
difference (beyond and irrespective of noise) in outputs of the circuits need to be
explained on a per-program basis since it can be purely stochastic, or it may point to
some instabilities in the underlying platform(s).

1.4.1 Why not extend MorphQ?

QCross can be seen as an extension of MorphQ. There is, however, a real question of
"Why not modify MorphQ itself"? That is, MorphQ can be extended to generate PyQuil
and Cirq random programs. It can use the gate sets and features of these platforms to
natively emit random Cirq or PyQuil circuits. The reason for having a translator that is
separate from MorphQ are as follows:

• Since MorphQ was designed with Qiskit in mind, arguably, equal efforts
would’ve been spent in generalising the MorphQ metamorphic relations so that
they work with all three platforms. Trying to retro-fit other platforms within
MoprhQ can be more challenging than implementing an external translator as
we may find limitations in the structures of MorphQ.

• When generating a circuit within Cirq or PyQuil, we’d be limited by their gate
sets or their specific features. For example, Cirq has 25 built-in gates. A random
Cirq program would necessarily be limited to these 25 gates unless explicit care
is taken to poly-fill extra gates.

Since the spirit of the thesis is to do cross-platform testing, a given Qiskit program
should have the same behaviour (after creating an equivalent version) in Cirq or
PyQuil. Similarly for other platforms. But that means that Qiskit features need to be
translated as well. Currently, the bloqs library fills in the gaps of available gates in
these platforms. Though, in the future, the platforms may converge on some common
core set of features. At that time, import statements from bloqs can be replaced with
the built-in gates, and the circuits should still behave the same.

8
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1.4.2 Why choose only these platforms?

As mentioned above, there are many quantum platforms available. We chose Qiskit,
Cirq, and PyQuil to test and not anything else for the following reasons:

1. Liveliness: Arguably, Qiskit is the most popular and feature-rich quantum
software platform. Along with Google’s Cirq and Rigetti’s PyQuil, these
platforms feel "alive". The notion of "liveliness" here refers to active development,
quick patching of bugs, timely release of new versions, timely response to
community members’ issues, etc. These platforms also have huge financial
support from their parent organizations which helps the platforms in having a
dedicated team of developers.

2. Python: All these platforms have first-class support for Python-based SDK.
This helps in having a uniform testing environment which can execute all three
platforms’ code. Also, we can leverage the huge library ecosystem of Python.

3. Real Quantum Computer: All three platforms have the ability to connect to a real
quantum computer. The QC may be their own or they may have partnered with
a hardware institution to allow for cloud-based access via their platform. Though
not relevant in this thesis immediately, one can see the benefit of running the same
program on real hardware as opposed to a simulator. This can extend the current
testing infrastructure and integrate testing frameworks more tightly in the future.

4. MorphQ: Given that this thesis builds on top of MorphQ which was coded in
Python for Qiskit, it made more sense to continue using the same stack.

Other respectable platforms that were considered but were not included are
ProjectQ from ETH Zurich (no real possibility of connecting to hardware), Microsoft
Q# (different language C#, and stack), Quantinuum pyTKET (released too recently).

1.4.3 Why not use an existing translator?

Upon searching, we were able to find two converters/translators for quantum circuits.
Though they are feature-rich tools, they were not chosen for the reasons listed below.

• QConvert by Quantum Programming Studio: QConvert is able to convert
programs written in QASM or QUIL (Quantum Instruction Langauge) to circuits
of various other platforms. However, it cannot convert Qiskit programs. For
QConvert to work, Qiskit circuits need to be exported in QASM format. Upon
testing, we found that QConvert does not support a lot of the gates that QASM
supports. For example, exporting this QASM 2.0 snippet

OPENQASM 2.0;
include "qelib1.inc";
qreg q[2];

9
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creg c[2];
dcx qr[2],qr[0];

to PyQuil 2.2 4 produces the following warning:

# Export to PyQuil WARNING: unknown gate "dcx".

• Quantinuum pytket: pytket is a python module for interfacing with tket, a
quantum computing toolkit and optimising compiler developed by Quantinuum.
It comes with its own syntax but has support for conversion of circuits between
platforms using pytket extensions5. Using pytket, a Qiskit circuit can be
transformed into Cirq (or PyQuil) in the following manner:

1. Create (or import) a Qiskit circuit

2. Use the function qiskit_to_tk available in Qiskit extension to convert the
circuit to pytket

3. Use the function tk_to_cirq and feed it the circuit from the previous step to
get a Cirq circuit.

There are couple of problems with this approach as listed below.

1. Translating circuits in this manner won’t preserve all metamorphic relations.
For example, the execution or simulation backend is not part of a circuit,
hence, it can’t be translated. But we have a metamorphic relation which
enumerates between multiple backends of a circuit. Using pytket, this extra
bit would have had to be added manually.

2. Lack of support for all Qiskit gates6. This code snippet throws an error when
executed

from qiskit import (
QuantumCircuit,
ClassicalRegister,
QuantumRegister

)
from qiskit.circuit.library.standard_gates import *
from pytket.extensions.qiskit import qiskit_to_tk

4highest available PyQuil version at the time of writing
5extensions are separate python modules which allow pytket to interface with other quantum

providers. Link https://cqcl.github.io/pytket-extensions/api/index.html
6executed with pytket-qiskit version 0.28.0, and GitHub issue: https://github.com/CQCL/pytket-

qiskit/issues/88
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qr = QuantumRegister(3, name='qr')
cr = ClassicalRegister(3, name='cr')
qc = QuantumCircuit(qr, cr, name='qc')

qc.append(CSXGate(), qargs=[qr[1], qr[0]], cargs=[])

qiskit_to_tk(qc)
# KeyError: <class '..library.standard_gates.sx.CSXGate'>

3. Since the circuit transformation happens via pytket (Qiskit→ TKET→Cirq),
it can potentially mask certain platform issues within its own errors.

1.5 Structure of the thesis

The thesis is arranged following the AAA (Arrange, Act, Assert) pattern 7 which is a
common way of writing tests. It makes sense that a thesis about testing should follow
testing standards! The terms are defined as following:

1. Arrange all necessary preconditions and inputs. For our thesis, this constitutes
"Part 1" which includes the following chapters: Introduction, Background,
Literature Review, and Approach.

2. Act on the object or method under test. Essentially, "Act" refers to execution.
Hence, it includes Part 2, the chapter on evaluation and experimentation.

3. Assert that the expected results have occurred. The final part includes these
chapters: Discussion and Conclusion. They assert on the findings of the thesis.

1.6 Open Science

All code and artifacts related to QCross are provided at
https://github.com/ArfatSalman/qcross

7http://wiki.c2.com/?ArrangeActAssert
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Chapter 2

Background

2.1 Quantum Computing

2.1.1 Quantum Bit

A classical computer operates on classical bits. A bit can be either 0 or 1, describing
respectively the two states of the bit. A QC, on the other hand, operates on a Quantum
Bit (qubit). Unlike a classical bit, a quantum bit can exist in more states than just
exclusively 0 and 1. Mathematically, the state of a qubit is described as a vector in a
two-dimensional complex vector space,

|ψ⟩ = α

[
1
0

]
+ β

[
0
1

]
(2.1)

where the α and β are complex numbers, called the amplitudes.1 Using the Dirac
notation, the

[
1
0

]
can be written as |0⟩ and

[
0
1

]
is written as |1⟩2. Therefore, the equation

(2.1) can be re-written as
|ψ⟩ = α |0⟩+ β |1⟩ (2.2)

The |α|2 denotes the probability of measuring the qubit as 0, and |β|2 denotes the
probability of measuring the qubit as 1. Due to the Normalization condition, which
states that the probabilities must sum to one, |α|2 + |β|2 = 1 (i.e., the sum of modulus
squared of amplitudes should be 1)

The special states |0⟩ and |1⟩ are known as computational basis states or also called
standard basis, and form an ortho-normal basis for this vector space. We can visualize
these distinct states, |0⟩ and |1⟩, as the north and south poles of a sphere of radius unit
1 called the Bloch sphere, as shown in Figure 2.1. In fact, a qubit can be any point on
the Bloch sphere [44].

Following the standard Physics convention, the x-axis comes out of the page, the
y-axis points to the side, and the z-axis is oriented up. Then, since the Bloch sphere has

1|ψ⟩ is conventionally used to refer to a generic quantum state.
20 and 1 enclosed between a vertical bar and an angle bracket called a ket
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2.1. Quantum Computing

Figure 2.1: Bloch Sphere

radius of 1 unit, |0⟩ corresponds to the (x, y, z) point (0, 0, 1), and |1⟩ corresponds to
(0, 0,−1). The |0⟩ and |1⟩ (the standard basis) are also known as Z-basis states. Other
basis states are possible as well such as the X-basis

|+⟩ = |0⟩+ |1⟩√
2

|−⟩ = |0⟩ − |1⟩√
2

and the Y-basis (these following quantum states are also commonly known as the
"plus i" state and "minus i" state, respectively)

|+i⟩ = |0⟩+ i|1⟩√
2

|−i⟩ = |0⟩ − i|1⟩√
2

2.1.2 Multiple Qubits

Classically, two bits encode (22) states. They are: 00, 01, 10, and 11. When we have
multiple qubits, we write their states as a tensor product ⊗. For example, two qubits,
both in the |0⟩ state, are written as |0⟩ ⊗ |0⟩. For notational convenience, this can be
compressed to |0⟩ |0⟩, which can be further compressed to |00⟩. With two qubits, the Z-
basis is {|00⟩ , |01⟩ , |10⟩ , |11⟩}. A general 2-qubit state is a superposition of these basis
states:

|ψ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩

As per the Normalization condition, the total probability of all the modulus squared
of amplitudes is 1, just like in the case of one qubit.

|α|2 + |β|2 + |γ|2 + |δ|2 = 1
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A single quantum state can also be written using the vector form. For example, the
two-qubit |00⟩ is

|0⟩ ⊗ |0⟩ = |00⟩ =
(

1
0

)
⊗

(
1
0

)
=

1
(

1
0

)
0

(
1
0

)
 =


1
0
0
0


Similarly, for 3 qubits there are 8 (23) Z-basis states {|000⟩ , |001⟩ , |010⟩ , |011⟩ , ...}.

The previous computation can be generalized to n qubits. With n qubits, there are N
= 2n Z-basis states, where each state has its own amplitude. Thus, for example, if we
have just n = 300 qubits, then we must keep track of N = 2300 ≈ 2.04 ∗ 1090 amplitudes,
which is more than the number of atoms in the visible universe (1078 to 1082). Now, it
may seem that simulating 300 qubits will be impossible on a classical computer as we’ll
never be able to fulfill the space requirements. However, it’s unknown whether all
the amplitudes are necessarily required by a quantum computer [41]. For example,
the Gottesman–Knill theorem states that a Clifford quantum circuit can be simulated
efficiently on a classical computer [22].

2.1.3 Little- vs. Big-endian

As mentioned earlier, with three qubits, there are eight Z-basis states

{|000⟩ , |001⟩ , |010⟩ , |011⟩ , |100⟩ , |101⟩ , |110⟩ , |111⟩}

. For simplicity, these states (binary string) can also be written in decimal numbers
|0⟩ , |1⟩ , ..., |7⟩. Given that we have 3 qubits, one possible scheme is to call the right
qubit the zeroth qubit, the middle qubit the first qubit, and the left qubit the second
qubit, so a Z-basis state takes the form

|q2q1q0⟩

Then, the decimal representation of this is

22q2 + 21q1 + 20q0

This convention, where the rightmost qubit is the zeroth qubit, is called little endian.
Many quantum platforms (such as Qiskit) use little endian. In contrast, the opposite
convention, where the leftmost qubit is the zeroth qubit, is called big endian. Platforms,
in general, allow for inter-conversion between little-to-big endian systems.

2.1.4 Quantum Computation

Quantum computation is a change in the quantum state (i.e., the state of a qubit). For
effecting a change, quantum logic gates are used. These are similar to classical logic
gates, where computation is defined as a change in the classical bit. For example, the
classical NOT gate can change a 0 to a 1 and 1 to a 0. Analogously, a Quantum NOT gate
should transform |0⟩ to |1⟩ and vice-versa while maintaining other quantum properties.
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2.1.5 Measuring quantum states

Consider a qubit defined as |ψ⟩ = α |0⟩+ β |1⟩. What happens if we measure this qubit?
Classically, we can think of the measurement of a bit as simply a readout: we have a
system that encodes the state ‘0’ and ‘1’ and we make a measurement to find out which
one it is. Although the laws of quantum mechanics permit superposition of |0⟩ and |1⟩,
it also demands that if we measure the qubit, such as at the end of a computation, in
order to read the result, we get a single, definite value. This value is either 0 3 with the
probability of |α|2 or 1 with the probability of |β|2, not a superposition of values. This
loss of superposition (and other quantum properties such as entanglement) is called
a collapse. That is, the qubit collapses to |0⟩ or |1⟩. If we measure the collapsed qubit
again, we get a previously-collapsed result with a probability of 1.

2.1.6 Quantum Gates

Mathematically, a quantum gate is a unitary matrix that acts on a quantum state and
changes it. As per the Normalization condition, it keeps the total probability equal to
1. In fact, all quantum gates can be thought of as matrices, with the matrix entries
specifying the exact details of the gate [4]. Moreover, a gate can act on more than one
qubit at the same time. For example, in classical computing, a NOT logic gate acts on
one bit, and an AND logic gates act on two bits.

2.1.7 Reversibility

Reversible computing (reversibility) is any model of computation where the compu-
tational process, to some extent, is time-reversible. Since a quantum gate U must be
unitary, it satisfies

U†U = UU† = I

where I is an identity matrix. Therefore, a quantum gate U is always reversible, and
its inverse is U† (pronounced as U dagger).

2.1.8 Multi-qubit Quantum Gates

Quantum gates can also operate on two qubits at the same time. For example, the
CNOT gate (Controlled-NOT) gate inverts the right qubit if the left qubit is 1:

CNOT|00⟩ = |00⟩
CNOT|01⟩ = |01⟩
CNOT|10⟩ = |11⟩
CNOT|11⟩ = |10⟩

The left qubit is called the control qubit, and the right qubit is called the target qubit.
Note that the control qubit is unchanged by CNOT, whereas the target qubit becomes

3In Quantum Computer Science, it is customary to label the outcomes ‘0’ for |0⟩ and ‘1’ for |1⟩
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CX q0, q1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


(a) Little-endian matrix

CX q1, q0 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


(b) Big-endian matrix

Figure 2.2: Little- and big-endian matrices for CNOT quantum gate

the XOR (exclusive OR) of the inputs. In other words, if control qubit is set, the target
qubit is inverted, leaving the control unchanged. Also, since the X gate is the NOT gate,
the CNOT gate is also called the CX gate or controlled-X gate.

As we saw earlier, with little-endian convention, higher qubit indices are more
significant. Therefore, the matrix for CNOT with q0 as control and q1 as target is given
in Fig. 2.2a. However, in many textbooks 4 (and platforms such as Cirq), controlled
gates are presented with the assumption of more significant qubits as control, which in
this case would be q1. Thus a matrix for such a gate is provided in Fig. 2.2b.

When inter-operating between platforms, it is pertinent to remember this as it may
lead to different numerical answers for the same circuit. Moreover, this is true for any
control gate [31].

2.1.9 Quantum Gates Example

NOT gate

The Quantum NOT gate should, in principle, do the following:

NOT(α |0⟩+ β |1⟩) = α |1⟩+ β |0⟩ (2.3)

As we saw earlier, a qubit is just a vector. Hence, a matrix transformation can affect
the change. The NOT matrix is:

NOT =

[
0 1
1 0

]
(2.4)

Hadamard gate

A very interesting gate that is not available on classical computers is the Hadamard
gate. This gate is responsible for putting a qubit in a superposition of states.

H =
1√
2

[
1 1
1 −1

]
(2.5)

4such as Quantum Computation and Quantum Information by Isaac Chuang and Michael Nielsen
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Gate Action on Computational Basis Matrix Representation

Identity
I|0⟩ = |0⟩
I|1⟩ = |1⟩ I =

[
1 0
0 1

]
Pauli X

X|0⟩ = |1⟩
X|1⟩ = |0⟩ X =

[
0 1
1 0

]
Pauli Y

Y|0⟩ = i|0⟩
Y|1⟩ = −i|1⟩ Y =

[
0 −i
i 0

]
Pauli Z

Z|0⟩ = |0⟩
Z|1⟩ = − |1⟩ I =

[
1 0
0 −1

]
T

T|0⟩ = |0⟩
T|1⟩ = eiπ/4|1⟩ T =

[
1 0
0 eiπ/4

]

Hadamard H
H|0⟩ = 1√

2
(|0⟩+ |1⟩)

H|1⟩ = 1√
2
(|0⟩ − |1⟩) H = 1√

2

[
1 1
1 −1

]

SWAP

SWAP|00⟩ = |00⟩
SWAP|01⟩ = |10⟩
SWAP|10⟩ = |01⟩
SWAP|11⟩ = |11⟩

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Table 2.1: Common Quantum Gates

The H gate puts the quantum states |0⟩ or |1⟩ in superposition such that measuring
the qubit will result in either 1 or 0 with 50% probability. The H gate can act generally
on any quantum state as described by (2.1).

2.1.10 List of Common Quantum Gates

There exists an uncountably infinite number of gates [31]. However, some common
gates are named and mentioned in Table 2.1. A full description of these gates can be
found in [31].

2.1.11 Quantum Circuit

A combination of quantum logic gates that transforms the input quantum state into
the output quantum state is termed as quantum circuit or a quantum program. For
example, given two qubits |00⟩, we may apply the H gate to 1st qubit. Then, we apply
the X gate to 0th qubit. Then, we apply the CNOT gate where the 1st qubit is the control
and the 0th qubit is the target. Finally, measure the outputs.
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Circuit diagrams

The previous textual description of a circuit is often not enough to understand what a
circuit is doing. Just like we can draw a classical circuit diagram consisting of bits and
logic gates, we can draw quantum circuit diagrams consisting of qubits and quantum
gates. This helps us visualising the circuit for improved clarity. Here’s a standard
diagram of the circuit discussed above:

|0⟩ X

|0⟩ H

1 2 3

(a) More verbose diagram

|0⟩ X

|0⟩ H

(b) Compact diagram

Figure 2.3: A quantum circuit that applies H, X, and CNOT gates

As we can see in Fig. 2.3(a), there are two lines starting with labels |0⟩. These lines
are conventionally called "quantum wire". The |0⟩ is the initial value of the wire. Next,
we see the H symbol. The square box with a letter inside indicates a gate. In this
case, it is the Hadamard (H) gate. Other possible options are listed in Table 2.1. We
also see red dotted vertical lines. These lines delineate quantum operations from each
other. Similarly, X gate ( X ) is applied next. Then, a two-qubit CNOT gate is applied.
The solid dot (•) is the control. The cross-hair (

⊕
) symbol directly above the control is

the target qubit. A line connects them to indicate the control-target relationship of the
CNOT gate. Finally, the meter symbol ( ) indicates a measurement gate.

In general, the operations in a diagram can be written compactly as shown by an
equivalent diagram in Fig. 2.3(b). The diagrams generated by a quantum platform can
be made more colourful and may add extra information but the main concepts stay
the same. We can see a larger and more complex diagram of an example Qiskit circuit
(shown in Fig. 2.4) that is using three qubits and two classical bits. There are four main
components in this quantum circuit:

1. Initialization and reset: q0 is initialised to an arbitrary quantum state |ψ⟩ whereas
q1 and q2 have the default initial value |0⟩.

2. Quantum gates: Two H gates and two CNOT gates are applied.

3. Measurements: The crz and crx denote classical bits. Outputs of q0 and q1 are
stored in crz and crx respectively as classical bits.

4. Classically conditioned quantum gates: Single-qubit Z and X quantum gates are
applied on the third qubit. These gates are conditioned on the results of the
measurements that are stored in the two classical bits. In this case, we are using
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Figure 2.4: A more complex Qiskit circuit diagram presenting quantum teleportation.

the results of the classical computation concurrently in real-time within the same
quantum circuit.

2.1.12 Quantum Programs

Like classical circuit diagrams, quantum circuit diagrams are good for understanding
small quantum algorithms and gate interactions. However, they become untenable
as the number of qubits and/or the number of gates grow. Moreover, they are not
executable in the circuit form.

A quantum program is a program that manipulates quantum gates to drive a
quantum algorithm, and it is executable. However, this distinction between circuit
and program is often ignored, and these words are used interchangeably. Generally,
quantum programs are written in "classical" languages such as Python, which then
emit instructions in the form of an intermediary code that a quantum computer may
understand. For example, IBM has OpenQASM (Open Quantum Assembly language)
[15] quantum assembly language which interoperates with their Python framework,
Qiskit. Since a classical language is used, we can also use all the features of Python to
model a quantum problem. We are not limited to just quantum domains. However,
one can use standalone quantum languages which are designed from the ground-up
to have first-class support various quantum operations. For example, the Scaffold
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programming language [1]. QASM5 is also fairly readable and high-level. Here’s an
annotated simple program

// necessary preamble for all QASM programs
OPENQASM 2.0;
include "qelib1.inc";

// allocate 5 qubits, initially set to 0
qreg q[5];

// allocate 5 classical bits where final measurements are recorded
creg c[5];

// Apply Hadamard gate on all the qubits
h q[0];
h q[1];
h q[2];
h q[3];
h q[4];

// Measure the qubits
measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];
measure q[3] -> c[3];
measure q[4] -> c[4];

This program generates a truly random 5-bit on every run. The H gate puts all
the qubits in superposition. Upon measurement, the superpositions collapse, and each
qubit becomes 0 or 1 with 50% probability. Quantum physics forbids the measurement
of qubits without losing the superposition, thereby making each qubit truly random.

2.2 Quantum Software Platforms

In 1940s and 50s, computers such as ENIAC ( Electronic Numerical Integrator and
Computer) were used to calculate factors of large numbers, compute ballistic routes,
and simulate the decay of neutrons. Highly specialised personnel were required to
operate the computer, and it was manipulated by operators at the level of registers and
gates. A "modern" programming language (such as C) was 20 years in the future. The
state of a QC mirrors this quite closely. That is, we are manipulating QCs at the level of
gates and registers and highly specialized training is required to understand a quantum
circuit. Moreover, currently, QCs are not used in general-purpose applications, but for

5OpenQASM is generally referred to as QASM

21



2.2. Quantum Software Platforms

specialised use-cases in Chemistry, Finance, and others. However, a major difference
between programming QCs today versus CCs of the past is that we can take advantage
of the CCs to program a QC using specialised CC-based languages and IDE (Integrated
Development Environment).

In this thesis, we define the term Quantum Computing Platform (QSP) to refer
to the entire apparatus (hardware and software), which is necessary to develop and
deploy quantum software applications. It can include a quantum programming
language, an optimizing compiler that translates a quantum algorithm written in a
high-level language into quantum gate instructions, a quantum simulator that emulates
these instructions on a classical device, and a software controller that sends analog
signals to very expensive quantum hardware based on quantum circuits.

At the lowest level of the quantum computing stack, a language must instruct
the computer which physical operations to perform on which qubits. We refer
to these languages, such as Quil in Forest and OpenQASM in Qiskit, as quantum
assembly/instruction languages, or occasionally as quantum languages for brevity. On
top of quantum languages sit quantum programming languages, which are used to
manipulate quantum languages in a more natural and readable way for programmers.
Examples of quantum programming languages include pyQuil, which is embedded
into the classical “host” Python programming language, or Q#, a standalone quantum
programming language resembling the classical C# language. If we abstract the
hardware and focus purely on the software, other terms for this collection of modules
are Quantum Software Stack (QSS) or Quantum Development Kit (QDK 6) or
Quantum Software Platform (QSP). Since there is no definite meaning of these terms,
the terms may be used interchangeably without loss of generality.

A normal workflow of a user that wants to run a Quantum Circuit on a specific
QDK is:

1. Build: Design a quantum circuit(s) that represents the problem you are
considering. This would involve using the platform-specific APIs to create qubit
registers and apply gates and measurements.

2. Compile or transform: Compile circuits for a specific quantum service, e.g. a
quantum system or classical simulator. Platforms generally provide API in a
high-level language, such as in Python. The compilation would ensure that the
program is ready to execute by a simulator or real hardware.

3. Run: Run the compiled circuits on the specified quantum service(s). These
services can be cloud-based (often real hardware) or local (often simulator).

4. Analyze: Compute summary statistics and visualize the results of the experi-
ments. The results are a distribution of bit values.

Let’s take a look the software platforms.

6analogous to Software Development Kit or SDK
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Figure 2.5: Qiskit Components

2.2.1 Qiskit

Qiskit (The Quantum Information Software Kit) [20] is a Python-based open-source
software development kit for working with quantum computers at the level of circuits,
pulses, and algorithms. Qiskit consists of a few components [34] (also called Elements)
as shown in Figure 2.5:

• Qiskit Terra: It is a core module that handles quantum circuit construction,
circuit analysis and transformation, and general-use algorithms, such as VQE
(Variational Quantum Eigensolver).

• Qiskit Aer: provides high-performance quantum computing simulators with
realistic noise models.

• Qiskit Experiments (previously called ignis): the module that contains all the
required tools to implement error mitigation techniques.

• Qiskit Aqua: Another deprecated module. The module was split out to
separate application repositories (qiskit-optimization, qiskit-machine-learning,
qiskit-nature, qiskit-finance), with the core algorithm and operator function
moved to qiskit-terra.

• Qiskit Dynamics is for building, transforming, and solving models of quantum
systems.

• Qiskit Metal is used for the design of superconducting quantum chips and
devices.
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• Hardware Providers: A collection of quantum hardware and software partners
that extend and complement the Qiskit ecosystem.

Here’s a sample Qiskit program (Listing 1). This code was randomly generated by
MorphQ as part of the running of the experiments.

1

2 # importing packages
3 from qiskit import (
4 QuantumCircuit,
5 ClassicalRegister,
6 QuantumRegister,
7 Aer,
8 transpile,
9 execute,

10 )
11 from qiskit.circuit.library.standard_gates import *
12

13 # Initializing bits and qubits
14 qr = QuantumRegister(3, name="qr")
15 cr = ClassicalRegister(3, name="cr")
16 qc = QuantumCircuit(qr, cr, name="qc")
17

18 # Adding Gates
19 qc.append(
20 U3Gate(4.655749679598676, 2.7381706999194857, 2.740795817289426),
21 qargs=[qr[0]],
22 cargs=[],
23 )
24 qc.append(RYYGate(5.171156764260811), qargs=[qr[2], qr[1]], cargs=[])
25 qc.append(DCXGate(), qargs=[qr[2], qr[0]], cargs=[])
26 qc.append(U1Gate(4.660569462447812), qargs=[qr[1]], cargs=[])
27 qc.append(CPhaseGate(5.442036812415247), qargs=[qr[1], qr[0]], cargs=[])
28 qc.append(RYGate(3.1620892961233205), qargs=[qr[2]], cargs=[])
29 qc.append(RZGate(2.816396898940768), qargs=[qr[2]], cargs=[])
30 qc.append(HGate(), qargs=[qr[0]], cargs=[])
31

32 # Adding Measurement Gates
33 qc.measure(qr, cr)
34

35 # Transforming the circuit
36 qc = transpile(qc, optimization_level=2)
37
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38 # Simulating the Experiment
39 backend = Aer.get_backend("qasm_simulator")
40 counts = (
41 execute(qc, backend=backend, shots=1024)
42 .result()
43 .get_counts(qc)
44 )
45

46 # output
47 # counts =
48 # {'010': 66,
49 # '000': 198,
50 # '110': 63,
51 # '100': 182,
52 # '001': 202,
53 # '111': 75,
54 # '011': 71,
55 # '101': 167}
56

Listing 1: Qiskit Sample circuit

This code listing shows all the necessary components required to understand most
Qiskit programs. We begin by importing the packages required to design and execute
the circuit at the top of the script (lines 3-11).

• QuantumCircuit: is the class that encapsulates a quantum circuit. It’s a container
for all the quantum operations.

• ClassicalRegister: implements a classical register, i.e classical bits.

• QuantumRegister: implements qubits.

• AerSimulator: is a high-performance circuit simulator.

• transpile: transpiles circuits according to some desired transpilation targets. For
example, performing optimization passes, or converting the circuit from one gate
set to another equivalent gate set.

• execute: executes the circuit given a backend (a real quantum hardware or a
simulator). It returns the result of the execution.

Line 11 imports all available gates in Qiskit. Normally, one would only import
required gates. However, to keep the already-long code listing short, import * is used.
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We create a quantum register with 3 qubits (line 14), a classical register with 3 bits
(line 15) to hold the output of the computation and initialize a quantum circuit with
both of these registers (line 16). By default, qubits and bits are in |0⟩ and 0 state
respectively. The name argument is a human-readable label that is visible when the
circuit is visualised.

Next, statements of the kind

qc.append( Gate(...), qargs=[...], cargs=[] )

(where Gate is any quantum gate) add a gate that acts on certain qubit(s) and bits.
Some important observations about gates:

• A gate can accept any number of parameters. These parameters are often rotations
around axes as depicted in a Bloch sphere. For example, in line 20, U3Gate is a
single-qubit rotation gate with 3 Euler angles.

• A gate may act on single or multiple qubits as defined by the qargs array
argument. For example, on line 20, U3Gate acts on the 0th qubit of the 3-qubit
register initialized on line 14.

• Similarly, cargs array defines which classical bits to act on. It is generally an
empty array as most gates only act on qubits.

Since Qiskit is a huge platform, qc.append is not the only way to add gates to a
circuit. Other APIs such as the following exist. For example, this line

qc.append( HGate(), qargs=[qr[0]], cargs=[ ] )

is equivalent to

qc.h(0)

Lines 19 to 30 apply various gates such as RYY (A parametric 2-qubit Y ⊗ Y
interaction, rotation about YY), DCX (Double-CNOT gate), CPhase(Controlled-Phase
gate) and more.

Once all the gates are applied, the measurement gates are added, in this case, on
line 33. The measure(qr, cr) is a shorthand for measuring each qubit identified by an
index into the classical bit identified by the same index. That is, qr[0] measurement
will be kept in cr[0]. Similarly, for qr[1] and cr[1] and subsequently for all values up
to n where n is qubit register size. One can also measure just a single qubit. Generally,
measurement gates are terminal in a quantum circuit as we saw earlier that the act of
measurement leads to a collapse of the quantum properties.

Now, the circuit can be (optionally) transformed into an equivalent circuit. In this
case, we optimize the circuit to level 2 on line 36. Other possible levels are 0, 1, and 3
where 3 is the maximum level of optimization. Since transpile returns another circuit,
we store it in qc again, overriding the older circuit.
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Figure 2.6: Histogram visualisation of Qiskit results

After the transpilation, the circuit is ready to be executed. We create a backend using
the Aer.get_backend function on line 39. Here, we use the qasm_simualtor. However,
other options are statevector_simulator, aer_simulator_density_matrix etc. The
execute function accepts a circuit, a backend, and an optional shots argument. As we
saw that a quantum circuit can be probabilistic (for example, due to superposition),
the circuit needs to be executed many times to get a distribution of the output. The
number of times a circuit is to be executed is referred as shots7. The shots argument in
the execute function is the same thing. By default, its value is 1024.

Once the simulation (or execution on real hardware) succeeds, we use the
result().get_counts(qc) to get a distribution of the output bit strings, shown here
from lines 48 to 55. The keys are bit strings and values are a number of times it
appeared.

The distribution can be visualised as a histogram using the from plot_histogram
function. For example, given counts on line 40 in the above listing, it can be plotted as
a histogram using this code snippet:

from qiskit.visualization import plot_histogram
plot_histogram(counts)

If you execute this command in a Jupyter Notebook, you’d see something like
Figure 2.6. The sum of histogram values will equal 1024 in this case as that was the
shots value.

7The word “shot” comes from experimental physics where an experiment is performed many times,
and each result is called a shot.
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Figure 2.7: Circuit visualisation

Visualising a circuit

As discussed in Section 2.1.11, a circuit can be visualised. Given a Qiskit circuit, we
can use the draw function to render it. The rendering can be done using pure ASCII
letters (when using the command line) or using the rasterized image (for example,
when using Jupyter notebooks). The circuit in Listing 1 can be visualised as Fig. 2.7
using the following code snippet.

qc.draw(output="mpl")

"mpl" value for output argument stands for matplotlib8 library. Other options are
"latex" and "latex_source". Skipping it would render ASCII diagrams.

OpenQASM

IBM uses the OpenQASM [15] as an intermediate representation that can be used by
higher-level compilers to communicate with quantum hardware. There are currently
two versions of OpenQASM that Qiskit supports. OpenQASM 2 and OpenQASM 3
[14]. The third version is still under active development. Hence, it’s part of Qiskit as a
beta version. We already saw an example of QASM 2 circuit in Section 2.1.11. Below is
a QASM 3 export of Listing 1.

1 OPENQASM 3;
2 include "stdgates.inc";

3 gate ryy_4403967552(_gate_p_0) _gate_q_0, _gate_q_1 {
4 rx(pi/2) _gate_q_0;

8https://matplotlib.org/
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5 rx(pi/2) _gate_q_1;
6 cx _gate_q_0, _gate_q_1;
7 rz(5.171156764260811) _gate_q_1;
8 cx _gate_q_0, _gate_q_1;
9 rx(-pi/2) _gate_q_0;

10 rx(-pi/2) _gate_q_1;
11 }

12 gate dcx _gate_q_0, _gate_q_1 {
13 cx _gate_q_0, _gate_q_1;
14 cx _gate_q_1, _gate_q_0;
15 }

16 bit[3] cr;
17 qubit[3] _all_qubits;

18 let qr = _all_qubits[0:2];

19 u3(4.655749679598676, 2.7381706999194857, 2.740795817289426) qr[0];
20 ryy_4403967552(5.171156764260811) qr[2], qr[1];
21 dcx qr[2], qr[0];
22 u1(4.660569462447812) qr[1];
23 cp(5.442036812415247) qr[1], qr[0];
24 ry(3.1620892961233205) qr[2];
25 rz(2.816396898940768) qr[2];
26 h qr[0];

27 cr[0] = measure qr[0];
28 cr[1] = measure qr[1];
29 cr[2] = measure qr[2];

Listing 2: Qiskit QASM3 exported circuit

It’s beyond the scope of this thesis to discuss the differences between QASM
versions 2 and 3. However, a brief summary is given below: QASM3 begins with
a preamble (lines 1-2) that declares version 3 and required module(s) to import.
stdgates.inc contains most of the gate definitions. As opposed to QASM 2, QASM
3 allows variable declarations, improve custom gate definitions, loop constructs etc. In
summary, it can be viewed as a marriage of QASM 2 with additional basic C-inspired
syntax such as variable assignments, looping, and control-flow statements. A complete
list of differences can be found in [14].
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2.2.2 PyQuil

PyQuil is a Python-based framework designed for constructing Quil 9 (QUantum
Instruction Language) programs and executing them on either simulated or actual
quantum processors [37]. Quil serves a similar purpose as Qiskit’s QASM within the
context of the Rigetti Quantum Computing platform. Rigetti Computing, the company
behind PyQuil, has integrated it as a component of their Quantum Development
Kit (QDK), Forest. Utilizing PyQuil necessitates the installation of other components
within the Forest QDK, specifically the Quil compiler (quilc) and the Quantum Virtual
Machine (QVM), both of which are employed for simulating quantum computers.
PyQuil can also be used to execute programs on real quantum computers through
Rigetti’s Quantum Cloud Services (QCS).

The Forest QDK encompasses three primary components:

1. PyQuil: A high-level Python library dedicated to the generation and execution of
Quil programs.

2. QVM: A high-performance simulator for executing Quil programs.

3. quilc: The Quil Compiler (quilc) facilitates the compilation and optimization of
Quil programs to native gate sets.

Both the QVM and the quilc compiler are distributed as separate program binaries,
accessible through the command line. They offer support for direct command-line
interaction in addition to a server mode. The latter is necessary when working with
PyQuil. Let’s see a pyQuil code sample.

1 from pyquil import Program, get_qc
2 from pyquil.gates import *

3 qc = Program()

4 qr = qc.declare("ro", "BIT", 2)

5 qc.inst(H(0))
6 qc.inst(CNOT(0, 1))
7 qc.inst(H(1))
8 qc.inst(RZ(6.163759533339787, 0))

9 qc += MEASURE(0, qr[0])
10 qc += MEASURE(1, qr[1])

11 qc.wrap_in_numshots_loop(20)

9also stylized as QUIL
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12 qvm = get_qc("9q-square-qvm")
13 executable = qvm.compile(qc, protoquil=True)
14 result = qvm.run(executable).readout_data.get('ro')
15 print(result)

Listing 3: pyQuil sample code

The syntax of pyQuil is similar to Qiskit, and is fairly readable and succinct. The
main element for writing quantum circuits is a Program class and can be imported from
pyquil module. Program is equivalent to Qiskit’s QuantumCircuit. Gate operations can
be found in pyquil.gates as can be seen on line 2. Unlike Qiskit and Cirq, one does
not need to pre-define qubits in pyQuil , rather, they are allocated dynamically. Qubits
in this "implicit" qubit register are referred to by bare indexes (0, 1, 2, ...) as we can see
on lines 5-8. For example, H gate acts on 0th qubit.

However, classical bits do need to be declared. It can be done using the declare
method available on the Program instance (line 4).

In the declare method, the "ro" is the identifier of the declared variable, which in
this case stands for readout. The second argument is the type of the declared memory.
Other options are: ’REAL’, ’OCTET’ or ’INTEGER’. The third argument is the allocated
memory size, which is the number of array elements in the declared memory.

Once a Program object is instantiated, gates can be applied on it. Lines 5-8 apply the
H, the CNOT, H, and a final RZ gate with a parameter value of around 6.16. The .inst
(for instruction) API is used to add a gate, but the += operator can also be used for the
same thing as lines 9-10 show when adding the MEASURE gates. The measurement gates
are very similar to Qiskit and Cirq. The first argument is the qubit whose measurement
value will be stored in the location specified by the second argument.

Once a circuit is ready to be executed, the wrap_in_numshots_loop tells how many
trials to do for this circuit. This is equivalent to shots in Qiskit’s run method.

The get_qc function can be used to get a simulator (qvm) or an cloud-based access
to an actual quantum computer. The "9q-square-qvm" is a specific kind of simulator
(line 12). Other options are "Aspen-X" and "pyqvm-X" where X is the max number of
qubits required by the circuit.

Once a QVM is fetched, we can make the circuit ready to be run on it. This is same
thing as Qiskit’s transpile. However, in case of pyQuil, it’s called compile (line 13).
We give the circuit as argument. An extra argument protoquil=True is also given. The
optional protoquil keyword argument instructs the compiler to restrict both its input
and output to protoquil, that is, Quil code that can be executed on a QPU.

After the circuit compilation, it can be executed. However, before calling the run
method of the QVM, it is important to ensure that quilc and qvm components of the
Forest SDK are running in server mode. To run the quilc, you can use this command:
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quilc -S \
--quiet \
--prefer-gate-ladders \
--log-level notice \
--protoquil \
--enable-state-prep-reductions

Similarly, for the QVM component,

qvm -S --log-level warning --compile --optimization-level 3

A description of these command-line options can be found by running quilc -h or
qvm -h. After execution, the result can be read by calling the readout_data.get(’ro’)
method (line 14). A pyQuil result of the above execution may looks something like the
following:

[
[0, 1], [1, 0], [1, 0], [1, 1], [1, 1],
[1, 1], [1, 0], [1, 0], [0, 0], [0, 1],
[1, 0], [0, 0], [0, 1], [0, 1], [1, 1],
[0, 1], [1, 0], [0, 0], [0, 0], [0, 1]

]

The result is a list of list. The outer list contains a num_shot = 20 inner lists. The
inner lists’ size is equal to the total number of measured qubits. In this case, the outer
list has 20 inner lists and each inner list has two measurements corresponding to qr[0]
and qr[1] respectively. This is same same ouput as Cirq, but Cirq returns bitstring
rather than a list of bits, though it is possible to get a similar list in Cirq as well using
the .data property of the Result instance.

Visualising a circuit

pyQuil programs may be converted to LATEX circuit diagrams, or even rendered
immediately in a Jupyter Notebook using the pyquil.latex module. For this to work,
one needs two external programs, pdflatex and convert, to be installed and accessible
via the system shell path along with a number of external latex packages. The visualised
circuit will look very similar to Fig. 2.3 in appearance and design.

Quil (Quantum Instruction Language)

The Quil [37] language, analogous to OpenQASM, is what instructs the quantum
computer which physical gates to implement on which qubits. The general syntax
of Quil is "GATE index" where GATE is the quantum gate to be applied to the qubit
indexed by index (0, 1, 2, ...). pyQuil has a feature for generating Quil code from a
given program. For example, quil equivalent of the code in Listing 3 is:
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DECLARE ro BIT[2]
H 0
CNOT 0 1
H 1
RZ(6.163759533339787) 0
MEASURE 0 ro[0]
MEASURE 1 ro[1]

2.2.3 Cirq

Google Cirq is a Python software library for writing, manipulating, and optimizing
quantum circuits, and then running them on quantum computers and quantum
simulators.

Let’s see a Cirq code sample.

1 import cirq

2 qr = cirq.NamedQubit.range(2, prefix='q')

3 # Create a circuit that applies gates
4 circuit = cirq.Circuit(
5 cirq.H(qr[0]),
6 cirq.CX(qr[0], qr[1]),
7 cirq.H(qr[1]),
8 cirq.rz(6.163759533339787)(qr[0]),
9 cirq.measure(qr[0], key='q0'),

10 cirq.measure(qr[1], key='q1')
11 )

12 # Simulate the circuit several times.
13 simulator = cirq.Simulator()
14 result = simulator.run(circuit, repetitions=20)
15 print("Results:")
16 print(result)

17 # Results:
18 # q0=11011110100010101111
19 # q1=01100101011001110001

Listing 4: Cirq sample circuit

Unlike Qiskit and pyQuil, note the single line of import in Cirq on line 1. It is
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conventional to access everything using this cirq object (though we’ll also import more
things later on). It acts as a single global name-space for everything available in Cirq.

We then create two NamedQubit qubits. We can create the qubits in multiple ways,
such as this:

qr =[cirq.NamedQubit('q' + str(i)) for i in range(2)]

However, the range built-in method already returns a array of qubits containing the
first argument number of elements (Line 2). The prefix argument value prefixes each
qubit name. In this case, the names of the qubit are q0 and q1.

Cirq supports three topologies of qubits: NamedQubit, LineQubit, and GridQubit.
NamedQubit is an abstract qubit that only has a name, nothing else. LineQubit is a qubit
on a 1-d lattice. Some quantum devices have lines of qubits, LineQubit can be useful
to represent that. GridQubit is a qubit that is placed on a grid and is identified by 2D
coordinates.

Lines 4 - 10 create a Circuit object, an equivalent of QuantumCircuit in Qiskit. A
Circuit is a collection of Moments. A Moment is a collection of Operations that all act
during the same abstract time slice. Each Operation must be applied to a disjoint set
of qubits compared to each of the other Operations in the Moment. A Moment can be
thought of as a vertical slice of a quantum circuit diagram. In this case, there can be 4
moments {H, CX, Rx + H, M + M} as we can see in Fig. 2.8.

Just like Qiskit, the gates can accept qubit arguments. In the case of rz, which takes a
rotation parameter and a qubit argument, we first call rz with rotation paramter which
returns a modified gate. This is, then, given the qubit argument (line 8). Finally, the
measurement gates are applied. The key argument of measure method is the identifier
of the readout bit.

Once the circuit is constructed, it can be executed with the help of the Simulator
(lines 13-14). We construct an object Simulator and use the run method to execute the
circuit. The repetitions is the shots equivalent of Qiskit.

After the execution, the result can be printed. Lines 18-19 show the measurement of
qubits q0 and q1 20 times. This output is unlike Qiskit’s output representation. Qiskit
clubs the bits and shows their frequency. In Cirq, the bit frequency needs to calculated
manually.

Figure 2.8: Visualisation of Cirq sample circuit
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Visualising a circuit

Printing a Circuit object will render an ASCII diagram of the circuit. However, a better
output may be achievend using the SVGCircuit class which can render high-quality
circuit diagrams in SVG. Here’s the code snippet to do that:

from cirq.contrib.svg import SVGCircuit, circuit_to_svg
SVGCircuit(circuit)

Executing these line in Jupyter notebook with a valid circuit object will draw a
digram similar to Fig. 2.8.

Intermediary Langauge

Cirq does not have its own intermediary language such as OpenQASM or QUIL.
Nonetheless, Cirq has basic support for interoperability with QASM 2 and QUIL (with
cirq_rigetti module). To convert a QASM 2 (for example, the circuit in Section 2.1.11)
circuit to Cirq, the following functions can be used:

from cirq.contrib.qasm_import import circuit_from_qasm
qasm_str = "..."
circuit = circuit_from_qasm(qasm_str)

2.3 Testing

Software testing is the act of examining artifacts and the behavior of the software under
test by validation and verification. Two widespread methods of testing are white- and
black-box testing. The former method tests internal data structures and program flow.
The latter method tests the functionality, ignoring the inner workings of the software,
answering the following question: will we get an expected output for a given input? In
this case, we are interested in black-box testing as we are not verifying the internal data
structures of the platforms under test.

Quantum Software Testing (and testing at large) is facing two fundamental
problems: the oracle problem and the reliable test set problem. The oracle problem refers
to situations where it is extremely difficult, or impossible, to verify the test result
of a given test case t (that is, an input selected to test the program). Once a test t
executes, it produces a result. Let’s call this value computed. Now, a test oracle checks
the computed result with its own value, let’s call it, expected. There are two possible
options: the expected does not match with the computed value. We say that t fails and
refer to it as a failure-causing test case. Otherwise, in the second option, we say that
t succeeds and refer to it as a successful, or non-failure-causing, test case. In several
real-world scenarios, though, an oracle might be absent, or even if present, it could
be impractical to use due to resource constraints such as time required in the case
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of Travelling Salesman Problem (TSP). In the case of quantum computing, the oracle
problem manifests as such: if we create a random quantum circuit, how can we know if
the output is what it’s supposed to be without knowing it a priori.

The reliable test set problem means that since it is normally not possible to
exhaustively execute all possible test cases, it is challenging to effectively select a subset
of test cases (the reliable test set) with the ability to determine the correctness of the
program [10].

What can be the oracle?

For testing quantum software platforms, a real quantum hardware could’ve worked as
an oracle. However, quantum hardware are yet to be commercially available on a large
scale 10. They also have poor error correction, fault tolerance, and too much noise in the
outputs. Hence, their use case as oracles is limited.

Two testing techniques that are used in this thesis are Metamorphic (as part of
MorphQ) and Differential testing. As we’ll see later, both techniques can be used to
alleviate the oracle problem. Moreover, metamorphic testing also addresses the reliable
test set problem.

2.3.1 Differential testing

This technique involves supplying identical input to comparable applications or
distinct implementations of the same application and observing discrepancies in their
performance and behaviour. It is an effective complement to conventional software
testing, as it is particularly adept at uncovering semantic or logical bugs that do not
manifest as overtly erroneous behaviors such as crashes or assertion failures. Back-to-
back testing or differential fuzzing is an alternate term for differential testing [29].

For example, two different C compilers such as GCC and Clang can be given the
same source code. If the produced executable from both compilers differs in behaviour
(or in some other observable and meaningful metric), it can potentially point to a bug
in either of the system.

This testing method can detect bugs without relying on an oracle, as it looks
for differences in behavior rather than trying to verify the correctness of the output.
Therefore, differential testing can be an effective way to identify bugs in cases where
there is no oracle, or where it is impractical to use one.

2.3.2 Metamorphic testing

Metamorphic testing (MT) is a property-based software testing technique, which can
be an effective approach for addressing the test oracle problem and test case generation
problem (reliable test set problem). [10] A central element of MT is a set of Metamorphic

10at the time of writing
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Relations (MRs), which are necessary properties11 of the target function or algorithm in
relation to multiple inputs and their expected outputs. When implementing MT, some
program inputs (called source inputs) are first generated as source test cases. Then,
on the basis of an MR, new inputs are generated as follow-up test cases. Unlike the
traditional way of verifying the test result of each individual test case, MT verifies the
source and follow-up test cases as well as their outputs against the corresponding MR.

For example, consider the function min(a, b) which takes numbers a and b as input
and returns the minimum number between them. In this case, an MR can be derived
from the following property: If the numbers a and b are swapped, the answer remains
unchanged. That is,

min(a, b) = min(b, a)

Based on this MR, we need two test executions, one with the source test case (a, b) and
the other with the follow-up test case (b, a). Instead of verifying the result of a single
test execution, we verify the results of the multiple executions against the MR — we
check whether the relation min(b, a) = min(a, b) is satisfied or violated. If a violation is
detected, we can then say that min is faulty.

2.3.3 Cross-platform testing

Cross-platform testing, also known as multi-platform testing, ensures that a program
operates as intended across various supported platforms. This approach is prevalent in
testing web applications that need to function across different browsers, such as Google
Chrome, Mozilla Firefox, and Apple Safari. It is also relevant for testing software that
runs on diverse operating systems like Windows, macOS, and Linux or on mobile
devices with Android and iOS.

Cross-platform testing does not dictate the use of any specific technique. For
instance, browser-automated end-to-end methods may be employed to test web
applications, while unit testing, integration testing, and system testing can also be
applied to ensure software compatibility across platforms. In our study, we utilize
differential and metamorphic testing to achieve cross-platform testing objectives,
focusing on the compatibility and consistency of program behavior in diverse
environments.

The importance of cross-platform testing has grown with the increasing variety
of devices, operating systems, and user environments. This has become especially
relevant with multiple quantum software platforms available today. Ensuring
consistent user experience and seamless functionality across platforms is crucial for
both user satisfaction and market success. Cross-platform testing helps developers
identify and address potential compatibility issues, performance bottlenecks, and user
interface inconsistencies, ultimately leading to a more robust and reliable software
product.

11A necessary property of an algorithm means a condition that can be logically deduced from the
algorithm.
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Cross-platform testing may look very similar to differential testing. However, dif-
ferential testing focuses on comparing different implementations of the same function-
ality, while cross-platform testing ensures consistent behavior and performance across
different platforms, operating systems, browsers, or devices. Both methodologies are
distinct in their usages and important in achieving a high-quality, reliable software
product.
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Chapter 3

Literature Review and Related Work

3.1 An Overview of Quantum Computing Platform Bugs

The field of quantum computing platforms is explored in LaRose’s work, which
provides a detailed comparison of gate-level quantum software platforms, including
Qiskit, PyQuil, ProjectQ, and Q# [24]. Multiple studies have been undertaken to
understand the nature and patterns of bugs within these platforms. Paltenghi’s
empirical study identifies ten unique quantum-specific bug patterns [32], while Luo’s
research investigates 96 real-world bugs along with their fixes across four prevalent
quantum programming languages [28]. Sodhi and Kapur further delve into the quality
attributes of these platforms and elucidate the challenges faced by platform developers
[38]. These comprehensive studies indicate a significant need for testing within the
realm of quantum computing platforms, which is the basis for our work.

3.2 Insights into Cross-Platform, Differential, and Meta-
morphic Testing

Cross-platform testing is a prevalent practice within the field of web and mobile
applications [6]. Given the diversity of software and hardware features across various
platforms, modern applications are expected to function consistently.

In the context of large software systems, differential testing serves as an effective
method to identify bugs [29]. This technique has found applications across various
domains, such as SSL/TLS [7], JVM [11], and clone testing [45], amongst others. Re-
searchers have successfully applied differential testing to validate certificate correctness
in SSL/TLS [8].

Metamorphic testing, on the other hand, has found applications in compiler testing,
though it’s not limited to this domain. This is accomplished by employing strategies
like code deletion and insertion in program dead zones [25], and domain-specific
transformations for graphics shading compilers [17], effective testing is achieved.
Beyond compilers, tools such as debuggers can also undergo metamorphic testing [39].
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This technique has also been studied in the quantum setting [2, 33].

3.3 Other Testing Techniques for Quantum Programs

While there are a few techniques focused on the testing of quantum computing plat-
forms, there exists a range of testing methods aimed at quantum programs themselves.
These methods include search-based techniques [40], statistical assertion checks that
aim to minimize the impact on the actual computation [19, 27], combinatorial testing
[42], and coverage-based methods [3]. Mutation testing presents another alternative, as
it has been extensively applied to quantum programs and existing test suites [18, 30].
In contrast to our study, these techniques primarily examine the specific programs, not
the platforms on which these programs run.
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Chapter 4

Approach

In this section, we present a detailed overview of the comprehensive cross-platform
testing methodology. A visual depiction of the approach can be observed in Figure
4.1. The entire overview consists of two primary components: metamorphic testing
and differential testing, which together form the basis of cross-platform testing. We
begin with the labeled elements 1 and 2 in the referenced figure. These elements
represent the initial phase: the generation of a random Qiskit source program and a
corresponding metamorphic-linked follow-up program (Section 4.1.1). A "program" in
this context refers to source code that defines the quantum circuit and its execution
settings, such as the type of backend to use or the transpiler’s configurations.

Following the generation of the Qiskit programs, we utilize QCross to translate
them into equivalent Cirq and PyQuil programs ( 3 ). The QCross translator ensures
the preservation of any applied metamorphic relations during the translation process.
Additionally, QCross employs our custom bloqs library to implement any missing gates
in either PyQuil or Cirq. As part of bloqs, we ported over twenty Qiskit gates in PyQuil
and Cirq each. Further details on program translation can be found in Section 4.1,
while Section 4.5 elaborates on the development of the bloqs library. The six resulting
programs form the "input programs" set.

Given the input programs, each program pair (source and follow-up program of a
single platform) is executed ( 4 ) and the outcomes are documented in a metadata file
( 5 ). The collection of six results, corresponding to the six input programs, forms the
"program output" set. During the execution of a single program, crashes may occur,
potentially indicating bugs. Consequently, any exception data is recorded, and the

program is directed to the "bug bucket" for further examination ( 10 ).
In instances where both programs in a pair do not crash, their output pairs undergo

an equivalency check ( 7 ). The testing procedure is explained in section 4.4. This check
may yield either a match or a mismatch (referred to as a divergence, 8 ). A mismatch
could also signal potential bugs, thus leading to the inclusion of both divergent pairs
in the "bug bucket." The absence of divergence implies that the test has "passed" and
no further analysis of this program pair is required. This process constitutes the
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Figure 4.1: Overall approach
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metamorphic component of testing, with further details available in Section 4.2.
In addition to the program pair outputs, all source outputs ( 5 ) and follow-ups of

all platforms are tested for equivalency. A divergence indicates a bug. Moreover, a
program pair’s unitary matrices are also assessed for equality ( 6 ). Unequal unitary
matrices may suggest bugs, similar to divergent pairs of outputs. Lastly, a Cirq-Qiskit-
Cirq roundtrip test, mediated by QASM, is performed as well ( 9 ). The roundtrip
should preserve the circuit structure; if it is unsuccessful, this may indicate a potential
bug. This process constitutes the differential testing component, described in detail in
Section 4.3.

All the aforementioned steps occur for each randomly generated program. For
example, executing 1000 programs would involve repeating the entire process 1000
times. Once a sufficient number of programs have been tested, crash messages are
clustered into similar groups by removing program-specific information such as line

numbers, memory addresses, variable names, etc ( 10 ). Upon filtering and clustering
the results, they are analyzed to determine whether the crash or divergence is an actual
bug. A fuzzy-search investigates relevant GitHub repositories for mentions of the crash
message. If no GitHub issues exist, we may have discovered a novel bug. In cases
where the crash is unexplained or the bug is novel, a GitHub issue is filed, thereby
contributing to the ongoing development and improvement of the respective quantum
computing platforms. The author is involved in patching few of the bugs as well.

Having seen a brief overview of the entire approach, we first begin by under-
standing how a quantum program generated and translated. In subsequent sections
involving specific testing approaches, the translation descriptions will become more
precise and detailed.

4.1 QCross Program Translation

Achieving successful cross-platform testing requires the availability of the same
program in multiple platforms. To address this issue, we developed the QCross
program translator. Starting with a MorphQ-generated Qiskit program pair comprising
a source and a metamorphically-linked follow-up program, QCross translates this
pair into Cirq and PyQuil program pairs, maintaining any metamorphic relations.
The following subsections elucidate the general translation process, while Section 4.2
explains how metamorphic relations are transferred across platforms.

4.1.1 Program Generation

All random programs are generated by MorphQ’s Qiskit program generation utility. It
uses a template-based generation function which fills in the template gaps with random
gates which has random qubit arguments and parameter values. The set of gates to use
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is specified using a YAML1 configuration file (along with other configuration options).
MorphQ ensures that generated programs are valid, i.e., they are not syntactically
malformed and do not crash due to misuse of functions/features [33]. An example
of such a generated program is given in Code Listing 1.

Each quantum program can be logically divided into six parts:

1. import statements

2. Declaration of qubits / Classical bit

3. Application of gates and addition of terminal measurements

4. Preparation of the circuit to be executed on simulators

5. Execution of the program

6. Collection of the results

The QCross translator translates the circuit using the above points. Let’s see it step-
by-step:

4.1.2 Relevant Imports

All circuits begin with the following import statements. Together, they import the
modules required for the circuit to be created, transpiled, and executed. More modules
are imported as they are needed.

Import statements for Qiskit

from qiskit import (
QuantumCircuit, ClassicalRegister, QuantumRegister,
Aer, transpile, execute

)
from qiskit.circuit.library.standard_gates import *

Import statements for PyQuil

from PyQuil import Program, get_qc
from PyQuil.gates import *

Import statements for Cirq

import cirq

As we can see, all available quantum gates are imported from Qiskit and PyQuil.

1YAML is a data interchange format like JSON
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4.1.3 Declaring qubits and classical bits

As we saw in Listing 1, a Qiskit program requires an instance of QuantumCircuit
which takes QuantumRegister and ClassicalRegister as arguments. For example, the
following code snippet declares all the three things:

qr = QuantumRegister(7, name='qr')
cr = ClassicalRegister(7, name='cr')
qc = QuantumCircuit(qr, cr, name='qc')

Cirq: The Cirq equivalent of QuantumCircuit is cirq.Circuit(). Unlike
QuantumCircuit, cirq.Circuit() does not take quantum and classical registers as ar-
guments. In fact, an equivalent of ClassicalRegister does not exist. When classical
registers are needed, they are used implicitly. However, QuantumRegister has three
counterparts: NamedQubit, LineQubit and GridQubit.

When converting a Qiskit program to Cirq, QCross uses NamedQubit by default. The
reason for this is that NamedQubit is the least constrained qubit of all three. Therefore, a
Cirq equivalent of the above Qiskit code snippet is:

qc = cirq.Circuit()
qr = [cirq.NamedQubit('q' + str(i)) for i in range(7)]

qr is an array of seven NamedQubits. A NamedQubit accepts a name argument as its
identifier. In this case, the arguments are q0, q1, . . . , q6.

PyQuil: The following code snippet is a PyQuil equivalent of the above Qiskit code
snippet:

qc = Program()
cr = qc.declare("ro", "BIT", 7)

In PyQuil, the equivalent of QuantumCircuit is a Program, which also does not take
arguments as Qiskit does. Unlike both Qiskit and Cirq, qubits in PyQuil do not need to
be declared upfront (see Section ***).

Here’s a small table summarizing the differences in these three platforms:

4.1.4 Application of gates

In Qiskit, a quantum gate is applied on a circuit by appending it to the circuit2. For
example, given qc as an instance of QuantumCircuit and qr as declared qubits, the
ZGate, CHGate and RYYGate are applied as following:

qc.append(ZGate(), qargs=[qr[2]], cargs=[])
qc.append(CHGate(), qargs=[qr[2], qr[0]], cargs=[])
qc.append(RYYGate(5.398622178940033), qargs=[qr[0], qr[2]], cargs=[])

2As noted in Section 2.2.1, there are other APIs to add a gate to a circuit
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Type Qiskit Cirq PyQuil

Circuit QuantumCircuit Circuit Program

Qubits QuantumRegister
NamedQubit
LineQubit
GridQubit

⋆

Classical bits ClassicalRegister ⋆ .declare

⋆ Not available or implicitly defined.

Table 4.1: Declaration circuit, qubits, and classical bits in quantum platforms

As we saw in Section 2.2.1, measurement gates can be added with measure method
which accepts a qubit register and a classical register.

Cirq: Cirq and PyQuil follow a similar model for gate application. For example,
in Cirq, the first gate (ZGate) of the above Qiskit code snippet can be translated as
(assuming appropriately declared qc and qr):

qc.append(cirq.Z( qr[2] ))

Since ZGate is already available in Cirq, we can use it.
The next gate (CHGate) can be translated as follows:

qc.append(cirq.H.controlled()( qr[2], qr[0] ))

Cirq already has H gate built in. We, therefore, use the controlled method to get a
controlled version of this gate. Then, the qubits are passed to this returned gate value.

However, what about translating the RYYGate?
We are out of luck as Cirq does not provide the RYYGate gate out of the box. At

this point, we use bloqs library to import a Cirq-compatible RYY gate. First, we add the
following import statement at the top of the Cirq program.

from bloqs.ext.cirq import Gates

Then, we can translate the statement involving RYYGate as the following snippet.

qc.append(Gates.RYYGate(5.398622178940033)( qr[0], qr[2] ))

Therefore, the entire Qiskit code snippet in Cirq becomes:

# qc is an instance of cirq.Circuit()
qc.append(cirq.Z( qr[2] ))
qc.append(cirq.H.controlled()( qr[2], qr[0] ))
qc.append(Gates.RYYGate(5.398622178940033)( qr[0], qr[2] ))
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For sake of consistency, bloqs also exports the ZGate and CHGate for Cirq, even
though CHGate can be generated with an extra method call. Therefore, the above code
can be simplified to

# ZGate is equal to cirq.Z
qc.append(Gates.ZGate( qr[2] ))
# CHGate is equal to cirq.H.controlled()
qc.append(Gates.CHGate( qr[2], qr[0] ))
qc.append(Gates.RYYGate(5.398622178940033)( qr[0], qr[2] ))

Similarly, most of Qiskit gates can be translated to Cirq with the help of bloqs
library. Measurement gates are added using the cirq.measure function. They are
"appended" (generally terminally) just like any other gate. For example, measuring
the qubit qr[0] is:

qc.append(cirq.measure(qr[0], key="cr0"))

PyQuil: A similar case is made for PyQuil. ZGate is translated as the following since
ZGate is already available.

# qc is an instance of Program
qc.inst(Z(2))

CHGate can be translated using PyQuil’s ability to create a controlled version of any
gate using the controlled method of the gate.

# control qubit 2 and target qubit 0
qc.inst(H(0).controlled(2))

When translating the RYYGate, we face a similar problem as we did in Cirq. PyQuil
does not have RYYGate natively available. We again use bloqs to overcome the problem.
We add PyQuil-specific bloqs import statement.

from bloqs.ext.PyQuil import Gates

Then, the entire Qiskit code snippet becomes:

qc.inst(Z(2))
qc.inst(H(0).controlled(2))
qc.inst(Gates.RYYGate(5.398622178940033)( 0, 2 ))

Just as in Cirq, for sake of consistency, bloqs also exports the ZGate and CHGate for
PyQuil. Therefore, the above code can be simplified to
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# equal to Z(2)
qc.inst(Gates.ZGate( 2 ))
# equal to H(0).controlled(2)
qc.inst(Gates.CHGate( 2, 0 ))
qc.inst(Gates.RYYGate(5.398622178940033)( 0, 2 ))

Unfortunately, just importing the RYYGate and adding it in a circuit is not sufficient
for execution. Since RYYGate is a new custom gate, its gate definition also needs to be
"added" to the circuit. Luckily, the bloqs library provides us with gate definitions as
well. To do this, we need to import get_custom_get_definitions from bloqs. Then, as
the following code snippet shows, we add the definition (ryy_defn) to the circuit using
the += operator. The full translation of the above 3-gate Qiskit code is:

# ... imports ...
from bloqs.ext.PyQuil import get_custom_get_definitions

qc = Program()
ryy_defn = get_custom_get_definitions("RYYGate")
qc += ryy_defn

# equal to Z(2)
qc.inst(Gates.ZGate( 2 ))
# equal to H(0).controlled(2)
qc.inst(Gates.CHGate( 2, 0 ))
qc.inst(Gates.RYYGate(5.398622178940033)( 0, 2 ))

Measurement gates are added with the help of MEASURE gate. Its description can be
found in Section 2.2.2.

As we can see in the import statements of PyQuil and Cirq, bloqs library is used
to import quantum gates as opposed to importing from the module itself. This ensures
that a poly-filled version of the gate is imported if the gate in question is missing in
either PyQuil or Cirq. Construction and working of the bloqs library is provided in
Section 4.5.

4.1.5 Preparation of the circuit to be executed on simulators

Platforms that provide connectivity to real quantum devices must necessarily have
a means of translating a given circuit into operations the computer can understand.
This process is known as transpilation or compilation, or verbosely quantum circuit
compilation/quantum compilation. Each hardware has a specific fixed set of available
gates (basis gates) and qubit layout. It is the job of the platform to accept a circuit and
return an equivalent circuit obeying the basis set and qubit connectivity requirements
[24].
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Moreover, at this stage, a circuit may be optimized to remove redundant operations
(for example two gates that cancel each other out), re-arrange operations as to
independently execute two sub-circuits parallelly for faster execution, merge multiple
gates into a single different gate (for example, 3 CNOTs can be replaced with a SWAP)
or change qubit topology or more.

In Qiskit, the function that does this is called transpile which accepts many
arguments to tune its behaviour. In PyQuil, the compile method on the QVM
instance can be used to optimize a circuit and make it ready for execution. Cirq,
on the other hand, does not have a compilation step as Qiskit and PyQuil do. It
has different modules such as cirq-riggeti, cirq-ionq to help with the transformation.
For just optimization, it has independent functions such as drop_empty_moments,
drop_negligible_operations etc. that the developers need to pick and apply
manually.

4.1.6 Execution of the program

Once the circuit is ready, it is fed to a simulator for execution. In Qiskit, the Aer module
provides different simulators. For example, running Aer.backends() lists these back-
ends:

[
AerSimulator('aer_simulator'),
AerSimulator('aer_simulator_statevector'),
AerSimulator('aer_simulator_density_matrix'),
AerSimulator('aer_simulator_stabilizer'),
AerSimulator('aer_simulator_matrix_product_state'),
AerSimulator('aer_simulator_extended_stabilizer'),
AerSimulator('aer_simulator_unitary'),
AerSimulator('aer_simulator_superop'),
QasmSimulator('qasm_simulator'),
StatevectorSimulator('statevector_simulator'),
UnitarySimulator('unitary_simulator'),
PulseSimulator('pulse_simulator')

]

Once a simulator is chosen using the get_backend method on Aer module, it can be
instantiated and passed to the execute function along with shots to execute the circuit:

qasm_sim_backend = Aer.get_backend('qasm_simulator')
result = execute(qc, backend=qasm_sim_backend, shots=2048)

Cirq has two simulators: the Simulator and the DensityMatrixSimulator. Just like
Qiskit, we instantiate it and use it as follows:
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simulator = cirq.Simulator()
result = simulator.run(circuit, repetitions=2048)

PyQuil has many simulators. But we are going to use two local simulators:
9q-square-qvm and Xq-qvm where X is the number of qubits one needs such as 13q-qvm.
9q-square-qvm is not general purpose, but suitable for a small circuit with less than 9
qubits. On the other hand, Xq-qvm can be used for an arbitrary circuit for larger qubit
sizes. We can get either of the simulators using the get_qc function and then, like Cirq,
use the run method to execute the circuit. Note that the QVM and quilc have to be
running in the background in server mode as described in Section 2.2.2.

qc = get_qc("11q-qvm")
result = qc.run(executable)

4.1.7 Collection of results

As we saw in Section 2.2, all three platforms have different representations of results.
By default, qiskit provides with bit string frequency, Cirq gives us all measured bit-
strings, and PyQuil returns an array containing the measured values. Now, there
are many methods available in each of the platforms to convert one representation to
another. However, in this thesis, Cirq and PyQuil results are converted to a Qiskit-
like representation. For this, we use the get_qiskit_like_output function available in
bloqs module. The exact description of how the results are normalised is provided in
4.5. Here’s a code sample for Cirq:

from bloqs.ext.cirq.utils import get_qiskit_like_output

# ... circuit
qc.measure(qr[0], key='cr0')
qc.measure(qr[1], key='cr1')
qc.measure(qr[2], key='cr2')

result = simulator.run(circuit, repetitions=2048)

# keys are the measurement `key` in measurement gates
output = get_qiskit_like_output(result, keys=['cr0', 'cr1', 'cr2'])

and for PyQuil:

from bloqs.ext.PyQuil.utils import get_qiskit_like_output

# ... circuit
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result = qc.run(executable)

data = result.readout_data.get('ro')
output = get_qiskit_like_output(data)

4.2 Metamorphic Testing Methodology

We utilize metamorphic testing to test intra-platform consistency and robustness. Two
different, but meta-moprhically linked, programs are executed on the same platform
and a difference in execution is recorded for further analysis for potential bugs. Due to
metamorphic testing, we overcome the Oracle problem and can assert on the outputs
of the two programs without knowing the expected output prior.

Algorithm 1 gives a high-level overview of the steps taken as part of metamorphic

Algorithm 1: Metamorphic Testing Approach
Input: Set S of Qiskit source and follow-up program pairs

QCross Translator T
Comparison component C

Result: Likely bug-revealing pairs B of programs
1 B← ∅
2 input_programs← []
3 foreach pair P in set S do
4 input_programs.push(P)
5 foreach platform in ["Cirq", "PyQuil"] do
6 Tsrc ← T.translate(platform, Psrc)
7 Tf oll ← T.translate(platform, Pf oll)
8 input_programs.push(T)
9 end

10 end
11 foreach pair P in input_programs do
12 try
13 outsrc, out f oll ← C.execute(Psrc, Pf oll)
14 catch Execution Error
15 B.add(P)
16 end
17 if C.compareDivergence(outsrc, out f oll) == divergent then
18 B.add(P)
19 end
20 end
21 return B
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Metamorphic Relation Qiskit Cirq PyQuil

Circuit Transformation

Change Qubit Order Y Y Y
Inject null-effect operation Y Y Y
Add quantum register Y Na -
Inject parameters Y Na Y
Partitioned execution Y Y Y

Representation transformation

Intermediary language roundtrip Y Yb Yc

Roundtrip conversion via QASM3† Y - -
Serialization roundtrip Y Yb -

Execution transformation

Change of coupling map Y Y Na

Change of gate set Y Na Na

Change of optimize. level Y Y Y
Change of backend Y Y Y
† This is a new transformation.
a No API support for this feature.
b Cirq supports limited QASM2 and has its own JSON-based serialization format.
c PyQuil does not inter-operate with Qiskit’s QASM, but has its own assembly format called
quil.

Table 4.2: Metamorphic Relations

testing. As a first step, MorphQ generates a random Qiskit program, called the source
program. It also generates a follow-up program that is meta-morphically linked to the
source program by one or more metamorphic relations. As noted earlier, a follow-
up program may have multiple metamorphic relations applied to it. These programs
comprise a set and is one of the input of Algorithm 1. The QCross translator converts
the source and the follow-up programs to equivalent Cirq and PyQuil programs (lines
3-9). In the process, it preserves any metamorphic transformations that were originally
applied to the follow-up program.

The bloqs library does the heavy-lifting of polyfilling3 the gates using the custom
gates API of each platform as described in Section 4.5.

Once all 3 programs are ready, execution begins. The 3 pairs are executed one by
one (line 13). If one of the programs crashes, it is recorded as part of the metadata.
Programs that crash form the "crash bucket" (line 15). They may potentially point to
a bug. If the program ran successfully, the results are recorded. Due to metamorphic
relation, each pair’s result should be equivalent. We test this equivalency using the

3a piece of code used to provide modern functionality on systems that do not natively support it
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Kolmogorov–Smirnov test (line 17), as is the norm in testing quatum programs [41].
If the results are not equivalent, it’s a divergence. A divergent pair may also point to
potential bugs. Hence, it also forms part of the crash bucket.

After the execution, the crash messages are clustered into similar groups. Once the
results are filtered and clustered, they are analyzed to see if the crash or the divergence
is actually a bug or not.

Table 4.2 summarizes all the metamorphic relations that are part of this testing
methodology. Subsequent sections will describe each relation and provide details for
its translation in different platforms.

The metamorphic relations can be categorized into three categories [33]:

• Circuit transformations: These transformations exploit the properties of the
gate model of computation, such as the entanglement of qubits, the presence of
registers and the properties of reversible computing.

• Representation transformations, which change the intermediate representation
used to represent the circuit.

• Execution transformations, which affect the execution environment, e.g., by
changing the backend, the optimizer, the coupling map, or the target gates to
use.

4.2.1 Change Qubit Order

This transformation maps the qubit indices of source program to new positions
and then creates a follow up program by adapting the sequence of gates to the newly
mapped qubit indices.

For example, consider the source circuit of Figure 4.2(a) (visualised in 4.2(c)), which
has a two-qubit gate between qubit 1 and qubit 2. Applying the transformation with
the bijective qubit mapping m = {0 → 2, 1 → 0, 2 → 1} results in Figure 4.2(b)
(visualised in 4.2(d)), where the two-qubit gate now is between qubit 0 and qubit 1. The
final measurement gates are not affected by the qubit mapping. Instead, the approach
applies a function to all the output bit-strings of the follow-up program that applies
the inverse of m to the order of measured qubits. In the example, suppose we obtain
an output bit-string 001 by the follow-up program. The approach will turn it into a
bit-string 100, because the bit at index 2 in the follow-up program corresponds to be
at index 0 in the source program. After this re-mapping of the measurements, the two
resulting output distributions are expected to be equivalent.

When translating this in Cirq and PyQuil, nothing extra is required. A follow-up
program is treated in the same way as a source program by the QCross translator, except
the qubits are different.
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4.2.2 Inject null-effect operation

As we saw earlier in Section 2, quantum computing is an instance of reversible comput-
ing, i.e., performing any operation or gate, with the exception of the measurement gate,
on a set of qubits never looses any information, and hence, can be reverted back with a
suitable inverse operation. This metamorphic transformation exploits this property by
inserting into the main circuit a sub-circuit that performs a sequence of gate operations
followed by its inverse, so that the overall effect is null. The sub-circuit may include
an arbitrary number of gates and act on an arbitrary number of available qubits except
gates which cause quantum states to collapse such as measurement gate.

Here’s an example of a sub-circuit in a Qiskit program.

1 qr = QuantumRegister(
2 3, name='qr'
3 )
4 cr = ClassicalRegister(
5 3, name='cr'
6 )
7 qc = QuantumCircuit(
8 qr, cr, name='qc'
9 )

10

11 qc.rx(math.pi, 0)
12 qc.x(1)
13 qc.h(2)
14 qc.cx(1, 2)
15

16 qc.measure(qr, cr)

(a) Code of source program for Change
Qubit Order metamorphic relation

qr = QuantumRegister(
3, name='qr'

)
cr = ClassicalRegister(

3, name='cr'
)
qc = QuantumCircuit(

qr, cr, name='qc'
)

qc.rx(math.pi, 2)
qc.x(0)
qc.h(1)
qc.cx(0,1)

qc.measure(qr, cr)

(b) Code of follow-up program for Change
Qubit Order metamorphic relation

(c) Visualisation of source program (d) Visualisation of follow-up program

Figure 4.2: Example of "Change Qubit Order" transformation
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Figure 4.3: Example of code inserted by the "inject null-effect operation" transformation.

1 qr = QuantumRegister(3, name='qr')
2 cr = ClassicalRegister(3, name='cr')
3 qc = QuantumCircuit(qr, cr, name='qc')
4

5

6 qc.rx(math.pi, 2)
7 qc.x(0)
8

9 subcircuit = QuantumCircuit(qr, cr, name='subcircuit')
10 subcircuit.append(HGate(), qargs=[qr[0]], cargs=[])
11

12 qc.append(subcircuit, qargs=qr, cargs=cr)
13 qc.append(subcircuit.inverse(), qargs=qr, cargs=cr)
14

15 qc.h(1)
16 qc.cx(0,1)
17

18 qc.measure(qr, cr)

Lines 9-10 construct a sub-circuit with the same qr and cr as the original circuit.
Then, the circuit is appended like a normal gate to the circuit in line 12. Immediately
afterwards, it’s inverse is appended to nullify the effect in line 13 using the .inverse
method available on gates and circuits. When visualising this in Qiskit, it looks like
Figure 4.3. In the figure, the block subcircuit denotes an arbitrary sub-circuit and
subcircuit_dg denotes its inverse (dg = dagger).

A similar strategy can be applied when translating this relation to Cirq and PyQuil.
Cirq and PyQuil, both, allow for appending of a sub-circuit.

Cirq: Cirq exports a function named .inverse which accepts a Cirq circuit and
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returns an inverted version of the circuit.
The following example shows a code snippet of how it can achieved:

qc = cirq.Circuit()
# add gates to qc

subcircuit = cirq.Circuit()
# add gates to sub-circuit

qc.append(subcircuit)
qc.append(cirq.inverse(subcircuit))

PyQuil: PyQuil behaves exactly the same, the only difference being that the inverse
function is called dagger and is available on a gate instance or a Program instance. The
following code example illustrates it:

qc = Program()
# add gates to qc

subcircuit = Program()
# add gates to sub-circuit

qc.inst(subcircuit)
qc.inst(subcircuit.dagger())

QCross translate the relevant sub-circuit in this case and uses the appropriate API
to invert it. The sub-circuit translation is identical to a circuit translation for QCross.

4.2.3 Add quantum register

Enlarging the set of available qubits by adding a new and unused quantum register
should not affect the computation on the existing qubits. This transformation exploits
this property by randomly adding new quantum registers to the circuit of the follow-up
program. This transformation cannot be performed when the coupling map has been
specified before via the Change of coupling map transformation, since the addition of
a register would make the coupling map too small.

In Qiskit, the method add_register can be used to dynamically extend the register
size further in the circuit (for example, after the measurement gates). The following
code snippet demonstrates this:

unused_register = QuantumRegister(5, name='extra_registers')
qc.add_register(unused_register)

A comparable API does not exist in Cirq and PyQuil. Cirq’s and PyQuil’s qubit
registers are not bound to a circuit, and in PyQuil specifically, there is no need to declare
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qubits to begin with. Hence, this relation does not extend to all platforms tested in this
thesis. It’s a Qiksit-exlucsive transformation.

4.2.4 Inject parameters

Parameterized quantum circuits are quantum circuits that contain one or more
parameters (for example, the angle provided to RXGate) that can be adjusted without
changing the overall structure of the circuit. These parameters are typically represented
by continuous variables, such as angles, that control the behavior of specific gates in the
circuit. The reason for parameterization is that this flexibility allows us to optimize
the parameters in our circuit for a particular task or application without having to
rebuild the entire circuit each time the parameters change. Given the recent interest
in quantum machine learning, quantum computing platforms offer abstractions to
support the parameterization of quantum circuits [36]. They can be employed in
variational quantum algorithms like the Variational Quantum Eigensolver (VQE) and
the Quantum Approximate Optimization Algorithm (QAOA) [31].

Before we can execute a parameterized circuit, we have to bind the parameter to a
specific value or an array of values. This is very similar to having a function definition
with parameters and then using the function with concrete argument at the time of
function invocation. Moreover, creating a function that accepts arguments to generate
a quantum circuit is indeed an alternative approach to using parameters in a quantum
circuit. However, there are some advantages to using parameters:

• Efficiency: When using parameters, the circuit structure remains fixed, and only
the parameter values change. This allows for more efficient optimization, as
the circuit doesn’t need to be reconstructed from scratch every time a parameter
changes.

• Circuit Compilation: Parametrized circuits can be transpiled and optimized
before the parameters are bound to specific values. This allows for more efficient
circuit execution, as the optimization can be performed once and then reused for
different parameter values.

In Qiskit, a parameter is an instance of Parameter class which accepts a user-
defined name. Once an instance is created, it can be used instead of the parameter
value in a gate. Before execution, the concrete values can be supplied using the
bind_parameters method available on a QuantumCircuit instance. The following code
snippet demonstrates all the steps for Qiksit:

1 from qiskit.circuit import Parameter
2

3 theta = Parameter('theta')
4 gamma = Parameter('gamma')
5 # lambda is a reserved keyword in Python
6 _lambda = Parameter('lambda')
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7

8 # initialize qc, qr, cr
9

10 qc.append(RZGate(theta), qargs=[qr[0]], cargs=[])
11 qc.append(U2Gate(theta, 2.12), qargs=[qr[2]], cargs=[])
12 qc.append(CRZGate(gamma), qargs=[qr[1], qr[0]], cargs=[])
13 qc.append(RZGate(_lambda), qargs=[qr[1]], cargs=[])
14

15 qc.measure(qr, cr)
16

17 # before execution
18 qc = qc.bind_parameters({
19 theta: 4.2641612072511235,
20 gamma: 2.5163050709890156,
21 _lambda: 2.586208953975239,
22 })

Line 1 imports the Parameter class and lines 3, 4, and 6 construct three parameters:
theta, gamma, _lambda. Like float values, parameters are used as values in gates as
shown in lines 10-13. Note line 11. Parameters and concrete values can be used at
the same time. Now, the circuit can be transpiled / optimized. Before the execution,
lines 19-23 provide concrete values for the parameters in the form of a dictionary. The
keys are Parameter instances that were defined on lines 3-6.

In terms of steps, Cirq and PyQuil are same: declare parameters, use them in gates,
and bind values.

Cirq: In contrast to Qiskit and PyQuil, Cirq uses SymPy 4, a external symbolic
mathematics package, to define parameters. The above Qiskit circuit example can be
ported to Cirq as following (note that U2Gate is missing as Cirq has a bug in supporting
Parameters in QasmUGate which is used by bloqs to implement U2Gate in Cirq):

1 import cirq
2 from sympy import Symbol
3

4 theta = Symbol('theta')
5 gamma = Symbol('gamma')
6 # lambda is a reserved keyword in Python
7 _lambda = Symbol('lambda')
8

9 # initialize qc, qr, cr, and import bloqs
10

11 qc.append(cirq.rz(theta)(qr[0]))
12 qc.append(Gates.CRZGate(gamma)( qr[1], qr[2] ))

4https://www.sympy.org/en/index.html
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13 qc.append(cirq.ry(_lambda)(qr[1]))
14

15 # measurement gates
16

17 # before execution
18 qc = cirq.resolve_parameters(qc, {
19 "theta": 4.2641612072511235,
20 "gamma": 2.5163050709890156,
21 "_lambda": 2.586208953975239,
22 })

Line 2 imports the Symbol class and lines 4-7 construct three parameters: theta,
gamma, _lambda. These are used in gates in lines 11-13. Note the use of a bloqs gates on
line 12. All Cirq gates in bloqs support parameters. Now, the circuit can be transpiled /
optimized. Before the execution, lines 19-23 provide concrete values for the parameters
in the form of a dictionary. The function resolve_parameters expects a circuit and
a dictionary of concrete values. The keys are, unlike Qiskit, string values that were
passed to Symbols in line 4-7.

PyQuil: PyQuil is different than the rest in its implementation. In PyQuil,
parameters are defined as declared memory region, which are then replaced with actual
values. The following programs is a port of the above example in PyQuil (note that
U2Gate is missing as PyQuil has a bug in supporting Parameters in custom gates which
is used by bloqs to implement U2Gate in PyQuil):

1 from PyQuil import Program
2

3 qc = Program()
4

5 theta = qc.declare('theta', 'REAL')
6 gamma = qc.declare('gamma', 'REAL')
7 _lambda = qc.declare('_lambda', 'REAL')
8

9 # import native gates, import bloqs
10 qc.inst(RZ(theta, 0))
11 qc.inst(Gates.CRZGate(gamma, 1, 2 ))
12 qc.inst(RY(_lambda, 1))
13

14 # measurement gates
15

16 # before execution
17 params = {
18 "theta": 4.2641612072511235,
19 "gamma": 2.5163050709890156,
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20 "_lambda": 2.586208953975239
21 }
22

23 for param, value in params.items():
24 qc.write_memory(region_name=param, value=value)

Lines 5-7 construct three parameters: theta, gamma, _lambda. The .declare method
is used with ’REAL’ as the type of memory to store floating values. These values are
used in gates from line 10 to 12. Most PyQuil gates in bloqs support parameters (full
support is missing due to a bug in PyQuil, explained in Section 5). Now, the circuit
can be transpiled / optimized. PyQuil has a method write_memory which accepts a
region_name (the name supplied to the declared memory, lines 3-5), and the concrete
value. Given a dict with names as keys from lines 17 to 21, a simple loop "binds" the
parameters in lines 23-24.

4.2.5 Partitioned execution

Some generated source programs might have two subsets of qubits that never interact
with each other, i.e., there is no gate operation that involves the qubits of the two
subsets. In this case, the source program performs two completely independent
computations that can be executed in parallel. Given such a source program, this
transformation separates the circuit into two sub-circuits, executes them individually,
and then post-processes the result of the two sub-circuits to derive the distribution of
the overall program. The post-processing of the result is a Cartesian product of the
output distributions of the two independent sub-circuits, described in detail in [33].

For example, Figure 4.2(c) can be partitioned as the following two-part circuits
shown in Figure 4.4(a) and (b).

(a) Part 1 (b) Part 2

Figure 4.4: Example of "Partitioned execution" transformation

4.2.6 Intermediary language roundtrip

OpenQASM2 [15], commonly abbreviated as QASM or QASM2, has become the
widely accepted de-facto assembly language for quantum programs. A majority of
quantum computing platforms provide API calls for converting to and from this
language. Ensuring accurate conversion to and from QASM is essential for maintaining
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the interoperability of various quantum computing platforms. This transformation
involves converting the quantum circuit into QASM format, followed by parsing the
QASM code to reconstruct the original circuit.

A Qiskit circuit can be transformed into QASM2 format utilizing the qasm method
available on the circuit instance. Subsequently, the generated QASM2 code can be
converted back into a Qiskit circuit using the from_qasm_str method. Consequently,
a roundtrip can be represented as follows:

qc = qc.from_qasm_str(qc.qasm())

An example of QASM 2 code can be seen in Section 2.1.11.
PyQuil has its own quantum assembly language called QUIL (see Section 2.2.2 for

details). A PyQuil program object can be converted to QUIL instructions using the out
method. Converting QUIL back to a circuit requires the use of parse function available
in PyQuil.parser module. Therefore, a roundtrip can be performed as

from PyQuil.parser import parse
# ...
quil_str = qc.out()
qc = parse(quil_str)

Cirq, in contrast to Qiskit and PyQuil, does not possess a dedicated intermediary
quantum assembly language. Nevertheless, it provides limited support for both
QASM and QUIL formats. This support will be leveraged in our differential testing
methodology, as discussed in Section 4.3.

4.2.7 Round-trip conversion via QASM3

In the case of Qiskit, the QASM 3 format is anticipated to supersede QASM 2 in the near
future (refer to Section 2.2.1). Consequently, it is logical to conduct a QASM 3 roundtrip
in addition to the QASM 2 roundtrip. It is important to note that QASM 3 is currently
under active development, and Qiskit provides beta-level support for QASM 3 at the
time of writing. Nevertheless, the expectation is that this transformation in QASM 3
can expedite the bug discovery process and help the development process in releasing
a stable version sooner. This is a Qiskit-only transformation and it’s not possible in Cirq
and PyQuil.

Unlike QASM 2, QASM 3 APIs can be found in the qiskit.qasm3 module. This
module includes a dumps function for converting a circuit to QASM 3 and a loads
function for transforming QASM 3 code back into a Qiskit circuit. The code snippet
below demonstrates this process:

from qiskit.qasm3 import loads, dumps
qc = loads(dumps(qc))

An example of QASM 3 code can be seen in Listing 2.
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4.2.8 Serialization roundtrip

Serialization is defined as the process of converting the state of an object into a form
that can be persisted or transported. Qiskit supports a binary serialization format
called QPY. It’s a serialization of QuantumCircuit and ScheduleBlock objects and is
designed to be cross-platform, Python version agnostic, and backwards compatible
moving forward. QPY should be used if we need a mechanism to save or copy
between systems a QuantumCircuit or ScheduleBlock that preserves the full Qiskit
object structure (except for custom attributes defined outside of Qiskit code). Therefore,
QPY roundtrip should result in the same circuit, just like QASM roundtrip. In case of
Qiskit, QPY differs from QASM in that QASM is not meant to be a serilization format
and at time QASM can result in a loss of information contained in the original circuit 5.

The QPY functionality is exported as part of the qiskit.qpy module, which behave
a lot like Python’s pickle module. The following code shows the roundtrip:

from qiskit.circuit import QuantumCircuit
from qiskit import qpy

qc = QuantumCircuit(2, name='Bell', metadata={'test': True})
qc.h(0)
qc.cx(0, 1)
qc.measure_all()

with open('bell.qpy', 'wb') as fd:
qpy.dump(qc, fd)

with open('bell.qpy', 'rb') as fd:
new_qc = qpy.load(fd)[0]

The qpy.dump() function allows us to include multiple circuits in a single QPY file,
and therefore, load returns a list of circuits. If there’s a single circuit, we retrieve it
using the 0th index as shown in the last line of the code qpy.load(fd)[0].

Cirq has JSON-based serialization format. It serializes a Cirq circuit to a Cirq-
compatible JSON representation. Many objects in Cirq can be serialized as JSON and
then shared between collaborators, stored as a text file for transfer, storage, or for
posterity.

The serialization can be done with cirq.to_json function. This will return a string
that contains the serialized JSON given an object that may be Cirq circuits, moments,
gates, operations, or other Cirq constructs. To take JSON and turn it back into a Cirq
object, the protocol cirq.read_json can be used.

PyQuil does have any defined serialization format. It is expected that QUIL
intermediary language be used for any serialization.

5https://qiskit.org/documentation/apidoc/qpy.html
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4.2.9 Change of coupling map

A coupling map is defined as a representation of the connectivity between the qubits in
a quantum computing device. It describes which qubits are physically connected and
can directly interact with each other through two-qubit gates, such as the controlled-
NOT (CNOT) gate. When designing quantum circuits for execution on real quantum
hardware, it is crucial to consider the coupling map of the target device. If a circuit
requires interactions between qubits that are not directly connected according to the
coupling map, additional gates or operations, such as SWAP gates, may be necessary
to adjust the circuit to the device’s connectivity constraints.

In Qiskit, a coupling map is a simple list of pairs of integers. Note that MorphQ
generates a random coupling map and enforces the it to be fully connected, i.e., no
qubit is isolated, to ensure that every qubits can eventually interact with all the others
at least indirectly via intermediate connections. An example of linear coupling map for
our program in Figure 4.2(c) is: [[0,1],[1,2]], where the qubits 0 and 1 are connected
with each other, whereas there is no connection between qubits 0 and 2. Here’s an
example in Qiskit, specifying a custom coupling map:

1 from qiskit import QuantumCircuit, transpile
2

3 qc = QuantumCircuit(4)
4 qc.h(0)
5 qc.cx(0, 1)
6 qc.cx(1, 2)
7 qc.cx(2, 3)
8

9 # Define a custom coupling map
10 custom_coupling_map = [[0, 1], [1, 2], [2, 3]]
11

12 # Transpile the circuit using the custom coupling map
13 transpiled_qc = transpile(qc, coupling_map=custom_coupling_map)

The coupling_map map keyword-argument to the transpile function specifies the
custom coupling map defined on line 10.

Cirq: Cirq allows for custom qubit connectivity, however, it’s not as easy as Qiskit’s
API of passing an edge list to coupling_map argument. In Cirq, a connectivity graph
(instance of nx.Graph6) needs be built by the user. The graph nodes are instances
of either NamedQubit, LineQubit, or GridQubit. The connection between these nodes
establishes the qubit connectivity. Once the graph is built, it can be passed to
cirq.RouteCQC which instantiate a router instance. Calling this router on a circuit
returns a routed circuit that is made of the device’s physical qubits and contains only
2-qubit operations that are between physically adjacent qubits.

6Networkx (short-form nx) is an external Python library https://networkx.org/
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We provide a function edge_list_to_cirq_graph as part of QCross that can
generate a Cirq graph given an edge list. The implementation is:

import networkx as nx
import cirq

def edge_list_to_cirq_graph(edge_list, nodes=None):
if nodes is None:

num_qubits = len(
set(item for sublist in edge_list for item in sublist)

)
nodes = [

cirq.NamedQubit("q" + str(i)) for i in range(num_qubits)
]

graph = nx.Graph()
for n in nodes:

graph.add_node(n)

for e in edge_list:
graph.add_edge(nodes[e[0]], nodes[e[1]])

return graph

We can see this in an example. How can the following circuit be executed? Note that
CNOT is applied to qubit 2 and 0. Hence, ideally they need to be connected. However,
we can provide a qubit connectivity graph where qubit 0 is connected with 1, and 1
is connected to 2. Note that there is no direct connection between 0 and 1, hence, the
circuit can’t be executed as is.

1 q = cirq.LineQubit.range(3)
2 qc = cirq.Circuit()
3 qc.append(cirq.H(q[0]))
4 qc.append(cirq.CNOT(q[2], q[0]))
5

6 qc.append(cirq.measure(q[0], key="cr0"))
7 qc.append(cirq.measure(q[1], key="cr1"))
8 qc.append(cirq.measure(q[2], key="cr2"))

We can use the edge_list_to_cirq_graph to construct a re-routed circuit as
following:

1 connected_edges = [
2 [0, 1],
3 [1, 0],
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4 [1, 2],
5 [2, 1],
6 ]
7

8 routed_qc = edge_list_to_cirq_graph(qc)

When visualised, the circuits looks as Figure 4.5. Note the change in measurement
nodes to reflect the re-routing.

(a) Before re-routing (b) After re-routing

Figure 4.5: Example of "Change of coupling map" transformation

PyQuil does not offer straightforward APIs for defining custom coupling maps.
While it is feasible to create custom devices (with _get_qvm_with_topology function)
with restricted qubit connectivity, implementing custom devices may introduce
challenges beyond testing. Therefore, in the context of this thesis, we don’t consider
this a valid PyQuil transformation.

4.2.10 Change of gate set

During transpilation, a given quantum program is converted to be compatible with
a specific target device, and this often involves translating the program gates to the
natively supported gates. This transformation exercise this translation step by replacing
the circuit gates in the program with a universal gate set, such as ["rx", "ry", "rz",
"p", "cx"] gates which has been shown to be universal [43].

In Qiskit, a custom gate-set can be provided using the basis_gates keyword
argument to the transpile function. Here’s an example:

from qiskit import QuantumCircuit, transpile

qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)

custom_basis_gates = ['rx', 'ry', 'rz', 'p', 'cx']
transpiled_qc = transpile(qc, basis_gates=custom_basis_gates)
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Similar to the previous section 4.2.9 , there isn’t a straightforward API in Cirq and
PyQuil for converting between arbitrary universal gate sets. While options exist, such
as implementing custom devices, implementing your own gate decomposition logic
in Cirq via the cirq.CompilationTargetGateset class, or loading configurations of
existing quantum computers in the case of PyQuil, these methods do not adequately
encapsulate the essence of this transformation. As a result, like the transformation
discussed in section 4.2.9, this also remains a Qiskit-exclusive feature.

4.2.11 Change of optimization level

The current and the next transformations are inspired by work on compiler testing [9].
Similar to modifying the optimization level of a traditional compiler, we can change the
optimization level of the quantum transpilation process. This change is not expected to
affect the final output of a program, just like traditional compilers.

Qiskit has four possible levels of optimizations: 0 (default), 1 (light optimization),
2 (medium optimization), and 3 (heavy optimization). Like coupling map and basis
gates, we can pass optimization_level to the transpile function with an appropriate
integer value denoting the level.

Both Cirq and PyQuil allow users to perform optimizations on their quantum
circuits. However, the approach to optimization and the specific optimization levels
might not be as directly comparable to Qiskit’s optimization levels (0 to 3). Below, we
outline how optimization can be achieved in both Cirq and PyQuil.

Cirq: Cirq provides various optimization passes that can be applied to circuits.
These are called circuit transformers. These passes can be combined and applied in
sequence to achieve different optimization levels. Some of the available optimization
passes in Cirq are:

• cirq.align_left / cirq.align_right: Align gates to the left/right of the circuit
by sliding them as far as possible along each qubit in the chosen direction.

• cirq.defer_measurements: Moves all (non-terminal) measurements in a circuit to
the end of circuit by implementing the deferred measurement principle.

• cirq.drop_empty_moments / cirq.drop_negligible_operations: Removes mo-
ments that are empty or operations that have very small effects, respectively.

• cirq.eject_phased_paulis: Pushes X, Y, and PhasedX gates towards the end of
the circuit, potentially absorbing Z gates and modifying gates along the way.

• cirq.eject_z: Pushes Z gates towards the end of the circuit, potentially adjusting
phases of gates that they pass through.

• cirq.expand_composite: Uses cirq.decompose to expand gates built from other
gates (composite gates).

• cirq.merge_k_qubit_unitaries: Replaces connected components of unitary
operations, acting on <= k qubits, with op-tree given by rewriter(circuit_op).
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• cirq.stratified_circuit: Repacks the circuit to ensure that moments only
contain operations from the same category.

• cirq.synchronize_terminal_measurements: Moves all terminal measurements
in a circuit to the final moment, if possible.

When translating, QCross uses all the transformations listed above for a Qiskit
circuit with an optimization level of 1, 2 and 3. No transformations are applied for
the level 0. The following function shows the code for the same:

1 from cirq.testing import \
2 assert_circuits_with_terminal_measurements_are_equivalent
3

4 default_context = cirq.TransformerContext(deep=True)
5

6 def apply_transformations(circuit, context=default_context):
7 optimized_circuit = cirq.expand_composite(circuit, context=context)
8

9 optimized_circuit = cirq.defer_measurements(
10 optimized_circuit, context=context
11 )
12

13 optimized_circuit = cirq.merge_k_qubit_unitaries(
14 optimized_circuit,
15 k=2,
16 rewriter=lambda op: op.with_tags("merged"),
17 context=context,
18 )
19

20 optimized_circuit = cirq.drop_empty_moments(
21 optimized_circuit, context=context
22 )
23

24 optimized_circuit = cirq.eject_z(
25 optimized_circuit, eject_parameterized=True, context=context
26 )
27

28 optimized_circuit = cirq.eject_phased_paulis(
29 optimized_circuit, context=context, eject_parameterized=True
30 )
31

32 optimized_circuit = cirq.drop_negligible_operations(
33 optimized_circuit, context=context
34 )
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35

36 optimized_circuit = cirq.stratified_circuit(
37 optimized_circuit, context=context
38 )
39

40 optimized_circuit = cirq.synchronize_terminal_measurements(
41 optimized_circuit, context=context
42 )
43

44 # Finally, as sanity check, assert the original
45 # and optimized circuit are equivalent.
46 assert_circuits_with_terminal_measurements_are_equivalent(
47 circuit, optimized_circuit
48 )
49

50 return optimized_circuit

Every transformer in Cirq accepts a cirq.TransformerContext instance, which
stores common configurable options useful for all transformers. The deep argu-
ment recursively runs a transformer on every nested sub-circuit wrapped inside a
cirq.CircuitOperation.

PyQuil: PyQuil does not have optimization levels as Qiskit and does not have
passes as Cirq. However, it’s compile function accepts an optimize argument that can
be set to true or false. By default, it is set to true. As part of translation, QCross sets
optimize=False for Qiskit optimization level 0.

4.2.12 Change of backend

Different simulators typically have completely different implementations, such as
one based on state vectors or density matrices. A single simulator often offers two
variants, running on a CPU and GPU respectively, which can be treated as two
separate backends as well. In analogy to testing traditional compilers, changing
the backend roughly corresponds to comparing the behavior across different target
platforms. As noted in Section 4.1.6, Qiskit has various backends. Cirq has two
simulator backends: cirq.Simulator and cirq.DensityMatrixSimulator. PyQuil
supports multiple simulator backends as well (apart from real quantum hardware):
They have Aspen-X which can be simulated and is based on the Aspen quantum
computer. Xq-qvm and 9q-square-qvm are simulators that are not based on real
hardware but are available with different constraints.
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4.3 Differential Testing Methodology

We use differential testing as it serves as a robust method for evaluating inter-platform
compatibility. This technique is primarily executed through two distinct approaches.
The first approach involves the verification of consistent output generation by a
singular program across all examined platforms. The second approach, conversely,
entails the consumption of artifacts generated by one platform as input to another,
thereby examining compliance in a cross-platform context.

Algorithm 2 describes the differential testing approach of QCross. The inputs to the

Algorithm 2: Differential Testing Approach
Input: Set S of all source and follow-up program pairs P

Unitary Calculator G
Comparison component C

Result: Likely bug-revealing pairs B of programs
1 B← ∅
2 foreach pair P in S do
3 Qsrc, Csrc, Psrc ← Psources
4 Q f oll , C f oll , Pf oll ← Pf ollow−ups

5

6 UQiskit, UCirq, UPyQuil ← G.computeUnitary(Q f oll , C f oll , Pf oll)
7 if not (UQiskit == UCirq == UPyQuil) then
8 add P to B /* Unitary check failed */
9 end

10

11 cirq_generated_qasm Q1 ← cirq.qasm(C f oll)
12 qiskit_circuit C1 ← qiskit.QuantumCircuit.from_qasm_str(Q1)
13 qiskit_generated_qasm Q2 ← C1.qasm()
14 cirq_circuit C2 ← cirq.circuit_from_qasm(Q2)
15 if C f oll ̸= C2 then
16 add P to B
17 end
18

19 if C.compareDivergence(Qsrc, Csrc, Psrc) is divergent then
20 add P to B
21 end
22 if C.compareDivergence(Q f oll , C f oll , Pf oll) is divergent then
23 add P to B
24 end
25 end
26 return B

69



4.3. Differential Testing Methodology

algorithm are a set S of all source and follow-up program pairs P, a unitary calculator
G, and a comparison component C (input). We initializes an empty set B to store the
likely bug-revealing pairs (line 1). We then iterates through each pair P in the set S
(line 2), extracting the source and follow-up programs (lines 3-4). These programs were
generated as part of the metamorphic testing, described in section 4.2.

In the next step, we compute the unitary matrix of all follow-up programs (line 6). If
the unitary matrix for all three circuits are not equal, the program pair is added to the set
B as a likely bug-revealing pair (lines 7-9). Next, we perform a Cirq-Qiskit roundtrip.
We generate QASM2 output from Cirq’s follow-up, feed it to Qiskit, and get Qiskit’s
version of the QASM 2 code. This is then finally converted to a Cirq circuit (lines 11-14).
If the original Cirq follow-up circuit and the converted Cirq circuit are not equal, the
program pair is added to the set B (lines 15-17). Finally, we check output divergence for
source and follow-up results of all platforms (lines 19-25). These results were generated
as part of metamorphic testing. If either comparison results in divergence, the program
pair is added to the set B. After iterating through all the program pairs, the algorithm
returns the set B containing likely bug-revealing pairs (line 26).

4.3.1 Unitary check

As previously mentioned, a quantum gate can be represented by a unitary matrix.
Furthermore, the application of multiple quantum gates preserves unitarity. When
two quantum circuits possess the same gates and an equal number of qubits, their
respective unitary matrices will be equivalent, modulo a global phase. It is important
to note that quantum states differing only by a global phase are essentially identical, as
they correspond to the same point on the Bloch sphere [44]. This fundamental property
is leveraged to verify the correctness of gate implementation and application across
different quantum computing platforms. During the computation of unitary matrices,
it is important to consider that these matrices can grow significantly in size, leading
to substantial memory consumption. Consequently, to mitigate potential resource
constraints, only 10% of the evaluated programs undergo unitary verification in the
testing process.

Qiskit: In Qiskit, we can generate unitary matrix of a given circuit using the
unitary_simulator backend7. It is essential to note that a Qiskit circuit must not
contain measurement gates to be compatible with the unitary simulator. Another
crucial consideration is the differing endian conventions used by Qiskit (little-endian)
and Cirq (big-endian). To address this discrepancy, one platform must convert its
matrix representation to match the other. In this case, the Qiskit circuit is converted
to big-endian using the reverse_bits method. This conversion results in the circuit
being "vertically" flipped. If a circuit is defined over multiple registers, the subsequent
circuit will maintain the same registers, albeit with their order reversed. The following
code snippet demonstrates this check:

7Other approaches such as Operator may also be used.
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from qiskit import Aer, transpile, execute

backend = Aer.get_backend('unitary_simulator')
result = execute(qc.reverse_bits(), backend=backend).result()
UNITARY = result.get_unitary(qc).data

Cirq and PyQuil: The unitary matrix of a Cirq circuit can be obtained us-
ing the cirq.unitary function. PyQuil has a function program_unitary in the
PyQuil.simulation.tools that computes unitary matrices of PyQuil programs.

Once the matrices are computed, the numpy function allclose8 is used for
strict equality check, or alternatively, the function cirq.equal_up_to_global_phase is
employed when matrices differ solely by a global phase. If either of these checks passes
for any pair of matrices, they are deemed equivalent.

4.3.2 Cirq Qiskit Rountrip

QASM is the de-facto standard today for transferring circuit from one supported
platform to another. Qiskit has full support for QASM 2. Cirq has limited but growing
support for QASM 2 interoperability. Therefore, this rountrip tests Cirq QASM’s
generation capabilities, and Qiksit’s foreign QASM ingestion capabilities. The full
roundtrip consists of 4 steps:

1. Cirq’s follow-up program is converted to QASM using the cirq.qasm function.

2. It is ingested by QuantumCircuit.from_qasm_str to create a Qiskit circuit.

3. The Qiskit circuit is then exported to QASM using the qasm method.

4. Finally, Qiskit’s QASM is fed into Cirq to generate a Cirq circuit using the
circuit_from_qasm.

The circuits from steps 1 and 4 should exhibit equivalence. As both circuits are rep-
resented in Cirq, the assert_circuits_with_terminal_measurements_are_equivalent
function is employed to verify their equivalence. In QCross, the Cirq circuit is expan-
ded before performing step 1 using the expand_composite function. This causes com-
plex gates (such as ones exported by bloqs) to decompose into their constituents gates.
Apart from having more number of simpler gates, this doesn’t affect the round-trip in
any other meaningful way.

4.3.3 Outputs Equivalence Check

Traditionally, differential testing involves comparing the outputs of the same program
on different platforms. We employ a similar approach for this check. Since we can’t
do a strict equality check of quantum program outputs, we do a pairwise comparison

8array_equal is not used as strict floating point equality is not possible
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for all source programs and all follow-up programs. Given that each set contains three
programs, we carry out (3

2) = 3 pairwise assessments per set, resulting in a total of
six comparisons. If any of these comparisons exhibit divergence, the specific pair in
question is scrutinized more closely to identify potential issues.

4.4 Comparing Execution Behavior

When a pair (source and follow-up programs, for example) exposes different behaviors,
we add them to the set of likely bug-revealing pairs of programs. The initial level of
comparison is when one program in a pair crashes, but the other does not, it points to
a potential bug. Using MorphQ terminology, this crash is termed as a crash difference.

The second level applies when both programs run without any crash, where
we compare the measured output bits. Due to the probabilistic nature of quantum
programming, precisely comparing the output bit-strings would be misleading.
Instead, the platform repeatedly executes each circuit for the specified number of
shots and then returns the output distributions. We then compares the distribution
of two programs. We use the Kolmogorov-Smirnov test [23] to assess the statistical
significance of the difference between the two distributions, as done in previous work
[41], using a significance level of α = 5%. We call any pair of programs with a p-value
below α a statistically significant distribution difference.

4.5 bloqs

There is a lack of one-to-one correspondence among quantum gates implemented in
well-established frameworks such as Qiskit, Cirq, and PyQuil. Despite this discrepancy,
the universality of quantum computation gates9 ensures that, provided all platforms
incorporate a universal gate set, any quantum gate can theoretically be adapted and
ported to another platform [31]. In response to this observation, we have developed
the bloqs library, which leverages this fundamental property to enable the porting of
Qiskit standard quantum gates to the PyQuil and Cirq ecosystems, thereby fostering
cross-platform compatibility and enhancing overall functionality. The library is open-
sourced and is available via the pip package installer.

Qiskit implements around ∼50 named quantum gates10 as part of its standard
library. Cirq and PyQuil have around 25 gates. Qiskit also happens to be a super-
set in terms of gates for Cirq and PyQuil. Therefore, when converting a Qiskit program
to Cirq or PyQuil, one of the following approaches needs to be taken:

1. Replace the non-existent gate with an equivalent gate or set of equivalent gates
which are available in the given platform.

9A set of universal quantum gates is any set of gates to which any operation possible on a quantum
computer can be reduced, that is, any other unitary operation can be expressed as a finite sequence of
gates from the set.

10as of writing
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2. Construct the non-existent gate using the custom gate API of the platform (since
every quantum gate is effectively a unitary matrix).

We implemented the bloqs library to solve this problem. bloqs takes the latter of
the two approaches. The reasons for this are:

• Approach 1 does not lead to better abstraction. For example, Z gate is equivalent
to two S gate (single qubit S gate is square root of Z). Always using two S gates
will never introduce a more complex gate such as Z. Arguably, this will limit the
creation of better abstraction models.

• bloqs can outlive this thesis as it’s effectively a quantum gate and utility library.

• It’s possible to add new gates instead of just providing Qiskit gates and provide
new utility functions that lets a user inter-operate between platforms (as in the
case of changing result representation).

We chose the name bloqs as it’s a mixture of the terms quantum and blocks. The
goal of the library is to provide the building blocks of quantum programs. We’ve made
the source code available at https://github.com/ArfatSalman/bloqs and the library
can be installed using the following command:

pip install bloqs

4.5.1 Usage and Structure

bloqs package has two modules: ext and common. The ext module further contains two
sub-modules: cirq and PyQuil. Each module contains gates and utilities respective to
their platform. All gates can be accessed via the Gates name-space of the sub-module.
The common module contains interfaces common to all modules in ext.

All gates in bloqs use Qiskit names, even when imported in Cirq and PyQuil. This
is done to ensure consistency and to not remember 3 different names for each platform.

A Cirq gate (or other utility functions) in bloqs can be accessed in such a manner:

from bloqs.ext.cirq import Gates

# Cirq gate
Gates.CXGate

Similarly, in PyQuil:

from bloqs.ext.PyQuil import Gates

# PyQuil gate
Gates.CXGate
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4.5.2 Gates

Table 4.3 shows the list of Qiskit gates that bloqs has made available in Cirq and PyQuil.
As mentioned above, some gates already have their counterparts in these platforms,
such as HGate and RXGate. However, all empty cells denote a missing gate. "Missing
gate" here strictly means that there is not a single importable name that is equivalent to
the Qiskit gate itself. This strict definition is important as we’ll see later that platforms
provide simple APIs to create new gates out of existing ones.

Here are a few gate name conventions to be aware of when reading Qiskit gates:

• A gate name starting with C is a controlled version of the same gate without the
C. For example, CHGate and HGate.

• A plural number of Cs in the name means that many qubits are controls. For
example, CCXGate has two control qubits (two Cs), C3XGate has 3 control qubits
(C3 = 3 Cs).

• A gate name having a lowercase dg means inverse (dagger) of the gate without
the dg. For example, SdgGate and SGate.

• R-prefixed gates are rotation gates.

• S-prefixed gates are square roots of the non-S prefixed gates. SXGate and SGate.

• These characters can be combined and stacked. For example, SXdgGate is the
inverse of the square root of X gate.

# Qiskit Cirq PyQuil
1 CUGate
2 iSwapGate cirq.ISWAP ISWAP
3 RXGate cirq.rx RX
4 RYYGate
5 CSXGate
6 SXGate
7 PhaseGate PHASE
8 SdgGate
9 C3SXGate
10 RZZGate
11 YGate cirq.Y Y
12 DCXGate
13 RYGate cirq.ry RY
14 SXdgGate
15 ECRGate
16 CRYGate
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# Qiskit Cirq PyQuil
17 RC3XGate
18 U3Gate
19 CHGate
20 RVGate
21 CRZGate
22 RZXGate
23 U1Gate
24 SGate cirq.S S
25 RCCXGate
26 RZGate cirq.rz RZ
27 C3XGate
28 TdgGate
29 CYGate
30 XGate cirq.X X
31 HGate cirq.H H

32 CSwapGate
cirq.CSwapGate

cirq.CSWAP
cirq.FREDKIN

CSWAP

33 ZGate cirq.Z Z
34 C4XGate
35 CSdgGate
36 U2Gate
37 CRXGate
38 RGate
39 TGate cirq.T T
40 UGate QasmUGate11

41 IGate cirq.I I

42 CCXGate
cirq.CCX

cirq.CCNOT
cirq.TOFFOLI

CCNOT

43 RXXGate
44 CU3Gate
45 SwapGate cirq.SWAP SWAP
46 CXGate cirq.CX CNOT
47 CPhaseGate CPHASE
48 CZGate cirq.CZ CZ
49 CU1Gate

Table 4.3: Qiskit gates that are made available in Cirq and PyQuil by bloqs

11It’s a compatibility gate for importing QASM circuits into Cirq
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4.5.3 How are new gates created?

bloqs tries to leverage existing APIs already available in Cirq and PyQuil to create
equivalent Qiskit gates. In general, both platforms provide methods to create:

• Controlled version of an existing gate

• Inverse of an existing gate

• Custom gates using decomposition

• Custom gates using a unitary matrix

Apart from similarities, Cirq and PyQuil have a few differentiating features as well.
Cirq, for example, has APIs to raise a gate to a certain exponent t in the form of PowGates
such as XPowGate. PyQuil has the concept of a FORKED gate. The FORKED modifier
allows for a parametric gate (gate accepting parameters such as RXGate) to be applied,
with the specific choice of parameters conditional on a qubit value.

When trying to create a new gate, bloqs first tries to use built-in APIs or a
combination of APIs of the platform itself. Only as a last resort is a unitary matrix
used as a custom gate. It is because using platforms’ own APIs is more future-proof.

Let’s see how some of the non-available gates of Table 4.3 can be coded in Cirq and
PyQuil.

4.5.4 Controlled version of gates

Cirq: Cirq has a cirq.ControlledGate class which augments existing gates to have
one or more control qubits. It accepts a Cirq gate and a number of control qubits as
arguments (along with other things). It returns an instance of a gate which accepts
qubits and/or parameters. However, the class is generally not used. Objects of this
class are typically created via .controlled() method of the gate. An alternate (but not
discussed) API controlled_by is available as well. Using the above APIs, the following
gates are created:

# pass the rotation angle
def CRXGate(angle):

return cirq.ControlledGate(cirq.rx(angle), num_controls=1)

def CRYGate(angle):
return cirq.ControlledGate(cirq.ry(angle), num_controls=1)

def CRZGate(angle):
return cirq.ControlledGate(cirq.rz(angle), num_controls=1)
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CHGate = cirq.ControlledGate(cirq.H, num_controls=1)

# equivalently using the `.controlled` method
# instead of `ControlledGate` class
C3XGate = cirq.X.controlled(num_controls=3)

C4XGate = cirq.X.controlled(num_controls=4)

In Cirq, the starting qubits are controls for the controlled gates. For example, in
C3XGate(qr[0], qr[2], qr[3], qr[1]), the qr[0], qr[2], qr[3] are controls.

PyQuil: PyQuil also has a .controlled method on its gates. However, its applica-
tion is slightly different than Cirq’s .controlled method. In H(1).controlled(0), the
gate first accepts the target qubit as a parameter and then the .controlled accepts the
control qubit. The .controlled calls can be chained to emulate the num_controls argu-
ment of Cirq. Using this API, the following gates are created:

def C3XGate(a, b, c, d):
return CCNOT(b, c, d).controlled(a)

def C4XGate(a, b, c, d, e):
return CCNOT(c, d, e).controlled(b).controlled(a)

def CHGate(a, b):
return H(b).controlled(a)

def CRXGate(angle, a, b):
return RX(angle, b).controlled(a)

def CRYGate(angle, a, b):
return RY(angle, b).controlled(a)

def CRZGate(angle, a, b):
return RZ(angle, b).controlled(a)

a, b, c, ... represents qubit arguments. In the above gates, the functions ensure
that starting qubits are controls, just like Cirq and Qiskit.

4.5.5 Inverse of gates

Cirq: Cirq gates can be raised to an exponent t, just like a number. The system internally
uses Python’s operator overloading to construct a new gate. For example, cirq.T **
(-1) constructs the inverse of T gate by raising the gate to −1 power. Using this API,
these gates can be constructed:
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SdgGate = cirq.S ** (-1)

CSdgGate = cirq.ControlledGate(cirq.S ** (-1), num_controls=1)

TdgGate = cirq.T ** (-1)

PyQuil: In PyQuil, the .dagger method on gates constructs a dagger-ed version.
Using this API, these gates can be constructed:

def SdgGate(a):
return S(a).dagger()

def CSdgGate(a, b):
return Sdg(b).controlled(a)

def TdgGate(a):
return T(a).dagger()

4.5.6 Exponent of gates

As we saw earlier, Cirq gates can be raised to power. What this means mathematically
is that all real exponents of unitary matrices are also unitary matrices, and since all
quantum gates are unitary matrices, all exponents of gates are also valid quantum gates.
This logic can be used to create the square root of gates easily.

SXGate = cirq.X ** 0.5

CSXGate = cirq.CX ** 0.5

SXdgGate = cirq.X ** (-1 / 2)

C3SXGate = cirq.X.controlled(num_controls=3) ** 0.5

Unfortunately, there is no equivalent API in PyQuil. Hence, in PyQuil, these need
to be created via providing their matrices in the form of a custom gate as described in
Section 4.5.7.

4.5.7 Custom gates

Cirq and PyQuil both allow custom gates, either by providing a unitary matrix or a
decomposition in terms of simpler gates.

Cirq: Gates are classes in Cirq. To define custom gates, we inherit from a base gate
class cirq.Gate and define a few important methods. Some of them are:
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• _num_qubits_: This returns the number of qubits this gate acts on. A similar
method is _qid_shape_ which is not discussed here.

• _circuit_diagram_info_: It tells Cirq how to display the gate in a circuit when
rendered in ASCII.

• _decompose_: This method yields12 the operations which implement the custom
gate. It can also return a list of operations instead of a generator.

• _unitary_: returns a matrix that describes the gate.

• __pow__: Optionally, this method __pow__ implements exponentiation of a gate.
Specifically, an exponent e = −1 implements the inverse of a gate.

As mentioned, methods such as _unitary_ which we have seen are known as
"magic methods." Much of Cirq relies on "magic methods", which are methods prefixed
with one or two underscores and used by Cirq’s protocols or built-in Python methods.

The general pattern with custom gate definitions is to:

1. Inherit from cirq.Gate.

2. Define _num_qubits_ ( or alternatively, _qid_shape_).

3. Define one of the _unitary_ or _decompose_ methods since both arrive at the same
result via different means.

4. If the gate takes in parameters (such as rotation angles), it is passed to the
constructor (__init__).

Using the above custom gates API, we can define the RYYGate gate:

1 class RYYGate(cirq.Gate):
2 def __init__(self, theta):
3 super(RYYGate, self)
4 self.theta = theta
5

6 def _num_qubits_(self):
7 return 2
8

9 def _unitary_(self):
10 """Return a numpy.array for the RYY gate."""
11 theta = float(self.theta)
12 cos = math.cos(theta / 2)
13 isin = 1j * math.sin(theta / 2)
14 return numpy.array(

12yield as the Python keyword in generators
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15 [
16 [cos, 0, 0, isin],
17 [0, cos, -isin, 0],
18 [0, -isin, cos, 0],
19 [isin, 0, 0, cos],
20 ],
21 )
22

23 def _circuit_diagram_info_(self, args):
24 return "@", "RYY"
25

26 def _resolve_parameters_(self, param_resolver, recursive):
27 return RYYGate(
28 cirq.resolve_parameters(
29 self.theta,
30 param_resolver,
31 recursive=recursive
32 ),
33 )
34

35 def __pow__(self, power):
36 if power == -1:
37 return RYYGate(-self.theta)
38 return super().__pow__(power)

Listing 5: RYYGate in Cirq

We implemented this gate using a unitary matrix as defined by the _unitary_
method from lines 9 to 21. Instead of using a normal Python array, most platforms
work with numpy arrays. Hence, we return numpy arrays. The actual unitary matrix
is (reproduced here from [13]) is:
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2
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(
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)
0 0 cos
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)
 (4.1)

Since RYYGate accepts a parameter θ, the constructor takes a theta as an argument
(lines 2-4) in Code Listing 5. The extra optional method _resolve_parameters_ is used
when the parameter passed is not a float number but instead is a different type (such
as Symbol). A more thorough discussion of this is presented in Section 4.2.4.

Next, we can implement the DCX (Double CX) gate using gate decomposition as
shown below:
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1 class DCXGate(cirq.Gate):
2 def __init__(self):
3 super()
4

5 def _num_qubits_(self):
6 return 2
7

8 def _decompose_(self, qubits):
9 a, b = qubits

10 yield cirq.CX(a, b)
11 yield cirq.CX(b, a)
12

13 def _circuit_diagram_info_(self, args):
14 return "@", "DCX"

Listing 6: DCXGate in Cirq

The _decompose_ method gets the qubits as a tuple whose size is the value returned
by _num_qubits_). Extracting the two qubits (a and b), we apply (yield) cirq.CX twice
with alternating controls.

PyQuil: New gates can be added to Quil programs using the DefGate function
which is a part of the PyQuil.quil module. All we need is a matrix representation
of the gate. Let’s assume mat to be a valid matrix. Then, we can define a new gate by
passing a user-supplied gate name and the matrix to DefGate as shown below:

gate_defn = DefGate("Gate-X", mat)

DefGate constructs a gate definition instance. It can’t be used directly as a gate. The
gate_defn needs to be added to a Program instance before its use. Given qc as a Program
instance, it can be done as follows:

# Get the Quil definition for the new gate
qc += gate_defn

The actual gate is returned by the get_constructor method of the DefGate instance.
Here’s sample program to show the complete flow:

gate_defn = DefGate("Gate-X", mat)
X_Gate = gate_defn.get_constructor()

qc = Program()
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qc += gate_defn

qc += X_Gate(0)

Parametric gates may exist in certain situations. In contrast to Cirq, where
parameters are directly passed to constructors, PyQuil uses the Parameter class for
handling parameters. This class allows users to provide a name for distinguishing
among potential multiple parameters. Subsequently, these parameters are supplied
to DefGate as the third argument, formatted as an array, as illustrated below.

DefGate("Gate-X", mat, [ Parameter("theta") ])

The current tt font is: macro:->\protect \tt
Moreover, unlike Cirq, we can’t use math.cos or math.sin with Parameter type

values. PyQuil provides a wrapper for these functions which are compatible with
Parameter. Parametrized functions we can use with PyQuil are: quil_sin, quil_cos,
quil_sqrt, quil_exp, and quil_cis. All these functions and classes are available in
PyQuil.quilatom module.

Let’s take the matrix defined in equation 4.1 for the RYY gate. Combining all of the
above, it can be implemented as follows:

1 def RYYGate():
2 theta = Parameter("theta")
3 cos = quil_cos(theta / 2)
4 isin = 1j * quil_sin(theta / 2)
5 mat = numpy.array(
6 [
7 [cos, 0, 0, isin],
8 [0, cos, -isin, 0],
9 [0, -isin, cos, 0],

10 [isin, 0, 0, cos]
11 ],
12 )
13 return DefGate("RYY", mat, [theta])

Listing 7: RYYGate in PyQuil

The RYYGate function returns a DefGate instance, which, as we saw earlier, can’t be
used directly. We need to call the get_constructor method to get the actual gate.

For the sake of consistency with Cirq and Qiskit, bloqs exports actual
PyQuil gates. However, since we also need the definitions, the bloqs function
get_custom_get_definitions returns a list of gate definitions given string gate names
as *args variable arguments.
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We can also see how a decomposition custom gate works in PyQuil. A complex
gate can be thought of as just a sub-circuit within a bigger circuit. This is the strategy
in PyQuil. For example, here’s an implementation of the DCX gate using the above
approach:

1 def DCXGate(a, b):
2 p = Program()
3 p += CNOT(a, b)
4 p += CNOT(b, a)
5 return p

Listing 8: DCXGate in PyQuil

The function DCXGate can be used like any other PyQuil gate. This approach has the
advantage that we don’t need to use DefGate or its associated methods to create a gate.

Using the techniques described in Section 4.5.4 to Section 4.5.7, we can convert all
gates in Table 4.3.

4.5.8 Result Normalization

When the following Qiskit circuit is simulated:

# ... imports ...

qr = QuantumRegister(3, name='qr')
cr = ClassicalRegister(3, name='cr')
qc = QuantumCircuit(qr, cr, name='qc')

Figure 4.6: Little-endian nature of Qiskit results
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qc.append(HGate(), qargs=[qr[2]], cargs=[])

qc.measure(qr, cr)

# ... backend selection ...

counts = execute(qc, backend=backend, shots=1024)
.result()
.get_counts(qc)

The results are:

{'100': 505, '000': 519}

Note that H gate acts on qr[2]. Qubits qr[0] and qr[1] are untouched and remain
0. Then, we should measure qr[2] as 0 and 1 with 0.5 probability each. As we can see
from the frequency results above, that seems to be the case.

However, qr[2] seems to correspond to the first bit, qr[1] to the middle bit, and
qr[0] to the third bit. This can be seen pictorially in Fig. 4.6. The three blocks denote
three qubits, and the numbers below are the indices. In general, the first bit corresponds
to the last index, the second bit to the second last index, and so on.

Another way to understand the result is to imagine the indices in reverse (2 1 0
instead of 0 1 2) and consider them as powers of 2. When presented like this, it is
nothing but little-endian nature as described in Section 2.1.3.

Cirq by default prints the bitstring and has a preference for big-endian interpreta-
tion (for example, when using the histogram method of the Result).

In PyQuil, the measurement has to be specified individually for each qubit.
Therefore, we, the user has to make a choice. QCross adds the measurement gates
in a big-endian manner in PyQuil.

Since, Cirq and PyQuil (due to QCross) qubits are measured in a big-endian
manner, it needs to be converted to a little-endian for equivalence comparison. The
function get_qiskit_like_output does that conversion. Two versions of this function
are available: one in bloqs.ext.PyQuil.utils and another in bloqs.ext.cirq.utils.
They have the same name, but different signatures and implementations due to
differences in their platforms.
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Chapter 5

Evaluation

Our evaluation focuses on the following research questions(as introduced earlier in the
Section 1):

• RQ1: How many syntactically different but correct programs can be translated by
QCross’s converter?

• RQ2: What has QCross found via cross-platform testing of the widely-used
QSSes? i.e., how many warnings and errors does QCross produce?

• RQ3: How does QCross compare to prior work on testing quantum computing
platforms?

• RQ4: How useful is bloqs, the custom gates library?

5.1 Tools and Testbed

QCross is implemented using Python 3.9 and tested on the latest versions of various
platforms at the time of performing the evaluation. The exact versions of these
platforms are specified in Table 5.1. The QCross implementation extends and uses
MoprhQ for important tasks such as Qiskit program generation, and output divergence
comparison.

All experiments were run on an Apple M1 Pro 14-inch (2021 model) machine. It has
ten cores (eight high-performance and two energy efficient), and 16 GB RAM. The OS
at the time of evaluation was MacOS Ventura 13.3.1 (22E261).

To begin the comprehensive cross-platform testing methodology, QCross requires
Qiskit program pairs to translate and execute. This can be provided in two ways:
(i) Over a two-day period, MorphQ generated more than 50 000 Qiskit source and
follow-up programs as part of their testing process and made them freely accessible
as supplementary material. QCross can leverage these programs to expedite the
testing procedure. (ii) Alternatively, QCross can employ MorphQ’s random program
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Name Version Release Date
python 3.9 Oct. 2020
qiskit 0.41.0 Jan 31 2023

qiskit-terra 0.23.2 Feb 23
qiskit-qasm3-import 0.1.0 Nov 10 2022

cirq 1.1.0 Dec 21 2022
PyQuil 3.3.3 Jan 2023
quilc 1.23.0 [e6c0939] Oct 27 2021
qvm 1.17.1 [cf3f91f] Jun 24 2021

Table 5.1: Tools and their versions as part of QCross’s evaluation

generation capabilities to create new random pairs of Qiskit programs, which can then
be passed to QCross for translation.

Throughout QCross’s evaluation, a combination of existing and newly generated
programs was utilized. The pre-existing MorphQ test data was employed to save
time on program generation and to facilitate a regression test on Qiskit, as MorphQ
had used Qiskit 0.19.0 while our implementation utilized Qiskit 0.41.0. Furthermore,
since Cirq and PyQuil platforms exhibit similarities in construction and structure, it
is plausible that programs which exposed flaws in Qiskit might reveal identical issues
in these platforms as well. Additionally, new programs were generated because the
original MorphQ’s Qiskit gate-set was expanded by incorporating these extra newly
available gates: CCZGate, CSGate, CSdgGate, RGate, and RVGate. Consequently, the
newly generated programs can take advantage of a broader gate-set.

5.2 Distribution Difference of Program Outputs

During the execution of a program pair, two potential outcomes are possible: either
both programs successfully execute and their output divergences are measured, or
one of the programs experiences a crash. These outcomes are referred to as "output
differences" and "crash differences," respectively. When examining these differences,
it becomes apparent that crash differences typically indicate genuine issues within the
tested platform, while output differences often correspond to false positives. The false
positives arise from statistical tests misreporting differing distributions even when they
are same, which is anticipated to occur in a small percentage of all cases.

As the manual inspection of differences and discerning their root causes necessitate
considerable human effort, our detailed evaluation is primarily focused on crash
differences. Identifying an effective method for detecting distribution differences that
are likely true positives constitutes an intriguing avenue for future research, which
could then be readily integrated into the existing methodology.

To further substantiate our emphasis on crash differences, we reference the findings
of QDiff [41] and MorphQ [33], the most closely related existing works. Out of
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Qiskit Cirq PyQuil

# % # % # %

Tested program pairs 1594 100% 1594 100% 1594 100%
Metamorphic Testing

Source program crash 0 0% 0 0% 214a 13.42%
Followup program crash 430 26.97% 115 7.21% 437 27.41%
Successful executions 1164 73.02% 1479 92.78% 1157 72.58%

Distribution differences 40 3.43% 18 1.21% 33 2.85%
Differential Testing

Crashes in Unitary Testingb 49 40.83% 9 7.5% 110c 91.66%

Tested Crashed Divergent

Cirq Qiskit Roundtrip 398 100% 32 8.04% 9 2.26%
All sources comparison 1380 100% - - 160 11.59%
All followups comparison 899 100% - - 144 16.01%

a Mainly due to quilc timing out.
b Only ∼10% (120 total) of total tested programs.
c High due to a PyQuil bug where it can’t compute unitary of custom gates.

Table 5.2: Distribution of warnings and crashes produced by QCross

the 33 divergent cases identified by QDiff, the authors were only able to detect and
report bugs for four crash differences. All divergent cases resulting from distribution
differences were ascribed to potential hardware instabilities, a common occurrence
given the nascent stage of real quantum computers. MorphQ exclusively concentrated
on crash differences for the same rationale, and we believe this approach to be
valid. Consequently, by focusing solely on crash differences, we are adhering to the
frameworks established by previous works.

5.3 RQ1: Programs translated by QCross

Over the span of a week, the QCross framework was executed multiple times in
batches. More than 1000 Qiskit programs were converted to Cirq and PyQuil. The
summary of our executions is presented in Table 5.2. All of the Qiskit circuits were
successfully translated and executed. We did not record any crashes during the
translation process. However, when executing, many follow-up programs crashed.
These were recorded as part of manual bug analysis. Source programs of PyQuil
also crashed due to bugs or lack of support of certain features in these platforms as
explained later in Section in 5.4.
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Answer: The program converter successfully translates only valid quantum
programs, ensures that any possible metamorphic relation is maintained, and
QCross is effective in producing numerous warnings and crashes in follow-up
programs of different platforms when executed.

5.4 RQ2: Real-world bugs

Once the testing process is finished, all recorded crashes were clustered by error
message into common groups after removing program-specific information such as line
number, memory location, argument values etc. The clustering process was automatic
and utilized fuzzy-matching of strings. For example, ’46,7: type error’ and ’32,9:
type error’ were assigned to the same cluster. Once the groups were created, we
began the manual analysis by selecting one program of each group. Manual analysis
was feasible since after clustering we had less than 20 groups to check. We ran the
selected program to reproduce the crash. Once the crash was reproduced, we reduced
the program to minimal operations which exhibited the crash. Consequently, a GitHub
issue was filed in the relevant repository.

Tables 5.4, 5.3, and 5.5 present the outcomes of our manual examination for Qiskit,
Cirq, and PyQuil, respectively. For each crash, we provide the reference to the bug
report1, its current status, whether it was a new or duplicate bug report, the crash
message, and the necessary causes (metamorphic relations, differential testing) to
trigger the bug.

In the course of this investigation, we have uncovered a total of 14 bugs and
identified 2 potential issues within the examined quantum programming platforms.
It is important to note that there may be an overlap between the Qiskit bugs discovered
by MorphQ and QCross, as both employ the same Qiskit program pairs during the
evaluation process. To prevent redundancy, the study ensures that any bugs previously
identified by MorphQ are not included in our discovery set. Consequently, all bugs
presented in the subsequent tables represent novel findings in relation to the MorphQ
analysis. The largest number of bugs was detected in Qiskit, followed by PyQuil, and
then Cirq. The prevalence of bugs in Qiskit can likely be attributed to factors such as
its considerable size, maturity, and extensive feature set. Furthermore, metamorphic
testing proved to be a more effective method for bug discovery, accounting for 10 out
of the 14 detected bugs, compared to differential testing, which identified only 2 out of
the 14 bugs. The remaining 2 PyQuil bugs were observed as the platform’s inability to
execute specific circuits, independent of any transformations.

As of the present date, developers have verified the authenticity of ten of these bug
reports. Among these, five have been confirmed as novel bugs discovered through
our testing methodology. The remaining bugs have been reported, and their novelty
is pending confirmation by the platform maintainers. Subsequent sections of this
paper provide an in-depth analysis and several illustrative examples of the encountered

1The GitHub issue number
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5.4. RQ2: Real-world bugs

Table 5.3: Bugs in Google Cirq

ID Report Status Novelty Crash Message Causes

1 #5959 Confirmed New Incorrect unitary of
controlled QasmUG-
ate?

Diff. Test.: Unitary
Check

2 #5985 Confirmed Newa Support for Symbols
in QasmUGate?

Met. Test.: Inject
Parameters

a We filed related issues to this bug such as #5984.

crashes across the evaluated platforms.

5.4.1 Cirq

We discovered several problems in Cirq. After consulting with the maintainers, some
of these issues were identified as false positives (refer to Section 5.4.4). Nonetheless, we
uncovered two new instances of bugs mentioned in Table 5.3. The first issue involved
an incorrect unitary in the controlled variant of QasmUGate. The second issue pertained
to the absence of symbolic parameter propagation in QasmUGate as well. The root cause
of these issues in QasmUGate stems from its non-native status, as it is a compatibility
gate provided by Cirq to interface with Qiskit QASM code.

5.4.2 Qiskit

We identified 10 additional bugs that were not part of MorphQ’s result set, summarized
in Table 5.4. However, since bugs #1, #2, and #3 are the same bugs with different
manifestations, we club them as one bug. Therefore, we have 8 additional bugs. The
maintainers of the platform have confirmed all of these findings as genuine. The first
four bugs (numbers 1 - 4) are regression-related, while the subsequent five (numbers
5 - 10) are bugs uncovered due to the augmentation of the MorphQ gate set and
the inclusion of a QASM 3 round-trip. Three of those bugs are novel bugs. The
final two issues (numbers 11-12) arise from the absence of support for specific Qiskit
features in QASM 3. Since QASM 3 is currently in beta, these cannot be classified as
bugs. Nevertheless, the testing procedure sparked a discussion regarding the potential
inclusion of these features in the exporter. The corresponding discussion can be found
in the attached GitHub issues.

Maximum allowed dimension exceeded: (Bug #1) Transpiling a circuit with level
2 or 3 can create matrices too large for the system to handle. The OS may kill the
program as well. This bug happened due to the following code snippet in Qiskit’s
commutation_checker.py file:
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5.4. RQ2: Real-world bugs

Table 5.4: Bugs and issues found by QCross in IBM Qiskit

ID Report Status Novelty Crash Message Cause

1 #9197 Confirmed Duplicatec Maximum al-
lowed dimension
exceeded

Inject parameters,
Change of opt.
level

2 #9197 Confirmed Duplicatec array is too
big; arr.size *
arr.dtype.itemsize

Inject parameters,
Change of opt.
level

3 #9693 Confirmed Duplicatec Excessive memory
usage while
transpiling at
optimization level
2

Change of opt.
level

4 #9627 Confirmed Duplicate Parameter is not
defined in the
current context

Inject parameters

5 #9559 Confirmed Duplicate Cannot find gate
definition for ’csdg’

QASM 2 Roundtrip

6 #9721 Confirmed Duplicate Cannot find gate
definition for ’ccz’

QASM 2 Roundtrip

7 #9722 Confirmed Duplicate Cannot find gate
definition for ’cs’

QASM 2 Roundtrip

8 #10059 Confirmed Newb Duplicate declara-
tion for gate ’r’

Inject null-effect
operations and
QASM 2 Roundtrip

9 #10060 Confirmed Newb Duplicate declara-
tion for gate ’rv’

Inject null-effect
operations and
QASM 2 Roundtrip

10 #6 Confirmed New type error QASM 3 roundtrip
11 #9609 Confirmed No supporta name ’$*’ is not

defined in this
scope

QASM 3 roundtrip

12 #8 Confirmed No supporta Node of type "Sub-
routineDefinition"
is not supported

QASM 3 roundtrip

a QASM3 Converter is in beta as of this writing.
b The problem of duplicate declarations was known in general. However, specific instances

of ’r’ and ’rv’ gate issues were new.
c Even though these three appear as three bugs, the underlying cause is the same. Hence, we

assume this to be a single bug.
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5.4. RQ2: Real-world bugs

def _identity_op(num_qubits):
"""Cached identity matrix"""

return Operator(
np.eye(2**num_qubits), input_dims=(2,) * num_qubits,
output_dims=(2,) * num_qubits

)

# _identity_op invoked later in the code
extra_qarg2 = num_qubits - len(qarg1)
if extra_qarg2:

id_op = _identity_op(2**extra_qarg2)

The _identity_op function accepts number of qubits. However, it was actually
called with 2 ** extra_qarg2 as shown in the code above. This created an
identity matrix with 2 ** extra_qarg2 rows when we just needed extra_qarg2
rows, thereby causing excessive memory usage. The fix was to remove the 2 ** part
and just call it with extra_qarg2.

5.4.3 PyQuil

We submitted four issues to PyQuil’s GitHub (rigetti/PyQuil) repository. Unfortu-
nately, at the time of writing, we have not received any confirmation regarding the
novelty of these issues from the maintainers. Table 5.5 enumerates all the reports. Two
of the issues (#2 and #4) appear to be caused due to PyQuil’s inability to execute certain
programs, irrespective of any transformations. We assume these to be source crashes, as
opposed to follow-up crashes where the cause is generally a metamorphic transforma-
tion or differential testing. Therefore, we label the "Cause" columns for these issues as

Table 5.5: Bugs in Rigetti PyQuil

ID Report Status Novelty Crash Message Cause

1 #1523 Reported - KeyError: ’SQRT-X’ (cus-
tom gates)

DT: Unitary

2 #1524 Reported - Too many SWAP instruc-
tions selected in a row

NA

3 #1530 Reported - Condition CL-
QUIL::COMPILER-DOES-
NOT-APPLY was signalled

Inject Parameters

4 #1532 Reported - assertion failed: state up-
date should occur from
waiters’ queue

NA

* DT is Differential Testing
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5.4. RQ2: Real-world bugs

Table 5.6: False Positives

ID Report Crash Message Platform

1 #5710 Cannot represent circuits with unbound parameters in
OpenQASM 2.

Qiskit

2 #7641 Cannot unroll the circuit to the given basis Qiskit
3 #9607 Unable to map source basis Qiskit
4 #5986 Different output for the same seed in Simulator? Cirq

NA.
Bugs: The first bug, hereby referred to as Bug #1, is triggered during the

computation of a unitary matrix belonging to a quantum circuit that incorporates a
custom gate. This issue seems to emerge from the complex interactions between user-
defined gates and the underlying matrix computation algorithm in PyQuil. The second
anomaly, or Bug #2, manifests when executing a quantum circuit that incorporates a
multi-qubit gate on a simulator or physical device that lacks direct connections to all
qubit arguments of the said multi-qubit gate. In such cases, a SWAP gate is generally
required. For example, when using a gate such as CNOT on qubits (control and target
qubits) that are not directly connected, a SWAP is needed. However, an abnormal
behavior has been observed with PyQuil, wherein it generates an excessive number
of SWAP gates, occasionally exceeding 1000, for specific quantum programs. The cause
of this over-generation is not yet clear and warrants further investigation.

Bug #3 is revealed when a custom gate is employed in conjunction with a PyQuil
Parameter value. The PyQuil compiler, quilc, appears to encounter difficulties when
attempting to map Parameter values back to gate arguments, specifically in the case
of user-defined custom gates. This limitation hampers the flexibility of custom gate
usage and can pose significant obstacles for complex quantum algorithms. The fourth
anomaly, Bug #4, is a sporadic occurrence, with a higher likelihood of manifestation
during the execution of large quantum circuits repetitively using PyQuil’s Quantum
Virtual Machine (QVM). Under these conditions, the QVM exhibits a tendency to
become unresponsive, displaying a specific error message and necessitating a restart
of the QVM process. This unpredictable behavior presents a significant hurdle to the
stability and reliability of quantum simulations.

In terms of usability, we found PyQuil to be the slowest and least feature-rich
platform among the three evaluated platforms. The external quilc compiler frequently
froze following a program crash, rendering further testing of subsequent programs
infeasible without terminating and restarting the process. Furthermore, PyQuil often
required over 30 seconds to complete the simulation of programs that took only 1
second on Qiskit and Cirq. In fact, some programs exceeded the sixty-second timeout
argument, ultimately timing out with no result.
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5.4.4 False Positives

We identify certain crashes as false positives. These occurrences may not necessarily
indicate bugs; rather, they could stem from inherent limitations within a particular
component or from situations where certain metamorphic relations’ assumptions
are not upheld. For instance, the error message Cannot represent circuits with
unbound parameters in OpenQASM 2 arises from the OpenQASM 2 exporter’s inability
(by design) to represent unbounded parameters. QASM 3, however, does have this
ability. Another example is when the following circuit is transpiled:

qc.append(CHGate(), qargs=[qr[1], qr[0]], cargs=[])
qc.append(CCXGate(), qargs=[qr[5], qr[9], qr[7]], cargs=[])

from qiskit import transpile
qc = transpile(qc, basis_gates=['ccx', 'h'])

We encounter the following error when executing the above circuit: Unable to map
source basis {(’ccx’, 3), (’ch’, 2)}. It is because even though the mapping of
CCX into the basis [ccx, h] is trivial, but it may not be possible to construct a controlled
H using just those two. At the very least, it will require special synthesis techniques
that temporarily use ancilla qubits, since CCX is a 3-qubit gate while CH is only 2-qubit
gate. This is an example where the "Change of gateset" metamorphic relation does
not hold. The transformation assumes that that any circuit can be transformed into an
equivalent circuit that uses only gates inside one of the universal gate sets. However,
in practice, exploring all possible sequences to find an equivalent sequence of gates is
computationally expensive and impractical.

In a final example of a false positive from the Cirq platform, it is anticipated
that when a circuit is simulated with an identical seed value, the resulting numerical
output should be precisely the same as any previous run. This expectation emulates
the seeding process of random number generators, where the same seed produces
an identical set of random values. However, one pair of circuits, which were
metamorphically linked through the Inject Null-Effect Transformation, produced
different outputs despite having the same seed value. The Cirq maintainers provided
clarification on this matter:

... by default, cirq.Simulator has a split_untangled_states flag set to
True, which tries to optimize the simulation of circuits which can be split
into un-entangled states. ... This results in different number of calls to
the random number generator and therefore a slight variance in the output
results.

5.4.5 Additional bugs and issues

While developing QCross and the bloqs library, we identified few incorrect code
comments, documentation issues, and unexpected behaviour of certain functions.
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5.5. RQ3: Comparison with Prior Work

Table 5.7: Bugs and issues found during development

ID Report Status Novelty Crash Message Platform

1 #8990 Confirmed Newa Possibly incorrect docstring in
DCXGate

Qiskit

2 #9003 Reported - Possibly incorrect docstring in
C4XGate

Qiskit

3 #5928 Confirmed New Different outputs for U3Gate and
QasmUGate

Cirq

4 #6016 Confirmed New _qasm_() got an unexpected
keyword argument ’qubits’

Cirq

a Fixed by the author

They are summarized in Table 5.7. Three of the four issues were confirmed by the
maintainers.

Answer: QCross identified 14 bugs and 2 potential issues across quantum
programming platforms, with Qiskit (8) having the most bugs, followed by
PyQuil (4) and Cirq (2). Metamorphic testing proved more effective than
differential testing, and ten of the reported bugs have been confirmed as novel
by developers.

5.5 RQ3: Comparison with Prior Work

In our study, we primarily contrast our work with MorphQ [33], though some
comparison can also be drawn with QDiff [41]. Both QDiff and MorphQ conducted
their experiments within a fixed time budget of two days. QDiff utilized a pre-written
set of programs, while MorphQ generated random programs. In contrast, QCross
was executed in multiple batches over a seven-day period, using random programs
generated by MorphQ.

Furthermore, QDiff incorporated quantum hardware in their analysis, as opposed
to relying solely on simulation, which is absent in both MorphQ and our own analysis.
We consider our work to be a successor and an extension of the research initiated
by MorphQ, which exclusively evaluated the Qiskit platform. Without QCross, bugs
discovered in PyQuil and Cirq would not have been identified as part of MorphQ’s
investigation. Additionally, the inclusion of extra gates and QASM 3 roundtrip further
exposed more Qiskit-related bugs.

Answer: We regard QCross as an "evolutionary successor" to MorphQ and
QDiff. It has uncovered new bugs that were not detected in the previous
works, demonstrating its complementary value to the existing research.
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5.6 RQ4: Utility of bloqs

In order to address the limitation in the availability of native gate sets of quantum
programming platforms Cirq and PyQuil, as compared to the more extensive gate set
available in Qiskit, we have created the bloqs library. This important library serves as a
crucial tool for enabling the successful translation of Qiskit programs to both Cirq and
PyQuil, ensuring gate compatibility across these platforms. Significantly, our analysis
reveals that approximately 94% of all translated programs necessitated the utilization
of the bloqs library, highlighting its indispensable role in this process.

For this research question, a Qiskit quantum program translation is considered
to be independent of bloqs if all the gates within the program can be effectively
mapped onto the pre-existing and readily available gate sets within the PyQuil or
Cirq quantum computing frameworks. This implies that the program can function
adequately without any need for additional or custom gate constructions.

Answer: The bloqs library was developed to overcome gate set limitations
in Cirq and PyQuil, enabling successful translation of Qiskit programs.
The library proved essential, as it was required in approximately 94% of
translations.

5.7 Threats to validity

Several factors pose potential threats to the validity of our results and the conclusions
drawn from them. Firstly, the non-deterministic and randomized nature of the MorphQ
program generator and the selection of transformations could impact the outcomes. In
fuzz testing, prolonged experimentation periods typically reveal more errors or novel
program execution paths, as indicated by [9]. We address this concern by conducting
long-running experiments, compensating for any bias that may emerge with a limited
number of generated programs. Consequently, our experiments spanned a total of
seven days.

Secondly, the dependency on the bloqs library might introduce inadvertent errors
unrelated to the platforms under investigation. To mitigate this risk, we rigorously
tested the bloqs library on a gate-unitary basis. All gates constructed for Cirq were
evaluated on a unitary basis, while the majority of PyQuil gates were assessed using
unitary and state-vector comparison techniques. Nevertheless, a few gates remain
untested due to a bug in PyQuil that hinders the generation of unitary matrices for
custom gates.

In the process of program translation, particularly with respect to metamorphic re-
lations, multiple approaches may yield equivalent results. In order to mitigate potential
unpredictability, our selection criterion for application programming interfaces (APIs)
and techniques is based on the highest degree of similarity to the Qiskit API.

Concerning the verification of output equivalence, the Kolmogorov-Smirnov (KS)
test was utilized in our study, which is based on [33]. It should be noted that alternative
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5.7. Threats to validity

methodologies, such as the cross-entropy test, may result in varying quantities of
divergent cases, either reducing or increasing the overall count.

In conclusion, the methodology delineated in this research is anticipated to be
transferable to alternative platforms such as ProjectQ or pytket. Nevertheless, as
observed during the translation of metamorphic relations, certain transformations
may prove infeasible on specific platforms. Consequently, we refrain from making
generalized assertions concerning all quantum platforms. Despite these limitations, it is
our belief that the techniques presented herein should prove beneficial in the evaluation
of other circuit-and-gate based quantum platforms in a similar manner.
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Chapter 6

Discussion

The evaluation of QCross demonstrates its effectiveness in addressing the research
questions posed, offering important insights into the abilities and limitations of
quantum programming platforms. The following discussion highlights the key
observations and implications of our study.

Firstly, QCross successfully translates a large number of syntactically different
but correct programs between Qiskit, Cirq, and PyQuil platforms. This is largely
facilitated by the bloqs library, which bridges the gap in gate compatibility between
these platforms. Our analysis indicates that bloqs plays an indispensable role, being
required in approximately 94% of all translated programs. The seamless translation
of programs enables comprehensive cross-platform testing, which helps in identifying
bugs and other issues that might otherwise remain undetected.

Our evaluation also reveals that metamorphic testing is more effective in uncover-
ing bugs than differential testing. Out of the 14 bugs discovered, 10 were identified
using metamorphic testing, while only 2 were found through differential testing. This
suggests that future research should continue to explore and refine metamorphic test-
ing techniques to further enhance the bug detection process.

Additionally, the evaluation results point towards the presence of a relatively larger
number of bugs in Qiskit compared to Cirq and PyQuil. This can be attributed to the
platform’s extensive feature set, maturity, and size. However, it is important to note
that the maintainers of these platforms have been responsive in addressing the reported
issues, confirming the authenticity of 10 out of the 14 bug reports filed.

An interesting observation from the evaluation is the difference in performance
between the platforms. PyQuil was found to be the slowest and least feature-rich
platform among the three, with some programs taking significantly longer to simulate
than on Qiskit and Cirq. This information may be valuable to developers and
researchers when selecting a quantum programming platform for their projects.

Lastly, our study highlights the importance of long-running experiments in fuzz
testing. By conducting experiments over a seven-day period, we were able to uncover
a more comprehensive set of bugs and reduce potential biases introduced by a limited
number of generated programs.
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In conclusion, the evaluation of QCross presents valuable insights into the strengths
and weaknesses of the quantum programming platforms Qiskit, Cirq, and PyQuil.
The custom bloqs library, metamorphic testing techniques, and the emphasis on long-
running experiments all contribute to the effectiveness of the QCross framework in
identifying and reporting bugs. The outcomes of this study can guide the development
and improvement of quantum programming platforms, ultimately benefiting the
broader quantum computing research community.
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Chapter 7

Conclusion and Future Works

Quantum computing has emerged as a promising computing paradigm with significant
advantages over classical computing. In response to the growing popularity of
quantum computing and the limited techniques for testing its software stack, this
thesis introduces the cross-platform testing approach for testing quantum computing
platforms, with two key contributions: a program translator that translates a diverse set
of non-crashing Qiskit quantum programs into PyQuil and Cirq, and a library, bloqs,
to fill in the gaps between multiple platforms in terms of quantum gates.

Our evaluation demonstrates QCross’s effectiveness, such as the detection of 8 bugs
in Qiskit, 2 in Cirq and 4 in PyQuil, and we foresee that our contributions will enable
future work beyond QCross by utilizing either quantum hardware or testing on other
platforms. For instance, the program translator could serve as a starting point for
translating to other platforms such as Q# and ProjectQ. Even though QCross is not
the first to re-invent differential testing in a quantum setting or establish quantum
metamorphic transformations, it is the first to merge differential with metamorphic
testing in an effort to perform cross-platform testing. Furthermore, we also, for the first
time, concretely implement metamorphic transformation in the three tested platforms
and provided a methodologies for differential testing such as unitary checking, and
Cirq-Qiskit-Cirq round-trip. Overall, this work represents an important step towards
enhancing the reliability of software in the nascent field of quantum computing.

Given the nascent stage of the field, we believe there is a huge potential for
substantial work to be done. In no specific order, we list a few things for the future:

• Generate better random programs that utilize more APIs of the platforms to
increase the coverage area and find potential integration faults. Ensure the
generated programs are more "real-world" programs.

• Extend the number of tested platforms to include non-python platforms as well.

• Execute the programs on quantum hardware to establish a source of truth or to
find bugs in the hardware.
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• Devise a method to better test the divergence of program outputs such that false
positives are minimized.

• Analyse the existing divergent programs to find out the source of divergence.

K 8 k
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