

Designing knowledge boundary resources to assist large audiences

of new complementors in learning to use the platform APIs.

Leif Erik Greftegreff Haakenstad

Informatics: Programming and System Architecture

60 credits
Spring 2023

Department of Informatics
The Faculty of Mathematics and Natural Sciences

Masteroppgave

Abstract

Platform owners must ensure that complementors are able to extend their platforms. An

increasingly popular approach is through the provision of web APIs. However, knowledge

boundaries emerge as complementors require knowledge of how to use these APIs to develop

platform applications. These knowledge boundaries are particularly pronounced in enterprise

platforms, which often possess a high degree of functionality and complexity of usage.

Complementors encounter significant complexity when using these APIs. Consequently,

platform owners must provide resources that support complementors and address these

knowledge boundaries, referred to as knowledge boundary resources (KBRs). Previous

research has classified approaches for provisioning KBRs in platform ecosystems and general

strategies for supporting API learnability; however, we lack knowledge on how to design

resources that efficiently supports larger groups of complementors in learning APIs of

enterprise platforms.

In response to this lack of knowledge, this thesis addresses the following research question:

“How can enterprise platform owners design knowledge boundary resources to support large

audiences of new complementors in learning to use the platform APIs?” Based on design

science research and over a 1.5-year research period, artifacts were designed to support 120

new complementors of an enterprise platform in learning to use its APIs. The study explores

how these designed artifacts supported the complementors learning. Based on the analysis of

empirical findings, this thesis identifies four design considerations that can serve as valuable

guidance for platform owners when designing KBRs to support new complementors learning

the platform’s API: (1) Offering a simple testing tool, (2) Facilitate exporting to code, (3)

Provide interactive tutorials, and (4) Support esoteric terminology comprehension.

Furthermore, the findings contribute by offering platform owners examples of how the

considerations can be designed.

This research contributes to existing research on enterprise platforms by extending knowledge

on what earlier literature has conceptualized as broadcasting KBRs. Specifically, the thesis

extends this knowledge by designing broadcasting KBRs and exploring how these address

knowledge boundaries.

Acknowledgments

First and foremost, I would like to extend my gratitude to my supervisor Petter Nielsen, and

co-supervisor Magnus Li. Their continuous guidance, support, and insightful feedback have

been invaluable throughout this research project.

I would like to express my appreciation to all the participants in this research project. Your

willingness to express experiences and perspectives has enriched the quality of this work

To my fellow students, particularly those from room HB229C, thank you for the great

discussions, the shared laughter, and the competitive table tennis matches. You’ve enriched my

academic journey and made me a better table tennis player.

Finally, I would like to thank my friends and family for their love and support.

Leif Erik

University of Oslo

May 2023

Table of Contents
Abstract .. 2

Acknowledgments.. 1

1 Introduction .. 1

1.1 Research question .. 3

1.2 Chapter summary .. 5

2 Related literature ... 7

2.1 Platform literature ... 7

2.1.1 Platform ecosystems .. 7

2.1.2 Enterprise platform ecosystems ... 8

2.1.3 Boundary resources .. 9

2.1.4 Knowledge boundaries... 11

2.1.5 Knowledge boundaries resources .. 13

2.2 API learnability ... 16

2.2.1 Programmers experience learning APIs... 16

2.2.2 Designing APIs with learnability in mind ... 16

2.2.3 API documentation .. 17

2.3 Chapter summary .. 19

3 Research Approach ... 20

3.1 Case description .. 20

3.1.1 HISP and DHIS2 .. 20

3.1.2 DHIS2 as platform ... 21

3.1.3 DHIS2 Design lab .. 21

3.1.4 Development in Platform Ecosystems ... 22

3.1.5 DHIS2 Design lab: developing and evaluating learning resources 23

3.2 Research methodology .. 24

3.2.1 Design science research ... 24

3.3 Data collection... 29

3.3.1 Diagnosis stage .. 29

3.3.2 Design and demonstration stage .. 30

3.3.3 Evaluation stage ... 30

3.3.4 Summary of data collection ... 31

3.4 Data analysis ... 32

3.4.1 Preliminary analysis ... 32

3.4.2 Design analysis .. 33

3.4.3 Evaluation analysis .. 34

3.4.4 Constructing contribution. ... 36

3.5 Ethical considerations ... 36

3.6 Chapter Summary .. 37

4 Findings from Diagnosis .. 38

4.1.1 Complex data model .. 38

4.1.2 Complicated terminology... 39

4.1.3 Limited opportunities for learning by doing .. 40

4.1.4 No query-to-code translation ... 42

4.2 Chapter Summary .. 43

5 Findings from Design and Demonstration .. 44

5.1.1 API testing tool .. 45

5.1.2 Introduction tutorial to the DHIS2 API ... 51

5.2 Chapter Summary .. 54

6 Findings from Evaluation ... 55

6.1 API testing tool.. 55

6.1.1 Diagnosed challenge: Limited opportunities for learning by doing 55

6.1.2 Diagnosed challenge: No query-to-code translation .. 56

6.2 Introduction tutorial to the DHIS2 API ... 58

6.2.1 Diagnosed challenges: Complicated terminology and complex data model 58

6.3 Chapter Summary .. 61

7 Design considerations ... 62

7.1 Offering a simple testing tool .. 63

7.2 Facilitate exporting to code ... 66

7.3 Provide interactive tutorials .. 67

7.4 Support esoteric terminology comprehension ... 69

8 Discussion and Contributions ... 70

8.1 Contribution to research .. 72

8.1.1 Broadcasting API KBRs .. 73

8.1.2 Hosted developer sandbox ... 75

8.1.3 Platform and Resource level design .. 78

8.2 Contributions to practice ... 82

8.3 Limitations .. 83

9 Conclusion .. 84

10 References .. 85

List of Tables

Table 2.1: Boundary resource model (Ghazawneh & Henfridsson, 2013, p. 4) 10

Table 2.2: Addressing knowledge boundaries (Foerderer et al., 2019, p. 130) 14

Table 2.3: Summary of terms and theories .. 19

Table 3.1: Summary of data collection .. 31

Table 3.2: Challenges identified in “Data Query Playground” .. 33

Table 4.1: Summary of challenges identified in the diagnosis .. 43

Table 5.1: Summary of artifacts responding to challenges. ... 44

Table 7.1: Design considerations ... 62

Table 8.1: Summary of contributions .. 71

List of Figures
Figure 2.1: Platform ecosystem, inspired by Tiwana’s figure (2014, p. 6) 8

Figure 2.2: Model of boundary resource design Ghazawneh and Henfridsson’s (2013, p. 4) .. 9

Figure 2.3: Structures of knowledge boundaries (Foerderer et al. (2019, p.123) 11

Figure 3.1: The DHIS2 app hub shows some of the available applications. 21

Figure 3.2: Timeline of the course ... 22

Figure 3.3: The DHIS2 app course front page ... 23

Figure 3.4: Model for conducting DSRM (Peffers et al., 2007, p. 46) 25

Figure 3.5: Timeline of DSRM activities during the research period 25

Figure 3.6: Part of the table showing recognized challenges... 32

Figure 3.7: Initial coding of the data collected .. 34

Figure 3.8: Part of the table showing categories affecting API learning. 35

Figure 3.9: Considerations evolved from an early iteration of the analysis 36

Figure 4.1: Representation of the data model .. 38

Figure 4.2: Description in the DHIS2 app course of how to convert a query 42

Figure 5.1: DHIS2 app course frontpage, including the API testing tool 45

Figure 5.2: The API testing tool page .. 46

Figure 5.3: API testing tool showing available parameters. .. 46

Figure 5.4: Option in API testing tool to show optional parameters. 47

Figure 5.5: Example of an API error in the API testing tool ... 47

Figure 5.6: Input field in the API testing tool with syntax highlighting and syntax checks 48

Figure 5.7: API testing tool showing the response from the DHIS2 API 49

Figure 5.8: API request converted to a code snippet ... 50

Figure 5.9: DHIS2 app course front page, including the DHIS2 module 51

Figure 5.10: The data model is mapped to a real-life scenario .. 52

Figure 5.11: A part of the introduction to the DHIS2 API .. 53

Figure 6.1: Illustration in tutorial with no relatable example .. 59

Figure 6.2: Illustration in tutorial with a relatable example... 60

Figure 7.1: Example of a simple testing tool as designed in this research project 63

Figure 7.2: An API request where response is not formatted. ... 64

Figure 7.3: An API request where the response is well formatted .. 65

Figure 7.4: Example of a code example produced using the export-to-code function 66

Figure 7.5: A part of the interactive tutorial as designed in this research project 67

Figure 8.1: Design levels for supporting complementors .. 79

1

1 Introduction

Enterprise systems (ES) are complex package-based applications designed to meet the many

needs of organizations (Strong & Volkoff, 2010). Using these packages and adapting them to

the organizations’ needs is an increasingly popular approach in software acquisition (Pollock

et al., 2003; Strong & Volkoff, 2010). Vendors of ES may want to open its technology,

allowing outsiders to access information and build applications for the system (Foerderer et

al., 2019; Tiwana, 2014). When opening the technology, a “platform ecosystem” emerges

consisting of a platform providing core functionality, complementary apps extending the core

functionality, and interfaces mediating between the platform core and its complementary

apps (C. Y. Baldwin & Woodard, 2008; Tiwana, 2014). Platform ecosystems challenge the

traditional approach of developing digital products within the firm by allowing a massive

network of outside firms with unique expertise to access the platform and build

complementary app (Tiwana et al., 2010). This strategy is shown to outperform traditional

development in various industries, including the mobile operating system market, where iOS

gained massive success by opening up for third-party development (Kauschinger et al.,

2021). Many top-ranked companies by market capitalization, such as Apple and Microsoft,

use the platform strategy in their business (Cusumano et al., 2020)

Platform owners face a significant challenge in drawing enough users and complementors to

benefit from two-sided network effects, which cause the platform’s value to increase as more

products and services are added and more users join (Cusumano, 2010; Tiwana, 2014).

Overcoming this challenge involves adapting the platform strategy to facilitate the onboarding

of complementors that can develop complementary apps, adding value to the platform

(Foerderer et al., 2019; Tiwana, 2014). However, this is not a straightforward task. The

platform owner must shift the focus from in-house development to providing adequate

resources for complementors to be capable of extending the functionality (Bergvall-Kåreborn

& Howcroft, 2014; Foerderer et al., 2019).

2

Platform owners must provide boundary resources that serve as the interface between the

platform owner and external parties, allowing complementors to engage with the platform's

core functionality (Ghazawneh & Henfridsson, 2013). These boundary resources include

Application Programming Interfaces (API), allowing complementors to utilize the platform’s

functionality by simply referencing the API (commonly referred to as “calling an API”).

Platform owners providing APIs enable complementors to use the platform’s capabilities

without being familiar with the implementation details inside the platform (Dekel & Herbsleb,

2009; Tiwana, 2014). The complementors benefit from valuable ignorance by simply providing

the required parameters when making API calls without needing to understand how the API

processes their request internally (Tiwana, 2014).

The utilization and implementation of web-based APIs, commonly referred to as "web APIs,"

has witnessed considerable growth in recent years (Gat et al., 2013; Tan et al., 2016). These

APIs are designed to be accessed through the internet utilizing standard web protocols such as

HTTP. Large enterprise platforms, such as SAP, heavily rely on web APIs, with a substantial

part of their functionalities dependent on these interfaces (REST | APIs | SAP Business

Accelerator Hub, n.d.). However, for efficiently interoperating with the platform interfaces and

extending its functionality, it’s crucial to onboard complementors with how to use these APIs

(Danielsen & Jeffrey, 2013). Developers in all ranges of expertise, from beginners to experts,

spend significant time learning to use new APIs (B. A. Myers & Stylos, 2016). Enterprise APIs

carry additional challenges as these systems are complex, covering many functionalities

(Foerderer et al., 2019). Jeong et al. found that participants had limited success finding relevant

API elements in an enterprise API (Jeong et al., 2009).

Enterprise software vendors face the challenge of furnishing third parties with development

knowledge to facilitate participation in the development and innovation for the platform. In

this context, platform strategies inherently impose “knowledge boundaries” between platform

owners and complementors (Foerderer et al., 2019). Specifically, these boundaries emerge

between platform owner and complementors. The complementors must understand how to

access, combine and extend platform functionality to develop add-on products and services.

Foerderer et al. (2019) emphasize the need to address these knowledge boundaries, stating: “If

platform owners do not identify and address these knowledge boundaries effectively, the

success of the platform strategy is likely to be endangered.” (p. 120). As a response, the

platform owner needs to provide various resources to address these knowledge boundaries,

which Foerderer et al. (2019) refer to as knowledge boundary resources (KBR). Among some

3

common examples of KBRs, we find technical documentation and sample code, which have

received high attention in the research field of conveying API knowledge (e.g., Bianco et al.,

2014; Jeong et al., 2009; Robillard, 2009).

However, there is a lack of research identifying the effectiveness of particular types of KBRs

in addressing knowledge boundaries (Foerderer et al., 2019), including how these support the

learning of APIs. A more recent study about requirements of good-quality API documentation

finds “low research attention on documentation artifacts that present high value to developers

which are also generally missing from vendor documentation” (Cummaudo et al., 2022, p. 13),

calling for more research on documentation artifacts (to complementors). This includes how to

produce them, how they should be communicated, and the most efficient means for developers

to consume such information.

To address this lack of knowledge, the thesis aims to explore how to design KBRs for

supporting new complementors in learning the APIs of an enterprise platform.

1.1 Research question

The thesis will extend the existing literature on designing of KBRs for enterprise platforms by

addressing the following research question:

How can enterprise platform owners design knowledge boundary resources to support large

audiences of new complementors in learning to use the platform APIs?

To answer this research question, the thesis reports from a 1.5-year design science research

project. The project involved studying new complementors learning to develop applications

for DHIS2, a globally adopted, open-source, web-based enterprise health management

information platform. The focus of this study was specifically on how these complementors

learned to use the platform’s API. To study this, the research project took part in the

“Development in Platform Ecosystems” course at the University of Oslo. During this course,

120 students were introduced to developing applications for DHIS2, including learning its

APIs. Utilizing this course, the research project aimed to understand how to support these

new complementors in learning the APIs by focusing on the following objectives:

a) Identifying key challenges students have with understanding and using the DHIS2

API

4

b) Design an artifact targeting the current challenges and examine how this artifact

influences students’ understanding.

c) From designing and evaluating this artifact, identify considerations for guiding

platform owners in designing knowledge boundary resources supporting

complementors in learning APIs.

By studying the widely used DHIS2 platform and its associated course, this thesis provides

valuable insight into the design of knowledge boundary resource that supports the learning

process for a large audience of new complementors. From these experiences, the thesis offers

four design considerations that can serve as valuable guidance for guide platform owners in

designing KBRs supporting complementors in learning the platform APIs: (1) Offering a

simple testing tool, (2) facilitate export to code, (3) Support esoteric terminology

comprehension and (4) Provide interactive tutorials. The thesis does also contribute to existing

research on knowledge boundary resources, including (1) an extended knowledge of KBRs

directed towards API learning, exploring how various types of KBRs address the knowledge

boundaries of new complementors, (2) delving into a specific type of KBR, providing a

description of such types of artifacts, how it supports complementors and design considerations

for implementation, and (3) highlighting different levels of design in platforms for addressing

knowledge which contributes to an understanding of how knowledge boundaries can be

addressed in various ways. Finally, the thesis identifies further avenues for research in the field

of knowledge boundary resources and API learning.

5

1.2 Chapter summary

This thesis as structured as follows:

Chapter 2: Related literature

This chapter describes platform literature which serves as a foundation for understanding the

nature of these ecosystems, the challenges complementors face when utilizing them, and how

platform owners can address these challenges. It also describes the existing literature on

strategies for supporting complementors in learning APIs.

Chapter 3: Research Approach

This chapter describes the 1.5-year research project. It begins with a case description to give

the context and background of the research. Then it delves into the research methodology used

for the research. Following, it details how data was collected, and finally, it discusses how the

data was analyzed.

Chapter 4: Findings from Diagnosis

This chapter describes the findings from diagnosing existing challenges students had when

learning to use the DHIS2 APIs. Specifically, it details four key challenges that emerged from

this diagnosis.

Chapter 5: Findings from Design and Demonstration

In this chapter, the focus shifts to designing and demonstrating two artifacts designed to address

the challenges identified in the previous diagnosis chapter. These artifacts include (1) An API

testing tool and (2) an introductory tutorial to the DHSI2 API

Chapter 6: Findings from Evaluation

This chapter describes how the artifacts designed in the design and demonstration chapter

addresses the diagnosed challenges.

Chapter 7: Design considerations

This chapter describes four design considerations derived from the diagnosis, design and

demonstration, and evaluation. These considerations are presented with a detailed discussion

about their importance.

6

Chapter 8: Discussion and Contributions

This chapter describes how the findings of this thesis contribute to research about KBRs and

their role in addressing the knowledge boundaries, especially for new complementors. The

chapter presents three contributions to research and a set of practical contributions, extending

current knowledge of how platform owners can support large audiences of new complementors

learning to use the platform APIs.

Chapter 9: Conclusion

This chapter summarizes the thesis and its key findings.

7

2 Related literature

The thesis seeks to understand how enterprise platform owners can design resources for

supporting large audiences of new complementors learning the platform’s API. To understand

how platform owners can support its complementors, a review of relevant literature was

conducted. The first section of this chapter delves into the platform literature, which serves as

a foundation for understanding the nature of these ecosystems, the challenges complementors

face when utilizing them, and how platform owners can address these challenges. In the last

section, existing literature on strategies for supporting developers in learning APIs is explored,

as this can also be relevant in a platform context of supporting complementors learning the

platform APIs.

2.1 Platform literature

2.1.1 Platform ecosystems

A platform-based ecosystem consists of two parts, the platform itself and its complementary

applications, which interoperate through interfaces (Tiwana, 2014). “Most platform definitions

focus on the reuse or sharing of common elements across complex products or systems of

production” (Baldwin & Woodard, 2008, p. 6). The software platform acts as a foundation that

serves core functionality, allowing complementary applications to use and extend this

functionality to their own needs. This core exhibits a low variety and high reusability (Tiwana

et al., 2010). By “opening” the software architecture, the vendor opens for third-party

complementors to develop contributing content for the platform (Gizaw et al., 2017; Tiwana,

2014).

Interfaces acts as the intermediary in platform ecosystems, facilitating the interactions between

the core functionality and the complementary applications. They are the platform’s visible

information which complementors can interact with. These interfaces include resources such

as APIs and protocols specifying how apps and the platform interact and exchange information.

They establish a set of rules that ensure apps can efficiently interact with the platform (Tiwana,

2014). The interfaces must remain relatively stable and unchanging to the components that

depend on them (C. Baldwin & Woodard, 2008; Tiwana, 2014). Changes to the interfaces may

break applications that depend on them.

8

Applications (sometimes referred to as “app”) is an add-on software that connects to the

platform through interfaces and extends the platform’s functionality (C. Baldwin & Woodard,

2008; Tiwana, 2014). These apps exhibit a high variety and low reusability within the platform

ecosystem (C. Baldwin & Woodard, 2008). The collection of the platforms, apps, and

interfaces constitutes a platform ecosystem, as illustrated below in Figure 2.1 (Tiwana, 2014).

End-users represent the diverse group of current and potential adopters of the platform using

its various apps (Tiwana, 2014).

Figure 2.1: Platform ecosystem, inspired by Tiwana’s figure (2014, p. 6)

2.1.2 Enterprise platform ecosystems

Developing apps for enterprise software platforms presents a significant challenge. Enterprise

software platforms are complex systems encompassing a wide set of functionalities,

architectures, and business lines which makes it anything but trivial for complementors to

develop apps for the platform (Foerderer et al., 2019). Hence, a challenge for enterprise

platform owners is to furnish third parties with knowledge on developing apps for such

complex systems (Foerderer et al., 2019).

9

2.1.3 Boundary resources

The platform owner must provision resources enabling complementors to build complementary

applications. These resources are referred to as boundary resources, serving as an interface

between the platform owner and complementors developing applications, enabling

complementors to engage with and extend the platform functionality (Bianco et al., 2014;

Ghazawneh & Henfridsson, 2013). These boundary resources include software tools and

regulations, serving as the arm’s-length relationship between the platform owner and the

complementors. In software platforms, these resources typically include SDKs and a multitude

of related APIs (Ghazawneh & Henfridsson, 2013).

Ghazawneh and Henfridsson (2013) propose a model of boundary resource design in third-

party development. This model is shown in Figure 2.2, followed by Table 2.1, describing the

constructs of this model. The model serves as a theoretical framework explaining how platform

owners and third-party interact. As shown in Figure 2.2, the platform owner designs boundary

resources (like APIs). Third-party developers use these to create applications. The model

provides an intellectual structure assisting in understanding the role of platform boundary

resource design and usage for third-party developers.

Figure 2.2: Model of boundary resource design Ghazawneh and Henfridsson’s (2013, p. 4)

10

Construct Description

Platform “The extensible codebase of a softwarebased system that provides core

functionality shared by the modules that interoperate with it and the

interfaces through which they operate” (Tiwana et al. 2010, p. 676)

Boundary Resources The software tools and regulations that serve as the interface for the

arm'slength relationship between the platform owner and the application

developer

Third-Party Applications Executable pieces of software that are offered as applications, services, or

systems to end-users of the platform

Boundary Resources Design The platform owner’s act of developing new, or modified, boundary

resources as a response to perceived external contribution opportunities

and control concerns

Boundary Resources Use The third-party developer’s act of developing end-user applications

drawing on boundary resources offered by the software platform owner

Resourcing The process by which the scope and diversity of a platform is enhanced

Securing The process by which the control of a platform and its related services is

increased

Table 2.1: Boundary resource model (Ghazawneh & Henfridsson, 2013, p. 4)

APIs are a popular type of boundary resource (Bianco et al., 2014; Tiwana, 2014, Ghazawneh,

2012). The API serves as an abstraction layer that hides complexity, internal implementations,

and logic for the caller. API consumers gain the benefit of valuable ignorance by simply

providing the required parameters when making API calls without needing to understand how

the API process their request internally (Tiwana, 2014). Platform owners offer APIs to enable

complementors to leverage the platform’s capabilities without being familiar with the

implementation details inside the platform (Dekel & Herbsleb, 2009; Tiwana, 2014).

Various types of APIs exist, but when this thesis uses the term “API,” it refers to web APIs.

Web APIs are a widely-used subset of APIs that can be accessed through web services, such

as HTTP (Tan et al., 2016). Web API commonly uses REST as a communication protocol and

JSON as a content format (Tan et al., 2016). While APIs are a popular approach for exposing

a platform’s functionality, developers encounter several difficulties interacting with such APIs

(Sohan et al., 2017).

11

2.1.4 Knowledge boundaries

Complementors need sufficient knowledge in accessing and extending the platform's boundary

resources, such as its APIs, for developing contributing applications. This imposes “knowledge

boundaries” between the platform owner and complementors. The integration of knowledge

across organization boundaries is a critical issue in knowledge management for distinguishing

the platform from its competitors and impacting organizational outcomes (Foerderer et al.,

2019). Both platform owners and complementors aim to integrate knowledge to maximize

product development, a subject addressed by Carlile’s (2004) framework, which examines

knowledge boundaries between two different groups engaged in new product development.

This thesis uses Foerderer et al. (2019)’s adoption of Carlile’s framework as it offers a

structured understanding of the causes of differences in knowledge boundaries. Figure 2.3

illustrates this framework.

Figure 2.3: Structures of knowledge boundaries (Foerderer et al. (2019, p.123)

12

As novelty arises, this widens the knowledge boundary. The framework separates the gaps in

knowledge into three categories:

Syntactic boundaries refer to actors lacking a shared vocabulary and grammar integrating

knowledge. For example, one actor may have a specialized language that another actor is

unfamiliar with, leading to difficulties in communication and collaboration. For example, the

platform API may include terms unfamiliar to complementors.

Semantic boundaries refer to actors who share a common syntax but interpret what is being

communicated differently. The information being communicated is usually context-specific.

For example, complementors with different backgrounds may have a different interpretation of

syntax used in the API, such as “data points.”

Pragmatic boundaries refer to actors sharing a common syntax and interpretation of what’s

being communicated but drawing different understandings or conclusions. For example,

pragmatic boundaries can arise when complementors understand the same API error message

yet draw different conclusions on how to solve this.

As suggested by several, failing to address the categories for managing knowledge gaps may

hinder successful development (Carlile, 2004; Foerderer et al., 2019). This framework can help

structure approaches for overcoming knowledge boundaries, guiding platform owners and

complementors in integrating knowledge, and maximizing product development. Foerderer et

al. (2019) identified various types of resources referred to as knowledge boundary resources

that platform owners can provide in response to these knowledge boundaries. The following

section will delve more into these types of resources.

13

2.1.5 Knowledge boundaries resources

The type of knowledge boundary (syntactic, semantic, or pragmatic) affects the way objects

and activities need to be designed to overcome these boundaries and achieve successful product

development and achieve innovation (Carlile, 2004). Foerderer et al. (2019) refer to

“knowledge boundary resources” (KBR) as an approach to overcoming knowledge boundaries.

This includes “objects and activities employed by platform owners in order to overcome

knowledge boundaries and enable effective product development outcomes as KBR, both in

relation to the work on platform governance from a boundary perspective as well as regarding

the notion of boundary objects and boundary spanners (ie, human resources that enable

boundary spanning) in the sociological literature” (Foerderer et al., 2019, p. 125).

Foerderer et al. (2019) found that KBRs can be categorized based on the scale & scope,

resulting in three distinct categories: broadcasting, brokering, and bridging. Table 2.2

summarizes the different types of categories, their scale and scope, and empirical examples of

each category. This table can guide platform owners by distinguishing different types of

knowledge boundary resources and to which scale and scope they target complementors.

Provisioning these resources can be considered a trade-off in selecting the right amount of scale

and scope for supporting complementors, as it is necessary to provision KBRs at the right scope

while having the resources scalable for a larger audience.

14

 Broadcasting Brokering Bridging

Description Standardized, based on

resources that provide

knowledge via transferable

objects or through storage in

centralized databases.

Accessible by complementors

without having to interact with

the platform owner.

Intermediate type of knowledge

boundary resources that provides

meta‐knowledge in terms of

knowing where complementors

may obtain help. Implemented via

dedicated, semi‐formalized

interaction. Brokering mediates

between platform owner and

complementors.

Individualized mode of

knowledge boundary resources

based on intensive, frequent, and

sometimes informal exchanges

between platform owners and

developers. Organizational

members of the platform

provider form a direct link with

organizational members of

complementors.

Scale Entire ecosystem of

complementors

Subset of complementors Individual complementor

Scope Factual, generally applicable

knowledge, not necessarily

problem specific

Meta‐knowledge, gives direction

on where/how to obtain problem

solution

Specific problem‐solving

capabilities

Empirical

examples

● technical documentation

● information portals

● handbooks

● sample code

● Modelling guidelines

● massive online courses

● communities of practice

● hosted developer sandbox

● helpdesks

● account manager

● one‐to‐one assistance

● technological coaching

● co‐innovation activities

● alignment workshops between

third‐party developers and

platform owners

Table 2.2: Addressing knowledge boundaries (Foerderer et al., 2019, p. 130)

In an elaboration of the presented table, the broadcasting category is a particular type of KBR

characterized by being applicable for a broad audience of complementors, highly standardized,

and having large scalability. Broadcasting KBRs offers a standardized and organized pool of

knowledge that complementors can access without interacting with the platform owner. It has

limitations of scope due to not being able to address problem-specific areas and is commonly

used in generally applicable knowledge. Broadcasting KBRs resources are a known way to

address developer requirements that are anticipated, recurring, and well-understood. This is

done by providing complementors with knowledge in the form of predefined and objective

facts, which can be accessed through transferable objects. Syntactic boundaries between

platform owners and complementors can efficiently be addressed through provisioning

broadcasting KBRs (Foerderer et al., 2019).

Brokering KBRs involves dedicated resources such as help desk or account managers

providing technical information through personal interactions and mediating between platform

15

owner and complementors. It is strongly formalized yet has limitations on scale. Brokering

includes boundary objects and boundary-spanning activities by having personal interactions.

Bridging involves ingoing and frequent interactions between platform owner and

complementors. It relies much on boundary-spanning activities, i.e., personal interactions. Due

to personal linkages, this limits the scale of individual exchanges. Examples of bridging

activities are one-to-one assistance or technological coaching. Semantic and pragmatic

knowledge boundaries are addressed through brokering and bridging KBRs (Foerderer et al.,

2019).

Addressing knowledge boundaries is crucial for the success of a platform strategy (Foerderer

et al., 2019; Ghazawneh & Henfridsson, 2013). Changes to platform design can create

knowledge boundaries for its complementors, and by failing to account for these in KBR, the

platform owner risks losing innovation in the platform (Foerderer et al., 2019). Changes to the

technical characteristics of the platform, such as its interfaces, cause different types of

knowledge boundaries. Providing appropriate KBR by scale and scope based on the knowledge

boundaries remains an important aspect of managing knowledge in platform development

(Foerderer et al., 2019). This contributes to the simplicity of usage from complementors and

remains a desired property of platform architectures (Tiwana, 2014)

16

2.2 API learnability

API learnability refers to the ease with which developers can understand, learn and use an API

to build applications (Meng et al., 2018; Tello-Rodríguez et al., 2020). Prior studies on API

learnability can be categorized into three broad streams: programmers' experiences when

learning APIs, designing APIs with learnability in mind, and API documentation.

2.2.1 Programmers experience learning APIs

Prior research has found various challenges developers experience when learning an API.

Robillard & Deline (2011) explore intent documentation as a knowledge barrier, meaning why

certain decisions are made and how the API is intended to be used. Several studies find

difficulties in integrating multiple API elements when solving a task (Duala-Ekoko &

Robillard, 2012; Robillard, 2009; Robillard & DeLine, 2011). Matching APIs with scenarios

is another barrier to learning to use a new API (Robillard & DeLine, 2011). This illustrates the

user’s ability to match a challenge to the documentation provided. The API's capabilities of

allowing exploration and understanding its parts also affect the user's experience learning the

API (Robillard & DeLine, 2011).

Gao et. Al (2020) observed participants' experience learning an API. They classify three stages

of activities that learners alternate between when learning a new API: information collection,

information organization, and solution testing. During the observation, it was noted that

participants tended to move straight from collecting information to testing potential solutions

after locating a relevant information source. In the solution testing phase, developers frequently

iterated between editing & testing the code. The study implies that code emulators likely

encouraged more code comprehension, allowing participants to interact with the code &

perform solution testing.

2.2.2 Designing APIs with learnability in mind

Another perspective of improving API learnability involves emphasizing the creation of more

well- designed APIs. Even though APIs are used to build distributed software systems, they

must also be understood and used by complementors using such APIs. In the same way there’s

spent time designing the user experience for user interfaces, it’s essential to enhance the user

experience of using the provided APIs. APIs must offer the necessary features and capabilities;

however, they may become impractical and unusable due to poor design (B. A. Myers & Stylos,

2016). Research has suggested that improving learnability can be addressed by adapting the

17

API (Piccioni et al., 2013). By utilizing usable APIs, developers can increase their productivity,

as these APIs are more intuitive, require less documentation browsing, and encourage reusage

(Piccioni et al., 2013). Usability influences adoption. If the API takes too long to learn,

programmers may use another API or write functionality from scratch (B. A. Myers & Stylos,

2016; Tello-Rodríguez et al., 2020).

Enterprise APIs context adds an additional layer of complexity due to the large number of

services, the variation of internal data structures, and services which is depending on each other

(Beaton et al., 2008). The APIs of these enterprise systems are particularly interesting to study

as they are often large and complex, carrying issues of scale and targeting a large group of

developers (Jeong et al., 2009). Due to these circumstances, enterprise APIs are identified as

having many usability challenges (Beaton et al., 2008). This includes i.e., participants facing

difficulties finding relevant API elements for performing an API task using the enterprise API

(Jeong et al., 2009).

2.2.3 API documentation

Although documentation is found to play a critical role in conveying API knowledge, its often

an imperfect resource (Parnin & Treude, 2011; Robillard, 2009; Robillard & DeLine, 2011).

Robillard & Deline (2011) find that inadequate API documentation represents the most severe

obstacle developers face in learning a new API. Numerous studies have found incorporating

code examples attractive and essential in API documentation (Brandt et al., 2009; Jeong et al.,

2009; Meng et al., 2018; Robillard, 2009; Robillard & DeLine, 2011). As suggested by

McLellan et al. (1998), “The code example supported several different learning activities, such

as understanding poses of the library, its usage protocols, and its usage contexts.” (page 83).

Other research confirms this observation, arguing that code examples can reduce mistakes and

improve the success rate and developers' satisfaction with using the API (Sohan et al., 2017).

Joeng et al. (2009) conducted a study on the usability of the online API documentation for

enterprise service-oriented architecture provided by SAP. The study found that familiarity with

the terminology used in the documentation, especially acronyms, was important for

understanding the documentation. To enhance the usability of online API documentation, the

study suggests providing an overall map, using a balance of diagrams and texts, using

generally-understood terms or clearly explained terminology, and giving services names users

can easily recognize and distinguish from each other. Additionally, multiple studies have

recommended making service parameters more prominent, i.e., by the distinction between

18

optional and required parameter fields (Daughtry et al., 2017; Jeong et al., 2009). Furthermore,

several studies recommend providing online service testing for testing the API. This can help

developers understand and consume the service, verifying their understanding of its usage and

improving their overall experience (Beaton et al., 2008; Danielsen & Jeffrey, 2013; Daughtry

et al., 2017; Gao et al., 2020).

Some existing tools can assist in trying out an API without a significant time investment, such

as the Swagger UI. In recent years, these tools have been introduced in several large-scale

firms, such as Google and SAP, to support developers learning their APIs (Gao et al., 2020).

The tools share the common traits of providing a graphical interface for users to enter a request

and a button for submitting the request, calling the API with the inserted data, and retrieving a

well-formatted response. Studies show that users make heavy use of such tools either instead

of documentation or used together with reading documentation (Daughtry et al., 2017;

Macvean, 2016). Users of these tools found them helpful, i.e., for finding and evaluating if an

API endpoint suits their needs or for learning to invocate an API endpoint without writing code

(Daughtry et al., 2017). The explorer was found to be an easy and fast way to test the APIs for

users by not having to deal with complexity such as authentication, programming languages,

and syntactic issues. It was also found useful for guiding users with feedback on whether they

were going in the right direction by having an easily editable request and continuous feedback

of changes. Daughtry et al. (2017) paper suggests improvements for these explorers easing the

usage of an API explorer by including conditional field requirements, field format guidance,

and error response interpretation.

19

2.3 Chapter summary

Platform ecosystems are made up of a platform providing core functionality and

complementary applications extending this functionality using the platform’s interfaces. The

platform owner must provision resources, referred to as boundary resources. Boundary

resources such as APIs enable complementors to engage with the platform and extend its

functionality. However, complementors require sufficient knowledge in accessing and

extending the platform's boundary resources imposing a knowledge boundary between the

platform owner and complementors. These knowledge boundaries are particularly significant

for enterprise systems due to their complexity of usage. KBRs are introduced as means to

overcome such knowledge boundaries. Current research on supporting developers in learning

APIs can be divided into three streams: programmers' experiences learning APIs, designing

APIs with learnability in mind, and API documentation. Table 2.3 below summarizes key

concepts and theories which is important in related research:

Term/Theory Description

Platform Ecosystem A system consisting of a platform providing core functionality

and complementary applications that extend the platform's

functionality.

Enterprise Platform

Ecosystem

Complex platforms that encompass a wide set of functionalities,

architectures, and business lines, requiring facilitation of third-

party participation for application development.

Boundary Resources Software tools and regulations that serve as an interface between

the platform owner and complementors, enabling them to engage

with and extend the platform functionality.

Knowledge

Boundaries

Boundaries between platform owner and complementors as

complementors need sufficient knowledge for development.

Knowledge Boundary

Resources (KBRs)

Objects and activities employed by platform owners to

overcome knowledge boundaries and enable effective product

development outcomes. These are categorized into scale and

scope, including broadcasting, brokering, and bridging KBRs.

API learnability The ease with which developers can understand, learn, and use

an API to build applications.

Table 2.3: Summary of terms and theories

20

3 Research Approach

This chapter outlines the research approach conducted over a span of 1.5 years, focusing on

designing artifacts to support 120 new complementors learning to use the APIs of the enterprise

platform DHIS2. First, the chapter begins with a case description that sets the context and

provides background knowledge about the research conducted. Second, the research

methodology for conducting the research is described. Third, the data collection is discussed,

explaining the various stages and methods used to collect data. And finally, the data analysis

is presented, which explains how the data was analyzed and ultimately led to the formulation

of the design considerations, which will be presented in the chapter Design considerations

3.1 Case description

3.1.1 HISP and DHIS2

The Health Information System Programme (HISP) is a global initiative centered at the

University of Oslo (UiO) and founded in 1994. The primary focus of HISP is to promote and

strengthen health information systems in low- and middle-income countries. HISP aims to

“enable and support countries to strengthen their health systems together with regional HISP

groups through increased capacity to govern their Health Information Systems in a sustainable

way to improve the management and delivery of health services." (HISP UiO Strategy Update

2019-2022, 2019)

Central to the HISP project is developing an enterprise platform called DHIS2. DHIS2 is a free,

open-source software platform for collecting, analyzing, visualizing, and sharing data. The

platform is fully customizable to various use cases, making it a flexible solution for diverse

data management needs. Primarily used for managing health-related information, DHIS2 is the

world’s leading Health Management Information System (HMIS) (DHIS2 Overview, n.d.).

DHIS2 has seen widespread adoption, with more than 76 countries worldwide utilizing the

platform for collecting and analyzing data. This accounts for approximant 3.2 billion people,

or 40% of the world’s population, living in countries where DHIS2 is used (Home, n.d.).

21

3.1.2 DHIS2 as platform

The DHIS2 platform serves as a foundation for various health information system applications.

As a software platform, DHIS2 serves core functionality, enabling complementors to build

custom applications for the platform. Complementors can create DHIS2 applications, either an

Android application or a web app, and connect the app to a DHIS2 instance that offers APIs.

The API enables complementors to access and manipulate data stored in the DHIS2 instance.

DHIS2 also offers a developer portal, serving the essential resources for complementors to

building applications for the platform (Welcome to the DHIS2 Developer Portal | DHIS2

Developer Portal, n.d.). Once an application is developed, the creator can share the apps with

the global DHIS2 community by deploying it to the DHIS2 App hub, as shown in Figure 3.1.

Figure 3.1: The DHIS2 app hub shows some of the available applications.

This thesis employs the DHIS2 platform in understanding how to support complementors in

learning the APIs of such enterprise platforms. Exploring the DHIS2 platform and resources

contributing to learning the DHIS2 APIs can provide valuable insight into how platform owners

can support its complementors in learning the APIs.

3.1.3 DHIS2 Design lab

The DHIS2 Design lab, an initiative based at the Department of Informatics at the University

of Oslo, supports and promotes design and innovation within the DHIS2 ecosystem and

contributes to broader design, innovation, and digitalization research. The lab consists of

researchers and post-graduate students collaborating with the DHIS2 core developers and

implementation specialists worldwide (DHIS2 Design Lab - HISP Centre, n.d.). This research

22

project has conducted research as part of the DHIS2 design lab, exploring how resources can

be designed for learning to use the DHIS2 platform’s API, making it relevant to the lab’s

overall objectives.

The DHIS2 design Lab generates knowledge applicable not only to the DHIS2 but also to

research on design, innovation, and digitalization in general. The lab works closely with the

UiO master-level course “Development in Platform Ecosystems,” using it as a testing ground

for the development of DHIS2 platform resources. Through this course, the design lab explores

how to develop capacity-building resources, aiming to apply these findings to enhance

application development within the DHIS2 ecosystem. My research project has used the course

to explore how resources can be designed to support complementors learning to use a

platform’s API. The course will be discussed in the following section.

3.1.4 Development in Platform Ecosystems

Students taking the course masters “Development in platform ecosystems” at the University of

Oslo, hereby referred to as “course,” are taught about application design and development

principles and practices within platform ecosystems. The course timeline, as shown in Figure

3.2, begins with an introductory lecture before the students take on an online self-paced online

course lasting six weeks, hereby referred to as the “DHIS2 app course”. Each second week of

this DHIS2 app course, the students must complete mandatory individual assignments, graded

to passed or not passed. By the end of the six weeks, students should have a basic understanding

of implementing applications for DHIS2. After completing the DHIS2 app course, students

should form groups and, throughout a new six-week period, create a DHIS2 application based

on a project description.

Figure 3.2: Timeline of the course

23

The DHIS2 app course serves as an important resource for supporting students in learning

development for the DHIS2 platform, both during the self-paced period and while completing

the group project. The DHIS2 app course consists of six learning modules covering different

topics, as shown in Figure 3.3. These modules guide students from basic front-end development

skills all the way to creating apps for DHIS2 with JavaScript and React.

Figure 3.3: The DHIS2 app course front page

3.1.5 DHIS2 Design lab: developing and evaluating learning resources

This research project explored how to design resources that support new complementors

learning an enterprise platform’s API. The DHIS2 app course was used as a practical setting

for this exploration by making changes to the design of this course. Many students taking this

course had no prior experience developing applications for the DHIS2 application, meaning

that designing resources in this course could give valuable insight. By tailoring resources in

this course, we could better understand how to support new complementors learning a platform

API. These findings would also inform the research question, "How can enterprise platform

owners design knowledge boundary resources to support large audiences of new

complementors in learning to use the platform APIs?”.

24

3.2 Research methodology

This thesis explores how platform owners can design knowledge boundary resources for

supporting new complementors in learning the platform’s APIs. By adopting a qualitative

research approach that captures students' experiences as they learn and use the APIs of DHIS2,

valuable insight can be gained into designing these resources. Qualitative data sources such as

observations and interviews (M. D. Myers, 2020) are used to gain an in-depth understanding

of the learning process and inform the design of knowledge boundary resources.

3.2.1 Design science research

The methodology used in this thesis is design science (DS) research. DS involves a rigorous

process of creating and evaluating IT artifacts to solve organizational problems (Hevner et al.,

2004; Peffers et al., 2007). The artifact can include any designed object targeting to solve an

understood research problem, such as instantiations (implemented and prototype systems) or

methods (Peffers et al., 2007). Artifacts designed using DS enable researchers to understand

and address problems related to developing and successfully implementing information

systems for organizations (Hevner et al., 2004). Considering the thesis seeks to address

problems complementors encounter when using platform boundary resources, DS can be used

by creating an artifact addressing these problems. The development of the artifact should be

built based on existing theories and knowledge, coming up with solutions to the defined

problems (Peffers et al., 2007).

In conducting the DS for this thesis, the design science research methodology (DSRM)

introduced by Peffers et al. (2007) was used throughout the research process. Their

methodology builds on top of prior research, targeting to find commonly accepted approaches

for carrying out the research rather than focusing on difference views of DS research. By

grouping common elements commonly agreed upon from existing literature, they present a

process model which consists of six activities for conducting DS in information systems. This

model is shown in Figure 3.4 (Peffers et al., 2007).

25

Figure 3.4: Model for conducting DSRM (Peffers et al., 2007, p. 46)

In the following sections, the thesis will go through the six activities outlined in the design

science research model by Peffers et al. (2007), explaining what they are and how they were

applied to this research project. It’s important to note that although the method is explained as

a “linear process” in the following section, the reality of conducting the research was different.

Throughout the research period, there was a transition back and forth between the activities

based on new insights and findings. Before delving into the details of each activity, a timeline

is presented in Figure 3.5, showing when the different activities of the DSRM took place during

the research period.

Figure 3.5: Timeline of DSRM activities during the research period

26

The first activity of the DSRM is to Identify the problem & motivate. This includes defining a

research problem and justifying the value of developing a solution (Peffers et al., 2007). As

the solution should resolve the research problem, inspecting the problem in more detail is

recommended by Peffers et. Al (2007) to ensure the solution covers the problem’s full

complexity. The activity should state the current knowledge state of the problem and its

importance, motivating both the researcher and its audience to pursue the solution and accept

its results.

This research project identifies the problem through a collaborative effort with previous course

teachers. The usage of APIs was identified as a significant concern, leading to it becoming the

focus of this research. A thorough review of related literature further emphasized the

importance of addressing this issue (Danielsen & Jeffrey, 2013; B. A. Myers & Stylos, 2016).

As a result, the research focused on supporting new complementors learning the platform APIs.

By establishing the significance of the problem and understanding its complexity, this activity

provides a clear direction and motivation for pursuing the research and developing an artifact

for addressing the identified issue.

The second activity was to define objectives for a solution. As Peffers et al. (2007) described,

this involves inferring a solution's objectives based on the problem definition and the

knowledge of what is possible and feasible. The objectives can be quantitative, such as terms

in which a desirable solution can be better than the current ones, or qualitative. The objective

should also be rationally inferred with the problem specification. The researcher should

familiarize themselves with knowledge of the problem and current solutions and their

efficiency.

In this research project, the solution's objective was defined based on the identified problem.

Given the challenges faced by new complementors in learning to use APIs, it was logical to

establish an objective for a solution that supports them in this process. This objective was also

reflected in the research question. Together with related research, existing solutions and

methods for teaching APIs were explored to identify opportunities for improvement.

The third activity is to create the artifact. Such artifacts take various forms, serving to embed

a research contribution in the design. This activity involves determining the desired

functionality and architecture and then creating it (Peffers et al., 2007).

27

Over a seven-month period in the research project, web resources were designed that expanded

the current DHIS2 app course content. This design process is detailed in the Design and

Demonstration chapter. Most of the design of these web resources took place both before the

beginning of the course. However, some adjustments also had to be made during the course

period.

The fourth activity was the demonstration. This involves showing how the artifact can solve

one or more instances of the problem (Peffers et al., 2007). To successfully demonstrate the

artifact, researchers need to thoroughly understand how to use it to address the problem at hand.

In the context of this research, the demonstration involved conducting the course where

students utilized the artifact for learning to use the DHIS2 APIs. Throughout the course,

students engaged with the developed artifacts, which provided them with guidance and

resources to understand better and work with the API. The demonstration was used to

determine how the artifact addressed one or more problems identified with complementors

learning platform APIs. This allowed for a more targeted assessment of the solution's

effectiveness in overcoming the challenges faced by new complementors.

The fifth activity is evaluation. This activity entails observing and measuring how well the

artifact supports a solution to the problem (Peffers et al., 2007). The evaluation requires

comparing the solution’s objectives to the actual observed results from using the artifacts in

the demonstration.

In the research project for this thesis, the evaluation process involved collecting data through

various means, such as observations, interviews, presentations, assignments, and surveys. This

data provided valuable insight into how well the developed artifact supported the students in

learning the DHIS2 API. By evaluating this data, the effectiveness of the designed solution

could be assessed, and further improvements could be identified. The evaluation allowed a

comprehensive understanding of the solution’s impact on addressing the identified challenges

faced by new complementors when learning platform APIs.

The sixth and final activity is communication. This activity involves conveying the problem,

its importance, the artifact, its utility and novelty, the rigor of its design, and its effectiveness

to research and other relevant audiences, such as practical professionals (Peffers et al., 2007).

In the research project for this thesis, communication is done by presenting both practical and

theoretical contributions. The practical contribution includes a set of design considerations that

28

support new complementors in learning platform APIs. The thesis also contributes to research

by extending knowledge on broadcasting KBRs.

In summary, the research project followed the Design Science research approach through six

key activities. Next, the thesis will present an overview of how the data was collected

throughout the research process.

29

3.3 Data collection

Throughout the research period, various data collections were used to gather relevant

information for the thesis. This data collection subchapter will provide an overview of these

methods and describe how they were conducted. The data collection was organized into three

stages: diagnosis, design and demonstration, and evaluation. Within each stage, several

activities outlined in DSRM were employed to gather data. Before describing each stage in

more detail, a brief introduction is provided below.

The diagnosis stage encompassed problem identification, providing motivation, and defining

objects for a solution (Activitiey 1 and 2 of DSRM). This stage focuses on the initial research

phase, where the problem is acknowledged, and goals are set.

The Design and demonstration stage included creating the artifact and demonstrating its use

(Activities 3 and 4 of DSRM). This stage emphasized the practical aspects of designing the

artifact and showcasing its application in solving the identified problem.

The Evaluation stage involves the evaluation activity (Activity 5 of DSRM). This is centered

around assessing the effectiveness of the artifact in addressing the problem and meeting the

solution objectives.

Please note that communication activity (Activity 6) in DSRM is not discussed in any of these

stages. No data collection took place during the communication activity, as it primarily focused

on presenting the findings and contributions.

3.3.1 Diagnosis stage

In the diagnosis stage, various methods were taken to identify the challenges faced by students

taking the course. One of the methods was to conduct a workshop early in the research, which

featured a semi-structured workshop with five group teachers. A group teacher is a student who

has previously taken the course and is now teaching new students taking the course. This

workshop lasted for 1.5 hours, focusing primarily on students’ experiences of learning the

DHIS2 APIs, how the current DHIS2 app course resources supported the learning of the APIs,

and how these resources could be improved. Additionally, discussions were held with

professors teaching the course to identify issues that students experience. This provided

valuable insight into the challenges faced by students from an educator’s perspective.

Another method employed in the diagnosis process involved reviewing surveys conducted by

the previous year’s group teachers. Some of these group teachers had researched the

30

onboarding of app developers in platform ecosystems. During their research, they conducted

several surveys to identify issues with the onboarding process. Some of the questions within

these surveys were related to API usage, which this thesis used in diagnosing difficulties that

students had in learning and using the API.

Lastly, as a student who has taken the course and has worked with many fellow students taking

the course, I also considered personal experiences during the diagnosing stage. This included

experiences and feedback gathered from others who took the course simultaneously. This

approach offered a unique way of a more comprehensive understanding of the problems faced

by students when learning to use the APIs within the course.

3.3.2 Design and demonstration stage

Several methods were used in the design and demonstration stage of the data collection. When

designing the resources, existing tools such as Postman, Swagger, and Data Query Playground

from DHIS2 were used as inspiration when designing the new resources. Additionally, existing

research was used as inspiration in designing the resources, and prototypes were created to

better understand how the resources should be implemented.

An initial version of the artifact was designed over a period of three prior to the beginning of

the course, which fed into data collection as many questions arose during the design process

and required ongoing research. This provided valuable insight into how to design resources for

the DHIS2 app course.

After designing an artifact based on prototypes, usability testing was conducted to refine the

artifact. Five persons were invited for an observation where they were asked to try out the

newly designed artifact. Each observation took around 1,5 hours and gave insight into changes

required before the course started. When the course began, and students started using the

DHIS2 app course, observation played a significant role in data collection. I attended seminars

as a group teacher weekly for two hours (in total 24 hours), helping students learn the course

content. During these seminars, I discussed with students and gathered feedback.

3.3.3 Evaluation stage

During the evaluation phase of data collection, interviews and focus groups were employed to

gather feedback on the learning resources after the course was completed and students had

finished their projects. Semi-structured interviews were conducted with nine students who had

just completed the project. The interviews lasted approximately 1.5 hours each and covered

31

two main topics: 1) students’ overall experience learning the platform resources and 2) their

experience learning DHIS2 API. Additionally, two focus groups were held, where multiple

students attended and engaged in an open discussion about the interview questions.

Interviews were conducted until saturation occurred, meaning no significant new information

was added to the data collection. I held the interview as the researcher. The interviews were

either face-to-face or via the online video service Zoom. The interviews took place over two

weeks, and the students selected for interviews were chosen based on their backgrounds. To

ensure various experiences and perspectives, most participants were from different groups that

were formed when completing the group project.

3.3.4 Summary of data collection

To summarize the data collection process, Table 3.1 is presented. This table outlines the

different methods conducted in each stage, the role of the participants involved, the number of

attendees, and an estimate of time spent for each method.

Stage Method Role of

participant

Participants Amount

Diagnosis

Workshop Previous group

teachers

5 ~ 1,5 hour

Survey Last years students 13 -

Design and

demonstration

Prototyping Researcher 1 ~ 10 hours

Design artifact Researcher 1 ~ 120 hours

Usability testing Developers 6

~ 9 hours

Observation Students ~ 24 hours

Document analysis Group teachers ~180 assigments

Evaluation Interview Students 9 ~ 14 hour

Focus groups Students 2 ~3 hour

Table 3.1: Summary of data collection

32

3.4 Data analysis

In this thesis, the data analysis was conducted using thematic analysis, involving searching

across the data set to identify repeating patterns of meaning (Braun & Clarke, 2006). The

thematic analysis was performed at several phases throughout the research project, eventually

leading to design considerations that will be discussed in a later chapter. This subchapter will

detail the analysis process for each of these phases. First, we will review the preliminary

analysis, where preliminary data was processed to identify problems. Second, we will go

through the design analysis describing how the data was processed to inform the design of the

artifacts. Thirdly, we will go through the evaluation analysis on how data was processed for

evaluating the design. Finally, we will review how the design considerations were constructed

based on the previous analysis.

3.4.1 Preliminary analysis

The workshop of previous year’s group teachers facilitated identifying problems and defining

solution objectives. Recordings of the workshop were transcribed. These transcriptions were

categorized based on subjects, whereas each subject identified a current challenge with the

learning resources such as “terminology.” After gathering an overview of the current sections

of concern, another iteration of analysis from this material was conducted. Some categories

from the first iteration were excluded due to a lack of data. During the second iteration, a table

was produced to structure the categorized data based on A) the challenge identified, B) A

detailed description of the challenge, and C) empirical quotes supporting this finding. Figure

3.6 shows a part of this produced table

Figure 3.6: Part of the table showing recognized challenges.

33

Based on this table, the research identified six categories students encountered while

completing the course. These include 1) difficult terminology, 2) difficult data model, 3) high

usage complexity, 4) query translator, 5) Document cross reference, and 6) learning by doing.

Many of the categories included concerns regarding the usage of the API. A survey conducted

by the previous year's student group teachers was used to supplement identifying areas of

concern. This survey confirmed that usage of the API had a significant concern, showing that

53,8% of the students claimed using the API was very challenging, and 30,8% claimed it was

somewhat challenging of out 13 respondents. Furthermore, personal experiences as a student

taking the course and discussions with the professor holding the course confirmed the

recognition of API being a challenge in the learning process. Overall, this analysis phase was

used as motivation for defining the problem and setting objectives for the solution.

3.4.2 Design analysis

After establishing an initial understanding of the existing challenges, the design analysis phase

began. This analysis focused on the design and development stage, which informed the

artifacts' design. To create resources that effectively supported students in overcoming the

diagnosed challenges, relevant literature and existing artifacts related to conveying API

knowledge were used as inspiration for the designing phase.

From the preliminary analysis, it was evident that learn-by-doing was a desired feature. There

was already a resource deployed from DHIS2 to support interactivity, mainly a tool named

“Data Query Playground” where users can write and run API queries. Further analysis of this

tool was done to identify its challenges and analyze how it can support the desired requirement

of learn-by-doing. Based on a survey conducted by the previous year's group teachers, some of

the shortcomings of this tool were discovered, as shown in Table 3.2.

Challenge Description

Bugs Many students reported having difficulties using the playground as

there were bugs causing the the cursor and text input field to be

inaccurate. When writing text into the playground, it would not be

inserted where the users expected it to be.

Not user friendly Students reported that they did not understand how to use the

DataQuery playground. The input format was unknown, causing

confusion as to how it should be used.

Table 3.2: Challenges identified in “Data Query Playground”

34

Based on the challenges associated with the tool, and the nature of it being a DHIS2 app with

practical limitations in further development and implementation into existing code bases, it was

decided to design a new interactive tool to complement the learn-by-doing.

The design analysis phase spanned seven months. This iterative design analysis involved

usability testing, observing participants’ experiences, and correcting design flaws based on

inadequate design. Throughout usability testing, the researcher analyzed user interactions with

the artifact, identifying poor design decisions and gathering feedback to further refine the

design. By examining the results through these usability tests, several iterations of design were

conducted to support the usage of the resource. Further analysis of the designed artifacts was

done throughout the evaluation phase.

3.4.3 Evaluation analysis

During the evaluation phase, interviews and focus groups were conducted on students’

experiences using the designed artifacts. These interviews and focus groups were transcribed.

Based on the transcriptions, this data was coded as shown in Figure 3.7 using open coding, an

interpretive process that allows for a more in-depth understanding of the data by breaking it

down into smaller parts, comparing them, and assigning conceptual labels (Corbin & Strauss,

n.d.).

Figure 3.7: Initial coding of the data collected

35

After the initial coding of the data, these categories were inserted into a table. Figure 3.8 shows

a part of this table, including the columns a) a title for the category, b) a longer description of

how this category affected API learning, and c) empirical findings supporting the category.

Figure 3.8: Part of the table showing categories affecting API learning.

The table was continuously analyzed by comparing the different categories and reviewing each

in more detail. This process resulted in some of the categories being merged while new ones

surfaced. This categorizing process provided a better understanding of the factors that impacted

the student's API learning.

36

3.4.4 Constructing contribution.

Drawing from the analysis of earlier phases, a set of categories that affected API learning

emerged through the evaluation. Initially, these categories were specific to the DHIS2

environment. Through iterative analysis and refinement, these categories were adapted into

more general design considerations, applicable not only to DHIS2 but also to other platform

owners. Figure 3.9 shows one of the first iterations of constructing the design considerations.

Figure 3.9: Considerations evolved from an early iteration of the analysis

By carefully analyzing the data and refining the table of design considerations, these

considerations contribute to insight for platform owners seeking to support new complementors

in learning to use the platform APIs. The final design considerations are presented in Chapter

7 Design considerations.

3.5 Ethical considerations

Throughout the study, ethical considerations were taken to ensure the participants' privacy.

During the observation process, I was transparent about my role as a researcher and the purpose

of my observation. Participants were asked for consent if I would use the observation for my

study, allowing them to make informed decisions about their involvement. Before conducting

interviews, participants were made aware of the recording process and their right to withdraw

their consent at any time. All data collected throughout the study was anonymized to protect

participants' privacy. This approach ensured that individuals could not be identified, and their

personal information remained confidential.

37

3.6 Chapter Summary

The chapter opened with a case description centered around DHIS2, a widely used open-source

platform. The case description elaborated on how this research engaged in the DHIS2 design

lab, which aims to expand knowledge applicable not only to DHIS2 but also to research on

design, innovation, and digitalization in general. The research contributes to this knowledge by

designing resources for students taking the “Development in platform ecosystems” course at

the University of Oslo. Specifically, these resources were designed in the DHIS2 app course to

support the students learning of the DHIS2 platform APIs. The research follows the Design

Science Research Methodology (DSRM), conducting the activities involved in this

methodology. The data collection included three stages: diagnosis, design and demonstration,

and evaluation. Techniques such as workshops, surveys, interviews, and focus groups were

employed, including participants such as students and teachers. Finally, the data analysis

highlighted the usage of thematic analysis across different phases of the study. This process

helped identify patterns and led to the formation of design considerations serving as valuable

guidance for guide platform owners in designing broadcasting KBRs that supports

complementors in learning the platform APIs.

38

4 Findings from Diagnosis

This chapter presents the findings from the diagnosis stage of the data collection. This stage

was critical for identifying student challenges when taking the DHIS2 app course. Specifically,

the chapter identifies the difficulties that last year's students taking the course experienced

while learning the APIs. The data sources used in this stage included a workshop with group

teachers who taught the course, discussions with professors holding the course, and personal

experiences gained while taking the course myself as a student. Based on the findings, four

challenges were identified, namely a) complex data model, b) complicated terminology, c)

limited opportunities for learning by doing, and d) no query-to-code translation. These

challenges are presented in greater detail in the following subchapters. The challenges served

as a foundation for designing and demonstrating new resources supporting complementors

learning the APIs, which will be covered in the next chapter.

4.1.1 Complex data model

The data model was a key challenge for students learning to use the API. Understanding this

data model is essential for using the DHIS2 APIs. The data model is designed to be highly

flexible, whereas each element of the model has a generic name and accommodate any data

type. As shown in Figure 4.1, the data model is centered around the concept of a “DataValue”

which can be recorded for any “DataElement” (representing the specific item, occurrence, or

phenomenon being captured, “Period” (representing the time dimension), and “Source”

(meaning the spatial dimension such as an organization unit within a hierarchy) (4.5 The Data

Model, n.d.).

Figure 4.1: Representation of the data model

39

Students expressed difficulties due to the various generic names used in the data model, making

it difficult to determine each element's purpose and how to use them. One group teacher

explained, “The data model and how things are set up in DHIS2 is a big challenge for users

due to its complexity. […] It contains many generic terms, and this abstraction barrier makes

it much more difficult to learn.” Additionally, each element has one or more relationships to

other elements, adding further complexity. Another group teacher elaborates on this point,

explaining:

 “The biggest issue in understanding the API was the data model's complexity of the

data relations, including relationships between these elements. […] It was particularly

difficult to retrieve elements with an only subset of their values, connecting such values

to other elements, filtering and sorting based on the connected elements, and so on. It’s

a lot to get your head around.”

The difficulties of understanding the individual elements and their interrelations with others

caused a learning barrier for students trying to use the API.

4.1.2 Complicated terminology

Terminology was one of the leading reasons students had difficulty grasping this data model

concept. A group teacher expressed this in the workshop: “Terminology in itself is very

important for users to understand such as the data model. “dataset,” “dataValue,”

“dataElement.” It’s not clear to users what these platform-specific words mean. It’s a big

challenge.”

The current DHIS2 app course did not sufficiently provide students with sufficient material to

understand and apply the data model and terminology. This especially applied to platform-

specific words where students had no prior knowledge about the terms and concepts. One of

the difficulties which group teachers recognized in students learning new terminology was that

similar terms would easily be mixed up and cause confusion. i.e., the DHIS2 app course

introduces two types of DHIS2-specific code functions that should be used when interacting

with the API: “useDataQuery” and “useDataMutation.” It was reported that many students had

difficulties separating these terms. One group teacher said: “We got so much feedback about

people not seeing the syntax differences.”.

40

The DHIS2 app course lacked apparent differences between very similar syntaxes, making it

difficult to distinguish the terminology. The group teachers highlighted this learning barrier

and underscored the need for resources to address this issue. One of the group teachers

suggested a possible solution: "I think it’s best to create a task-centred tutorial that would give

many possibilities. […] I think this is a good approach for especially new students to learn the

usage of DHIS2.”

4.1.3 Limited opportunities for learning by doing

During the workshop, the learn-by-doing approach was frequently mentioned as an effective

strategy for learning as one group teacher stated: “Interactivity and learning by doing are large

factors for people to learn anything. It doesn’t help just viewing something. For people to learn,

they have actually to try it out themselves.”. The DHIS2 app course included an interactive

learning resource that focused on teaching JavaScript, which received positive student

feedback. However, no interactive resources were designed to facilitate learning the data

model, terminology, or the API. Another group teacher suggested adding support:

“Tutorial-based learning resources where you complete tasks and learn to do things

yourself is useful […] In regards to the API, I think this is a good approach.

Especially for new students. A sandbox environment would be useful if possible.”

When students were observed exploring the API, they were found to be using a “brute forcing”

strategy, meaning that they would repeatedly make minor changes to the API request before

testing such changes. Producing a “sandbox” environment to support this activity where

students could quickly apply and verify changes was emphasized as positive for the learning

effects. The DHIS2 team had already developed an interactive tool called “Data Query

playground,” which supports this exploring activity. Students were recommended to try out

this tool throughout the DHIS2 app course. However, it was not widely used by students due

to lacking a user-friendly interface. One of the group teachers expressed this: “Some students

used DataQueryPlayground. It’s some errors in it in general and not the most UX-friendly

tool.”

While I completed the course as a student, I shared the same experiences as other students

having difficulties using this tool. The difficulties were mainly due to two reasons: first, the

DataQueryPlayground had bugs making it very difficult for users to use the tool. Whenever

writing input to the tool, the characters would not occur at the expected position making it

41

difficult to provide input. Secondly, as the group teachers expressed, it’s not a UX-friendly

tool. It required the user to insert DHIS2-specific syntax for sending a request. As a result, the

tool does not facilitate new developers with no knowledge of this syntax.

Besides the Data Query Playground tool, various other approaches were reported to be used by

students to explore the DHIS2 API. One group teacher noted that some students experimented

by simply writing queries in the web browser: “Some students said it was easier to just write

queries in the web browser […]. This could be due to the errors they experienced in Data

Query playground.” However, using the web browser has limitations, such as formatting of

the response, no syntax checks, and not supporting all HTTP verbs.

Other students were reported to be using the API software “Postman” to explore the API, but

these students were generally more advanced users. A group teacher commented, “One student

group used postman, yet many other groups never heard of postman. […] Experienced users

find ways to solve problems, yet new developers have difficulties. […] You have to support

competence at the lower level.”

Finally, some students were found to be exploring the API by editing code in their application

for sending an API request, then building the application, and finally testing it, which was a

time-consuming activity. A group teacher suggested, “It’s a good idea to let users the ability

to easily adapt and test things instead of having to do this through their app, then editing, then

running, then editing, and so on. It’s much better through a playground.”

The variety of approaches students use to explore the DHIS2 API indicates a lack of a cohesive

strategy for exploring the API. The Data Query Playground, for example, has been found to

have bugs and lacks a user-friendly interface. Thus, the student uses other approaches to

explore the API rather than using the tool explicitly provided for this purpose. This indicated

the need for further development of the Data Query Playground or other tools to better support

the users’ needs in exploring the DHIS2 API. Experienced students tend to find ways to solve

their issues, indicating that the design of tools for exploring the API should emphasize

supporting students with less experience.

42

4.1.4 No query-to-code translation

As previously mentioned, many students used a web browser to send API requests (referred to

as “query”). Once the student had queried the API and the API returned the desired result, they

encountered the additional challenge of applying this query to their code. To do so, they had to

convert the query into a DHIS2-specific syntax for sending the queries by code. Figure 4.2

shows a description used in the DHIS2 app course of how to convert the query. As shown in

the figure, the green line of text is how the query is sent using a browser, and the purple text is

the same query using the DHIS2-specific syntax required for sending the request by code.

Several students experienced difficulties converting to this syntax.

Figure 4.2: Description in the DHIS2 app course of how to convert a query

Similarly, many students faced difficulties using query examples in the DHIS2 API

documentation, as these also had to be converted. Overall, students struggled with writing and

converting queries due to being unfamiliar with the DHIS2-specific syntax. One of the group

teachers highlighted this challenge during the workshop: “It should’ve been more code

examples on converting API queries to appropriate format. […] It doesn’t help to get raw

string queries as they need to be translated.”

To address this issue, group teachers proposed a helpful feature for the students – a converter

that would translate queries to the DHIS2-specific syntax, which can be used by code. As one

group teacher suggested: “Another function which student requested was a query converter

where you basically provide and query and retrieve back a code snippet.”. With the help of

43

this tool, students could focus on writing queries and exploring the API without worrying about

appropriately converting the request such that it was applicable in code.

4.2 Chapter Summary

This chapter diagnosed the challenges students had when completing the DHIS2 app course.

Table 4.1 summarizes the main challenges identified in the diagnosis.

Challenge Description

Complex data model The data model is designed to be flexible, accommodating any

data type, but its generic names and numerous relationships

between elements made it difficult for students to understand

each element’s purpose and use

Use of complex terminology The platform-specific terms were a learning barrier for

students. The current DHIS2 app course does not provide

sufficient material for students to understand and apply the data

model and terminology.

Limited opportunities for

learning by doing

A lack of a learn-by-doing approach made it difficult for

students to understand the data model and terminology. Task-

centered tutorials and a sandbox environment supporting

learning by doing was recommended as practical strategies for

overcoming this challenge. The sandbox needs to support new

complementors.

No query-to-code translation Converting query strings to DHIS2-specific syntax such that

these could be used in code was a significant challenge for the

students. Group teachers proposed a converting tool to translate

queries to the DHIS2-specific syntax to address this challenge.

Table 4.1: Summary of challenges identified in the diagnosis

44

5 Findings from Design and Demonstration

This chapter will delve into the findings from the next data collection stage, which was to

design and demonstrate artifacts that addressed the challenges identified in the diagnosis stage.

This stage was important for exploring how to design artifacts to address the identified

challenges and support new complementors learning the APIs. As a response to the diagnosed

challenges, two artifacts were designed. Firstly, the API testing tool was designed to address

the issues of "limited opportunities for learn-by-doing" and "no query-to-code translation."

Secondly, an introduction tutorial to the DHIS2 API was designed to address the "limited

opportunities for learn-by-doing" challenge and complexities related to the "complex data

model" and "complicated terminology” challenges. The artifacts and the challenges they

address are summarized in Table 5.1. This chapter will begin by presenting the design of the

API testing tool, followed by presenting the design of the introductory tutorial to the DHIS2

API.

Artifact Responding to challenge

API testing tool • Limited opportunities for learn-by-doing

• no query-to-code translation

Introduction tutorial to the DHIS2

API

• limited opportunities for learn-by-doing

• complex data model

• complicated terminology

Table 5.1: Summary of artifacts responding to challenges.

45

5.1.1 API testing tool

Figure 5.1 shows the front page of the DHIS2 app course as described in subchapter 3.1.4. The

DHIS2 app course featured a range of modules with different topics that users could select to

access the respective tutorials. As part of this research project, an “API testing tool” was

designed and added to the DHIS2 app course, which can be seen at the bottom of Figure 5.1.

This newly integrated resource aimed to support the diagnosed challenge of “Limited

opportunities for learning by doing.”

Figure 5.1: DHIS2 app course frontpage, including the API testing tool

By clicking the API testing tool module on the front page, the user is redirected to a page

featuring the tool. As illustrated in Figure 5.2, this page provided an environment for users to

experiment with the DHIS2 API using the testing tool. The tool offers predefined API

endpoints (an endpoint being a specific URL where the API can be accessed) displayed on the

left side of the page, as shown in Figure 5.2. By only offering users the relevant endpoints for

taking the course, this aimed to reduce the complexity associated with introducing the API.

This predefined set of available endpoints also ruled out the possibility of requesting invalid

endpoints. These design decisions were taken to prevent students, and especially those with

limited experience, from being overwhelmed by the vast amount of endpoints the API provides.

46

Figure 5.2: The API testing tool page

Once the user selected an API endpoint, they could proceed to fill out a form with parameters

that the chosen endpoint supported, as shown in Figure 5.3. The tool only displays parameters

supported by the endpoint, guiding the user and preventing input of invalid parameters. Each

listed parameter describes its primitive type (for example, number), an example of input, and a

more detailed description of the parameter. This detailed description includes a “more” link

which redirects the user to a more detailed description in the DHIS2 documentation.

Figure 5.3: API testing tool showing available parameters.

47

The tool only displays the required parameters for an API endpoint by default, as these are

necessary for the primary usage of the API. Optional parameters, typically needed only for

advanced usage, are listed below the required ones but hidden by default. As shown in Figure

5.4, the user can view the optional parameters by clicking the “Show optional parameters”

button. This design choice of optional parameters by hiding optional parameters underscored

the usage of the fundamental aspects of using the API, making it more accessible for new users.

Figure 5.4: Option in API testing tool to show optional parameters.

The diagnosis revealed that the students encountered challenges when using DHIS2’s “Data

Query Playground” for testing the API. Issues such as badly formatted input or missing

parameters were difficult for the users to recognize and solve—the API testing tool aimed to

support these challenges by providing better error handling and reporting. To help users detect

errors, the tool displays error messages in a red box, as shown in Figure 5.5. This error message

made it easy for users to see when something was incorrect. The tool conducts basic checks,

such as detecting missing parameters, and highlights these errors to the user.

Figure 5.5: Example of an API error in the API testing tool

48

The API testing tool also supports attaching a body to the HTTP request. Some API requests

required including a ‘body’ – additionally data sent along with the request. In the case of the

DHIS2 API, this body needed to be in JSON format. To facilitate this requirement, the tool

assists users in writing correctly formatted JSON messages. As shown in Figure 5.6, the tool

provides an input field with syntax highlighting and syntax checks where the user can easily

detect if the JSON body is incorrectly formatted. The input field with syntax formatting and

syntax checks assisted users in creating valid API requests and provided specific error

feedback.

Figure 5.6: Input field in the API testing tool with syntax highlighting and syntax checks

49

When the user was ready to test the API request, they could initiate it by clicking the “Send”

button. This button converts all the populated parameters and the body content into a query

sent to the DHIS2 API. Subsequently, a “response” tab is displayed beneath the response,

displaying the response from the API, as shown in Figure 5.7. The response tab displays the

converted request sent to the API, an HTTP response code indicating whether the request

succeeded, and the response body. The response body has color-coded syntax and indentation,

simplifying the process of reading the response for the user.

Figure 5.7: API testing tool showing the response from the DHIS2 API

50

When the user had sent a request, and the API responded with the expected results, the user

could turn this API request into code by clicking the “Export to code” button. This feature

aimed to address the diagnosed challenge of “No query-to-code translation,” where students

wanted functionality for transforming an API request to code. When clicking the “export to

code” button, the API testing tool transforms all inputs from the tool, such as parameters, into

a code snippet. The user could easily copy this code snippet and use it in their code project. As

shown in Figure 5.8, an API request is converted to a code snippet, including explanatory

comments supporting how to use this snippet.

Figure 5.8: API request converted to a code snippet

In summary, the API testing tool supported the diagnosed challenges of “Limited opportunities

for learn-by-doing” and “No query-to-code translation.” It supports the first challenge by

allowing users to experiment with the API, enabling them to alter and send API requests

without rebuilding their project or using external programs. The API testing tool simplified the

usage of the API by offering guidance in available endpoints and parameters and minimizing

potential user errors, thus reducing usage complexity. This approach could be particularly

useful for new users of the API. To address the “No query-to-code translation,” the tool

featured an “Export to code” function. This function transforms the API request into a code

snippet that can easily be copied and incorporated in own code projects.

51

5.1.2 Introduction tutorial to the DHIS2 API

In response to the diagnosed challenges of the “Complex data model” and “Complicated

terminology” associated with learning the DHIS2 API, the DHIS2 app course content was

adapted. Particularly, the course module “DHIS2,” as shown in Figure 5.9, was adapted. This

module teaches students how to develop applications for the DHIS2 platform, including an

introduction to the APIs. Modifications were made to the content of this module, addressing

the diagnosed challenges. Additionally, the module was adapted to be interactive, which

addressed the challenge of “limited opportunities for learning by doing.”

Figure 5.9: DHIS2 app course front page, including the DHIS2 module

Within the DHIS2 module, students were first introduced to the DHIS2 data model before

delving into API usage. Understanding the data model and how different elements in the data

model are related is crucial for comprehending the API’s architecture and using it. To facilitate

learning of the data model, the new design of this module introduced a scenario involving a

person administering antibiotics. After introducing the scenario, the data model was presented,

with each element being mapped to the antibiotic’s scenario. Throughout the introduction of

the data model, illustrations, such as shown in Figure 5.10, and text was emphasized to support

the understanding of how the data model related to real-life examples.

52

Figure 5.10: The data model is mapped to a real-life scenario

After learning about the data model, the module introduces students to how to use the DHIS2

API. This introduction was adapted to be interactive. The new design of the introduction mainly

consisted of three segments: first, an explanation was given about the usage of the API,

followed by the API testing tool as introduced earlier, where students could try out the API,

and eventually, a task where students had to use to tool to complete the task. Figure 5.11 shows

a part of the designed tutorial for introducing the DHIS2 API, including how the three segments

apply to the design. This interactive approach aimed to support the diagnosed challenge of

“limited opportunities for learning by doing” by enabling students to learn while making API

requests.

53

Figure 5.11: A part of the introduction to the DHIS2 API

54

5.2 Chapter Summary

This chapter addressed the design of two artifacts, an API testing tool and an introduction

tutorial to the DHIS2 API, aiming to address the identified API learning challenges. The API

testing tool addresses the "limited opportunities for learn-by-doing" and "no query-to-code

translation" challenges by providing a simple, user-friendly environment to experiment with

the API and transform the request into code snippets. The introduction tutorial to the DHIS2

API addresses the challenges of the “complex data model” and “complicated terminology” by

offering an interactive, scenario-based learning experience to familiarize with the DHIS2 data

model, the terminology in this data model, and API usage. Additionally, the tutorial addressed

the “Limited opportunities for learn-by-doing” challenge as the tutorial was interactive.

.

55

6 Findings from Evaluation

This chapter will go through the evaluation phase of the data collection to evaluate how the

designed artifacts responded to the diagnosed challenges in the previous chapters. Evaluating

the designed artifacts can determine how the artifacts support complementors in learning the

DHIS2, which in return can contribute to answering the research question of how to design

resources for supporting complementors. This chapter will begin by presenting an evaluation

of the API testing tool, followed by an evaluation of the introductory tutorial to the DHIS2

API.

6.1 API testing tool

6.1.1 Diagnosed challenge: Limited opportunities for learning by doing

The diagnosed challenge of “limited opportunities for learning by doing” was addressed by

designing the API testing tool and using it in the introduction tutorial to the DHIS2 API. This

facilitates hands-on learning by allowing users to quickly test and validate their API

understanding. The learn-by-doing approach offers an alternative strategy to just reading about

the API, which multiple students found helpful when learning to use the API. Several students

empathized how the learn-by-doing approach and the API testing tool supported learning the

DHIS2 API. As one student expressed: “Interactivity is basically how I learn. […] To see the

changes in practice without just having to read a text is very useful. I like seeing myself how

change to a parameter changes the response.”.

In the diagnosis phase, students were observed employing a brute-forcing strategy for learning

the API. This involved repeatedly making minor changes and then testing them. The API

testing tool was designed to support and facilitate this iterative learning approach by providing

an environment where students could easily experiment with sending requests and examining

the response. Several students found this trial-and-error method helpful, as one remarked: «If I

had difficulties with a query, I just did more testing. When things got more difficult, it only

required you to do more testing”.

The API testing tool supported the learning process for beginners by offering predefined

endpoints and parameters. This was useful for students without experience working with the

API, as searching for available parameters and endpoints was unnecessary. Additionally, the

56

tool supported students by preventing them from making common errors, a feature that many

students found beneficial. One of the students detailed the experience as follows:

“Most importantly, the tool helps understanding what the API does. The tool is easy to

navigate. You have one explicit field for each value. […] Whenever I tried exploring

through the web browser, I often made mistakes and retrieved incorrect results. In

addition, I could not remember how exactly to write query strings. So having specific

fields (in the API testing tool), assisting you in what to write, helped me.”

During the diagnosis stage, it was observed that students used a variety of approaches for

exploring the API. Notably, some students tested the API by writing, editing, and running code

in their applications. This method was shown to be inefficient. Thus, a suggestion was to enable

students to easily adapt and test without doing this by code. The API testing tool responds to

this suggestion, providing a more efficient way for students to interact directly with the API.

One of the students expressed how this was useful: “It was much more efficient being able to

retrieve something from the API before digging into how to do it in the code.”

The clarity and readability of responses provided by the API testing tool were recognized as

important for students’ understanding of the DHIS2 API. As one student expressed, “First and

foremost, the response which helped me understand the API. […] The response has a very nice

overview, comes in a hierarchy and is colored.”. Another student underlines this: “The API

testing tool gives a good overview to quickly let you retrieve data and view that you have

retrieved correct information.” Given the numerous test of the API conducted by students, the

ability to quickly interpret these responses for evaluating the API’s response was identified as

important.

6.1.2 Diagnosed challenge: No query-to-code translation

One of the main difficulties students encountered was converting an API request into a DHIS2-

specific syntax so that it could be used in code. The API testing tool incorporated a “convert to

code” functionality in response to this challenge. This allows user to easily export their API

queries as code snippets that can be directly integrated into code. By offering this functionality,

the tool eliminates some of the complexity and confusion associated with the manual

conversion of API requests. Many students expressed this export to code as a helpful feature.

One student expressed, “I like the export to code function. It helped me understand how to use

57

it in my code”. As a result, students could experiment with the API using the tool, and when

they got the desired result, apply the API request to their code.

Some students also found the export-to-code functionality helpful as it offers a code example

of how API requests were converted to the DHIS2-specific syntax. Instead of copying and

pasting the exported code into the code base, some students used it as a code example to learn

how to write an API request by code. One of the students describes this during the interview:

«Export to code shows how you code it basically. Based on this code, I could conclude how I

can do it with other queries. So you could you just swap the values from this example code. It

helped me a lot to understand how to code the query»

In summary, the API testing tool efficiently addressed the challenge of converting API queries

through code, which was no longer a widespread issue among students. Through observations

and conversations with students, it was discovered that many students found this helpful. There

were no reports of difficulties related to using API requests in code.

58

6.2 Introduction tutorial to the DHIS2 API

6.2.1 Diagnosed challenges: Complicated terminology and complex data model

A challenge identified in the diagnosis was that students encountered difficulties

comprehending the data model due to its abstraction layers and terminology. This thesis found

similar challenges: there’s a high usage of words likely not to be understood by new

complementors. The DHIS2 app course was designed to support the challenge of complicated

terminology by exemplifying a scenario and relating the data model to real-world examples.

Using illustrations to map this scenario to the data model and terminology used in the data

model was meant to support the students' understanding of terminology. However, based on

student feedback, the terminology was still a concern. Terminology being used, such as

“dataElement,” had low meaning for the students, meaning it was difficult to grasp the concept

of what a dataElement is and what it should be used for. One of the students expressed this

concern: “For instance, dataset and dataSetValue were confusing. In the beginning, I did not

have a clue what a dataElement could be”.

Many of the presented words had many similarities, such as “DataElement,” “DataValue,“

“DataSets,” “DataSet,” and “DataValueSets.” With the students being presented with various

confusing terms, an additional challenge was that these presented terms had similarities,

making it difficult to distinguish one from another. One student articulated this confusion by

saying, “DataElement, dataValue, dataModel, and DataSet, they all look similar to me..”.

Additionally, all the terms shared the common trait of containing the word “Data,” which offers

little insight into their specific meanings. Another student expressed confusion regarding this

data terminology by saying, “DataSet and Datavalue. There’s a lot of ‘data data.’ These were

factors that confused students understanding and differentiating the terminology.

The terminology students mentioned as difficult was often associated with the terminology

used in the data model. Not understanding this terminology was a concern as it’s crucial for

using the API. There were relationships between the different elements in the data model,

which made it important to understand these associations and their relevance to each element.

As one student expressed, “I was worried about being able to understand the data model

initially. It was a lot of different names and elements to be handled simultaneously. ”.

Overall, learning the data model presented several challenges: firstly, understanding the

different terms was an obstacle. Secondly, the students were found to have difficulties

59

differentiating between similar terms. And finally, as the data model had many relationships

between the elements, it was essential to understand how the different terminology was related.

In response to overcoming the challenge of complicated terminology and complex data model,

students suggested several strategies for adapting the DHIS2 app course content to assist in

building a better understanding. This included adding more visual aids such as diagrams,

illustrations, and maps to explain terminology and the data model. Students in the interviews

expressed that a clear structure and visualization of how different components are linked and

related is very helpful. These illustrations should ideally contain relatable examples of what

the element can represent. I.e., the DHIS2 app course used the medication “oxycontin” as an

example, yet some students had difficulties understanding the example due to being unfamiliar

with the medication. Figure 6.1 shows an illustration in the tutorial, which students did not find

helpful as it lacked a relatable example. Figure 6.2 shows a tutorial illustration with a relatable

example that was more helpful for students.

Figure 6.1: Illustration in tutorial with no relatable example

60

Figure 6.2: Illustration in tutorial with a relatable example

Besides maps and illustrations for learning the terminology and data model, several students

reported that practicing using these terms helped build a better understanding of them. The API

testing tool offered this functionality, allowing students to run API queries meanwhile learning

the terminology and its interrelations in the data model. As one student mentioned, “I learned

the data model by using the API testing. Just editing fields and viewing how it affected the

results helped.” Being able to immediately test and verify understanding of the terminology

and data model was found to be a helpful strategy for several students

Students liked the step-by-step tutorial provided for learning the API. This tutorial, which

included tasks, gave students a specific purpose for exploring the API. Furthermore, the

tutorials included answers to these tasks allowing students to compare their work to the

expected result. As one student noted, “The walk-through with the API testing tool where you

had to complete a task and use the result in completing the next task gave you a better

understanding of the terminology”. This interactive approach made the DHIS2 app course

more engaging and hands-on, supporting the learning experience.

61

6.3 Chapter Summary

The evaluation of the designed artifacts that addressed the challenges identified in the diagnosis

was presented in this chapter. Specifically, the API testing tool and the introductory tutorial to

the DHIS2 API were evaluated.

Firstly, the API testing tool was evaluated. It did address the challenge of ‘limited opportunities

for learning by doing’ by offering an environment for hands-on exploration and

experimentation, which many students found useful. Moreover, it supported the challenge of

‘no query-to-code translation’ by incorporating a feature that allows users to easily convert

their API requests into code snippets.

Second, the introduction tutorial to the DHIS2 API was evaluated. This evaluation showed

mixed results. The tutorial was designed to address the ‘complicated terminology’ and

‘complex data model’ challenges. While it did provide some clarity through examples,

illustrations, and interactivity, students still experienced confusion around the terminology and

the data model. This tutorial also addressed the issue of ‘limited opportunities for learning by

doing’ as it was interactive, enabling students to experiment with the API while learning it.

Many students found this interactive approach helpful in learning the API.

62

7 Design considerations

This chapter will outline four design considerations based on findings from the diagnosis,

design and demonstration, and evaluation. These design considerations can serve as valuable

guidance for platform owners when designing broadcasting KBRs to support new

complementors learning the platform’s API. Table 7.1 summarizes these design considerations

with a short description to provide a clear overview. Following the table, each design

consideration will be discussed in greater detail, highlighting their importance and offering

practical guidance for their implementation.

Design consideration Description

Offering a simple testing

tool

The platform owner can provide a tool that allows complementors to easily test,

verify, and explore the platform’s APIs, enabling them to interact with the API

directly without writing code or using third-party tools. This testing tool

supports the learning process of new developers by facilitating practical usage

of the API, enabling fast iterations of testing the API. To facilitate supporting

of new complementors, the tool should ensure simplicity by reducing the

complexity of usage, such as having predefined parameters and endpoints.

Facilitate exporting to

code

The platform owner can complement the testing tool with functionality for

converting API requests made in the testing tool into a code snippet usable in

the platform’s supported programming languages. This functionality aims to

bridge the gap between testing the API and its practical applications, making it

easier for complementors to implement the API requests within their code.

Provide interactive

tutorials

The platform owner can offer tutorials combined with hands-on activities that

enable complementors to explore the API and apply knowledge while learning

about the API. These tutorials introduce learners to the API's practical use,

where immediate feedback from interactive resources supports the learning

process. Platform owners making these interactive tutorials should combine

tutorials with hands-on activities, including problem-specific descriptions, and

include tools where learners can test out what is described in the tutorial.

Support esoteric

terminology

comprehension

The platform owner can provide resources supporting complementors to better

understand the esoteric terminology used in the platform’s API. Esoteric poses

a significant learning barrier for new complementors, leading to confusion and

difficulties using the APIs. Thus, platform owners need to design resources

supporting the comprehension of these terms. These resources can include such

as tutorials mapping esoteric terms to familiar terms and providing illustrations

explaining the terms.

Table 7.1: Design considerations

63

7.1 Offering a simple testing tool

The platform owner can provide a tool that allows complementors to easily test, verify, and

explore the platform’s APIs, enabling them to interact with the API directly without writing

code or using third-party tools. The findings of this thesis indicate that deploying a simple

testing tool supported complementors learning to use the platform’s API. Complementors have

assumptions about how the API works based on tutorials and other documentation related to

the API. By offering an option where complementors can easily test and verify assumptions

about the API, platform owners can facilitate the learning process of new developers. A testing

tool enables a different approach to learning the API through interaction and exploring its

content, complementing other learning resources. Such a tool is particularly efficient when

combined with API documentation due to enabling testing of assumptions and mapping

documentation to practical usage. Figure 7.1 illustrates an example of a testing tool as designed

in this research project.

Figure 7.1: Example of a simple testing tool as designed in this research project

Complementors use the testing tool to explore the API by editing requests, sending them, and

receiving responses. Through this procedure, complementors become familiar with various

aspects of learning the API, such as how to use it, the structure of the API, relationships

64

between different parts, and relevant terminology. By deploying a testing tool, the platform

owner can facilitate complementors engaging in this procedure iteratively, allowing them to

repeatedly edit, test and receive feedback on API requests.

Providing a testing tool enables platform owners to decide functionality supported and tailor it

to meet the needs of their complementors. For onboarding new complementors, it’s essential

to consider their needs when designing the tool. To support their learning of using the API, the

tool should be designed with simplicity in mind. This can be achieved by reducing its

complexity, such as only displaying available parameters and presenting only relevant

endpoints. As found in this thesis, offering complementors a limited subset of API endpoints

is more suitable for not overwhelming the complementors with all supported functionality of

the API. To assist complementors in making the API requests, input fields for parameters

should include an example and only accept the required format, i.e., a number. In the event of

an error, the testing tool must display clear and easily understandable error messages.

The response section of the testing tool requires particular attention as complementors rely on

understanding its contents to benefit from the tool. Platform owners should emphasize

designing this well-formatted, including indenting and color-coding of syntax to ease the

complementors interpretation of result messages. Figure 7.2 illustrates an API request made

using a web browser, as some students used. The response is displayed below the search bar,

and it is apparent that the response is just a bundle of unformatted text, making it difficult for

users to interpret the response.

Figure 7.2: An API request where response is not formatted.

As shown in Figure 7.3, the testing tool represents a more user-friendly display of the API

request results. The syntax is highlighted with colors, such as green for property names, and

the text is indented. This representation makes it easier for complementors to interpret the

information, which is essential for understanding the API.

65

Figure 7.3: An API request where the response is well formatted

Another benefit of provisioning a testing tool is that it allows the complementors to engage and

explore the API directly without writing code or using a third-party tool to interact with it. This

lowers the boundary for testing and exploring the API, especially for new complementors who

may not be familiar with other tools for interacting with the API. Additionally, not having to

write code for testing the API significantly increases the speed for complementors to test and

explore the API. Lastly, providing a testing tool prevents the risk of coding errors when

exploring the API. Not having to write core ensures complementors that occurred errors are

related to the API requests, not coding errors.

In summary, a testing tool supplements the broadcasting KBR for supporting new

complementors in learning to use the API. A testing tool allows complementors to verify their

assumptions about the API, facilitating their learning process. The tool grants possibilities of

fast iterations of testing, easy-to-understand responses, and an interactive learning environment

that supports the desired learn-by-doing strategy. Platform owners providing such tools can

tailor them to meet the complementors’ needs, such as simplicity for supporting new

complementors. The tool enables complementors to engage and explore the API directly

without writing code or using third-party tools, reducing barriers to testing the API and

potential errors using other tools.

66

7.2 Facilitate exporting to code

The platform owner can complement the testing tool with functionality for converting API

requests made in the testing tool into a code snippet usable in the platform’s supported

programming languages. Findings in this thesis indicate that platform owners should include

this export-to-code functionality when designing a testing tool. This allows complementors to

directly apply the knowledge they acquired during the exploration of the API to a code snippet

that can be used in their code. Figure 7.4 shows an example of exporting to code using the

testing tool. Exporting the queries to code bridges the gap between learning to use the API and

its practical applications.

Platforms may require a platform-specific approach for sending queries to the API. For

example, this thesis found that DHIS2 libraries required a custom syntax for sending queries

to the API. As complementors had difficulties writing such DHIS2-specific syntax, it was

beneficial to have an export-to-code functionality to support practical usage of the API request.

Complementors used this export code by applying it directly to the code. However, as found in

this thesis, several complementors also used the export-to-code functionality as a code example

for learning how to write API requests by code.

Figure 7.4: Example of a code example produced using the export-to-code function

67

7.3 Provide interactive tutorials

The platform owner can offer tutorials combined with hands-on activities that enable

complementors to explore the API and apply knowledge while learning about the API. The

findings of this thesis show that interactive tutorials support the understanding of

complementors learning to use the platform API. The interactive tutorials combine tutorials

with interactive activities of sending API requests enabling complementors to explore the API

and apply their knowledge during the tutorial. This type of tutorial promotes an engaging

learning approach where complementors learn new API concepts before interacting with the

API and seeing how it applies in practice, promoting the understanding of API structure. To

support new complementors in understanding the API, platform owners should provide some

tutorials with limited complexity. Figure 7.5 illustrates an example of an interactive tutorial as

designed in this research project.

Figure 7.5: A part of the interactive tutorial as designed in this research project

68

A benefit of interactive tutorials is the ability to provide descriptions and guidance within the

context of hands-on activities. As suggested in the design consideration of provisioning a test

tool, such a tool is particularly efficient when combined with API documentation. The tutorial

introduces new concepts where a testing tool enables immediate testing of such described

concepts. Platform owners can use such tutorials to demonstrate how the API should be used.

Descriptions in the tutorials should be problem-specific and elaborate on how to use the API

for solving practical tasks, together with a detailed description of the expected results of the

specific task. Overall, using interactive tutorials balances the text-heavy nature of traditional

tutorials with practical and experimental learning, which is more engaging and helpful for

users.

The interactive tutorials should preferably have an embedded tool within the learning

environment, allowing the complementors to use this tool instead of relying on external tools.

Such a tool can be adapted to align with the tutorial content by, i.e., validating if the request is

correct according to the tutorial task. If the tutorial requires setting up an external API testing

software such as “Postman,” this may cause a barrier for new complementors unfamiliar with

such tools. Providing an embedded, easy-to-use tool lowers the threshold for new

complementors to explore and test the API.

69

7.4 Support esoteric terminology comprehension

The platform owner can provide resources supporting complementors to better understand

esoteric terminology being used in the platform’s API. While designing broadcasting KBRs

for an enterprise API, it’s essential to consider that esoteric terminology such as

“dataElements” or “dataSets” as shown in the findings of this thesis, represents a significant

learning barrier for new complementors. Whenever introducing such terminology,

documentation should dedicate additional resources to explaining these terms. This may

include a mixture of text, illustrations, and visual representations carefully explaining the terms

and their intents. The documentation should map the esoteric term to language familiar to the

complementors. Avoid presenting multiple esoteric terms on the same documentation page, as

this can easily confuse the various terms; instead, dedicate separate resources for different

esoteric terminology. If esoteric terminology is related to other esoteric terminology, include

an illustration demonstrating this. When possible, avoid using esoteric terminology in the

documentation. Instead, platform owners should consider using language that is easy to

understand and free of jargon. This approach can help reduce confusion and make the

documentation more accessible to a broader range of complementors, including new

complementors.

Enabling complementors to test the API using the terminology early in the learning process

positively affected the understanding of esoteric terminology. Deploying a testing tool, as

suggested in the first design consideration, can support complementors with understanding

esoteric terminology. Platform owners should consider designing broadcasting KBRs allowing

contributors to quickly access and try out terminology being introduced, helping contributors

verify understanding and theories which they may have about the platform’s terminology.

This design consideration also raises awareness of the confusion related to esoteric

terminology, which platform owners should consider when designing the platform APIs. When

designing the APIs and terminology, platform owners should ensure that esoteric terms are

distinguishable, meaning their names are not very similar. The platform owner should strive to

use names which is easy to understand, making it easier for complementors to understand and

use the terminology correctly. This may reduce the provisioned KBRs related to terminology,

as clear naming would cause less confusion in learning the platform APIs. Requirements for a

high amount of provisioning of KBRs related to terminology could indicate that the

terminology is esoteric and confusing for new complementors.

70

8 Discussion and Contributions

The thesis will now discuss how the findings of this thesis contribute to research about KBRs

and their role in addressing the knowledge boundaries, specifically for new complementors.

By presenting three contributions to research and a set of practical contributions, this thesis

extends current knowledge on how platform owners can support large audiences of new

complementors in learning to use the platform API. Before delving into the contributions, Table

8.1 is included to summarize them.

71

Contribution to Contribution Summary of contributions

Research Extended

knowledge of

broadcasting API

KBRs

In this research, resources were designed to support large

audiences of new complementors learning to use platform

APIs. These resources align with Foerderer et al. (2019)’s

definition of broadcasting KBRs. The resources contribute to

existing research on broadcasting KBRs by exploring how

various types of KBRs can be designed to support new

complementors in learning enterprise platform APIs. The

thesis also addresses research calling out for interactive

learning by deploying such sources (Cummaudo et al., 2022;

Gao et al., 2020; Macvean, 2016)

Describes hosted

developer sandbox

as a broadcasting

KBR

Foerderer et al. (2019) propose several broadcasting KBRs,

including a “hosted developer sandbox,” however, there is no

description of such broadcasting KBR. A “testing tool” was

developed throughout this thesis, which can be considered a

hosted developer sandbox. Using the testing tool as a

foundation, this thesis extends Foerderer et al. (2019)'s

research on KBRs by offering a description of a hosted

developer sandbox, including what it is and how it supports

complementors.

Extends

understanding of

various approaches

addressing

knowledge

boundaries

Drawing upon existing literature and empirical findings, this

thesis highlights different levels of design in platforms for

addressing knowledge boundaries, including platform-level

design and resource-level design. This contributes to

understanding how knowledge boundaries can be addressed in

various ways (C. Baldwin & Woodard, 2008; Foerderer et al.,

2019; Ghazawneh & Henfridsson, 2013).

Practice Design

considerations for

platform owners

The thesis contributes to practice by providing four design

considerations that can serve as valuable guidance for

platform owners when designing broadcasting KBRs to

support new complementors learning the platform’s API,

including (1) Offering a simple testing tool, (2) Facilitate

exporting to code, (3) Provide interactive tutorials, and (4)

Support esoteric terminology comprehension

Extended resources The thesis also contributes to practice by extending resources

used by complementors of DHIS2 and students taking the

course Development in Platform Ecosystems at the University

of Oslo

Table 8.1: Summary of contributions

72

8.1 Contribution to research

The thesis contributes to the field of platform ecosystems (Tiwana, 2014) by exploring how

platform owners can design resources supporting complementors learning to use the platform’s

boundary resources. Furthermore, it contributes to research on boundary resource usage

(Ghazawneh & Henfridsson, 2013), particularly in the context of platform APIs as a boundary

resource. Building upon Foerderer et al. (2019)’s research on KBRs, this thesis explored how

platform owners can support new complementors in learning enterprise platform’s APIs by

designing broadcasting KBRs. This exploration incorporates approaches previously identified

as useful in facilitating API learning, such as interactivity, extending knowledge on how such

resources support API learning (i.e., Beaton et al., 2008; Gao et al., 2020; Jeong et al., 2009).

Finally, it contributes to understanding how platform owners can address knowledge

boundaries in various ways (C. Baldwin & Woodard, 2008; Foerderer et al., 2019; Ghazawneh

& Henfridsson, 2013).

The following discussions will elaborate on how this thesis contributes to research, including

a) a discussion of designing broadcasting API KBRs, b) examining a hosted developer sandbox

as a KBR, and c) a platform and resource design level discussion about how platform owners

addressing knowledge boundaries for supporting complementors in learning the APIs

73

8.1.1 Broadcasting API KBRs

Using Foerderer et al. (2019) definition of broadcasting KBRs, both the API testing tool and

the interactive tutorial to the DHIS2 API can be classified as such. These resources aim to reach

a wide range of complementors and offer a standardized approach to knowledge transfer

without requiring direct interaction with the platform owner. Throughout this thesis, it has been

explored how these broadcasting KBRs can be designed to address the identified challenges

associated with API learnability. By evaluating the designed resources, the findings contribute

to existing research on how broadcasting API KBRs can be designed to support new

complementors in learning APIs.

Prior research about API learnability has been oriented toward the challenges complementors

have in learning to use APIs and how API documentation can be structured to sufficiently

onboard complementors (Jeong et al., 2009; Meng et al., 2018). Although technical

documentation is relevant in conveying knowledge about how the API should be used, several

researchers find this an imperfect resource for conveying the knowledge (Parnin & Treude,

2011; Robillard, 2009; Robillard & DeLine, 2011). Low research attention has been received

on other types of documentation artifacts, representing a high value for complementors,

including how to produce documentation, how they should be communicated, and the most

efficient means for developers to consume them (Cummaudo et al., 2022). An interactive

tutorial and an API testing tool for exploring the API were designed as part of this research.

These serve as complementary resources to the technical documentation and can contribute to

the lack of research on supplementary resources.

An interactive tutorial supplements technical documentation in supporting API learnability.

The content of such tutorials differs from the technical documentation, offering a starting point

and step-by-step tutorial for complementors to understand the API and its practical usage. The

tutorials can support complementors with common difficulties experienced when learning a

new API, such as mapping API documentation to practical usage and integrating multiple API

elements when solving a task (Duala-Ekoko & Robillard, 2012; Robillard, 2009; Robillard &

DeLine, 2011). The findings of this thesis indicate that complementors find such tutorials

useful, using a step-by-step approach to learning the API. By providing an interactive tutorial

containing practical scenarios, showing best usage practices, and engaging the complementors

in solving practical tasks, platform owners can more efficiently address some of the knowledge

boundaries complementors experience in learning the APIs. The tutorials can introduce and

74

explain concepts in a more accessible way without having to include all the technical details

that should be included in the technical documentation.

Furthermore, these tutorials can introduce subsets of the API functionality. In this introduction,

a more in-depth description can be included using illustrations and examples shown during this

thesis to be valuable for complementors. Introducing only a subset of the functionality with in-

depth descriptions can limit the overwhelming complexity typically associated with using

enterprise platforms that offer a broad range of functionalities (Beaton et al., 2008; Foerderer

et al., 2019; Jeong et al., 2009). In return, this makes it more manageable for new

complementors to learn the APIs of these enterprise platforms.

Additionally, an API testing tool was designed in this research project. Previous research found

that such interactive approaches were known to affect the user’s experience learning the API

(Gao et al., 2020; Robillard & DeLine, 2011). This thesis confirms this observation, finding

that incorporating interactive resources supports the API learning outcome of complementors.

Other studies related to such interactive tools show that users make heavy use of these tools

either instead of reading documentation or used together with reading documentation

(Daughtry et al., 2017; Macvean, 2016). Through implementing such an interactive tool in the

online course, this research finds the same pattern: combining descriptions with an interactive

approach where complementors can test the API and verify their understanding of the

descriptions was helpful in API learnability.

In summary, this thesis has addressed supporting complementors learning APIs by designing

supplementary broadcasting KBRs, including an interactive tutorial and an API testing tool.

These resources extend Foerderer et al. (2019)’s research on KBRs by exploring how such

broadcasting KBRs can be designed to support new complementors in learning enterprise

platform APIs. Although this thesis only researched two types of broadcasting KBRs, further

avenues for research can explore how other types of broadcasting KBRs support different

expertise levels of complementors.

75

8.1.2 Hosted developer sandbox

As discussed in the related literature, KBRs play a critical role in overcoming knowledge

boundaries that can arise between platform owners and complementors. Foerderer et al. (2019)

suggest several empirical examples of a broadcasting resource, including technical

documentation and sample code, which have received high research attention (Parnin &

Treude, 2011; Robillard, 2009; Robillard & DeLine, 2011). Alongside other broadcasting

KBRs, a “hosted developer sandbox” is listed as an empirical example of a broadcasting KBR,

yet neither Foerderer et al. (2019) nor other research delve into the details of this specific type

of KBR. Given the absence of a detailed description of hosted developer sandbox, this thesis

interprets such resources as one provided by platform owners, enabling developers to

experiment with the platform’s capabilities through a sandbox environment. These sandbox

environments allow users to interact within an isolated system with sample data which does

not harm the company’s data (Klaus & Changchit, 2020). In this thesis, a testing tool was

hosted for complementors to use the APIs, which can be considered a hosted developer

sandbox. Using the testing tool as a foundation, this thesis contributes knowledge of

broadcasting KBRs by offering a description of a “hosted developer sandbox” as a broadcasting

KBR including what it is, how it supports complementors and a design consideration for

implementation.

A hosted developer sandbox is a resource hosted by the platform owner, providing

complementors with a sandbox environment where they can test code, explore new features,

and experiment with the boundary resources of the platform without worrying about negatively

impacting the production environment. The hosted developer sandbox allows developers to

work more efficiently and confidently using the platform’s boundary resources, as they can test

their code in a safe and controlled environment. By facilitating an iterative loop of testing,

feedback, and adjustments, the hosted developer sandbox enables complementors to quickly

test assumptions about how to use the platform’s boundary resources.

As found in this thesis, a hosted developer sandbox supports complementors using the APIs. It

enables complementors to experiment with platform capabilities without setting up a new code

project or modifying existing code. The developer sandbox was particularly useful for new

complementors with limited knowledge about existing tools facilitating testing and

exploration. For instance, an API testing tool used to explore the API was designed as part of

this research project. Although existing tools such as “Postman” leverage several of the same

capabilities as the API testing tool, it was found that many new complementors were not

76

familiar with these external tools. Provisioning a hosted developer sandbox as part of the

platform’s broadcasting KBRs supports new complementors' option to test and explore through

sandbox environments.

Through the findings, it has been suggested that a hosted sandbox is particularly efficient when

used in combination with other broadcasting resources, such as tutorials. For example, this

thesis found that an interactive tutorial combining text, illustrations, and examples with a

hosted developer sandbox was particularly useful for learning to use the API. Thus, platform

owners who want to provision such sandboxes should consider supplementing with additional

resources in collaboration with the sandbox.

As a broadcasting KBR, the hosted developer sandbox can enable complementors to address

challenges before requiring technical assistance by brokering and bridging activities. This

saves costs for platform owners as such activities are generally more costly and time-

consuming. If complementors do, however, require such assistance, the hosted developer

sandbox can support such bridging and brokering activities. Throughout the conduction of this

thesis, the hosted developer sandbox was often used when assisting students with concerns

related to learning the API. Demonstrating usage through a sandbox environment provided

practical knowledge on how to leverage the platform’s capabilities.

If platform owners choose to design a hosted developer sandbox, a recommendation is to

include functionality allowing users to easily convert the obtained results in the sandbox to a

code example that is usable in code projects (design consideration 2). As found in this thesis,

the export-to-code function was a valuable feature, allowing users to generate code that they

can use either as a code example or directly apply in the code project. Jeong et al. (2009)

proposed that it could be helpful with a feature enabling users to generate code when using

these testing tools. Such functionality was introduced as part of this research, and it was

confirmed that a significant number of contributors did find it helpful. Additionally, this thesis

has demonstrated one approach for implementing this type of functionality.

In summary, this thesis extends Foerderer et al. (2019)'s research on KBRs by offering a

description of a hosted developer sandbox, including what it is and how it supports

complementors. The findings revealed that complementors, especially new complementors,

greatly benefited from using hosted developer sandboxes when learning to use APIs. As a

result, platform owners designing broadcasting KBRs should consider deploying such hosted

developer sandboxes to support learning. Combining a hosted developer sandbox with other

77

complementary resources, such as an interactive tutorial and documentation, further enhances

the learning experience for complementors.

Further avenues for research could explore how a hosted developer sandbox can be designed

to support other areas of learning the platform’s resources, such as its UI libraries. Another

avenue to such developer sandboxes is to make them shareable and examine how this supports

conveying knowledge. Google et al. (2017) found that collaborations with other developers are

one reason for using API explorer tools. Similarly, throughout this research period, the hosted

developer sandbox was helpful when assisting complementors who encountered difficulties.

However, due to limitations of not being capable of sharing its state, the hosted developer

sandbox was not possible to use for assisting remotely. This motivates further exploring how

sharing the state of the hosted developer sandbox can support learnability.

78

8.1.3 Platform and Resource level design

API learnability is a crucial aspect of any platform, referring to the ease with which developers

can understand, learn and use an API to build applications (Meng et al., 2018; Tello-Rodríguez

et al., 2020). Throughout the diagnosis in this thesis, several challenges were identified in

existing resources related to API learnability. Based on the diagnosis, new broadcasting KBRs

were provisioned to support complementors using the API. However, the evaluation phase

found that the designed resources have limited impact in addressing some diagnosed

challenges, such as difficulties in understanding the terminology and the data model. This raises

questions about the effectiveness of addressing knowledge boundaries by providing KBRs.

Although the conducted approach of supplying KBRs should be considered an important

strategy for overcoming knowledge boundaries in platform ecosystems (Foerderer et al., 2019),

it does not capture the complete picture of supporting complementors in learning to use the

APIs.

The platform literature suggests that overcoming knowledge boundaries is possible by shaping

the boundary resources to support its complementors (Eaton et al., 2015; Ghazawneh &

Henfridsson, 2013) and that knowledge boundaries result from platform design (C. Y. Baldwin

& Woodard, 2008). On the other hand, Foerderer et al. (2019) argue the importance of

providing KBRs for addressing knowledge boundaries. Drawing from the empirical findings

and existing literature, an interesting understanding emerges regarding different approaches to

how platform owners can address knowledge boundaries for its complementors. This

understanding suggests that platform owners can focus on two levels of design for addressing

knowledge boundaries in platform ecosystems: resource-level design and platform-level

design:

Resource-level design refers to design efforts aiming to improve the KBRs for supporting

complementors in using the boundary resources. As Foerderer et al. (2019) argue, the platform

owner must provide KBRs to overcome knowledge boundaries. Throughout this research

project, resource-level design was emphasized in addressing knowledge boundaries by

designing various broadcasting KBRs, such as a testing tool and an interactive tutorial to

support complementors learning to use the DHIS2 API.

Platform-level design refers to design efforts aiming to improve the usability of the platform’s

boundary resources themselves, not just the knowledge resources that accompany them. It’s

argued that knowledge boundaries are a consequence of the platform’s design (C. Baldwin &

79

Woodard, 2008). This implies that designing the platform’s boundary resources addresses the

knowledge boundaries that emerge when complementors engage with these, and hence, also

the need for KBRs. For instance, complementors experienced challenges learning the DHIS2

API throughout the research project due to its complicated terminology and complex data

model. The DHIS2 Platform owner could address these challenges by designing the core

functionality to inherit less complexity or creating interfaces that abstract more of this

complexity.

Figure 8.1, which expands on Ghazawneh and Henfridsson's (2013) model of boundary

resource, illustrates the two levels of design, highlighting which elements of the platform

ecosystem each design level encompasses. The platform-level design involves the platform and

the design of the platform’s boundary resource. On the other hand, the resource-level design

involves the KBRs, which support complementors developing third-party applications in using

the boundary resources.

Figure 8.1: Design levels for supporting complementors

80

The levels of design should be considered jointly, as they can influence each other. As

demonstrated in this thesis, providing additional KBRs for overcoming knowledge boundaries

had a limited impact on some of the challenges associated with learning the API. One

explanation is that the provisioned KBRs were inadequate in addressing the identified

challenges. Another explanation is that this points to lacking usability in the boundary

resources, where complexity leaks from the platform core and increases knowledge boundaries.

In this case, provisioning KBRs to compensate may not be as effective in addressing the

concerns, implying a saturation state where investment in improving the KBRs has a limited

impact on learnability. In such a case, it could be more appropriate for platform owners to

instead emphasize platform-level design by improving the usability of the platform’s APIs.

However, emphasizing platform-level design may not be a straightforward task. Designing the

boundary resources for enterprise platforms poses unique challenges due to the platform’s large

and complex nature. Enterprise platforms target a large group of complementors, each with a

varying level of expertise (Jeong et al., 2009). The boundary resources should be designed to

be user-friendly by abstracting complex core logic facilitating the diversity of complementors

using them (Tiwana, 2014). However, serving the primary connectors to the platform core, it’s

also important that the boundary resources remain stable over time to ensure reliability for

complementary applications that rely on these (C. Baldwin & Woodard, 2008; Tiwana, 2014).

This stability requirement imposes a challenge by making it difficult for platform owners to

design boundary resources that should be stable yet requires adoption. However, by not

addressing the usability of the boundary resources concerns, this may result in broadening

knowledge boundaries.

In response to these challenges, platform owners may turn to resource-level design,

provisioning KBRs to support complementors in learning to use the boundary resources.

Provisioning these types of resources is an important strategy for addressing knowledge

boundaries (Foerderer et al., 2019). Additionally, supplying more KBRs can be considered an

attractive approach as it does not require adjustments to the platform’s design and thus won’t

break any functionality of the platform or its complementary applications. However, the extent

and quality of KBRs should be evaluated, as insufficient or inadequate KBRs may not be the

leading cause of the problem. If there is an excessive number of KBRs to explain a phenomena

and additional KBRs do not efficiently address the knowledge boundary as demonstrated in

this thesis, it may indicate saturation of KBRs. In this case, platform-level design may be more

efficient for addressing the knowledge boundaries.

81

While platform owners may encounter the challenging choice of deciding which level of design

– platform-level or resource-level to prioritize, it’s important to consider the implications of

each. On the one hand, platform-level design may be difficult due to the necessity of

maintaining stable interfaces. On the other hand, resource-level design by supporting

complementors with KBRs may not efficiently address the underlying usability issue,

especially when there’s a saturation of KBRs. This situation underscores the importance of

evaluating both levels of design in addressing knowledge boundaries, looking for indicators

such as saturation. However, saturation is likely not the only indicator. There are presumable

more indicators that could guide platform owners in determining which level of design would

be most effective in addressing the knowledge boundaries. Thus, additional research is required

to identify and explore these potential indicators.

82

8.2 Contributions to practice

In addition to contributing to research, this thesis also seeks to provide practical knowledge on

designing broadcasting KBRs for new complementors. One of the key contributions is the

development of the four design considerations (1) Offering a simple testing tool, (2) Facilitate

exporting to code, (3) Provide interactive tutorials, and (4) Support esoteric terminology

comprehension that platform owners can consider when creating KBRs. These four design

considerations can serve as valuable guidance for platform owners in designing broadcasting

KBRs supporting complementors in learning the platform APIs. Furthermore, the thesis

demonstrates how these design considerations can be designed.

Additionally, this thesis contributes to the learning content of the Master Course “Development

in Platform Ecosystems” at the University of Oslo, teaching students about platform

ecosystems and application development for such ecosystems. Specifically, students taking this

course go through the self-paced DHIS2 app course, where they are taught how to develop

applications for the DHIS2 platform. This research project has designed an API tool and an

interactive tutorial within this DHIS2 app course, supporting students taking this course.

Inspections of the network traffic to the DHIS2 app course found that most visitors were not

students of the Development in Platform Ecosystems course but other complementors

interested in learning development for the DHIS2 platform. This broadens the scope of this

research project's practical contributions by supporting students and other complementors of

DHIS2 who visit the DHIS2 app course.

83

8.3 Limitations

In this thesis, several limitations should be acknowledged. First, only students were observed,

and no experts were included in the research, as the focus was on new complementors. The

students had a relatively homogenous starting point, as they all came from the University of

Oslo. This homogeneity may have influenced the data collection by not capturing a broader

range of expertise of complementors. The incentives for students were also different. Unlike

complementors who may be motivated by developing a new app for the DHIS2 to become a

complementor, students were primarily focused on completing the course.

Another limitation may be social desirability bias and the “demand effect.” The concept behind

the demand effect is that subjects respond to a question as they believe the researcher desires

(Grimm, 2010). Several students taking the course were familiar with my study, including that

I had designed the API testing tool and the interactive tutorial, which may have influenced the

data collection. To handle this possible bias, recommended strategies for minimizing social

desirability were utilized, such as carefully designing the interviews to avoid leading questions

(Grimm, 2010).

The study’s reliance on a single case where students learned development for the DHIS2

enterprise platform also presents a limitation, as the findings could be more generalizable if

other enterprise platforms, such as SAP, were included.

Based on the findings of this thesis, several design considerations were proposed. It’s important

not to view these considerations as strict rules for designing broadcasting KBRs supporting

learning the platform APIs; instead, These design considerations can serve as valuable

guidance for platform owners when designing broadcasting KBRs to support new

complementors to learning the platform APIs.

Lastly, although this research project focused on enterprise platforms, the applicability of the

design considerations might extend to non-enterprise platforms. However, it’s important to

emphasize that the insights and recommendations made in this study are particularly tailored

to enterprise platforms, reflecting their unique characteristics.

84

9 Conclusion
In conclusion, this thesis has addressed the research question, “How can enterprise platform

owners design knowledge boundary resources to support large audiences of new

complementors in learning to use the platform APIs?”. To address this question, the study

participated in the “Development in Platform Ecosystems” course at the University of Oslo. In

this course, 120 students learn how to develop applications in platform ecosystems, and as part

of the curriculum, they are taught to use the APIs of the enterprise platform DHIS2. Throughout

the course, this thesis collected data by diagnosing, designing, demonstrating, and evaluating

resources that should support students in learning to use these platform APIs. The findings of

this data collection resulted in a practical contribution of four design considerations, including

(1) Offering a simple testing tool, (2) Facilitate exporting to code, (3) Provide interactive

tutorials, and (4) Support esoteric terminology comprehension. These design considerations

can serve as valuable guidance for platform owners when designing broadcasting KBRs to

support new complementors learning the platform APIs.

Furthermore, the thesis contributes to existing research on boundary resource usage

(Ghazawneh & Henfridsson, 2013), particularly in the context of platform APIs as a boundary

resource. The thesis extends Foerderer et al. (2019)’s research on broadcasting KBRs in three

ways: Firstly, it explores how various types of broadcasting API KBRs can be designed to

support new complementors in learning enterprise platform APIs. Secondly, it explores the

hosted developer sandbox, including a description of what it is and how it supports

complementors. Third, it discusses platform and resource level design, highlighting different

levels of design in platforms for addressing knowledge which contributes to understanding how

knowledge boundaries can be addressed in various ways (C. Baldwin & Woodard, 2008;

Foerderer et al., 2019; Ghazawneh & Henfridsson, 2013).

In conclusion, these contributions to research and practice extend the knowledge in platform

ecosystems by providing insight into how to support new complementors learning the

platform’s APIs. The platform strategy is endangered if not adequate resources are provided

for supporting complementors in using the platform’s boundary resources, such as APIs

(Foerderer et al., 2019). The thesis has addressed this challenge and contributes to the field of

platform ecosystems (Tiwana, 2014) by exploring how platform owners can design these

resources, supporting complementors learning to use the platform’s boundary resources. This

is crucial for onboarding complementors and adapting to a successful platform strategy.

(Bergvall-Kåreborn & Howcroft, 2014; Foerderer et al., 2019; Tiwana, 2014)

85

10 References

4.5 The Data Model. (n.d.). Retrieved June 1, 2022, from

https://docs.dhis2.org/archive/en/2.30/developer/html/techarch_data_model.html

Baldwin, C., & Woodard, C. J. (2008). The Architecture of Platforms: A Unified View.

Platforms, Markets and Innovation. https://doi.org/10.2139/ssrn.1265155

Baldwin, C. Y., & Woodard, C. J. (2008). The Architecture of Platforms: A Unified View.

SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1265155

Beaton, J. K., Myers, B. A., Stylos, J., Jeong, S. Y. (Sophie), & Xie, Y. (Clare). (2008).

Usability evaluation for enterprise SOA APIs. Proceedings of the 2nd International Workshop

on Systems Development in SOA Environments - SDSOA ’08, 29.

https://doi.org/10.1145/1370916.1370924

Bergvall-Kåreborn, B., & Howcroft, D. (2014). Persistent problems and practices in

information systems development: A study of mobile applications development and

distribution: Mobile applications development and distribution. Information Systems Journal,

24(5), 425–444. https://doi.org/10.1111/isj.12036

Bianco, V. D., Myllarniemi, V., Komssi, M., & Raatikainen, M. (2014). The Role of Platform

Boundary Resources in Software Ecosystems: A Case Study. 2014 IEEE/IFIP Conference on

Software Architecture, 11–20. https://doi.org/10.1109/WICSA.2014.41

Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., & Klemmer, S. R. (2009). Two studies

of opportunistic programming: Interleaving web foraging, learning, and writing code.

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1589–1598.

https://doi.org/10.1145/1518701.1518944

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research

in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Carlile, P. R. (2004). Transferring, Translating, and Transforming: An Integrative Framework

for Managing Knowledge Across Boundaries. Organization Science, 15(5), 555–568.

https://doi.org/10.1287/orsc.1040.0094

Corbin, J., & Strauss, A. (n.d.). Grounded theory research: Procedures, canons, and evaluative

criteria.

Cummaudo, A., Vasa, R., Grundy, J., & Abdelrazek, M. (2022). Requirements of API

Documentation: A Case Study into Computer Vision Services. IEEE Transactions on Software

Engineering, 48(6), 2010–2027. https://doi.org/10.1109/TSE.2020.3047088

Cusumano, M., Yoffie, D., & Gawer, A. (2020). The Future of Platforms. MIT Sloan

Management Review.

Danielsen, P. J., & Jeffrey, A. (2013). Validation and Interactivity of Web API Documentation.

2013 IEEE 20th International Conference on Web Services, 523–530.

https://doi.org/10.1109/ICWS.2013.76

86

Daughtry, J., Macvean, A., & Luke, C. (2017). The Uses of Interactive Explorers for Web

APIs. Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security - CCS ’13, 49–60. https://doi.org/10.1145/2508859.2516655

DHIS2 Design Lab—HISP Centre. (n.d.). Retrieved April 20, 2023, from

https://www.mn.uio.no/hisp/english/dhis2-design-lab/index.html

DHIS2 Overview. (n.d.). DHIS2. Retrieved April 20, 2023, from https://dhis2.org/overview/

Duala-Ekoko, E., & Robillard, M. P. (2012). Asking and answering questions about unfamiliar

APIs: An exploratory study. 2012 34th International Conference on Software Engineering

(ICSE), 266–276. https://doi.org/10.1109/ICSE.2012.6227187

Eaton, B., Elaluf-Calderwood, S., Sørensen, C., & Yoo, Y. (2015). Distributed Tuning of

Boundary Resources: The Case of Apple’s iOS Service System. MIS Quarterly, 39(1), 217–

243. https://doi.org/10.25300/MISQ/2015/39.1.10

Foerderer, J., Kude, T., Schuetz, S. W., & Heinzl, A. (2019). Knowledge boundaries in

enterprise software platform development: Antecedents and consequences for platform

governance. Information Systems Journal, 29(1), 119–144. https://doi.org/10.1111/isj.12186

Gao, G., Voichick, F., Ichinco, M., & Kelleher, C. (2020). Exploring Programmers’ API

Learning Processes: Collecting Web Resources as External Memory. 2020 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC), 1–10.

https://doi.org/10.1109/VL/HCC50065.2020.9127274

Gat, I., Remencius, T., Sillitti, A., Succi, G., & Vlasenko, J. (2013). The API Economy: Playing

the Devil’s Advocate. 26(9).

Ghazawneh, A., & Henfridsson, O. (2013). Balancing platform control and external

contribution in third-party development: The boundary resources model. Information Systems

Journal, 23(2), 173–192. https://doi.org/10.1111/j.1365-2575.2012.00406.x

Grimm, P. (2010). Social Desirability Bias. In J. Sheth & N. Malhotra (Eds.), Wiley

International Encyclopedia of Marketing (p. wiem02057). John Wiley & Sons, Ltd.

https://doi.org/10.1002/9781444316568.wiem02057

Hevner, March, Park, & Ram. (2004). Design Science in Information Systems Research. MIS

Quarterly, 28(1), 75. https://doi.org/10.2307/25148625

HISP UiO Strategy Update 2019-2022. (2019).

Home. (n.d.). DHIS2. Retrieved April 20, 2023, from https://dhis2.org/

Jeong, S. Y., Xie, Y., Beaton, J., Myers, B. A., Stylos, J., Ehret, R., Karstens, J., Efeoglu, A.,

& Busse, D. K. (2009). Improving Documentation for eSOA APIs through User Studies. In V.

Pipek, M. B. Rosson, B. de Ruyter, & V. Wulf (Eds.), End-User Development (Vol. 5435, pp.

86–105). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-00427-8_6

Kauschinger, M., Schreieck, M., Boehm, M., & Krcmar, H. (2021). Knowledge Sharing in

Digital Platform Ecosystems – A Textual Analysis of SAP’s Developer Community. 18.

87

Klaus, T., & Changchit, C. (2020). Sandbox Environments in an ERP System Context:

Examining User Attitude and Satisfaction. Electronic Journal of Information Systems

Evaluation, 23(1). https://doi.org/10.34190/EJISE.20.23.1.003

Macvean, A. (2016). API Usability at Scale.

Meng, M., Steinhardt, S., & Schubert, A. (2018). Application Programming Interface

Documentation: What Do Software Developers Want? Journal of Technical Writing and

Communication, 48(3), 295–330. https://doi.org/10.1177/0047281617721853

Myers, B. A., & Stylos, J. (2016). Improving API usability. Communications of the ACM,

59(6), 62–69. https://doi.org/10.1145/2896587

Myers, M. D. (2020). General References on Qualitative Research | Qualitative Research in

Information Systems.

https://www.qual.auckland.ac.nz/general/#Qualitative_Research_in_Business_&_Manageme

nt.

Parnin, C., & Treude, C. (2011). Measuring API documentation on the web. Proceeding of the

2nd International Workshop on Web 2.0 for Software Engineering - Web2SE ’11, 25–30.

https://doi.org/10.1145/1984701.1984706

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science

Research Methodology for Information Systems Research. Journal of Management

Information Systems, 24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302

Piccioni, M., Furia, C. A., & Meyer, B. (2013). An Empirical Study of API Usability. 2013

ACM / IEEE International Symposium on Empirical Software Engineering and Measurement,

5–14. https://doi.org/10.1109/ESEM.2013.14

Pollock, N., Williams, R., & Procter, R. (2003). Fitting Standard Software Packages to Non-

standard Organizations: The ‘Biography’ of an Enterprise-wide System. Technology Analysis

& Strategic Management, 15(3), 317–332. https://doi.org/10.1080/09537320310001601504

REST | APIs | SAP Business Accelerator Hub. (n.d.). Retrieved May 13, 2023, from

https://api.sap.com/content-type/API/apis/REST

Robillard, M. P. (2009). What Makes APIs Hard to Learn? Answers from Developers. IEEE

Software, 26(6), 27–34. https://doi.org/10.1109/MS.2009.193

Robillard, M. P., & DeLine, R. (2011). A field study of API learning obstacles. Empirical

Software Engineering, 16(6), 703–732. https://doi.org/10.1007/s10664-010-9150-8

Sohan, S. M., Maurer, F., Anslow, C., & Robillard, M. P. (2017). A study of the effectiveness

of usage examples in REST API documentation. 2017 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC), 53–61.

https://doi.org/10.1109/VLHCC.2017.8103450

Strong & Volkoff. (2010). Understanding Organization—Enterprise System Fit: A Path to

Theorizing the Information Technology Artifact. MIS Quarterly, 34(4), 731.

https://doi.org/10.2307/25750703

88

Tan, W., Fan, Y., Ghoneim, A., Hossain, M. A., & Dustdar, S. (2016). From the Service-

Oriented Architecture to the Web API Economy. IEEE Internet Computing, 20(4), 64–68.

https://doi.org/10.1109/MIC.2016.74

Tello-Rodríguez, M., Ocharán-Hernández, J. O., Pérez-Arriaga, J. C., Limón, X., & Sánchez-

García, Á. J. (2020). A Design Guide for Usable Web APIs. Programming and Computer

Software, 46(8), 584–593. https://doi.org/10.1134/S0361768820080241

Tiwana, A. (2014). Platform Ecosystems: Aligning architecture, Governance, and Strategy.

Welcome to the DHIS2 Developer Portal | DHIS2 Developer Portal. (n.d.). Retrieved April 20,

2023, from https://dhis2.github.io/

