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Abstract

Inspired by biological evolution’s ability to produce the complexity that is
human brains, neuroevolution utilizes evolutionary algorithms for optimizing
the hyperparameters and structure of neural networks. However, evolutionary
algorithms fail to produce the same type of diversity as biological evolution
can with the abundant range of adaptable and complex organisms in na-
ture. Encouraging diversity in neuroevolution has seen increased interest
in recent years with methods such as Novelty Search and Quality-Diversity
optimization. Another promising, but less explored approach, is to explicitly
encourage diversity with an additional diversity objective. There is, however,
a lack of knowledge regarding the relationship between the type of diversity
encouraging objective and the characteristics of the targeted problem. For
instance, should a diversity of brain structures, behaviors, or neural firing
patterns be encouraged when optimizing a walking robot?

This thesis compares two different diversity objectives for each type of di-
versity, behavioral, structural, and representational diversity, on problems
with unique characteristics. To make the comparison more informative, the
following problem characteristics are studied: (1) Modularity, (2) Regularity,
(3) Deceptiveness, and (4) Environment space representation. Results show a
clear correlation between the performance of the type of diversity objective
and the characteristics of the problem. Ad hoc behavioral diversity performed
best on deceptive problems, structural diversity was most efficient on modu-
lar problems, and representational diversity outperformed other objectives
on problems with a high degree of regularity. Furthermore, significant per-
formance differences between diversity objectives of the same type were found.

A second contribution of the thesis is introducing a new type of diversity
called representational diversity for encouraging a diversity of learned neural
network representations. The first steps of how representational diversity can
be adapted to neuroevolution are outlined. Early promising results show that
representational diversity merits further study. There are indications that
representational diversity is suitable for problems where neuron activations
of neural networks potentially play an important role in solving the task.
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1 | Introduction

1.1 Motivation

Historically, artificial intelligence (AI) research has successfully been able to
solve specific problems that most humans are not very good at or automate
laborious and repetitive tasks. For example playing chess, traffic control,
vehicle steering, image recognition, speech recognition, diagnosis of medical
diseases, and recommendation systems for social media and e-commerce [1,
2]. However, the direct approach of optimizing a single solution for a single
problem prevalent in AI research neglects aspects of biological intelligence,
such as autonomy, self-healing, social interaction, evolution, and learning,
that make biological organisms highly adaptable and successful in unknown
and changing environments [2]. Finding alternative learning methods to
encompass these aspects is an area of much research in recent years, espe-
cially in fields like reinforcement learning, evolutionary computing, swarm
intelligence, and embodied cognitive science.

Traditionally, artificial neural networks are trained using gradient-based
learning through a combination of backpropagation and stochastic gradient
descent [1]. An alternative to gradient-based learning, partly inspired by the
ability of biological evolution to produce the complexity that is natural brains
in animals and humans, is neuroevolution (NE). Neuroevolution harnesses the
capabilities of an evolutionary algorithm to optimize the hyperparameters,
but also the topology and activation function of neural networks, which are
capabilities typically unavailable to gradient-based approaches [3]. The struc-
ture of a neural network can greatly impact its performance [4]. Additionally,
instead of optimizing a single neural network, neuroevolution employs and
maintains a population of neural networks, enabling extreme exploration and
parallelization of solutions.

A remarkable feat of biological evolution is the diversity of complex or-
ganisms it produces, all highly adaptable and high-performing in their niche.
An evolutionary algorithm attempts to emulate this same evolutionary process
in order to facilitate the exploration of solutions but often fails to produce

1



the same level of diversity even with evolutionary operators and traditional
diversity-maintenance techniques. The lack of diversity often results in sub-
optimal solutions as the population has converged to a local optimum.

Explicitly encouraging diversity has emerged as a way to prevent early
convergence to local optima and make the evolutionary search more effi-
cient and improve the overall performance [3]. One successful method in
diversity-driven neuroevolution is Novelty Search [5]. Instead of searching for
solutions with higher performance, as is usually the case, the idea is to search
for solutions with novel behaviors and thus explore a more diverse set of
solutions. Novelty search demonstrated impressive results by outperforming
performance-based search, especially on deceptive problems.

Expanding on the work of novelty search, recent work on diversity-driven neu-
roevolution uses a multi-objective evolutionary algorithm to simultaneously
optimize solutions according to a performance objective and a diversity ob-
jective. Using an additional diversity objective has demonstrated the ability
to discover novel solutions and ultimately lead to better performance more
efficiently [3]. A common type of diversity objective is behavioral diversity,
which encourages different behaviors [6, 7]. Genetic diversity objectives can
be used to encourage genetically different solutions [8, 9], whereas structural
diversity objectives encourages structurally different solutions [4, 9, 10].

Encouraging diversity in neuroevolution with diversity objectives has demon-
strated impressive results, but there is a lack of knowledge regarding the
relationship between the type of diversity objective and the characteristics
of the problem. For instance, if there is a type of diversity objective that is
more effective for problems with certain characteristics. Little is known about
how the characteristics of the targeted problem may affect the effectiveness
of certain diversity objectives. Being able to determine the type of diversity
objective to use based on only the characteristics of the problem would be
very useful instead of having to compare multiple objectives every time. For
example, being able to determine if a diversity of behaviors, network structure,
or neuron firing patterns is most suitable for a mobile robot task.

Moreover, there are different advantages and limitations for each type of di-
versity objective. Behavioral diversity objectives can be quite effective but are
limited by usually being domain-dependent and having to be adapted to each
problem. In contrast, structural diversity objectives are domain-independent
but can be expensive to compute. A research gap in diversity-driven neu-
roevolution is combining the advantages of both behavioral and structural
diversity into a new type of diversity. A new type of diversity that is able to
exploit both the behavior and structure of a neural network to encourage a
diversity of learned neural network representations.

2



1.2 Research Goals

With the above-stated challenges of diversity-driven neuroevolution in mind,
the primary research goal of this thesis is to:

• Compare the effectiveness of various diversity objectives in neuroevo-
lution on a number of targeted problems with unique combinations of
problem characteristics, and if possible, determine if specific diversity
objectives are more effective on certain problems.

A secondary research goal of this work is to introduce a new type of diversity
called representational diversity for encouraging a diversity of learned neural
network representations. In short, the goal is to:

• Investigate if similarity metrics for measuring the similarity between
learned neural network representations can be adapted to neuroevolution
with neural networks of different topologies, and if so, determine if
representational diversity has the potential to become a new type of
diversity able to encompass both the structure and behavior of neural
networks.

1.3 Contributions

The main contribution of this thesis is a comparison of different types of
diversity objectives, and their effectiveness on different problems. Both be-
havioral and structural diversity objectives are compared, in addition to a
new type of diversity introduced in this work called representational diversity.
To make the comparison of the diversity objectives more informative, a set
of interesting problem characteristics is proposed and the targeted problems
are characterized according to these characteristics.

The contributions of this work can be summarized as follows:

• Identified relevant diversity objectives, two for each type of diversity:
behavioral, structural, and representational diversity.

• Identified relevant problems with unique combinations of characteristics
often targeted in neuroevolution. The targeted problems are: (1) The
Retina problem, (2) The Tartarus problem, (3) A maze navigation
problem, and (4) A robot locomotion problem.

• Proposed the following set of interesting problem characteristics: (1)
Modularity, (2) Regularity, (3) Deceptiveness, and (4) Environment
space representation. A formal characterization of the targeted problems
was performed.

3



• Introduced a new type of diversity called representational diversity, and
showed how this type of diversity can be adapted to neuroevolution.
Representational diversity objectives were found to be especially effec-
tive on the robot locomotion problem, where novel neuron activations
are important for discovering an effective gait.

Building on the above contributions, the main contribution of this thesis is
as follows:

• Compared diversity objectives and found a correlation between the
type of diversity objective and the problem characteristics. Behavioral
diversity objectives were found to be especially effective on deceptive
problems, whereas structural diversity objectives outperformed other
diversity types on modular problems. Finally, representational diver-
sity objectives were most effective on problems with a high degree of
regularity.

1.4 Outline

The thesis is divided into the following seven chapters: (1) Introduction,
(2) Background, (3) Methodology, (4) Experimental Setup, (5) Results and
Analysis, (6) Discussion, and (7) Conclusion.

Chapter 2 introduces the theoretical background for neuroevolution and
previous work on the use of diversity in neuroevolution. Chapter 3 presents
the diversity objectives and the neuroevolution algorithm employed to com-
pare the diversity objectives, including the motivation for introducing a new
type of diversity. Finally, interesting problem characteristics are defined to
make the comparison more informative.

Chapter 4 presents the targeted problems and a characterization of them
using the characteristics previously defined in Chapter 3. Chapter 5 presents
the results for all experiments performed and analysis describing the results.
Chapter 6 discusses the results more in-depth with regard to the research
goals. Finally, Chapter 7 summarizes contributions and findings, including
future work suggestions.
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2 | Background

Chapter 2 introduces the theoretical background for neuroevolution and the
role of diversity in neuroevolution, including previous work in this area. In
particular, how guiding evolution with diversity objectives can improve the
efficiency and performance of neuroevolution algorithms. The chapter will
provide the reader with a general understanding of evolutionary algorithms as
an optimization algorithm, using multi-objective optimization for optimizing
multiple objectives, and the structure and application of artificial neural
networks.

2.1 Evolutionary Algorithms

2.1.1 Fundamentals of Evolutionary Algorithms

Evolutionary algorithms (EAs) are optimization algorithms inspired by biolog-
ical evolution [11, 12]. EAs employ a population of candidate solutions called
individuals. Using mechanisms such as reproduction, mutation, crossover and
selection from biological evolution, the individuals are evaluated according
to a fitness function and further optimized over multiple generations. A
solution (or individual) is represented by a genetic representation called the
genotype, which encodes the observable traits of the phenotype as genes. For
example with neural networks, the genotype could be a list of neurons and a
list of connections between neurons, and the phenotype could be the complete
network as a graph.

Init ialize 
populat ion

Populat ion

Survivor 
Select ion

Parent  
Select ion

Terminat ion

Parents

Offspring

Crossover
&

Mutat ion

Figure 2.1: Illustration of a general
evolutionary algorithm.

Algorithm 1 Evolutionary Algorithm
INITIALIZE population with random candi-
date solutions
EVALUATE each candidate
while not TERMINATION CONDITION do

SELECT parents
CROSSOVER pairs of parents
MUTATE the resulting offspring
EVALUATE new candidates
SELECT individuals for next generation
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The general evolutionary cycle is illustrated in figure 2.1, accompanied by
pseudocode (see algorithm 1). For each generation, the individuals in the
population are evaluated by a fitness function. The fitness of an individual
characterizes how well that particular candidate solution solves the problem.
Individuals from the current generation are then selected as parents. Us-
ing evolutionary operators such as crossover and mutation on the parents,
offspring is created to partially or completely replace the old population
for the next generation. Survivor selection dictates which offspring are to
be included in the next generation. The process ends when a termination
condition is met, either by finding a sufficiently optimal solution or reaching
the generation limit.

In the early phase of the evolutionary process, few or none of the gener-
ated individuals will be good solutions for solving the problem. Over multiple
generations of selecting fit individuals and propagating their genes to new
offspring using evolutionary operators, the fitness landscape is incrementally
explored and gradually steered towards optimal solutions. In evolutionary op-
timization, the fitness landscape is defined by the fitness function f mapping
every possible solution (or genotype) to a fitness. For real-world problems,
going through all possible solutions is impossible. Evolutionary algorithms, by
employing a population of different solutions, facilitate exploring the fitness
landscape and finding an acceptable solution.

2.1.2 Balancing exploitation and exploration

There are two main competing forces driving the evolutionary process: ex-
ploitation of solutions and exploration of solutions [11–13]. When employing
evolutionary algorithms, it is crucial to balance exploration and exploitation.
If too much emphasis is placed on exploitation, the algorithm will quickly
converge to a local optimum with a suboptimal solution. On the other hand,
with too much emphasis on exploration, the evolutionary search does not find
good solutions within a reasonable amount of time and may never converge
[11–13].

The type of parent/offspring selection used can greatly affect the selection
pressure, i.e. exploitation of solutions. The level of selection pressure regulates
the degree to which individuals with higher fitness are favored over individuals
with lower fitness. Selection aims to increase or at least preserve the average
quality of the candidate solutions in the population from one generation to
the next. Common types of selection are tournament selection, roulette wheel
selection, rank selection, and random selection. For example, the tournament
selection method holds multiple "tournaments" among k random individuals
from the population, and the winner of the tournament is selected as a parent
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for the next generation. The selection pressure is easily controlled by adjust-
ing the tournament size k, resulting in high selection pressure for large values
of k whereas a 1-way tournament with k = 1 is equivalent to random selection.

Elitism is commonly used to make sure that the evolutionary algorithm
has a non-degrading performance. The best individual or the n best indi-
viduals from the previous generation is transferred to the next generation
without changes to the genotype. Elitism ensures that the progress from previ-
ous generations is not lost when exploring other parts of the fitness landscape.

Evolutionary operators such as crossover and mutation create diversity and
variation in the population facilitating exploration of solutions. Crossover,
also called recombination, generates a new offspring by combining the genetic
information of two parents. The offspring’s genotype will consist of genes
from both parents (see example in figure 2.2a). The resulting offspring will lie
somewhere between or near its parents in the fitness landscape. The crossover
operator exploits the genetic information evolved from previous generations
that are known to be good but creates a new solution slightly different from
its parents. Crossover as an evolutionary operator is analogous to sexual
reproduction in biology.

OffspringParents Crossover

(a) Crossover between the genes of two parents results in an offspring containing parts of genes
from both parents. The crossover point is shown as a dotted line.

Parent OffspringMutat ion

(b) Mutation of a single cloned parent results in an offspring containing the genes of the parent
with one or more genes modified. Modified genes are shown in red.

Figure 2.2: Illustration showing how crossover and mutation behave, and what the effect
is on the genes of the resulting offspring. The color bar is a general representation of the
genotype. The change in color signifies a change in the respective genes.

Mutation introduces variation and diversity into the population by randomly
modifying one or more genes in an individual (see example in figure 2.2b),
akin to biological mutation. The mutation operator is applied to either a
single cloned parent or the resulting offspring from crossover between two
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parents. How different the resulting offspring is from its parent will depend on
the number of genes mutated and the type of mutation performed. Mutation
is particularly important in EAs to explore different solutions in the fitness
landscape. Whereas the crossover operator is at times not used due to its
somewhat exploitative effect compared to mutation, and also using crossover
in a meaningful way can be difficult depending on the complexity of the
mapping between genotype and phenotype (e.g. list of nodes and edges to a
complete neural network).

2.1.3 Diversity-preserving mechanisms

A common problem with population-based evolutionary algorithms without
diversity maintenance mechanisms is that the best individual found may take
over the whole population before the fitness landscape is properly explored
[14]. The result is early convergence at a local optimum leading to a rapid
reduction in the diversity of the population, and therefore only a limited part
of the search landscape is repeatedly explored unnecessarily (see figure 2.3a).
Introducing diversity-preserving mechanisms has been shown to significantly
increase the likelihood of finding multiple optima more efficiently [14], and
avoid premature convergence and enable effective crossover [15] compared to
EAs with no diversity maintenance.

(a) Without niching (b) With niching

Figure 2.3: Illustration showing the effect of niching on a simple 2D fitness landscape
example. To the left in (a), with no niching, the candidate solutions cluster at a single
peak in the fitness landscape. To the right in (b), the candidate solutions cluster in groups,
i.e. niches, at various peaks in the fitness landscape when niching is used.

Several mechanisms have been proposed in order to maintain a diverse popu-
lation. A direct approach is niching [16], where individuals in the population
are divided into niches and only reproduction with individuals in the same
niche is allowed. The result is groups of similar solutions gathering at different
local optima in the fitness landscape (see example in figure 2.3). A more
indirect approach is fitness sharing [17], where the population is divided into
niches, and individuals in each niche are forced to share their fitness. The
idea is to control the number of individuals in each niche by forcing them to
share fitness, thereby discouraging convergence to a single area of the fitness
landscape. Crowding [18] is another indirect mechanism. The offspring have
to compete with a similar already existing individual, which is found in a set
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of randomly selected individuals from the entire population. The idea is that
selection pressure is only applied to similar candidate solutions, ensuring that
offspring can only replace similar candidate solutions.

The aforementioned mechanisms help maintain diversity and avoid early
convergence, but the performance of EAs is ultimately dependent on the
fitness function. The fitness function is responsible for quantifying how well
candidate solutions perform. As EAs are utilized to solve more complex
and non-trivial tasks (e.g. robot controllers), the fitness function quickly
becomes the limiting factor [19]. Designing a comprehensive fitness function
for finding novel solutions to complex tasks is a difficult challenge, and often
time-consuming because they are usually domain-dependent requiring varying
degrees of a priori task knowledge from the designer. A too "simple" fitness
function, even with diversity-preserving mechanisms, has been shown to be
vulnerable to deceptive tasks and even become misleading in the search for a
solution [7, 20, 21]. For this reason, Multi–Objective Evolutionary Algorithms
(see section 2.2.2) and other diversity-driven methods such as Novelty Search
(see section 2.6), have seen increased interest as a viable option to produce a
more diverse set of high performing solutions.

2.2 Multi–Objective Optimization

Multi-objective optimization [22, 23] is concerned with the optimization of
multiple objective functions simultaneously. Multi-objective optimization
has been successfully applied to a wide variety of fields, such as economics,
engineering and logistics, where decisions taken will often be a trade-off
between two or more conflicting objectives. For example, maximizing the
top speed of a car and maximizing the energy efficiency of a car are two
conflicting objectives. Consequently, for non-trivial multi-objective optimiza-
tion problems, no single solution will exist that fully optimizes both or all
objectives.

Formally, a multi-objective optimization problem can be defined as

Set of objectives F(x) = (f1(x), f2(x), . . . , fk(x)),

Minimize/Maximize fi(x), for i = 1, 2, . . . , k

subject to x ∈ S.

(2.1)

where k ≥ 2 is the number of objective functions and solution x is a decision
vector of n decision variables, x = (x1, x2, . . . , xn)

T . The solutions constitute
a feasible decision variable space S ⊂ Rn. S is the feasible set of decision
vectors, meaning it is the set of solutions that satisfies all constraints and
variable bounds applied. The set of objective functions F constitute the
objective space Z ⊂ Rk, and for each solution x there exists a point F(x) = z
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in the objective space. It is often useful to visualize the solutions x in the
objective space with the corresponding points z (see figure 2.4a).

2.2.1 Pareto–Optimality

The challenge with multi-objective optimization is deciding which solutions
are the most optimal. As described previously, no single solution exists that
fully optimizes all objectives because of the trade-off between conflicting
objectives. In order to find the set of optimal solutions, an ordering of all
solutions is needed. For this purpose, domination is used to describe the
relationship between two solutions. Domination between two solutions [22,
23] is defined as:

Definition 1 A solution x(1) is said to dominate the other solution x(2), if
both the following conditions are true:

1. The solution x(1) is no worse than x(2) in all objectives. Thus, the
solutions are compared based on their objective function values (or
location of the corresponding points, z(1) and z(2), on the objective
space).

2. The solution x(1) is strictly better than x(2) in at least one objective.

Consequently, a pair-wise comparison for a given set of solutions can be made
to establish which solutions are dominated and which solutions are non-
dominated. The set of non-dominated solutions contains the solutions that
are not dominated by any other solutions in the same set. When visualized in
the objective space, the non-dominated solutions make up a non-dominated
front (see figure 2.4b).
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Figure 2.4: (a) A set of solutions visualized as points in the objective space. (b)
The non-dominated front is visualized for the same set of solutions. The non-dominated
solutions in this example are 4, 5, and 6. Figures adapted from [22].
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A non-dominated solution is also called a Pareto-optimal solution. In terms
of multi-objective optimization, a solution is a Pareto-optimal solution if no
other existing solution dominates it. In other words, a solution is Pareto-
optimal if none of the objectives can be further optimized without causing
degradation of one of the other objectives. Thus, the set of non-dominated
solutions is the set of Pareto-optimal solutions and these solutions make up
the Pareto-front (non-dominated front). Choosing a single optimal solution
among the Pareto-set will require the subjective preferences of a human
decision-maker. To that end, it is advantageous to find an even distribu-
tion of Pareto-optimal solutions along the Pareto-front resulting in a more
representative set of solutions to choose from.

2.2.2 Multi–Objective Evolutionary Algorithms

A lot of multi-objective optimization problems are often too complex to
be solved using exact methods. Multi-Objective Evolutionary Algorithms
(MOEAs) have been successfully applied to many of these problems, includ-
ing real-world problems [24, 25]. Due to the inherent parallelism and use of
a population of solutions, MOEAs are especially suited to multi-objective
optimization problems as they can approximate the Pareto-set in a single
optimization run. It is important to note that MOEAs can only approximate
the Pareto-set and cannot guarantee that the Pareto-optimal solutions are
found.

Despite the successful applications of MOEAs for solving multi-objective
optimization problems, several challenges remain regarding the use of MOEAs.
One of the challenges is scalability. As the number of objectives increases, the
ability of MOEAs to search the objective space deteriorates and the number
of solutions required to achieve an even distribution along the Pareto-front
increases exponentially [26, 27].

Another challenge is computationally expensive objective functions. Evaluat-
ing candidate solutions is necessary in order to guide the search, and every
candidate solution is usually evaluated for each generation. Using multiple ex-
pensive objective functions will therefore drastically increase the time needed
to fully evaluate each candidate solution per generation. Techniques such as
fitness inheritance and problem approximation can somewhat help reduce the
computational cost, but can potentially come with a performance trade-off
[28]. When applying fitness inheritance, an inheritance proportion decides if
individuals will be assigned a fitness using the objective function as usual
or the average fitness of the parents to reduce the total number of objective
function evaluations. Problem approximation is a technique for replacing the
original problem statement with another one that is approximately the same
but easier to solve.
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Lastly, as with single-objective evolutionary algorithms described in sec-
tion 2.1, an essential challenge with MOEAs is the selection of individuals
for reproduction and survival while also maintaining diversity.

A number of different MOEAs have been proposed to attempt to solve
the aforementioned challenges encountered in multi-objective optimization.
Parallel computing can drastically help mitigate the problem of scalability
and expensive objective functions but not with selection and diversity main-
tenance. For this reason, the main difference between the various algorithms
is the selection method. Most multi-objective evolutionary algorithms use a
Pareto-based ranking scheme for selection.

Among them, the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [29]
and Non-dominated Sorting Genetic Algorithm-II (NSGA–II) [30] were shown
to perform significantly better across multiple test problems compared to
other MOEAs [25, 29], and have become the standard. An important factor in
the performance gap between SPEA2 and NSGA–II and the other algorithms
is the use of elitism. Both SPEA2 and NSGA–II use elitism during selection,
and algorithms with no elitist strategy showed an increase in performance
when using SPEA2’s elitist strategy. SPEA2 mainly differs from NSGA–II
in how individuals are ranked. SPEA2 performs better in high-dimensional
objective spaces but is computationally slower than NSGA–II [29]. NSGA–II
is described in more detail in the following section 2.2.3.

2.2.3 NSGA–II

NSGA–II [30], short for Non-dominated Sorting Genetic Algorithm-II, is
an efficient and well-established algorithm for multi-objective optimization
problems. The algorithm implements three main features that make it
successful while also being relatively computationally efficient:

• Elitism

• Explicit diversity-preserving mechanism

• Emphasis on non-dominated solutions

The step-by-step procedure of NSGA–II is illustrated and explained in figure
2.5. Elitism is preserved by keeping the previous parent population Pt for
each generation and merging with the offspring population Qt. Consequently,
when the merged population is sorted into non-dominated fronts, the best
solutions in the parent population will always be selected for the next parent
population unless, in the unlikely event, all solutions in the offspring popula-
tion are better.
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Figure 2.5: Illustration showing the NSGA–II step-by-step procedure. First, the parent
population Pt and the offspring population Qt are combined to form Rt. The population
Rt is sorted into non-dominated fronts Fi (see fronts in figure 2.6b). Iteratively, in the
order of their ranking, the solutions in each front are included in the new parent population
Pt+1 until the population limit is reached. The front for which the population limit would
be reached if included is then sorted according to crowding-distance in descending order
(see figure 2.6a). Finally, the new parent population Pt+1 is then filled from this sorted
front until the population limit is reached. The remaining solutions from this front and
the remaining fronts are rejected. Crossover and mutation can now be applied to Pt+1 to
create a new offspring population Qt+1. Figure adapted from [30].

Preserving a diverse set of solutions is ensured via the crowding distance
sorting step of the algorithm. During this step, the crowding-distance (see
figure 2.6a) is used to estimate the density of solutions surrounding a par-
ticular solution in the same non-dominated front. Once all solutions in the
front have been assigned a crowding-distance, they are sorted in descending
order and are in order included in the next parent population until the popu-
lation limit is reached. The remaining solutions are discarded. Essentially,
the algorithm favors solutions with higher density, i.e. in a less crowded re-
gion of solutions, in order to preserve the diversity of the solutions in the front.

Finally, the non-dominated sorting step emphasizes non-dominated solu-
tions (see figure 2.6b). Solutions are sorted into non-dominated fronts with
increasing rank. The order by which the fronts are included in the next parent
population Pt+1 ensures that the approximated Pareto-set is always included.
The computational complexity of the sorting is O(MN2) and governs the
overall computational complexity of NSGA–II. One of the largest improve-
ments between NSGA–II and its predecessor NSGA is the improvement in
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computational complexity of the non-dominated sorting step.
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Figure 2.6: (a) Crowding-distance calculation of solutions (red) in the same non-
dominated front. The crowding-distance for solution i is the average side length of the
cuboid. The cuboid is formed using the nearest neighbors in the same front as vertices, i.e.
i− 1 and i+ 1. (b) Sorting of non-dominated fronts Fi. The non-dominated sorting is
performed iteratively by finding the current non-dominated front from the current set of
solutions, assigning a rank and removing the front from the set. Repeat until the set of
solutions is empty.

2.2.4 Multiobjectivization of single–objective problems

Mulitobjectivization [6, 31, 32] refers to the method of casting a single-objective
optimization problem as a multi-objective one. The transformation to a
multi-objective optimization problem is achieved by either adding additional
objectives or decomposing the original objective function into multiple. In the
case of decomposition, the evolutionary process can optimize the sub-tasks of
a more complex problem simultaneously and thereby improve performance.
Multiobjectivization with additional objectives has mostly been investigated
by adding a diversity objective, with the purpose being to more explicitly
balance exploitation and exploration [6]. The additional objectives are not
the primary objective but are used to improve the search. Adding diversity
objectives has demonstrated a substantial improvement in the efficiency and
performance of evolutionary algorithms (see section 2.7).

2.3 Neural Networks

An artificial neural network (ANN), often simply called a neural network,
is a machine learning method for learning representations and important
features of data or a task domain. With the introduction of backpropagation,
a gradient-based learning method (see section 2.3.2), even simple neural
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networks demonstrated promising results [33]. As computational resources
and speeds increased, the neural architecture could be scaled up with millions
of neurons and connections, i.e. deep learning and variants of deep learning
such as convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). Deep learning has revolutionized fields like computer vision, natural
language processing, and speech recognition with impressive results in recent
years [1].

Input  layer Hidden layers Output  layer

Figure 2.7: Example illustrating the architecture of a fully-connected neural network.

2.3.1 The architecture of a neural network

Inspired by biological neural networks in human and animal brains, neural
networks are composed of neurons ordered in one or more layers (see figure
2.7). Each layer of neurons is connected with the previous layer and the next
layer, and each connection is assigned a weight. The inputs xi−1 received by a
neuron are the output from neurons in the previous layer, with the exception
of the input layer which uses the actual data as input. The output a of a
neuron is computed by multiplying the inputs with the weights wi, adding
bias bi, and applying a non-linear activation function f on the resulting sum
(see eq. 2.2). Commonly used activation functions are sigmoid, tanh, and
ReLU.

a = f

(
bi +

n∑
i=1

xi−1wi

)
(2.2)

A feed-forward pass is performed by passing the data into the input layer
and propagating it through the hidden layers until the output layer. The
output of the network depends on the task being solved, e.g. outputs being
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class probabilities for a classification task or prediction for a regression
task. Usually, an objective function (or loss function) is used to indicate
how well the output matches the expected output given the input data. A
neural network architecture of layered neurons can effectively approximate
a function that maps the input data to the desired output. The Universal
Approximation Theorem states that a neural network can approximate any
arbitrarily complex function provided there are a sufficient number of hidden
neurons [34].

2.3.2 Learning with backpropagation

Backpropagation [35] is an efficient algorithm for computing the gradients
in a neural network, usually combined with an optimization algorithm such
as stochastic gradient descent for optimizing the weights and biases of the
network using gradients. This type of gradient-based learning technique is
widely utilized for training neural networks, and is to date, the most effi-
cient method for optimizing most neural networks [36]. After a feed-forward
pass through the network, the backpropagation algorithm iterates backward
through the layers starting with the output layer and computing the gradient
of the loss (or objective) function with respect to the weights via the chain rule.

The backward pass through the layers is necessary because the error from the
next layer is needed to compute the error for the neurons in the current layer.
The magnitude and sign of the error determine how much the weights and
biases for the neuron are changed in order to reduce the error of the output.
In other words, backpropagation is an algorithm for propagating the error
back through the network and using the computed gradients to optimize the
weights and biases of the neurons in the network to reduce this error.

2.3.3 Limitations of gradient-based learning

One of the limitations of gradient-based learning is that the objective func-
tion is required to be differentiable. For a lot of real-world problems, a
differentiable objective function does not exist. Propagating the error of
the objective function backward through the network is not possible with a
non-differentiable objective function. There are ways to avoid this limitation
by for example differentiating subgradients using automatic differentiation
[37]. Nevertheless, there is an interest in alternative optimization methods
that can optimize non-differentiable objective functions and in general solve
problems where gradient-based learning fails, such as reinforcement learning
[38] and neuroevolution [3] (see section 2.4).

Moreover, gradient-based learning continually optimizes a single solution
with a fixed network structure and can not easily explore multiple solutions
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with different structures. The structure of the neural network can greatly
impact performance. Manually designing a neural network architecture is
challenging and usually requires a domain-dependent architecture. A wider
and denser network may be better suited for a particular task than a narrow
and sparse network and vice versa. In some cases, the difference in perfor-
mance may be insignificant but there is no way of knowing this beforehand
as there is no systematic way to determine a suitable architecture. Finding a
suitable neural network architecture will be time-consuming as it requires
training each architecture to compare them [3].

2.4 Neuroevolution

Neuroevolution (NE) is a machine learning method that utilizes evolution-
ary algorithms for evolving neural networks. Neuroevolution enables the
capability of optimizing the hyperparameters, activation function of neurons,
and architecture of a neural network. The last two are typically unavailable
to gradient-based approaches. Consequently, the use of population-based
evolutionary algorithms for optimizing the architecture has removed the
difficult challenge of manually designing the neural network architecture and
the human bias that would be introduced with manual design. Although,
there are cases where such human knowledge is beneficial (e.g. ConvNets for
computer vision [1]). Early successful applications of NE were in the field
of evolutionary robotics, which is concerned with evolving neural network
controllers for robots. With the increasing availability of computing resources,
more recent successful applications of NE include language processing, image
generation, soft robotics, multi-task learning, and playing games [3, 39, 40].

The general procedure of neuroevolution is illustrated in figure 2.8. For
each generation, every genotype in the population is transformed into a
neural network (i.e. phenotype). All or a number of observations (e.g. sensor
data) from the environment are used as input for the neural network. The
output of the neural network affects the environment and causes the observa-
tions to change. How the outputs affect the environment is domain-dependent.
After an attempt at the task or problem, the neural network is evaluated
based on the performance and/or other metrics. Once all individuals in the
population have been assigned a fitness evaluation, a selection method selects
which individuals will be used to generate offspring for the next generation
using evolutionary operators. The cycle is repeated until a termination con-
dition is met.
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Figure 2.8: Illustration of neuroevolution. Each genotype in the population is transformed
into a neural network phenotype. The neural network receives input from the environment
and propagates it through the network to compute an output. The output causes a change
in the environment which will update the observations. Fitness is assigned to the neural
network according to its performance at the end of the evaluation. Selected individuals are
used to generate the next population. Repeat until a termination condition is met. Figure
adapted from [41].

2.4.1 NEAT

A successful and popular implementation of neuroevolution is the NeuroEvo-
lution of Augmenting Topologies (NEAT) algorithm [42]. Unlike previous
NE methods where only the weights and other hyperparameters are opti-
mized, the NEAT algorithm also optimizes the neural network topology using
crossover and mutation. The goal of NEAT was to present a solution to the
following challenges:

• Finding a genetic representation that allows for meaningful crossover
of different network structures without requiring complex structure
analysis.

• Prevent individuals with structural innovation from being prematurely
removed from the population.

• Minimizing the neural network structure throughout the evolutionary
process.

Crossover between two neural networks in a meaningful way, or in other
words a way that preserves the complex structure, is not a trivial task. The
issue of crossover between two different neural networks was solved using a
historical marking called an innovation number. The genotype is represented
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by a list of node genes and connection genes. Each connection gene contains
information about the id of the out-node and in-node, connection weight,
disabled/enabled bit, and an innovation number. Whenever a new gene ap-
pears through structural mutation, the gene is assigned a unique innovation
number. The innovation number is used to match up the genes between two
individuals to allow crossover.

To protect structural innovation, NEAT implements speciation (or nich-
ing) through the use of fitness sharing. With fitness sharing, individuals are
divided into niches and share the fitness of their niche, preventing one niche
from dominating the whole population. Individuals are assigned a niche using
a compatibility distance δ. The pair-wise compatibility distance is measured
as a linear combination of the number of disjoint genes (D), the number of
excess genes (E), and the average weight difference of matching genes (W ).

δ =
c1E

N
+

c2D

N
+ c3 ·W (2.3)

The coefficients c1, c2 and c3 can be tuned to adjust the importance of the
three factors. N is the number of genes in the larger genome of the two.
Important to note is that structural innovation through speciation does not
guarantee different behavior considering there exist infinitely many different
neural network structures that can be functionally identical according to the
Universal Approximation Theorem [34].

Finally, the NEAT algorithm minimizes the neural network structure by
initializing a uniform population of networks with no hidden nodes as the
starting population. The networks will grow incrementally with new structures
as mutation is applied throughout the evolutionary process. The structural
innovation is protected by speciation, and the structures found to be useful
will survive the selection phase. By starting with the most minimal structure
and incrementally growing it, the number of hyperparameters required to
optimize is reduced.

2.5 Neural Network Representation

One of the main reasons for the success of large neural networks, i.e. deep
learning, is the ability to learn a good representation of data or a domain.
Yet, understanding and characterizing the representations learned by neural
networks remains an important challenge. Recent work on understanding
neural network representations includes understanding if different neural
networks learn the same representations [43, 44], whether or not the learned
representation varies with the width and depth of the neural network [45], and
how to measure the similarity between two neural network representations [46].
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Of particular interest, with neuroevolution in mind, is measuring the similarity
between learned representations. How to measure the similarity between rep-
resentations is unclear, and most importantly, if it is even possible to extract
any useful information from the intermediate layers of a neural network. One
approach is to use the activations from the neurons in the intermediate layers
of two networks and apply a similarity metric such as the centered kernel
alignment (CKA) or canonical correlation analysis (CCA) [46]. These metrics
are described in more detail below in sections 2.5.1 and 2.5.2 respectively.

2.5.1 Similarity between representations

Centered kernel alignment (CKA) [46] is a similarity index for measuring
the similarity between the learned representation within and across neural
networks. The representation of neural networks is expressed by represen-
tational similarity matrices. The similarity between two neural networks is
calculated as follows with the problem statement:

Let X ∈ Rn×p1 be the matrix of activations of p1 neurons for n exam-
ples, and Y ∈ Rn×p2 the matrix of activations of p2 neurons for the same n
examples. Without loss of generality, X and Y are assumed to be centered
and that p1 ≤ p2.

Dot Product-Based Similarity. The following equation relates the dot
product between examples to the dot product between features (i.e. neurons):

⟨vec(X,XT ), vec(Y, Y T )⟩ = tr(XXTY Y T ) = ∥Y TX∥2F (2.4)

The left-hand side of eq. 2.4 measures the similarity across the inter-example
structure elements of the dot products XXT and Y Y T . The right-hand side
calculates the exact same similarity by summing the squared dot products
between every pair of features of X and Y , The advantage of this equality
is that if n is larger than pi, the similarity can be calculated faster across
the features instead of the examples. Assuming X and Y are centered, it is
implied that:

1

(n− 1)2
tr(XXTY Y T ) = ∥cov(XT , Y T )∥2F (2.5)

Hilbert-Schmidt Independence Criterion. The Hilbert-Schmidt In-
dependence Criterion (HSIC) generalizes eq. 2.4 and 2.5 to inner products
from reproducing kernel Hilbert spaces. See [46, 47] for more details. HSIC
is formulated as follows:

HSIC(K,L) =
1

(n− 1)2
tr(KHLH) (2.6)
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where Kij = k(xi,xj) and Lij = l(yi,yj). k and l are kernels. With linear
kernels no projection occurs, resulting in the inner product k(x,y) = l(x,y) =
xTy. Thus, HSIC yields eq. 2.5. H is the centering matrix Hn = In− 1

n11
T .

The original purpose of HSIC was to determine the statistical independence
of two sets of variables but has since been used for various machine learning
problems such as feature selection, clustering, dimensionality reduction, and
kernel optimization [47].

Centered Kernel Alignment. Normalizing HSIC results in the centered
kernel alignment which produces a similarity index from 0 to 1 as follows:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(2.7)

2.5.2 Correlation between representations

Canonical Correlation Analysis (CCA) can be used to find bases (i.e. linear
combinations) of the matrices X and Y , such that the correlation between
them is maximized when the original matrices are projected onto these bases.
CKA with linear kernels is closely related to CCA [46], and can likewise be
used to measure the similarity between neural network representations.

Using the same problem statement as in section 2.5.1 with matrices of activa-
tions from neurons, the ith canonical correlation coefficient ρi for 1 ≤ i ≤ p1
is given by:

ρi = max
wi

X ,wi
Y

corr(Xwi
X , Ywi

Y )

subject to ∀j<i Xwi
X ⊥ Xwi

X

∀j<i Ywi
Y ⊥ Ywi

Y

(2.8)

where the vectors wi
X ∈ Rp1 and wi

Y ∈ Rp2 are the canonical weights that
maximize ρi. The constraints in eq. 2.8 enforce orthogonality of the canonical
variables. Finally, the mean squared CCA correlation R2

CCA is used to
calculate the goodness of fit of CCA:

R2
CCA =

∑p1
i=1 ρ

2
i

p1
=
∥QT

Y QX∥2F
p1

(2.9)

where QX = X(XTX)−1/2 and QY = Y (Y TY )−1/2 represent the orthonor-
mal bases for the columns of X and Y .
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2.6 Encouraging diversity in Neuroevolution

2.6.1 Why encourage diversity?

One of the most remarkable feats of biological evolution is the ability to
produce a diversity of complex organisms that are all high-performing in
their niche. The biological diversity seen in nature today is the result of an
evolutionary process that is over millions of years in the making. Diversity
is a topic of much contention in the field of evolutionary biology, including
how to measure diversity and whether to view diversity as a cause or as an
effect of evolution. One group of researchers argues that diversity adds redun-
dancy and robustness to the evolutionary process to create more stable and
productive ecosystems. Contrary to the view of diversity as an informative sig-
nal, i.e. an effect, that describes the evolutionary forces that caused it [48, 49].

Regardless of the role diversity plays in evolution, it is an important as-
pect of evolution that requires further study in evolutionary computing.
From the traditional point of view, evolution in evolutionary computing is
primarily viewed as an optimizer. The problem with viewing evolution as an
optimizer is how biological evolution does not strive toward any particular
organism. The ability of evolution to produce diversity and complexity raises
the question of whether a shift in perspective is required in the approach to
evolutionary computing.

In recent years, research on neuroevolution (and evolutionary computing in
general) has focused more and more on diversity [3]. Population-based evolu-
tionary algorithms should, in theory, create diversity by themselves through
evolutionary operators. In practice, they often converge too early and lack
the diversity needed to avoid local optima. Explicitly encouraging diversity
will drive exploration and avoid early convergence to local optima and can
also be utilized to create a collection of diverse yet high-performing solutions
rather than a single solution. Successful diversity-driven methods include
multiobjectivization with diversity objectives, quality-diversity optimization,
and open-endedness. Despite these successful methods, a considerable gap
remains between the type of complexity nature evolves and the type of
complexity evolutionary algorithms discovers.

2.6.2 Effect of diversity in Spaces

The effect of encouraging diversity will depend on the space in which one tries
to encourage diversity. For instance, encouraging diversity in the genotype
space with genetic diversity objectives [8, 9], will encourage genetically
different individuals. In the phenotype space, structural diversity objectives [4,
9, 10] can be used to encourage structurally different individuals. By contrast,
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a more domain-dependent approach is to encourage different behaviors in the
behavior space with behavioral diversity objectives [6, 7, 50]. As illustrated
in figure 2.9, diversity in the aforementioned spaces does not guarantee
different behaviors because of the non-injective mapping between them. Two
genetically different individuals may result in an identical neural network
and structurally different neural networks may produce the same behavior.

Genotype 
space

Phenotype 
space

Behavior 
space

10001001100100

00100101101011

Figure 2.9: Illustration of the mapping between genotype-, phenotype-, and behavior
space. The genotype space contains the genetic representations of candidate solutions.
Evolutionary operators such as crossover and mutation are used to manipulate the genotypes.
Genotypes are transformed into phenotypes (e.g. neural networks) in the phenotype space.
The genotype-to-phenotype mapping is non-injective, meaning multiple genotypes can
correspond to the same phenotype. The phenotypes are simulated during the task and
assigned a fitness based on their behavior in the behavior space. The phenotype-to-behavior
mapping is also non-injective considering two different neural networks can produce identical
behavior. Figure adapted from [7].

2.6.3 Novelty Search

Novelty search [5] successfully illustrates the effect diversity has on the
evolutionary search. Novelty search differs from the traditional approach in
that the performance on the task is completely disregarded. Instead, the
idea is to search for behavioral novelty alone. Compared to the traditional
approach where novel individuals are discovered indirectly, novelty search is
used to explicitly search for novel individuals. Counterintuitively, novelty
search has been shown to outperform performance-based search on multiple
tasks, especially deceptive tasks where there is an obvious local optimum [5, 6,
21]. Consequently, on deceptive tasks, the search for increased performance
on a task may ultimately become an impediment. A comparison between
performance-based search and novelty search is illustrated in figure 2.10.

24



(a) Performance-based search. (b) Novelty search.

Figure 2.10: The hard maze used in the maze experiment to introduce novelty search
and show how objective functions can become misleading. The goal is for the robot in the
lower left corner to reach the goal in the top left corner. The maze contains an attractive
dead-end in the direction of the goal. Each black point represents the end location of a
robot evaluated during the run. Novelty search finds a solution that is able to reach the
goal, while performance-based search does not because of the deceptiveness of the task.
Figures from [5].

The novelty metric used to measure the uniqueness of an individual’s behavior
should reward individuals diverging from behaviors seen before. Therefore,
an archive is kept of past individuals with novel behavior at the time. The
idea is to measure the distance from a new individual to the population and
the archive in behavior space. For this purpose, the sparseness ρ at any point
in the behavior space is used as a metric. New individuals at dense clusters
in the behavior space are rewarded less because these clusters are areas with
solutions already seen and therefore less novel. The sparseness ρ at point x
is defined as

ρ(x) =
1

k

k∑
i=0

dist(x, µi) (2.10)

where µi is the ith-nearest neighbor of x of the total k-nearest neighbors.
The distance metric dist is a domain-dependent measure of the behavioral
difference between two individuals, which in this case is the euclidean distance
between their end locations.

2.6.4 Quality-Diversity Optimization

The success of novelty search has inspired other research focused on Quality-
Diversity optimization algorithms. The purpose of Quality-Diversity algo-
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rithms is to generate a diverse collection of high-performing solutions. As
with novelty search, Quality-Diversity is usually applied to the behavior space
and attempts to generate solutions to fill the whole space even if they are
not the absolute highest-performing solutions. Notable Quality-Diversity
algorithms include Novelty Search with Local Competition (NSLC) [51] and
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [52].

2.7 Diversity Objectives in Neurevolution

This section gives an overview of the various diversity objectives used in
previous work on Neuroevolution. The subsections are dedicated to the
following diversity categories: (1) Behavioral diversity, (2) Structural diversity,
and (3) Representational diversity. Unless specified otherwise, referring to
the use or results of a diversity objective/distance implies that it was used in
addition to performance with a multi-objective evolutionary algorithm, i.e.
multiobjectivization (see section 2.2.4). Generally, the purpose of using a
diversity objective is to search for individuals who are different from others.
In more technical terms, this means searching for individuals that have a large
distance from others according to a distance metric of the chosen objective.

2.7.1 Behavioral Diversity

A problem with measuring diversity in the genetic space or the phenotype
space is the non-injective mapping between spaces illustrated in figure 2.9.
As a result, the genotype and the phenotype will in many cases be a poor
predictor of how the individual will perform and behave in the environment.
The novelty search results demonstrate how effective measuring diversity in
the behavior space can be, especially in deceptive environments. Encouraging
behavioral diversity alone or in addition to performance has been successfully
applied to a variety of tasks [5–7, 50].

Defining the behavior of an individual

For the purpose of generality, the behavior of an individual is often character-
ized by a behavior vector β. Furthermore, a behavioral distance measures the
distance between individuals using this behavior vector. The contents of the
behavior vector will depend on the environment domain and which behavioral
distance is used. Behavioral distances are usually divided into two categories:
(1) domain-dependent ad hoc distances, and (2) domain-independent generic
distances. Behavior vectors are used to describe the behavior of individuals
for both types of distances.
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Ad hoc behavioral distance

An essential challenge of behavioral diversity is how to define the distance
between two individuals in the behavior space. In general, the behavioral
distance between two individuals is domain-dependent (ad hoc), meaning the
distance is specific to the environment. In the maze experiment, a natural
distance metric is the distance between the end location of two individuals or
alternatively measuring the difference in the trajectory of the two individuals.

Formally, the ad hoc behavioral distance between two individuals, x and y,
is defined as follows:

dad-hoc(x, y) = dist(βx, βy) (2.11)

where βx is the behavior vector of individual x and dist is the metric used
to compute the behavioral distance between two individuals. The behavior
vector and distance metric are domain-dependent.

Defining the behavioral distance becomes increasingly harder when applied
to more complex real-world problems. As with designing fitness functions,
defining the behavioral distance usually requires human knowledge and can
introduce human bias. While introducing human bias might be beneficial in
some cases, normally the goal of machine learning is to limit the amount of
human knowledge required.

Generic behavioral distance

The alternative to ad hoc behavioral distance is a generic behavioral distance.
With generic behavioral distances, the behavior vector and behavioral distance
can be applied directly across domains with minimal adjustment regardless
of how different the domains are. The generality of such behavioral distances
removes the burden of designing a comprehensive behavioral distance specific
to every domain. However, this generality is potentially less informative and
can lead to a performance trade-off.

One study [53] compared the following generic behavioral distances on a grid-
based optimization problem: (1) Fitness difference – the absolute difference
in fitness between individuals x and y, (2) Relative Entropy – the expected
number of extra bits required to encode βx using the optimal code for βy
(Kullback-Leibler divergence), (3) Normalized Compression Distance (NCD) –
the improvement in compressing βy derived from using βx as a compressed
database, and (4) Hamming distance – the number of non-matching bits
between binarized behavior vectors βx and βy. The last three distances use a
behavior vector with the inputs and outputs of the neural network to define
an individual’s behavior (see step 1 in figure 2.11).
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Of the distances analyzed, the three behavior-based distances (NCD, Ham-
ming distance, Relative Entropy) outperformed the rest. NCD outperformed
all of them because it is less sensitive to misaligned sequences and sequences
of different lengths, but has a significantly higher computational cost. The
Hamming distance was competitive with NCD but with a much lower com-
putational cost. The Hamming distance is described in more detail below.

Hamming distance

The Hamming distance measures the behavioral distance between two indi-
viduals by counting the number of non-matching bits between their respective
binary sequences. The sequence of an individual is the input and correspond-
ing output history of the neural network for T steps concatenated together
(see figure 2.11).

Step 3: Compute 
Hamming Distance

0 1 1 1 0 1 1 1 0 0 1 0

0 1 1 1 1 1 1 0 0 0 1 1

      

Step 2: Binarize sequence

      

0 1 1 1 0 1 1 0 0 0 1 1

Step 1: Concatenate 
input-output  history

 

Outputs

Inputs
Hidden 
neurons

Figure 2.11: Illustration of the step-by-step procedure for computing the Hamming
distance. Step 1 involves concatenating the input-output history of the neural network of
an individual during the simulation. In step 2, the sequence of input and output values is
binarized. Finally, step 3 computes the Hamming distance between the binarized sequence
of two individuals x and y by counting the number of non-matching bits (see eq. 2.14).
Figure for step 1 adapted from [54].

The sequence vector of individual i can be defined as follows:

βi =

[
{i(t),o(t)}, t ∈ [0, T ]

]
(2.12)
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where i(t) is a vector of size ni with the inputs of the neural network at
time or step t, and o(t) is a vector of size no with the outputs of the neural
network at time or step t. T is the total observation length. Without loss of
generality, the values of β are assumed to be in the range [0, 1]. The sequence
vector is binarized as follows:

βi,bin(t) =

{
1 if βi(t) > 0.5

0 otherwise
(2.13)

When the binary sequences of two individuals are of different lengths, only the
bits for the smallest of the two sequences are counted. Finally, the Hamming
distance between two individuals is computed by counting the number of
non-matching bits as follows:

dham(x, y) =

min(|βx|,|βy |)∑
k=1

1− δ(βx,bin(k), βy,bin(k)) (2.14)

where the Kronecker delta δ(i, j) is defined as:

δ(i, j) =

{
1 if i = j

0 otherwise
(2.15)

Comparing ad hoc and generic distances

Another study [55] extended the work of [53] by comparing generic behavioral
distances to ad hoc behavioral distances on an evolutionary robotics task
with a continuous environment space, in contrast to the discrete environment
used in [53]. The task was for a mobile robot to collect multiple balls and
return them to a basket. The following behavioral distances were analyzed:

• Task-specific (ad hoc): the euclidean distance between behavior vectors
describing the number of times the robot was in a user-defined state;

• Trajectory (ad hoc): the difference between the trajectory of two indi-
viduals during simulation;

• Fourier coefficients : the euclidean distance between the first coefficients
of a discrete Fourier transform of the behavior vector with the input-
output history of the individuals;

• Hamming distance.

Out of all the behavioral distances studied, the Hamming distance led to the
best performance with the ad hoc distances being the next best. However, it
is emphasized in the study that most of the input values are already binarized,
which might skew the results in favor of Hamming distance as opposed to
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the ad hoc distances. Nevertheless, the experiments in which no behavioral
diversity was encouraged resulted in a significantly worse performance [55].

An empirical study [7] compared the traditional diversity technique fitness
sharing, NEAT, and multiobjectivization with a behavioral diversity objective
(ad hoc or Hamming) on three evolutionary robotics tasks. NEAT implements
fitness sharing but divides individuals into niches by using the compatibility
distance in the genotype space instead of performance. In addition, experi-
ments with no diversity encouragement were used as control experiments.

The study concluded that multiobjectivization outperformed all other treat-
ments, including single-objective fitness sharing, NEAT, and with no diversity.
In particular, ad hoc and Hamming behavioral distance dominated the rest
in all experiments. The generic Hamming distance demonstrated the ability
to be as efficient as ad hoc behavioral distances [7].

Ad hoc vs generic

The preceding sections have highlighted the results of studies comparing
various behavioral distances, both ad hoc behavioral distances and generic
behavioral distances. In general, the studies showed that ad hoc led to
the best performance, with Hamming distance as a close second. In some
experiments, Hamming distance was as efficient as ad hoc distances. As
expected, ad hoc distances usually outperform the rest due to being specifi-
cally designed for the domains in which they measure behavior. Surprisingly,
Hamming distance is competitive with ad hoc distances in many of the studied
experiments, including the mobile robot tasks with a continuous environment.

One could assume that ad hoc distances should be significantly more in-
formative than Hamming distance, especially in continuous environments
where binarizing continuous sensor values may abstract valuable information
away. There are results to suggest this to some degree in the maze experiment
studied in [7]. Hamming distance may not be able to differentiate between
individuals in the dead-end from those outside the dead-end in the hard
maze (see figure 2.10b). However, Hamming distance outperformed ad hoc
distance on the ball-collecting task studied in [7, 55]. One hypothesis, as
mentioned earlier, could be that Hamming distance benefits from input and
outputs that are binarized or at least somewhat discrete instead of contin-
uous values. Hamming distance also performed well on the more discrete
grid-based optimization problem studied in [53], but was not compared to an
ad hoc behavioral distance. Nevertheless, Hamming distance as a behavioral
diversity objective merits further study to understand what type of problems
it is most suited for.
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2.7.2 Structural Diversity

As described earlier, there are limitations to using ad hoc behavioral diversity
objectives. While the Hamming distance is a reasonable alternative, the
generic characteristic of the metric has a trade-off by not being as informative
on certain problems as ad hoc distances.

A domain-independent alternative is to encourage structural diversity. Guid-
ing neuroevolution with structural diversity objectives will encourage struc-
turally different individuals. Accordingly, a distance metric is required to
measure the difference or similarity between two neural networks. From a
more abstract perspective, a neural network is essentially a directed graph of
nodes and edges. However, computing the distance between two graphs is
an NP-hard problem, making a complete one-to-one connectivity distance
metric not feasible due to the algorithmic complexity involved [50].

One solution is to use approximate structural distance metrics. Approx-
imate structural distance metrics are less computationally expensive at the
cost of accuracy. Such approximate distances include edit distance, resistance
distance, spectral distance [56], and graph probing [57] to name a few. Yet, in
a comparison with behavioral diversity objectives, using graph probing as a
diversity objective did not improve performance [50].

Recent research suggests benefits to encouraging certain structural prop-
erties inspired by biology instead. Inspired by the adaptability, flexibility,
and robustness of natural brains, it is believed that the structure of a neural
network should express traits such as modularity, regularity, and hierarchy in
order to exhibit the same behavioral complexity as humans and animals [58].
As a result, encouraging modularity [9, 10] in the neural network structure
has been shown to improve the performance. In the same vein as modularity
but at a higher level of abstraction, encouraging modularity diversity [4]
has also demonstrated increased performance. Still, some questions remain
regarding the effectiveness of structural diversity objectives. Considering the
non-injective phenotype-to-behavior mapping (figure 2.9) and the universal
approximation theorem (section 2.3.1), there is no guarantee that structurally
different individuals will behave differently.

Modularity

Modularity [59] is a measure of the strength of division of a network into
multiple communities (or modules, clusters, groups). A community is a
subset of nodes of the network that is connected by a higher number of
edges between them than is statistically expected on the basis of chance. In
other words, modularity indicates how well a network can be divided into
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communities or modules. Generally, modularity can be defined as follows:

Q = (fraction of edges within communities)
− (expected fraction of such edges)

(2.16)

The expected number of edges between nodes can be approximated using
the probability of an edge existing between nodes i and j of a large random
network under certain assumptions (see [59] for more details). The modularity
Q of a network that can be partitioned into c communities is defined as follows:

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj) (2.17)

where Aij is the adjacency matrix of the neural network, δ is the Kronecker
delta, ki is the degree of vertex i, ci is the label of the community to which
vertex i is assigned, and m is the total number of edges in the network. In
general, optimizing for modularity is an NP-complete problem. In practice, a
number of approximate optimization methods such as greedy algorithms and
spectral methods are used to reduce computational complexity [59].

Modularity Diversity

The premise of modularity diversity [4] is that the interesting and significant
differences between neural networks do not lie in the exact connectivity,
but in their inherent higher-level modular structures. Modularity diversity
calculates the distance between the modular decompositions of two neural
networks. The calculation is limited to either the input or output neurons
depending on where it is most relevant to measure the modular decomposition
for the targeted problem see figure 2.12.

The calculation of modularity diversity involves two steps. First, the modular
decomposition of the networks is estimated. Finally, how well the decomposi-
tions match is calculated as follows:

∆decomp = 1− Uniformity(Mevo,Mcomp) + Conflicts(Mevo,Mcomp)

2.0
(2.18)

where Mevo and Mcomp are the modular decomposition of the two individuals.
Uniformity calculates the degree to which the modules in Mcomp match a
module of corresponding nodes in Mevo. Conflicts calculates the number of
conflicts between Mevo and Mcomp by counting the neurons in the modules of
Mevo that belong to a different module in Mcomp. ∆decomp ranges from 0 to
1, where 0 indicates that the decompositions match perfectly and the worst
possible match between the decompositions will result in a score of 1. See [4]
for pseudocode on how to calculate the uniformity and conflicts between the
two decompositions.
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(a) (b)

Figure 2.12: The modular decomposition of two neural networks used to calculate
modularity diversity. The color of each node indicates which module it belongs to. In this
example, calculating the modularity diversity for the input neurons is most informative
as there is only one output node. The modular decomposition of (a) will have several
conflicts with the modular decomposition of (b) because multiple corresponding input
nodes belong to different modules. Figure adapted from [4].

2.7.3 Representational Diversity

As described in sections 2.7.1 and 2.7.2, there are advantages and limitations
to using behavioral diversity and structural diversity respectively. With
behavioral diversity, there is the challenge of defining an appropriate char-
acterization of the behavior of individuals and how to measure the distance
between behaviors. In addition, encouraging novel behavior during the
evolutionary process can get stuck in so-called "novelty plateaus", wherein
mutation and crossover of individuals do not immediately produce novel
behaviors [54]. For example, a sequence of specific mutations may be required
to produce novel behaviors. With structural diversity, there is the challenge
of how to avoid structurally different individuals that produce identical be-
haviors. Furthermore, a lot of existing distance metrics for measuring the
distance between neural networks are computationally expensive. There is a
lack of research into attempts to combine the advantages of both types of
diversity.

Combining the two in an attempt to measure how differently two neural
networks "think" (used metaphorically) or how different their learned rep-
resentations are, can perhaps be used to encompass both the structure and
behavior of a neural network. Using both the generality of structural diversity
and the ability to discover novel behaviors of behavioral diversity in a new
type of diversity objective could be a new direction of research into diversity
in neuroevolution. In this work, a diversity objective of this variety is dubbed
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Representational diversity. Recalling figure 2.9 illustrating the various spaces
in which one can encourage diversity, a representational diversity objective
would thus encourage diversity in the representation space. This concept
is illustrated in figure 2.13, where the learned representation of the neural
network depends on the phenotype and its behavior.

Genotype 
space

Phenotype 
space

Behavior 
space

10001001100100

00100101101011

Representat ion 
space

Figure 2.13: Illustration of representation space by extending figure 2.9. Learned
representations in the representation space are mapped from a combination of the phenotype
and its behavior during simulation. The phenotype-behavior-to-representation mapping
is non-injective because two structurally different neural networks can produce identical
behavior and thus learn the same representation.

The challenge with representational diversity then becomes how to define
the representation of a neural network and how to calculate the distance
between two representations. One study [54] introduced a new method called
the Creative Thinking Approach (CTA), wherein evolved neural networks
are encouraged to "think differently". In more technical terms, the study
defines "creative thinking" as novel patterns of neural firing. Meaning neural
networks with novel activation outputs are rewarded more.
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CTA is an extension of how a behavior vector of the binarized input-output
history of a neural network is used with the Hamming distance to calculate
the behavioral distance between individuals. The difference is that CTA
concatenates the activations from the neurons in the hidden layers for every
step t in addition to the inputs and outputs (see figure 2.14). The study
compared CTA to behavioral diversity with Hamming distance on the maze
experiment and a ball-collecting problem. Using CTA was not more efficient
than behavioral diversity on the maze experiment, but CTA outperformed
behavioral diversity on variations of the ball-collecting problem.

Figure 2.14: Illustration of the Creative Thinking Approach compared to behavioral
diversity. Figure from [54].

The Creative Thinking Approach was shown to be somewhat successful
in encouraging novel neuron firing patterns in the hidden layers to increase
the efficiency of the search. However, one could argue whether binarizing
the activations and using the Hamming distance is informative enough. For
example, there is a significant difference between an activation of 0.51 and an
activation of 1.0 of a neuron. Information like this is lost when binarized to
either 0 or 1. As such, more research into how the representation of neural
networks can be characterized to be as informative as possible and how to
measure the distance between representations is required.

Using similarity metrics, such as CKA and CCA introduced in section 2.5,
to measure the similarity between neural network representations in neu-
roevolution is a so far unexplored research direction that is investigated in
this thesis. The motivation for employing a different characterization of
the learned representation with these similarity metrics is described in more
detail in Chapter 3 below.
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3 | Cultivating Diversity

Chapter 3 presents the neuroevolution setup that enables the comparison of
diversity objectives. More specifically, an overview of the types of mutations,
the neural network encoding, and the multi-objective evolutionary algorithm
implemented. Furthermore, the chapter describes the various diversity objec-
tives that are compared in this thesis. Including the introduction of a new
type of diversity called representational diversity. Finally, characteristics of
interest are presented that can provide more information about the effective-
ness of various diversity objectives on different problems, and thus, make the
comparison performed in this work more informative.

3.1 Neuroevolution setup

In order to make a fair comparison between diversity objectives on different
problems, a general neuroevolution setup that is applicable to all targeted
problems is used. In certain domains, it may be advantageous to use a different
neural network encoding or a different set of mutations. The decision to use
the same setup across all problem domains is due to the following reasons:

• Ease of use across domains;

• Alternative neural network encodings are beyond the scope of this
thesis;

• And most importantly, to perform a straightforward and fair comparison
focused solely on diversity objectives, without other factors potentially
affecting the results.

Only parameters such as archive threshold for ad hoc behavioral distances, mu-
tation probabilities, parameter bounds, and activation functions are specific to
each domain. Many of the aforementioned parameters are domain-dependent
and specific parameters are required for the evolutionary search to be success-
ful in the various targeted problems. The targeted problems are described in
more detail in Chapter 4. Experimental parameters for the targeted problems
are listed in appendix A.
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3.1.1 Neural network encoding

A graph-based direct neural network encoding is used to represent and evolve
neural networks. The encoding is a simplified version of the NEAT encoding,
where neural networks are represented as a list of nodes and a list of edges
with weight and bias values. Enable bit and innovation number are not used.
This type of simple and lightweight encoding has been employed in many
previous studies (e.g. [4, 6, 7, 50, 55]). The genotype is transformed into a
directed graph, i.e. a neural network.

The NEAT algorithm could have been employed instead of the current
setup and encoding. However, the implementation of niching and the use
of crossover in NEAT will greatly influence the results. Consequently, the
comparison of diversity objectives and any valuable insight into any differ-
ences or similarities between them will be affected. Multiobjectivization
with a diversity objective also removes the need for niching to protect novel
individuals that perform poorly in the beginning.

3.1.2 Evolving neural networks

The neural networks in the initial population are initialized as fully con-
nected with no hidden neurons (i.e. every input neuron is connected to
every output neuron), each with randomly sampled weights and biases. The
best-performing individuals are evolved using evolutionary operators. Fol-
lowing previous studies (e.g. [4, 6, 7]), only mutations are employed to
evolve networks with no crossover. The following two types of mutations are
implemented: (1) Structural mutation, and (2) Parametric mutation.

• Structural mutation

◦ Add neuron – a neuron is added by splitting an existing connection
in two, wherein the original connection weight is kept for the two
new connections.

◦ Remove neuron – a randomly selected neuron is removed.

◦ Add connection – a connection is added between two randomly
selected neurons

◦ Remove connection – a randomly selected connection is removed

• Parametric mutation

◦ Weight mutation – a connection weight is mutated with polynomial
mutation

◦ Bias mutation – a neuron bias is mutated with polynomial mutation
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Structural mutation. As the name suggests, structural mutation affects
the structure of the neural network. All four of the structural mutations
described above are each applied once per individual with a given mutation
probability. Removing a neuron is not possible if there are no hidden neurons,
i.e. the input and output neurons can not be removed. The mutation for
removing a connection is restricted to only be possible if it does not leave a
"dangling" neuron, meaning a neuron with either no input connection or no
output connection.

Parametric mutation. This type of mutation affects the weights and
biases of the connections and neurons in the neural network respectively.
Parametric mutation is applied per parameter of an individual with a given
mutation probability (i.e. per connection and neuron in the network). A few
studies restrict weight and bias values to a set of discrete values in order to
reduce the parameter search space. No restriction is used in this work except
for a lower and upper bound.

Algorithm 2 Polynomial mutation scheme
1: function polynomial_mutation
2: Xp ∈ [Xlower, Xupper]← parameter value with bounded range
3: ηm ← distribution index
4: α = 1

ηm+1 ← mutation power

5: if random(0, 1) ≤ mutation_probability then

6: δ1 =
Xp−Xlower

Xupper−XLower

7: δ2 =
Xupper−Xp

Xupper−XLower

8: r = random(0, 1)

9: if r ≤ 0.5 then
10: δq =

(
2r + (1− 2r)(1− δ1)

ηm+1
)α − 1.0

11: else
12: δq = 1.0−

(
2(1− r) + 2(r − 0.5)(1− δ2)

ηm+1
)α

13: Xp := Xp + δq · (Xupper −Xlower)

14: Xp :=


Xlower if Xp < Xlower

Xupper if Xp > Xupper

Xp otherwise

As in previous neuroevolution studies [4, 7], the polynomial mutation [60]
scheme is used in this work to mutate parameters. See Algorithm 2 for pseu-
docode on how polynomial mutation is applied. With polynomial mutation,
a distribution index ηm determines how different the mutated offspring will
be from its parent. A small distribution index results in a more different
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mutated offspring as the mutation power α will be larger, and vice versa for
a large distribution index. Due to the inherent elitism of NSGA–II, a small
distribution index and thus more variation is used in this work.

3.1.3 Choice of multi-objective evolutionary algorithm

NSGA–II (see section 2.2.3) is used as the evolutionary algorithm for optimiz-
ing multiple objectives. The NSGA–II algorithm is well-established and has
previously been used in various neuroevolution studies, such as [4, 6, 7, 21, 55]
to name a few. Furthermore, NSGA-II was chosen over SPEA2 because the
performance advantage with SPEA2 in high-dimensional objective spaces will
be negligible when only two objectives are optimized. Additionally, NSGA–II
is one of the most efficient multi-objective evolutionary algorithms compared
to other multi-objective evolutionary algorithms.

For the comparison of diversity objectives, experiments with only performance
and no diversity objective are also performed. Performance alone is used
as a control experiment for the targeted problems. In the case of a single
objective, NSGA–II is equivalent to an elitist evolutionary algorithm with
tournament-based selection [30]. More efficient evolutionary algorithms for
single-objective optimization exist (e.g. NEAT). However, as in previous
studies (e.g. [4, 6, 7]), NSGA–II is used for optimizing performance alone to
ensure that only the objectives affect the results and not any other factors
related to the implementation.

3.1.4 General overview of the neuroevolution algorithm

The general overview and step-by-step procedure of the neuroevolution algo-
rithm employed in this work is illustrated in figure 3.1. Algorithm 3 shows
the pseudocode equivalent to figure 3.1. The parent population at generation
t is denoted by Pt. Likewise, the offspring population is labeled as Qt. The
step-by-step procedure for running a neuroevolution experiment for a given
problem environment is as follows:

1. Initially, at generation t = 0, the parent population Pt is empty. The
offspring population Qt is populated with minimal fully-connected
neural networks, each with randomly sampled weights and biases. A
minimal fully-connected neural network contains only input and output
neurons, where every input neuron is connected to all output neurons.
Additionally, as the parent population is empty at t = 0, the entirety
of the offspring population becomes the parent population Pt+1 for
the next generation and no individuals are rejected in NSGA–II. In
subsequent generations, NSGA–II merge and select non-dominated
solutions as usual.
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2. For the first step of the evolutionary cycle, the individuals in the
offspring population Qt are simulated in the problem environment (or
domain). See algorithm 4.

3. After the simulation of individuals, individuals are evaluated according
to the objectives, both the performance on the task and the diversity
of the individual. How the diversity of an individual is defined depends
on the objective function, and if they are compared to an archive or to
the rest of the current population.

4. Once all individuals are evaluated according to the objectives, the
offspring population Qt is merged with the parent population Pt and
the NSGA-II algorithm selects the non-dominated individuals for the
next parent population Pt+1 and discards the rest of the individuals.
NSGA-II was previously described in section 2.2.3.

5. Next, any statistics that may be required for visualizing results later
such as the best performance per generation, best individual, Pareto
front, and other statistics of population Pt+1 are reported and saved.
See report_statistics (line 9) in algorithm 3.

6. Finally, the offspring population Qt+1 for the next generation is gener-
ated by mutating the individuals of Pt+1 as was described in section
3.1.2 above. Next generation starts from step 2 again with the mutated
offspring population Qt+1 until the success criterion for the simulated
environment is reached or a set maximum number of generations is
reached.

Algorithm 3 Neuroevolution algorithm (see figure 3.1)

1: function run(E – environment, O – objectives, N – max_generations)
2: t← 0, current generation
3: Pt ← empty parent population
4: Qt ← initialized offspring population
5: while not success_criterion and t < N do
6: Qt ← simulate(Qt, E)
7: Qt ← evaluate(Qt,O)
8: Pt+1 ← nsga–ii(Pt, Qt)
9: report_statistics(Pt+1,O)

10: Qt+1 ← mutate(Pt+1)
11: t← t+ 1
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Figure 3.1: General overview of the neuroevolution algorithm. For every generation
t, individuals in the offspring population Qt are simulated in the environment of the
targeted problem. Next, individuals are evaluated according to the objective functions
employed. NSGA–II merges the offspring population Qt and parent population Pt and
selects non-dominated solutions for population Pt+1 of the next generation. Finally, the
offspring population Qt+1 for the next generation is generated by mutating the individuals
of Pt+1. Repeat until a success criterion or the max number of generations is reached.

Algorithm 4 Simulation of individuals
1: function simulate(P – population, E – environment)
2: K ← maximum number of simulation steps
3: for individual in P do
4: neural_network← individual.genotype_to_phenotype()
5: observation← E .get_initial_observation()
6: i← 0
7: while i < K do
8: action← neural_network.activate(observation)
9: observation← E .step(action)

10: i← i+ 1

11: individual.save_simulation_data()

Important to note that the pseudocode for simulating individuals is defined
in more general terms in algorithm 4, and will be different depending on the
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targeted problem.

The function call save_simulation_data on line 11 of algorithm 4 is
a general function for saving all data that is necessary to evaluate the per-
formance and diversity of an individual later. Computing the diversity of
an individual is usually done by comparing the individual to the rest of the
population after all individuals have finished simulating. For example, with
the Hamming distance, saving the input-output history for each individual
during simulation is required in order to compare to the rest of the population
after all individuals are simulated. The diversity objectives used in this thesis
are presented in section 3.2 below.

3.2 Comparison of Diversity Objectives

This section presents the motivation for introducing representational diversity
as a new type of diversity, and in more technical terms, how the learned
representation is characterized and used. Afterward, all diversity objectives
(i.e. experimental treatments) compared in this thesis are outlined.

3.2.1 Introducing a new type of diversity

A fundamental challenge in neuroscience is to model the representations in
human brains by quantitatively relating brain-activity measurements, behav-
ioral measurements, and computational modeling. One study [61] suggested
abstracting the measured brain activity and computing representational dis-
similarity matrices (see figure 3.2) in order to characterize the information of
a given representation. The correlation between activity patterns (in a brain
or model) elicited by four stimulus images (i.e. input) was computed to suc-
cessfully reveal the representational structures for different parts of the brain.

Inspired by this study and other studies on brain representations in neuro-
science, researchers proposed similarity metrics (CKA, CCA) for measuring
the similarities between learned representations of deep neural networks using
neuron activations that were introduced in section 2.5. The purpose was to
study the similarity between the learned representations of two neural net-
works that were initialized differently, and the proposed similarity index was
found to reliably identify correspondences between learned representations
[46].

3.2.2 Adapting representational diversity to neuroevolution

Bridging the gap to neuroevolution, no previous work has attempted to
encourage a diversity of neural network representations other than in the
Creative Thinking Approach (CTA) with a somewhat similar use of neuron
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(a) (b)

Figure 3.2: Characterizing representations in different parts of the brain with a represen-
tational dissimilarity matrix. (a) Illustrates the representational dissimilarity matrix as a
hub that relates the three major branches of research in systems neuroscience: behavioral
experimentation, brain-activity, and computational modeling. The matrix acts as a quanti-
tative abstract representation that can be compared across the regions of the brain or a
model. (b) Computation of the representational dissimilarity matrix by spatial correlation
of activity patterns from a brain or model. Figures from [61].

activations. The motivation for proposing representational diversity as a new
type of diversity objective was briefly outlined in section 2.7.3 of Chapter 2
and further inspired by research in neuroscience presented above. In short,
the motivation for representational diversity as a new type of diversity in
neuroevolution is as follows:

Encouraging representational diversity is to encourage a diversity
of learned neural network representations. That is, a diversity of
learned representations dependent on the structure and behavior
of the neural networks, with the additional advantage of being
domain-independent.

In more technical terms, the learned representation of a neural network is
characterized by a matrix of non-binarized neuron activations. Only acti-
vations from hidden neurons and output neurons are used, in contrast to
CTA which binarizes the input-output history and hidden neuron activations
collected in sequence (see figure 3.3). This way of representing the learned
representation is arguably more informative, but this remains to be seen.

The similarity metrics centered kernel alignment (CKA) and canonical correla-
tion analysis (CCA) can be applied to measure the similarity between learned
representations of two individuals using the representation matrix in figure
3.3. Originally, these metrics were used on neural networks with identical
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topologies. Using neuroevolution in this work, the metrics are applied to
evolved neural networks with different topologies. How this affects the ability
to reliably find similarities remains to be seen.

Outputs
Inputs Hidden 

neurons

Figure 3.3: Characterization of a neural network representation. The learned represen-
tation is represented by a matrix of activations of pi neurons in the neural network of
individual i for n examples (or samples). The activations are appended to the matrix
during simulation. Contrary to CTA in figure 2.14, activations are not binarized and
collected in a matrix instead of a sequence. Additionally, only activations from hidden and
output neurons are used (i.e. no input values).

Computing the similarity between the representation matrix of two individ-
uals, x and y, involves matrix multiplication of matrices of size (nx × px)
and (ny × py) respectively. Matrix multiplication requires the first dimension
of each representation matrix to be equal (i.e. nx = ny) but the number of
neurons can be different (i.e. px ≠ py). The former is not guaranteed to be
the case for problems often targeted in neuroevolution such as evolutionary
robotics tasks (e.g. a simulated robot failed earlier than another robot). In
the case where the number of samples, nx and ny, of two representation
matrices are not equal, only corresponding samples for the smallest of the
two are considered (see figure 3.4).

In short, neural networks can be evolved with a different number of neurons
but the number of samples considered has the be the same when computing
the similarity between representations. A more mathematical definition of
CKA and CCA was previously defined in section 2.5. See section 3.2.3 be-
low on how these similarity metrics are used to define the representational
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diversity of an individual.

Unused

IndividualIndividual

Figure 3.4: Computing similarity between representation matrices of two individuals x
and y. Using the similarity metrics CKA or CCA requires an equal number of samples
nx = ny. The number of neurons px and py in individual x and y respectively can be
different. If the number of samples is different, only the corresponding samples of the
representation matrix with the smallest number of samples are used while the remaining
samples of the largest matrix are unused (grey).

3.2.3 Experimental treatments

A comparison of diversity objectives is performed on four targeted problems.
In total, seven experimental treatments are applied to every problem. An
experimental treatment is defined as the combination of a performance
objective and a diversity objective as follows:

Maximize

{
F (x)

Diversity(x)
(3.1)

where F (x) is the performance objective. The task is to optimize both
objectives, but performance is the primary objective while the diversity
objective is the secondary objective used to help the search. A baseline
treatment with only the performance objective is also employed as a control
experiment. The purpose of the control experiment is to determine if a
traditional evolutionary approach without any diversity objective can solve
the problem as efficiently as with diversity objectives. Of the remaining six,
two treatments for each type of diversity described in Chapter 2 are chosen
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(i.e. behavioral, structural, representational). The following experiments are
performed in this thesis:

(1) Performance Alone

Maximize F (x) (3.2)

See Chapter 4 for how the performance F is evaluated in the targeted
problems.

(2) Performance + Novelty

Maximize

{
F (x)

D(x) = 1
k

∑k
i=1 dad-hoc(x, µi)

(3.3)

See Chapter 4 for dad-hoc behavioral distances of every targeted problem.

(3) Performance + Hamming distance

Maximize

{
F (x)

D(x) = 1
|P |
∑

j∈P dham(x, j)
(3.4)

See equation 2.14 for dham distance.

(4) Performance + Modularity

Maximize

{
F (x)

D(x) = Q(x)
(3.5)

See equation 2.17 for Q score calculation.

(5) Performance + Modularity Diversity

Maximize

{
F (x)

D(x) = 1
|P |
∑

j∈P ∆decomp(x, j)
(3.6)

See equation 2.18 for ∆decomp distance.

(6) Performance + Centered Kernel Alignment

Maximize

{
F (x)

D(x) = 1
|P |
∑

j∈P 1− CKA(x, j)
(3.7)

See equation 2.7 for CKA similarity index.

(7) Performance + Canonical Correlation Analysis

Maximize

{
F (x)

D(x) = 1
|P |
∑

j∈P 1−R2
CCA(x, j)

(3.8)

See equation 2.9 for R2
CCA similarity index.
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For ease of reference when discussing the results or the use of specific experi-
mental treatments, the abbreviations in table 3.1 below are used.

Table 3.1: Summary of all experimental treatments and their abbreviations. The
abbreviations are used for ease of reference of the various diversity objectives in the
subsequent discussion of results.

Treatment Objectives

PA Performance Alone
Novelty Performance + Novelty
Hamming Performance + Hamming distance
Mod Performance + Modularity (Q-score)
ModDiv Performance + Modularity Diversity
CKA Performance + Centered Kernel Alignment
CCA Performance + Canonical Correlation Analysis

To summarize, a total of seven experimental treatments are employed with a
control experiment (PA) and two treatments with a different diversity metric
for each diversity type (i.e. behavioral, structural, and representational). All
treatments with a diversity objective, except Novelty and Mod, define the
diversity of an individual as the average distance to the rest of the individuals
in the population P . A few other implementation details to note for a few of
the treatments:

• Novelty – The novelty calculation is the behavioral distance from
individual x to its k nearest neighbors of the archive (i.e. not to all
in the current population P ). An individual is added to the archive
if the computed novelty is above a threshold. The threshold for each
targeted problem is listed in appendix A.

• Mod – The modularity treatment is slightly different from the rest as
no comparison to the rest of the current population or an archive is
required to calculate the modularity of an individual.

• CKA & CCA – The representational diversity treatments use a simi-
larity index. Encouraging diversity thus means minimizing similarity.
For the sake of keeping all experiments as purely maximization prob-
lems, minimizing similarity is converted into maximizing diversity by
subtracting the similarity index from 1 (see eq. 3.7 and 3.8). A small
similarity index will result in a large diversity score, and vice versa.

• CKA – As was briefly mentioned in section 2.5.1 on CKA, the similarity
calculation is performed across the features (i.e. neurons) instead of the
samples. The calculation is faster as the targeted problems in this work
involve a significantly larger number of simulation steps (i.e. samples)
than the number of neurons the networks will ultimately evolve.
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3.2.4 Parameter tuning, experiments, and statistical testing

The experimental parameters are specific to each targeted problem, with
different mutation probabilities, activation functions, etc. (see appendix A).
To ensure differences between treatments are only due to different diversity
objectives, the same parameters are used for treatments applied to the same
problem. Setting the parameters is done by using similar values used in pre-
vious studies and further adjusting them based on initial test experiments if
necessary. However, comprehensive parameter tuning has not been performed
due to computational constraints and time. Limited computational resources
and a large number of parameters and possible combinations of them, make
parameter tuning time-consuming.

Likewise, a population size of 100 is employed due to the number of ex-
periments required. All experiments are repeated 50 times with random
seeds (i.e. different stochastic events). With 7 targeted problems (including
variations of the same problem), 7 treatments, and 50 runs per treatment,
the total number of experiments performed is: 7 · 7 · 50 = 2450. All statistical
significance testing of results presented in Chapter 5 apply the Mann-Whitney
U test.

3.3 Problem characteristics of interest

In order to identify which diversity objectives are most suitable for which
type of problem, a number of interesting characteristics are studied in this
work. The characteristics of a problem are the qualitative aspects of the
problem and its structure that are prominent and important. Some studies
focus specifically on problems that express one of these aspects, such as
modularity in [4, 10] and deceptiveness in [5, 21]. However, a comprehensive
set of important problem characteristics has not previously been established.
To fill this gap, four characteristics of interest are proposed in this thesis:

• Modularity

• Regularity

• Deceptiveness

• Environment space

The above characteristics are studied because they are important aspects
expressed by many of the commonly targeted problems in neuroevolution.
Naturally, this list is by no means exhaustive but covers both previously
studied characteristics and also characteristics that merit further study. The
targeted problems presented in Chapter 4 are, in part, selected in order to
compare diversity objectives on problems that have unique combinations
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of these characteristics. The targeted problems are characterized according
to the characteristics. An informal definition of each characteristic and
motivation for studying them is given below.

3.3.1 Modularity

Modularity is understood to be the degree to which the problem structure can
be decomposed into independent sub-tasks and the potential for a modular
neural network structure to evolve. In other words, the problem lends itself
nicely to a modular structure, both for solving the task and for the neural
network structure. It should be noted that a modular structure may not be
required to solve the problem.

Modularity is an important aspect that has previously been studied in
neuroevolution [4, 10, 62]. In general, modularity has been studied as an
important organizing principle in biological neural networks of human and
animal brains [63] and a key driver of evolvability – the ability to rapidly
adapt to novel environments [10]. In addition, modularity has been shown to
facilitate the evolution of novel network activity [64]. The role of modularity
in evolution remains an important area of research. Therefore, modularity as
a problem characteristic is studied in this work.

3.3.2 Regularity

Regularity is expressed if there is a repeating or oscillatory nature to the
problem and its structure. Examples of problems exhibiting regularity are
problems where solving a repeating sub-task is required, a sequence of differ-
ent sub-tasks is required to be solved, or discovering an oscillatory pattern is
useful for solving the task. In other words, there is a pattern to the problem,
and discovering such a pattern is useful for solving the problem.

Patterns appear frequently in evolution (and nature in general) through
symmetry, repetition of identical structures, repetition with varying struc-
tures, and regular properties [65]. It is generally accepted that regularity
and oscillatory patterns in the human brain are widespread and serve an
important role. Studies on such patterns in biological neural networks include
the co-emergence of regularity and complexity in neural activity [66] and how
neural oscillatory activity in the brain responds to rhythmic stimulus (e.g.
speech, music, and sensorimotor input) from the environment and are also
theorized to be predictive processes [67].

In neuroevolution, such patterns and regularities were partly the inspiration
for developing a new type of neural network encoding called compositional
pattern producing network (CPPN) [65]. CPPNs compose the network as
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a graph of functions and can be evolved to discover and produce complex
patterns. Discovering such oscillatory patterns is an important aspect of
robot locomotion tasks that are often targeted in neuroevolution (e.g. [4,
5, 21]). The relationship between environmental input patterns and neural
network activity patterns, both biological and artificial, is important and is
why regularity is studied in this work.

3.3.3 Deceptiveness

Deceptiveness as a problem characteristic has been the subject of several
studies on evolutionary algorithms (EAs), especially with a focus on diversity
maintenance techniques [5, 20, 21]. Including showcasing the efficiency of
novelty search in deceptive domains (see section 2.6.3). In [5], Lehman and
Stanley refer to deception as a definition of problem hardness as follows:

A deceptive problem is one in which a reasonable EA will not reach
the desired objective in a reasonable amount of time. That is, by
exploiting objective fitness in a deceptive problem, a population’s
trajectory is unlikely to uncover a path through the search space
that ultimately leads to the objective.

The authors emphasize that this definition is an intuitive definition and does
not account for the impact of parameters, problem representation, or search
operators on the performance of EAs. This previously established intuitive
definition of deceptiveness in [5] is also used in this work.

Generally, the deceptiveness of a problem is often linked to the objective
function and is the degree to which the problem contains obvious sub-optimal
solutions (i.e. local optima) that are easily converged to and normally hard
to avoid. Deceptive problems are usually harder to solve with a traditional
evolutionary algorithm using a reasonable objective function for the problem
domain.

3.3.4 Environment space

Environment space as a characteristic is understood to be how discrete or
continuous the problem structure is. More specifically, problems where an
agent or robot controlled by a neural network interacts with either a con-
tinuous environment with infinite states or a discretized environment with
a finite number of states. Also included is the representation and use of
input and output values. Depending on the environment, input values can
be discrete integers, continuous real-valued numbers, or a combination of the
two. Problems also differ in how the output values of the neural networks are
interpreted and subsequently affect the environment. For example, the output
values can be applied as they are or discretized in some way to represent an
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action or prediction of some sort.

Defining an appropriate representation of a problem is an important as-
pect of evolutionary computation (and optimization in general) that can
greatly affect performance. Many studies use vastly different representations
for the same problem, which changes the problem difficulty and with it the
reported performance of evolutionary algorithms [68]. There is, in particular,
a general lack of research into how the representation of the environment space
affects the effectiveness of diversity objectives. Whether certain diversity
objectives are more effective in discrete or continuous environments, or if the
representation of the environment space has any effect at all on the evolu-
tionary search with diversity objectives. For this reason, the environment
space representation is chosen as one of the characteristics that are studied
in this work.
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4 | Experimental Setup

Chapter 4 presents the experimental setup for the thesis. The following four
problems are targeted: (1) the Retina problem, (2) the Tartarus problem, (3)
Maze navigation, and (4) Robot locomotion. The main reasons for choosing
the targeted problems are:

• They have previously been used in related research to study diversity-
driven neuroevolution;

• Some of them are hard to solve using traditional methods, despite their
relative simplicity;

• They are easy to set up and reproduce from scratch or with existing
simulator frameworks available for a few of the problems;

• They have distinct characteristics, thus giving more valuable insight
into the role of various diversity objectives described in Chapter 3.

The following sections are dedicated to the targeted problems and variations
of them. The sections describe the problem, implementation setup, and
neural network details. In the final section, the problems are characterized
according to the characteristics defined in Chapter 3.

4.1 The Retina problem

The Retina problem is a pattern-recognition problem where the objective
is to correctly classify input patterns (see figure 4.1). The problem has
been used in several previous studies focused on the evolution of modular
structures in neural networks. In particular, to study if modular structures
appear in neural networks when applied to modular problems [10, 62] and to
study structural diversity objectives in neuroevolution [4, 9]. The 8-bit input
pattern contains two independent parts, left and right. The input pattern is
classified as 1 (true) if both the left and right parts contain a target pattern,
otherwise, it is classified as 0 (false). The simulated environment is from [69]
with associated code repository1.

1https://github.com/PacktPublishing/Hands-on-Neuroevolution-with-Python
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(a) The retina for detecting input patterns.

Left  half

Evolved topology

Right  half

t rue/ false

(b) Neural network setup for the retina problem.

Left  target  pat terns Right  target  pat terns

(c) Target patterns for the left and right side of the retina.

Figure 4.1: The retina takes combinations of input patterns and classifies them as true if
both halves of the retina contain a target pattern and false if not. A black square in a
pattern will be passed to the neural network as a value of 1.0, and a white square as a
value of 0.0. The left and right target patterns are mirrored depending on which half of the
retina it is a target of, including a few shared target patterns. Figures adapted from [10].

The motivation is to see independent parts of a visual scene by abstracting
the left and right sides of a retina. The Retina problem is highly modular
because the left and right parts are completely independent of each other,
which lends itself nicely to neural networks with two distinct modules. De-
spite the modular structure of the Retina problem, evolving neural networks
can also tend to produce non-modular structures [62]. The problem is fairly
straightforward with no obvious local optimum the neural network can con-
verge to.

The problem setup follows the same setup used in previous studies [4, 10],
but with a slightly different neural network setup. In previous studies, the
neural networks are limited to a fixed number of layers, a maximum number
of neurons per layer, and a set of discrete values for the weights and biases.
A neural network setup with no structural limits and continuous weights
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and biases is used in this thesis to enable a similar setup across all problem
domains.

Neural network details. The neural networks are initialized as a fully-
connected network with 8 input neurons and 1 output neuron (see figure
4.1b). The evolved neural network should output a positive value (true)
whenever the left half of the retina contains a left target pattern and the
right half of the retina contains a right target pattern. Otherwise, the neural
network outputs a negative value (false). To ensure the neurons output a
value in the range [−1, 1], the tanh function is used as the activation function.
A parameter λ determines the slope of the activation function between its
limits. As in [4, 10], λ is set to 20 to resemble a step function with a very
steep slope.

Performance. The performance F of a neural network is evaluated by
presenting all 256 possible combinations of input patterns and counting the
number of errors (i.e. wrongly classified patterns):

F (x) = 1− errorCount

256
(4.1)

where errorCount is the number of wrongly classified patterns out of the
256 possible combinations. Thus, the performance score ranges between 0
and 1. With a score of 1, all inputs were correctly classified. All inputs were
wrongly classified with a score of 0.

Ad hoc distance. No ad hoc behavioral distance has previously been
defined for the Retina problem. The Hamming distance was used in [4] to
represent behavioral diversity. As a result, this thesis defines the ad hoc
behavioral distance as the euclidean distance between the outputs of two
neural networks for a set of test patterns as follows:

dad-hoc(x, y) = ∥βx − βy∥ (4.2)

where the behavior vector βx of individual x consists of the set of raw output
o of the neural network for k test patterns.

βx = {o(1), . . . , o(k)} (4.3)

In this work, 4 pairs of test patterns are used to produce the behavior vector
of an individual. The chosen test patterns are different from the target
patterns in figure 4.1c. The reason is to differentiate between individuals
that behave differently on unseen patterns and disregard the performance
on the task. Consequently, the behavior definition is domain-dependent as
domain knowledge is required to design the test patterns.
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Success criterion. An individual is successful if all 256 combinations
of target patterns are classified correctly. The individual has achieved the
maximum performance score, and thus, the evolutionary search is stopped.

Number of inputs. 8: 4 inputs for the left half of the retina and 4 inputs
for the right half of the retina.

Number of outputs. 1: the classification of the input pattern, either true
or false.

Ret ina

Input  pat tern

t rue/ false

Left  pat tern 
detected?

AND

Right  pat tern 
detected?

(a) The retina for detecting input pat-
terns for the 3x3 version.

Left  half

Evolved topology

Right  half

t rue/ false

(b) Neural network setup for the 3x3 version now with a
total of 18 input neurons.

Left  target  pat terns Right  target  pat terns

(c) Left and right target patterns for the extended 3x3 version.

Figure 4.2: The 3x3 retina problem with more and larger target patterns. The task of
pattern-recognition remains the same. As with the 2x2 patterns in the original version,
the left and right 3x3 target patterns are mirrored including a few shared target patterns.

4.1.1 A harder Retina problem

Early testing of the Retina problem indicated very similar results for many
of the diversity objectives, which is not very informative for a comparison of
them. This prompted the need for a more difficult version of the problem.
The original Retina problem is not tunable in terms of difficulty, and a more
difficult version of the problem does not currently exist. Therefore, a new and
harder version of the Retina problem with larger and more target patterns
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is implemented in this thesis (see figure 4.2).

The task is the same as in the original version, but the problem is harder
now with a pattern size of 3x3 and an increased number of patterns to be
classified correctly. As a result of the increased size of the target patterns,
the neural network will now have 18 input neurons (see figure 4.2b). In this
extended version of the Retina problem, there are 18 target patterns for each
half of the retina. The neural networks are be presented with a total of 1296
combinations of target patterns. To differentiate between the original version
and the new extended version, they are from this point on referred to as the
2x2-Retina problem and the 3x3-Retina problem respectively.

4.2 The Tartarus problem

The Tartarus problem [53, 70, 71] is a grid-based optimization problem. The
Minigrid2 library is customized to simulate the environment. The problem
environment is a 6× 6 grid world containing movable blocks and an agent
representing a bulldozer with the ability to push the blocks (see figure 4.3).
The objective is for the agent to locate and move each of the blocks to the edge
of the environment. A limit of 80 moves is afforded the agent, during which
the agent can perform three possible actions to navigate the environment:
turn left, turn right, or go forward. If there is a block ahead of the agent while
going forward, the block is only pushed if the block is not against another
block or a wall. The agent can achieve a maximum score of 10, with 1 point
received for each block at the edge of the environment and 2 points for any
block in the corners.

(a) Example of an initial
board configuration.

(b) Valid start positions for
the blocks and the agent.

(c) Example of a final board
configuration.

Figure 4.3: The Tartarus problem. Movable blocks in brown, and the agent in black with
the ability to push blocks. The goal is for the agent to push all blocks to the edge of the
environment within 80 moves. The agent receives a point for each block at the edge, and
two points for blocks in the corners. To navigate the environment, the agent can perform
three possible actions: turn left, turn right, or go forward. Figures adapted from [71].

2https://minigrid.farama.org
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Despite its simplicity and small grid world, the Tartarus problem is challeng-
ing. The agent does not have any prior knowledge about its starting position
or orientation in the environment. The only information available to the
agent is the eight surrounding grid cells and the previous action performed
by the agent. Two distinct situations may appear identical to the agent but
can require entirely different actions (i.e. perceptual aliasing).

While the task is challenging in itself, it is also somewhat deceptive as
there is a possibility of an agent learning a simple mechanical behavior that
is better than random behavior but does not exhibit the complex behavior
required to achieve a maximum score [70]. Due to the small grid, the me-
chanical behavior of simply pushing a block forward whenever encountered
can earn a mediocre score between 4 and 6 points. The agent must learn
a more complex behavior in order to achieve a maximum score within the
move limit. It requires learning the behavior of first locating and pushing a
block to the edge, moving around the block, and finally pushing the block
into the corner. Accordingly, the agent (i.e. neural network) requires a type
of memory element to remember the previous observation or action taken in
order to learn a more complex behavior. A recurrent neural network (RNN)
with a fixed topology is used in [53, 70] for this purpose.

NE

L t FtRt

N E SE S SW W NW L t -1

Evolved topology

Rt -1 Ft -1

Figure 4.4: Neural network setup for the Tartarus problem. Outputs of the neural
network are turn left (Lt), turn right (Rt), and go forward (Ft). The inputs (NE, . . . ,NW)
are the surrounding the eight squares, and the inputs (Lt−1,Rt−1,Ft−1) are the one-hot
encoded values of the previous neural network output.

Neural network details. Alternatively, as is employed in this work, the
action of the previous step taken by the agent is used as input to inform the
action of the current step. The output values of the network for the previous
step are one-hot encoded and used as input for the current step. The neural
networks are initialized as a fully-connected network with 11 input neurons
and 3 output neurons. The evolved neural network outputs a value for each
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of the three possible actions at step t (see figure 4.4). The action with the
largest output value is chosen as the action taken by the agent. Neurons use
the sigmoid activation function to ensure output values in the range [0, 1].

Performance. The performance F of a neural network is evaluated by the
average score achieved on a set of k board configurations of blocks:

F (x) =
1

k

∑
c∈C

stateEvaluation(x, c) (4.4)

where c is a board configuration in the set C of k board configurations. The
number of points achieved by individual x on configuration c is returned by
stateEvaluation. In this work, a set with 30 board configurations is used.

All possible starting configurations of blocks are generated beforehand. Of
these, the partially solvable configurations are removed and only the fully
solvable ones are kept (see figure 4.5). For every experiment (i.e. run), the
set C is created by randomly sampling k fully solvable configurations once.
All neural networks are evaluated on the configurations in C.

(a) Wilson configuration. (b) 4-block cluster.

Figure 4.5: Two types of partially solvable Tartarus configurations. Pushing a block that
is up against another block is not possible, thus configurations with 4-block clusters as is
shown in (b) are only partially solvable. Likewise, the Wilson configuration in (a), will
result in a 4-block cluster regardless of which block is pushed. Figures adapted from [71].

Ad hoc distance. The ad hoc behavioral distance between two individuals,
x and y, is defined as the Manhattan distance between the corresponding
blocks in the two sets of final board configurations (i.e. after 80 moves):

dad-hoc(x, y) = Manhattan(βx(i), βy(i)) (4.5)

where the behavior vector βx of individual x contains the final positions of
corresponding blocks after 80 moves for all k sampled configurations:

p(c) = {(x1, y1) , . . . , (x6, y6)} (4.6)

βx =
{
p(c), c ∈ [1, k]

}
(4.7)
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where p(c) is a vector with the final position of the 6 blocks in board con-
figuration c. Important to note that the Manhattan distance calculation is
between corresponding blocks. Thus, individuals are rewarded for solving
board configurations differently from other individuals (e.g. blocks in the
corners). The ad hoc behavioral distance was first defined in [70].

Success criterion. An individual is successful if an average score of 10.0
is achieved on all sampled board configurations. In other words, getting the
maximum score for all board configurations. The evolutionary search is then
stopped.

Number of inputs. 11: 8 for the grid cells surrounding the agent and 3
for the one-hot encoded outputs of the previous step.

Number of outputs. 3: one for each of the three possible actions, turn
left, turn right, and go forward.

4.2.1 A deceptive version of the Tartarus problem

In addition to the above-described problem setup used in [53], there exists
an explicitly deceptive version of the Tartarus problem used in [70]. In the
Deceptive-Tartarus problem, blocks in the corners are still awarded 2 points
but blocks at the edges are awarded −1 points. In this version of the problem,
the optimal strategy is to push a block to each of the four corners and leave
the remaining two blocks in the middle of the grid giving 0 points and thus
resulting in a maximum score of 8. The new scoring scheme is deceptive
because it penalizes neural networks that converge to the local optima of
mechanically pushing blocks until it hits a wall and is awarded points.

4.3 Maze Navigation problem

A Maze Navigation problem was used to demonstrate the efficiency of Novelty
Search [5] and has since been used in various other studies [6, 7, 21, 72]. More
specifically, the maze domain is usually designed to be deceptive to a reason-
able fitness function. In many of the maze domains previously used, there is
an attractive dead-end (i.e. local optima) that individuals will almost always
converge to. Due to the deceptiveness of the maze, searching for novelty or di-
versity has been shown to lead to better performance rather than pure fitness.

The task is for a mobile robot to navigate a maze domain from a start-
ing point to a goal within a fixed time limit. The maze domains contain
cul-de-sacs that prevent a direct route to the goal and require the robot to
properly navigate the environment. In this work, two different maze domains
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(a) Medium maze. (b) Hard maze.

Figure 4.6: The medium and hard maze domains. The blue circle represents the starting
position of the robot, and the red star is the goal. Both maze domains are deceptive with
attractive local optima. The maze domains in (a) and (b) were also used in [5].

are used. The first maze, the Medium-Maze, is designed to have multiple
deceptive dead-ends on the path to the goal (see figure 4.6a). The robot must
learn to weave between the dead-ends on the way to the goal. The second
maze, the Hard-Maze, is designed to be even more deceptive. The robot must
explore areas away from the goal that initially leads to lower fitness before
the goal can be reached. In this maze domain, there is an attractive local
optimum very close to the goal (see figure 4.6b). Simulated maze domains
are from [69] with associated code repository3.

Important to note is that the task is not a pathfinding problem but to
find a neural network that can navigate the maze by itself using only the
sensors it is equipped with [5]. In a pathfinding problem, the optimal path is
unique to every maze layout while for this maze problem, an evolved neural
network would be able to navigate any maze, successfully or unsuccessfully,
regardless of the layout. The neural network does not necessarily find the
optimal path.

The robot is equipped with 3 range sensors and a 4 pie-slice goal radar
(see figure 4.7a). Range sensors measure the distance to the nearest obstacles,
and the goal radar indicates which direction the goal is in relation to the
perspective of the robot. The robot moves by setting the angular and linear
velocity of the robot that determines how fast the robot is turning left or
right and the forward or backward speed of the robot respectively.

3https://github.com/PacktPublishing/Hands-on-Neuroevolution-with-Python
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Figure 4.7: (a) Simulated mobile robot. The numbered red arrows are the range sensors
(e.g. laser range finder) of the robot that return the normalized distances to the nearest
obstacles in these directions. The four pie-slice goal sensor in blue indicate in which
direction the goal is from the perspective of the robot (i.e. a compass). (b) The neural
network setup for the mobile robot. Outputs of the neural network set the angular and
linear velocity of the robot. The inputs are three range sensor distances (red) and the four
pie-slice goal sensor (blue). Figure (a) adapted from [7].

Neural network details. The neural networks are initialized as fully-
connected with 7 input neurons and 2 output neurons (see figure 4.7b). The
input values for the range sensors are normalized to between [0, 1]. For the
goal sensor, only one of the inputs will be active (i.e. input of 1.0) and the rest
inactive (i.e. input of 0.0) at all times. The evolved neural network outputs
a value for the angular and linear velocity of the robot as control signals.
The velocities are used to update the position and heading of the robot at
each time step t for a total of T time steps. Control signals should be in
the range [−0.5, 0.5]. Therefore, neurons use the sigmoid activation function
with range [0, 1], and outputs from the output neurons are subtracted by 0.5.

Performance. The performance F of a neural network is evaluated by the
euclidean distance from the robot to the goal at the end of the simulation.
The performance is normalized to be in the range [0, 1]. A value of 1 means
that the robot reached the goal:

F (x) =
d0 − dT

d0
(4.8)

where d0 is the initial distance between the robot and the goal at its starting
position, and dT is the distance to the goal at the end of the simulation after
time T .

Ad hoc distance. The ad hoc behavioral diversity of an individual is
defined as the average distance from its end location to the end location of its
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k-nearest neighbors (i.e. sparseness). The same novelty metric was described
in section 2.6.3 about Novelty Search [5] where an archive of previously novel
individuals is utilized. The distance between two individuals, x and y, is
defined as follows:

dad-hoc(x, y) = ∥px − py∥ (4.9)

where px and py is the end location of individual x and y in the maze at the
end evaluation. The distance metric is the euclidean distance between their
end locations.

Success criterion. An individual is successful if the goal is reached by
the robot by the end of the simulation. The evolutionary search is stopped
because the maximum score is achieved.

Number of inputs. 7: 3 range sensors and 4 inputs for the goal sensor.

Number of outputs. 2: 1 for the angular velocity of the robot and 1 for
the linear velocity of the agent.

4.4 Robot Locomotion problem

The Robot Locomotion problem is, as the name implies, a locomotion problem
where a robot has to transport itself from one location to another. Wheeled
robots are usually very efficient and easy to control, but another form of
locomotion may be more appropriate if the robot has to traverse rough terrain
or interact with and in a human environment. This type of problem has
previously been targeted in neuroevolution studies [4, 5, 9, 21] with various
robot configurations (e.g. bipedal robot or hexapod).

Figure 4.8: Simulated bipedal walker for the Robot locomotion problem. The 2D
environment is generally flat and the goal is for the bipedal walker to reach the end of the
environment (not pictured) within a time limit.

64



In this work, a Bipedal-Walker is simulated (see figure 4.8). The Gym-
nasium4 library, originally developed by OpenAI, is used as the simulation
framework for this problem. More specifically, the BipedalWalker-v3 5 en-
vironment is used. The bipedal walker has a hull (or head/body) with a
constant size and weight, and two legs with two segments each of constant
length. A hip joint connects each leg to the hull and a knee joint connects
the two segments of each leg. The bipedal walker utilizes lidar rangefinder
measurements to observe its environment and also has various information
about the current angles and velocities of its hull and two legs. The objective
is for the bipedal walker to reach the end of the environment within a set
time limit without falling.

The task is difficult because the neural network must learn a gait that
is efficient and fast enough to reach the end within the time limit. Learning
such a gait requires coordination of the two legs, balancing the hull, and
discovering an oscillatory pattern [5]. Similar to how human babies first learn
to crawl before learning to walk, the initial population of neural networks
tends to perform badly. However, encouraging diversity to discover useful
"stepping stones" (e.g. crawling) can be beneficial for learning a natural gait.
The problem is slightly deceptive as there is a local optimum of lunging for-
ward at the start. Although, this local optimum will eventually be surpassed
by neural networks that learn slow and inefficient gaits able to move beyond
this distance in the environment.

Evolved topology

(a)

Hull angle

Hull angular velocity

Hull velocity in x-direct ion

Hull velocity in y-direct ion

Hip joint  angle (leg i)

Hip joint  velocity (leg i)

Knee joint  angle (leg i)

Knee joint  velocity (leg i)

Ground contact  flag (leg i)

Lidar rangefinder j

Torque on hip (leg i)

Torque on knee (leg i)

(b)

Figure 4.9: (a) The neural network setup for the simulated bipedal walker. The inputs
are the various angles and velocities for the hull and the hips and knees of the legs. In
addition to these, inputs also include ground contact flags to indicate when a leg touches
the ground and the laser rangefinder measurements. The outputs are the torque (or motor
speed) values applied to the hips and knees of each leg. (b) Table of symbols representing
the various inputs and outputs in (a) with a descriptive explanation.

4https://gymnasium.farama.org
5https://gymnasium.farama.org/environments/box2d/bipedal_walker/
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Neural network details. The neural networks are initialized as fully
connected with 24 input neurons and 4 output neurons (see figure 4.9a).
The evolved neural network outputs torque (or motor speed) values that are
applied to the hip and knee joints of each leg. The torque values should be in
the range [−1, 1]. Neurons use the tanh function as the activation function
to ensure values in this range. Some studies [4, 9] use a compositional pattern
producing network (CPPN) encoding. However, this thesis uses a direct
neural network encoding as is used in [5, 21] to enable a similar setup across
all problem domains.

Performance. The performance of a neural network is evaluated by the
number of points accumulated. Points are accumulated by the bipedal robot
during simulation based on the distance walked. A robot reaching the end of
the environment will have accumulated 300+ points. The robot is penalized
with -100 points if it falls. Applying torque to the motors of the joints costs
a small amount of points. Thus, a more efficient neural network controller
will achieve a better score than an inefficient one.

Ad hoc distance. The behavior of an individual is defined as the offset of
the bipedal robot’s center of mass sampled during the simulation. The offset
of the center of mass is calculated as follows:

x′k = sign(xk − x0) · (xk − x0)
2 (4.10)

y′k = sign(yk − y0) · (yk − y0)
2 (4.11)

where (x0, y0) is the initial center of mass of the bipedal walker and (xk, yk)
is the center of gravity of the biped walker at the kth sample during the
simulation. The behavior vector βi of individual i is defined by concatenating
all pairs of (x′k, y

′
k) for m samples:

βi = {(x′1, y′1, . . . , x′m, y′m)} (4.12)

The ad hoc behavioral distance between two individuals, x and y, is calculated
in the same way as in the Maze Navigation problem in section 4.3, but using
the euclidean distance between behavior vectors for the k nearest neighbors:

dad-hoc(x, y) = ∥βx − βy∥ (4.13)

This way of measuring novel behaviors rewards individuals with unique gaits
compared to others, and most importantly, is ignorant of the performance
on the task. A slow and stable crawling gait is rewarded just as much as a
fast and unstable jumping gait. Defining the behavior of an individual for
the robot locomotion problem varies between studies depending on the robot
configuration and other implementation details. The behavior definition and
behavioral distance used in this work are the same as in [5, 21].
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Success criterion. An individual is successful if a score of 300+ points is
reached. The points are accumulated over the course of the simulation, and
reaching 300+ means the robot managed to reach the end without falling.
The evolutionary search is stopped.

Number of inputs. 24: 2 for the hull angle and hull angular velocity, 2
for the horizontal and vertical velocity, 4 for the angles and velocities of both
hip joints, 4 for the angles and velocities of both knees, 2 for the ground
contact flags of each leg, and 10 lidar rangefinder measurements.

Number of outputs. 4: motor speed for the 4 joints at both hips and
knees.

4.5 Characterizing the targeted problems

A formal characterization of commonly targeted problems is lacking in previ-
ous research. As was stated in Chapter 3, this thesis attempts to characterize
the targeted problems with the purpose of potentially gaining more valuable
insight into the various diversity objectives. In particular, if some diversity ob-
jectives are more suitable for problems with certain characteristics than others.

The problems are classified according to which degree it expresses the char-
acteristics: modularity, regularity, and deceptiveness. In addition, problems
are characterized by their environment space: discrete or continuous. A sum-
mary is given in table 4.1 with every targeted problem. Subsequent sections
outline the justification for this characterization. In situations where multiple
versions of the same problem are characterized differently, the versions are
separated and vice versa if characterized the same (e.g. Tartarus and Retina
respectively). It should be noted that the characterization performed in this
work is subjective.

Table 4.1: Summary of the characteristics of the targeted problems. The problems are
characterized according to which degree it expresses the traits: modularity, regularity,
and deceptiveness. None means that the problem does not exhibit the trait at all. Some
indicates that the problem somewhat exhibits the trait. Problems with a trait characterized
as A lot, exhibit the trait to a high degree. They are also categorized by whether the
environment space for the problem is discrete or continuous.

Targeted problem
Modularity Regularity Deceptiveness Environment

None Some A lot None Some A lot None Some A lot Discrete Continuous

Retina (2x2 and 3x3) ✓ ✓ ✓ ✓
Tartarus ✓ ✓ ✓ ✓
Deceptive-Tartarus ✓ ✓ ✓ ✓
Medium-Maze ✓ ✓ ✓ ✓
Hard-Maze ✓ ✓ ✓ ✓
Bipedal-Walker ✓ ✓ ✓ ✓
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4.5.1 Characteristics of the Retina problem

Modularity

As mentioned in section 4.1, the Retina problem is highly modular. The
problem structure is modular because of the two independent parts of the
retina and their respective target patterns. Such a modular structure can
potentially be advantageous to networks that evolve into two modules, each
learning their respective target patterns. However, a modular network is not
required to perform well.

Regularity

The Retina problem does not exhibit any regularity. There is no obvious
regular (or repeating) structure to the task that neural networks are required
to learn. Examples of regularity include solving a sequence of sub-tasks or
learning an oscillatory pattern.

Deceptiveness

The Retina problem is not deceptive. There are no obvious local optima
that an individual can easily converge to. Guiding the evolutionary search
using the performance is not misleading.

Environment space

The environment space of the Retina problem is discrete. The inputs are
discrete with values of either 0 or 1. The outputs are discretized to indicate
a classification of true or false. Furthermore, the activations of the neural
networks will be more discrete due to using the tanh activation function with
a steep slope parameter (see section 4.1).

4.5.2 Characteristics of the Tartarus problem

Modularity

The Tartarus problem is not modular. A modular structure does not appear
obvious as the outputs are probabilities for the three actions and depend
equally on all inputs. Perhaps one could argue that the two parts of the
inputs, i.e. the surrounding cells and the one-hot encoded previous outputs,
can potentially encourage evolving two modules. However, both the previous
outputs and the surrounding cells are dependent on each other and will affect
all the outputs equally.
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Regularity

The Tartarus problem is somewhat regular in that the agent has to solve
the same sub-task multiple times, i.e. push every block to the edge. The
repeating task of pushing blocks indicate regularity to some degree, but the
inputs and outputs do not exhibit any obvious regular pattern like is obvious
in Bipedal-Walker.

Deceptiveness

The standard version of the Tartarus problem is somewhat deceptive as
there is an obvious local optimum where the agent only learns to randomly
push blocks to the edges and thus achieves a mediocre score of 4− 6 points
instead of the maximum 10 points.

The change in how points are awarded, with negative points at edges but not
in the corners, makes the Deceptive-Tartarus problem highly deceptive. A
significant local optimum for the agent is to avoid pushing any block in order
to avoid negative points and leave all blocks in the middle with a total score
of 0 points. The local optimum is only overcome when the agent learns the
behavior of pushing blocks to the corners, which is not trivial.

Environment space

The environment space of the Tartarus problem is discrete. The grid world
is composed of cells where the blocks and agent positions are represented as
discrete coordinates. The surrounding cells as inputs to the agent are discrete,
including the one-hot encoded outputs of the previous step. The largest of
the three output values determines which of the three possible actions the
agent will take for the current step.

4.5.3 Characteristics of the Maze Navigation problem

Modularity

The maze navigation problem is not modular. There is no clear division
of the problem structure that could benefit from a modular structure. An
argument could be made for separate modules for each type of sensor, i.e.
range sensors and goal radar. However, both will affect the output velocities
equally and there is no obvious benefit from separating the two.

Regularity

The maze navigation problem does not exhibit any regularity. No repeating
tasks are required to be solved or oscillatory patterns to be learned by the
neural network. In the maze domain of Medium-Maze, it could potentially be
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beneficial to learn to weave between the local optima but this is not obvious
nor required to solve the task.

Deceptiveness

The maze navigation problem was designed to be deceptive. The level of
deceptiveness depends on the layout of the maze domain. In Medium-Maze,
the local optima are placed on the path to the goal such that getting stuck in
the next optimum will also be closer to the goal. Consequently, Medium-Maze
is somewhat deceptive as it is possible for the robot to reach the goal by
going from one local optimum to the next.

By contrast, the layout of the maze domain in Hard-Maze requires the robot
to move away from the direction of the goal in order to reach it. In addition,
there is a very attractive local optimum in the direction of the goal that is
highly deceptive. This makes Hard-Maze highly deceptive.

Environment space

The environment space of the maze navigation problem is continuous. The
mobile robot receives continuous distance values from the range sensors and
outputs continuous velocity values that affect its position and heading in the
environment. The environment in which the robot navigates is continuous,
i.e. continuous position values.

4.5.4 Characteristics of the Robot Locomotion problem

Modularity

The robot locomotion problem is characterized as slightly modular. While
a successful gait requires coordination between the legs, a module for each
leg in the hidden layers could potentially evolve naturally and be beneficial.
The inputs involving the hull and rangefinders should affect both legs, but
an obvious modular decomposition would be for the inputs with angles and
velocity of the joints of each leg. Still, some coordination is required and
independently operated legs would likely not lead to a successful gait. Thus,
Bipedal-Walker is only slightly modular.

Regularity

The robot locomotion problem exhibits a high degree of regularity. The most
important aspect of a successful gait is the repeating or oscillatory pattern.
The evolved Bipedal-Walker needs to learn a regularity of this nature in
order to traverse the entire length of the environment within the time limit.
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Deceptiveness

The robot locomotion problem is somewhat deceptive. An obvious local
optimum at the start of the simulation is for the bipedal robot to lunge as
far as possible. However, this local optimum is relatively quickly overcome
even by bipedal robots with slow and inefficient gaits.

Environment space

The environment space of Bipedal-Walker is continuous. All input values
will be in a continuous range, and outputs set continuous torque values on
the joints of each leg. The position (or center of mass) of the bipedal robot
in the environment is continuous.
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5 | Results and Analysis

Chapter 5 presents the results and the analysis of the following experiments:
(1) The main experiments for each of the targeted problems, (2) Summary
figures illustrating the overall performance and success rate of each treatment
across all problems, and (3) The computational run-time per generation for
each treatment.

Analysis of results for individual experiments is given in this chapter and not
the overall implications of the results. The subsequent Chapter 6 discusses
the results as a whole and their significance with regard to the research goals.

5.1 Main experiments

The results for the main experiments were obtained by simulating the targeted
problems on Fox – a high-performance computing cluster provided by the
University of Oslo. The Retina problems were simulated on a single core
due to not being very computationally expensive. The rest of the problems
were simulated with 10 cores per run, with several runs running in parallel.

5.1.1 How to interpret the results

Figures show the median best performance with bootstrapped 95% confidence
interval of 50 runs. The significance bars at the bottom with markers indi-
cate if there is a statistical significance in performance between the selected
treatment on the left and the other treatments on the right per generation.
No marker indicates no statistical difference at that generation. For every
targeted problem, the figure presents the results with all treatments. In
this figure, the best-performing treatment is selected as the treatment all
statistical significance testing is compared against.

A significance bar is shown in figure 5.1 with an explanation of how they can
be interpreted. The use of significance bars is not common in all fields of
research. However, due to the stochastic nature of evolutionary algorithms,
significance bars can inform how significant the results are and can help
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determine if the results have any statistical weight to them. Significance
bars were also used in [4, 9, 73]. It is important to note that relying too
much on statistical significance testing can be problematic. Statistical testing
with p-values is not an objective measure and should be interpreted with
caution, as there are situations where statistical significance can be discovered
"randomly" but is in reality not the case.

Figure 5.1: Illustration of significance bars. The left and right treatments are tested
against each other using the Mann-Whitney U test, where a marker indicates a significant
difference (p < 0.05) for that generation and no marker indicates no significance (p ≥ 0.05).
In this example, PA is compared against both diversity treatments (Hamming and
Novelty), and Novelty is compared against Hamming. There is a significant difference
for all generations between PA and Novelty, and between Novelty and Hamming. As
for PA vs Hamming, the difference is only significant for the first 400 generations or so.

In addition to the figure with all treatments, figures showing only the treat-
ments with objectives of the same type of diversity (behavioral, structural,
and representational) are included in appendix B. The purpose is to more
clearly see the difference between them. These figures also include the control
experiment (PA) with statistical testing of diversity treatments compared
against PA, and an additional significance bar for statistical testing between
the diversity treatments (see figure 5.1).
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5.1.2 2x2–Retina
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Figure 5.2: The performance of all experimental treatments on the 2x2-Retina problem.
The best performance score is reached fastest by the Mod, ModDiv, PA, and Novelty
treatments.

The results for the 2x2-Retina problem are shown in figure 5.2. From study-
ing the results, it becomes apparent that the treatments Mod, ModDiv,
PA, and Novelty leads to the best performance. Between them, there is
no significant difference in performance except perhaps Mod being slightly
more efficient but the difference is not definitive. Of the behavioral diversity
treatments, Novelty performed better than Hamming (see figure B.1).
Whereas for the structural diversity treatments, no significant difference
between Mod and ModDiv was evident (see figure B.2). As for the repre-
sentational diversity treatments, CCA performed significantly better than
CKA (see figure B.3).

The results in figure 5.2 are in line with the results in previous work [4],
although with some differences. As in [4], the ModDiv and Mod treatments
were both able to achieve the maximum performance score. Interestingly, in
[4], the Mod treatment was significantly slower to converge, and PA was
not able to fully reach a maximum performance score. One hypothesis for
the difference in the performance of these treatments is due to the slightly
different setups as was briefly mentioned in 4.1. With discrete weights, the
problem is more difficult to solve for PA, and the structure and connectivity
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of the networks become more important. Whereas Mod potentially benefits
from no restrictions on the number of layers and neurons per layer.

5.1.3 3x3–Retina
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Figure 5.3: The performance of all experimental treatments on 3x3-Retina. The Mod,
ModDiv, and PA treatments lead to the best performance with Mod initially slower but
overtaking both towards the end.

The results for the harder 3x3-Retina problem are shown in figure 5.3. Study-
ing the results, the same trends as for the 2x2-Retina problem can be seen
but the problem has become harder to solve as was intended. The treatments
Mod, ModDiv, and PA lead to the best performance. Interestingly, PA and
ModDiv are initially the most efficient, whereas Mod is slower but overtakes
the other two towards the end. The Mod treatment may have potentially
reached the maximum performance score of 1.0 if it had been allowed to run
for more generations.

The Novelty treatment is slightly worse in this harder version of the
problem as there was a significant performance difference between PA and
the behavioral diversity treatments (see figure B.4). As for the structural
diversity treatments, results indicate that Mod is slower than both ModDiv
and PA for the first 2500 generations or so, but is able to overtake both
towards the end (see figure B.5). The results for the representational diversity
treatments show CKA and CCA as significantly worse than PA. Moreover,
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CCA consistently leads to better performance more efficiently compared to
CKA (see figure B.6).

Overall, the results for the treatments on both the 2x2-Retina problem
and 3x3-Retina problem match closely with very few differences. None of
the treatments consistently achieved the maximum score in the 3x3-Retina
problem.

5.1.4 Tartarus
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Figure 5.4: The performance of all experimental treatments on Tartarus. Novelty and
PA treatments lead to the best performance. ModDiv and CKA look like close seconds,
but PA significantly outperforms CKA but not ModDiv (see figures B.8 and B.9).

The results in figure 5.4 indicate that the Novelty and PA treatments
lead to the best performance on the Tartarus problem, with ModDiv being
the third best treatment. Although, none of the treatments were able to
reach the maximum performance score of 10 and avoid the local optimum of
between 4− 6 points. The worst-performing treatments were Hamming and
Mod, whereas the remaining treatments performed slightly better but with
no significant difference between them. Of the structural diversity treatments,
ModDiv significantly outperformed Mod (see figure B.8). There was no
significant difference between the representational diversity treatments (see
figure B.9).
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The results are somewhat in line with previous work [53], where treatments
also tended to reach a performance of between 4.0 and 6.0 with one treatment
reaching 7.0 (see NCD in [53]). However, a direct comparison between results
is not possible as a recurrent neural network with a fixed topology was used
in previous work. Nevertheless, the Hamming treatment in [53] was able to
reach a performance of 6.0 in one of the experiments, which may suggest that
a recurrent neural network is a more suitable neural network architecture.
Using the previous outputs as input, as is employed in this work, is potentially
not a sophisticated enough type of memory element for the agent to learn
the necessary sequence of actions to push blocks into the corners.

5.1.5 Deceptive–Tartarus
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Figure 5.5: The performance of all experimental treatments on Deceptive-Tartarus. The
Novelty treatment significantly outperforms all other treatments. All other treatments
converge to a performance of around 2.0. None was able to reach maximum performance.

Looking at the results for the Deceptive-Tartarus problem in figure 5.5, it
is apparent that the Novelty treatment performs significantly better than
the rest of the treatments. Achieving a score of over 2.0 means that the agent
is able to move more than a single box to the corners on average for all 30
board configurations (or alternatively more than one box in the corners but
negative scores from boxes at edges). The remaining treatments converge
to the local optimum with a performance of around 2.0. The structural
and representational diversity treatments displayed no significant difference
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them respectively (see figures B.11 and B.12). The Novelty treatment
significantly outperformed Hamming (see figure B.10).

The results for Novelty and PA are similar to the results in previous
work [70], where a recurrent neural network with a fixed topology was used
like in the Tartarus problem, and a linear combination of the performance
and novelty of an individual was used to rank individuals instead of using
separate objectives. Nevertheless, the same trend is apparent with Novelty
significantly outperforming PA. The treatments in [70] were simulated for
a larger number of generations and Novelty reached a performance of 3.0.
While not conclusive, there are indications that Novelty could approach
the same type of performance in figure 5.5 if allowed to run longer.

5.1.6 Medium–Maze
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Figure 5.6: The performance of all experimental treatments on Medium-Maze. Novelty
significantly outperforms all other treatments, with some uncertainty about the significance
compared to CCA. The treatments ModDiv, PA, and Hamming also reach the goal
within 1500 generations, albeit slower than Novelty.

As shown in the results for the Medium-Maze problem in figure 5.6, Novelty
outperforms all other treatments. Although, there is some uncertainty about
the significance compared to CCA. Overall, the Novelty treatment leads to
the best performance most efficiently out of all treatments. The treatments
ModDiv, CCA, Hamming, and PA are all able to consistently reach the
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goal of the maze and thus the maximum performance score within 1500
generations. Mod is only able to reach the goal a few times, whereas CKA
never reaches the goal.

The results for the Medium-Maze problem with Novelty and PA are con-
sistent with the results in a previous study [5]. It should be noted that the
confidence interval is large for a few of the treatments, especially PA, where
the many local optima can be seen in the sudden jumps in the performance of
treatments. Interestingly, there is a significant difference between treatments
of the same type of diversity. This is apparent for behavioral diversity with
Novelty outperforming Hamming (see figure B.13). Likewise for structural
diversity with ModDiv outperforming Mod and representational diversity
with CCA outperforming CKA (see figures B.14 and B.15 respectively).

In addition to studying the performance, the areas of the maze explored
by treatments were also investigated. However, no clear difference was seen
between treatments except CKA exploring significantly less of the maze. A
more clear difference can be seen for the Hard-Maze problem below. The
figures for the Medium-Maze problem are included in appendix B.

5.1.7 Hard–Maze

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce

Hard Maze

Performance + CCA
Performance + CKA
Performance + Hamming Distance
Performance + Novelty
Performance + Modularity Diversity
Performance + Modularity
Performance Alone

0 100 200 300 400 500 600 700 800
Number of Generations

Nov
p < 0.05 vs:

PA
ModDiv
Mod
Ham
CKA
CCA

Figure 5.7: The performance of all experimental treatments on Hard-Maze. Novelty is
the only treatment able to consistently reach the goal. All other treatments converge to
the attractive local optimum.
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Figure 5.7 shows the results for the treatments on the Hard-Maze problem. All
treatments were simulated for 1500 generations but only 850 generations are
shown as there was no change for the remaining generations. Only Novelty
was able to consistently reach the goal, whereas the rest of the treatments
were not able to reach the goal and all converged to the local optimum with
a performance score of 0.81. Like in previous studies [5, 6], Novelty is
consistently able to reach the goal while PA always converges to the local
optimum when comparing Novelty and PA on the Hard-Maze problem.

The Hard-Maze problem is a special case where there is a single attrac-
tive local optimum and treatments immediately converge to it because of the
high degree of deceptiveness. For this reason, separate figures with each type
of diversity are not shown. Instead, figures of the maze showing which areas
each diversity objective explored are presented below.

Figure 5.8 shows the areas explored by the robot for each treatment over
all 50 runs. Each dot represents the end position of a simulated individual.
The end positions of individuals in the population are sampled every 10th
generation.

Most notable is the Novelty treatment compared to the rest. In par-
ticular, Novelty explores much more of the open area in the top right
corner and also near the goal (i.e. red star). The results for Novelty are not
surprising as individuals exploring new areas are rewarded with higher novelty.
The Hamming treatment was able to reach the area near the goal but not
at the same rate as Novelty (see figure 5.8c and 5.8b). Comparing the
areas explored by the structural diversity objectives, there was no apparent
advantage to either ModDiv or Mod (see figures 5.8e and 5.8d respectively).
As for the representational diversity objectives, the CCA treatment explored
significantly more of the area closer to the goal than the CKA treatment
(see figures 5.8g and 5.8f respectively).
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(a) PA

(b) Novelty (c) Hamming

(d) Mod (e) ModDiv

(f) CKA (g) CCA

Figure 5.8: Illustration of how differently each treatment explored the maze. Each dot is
the end position of a simulated robot. Most notable is Novelty with the most coverage.
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5.1.8 Bipedal–Walker
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Figure 5.9: The performance of all experimental treatments on Bipedal-Walker. The
CCA treatment significantly outperformed all other treatments except PA until around
generation 1800. While the median performance for CCA is larger than PA, the 95%
confidence interval is large and thus more uncertainty about the significance between them.
None of the treatments were able to reach the maximum performance score.

Analyzing the results in figure 5.9 for the Bipedal-Walker problem, the
CCA treatment significantly outperforms the rest of the treatments. There
is more uncertainty about the performance difference between CCA and PA,
where CCA leads to a much higher median performance score but with a
large 95% confidence interval. At around generation 1800, the difference in
performance becomes significant and is likely to continue if allowed to run
for more generations. CKA performs on par with PA but significantly worse
than CCA (see figure B.18).

There was no significant difference between the structural diversity treat-
ments Mod and ModDiv (see figure B.17). PA is significantly more efficient
than Mod and ModDiv for the first 1000 generations, but for subsequent
generations, the difference in performance is not significant. Of the behavioral
diversity treatments, Novelty performed only slightly better than Hamming
but not significantly. PA outperformed both behavioral diversity treatments
but outperformed only Hamming by a significant margin (see figure B.16).
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Investigating if there is a correlation between the diversity objectives and the
discovered gaits would be interesting, but is out of the scope of this thesis.
Nevertheless, to understand what types of behaviors are discovered during
the evolutionary search, the gait of a few of the best genomes for the various
treatments is shown. Figures 5.10, 5.11, 5.12, and 5.13 below show examples
of the most common type of gaits discovered.

A fairly normal gait was discovered where both legs are moved in coor-
dination to achieve locomotion with neither leg as the more dominant one
(see figure 5.10). However, in the aforementioned gait, neither leg was moved
in front of the other and vice versa in an alternating way which is common
in the human gait. This trend of keeping one leg in front of the other leg for
the entire duration was common for all the gaits that were investigated.

Figure 5.10: Normal gait.

Another type of gait, shown in figure 5.11, was discovered where the leg
furthest back is used to launch itself forward in the air and the other leg
furthest forward is used for support. By keeping the leg in front as straight
as possible, the impact is dampened and more control is achieved to prevent
falling forward when launching itself. A launching gait can be very fast but
is more unstable.

Figure 5.11: Launching gait.
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Figure 5.12: Crawling gait.

By contrast, the gait shown in figure 5.12 illustrates a crawling gait. With this
type of gait, the bipedal walker is in a crouched configuration and achieves
locomotion with limited leg movement. The bipedal walker alternates between
applying a small force to the joints of each leg, but the change in the angle of
each joint is minimal. This type of gait is very stable but significantly slower
as there is less forward movement.

Figure 5.13: Dragging gait.

Lastly, a dragging gait was discovered as illustrated in figure 5.13. With a
gait of this type, the leg furthest forward is used to drag the bipedal walker
forward and the other leg is used for support and stability. Usually, the
supporting leg has a sharp angle at the knee joint for more support. Like the
crawling gait, the dragging gait is very stable but slow.

5.2 Summary of performance and success rate

Figure 5.14 and 5.15 below show the median best performance score and the
success rate respectively for all treatments across all targeted problems. These
figures are intended to be a visual illustration showing differences between
treatments but they do not indicate any significance between treatments.
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A notable observation for the median best performance in figure 5.14 is
that Novelty generally performs well across all problems with the exception
of the Bipedal-Walker problem. Furthermore, Mod performs well on the
2x2-Retina and 3x3-Retina problems but performs much worse on the other
targeted problems. CCA resulted in much higher performance compared to
other treatments on the Bipedal-Walker problem. CKA appears to perform
poorly or at least resulted in mediocre performance on all problems. Like-
wise, the Hamming treatment results in sub-par performance except on the
Medium-Maze problem. Overall, the control treatment PA performs well and
is never the worst treatment.

Retina 2x2 Retina 3x3 Tartarus Deceptive-TartarusMedium-Maze Hard-Maze Bipedal-Walker

0.90

0.92

0.94

0.96

0.98

1.00

Median best performance

PA Novelty Hamming Mod ModDiv CKA CCA

0.90

0.92

0.94

0.96

0.98

1.00

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

200

210

220

230

240

250

260

Figure 5.14: Median best performance for 50 runs of treatments across all targeted
problems. The axis for each problem is scaled to show the differences between treatments
if there is one, and does not always show the maximum possible performance score.
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Figure 5.15: Success rate of treatments across all targeted problems. The success rate is
the fraction of runs where the success criterion was reached, i.e. the maximum performance
score. None of the treatments were able to reach the success criterion for the Bipedal-
Walker, Tartarus, and Deceptive-Tartarus problems.
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Looking at the success rates in figure 5.15, none of the treatments were
able to reach the success criterion for the Tartarus, Deceptive-Tartarus,
and Bipedal-Walker problems. PA and the structural diversity treatments
ModDiv and Mod has a higher success rate on both retina problems, whereas
Novelty has a much higher success rate on the maze navigation problems.
The CKA treatment appears to consistently have the worst success rate
across all targeted problems.

5.3 Computational run-time overhead experiment

Figures 5.16, 5.17, 5.18, and 5.19 below show the computational run-time per
generation for each of the treatments for the targeted problems. Times are in
seconds. Figures for multiple versions of the same problem (e.g. 2x2-Retina
and 3x3-Retina) are not included here in the analysis as there was practically
no difference in run-time ratio between treatments. The figures for the re-
maining versions, i.e. 2x2-Retina, Medium-Maze, and Deceptive-Tartarus,
are included in appendix B.

One note of caution is that the run-time per generation for treatments
is not comparable across problems since they are simulated with a different
number of cores. However, the diversity computation is not performed in
parallel meaning the ratio between treatments on different problems is still
useful to study.
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Retina 3x3 - Computational run-time overhead

Figure 5.16: The mean run-time per generation on 3x3-Retina. Time units are in
seconds with standard deviation also shown. Simulated using a single core. Mod required
significantly more time per generation compared to other treatments, as it is more compu-
tationally intensive for larger neural networks.
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Figure 5.17: The mean run-time per generation on Tartarus. Time units are in seconds
with standard deviation also shown. Simulated using 20 cores. Computing Novelty is
significantly slower than other treatments. There was no significant difference in run-time
between the other treatments.
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Figure 5.18: The mean run-time per generation on Hard-Maze. Time units are in seconds
with standard deviation also shown. Simulated using 10 cores. Novelty is shown as
significantly faster compared to the other treatments, but this is likely due to reaching the
goal very quickly for many of the runs as is evidenced by the large standard deviation.
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Figure 5.19: The mean run-time per generation on Bipedal-Walker. Time units are
in seconds with standard deviation also shown. Simulated using 10 cores. Novelty is
significantly slower than other treatments. No significant difference in run-time between
the other treatments.
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Looking at the run-time per generation for the Retina problem in figure 5.16,
the Mod treatments were significantly slower than the rest of the treatments.
A likely reason for this is that maximizing the performance and modularity
for the Retina problem are not very conflicting objectives, and thus, neural
networks can continually grow larger without any performance trade-off. A
problem encountered during simulation was that neural networks would grow
indefinitely when using Mod on both versions of the Retina problem and
a limit of 50 hidden neurons had to be set for the networks. This problem
was not encountered for the other targeted problems, further supporting the
hypothesis that performance and modularity are not particularly conflicting
objectives for the Retina problem.

The results for the Tartarus problem and the Bipedal-Walker problem
in figure 5.17 and 5.19 respectively, show the Novelty treatment as signif-
icantly slower than other treatments for both problems. Novelty being
much more computationally intensive on these problems is not unexpected
as the novelty score calculation involves computing the distance between
large behavior vectors sampled during simulation. In addition, the run-time
per generation will exponentially increase as the archive grows. Therefore,
a maximum archive size of 500 was used for the Tartarus problem and the
Bipedal-Walker problem. The difference in time per generation between
Novelty and the other treatments would likely be larger if an archive of
unlimited size was employed.

The run-time per generation for the Hard-Maze problem in figure 5.18 shows
that the representational diversity treatments (CKA and CCA) are slightly
slower compared to the other treatments. Novelty appears to be signif-
icantly faster than other treatments, but this result should be interpreted
with caution. A likely reason for Novelty being fast is because it reaches
the goal very quickly for many of the runs, as is evidenced by the large
standard deviation. Nevertheless, the behavior vector for the maze navigation
problems is significantly smaller than for the Tartarus and Bipedal-Walker
problems. Accordingly, the novelty score calculation is therefore much less
computationally intensive.
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6 | Discussion

Chapter 6 discusses the key implications of the results in this work with respect
to the research goals of this thesis. Possible explanations and hypotheses for
the findings are discussed, including references to similar or contradicting
findings of previous studies. A short summary is given of the key insights
discussed in each section.

6.1 Differences between objectives of the same type
of diversity

A clear trend from the results in Chapter 5 is that there are significant
differences between diversity objectives of the same type (i.e. behavioral
diversity, structural diversity, and representational diversity).

6.1.1 Ad hoc behavioral diversity outperforms generic behav-
ioral diversity

Novelty outperformed Hamming across almost all targeted problems. These
results broadly support the findings of previous studies where ad hoc behav-
ioral diversity generally resulted in better performance compared to generic
behavioral diversity [7]. It is not unexpected that a domain-dependent be-
havioral distance specifically defined for the domain is better than a generic
behavioral distance. There is a clear performance trade-off for generic behav-
ioral distances over ad hoc behavioral distances. As was briefly mentioned
in section 2.7.3, it can be argued that valuable information is lost when
binarizing the input-output history with Hamming.

Despite the performance difference, the computational run-time overhead
between the Novelty and Hamming is something that has to be considered.
The results in section 5.3 show that Novelty is computationally expensive
for very large behavior vectors compared to Hamming. This is evident for the
Tartarus problems and the Bipedal-Walker problem, whereas the behavior
vectors for the remaining problems are significantly smaller.
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Reducing the size of the behavior vectors can somewhat mitigate this by
using fewer samples m during simulation for the Bipedal-Walker problem
and considering only a subset of the k board configurations in the Tartarus
problems. However, reducing the amount of information contained in the
behavior vectors may result in a slight performance trade-off. Alternatively,
the distance to the nearest neighbors can be computed in parallel.

Somewhat surprising is the performance of Hamming on the Tartarus
problem compared to previous work [53], where Hamming was able to
achieve a performance of up to 7.0 instead of 5.5 in this work (see figure B.7).
Additionally, in a more continuous environment in [55], it was suggested that
Hamming may perform better if the input and output values are already
somewhat discrete as is the case for the Tartarus problem. A possible reason
for the difference in the performance of Hamming could be the use of a
different memory element that is important to solve the problem (i.e. previous
action as input instead of using a recurrent neural network).

6.1.2 Mixed performance for structural diversity with a slight
edge to Modularity Diversity

As with the behavioral diversity treatments, the same trend can be seen for
the structural diversity treatments of ModDiv and Mod for a few of the
problems. ModDiv and Mod performed similarly on the Bipedal-Walker
problem and both Retina problems, but ModDiv significantly outperformed
Mod on the Medium-Maze problem and both Tartarus problems. One possi-
ble reason for the performance difference is that the modular decomposition
of the input neurons is more important for solving the latter problems, while
the modular decomposition of the network as a whole is as important for the
former problems. The Hard-Maze problem is a special case where the high
level of deceptiveness makes interpreting the differences between treatments
difficult.

Additionally, ModDiv was found to be significantly more efficient for the
first generations but Mod often catches up towards the end (see Retina and
Bipedal-Walker problems). An explanation for this may be that a diversity
of the modular decomposition of the input neurons makes it easier to discover
high-performing individuals early in the search, but is limited in the amount
of diversity that can be encouraged for only the input neurons. Whereas
encouraging a diversity of the modular decomposition of the network as a
whole prevents early convergence and can facilitate the continual discovery
of new better-performing individuals. Although this is not always the case
for Mod, as evidenced by the results for the Medium-Maze problem and both
Tartarus problems showing no improvement for many generations.
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6.1.3 Significant differences between the similarity metrics
of representational diversity

Similarly, there are indications of a significant difference between the repre-
sentational diversity treatments on a few of the targeted problems. The CCA
treatment consistently outperforms CKA in terms of both performance and
efficiency. The difference between CKA and CCA is especially noticeable
on the less deceptive problems with few or no attractive local optima (i.e.
the Bipedal-Walker, Medium-Maze, and both Retina problems). The rep-
resentational diversity treatments and possible explanations for differences
between them are discussed in more detail in section 6.3 below.

6.1.4 Summary

The main differences between diversity objectives of the same type of diversity
can be summarized as follows:

• Not surprisingly, the ad hoc behavioral diversity objective outperformed
the generic behavioral diversity objective on almost all targeted prob-
lems. However, the performance advantage of Novelty should be
weighed against the high computational run-time overhead on certain
problems (i.e. Tartarus and Bipedal-Walker).

• The structural diversity treatments ModDiv and Mod performed
similarly, but with a slight performance edge to ModDiv on a few of
the problems (i.e. Medium-Maze and Bipedal-Walker). ModDiv was
found to be more efficient early in the search but converged earlier,
whereas Mod was slower but did not converge as easily.

• CKA consistently outperformed CCA in terms of both performance
and efficiency, especially on less deceptive problems with few or no local
optima.

6.2 Relationship between the performance of diver-
sity objectives and problem characteristics

The primary research goal of this thesis was to compare diversity objectives
and determine if specific diversity objectives are more effective on certain
problems. With regard to this research goal, there is a clear correlation
between the performance of diversity objectives and problem characteristics
in the results of Chapter 5.

6.2.1 Behavioral diversity and deceptiveness

The most striking result is the correlation between behavioral diversity and
the deceptiveness of the problem. More specifically, the Novelty treatment
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performed significantly better on problems exhibiting a high degree of de-
ceptiveness such as the Taratrus, Deceptive-Tartarus, Medium-Maze, and
Hard-Maze problems. Recalling the characterization of targeted problems in
table 4.1, the aforementioned problems were all characterized with a high
degree of deceptiveness. The only exception is the Bipedal-Walker problem
which is characterized by some deceptiveness. However, the deceptive local
optimum in this problem is easily overcome when any gait is discovered,
effective or not.

This correlation between performance and problem characteristic suggest that
behavioral diversity, particularly ad hoc behavioral diversity, is especially
suitable for deceptive problems. For very deceptive problems, domain knowl-
edge may be required to solve the task, in contrast to domain-independent
diversity objectives of the same or a different type that do not encourage the
necessary diversity required to solve the task. The results for Novelty are
not surprising as it has been shown to perform well on deceptive tasks in
previous studies [5–7, 20], but there was a lack of knowledge about how other
types of diversity objectives performed on deceptive problems such as the
ones targeted in this work.

6.2.2 Structural diversity and modularity

Moreover, there appears to be a correlation between modularity and structural
diversity objectives. Both structural diversity treatments, ModDiv and Mod,
perform well on problems exhibiting a high degree of modularity, namely
the 2x2-Retina and 3x3-Retina problem. This is also consistent with the
hypothesis, proposed earlier when analyzing the run-time per generation,
that performance and modularity are not very conflicting objectives for these
problems. This is further evidenced by how the structure of neural networks
in the population was able to continually grow without any performance
trade-off for the aforementioned problems but not for other problems. The
results for structural diversity are consistent with the findings of [4], but this
work has also produced results showing how other types of diversity do not
perform as well as structural diversity.

The structural diversity objectives do not perform as well on the Bipedal-Walker
problem characterized by some modularity. However, as was mentioned pre-
viously in section 4.5, a modular decomposition is arguably less important to
be successful on this problem as coordination between the legs is required
and the oscillatory pattern is more essential to produce an effective gait.
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6.2.3 Representational diversity and regularity

There are some indications of a correlation between representational diversity
and regularity as a problem characteristic. CCA in particular performed
very well on the Bipedal-Walker problem characterized by a high degree
of regularity. One explanation for this is that representational diversity
objectives are, by encouraging novel neuron activations, able to produce
novel oscillatory patterns and by extension better gaits. However, the CKA
treatment performed significantly worse than CCA on this problem. Possible
reasons for this are discussed in section 6.3.

Despite the success on the Bipedal-Walker problem, the representational
diversity objectives did not perform as well on the other problems charac-
terized by some regularity (i.e. Tartarus and Deceptive-Tartarus). This
discrepancy could be attributed to how the activations of the hidden neu-
rons are not as informative and important for solving the aforementioned
problems, and thus, encouraging this type of diversity does not help with
the evolutionary search. Another possible reason is that characterizing the
Tartarus problem as exhibiting regularity is not accurate when compared
to the Bipedal-Walker problem. A regularity of oscillatory patterns can
perhaps not be equated to a regularity of sub-tasks. In the future, it could be
necessary to distinguish between oscillatory regularity and sub-task regularity.

6.2.4 No clear relationship between the diversity and the
environment space representation

As for the environment space characteristic, no clear correlation can be
deduced as the different types of diversity objectives perform well on both
discrete and continuous problems. This suggests that the other problem
characteristics (i.e. modularity, regularity, and deceptiveness) have a larger
impact on the performance and efficiency of diversity objectives than how
discrete or continuous the problem environment is.

6.2.5 Summary

The following relationships between the performance of diversity objectives
and the problem characteristics were found:

• A correlation between the performance of ad hoc behavioral diversity
and the deceptiveness of the problem was found. Domain knowledge
seems to be especially useful for solving deceptive problems, which is
consistent with similar findings of previous studies.

• A correlation between the performance of structural diversity and the
modularity of the problem was found. It appears that encouraging
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both performance and modularity are not very conflicting objectives
on modular problems.

• A correlation between the performance of representational diversity and
the regularity of the problem was found. Representational performed
especially well on problems where discovering an oscillatory pattern
(i.e. novel neuron activations) is important.

• No clear relationship between the diversity objectives and the repre-
sentation of the environment space (i.e. discrete or continuous). The
other problem characteristics are suggested to be more important.

6.3 Representational diversity as a diversity type
in neuroevolution

Representational diversity was introduced as a new type of diversity in this
thesis. It could be argued that representational diversity is no different from
behavioral diversity. Both types of diversity use neural network outputs, with
behavioral diversity only using neuron activations from the output neurons.
Furthermore, when the Creative Thinking Approach (CTA) was introduced
in [54], it was mentioned that the proposed method extends the way the
Hamming distance is used. However, the results in this thesis show that rep-
resentational diversity merits consideration as its own diversity type separate
from behavioral diversity. CCA significantly outperforming both behavioral
and structural diversity on the Bipedal-Walker problem provides support
for representational diversity as a diversity type different from the already
established types in neuroevolution.

Interestingly, there was a significant difference in performance between the
CKA and CCA treatments across all targeted problems. As mentioned
in the analysis earlier, CCA outperformed CKA on almost all problems.
These results are surprising considering how much better the CKA similarity
metric was found to reliably identify corresponding representations in neural
networks compared to CCA in [46].

One explanation is that CCA is superior to CKA when encouraging a
diversity of learned representations in neural networks of different topolo-
gies. In other words, CCA may be better for computing the similarity
between misaligned neuron activations. In [46], a fixed network structure
was used with exact corresponding neurons. Finding corresponding (or at
least somewhat corresponding) neurons of networks with different topologies
in neuroevolution is not possible without complex structure analysis. Thus,
CCA is perhaps more suitable to measure the similarity across layers and
neurons of the network and does not need an exact match between activations
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of networks. The ability of CCA to compare misaligned activations (i.e.
different network topologies) was argued in [74] to be because the similarity
metric is invariant to invertible linear transformations. Whereas, the CKA
similarity metric is not invariant to invertible linear transformations [46].

Another factor that may help explain the difference in performance be-
tween CCA and CKA is the measured range of values of the representational
diversity of individuals. Figures 6.1 and 6.2 show the Pareto fronts for CKA
and CCA for one of the 50 runs on the Bipedal-Walker problem. The Pareto
fronts for every 20th generation are visualized with the color reflecting the
generation.
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Figure 6.1: Pareto front for one of 50 runs with the CKA treatment on the Bipedal-
Walker problem. Fronts are shown for every 20th generation. The color of the front
indicates the generation. For this particular run, the final performance score was 229.
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Figure 6.2: Pareto front for one of 50 runs with the CCA treatment on the Bipedal-Walker
problem. Fronts are shown for every 20th generation. The color of the front indicates the
generation. For this particular run, the final performance score was 256.
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Studying the range of representational diversity values on the x-axis, it
becomes apparent that the range is a lot smaller for CKA than with CCA.
For CKA in figure 6.1, the representational diversity of individuals ranges
from 0.95 to 1.0 indicating very high diversity (i.e. very low similarity between
neural network representations). Whereas for CCA in figure 6.2, the range
of values is from 0.70 to 1.0. The aforementioned ranges for both CKA and
CCA are generally consistent for all 50 runs. This suggests that CCA is
potentially more informative because it is able to differentiate better between
representations of neural networks of different topologies. Being able to better
differentiate between individuals could facilitate a more diverse population
and more exploration of solutions, and as a result, better performance on the
problem. Further investigation is needed to confirm if there is any merit to
the claim that CCA is better able to differentiate between neural network
representation in neuroevolution.

6.3.1 Summary

• Representational diversity was shown to merit consideration as a new
type of diversity in neuroevolution. Performed especially well on prob-
lems where the neuron activations are important for solving the task.
However, more investigation into representational diversity is needed.

• A significant performance difference between the similarity metrics
CKA and CCA was found, with CCA significantly outperforming
CKA. Possible reasons for this are that CKA is more informative
when neuron activations are misaligned for neural networks of different
topologies or that CKA is better at differentiating between neural
networks of different topologies.

6.4 Population size and parameter setting

A population size of 100 was chosen for all targeted problems due to the
computational resources and time required to run all experiments 50 times.
Likewise, no comprehensive parameter tuning was performed except for small
test runs. However, it can not be discounted that some treatments could
perform better with different parameter settings. One way to overcome this
would be to employ an automatic tuning procedure without the need to rely
on subjective intuition, and the parameters are tuned for each experiment
according to the same criteria [75]. Still, automatic tuning would require
multiple runs per experiment because of the stochastic nature of evolutionary
algorithms.

Nevertheless, the lack of parameter tuning and a relatively small popu-
lation size does not render the present work meaningless. The results in this
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work are mostly consistent with many of the previous studies targeting the
same problems but with larger population sizes and different experimental
parameters. Additionally, results are consistent even for problems where the
neural network architecture/encoding is different. This consistency of results
across studies supports the assumption that diversity is an important factor.
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7 | Conclusion

Encouraging diversity in neuroevolution with diversity objectives has seen
increased interest in years, and demonstrated impressive results in terms of
efficiency and performance of the evolutionary search. What is not yet clear is
the relationship between the type of diversity objective and the characteristics
of the problem, and if there is one, how to determine which types of diversity
objectives are more suitable for which problems. Additionally, a type of
diversity objective that is able to encompass both the structure and behavior
of neural networks has not been extensively explored yet.

This thesis set out to compare diversity objectives on problems with unique
problem characteristics often targeted in neuroevolution, and determine if
there is a correlation between the performance of the type of diversity objec-
tive and the problem characteristics. Furthermore, representational diversity
was proposed as its own diversity type, including the first steps on how
to adapt representational diversity distances to neuroevolution. The main
findings of this work are as follows:

• A clear correlation between the performance of diversity objectives and
the problem characteristics. Ad hoc behavioral diversity was found to
outperform all other types of diversity on deceptive problems, whereas
structural diversity objectives performed best on problems expressing a
high degree of modularity. Representational diversity showed promising
results on a problem with the characteristic of regularity.

• A significant performance difference between diversity objectives of the
same type was found for many of the targeted problems.

◦ Of the behavioral diversity objectives, the ad hoc behavioral di-
versity objective outperformed the generic behavioral diversity
objective on all targeted problems.
◦ The difference between the structural diversity objectives was

less striking. Encouraging a diversity of modular decomposition
of the input neurons was more effective in the early phase of
the evolutionary search than encouraging a diversity of modular
decomposition of the network as a whole on a few of the problems.
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◦ The difference in the performance of representational diversity
objectives with different similarity metrics was significant. Results
suggest that similarity metrics with invariance to invertible linear
transformations are more suitable for neuroevolution (i.e. neural
networks with different topologies) than those without.

• Early promising results for representational diversity as a new type of
diversity in neuroevolution. There are indications that encouraging
representational diversity can be powerful on tasks where novel neuron
activations can lead to better performance, such as robot locomotion
problems. This thesis has made the first steps in introducing represen-
tational diversity and adapting it to neuroevolution, and the findings
suggest that this new type of diversity merits further study.

7.1 Future work

This work has presented the initial indications of a correlation between the
performance of the type of diversity objective and the characteristics of the
problem. Future work should validate the findings of this work on other
problems to see if this correlation still holds. More parameter tuning would
also be beneficial for a potential performance improvement, especially experi-
menting with mutation rates. A different initialization scheme could also be
interesting to explore, where the initial neural networks start with a number
of hidden neurons and are not fully connected. This way of initialization may
improve exploration as neural networks grow more different over generations
than if they have the same starting topology.

Furthermore, exploring alternative multi-objective evolutionary algorithms
(e.g. SPEA2) to study if they are more suited to neuroevolution than NSGA–
II is something that has yet to be attempted. Many of the comparisons of
multi-objective evolutionary algorithms usually use a set of test problems, but
it is not known if this translates well to targeted problems in neuroevolution.

Performing the same experiments with a different encoding, architecture, or
algorithm could be further explored. Although NEAT was originally intended
to be single-objective, using a multi-objective evolutionary algorithm with
NEAT is something that should be investigated. Additionally, investigate
if the speciation of NEAT with a diversity objective would improve the
efficiency and performance or not. Moreover, use a recurrent neural network
architecture for the Tartarus problem or a compositional pattern-producing
network (CPPN) encoding for a robot locomotion problem instead of using
the same architecture or encoding across all problems. The purpose would
be to study if certain diversity objectives potentially have a greater impact if
a more suitable encoding/architecture is used for specific problems.
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Finally, further study of representational diversity as a whole is needed,
especially to validate that representational diversity is more suitable for
problems with a high degree of regularity. In particular, combining the ability
of CPPNs to produce complex patterns and representational diversity could
potentially be effective on problems with a high degree of regularity. Al-
though, as discussed earlier, distinguishing between problems with oscillatory
regularity and sub-task regularity should be considered in future studies.
Further investigation into the claim that invariance to invertible linear trans-
formations has a great impact on the applicability of representational diversity
objectives to neuroevolution should also be a priority.
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A | Experimental parameters

Table A.1: All experimental parameters that are common for all targeted problems.

Experimental parameter Value

population size 100
neural network initialization fully-connected without hidden neurons
parametric mutation polynomial mutation
distribution index (ηm) 10
k-nearest neighbors 15

Table A.2: Experimental parameters specific to the 2x2-Retina problem.

Experimental parameter Value

number of generations 2500
novelty threshold 0.85
max archive size N/A
feed-forward True
number of inputs 8
number of outputs 1
activation function tanh (with λ = 20)
mutation rate – add neuron 0.1
mutation rate – remove neuron 0.05
mutation rate – add connection 0.2
mutation rate – remove connection 0.1
mutation rate – weight mutation 0.1
mutation rate – bias mutation 0.05
bias min value −10.0
bias max value 10.0
weight min value −5.0
weight max value 5.0
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Table A.3: Experimental parameters specific to the 3x3-Retina problem.

Experimental parameter Value

number of generations 5000
novelty threshold 0.85
max archive size N/A
feed-forward True
number of inputs 18
number of outputs 1
activation function tanh (with λ = 20)
mutation rate – add neuron 0.1
mutation rate – remove neuron 0.05
mutation rate – add connection 0.2
mutation rate – remove connection 0.1
mutation rate – weight mutation 0.1
mutation rate – bias mutation 0.05
bias min value −10.0
bias max value 10.0
weight min value −5.0
weight max value 5.0

Table A.4: Experimental parameters specific to both the Tartarus problem and the
Deceptive-Tartarus problem.

Experimental parameter Value

number of generations 1500
novelty threshold 2.0
max archive size 500
feed-forward True
number of inputs 11
number of outputs 3
activation function sigmoid
mutation rate – add neuron 0.1
mutation rate – remove neuron 0.05
mutation rate – add connection 0.2
mutation rate – remove connection 0.1
mutation rate – weight mutation 0.2
mutation rate – bias mutation 0.05
bias min value −10.0
bias max value 10.0
weight min value −10.0
weight max value 10.0
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Table A.5: Experimental parameters specific to both the Medium-Maze problem and the
Hard-Maze problem.

Experimental parameter Value

number of generations 2000
novelty threshold 10.0
max archive size N/A
feed-forward True
number of inputs 7
number of outputs 2
activation function sigmoid
mutation rate – add neuron 0.1
mutation rate – remove neuron 0.05
mutation rate – add connection 0.2
mutation rate – remove connection 0.1
mutation rate – weight mutation 0.15
mutation rate – bias mutation 0.1
bias min value −10.0
bias max value 10.0
weight min value −5.0
weight max value 5.0

Table A.6: Experimental parameters specific to both the Bipedal-Walker problem.

Experimental parameter Value

number of generations 2000
novelty threshold 1500.0
max archive size 500
feed-forward True
number of inputs 24
number of outputs 4
activation function tanh
mutation rate – add neuron 0.1
mutation rate – remove neuron 0.05
mutation rate – add connection 0.3
mutation rate – remove connection 0.15
mutation rate – weight mutation 0.2
mutation rate – bias mutation 0.1
bias min value −10.0
bias max value 10.0
weight min value −5.0
weight max value 5.0
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B | Additional results

B.1 2x2–Retina
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Figure B.1: The performance of behavioral diversity treatments on 2x2-Retina. Of the
behavioral diversity treatments, Novelty leads to better performance and is slightly more
efficient than PA for the first 500 generations. Hamming sometimes achieves the maximum
performance score towards the end but not consistently enough.
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Figure B.2: The performance of structural diversity treatments on 2x2-Retina. The best
performance score is reached by both Mod and ModDiv with neither being more efficient.
PA performs on par with both structural diversity treatments.
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Figure B.3: The performance of representational diversity treatments on 2x2-Retina.
Both representational diversity treatments CKA and CCA perform significantly worse than
PA. CCA performs better than CKA but does not achieve the maximum performance.
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B.2 3x3–Retina
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Figure B.4: The performance of behavioral diversity treatments on 3x3-Retina. Both
Novelty and Hamming perform significantly worse than PA. Novelty leads to slightly
better performance compared to Hamming.

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Pe
rfo

rm
an

ce

Retina 3x3 - Structural diversity

Performance + Modularity Diversity
Performance + Modularity
Performance Alone

PAp < 0.05
vs:

Mod
ModDiv

0 1000 2000 3000 4000 5000
Number of Generations

Mod ModDiv

Figure B.5: The performance of structural diversity treatments on 3x3-Retina. Mod
leads to the best performance including the control PA, while the ModDiv treatment is
slightly worse. Mod is slower than both ModDiv and PA for the first 2500 generations
but overtakes both of them as the other two converge.
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Figure B.6: The performance of representational diversity treatments on 3x3-Retina.
Both representational diversity treatments perform significantly worse than PA. Between
the two diversity treatments, CCA performs better and is more efficient than CKA.

B.3 Tartarus
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Figure B.7: The performance of behavioral diversity treatments on Tartarus. The
Novelty treatment performs significantly better than Hamming. There was not any
significant difference in performance between Novelty and PA.
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Figure B.8: The performance of structural diversity treatments on Tartarus. PA
significantly outperforms both structural diversity treatments. Of the two structural
diversity treatments, ModDiv significantly outperforms Mod.
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Figure B.9: The performance of representational diversity treatments on Tartarus. Both
representational diversity treatments, CKA and CCA, perform similarly with no significant
difference between them. PA outperforms both representational diversity treatments.
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B.4 Deceptive–Tartarus
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Figure B.10: The performance of behavioral diversity treatments on Deceptive-Tartarus.
Of the behavioral diversity treatments, Novelty significantly outperformed Hamming.
The difference between Hamming and PA was only significant for the first 400 generations.
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Figure B.11: The performance of structural diversity treatments on Deceptive-Tartarus.
Both the ModDiv and PA treatments performed similarly. The Mod treatment performed
slightly worse than ModDiv and PA.
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Figure B.12: The performance of representational diversity treatments on Deceptive-
Tartarus. No significant performance difference can be seen between CKA, CCA, and PA.
There are some indications that CCA could potentially reach a score over 2.0 if allowed to
run for longer than 1500 generations.

B.5 Medium–Maze
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Figure B.13: The performance of behavioral diversity treatments on Medium-Maze.
Novelty was significantly more efficient than both Hamming and PA. The Hamming
treatment was slightly slower than PA, but the difference was not significant.
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Figure B.14: The performance of structural diversity treatments on Medium-Maze.
ModDiv performed similarly to PA, but significantly outperformed Mod. The Mod
treatment was only able to reach the goal in a couple of instances and otherwise converged
to one of the deceptive local optima. ModDiv significantly outperformed Mod.

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Pe
rfo

rm
an

ce

Medium Maze - Representational diversity

Performance + CCA
Performance + CKA
Performance Alone

PAp < 0.05
vs:

CKA
CCA

0 200 400 600 800 1000
Number of Generations

CCA CKA

Figure B.15: The performance of representational diversity treatments on Medium-Maze.
CCA performed similarly to PA. CKA performed significantly worse than both CCA and
PA, and never reached the goal of the maze.
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B.6 Bipedal
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Figure B.16: The performance of behavioral diversity treatments on Bipedal-Walker.
None of the behavioral diversity treatments outperform PA. Novelty is only slightly
better than Hamming but the difference is not significant.
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Figure B.17: The performance of structural diversity treatments on Bipedal-Walker. PA
outperforms Mod and ModDiv for the first 1000 generations. For subsequent generations,
the performance difference is not significant.
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Figure B.18: The performance of representational diversity treatments on Bipedal-Walker.
The CCA treatment outperforms both CKA and CCA. However, the performance
difference between CCA and PA only becomes significant at around generation 1800
because of the large confidence interval.

B.7 Computational run-times
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Figure B.19: The mean run-time per generation on 2x2-Retina. Time units are in seconds
with standard deviation also shown. Simulated using a single core. Mod slower than the
rest of the treatments.

117



PA Novelty Hamming Mod ModDiv CKA CCA0

10

20

30

40

Ti
m

e 
pe

r g
en

er
at

ion

Deceptive Tartarus - Computational run-time overhead

Figure B.20: The mean run-time per generation on Deceptive-Tartarus. Time units are
in seconds with standard deviation also shown. Simulated using 20 cores. Computing
Novelty is significantly more computationally intensive, and thus requires more time per
generation compared to the other treatments.
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Figure B.21: The mean run-time per generation on Medium-Maze. Time units are in
seconds with standard deviation also shown. Simulated using 10 cores. Caution should be
taken when analyzing the times for this experiment. The reason for the large standard
deviation is due to treatments sometimes reaching a maximum score very early and never
on other runs. Thus, any run-time difference between treatments is mainly due to larger
neural networks and not due to the diversity computation.
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B.8 How treatments explored the Medium-Maze

(a) PA

(b) Novelty (c) Hamming

(d) Mod (e) ModDiv

(f) CKA (g) CCA

Figure B.22: Illustration of how differently each treatment explored the Medium-Maze.
Each dot is the end position of a simulated robot. There was no notable difference between
treatments, except for CKA. CKA explored significantly less of area of the maze than
other treatments.
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