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Abstract

A class of objective functions related to the Cox partial likelihood is pro-
posed. Examples of the objective functions are applied to binary data with a
log-link. It is pointed out that the Peto-Breslow approximation to the partial
likelihood with discrete failure times fits a conditional model with a log-link.

1 Introduction

The immensly popular proportional hazard model , Cox (1972), is given by

Ai(t) = exp(B'Zi) do(t)

where A;(1) is the hazard for individual ¢, Ao(?) a baseline hazard, 5 and Z; respectively
vectors of regression parameters and covariates for individual :. Letting X; and D;
be respectively the possibly right-censored failure times and indicators of failure for
individual ¢ and R; the number of individuals at risk right before ¢ Cox’ method
consists in maximizing the partial likelihood, (Cox, 1975),
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The partial likelihood property requires that no failure times are equal. With truely
discrete survival data Cox (1972) instead suggested fitting the conditional logistic
model
At
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where \;; is the conditional probability that an individual with covariate 7Z; will
fail at ¢ given survival up to . The conditional likelihood given the total number
of failures at each time ¢ does not depenend on the baseline Ag; and has the same
form as a conditional likelihood for logistic regression. It coincides with the usual
Cox-likelihood when there is only one failure at each failure time and suggests an
approach to dealing with tied survival data.

However this model does not correspond to a proportional hazard model when
the ties arise only because the continous time scale has been measured to crudely.
Also direct evaluation of the conditional likelihood can be numerically exhaustive.
(An clever algorithm for efficient evaluation has been developed, see Gail, Lubin &
Rubinstein (1981) and Howard (1972), but is sometimes not implemented in software
packages.)

Other approximations have been suggested by Peto (1972), Efron (1977) and
Oakes (1981). The most commonly applied, but also most critized of these approxi-
mations is that of Peto. The objective function (1.1) actually covers this approach.
The approaches of Efron and Oakes on the other hand takes into consideration re-
moval of failures from the risk set. The aproximation of Peto was also considered by
Breslow (1974) and is for this reason often referred to as the Breslow approximation.
Here we will use the term Peto-Breslow approximation.

The Peto-Breslow approximation is the inspiration for this paper. It will be shown
that under a truely discrete model it actually fits a conditional model with log-link,
that is, it fits the model

it = exp(3'7Z;) Aot (1.2)
contrary to the logit link suggested by Cox (1972).

Example

Consider the extreme situation that survival is only inspected at one time point. Also
assume that there is only one covariate indicating presence or absence of exposure.
Denote the number of exposed and nonexposed failures as respectively A and B
and the corresponding number of nonfailures or censored observations as ' and D.
Applying the Peto-Breslow approximation amounts to maximizing the function

exp(BA)/{(B + D) + (A + C)exp(B)} 7.
This leads to the estimate B given by

. AJ(A1O)
exp(3) = BIB+D)

that is B is log of the ratio of frequencies of failure among exposed and unexposed.

When extending the example to (1.2) it turned out that the argument could be
presented most easily within a much larger framework and that it suggests a wide class



of objective function with unbiased estimating equations. The objective functions are
presented in the next section. In Section 3 we again specialize to binary outcomes,
first in a basic case, secondly as discrete censored survival data and third in a matched
sets framework. In the final section other applications of the objective function are
discussed.

2 The objective functions

The conditional likelihood for independent Poisson-distributed data Yi,....,Y, with
expectations EY; = X\, = Agexp(f'7;) given Y, = 37| Y;, is proportional to

exp('7;) . L EY; l,
H{ S earz)) A

=1

(2.1)

The partial likelihood Lp is essentially a product of a such conditional likelihoods.
The objective function studied in this paper is in its simplest form identical to the
right-hand side of (2.1), namely
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however the restriction that Y; is Poisson distributed is removed. It is only assumed
that EY; > 0 and depend on some parameters of interest. This generality is sufficient
for unbiased estimating equations as shown below. In the examples we will however
only consider log-linear structures EY; = exp(a + 5'7;).
Taking the derivative of log My with respect to these parameters we obtain

ORY; S, ORY;

= dlog My = > Yi( .
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Then taking the expectation at the true value of the parameter gives

OEY; Y, OEY;
EY;( -
Z SOV

—0, (2.3)

thus the estimating equations Uy = 0 are unbiased. Under regularity assumption
they yield consistent and asymptotically normal estimators. In general these score
equations will not have the property var(Uy) = —EAU, and they will lead to estimators
with variance ¥ = T"'AT™! where I' = —EdU, and A = var(U).

Efficiency may be improved on by weighting, replacing Y; in (1.3) by Y, = w;Y;
which amounts to solving

= w;r; -
i wilY; 3 wiBY;

(2.4)



This leads to the question of how the weights should be chosen. A somewhat heuris-
tic approach will be adopted. Since (2.2) is a conditional likelihood for independent
Poisson data it is possible that choosing w; such that EY; = var(Y,) may give im-
proved estimators. This leads to w; = EY;/var(Y;). In the appendix it is shown that
with w; = EY;/var(Y;) evaluated at the true parameters of the model the likelihood
property var(Up, ) = —EdUy,, is gained.

In practice these weights are of course unknown. To get around this one may first
fit (2.2) without weights. Additional nuisance parameters will also be necessary to
estimate like the o under the log-linear model. The w; are then replaced by w; where
the estimated parameters are plugged in and Y; in (2.2) is replaced by YZ»/ = w;Y;.

A generalization of My is what is actually of interest. Let Y,z = 1,....,n; be
random variables, F; some set of conditioning variables and E; the operator taking
conditional expectations given F;. Again unbiased estimating equations are obtained
by solving

n o ORY: "R, Y;
U:ZZKL‘( t t_Z];tl t ]t)
n EYi 205 BV

=1

or, assumed equivalently, maximizing

n
; Et it Yit

M= 557

t =1

(2.5)

Again improved estimates may be obtamed replacing Y;; by w;Y,; for estimated
weights w; = E;Y;;/var,Y;;. Here var, denotes conditional variance given F;. The
main interest again concern log-linear structures

E.Y, = exp(oy + ﬁlzﬁ)

where Z;; are covariates and the a; nuisance parameters or random components. Note
that the «; drops out of objective function and thus 3 may be estimated without
making any assumptions on the nuisance parameters. This is the main reason for
considering the objective function M.

3 Example: Binary data with log-link

In this section we will look at the general objective functions of the previous section
under the assumption that outcomes are binary with log-linear probabilities of success.
We shall look at three different cases, first a standard case, then discrete time survival
data and third, matched sets with a common random intercept in each set.



3.1 The standard case

Let Y; be indenpendent binary data with p; = EY; = exp(a + 3'7;) where the Z; are
covariates. The objective function My becomes

- EY; exp(B'7Z:) v
Mo = H(Z?:I EY H{ ] 1eXP(5/Z)} ‘

=1 =1

The derivatives of log(My) becomes
i Ziexp(B'Z;)

o= S = it - S
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where v®% = v’ for any vector v . From this we obtain
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Estimates I" and A are easily obtained inserting the solution B of Uy = 0 for # and

for a. This estimator of « is an analogy to the Breslow estimator of the base-line
hazard in Cox-regression. Note that [ is identical to the observed information matrix
inserted B

The estimate [3 can generally be obtained from a program for Cox-regression. To
obtain the variance estimators I'"'ATl'~! one will have to write a separate routine.
Note however that a lazy approximation of these variances, strictly valid only for
G = 0, is obtained by multiplying the variances from the Cox-regression program
by the proportion of individuals with ¥; = 0. Note also that not adjusting the
variances, that is using those calculated by the Cox-regression program will always
be conservative because

n L/ "7
A<Zpi{Zi—Z]_l JeXP(ﬁ ])
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2j—1exp(8'Z;)
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An interesting feature of this procedure is that fitted values of p; greater than one
does not create a numerical problem. This would point to a problem with the model
that might have been overlooked from the maximum likelihood estimates (MLE).

The preceeding section suggests that weigthing may improve efficiency and that
the weights should be chosen close to the true value of w; = EY;/var(Y;) = 1/(1 —p;).
It can be shown that with the true p; this leads to the same variance as the MLE. The
obvious choice of weights is w; = 1/(1 — p;). Denote the resulting estimator 5*. Since
B and & are consistent under weak assumption it also holds that the w; are similarly
consistent for the w;. Thus we may use the inverse of the observed information matrix
as the variance estimator of 3*.

Example

A small simulation was set up out with population size n = 1000, o = log(0.01) =
—4.605, 8 = log(50) = 3.912 and the covariates Z; uniformly distributed. Thus we
have 0.01 < p; < 0.5. The simualtion was repeated 1000 times. The average un-
weighted estimate of 3 was 3.930 with empirical variance of 0.161, average of unad-
justed variances (i.e. the inverse of the observed information f) of 0.183 and average
of adjusted variances of 0.155. For the weighted estimator of 3 the average was 3.924,
the empirical variance 0.158 and the average variance estimate 0.150. The MLE
was also calculated and the average of those (3 estimates were 3.927, the empirical
variance 0.158 and the average variance estimate 0.146. For the estimates of « the
averages were -4.627, -4.623 and -4.625 for the unweighted, the weighted and the MLE
respectively. The corresponding empirical variances were 0.108, 0.107 and 0.107.

3.2 Discrete survival data

Assume that survival times T; follow discrete distributions and let A;; equal the condi-
tional probability that an individual alive up to ¢ will fail at that time. As mentioned
in the introduction Cox (1972) suggested to model such data by a conditional logit
model. Peto (1972) proposed using the partial likelihood (1.1) as an approximation
also in the presence of moderately tied data. We shall here show that for discrete
data maximizing the partial likelihood (1.1) amounts to fitting the log-linear model
(1.2) for Ajs. If the Ay are all small then logit-link and log-link models are also ap-
proximately equal. The link for A;; that corresponds to a proportional hazard model
is the complementary log-log link which is an intermediate case between the log-link

and the logit-link (McCullagh & Nelder, 1989).

Let Y;; denote a failure of individual ¢ at time ¢ and assume that the failures only
can take place at times 7, 7,...,7,. Let R; denote the set of individuals under
observation right before time ¢. Furthermore let F; be the available information right
before time t, that is F; consist of R;, the outcomes Y;,,s < ¢t and the covariates



Zisy 8 < t. We assume the model
P(}/“L = 1|ft) = I(l [~ Rt))\it = I(l [~ Rt) eXp(Oét —|— ﬁ/Zit)a

that is the censoring is independent with respect to the filtration F; (Andersen et al.,
1993). Then applying the objective function (2.5) we obtain

_ - EY|F exp(' Zit) Y.,
VI s~ s Gz

t =1 ] 1 t 1ER:

which is the Peto-Breslow objective function and coincides with (1.1). The prod-
uct over ¢ is of course a discrete product over the 7;. The arguments of Section 2
shows that under model (1.2) this leads to unbiased estimating equations and under
regularity assumptions on the censoring and the covariates to consistency and asymp-
totic normality of the maximizer B The baseline conditional probabilities may be
estimated by the Breslow type estimator

) P
oy = —2i€R = (3.1)
Yier, exp(3'Zir)

With j\it = eXp(B’Zﬁ)j\Ot the covariance matrix ofB is estimated by —'AI'"" where

A0S Sl = (7 - om0 2
t ieR: >jer. exp(B'Zt)

and

. c er 2 exp(B 7)) Sier, Zivexp(3'Z;)
— )\it J t " _ _ J t A ®2 .
Zt: 27; [ ZjERt exp(ﬁlzﬁ) ( Z]ERt eXp(ﬁ/th) ) ]

Software for Cox-regression will fit this model, but the conservative ['=! will be re-
ported for the covariance matrix. A lazy adjustment to this estimate, valid when
G = 0, can consist of multiplying r- by 1 — 3, Yier, Yit/ >o¢n: where ny is the
number at risk right before time ¢.

Also in this case weighting that may improve efficiency is possible. Likewise
Section 3.1 we may replace Y;; by Y“L = Y where w;; = 1/(1 — )\“L) and refit the
model with these weights. This corresponds to maximizing

H H{ exp ﬁ Zzt)wzt }Yitﬁ/it
t 1€R: ]GRt exp(ﬁlzﬁ)wﬁ

The variances reported in the examples below are obtained from the inverse of the
observed information —d?log(M*)/03* inserted the estimator 3* maximizing M*.



Example

A small simualtion study was carried out with n = 1000 individuals, two covariates
Z1; binary with outcome probability of 0.5, 7y, = Z; + V; where V; uniform on
< 0,1 >, regression coefficients ; = 32 = 1 and o, = —2.5—1log(2) — 0.1 (¢ — 10) for
t=1,...,10. Since max(Z1; + Zq;) < 2.5 this gives A;; < 0.5. Censoring was uniform
on {1,...,10}. Both the unweigthed estimators B, the weighted estimators 3* and
the joint MLE of (oq,. .., a10, 51, 32) were computed. The simulation was repeated
1000 times.

There was no observable bias on either estimate of 3y or 3. The empirical variance
of Bl was 0.053 compared to an average of unadjusted variances of 0.054 and of
adjusted variances of 0.049. The empirical variances of weighted estimates and the
MLE’s of 3; was also 0.053 both with averages of variance estimates of 0.048. For (3,
all estimators had empirical variances of 0.035. The average unadjusted variance of
Bg was 0.037 whereas the average adjusted variance was 0.031. The average variance
estimates on 3y for the weighted estimators and the MLE were respectively 0.031 and
0.030. Estimates of «a; did not show serious bias except for aqqg. Likely this bias was
caused by occasionally no failures for the maximal ¢ = 10.

Example

Data from the Norwegian Study of Sexual Behavior in 1987 on age at first intercourse
(Sundet et al., 1992) were reanalysed. Only the 3107 women aged 18 to 60 were
included in the analysis. The event times were given in years. Since the main part
of the population experienced their first intercourse between the early teens and mid
twenties the data were severly tied, as a maximum age 16 was reported by 529 women.
Since not everyone had experienced intercourse about 9% of the times were censored.

The data were analysed with the covariate Z; = year of birth / 30. Thus Z; is a
transformation of the censoring time. First the data were analysed with a log-link.
Using the Peto-Breslow method the estimate of 5 was 0.695 and standard error (se)
reported from the program was 0.050. The adjusted se became 0.044. The weighted
estimate 3* was 0.634 also with a se of 0.044. The MLE of 3 was 0.639 with a se of
0.042.

The MLE with a complementary log-log link was 0.755 with a se of 0.050. This
corresponds well to the estimate obtained using the Efron method for tied data of
0.752 again with a se of 0.050. With a logit link the MLE became 0.881 with a se of
0.056. Numerical problems prevented computation of the conditional MLE, however
an approximation suggested by Ryan et al. (1999) gave an estimate of 0.909.

In the methods so far discussed the event times have been considered stemming
from a discrete distribution which is not very realistic. The Efron method can be
seen as an exception in this respect, however also this method uses the convention
in survival analysis of letting censored event times follow all those not censored. For
this data set this also seems unrealistic. When originally analysing these data the
Peto-Breslow estimates were compared to the simple approach of adding random



numbers between zero and one to all the possibly censored event times, thus giving
a random ordering of the individuals. Applying this method to the data 100 times
gave estimates of 3 ranging from 0.782 to 0.801 with a mean of 0.792. A shortcoming
of this method is that it does not take into consideration that individuals with a
high value of Z; are more likely to have small event times. However drawing random
numbers in accordance with the previous estimate of 3 again repeated 100 times gave
the range 0.782 to 0.805 with a mean of 0.794. Although a very modest adjustment
this was significantly higher.

3.3 Repeated measurements with random intercept

Consider ¢« = 1,...,n matched sets with ¢t = 1,...,7T; subjects in set no. i. Denote
the binary outcome for subject ¢ in set ¢ by Y;;. Random intercept models for binary
data with a logistic link have been discussed by for instance Diggle et al. (1994)
using the conditional likelihood for logistic regression. Some alternative estimation
methods are suggested by Ryan et al. (1999). Here it is instead assumed that

P(Y, = 1|U;) = pir = exp(U; + 8'Zit) (3.2)

where U; is a random intercept for matched set ¢ and the Z;; are covariates for subject
t in set 1. Then § may be estimated by maximizing

n L pzt v n L exp(B'Zss) Vi
v = 3.3
V= G = Tl ) )

which is again an application of the general objective function (2.5) and hence leads

to unbiased estimating equations and under regularity assumptions consistent and
approximately normal estimators. Note that the random intercept U; drops out of M
and it is not necessary to specify a distribution for it. Note also that for a component
of 3 to be identifiable with this objective function the corresponding component of
Zi must vary within the matched sets. Since M is also on the same form as Cox-
likelihood it is easy to obtain the estimates B

With respect to estimation of variances note that, with Ey. denoting the condi-
tional expectation given U,

n T; T; /
- sl— Zis ex Zis
varl3 B 30 Vil 7 — 2 o P Zis)
i=1 t=1 25121 exp(ﬁ Zis)

=0,

and thus covariance matrix of the score becomes

T; T;
G st1 Zis exp(B'Zis) | o2
A E pzt — Pit {Zzt - ) }®
2 Pl =1 exp(37Z.)

while the expected information matrix can be written as
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which can be estimated inserting B for B and p; = exp(Ui + B/Zit) for p; where
U = log{>>, Yii/ >, eXp(B’Zﬁ)}. With respect to I' this will not differ from using Y},
in place of p;; and is thus equivalent to using the observed information matrix. Again
inverse of the observed information matrix is conservative estimate for the covariance
matrix of B, and it is possible to find lazy adjustments similar to those in Sections
3.1 and 3.2.

Also similar to the previous two subsections one might improve on the estimator
by weighting the outcomes Y;; by w; = 1/(1 — p;t). For the weighted estimator the
observed information matrix will be used as the estimated covariance matrix in the
example below.

Example

Similarly to Ryan et al. (1999) interpret Y;; as the indicator of an allergy attack
for individual 7 at day ¢. The chance that an attack occur may depend on Z; = pollen
level at day ¢ and the indicator x; that individual 7 is sensitive to pollen. With a
model P(Y; = 1|U;) = exp(U; + Bo + (i + B27: + (37:2;) maximizing M will not
give an estimate of (3; since z; is constant over time. Since we need not model the U;
it does not create a problem to include the effect of being sensitive into the random
component, that is to let UZ»/ = U; + (o + Br1x;. The effects of Z; and of the interaction
between pollen and being sensitive Z,z; are however directly identifiable.

In this simulation 7; was uniformly distributed on < 0,4 >, P(z; = 1) = 0.25,
and U; was uniformly distributed on < —3,3 >. The parameters values were Gy =
—7.2,01 = 0,08 = B3 = 0.5. The simualtions were repeated 1000 times. The popu-
lation size was set to 500 and the individuals were assumed to be observed for a full
pollen season of 100 days. A full MLE could not be fitted since that model would
require 500 individual parameters to be estimated. With this model many individuals
will never experience an allergy attack and the proportion with no attacks varied from
51% to 65%. The average number of attacks among those with attacks varied from
2.5 to 4.6 and the maximum number of attacks from 14 to 35.

Both (3, and 33 were estimated without noticeable bias. The unweighted esti-
mators had empirical variances of 0.00313 and 0.00590 for the estimators (3, and
(3 respectively. The corresponding average of unadjusted variances were 0.00315
and 0.00674 whereas the average adjusted variances were 0.00305 and 0.00614. The
weighted estimators had empirical variances of 0.00313 and 0.00586 whereas the av-
erage variance estimates were 0.00307 and 0.00610.
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4 Discussion

This paper has established that using the Peto-Breslow approximation for tied sur-
vival data and interpreting the survival time distibution as discrete one is fitting a
conditional model with a log-link instead of the logit link suggested by Cox (1972).
It is also shown how standard errors of parameter estimates should be adjusted with
the Peto-Breslow approximation.

The paper also presents a very general class of unbiased estimating equations
which allow addressing a much wider class of problems than the examples on binary
data. The estimating equations are likely of most interest when there are many
nuisance parameters in a model that act multiplicatively on the expected values,
that is under a model EY;; = U;V,; where the interest is on the part V;. It is well-
known that when there are many nuisance parameters U; the maximum likelihood
estimates can be seriously biased. The examples have used log-linear structures V;; =
exp(3'7:;), but could simply be modified to other risk functions V;; = ¥(5'7;;).

An extreme example could be the mixed model Y;; = 3'7;; + U; + ¢;; where U;
and ¢;; are random coefficients usually assumed to be normally distributed. The the
conditional expectation of YZ; = exp(Y;;) given U; equals exp(U; + 02/2 + 37;;) if
var(e;;) = o and maximizing the objective function M in (2.5) for YZ; give consistent
estimates of . Under the traditional assumptions of this mixed model one would of
course expect such estimators to be severly inefficient, but when they do not hold the
picture is less clear. In particular if Var(YZ»;) o EYZ/] one could expect good properties.

The paper also suggests to improve on the objective function by weighting by
estimates of EYZ;/VaI’(YZ;) In the examples on binary data the improvements were
only slight, but it appeared that this removes the need to adjust variances. It also
seems that the weighting may lead to estimators that are closer to the MLE. This
however is not necessarily an advantage since the MLE can be biased with many
nuisance parameters. More research is needed to fully understand the impact of the
weighting.

The method of the paper seems to have relations to some recently proposed
methods. Lin et al. (1998) suprisingly arrive at Cox-regression for current status
data under an additive hazard model X\;(t) = Xo(¢) + 3'Z;. If survival D; of indi-
vidual 7 is inspected at time X; the model implies the loglinear structure ED; =
exp{—NAo(X;) — B'7; X;} where Ao(t) = [} \o(s)ds are nuisance parameters. Estima-
tors of 3, possibly different from those of Lin et al., may be constructed from the
framework discussed in this paper. Since the methods of Lin et al. are not efficient
such efforts may lead to improvement.

Self et al. (1991) discuss case-only studies, that is studies where data on genes are
obtained only for cases of a disease and the parents of the cases. This way one may
determine the distribution of genes for a hypothetical series of offspring of the parents.
Self et al. suggest a log-linear model for the probability of disease for case no 7 that
may be rewritten as exp(U; + 3'7;). Here U; can be considered a random component
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incorporating environmental influences and Z; the genes of the case. Their objective
function can be written on the form

exp(3'7Z; EY;|U;, Z
M =
H Eexp( ﬁ’Z H{ EY;|U;
where expectation is taken over the distribution determined by the genes of the par-

ents. Similarly to (2.5) it can be shown that this objective function also leads to
unbiased estimating equations.
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Appendix

Let Y/ = w;Y; where w; = EY;/var(Y;) with expectations and variances evaluated
at the true parameters and Up,, be defined by (2.4). The corresponding information
matrix becomes

Sy PEY OBV, z;?:la?EYj'Jr(z;:laEYj')
EY, ' EY/ * EY/ L BYY

2}‘

We will show var(Us,) = FEly,. For notational convenience we only consider a one
parameter case, the matrix generalization is straightforward.
The expected information can then be written

(OEY))? (20 1aEY' " aEY' >, OBY!
E[w 1= o J 72
0 Z{ EY! > EY/ Z EY’ >, Y/

=1

Note that the formulas for information and expected information are valid for any
choice of weights including w; = 1. Furthermore

= OEY! Y OEY] OEY/ anl OEY!
Uow) = 2 Y; U J EY/{ J J?
arlon) = 2 ehar 00Uy = S - LR Sy B

=1

thus var(Upy) = Flo..
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