
Using Soccer Athlete GPS
Monitoring Data to Visualize and

Predict Features

Lars Hoel

Thesis submitted for the degree of
Master in Computer Science: Programming and

System Architecture
60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2023

Using Soccer Athlete GPS
Monitoring Data to Visualize

and Predict Features

Lars Hoel

© 2023 Lars Hoel

Using Soccer Athlete GPS Monitoring Data to Visualize and Predict
Features

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Football is a globally popular sport with millions of players and fans
engaging in the game across all levels of competition. As one of the world’s
most-watched sports, football demands constant improvements in data
analysis tools. This master’s thesis presents a comprehensive pipeline for
feature extraction, data visualization, and injury prediction, utilizing GPS
data collected from two Norwegian women’s soccer teams. It outlines the
development of a systematic process, commencing with preprocessing and
feature extraction from raw GPS data, to facilitate subsequent analysis and
model training. This process culminates in the creation of two distinct
datasets - ’Session’ and ’High Intensity Run’ - which offer invaluable
insights into player performance and physical attributes.

The study then delves into the creation of several visualization tools,
utilizing a mix of the aforementioned datasets, raw data, subjective
performance data, and match data. The resulting visualizations serve
diverse purposes, providing insights into high-intensity runs, player
positions, team heatmaps, and the relationships between subjective game
performance, objective GPS metrics, and match data. These tools exhibit
potential in assisting players, coaches, medical staff, researchers, and sports
scientists in a multitude of scenarios, such as managing tactics, preparing
for high-intensity periods, and evaluating player mindsets.

Lastly, the thesis explores injury prediction through the deployment of
various machine learning models. After testing several models, including
Logistic Regression, Decision Tree, xGBoost, LSTM, GRU, and ROCKET,
the ROCKET model is found to outperform others for the given dataset,
with precision of 0.4167 and recall of 0.4545 (TP:5, TN:2978, FP:6, FN:7).
However, the model’s performance is found lacking in consistently
predicting injuries, thereby underscoring the need for continued research
in this field. This study’s comprehensive process and findings contribute
significantly to enhancing our understanding of the application of GPS data
in professional sports, while pinpointing areas for future investigation.

i

Acknowledgments

This thesis could not have been accomplished without the mentorship and
assistance of numerous individuals who contributed in various ways to the
development and completion of this study.

First and foremost, I wish to express my appreciation to my supervisors,
Professor Pål Halvorsen and Dr. Cise Midoglu, for their guidance,
astute observations, thorough recommendations, and unwavering support
throughout this thesis project. Additionally, I am grateful to Steven Hicks
and PHD student Matthias Boeker for their assistance at various stages of
the project.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Scope and Limitations . 3
1.4 Research Methods . 4
1.5 Ethical Considerations . 4
1.6 Main Contributions . 5
1.7 Thesis Outline . 5

2 Background and Related Work 7
2.1 Athlete Health and Performance Monitoring 7

2.1.1 Wellness Reporting . 7
2.1.2 Training Load . 7
2.1.3 Injury and Illness . 7
2.1.4 Positional Data . 8

2.2 Machine Learning . 9
2.2.1 Supervised Learning 9
2.2.2 Unsupervised Learning 10
2.2.3 Overfitting and Underfitting 10
2.2.4 Logistic Regression . 11
2.2.5 Decision Trees . 11
2.2.6 xGBoost . 13
2.2.7 Neural Networks . 13
2.2.8 Recurrent Neural Networks (RNN) 15
2.2.9 Long Short-Term Memory (LSTM) 16
2.2.10 Gated Recurrent Units (GRUs) 17
2.2.11 ROCKET . 17

2.3 SoccerMon Dataset . 18
2.3.1 Collection Methods . 18
2.3.2 Contents . 19

2.4 Previous Work on Time Series Forecasting 22
2.4.1 Machine Learning Approaches 23
2.4.2 Deep Learning Approaches 23

iii

2.4.3 Multivariate and Multi-step Forecasting 23
2.4.4 Readiness Forecasting using the SoccerMon Dataset . 23

2.5 Predicting Injuries using GPS Data 24
2.6 Chapter Summary . 25

3 Methodology 27
3.1 Proposed Pipeline . 27
3.2 Data Import . 28

3.2.1 Tools . 28
3.2.2 Data Structure . 28
3.2.3 Importing Data . 29

3.3 Data Preprocessing . 30
3.4 Feature Extraction . 31

3.4.1 Tools . 31
3.4.2 Session Dataset . 31
3.4.3 High Intensity Run Dataset 34

3.5 Data Visualization . 35
3.5.1 Tools . 35
3.5.2 Choosing What to Visualize 35

3.6 Injury Prediction . 35
3.6.1 Tools . 36
3.6.2 One-step Ahead Forecasting 37
3.6.3 Creation of Training Dataset 38
3.6.4 Machine Learning Models 38
3.6.5 Hyperparameters . 39
3.6.6 Addressing Class Imbalance 40
3.6.7 Training Scheme - Whole Team vs Player 40
3.6.8 Evaluation Metrics . 41
3.6.9 Recall . 41
3.6.10 Confusion Matrix . 42

3.7 Chapter Summary . 43

4 Implementation 44
4.1 Feature Extraction . 44

4.1.1 Import data from CSV files 44
4.1.2 Filters and Sanity Checking 46
4.1.3 Session Dataset . 50
4.1.4 HIR dataset . 51
4.1.5 Create MySQL Database for Availability 53

4.2 Data Visualization . 54
4.2.1 Utilizing Satellite Imagery for Visualization 54
4.2.2 Incorporation of Subjective Performance Data 55
4.2.3 Gathering Game Results 55
4.2.4 Extraction of GPS Data from Games 56

4.3 Injury Prediction . 56
4.3.1 Preprocessing . 56
4.3.2 Implementing Class Imbalance Handling 58
4.3.3 Hyperparameters . 59

iv

4.3.4 Implementation of the Machine Learning Models . . 59
4.4 Chapter Summary . 60

5 Results 63
5.1 Feature Extraction . 63

5.1.1 Stationary and Seasonality Tests 63
5.1.2 Dataset Feature Correlation 64

5.2 Data Visualization . 66
5.2.1 Satellite Imagery . 66
5.2.2 Objective Trend Diagrams 71
5.2.3 Subjective Trend Diagrams 74

5.3 Injury Prediction . 78
5.3.1 Logistic Regression . 78
5.3.2 Decision Tree . 78
5.3.3 xGBoost . 79
5.3.4 LSTM . 79
5.3.5 GRU . 80
5.3.6 ROCKET . 80
5.3.7 Discussion of Results 80

5.4 Chapter Summary . 84

6 Discussion 86
6.1 Revisiting the Problem Statement 86
6.2 Contributions . 88
6.3 Limitations of the Dataset . 89

6.3.1 Lack of Data . 90
6.3.2 Lack of Separation Between Contact and Non-

Contact Injuries . 90
6.3.3 COVID-19 Period . 91

6.4 Limitations of the Study . 91
6.4.1 Limited Scope to GPS Data: Exclusion of Accelero-

meter and Gyroscope Data 91
6.4.2 Inability to Verify the Accuracy of Extracted Features 92
6.4.3 Assumptions and Subjectivity in Visualization Tool

Development . 92
6.4.4 Model Selection Constraints 92

6.5 Future Work . 92
6.6 Chapter Summary . 94

7 Conclusions 95

v

List of Figures

2.1 Overfitting and Underfitting. 10
2.2 Decision tree . 12
2.3 Neural Network . 14
2.4 PMsys - Trainer Portal. 20
2.5 PMsys - Wellness reporting. 20
2.6 PMsys - sRPE reporting. 21
2.7 PMsys - Injury Reporting. 21
2.8 STATSports GPS. 22

3.1 Data pipeline . 27
3.2 SoccerMon structure . 29
3.3 Confusion Matrix . 42

4.1 Code showing how the filepath list was created. 46
4.2 Code showing the import, filtering and dataset creation. . . 47
4.3 Code showing the implementation of the Haversine formula. 52
4.4 Code showing the implementation of the Metabolic Power

formula. 52
4.5 Code showing the calculations of high intensity runs. 53
4.6 The SQL query used to create the number of HIRs column in

the Session dataset based on occurrences in the HIR dataset. 55
4.7 Hyperparameters tested for model training. 59

5.1 Seasonality test . 65
5.2 Correlation Matrix for the Session dataset 66
5.3 Correlation Matrix for the HIR dataset 67
5.4 HIR visualization. 67
5.5 Animation of session . 69
5.6 Session Heatmap . 70
5.7 Total distance . 71
5.8 Amount of HIRs . 72
5.9 Total Distance and HIRs grouped by results 73
5.10 Average team performance 74
5.11 Overall, Offensive and Defensive performance 75
5.12 Performance grouped by results 75
5.13 Goals scored and Offensive Performance 76
5.14 Goals Conceded and Defensive Performance. 77
5.15 Logistic Regression top performer 78

vi

5.16 Decision Tree top performer 79
5.17 xGBoost top performer . 80
5.18 LSTM top performer . 81
5.19 GRU top perfromer . 82
5.20 ROCKET top performer . 83

vii

List of Tables

4.1 Sensor data metrics . 45
4.2 Table showing the effects of different filters on extracted

features . 48
4.3 Table showing the features of the Session dataset 51
4.4 Table showing the values in the High intensity run dataset . 54
4.5 Table showing the training dataset for the machine learning

models . 57

5.1 Combined result from the top performing models, sorted
based on F1 score . 84

viii

Chapter 1

Introduction

Soccer is the most popular sport in the world, both played and watched by
millions of people from all over the world. As the sport continues to evolve,
so does the technology used to capture and analyze various components
of the game [75]. At the top level of the game, everything from player
movements, to ball trajectories, to physiological data and performance
metrics is tracked and analyzed to help stakeholders including players,
coaches and medical staff make better, and more informed decisions about
team lineup, effective injury prevention, physical form, etc. [24, 59, 75, 78].
All in all, the possibility for gathering larger and more diverse datasets
opens up new avenues for teams to make data-driven decisions and it
provides fans with more detailed insights into the game.

1.1 Motivation

The field of sports analytics experiences an uptick in popularity in recent
years, with teams and organizations from all around the world turning to
data-driven methods to enhance their performance and gain a competitive
edge over the competition [75]. With the technological advances of the last
couple of decades, sport analysts create large data and diverse datasets,
from which they extract valuable insights and identify patterns and trends
previously unavailable. This thesis focuses on extracting useful features
from the SoccerMon dataset [59], containing data from a Global Positioning
System (GPS) [24] and subjective wellness, performance and injury data,
that includes data like fatigue, readiness, soreness, game performance and
other self reported values, with the aim of providing valuable insight into
performance, form and wellness of the athletes.

The use of GPS data in sports analytics becomes more and more popular
over the recent years [3]. GPS data enables teams to track things like player
movement, speed, heart rate, and distance covered. GPS data also gives a
more detailed understanding of the physical demands of the sport [3].

Even though this thesis mostly focuses on the GPS data, the subjective
wellness, performance and injury data is also used for analysis. The

1

inclusion of the subjective data provides additional insights into the factors
that affect player performance.

The use of subjective feedback is a crucial method for monitoring an
athlete’s performance, as it allows coaches to track progress and identify
areas for improvement [59]. However, the reliability of this data can vary,
as it is based on subjective assessments of an athlete’s well-being [49].
Prediction models and other analysis tools that rely on accurate wellness
data may perform poorly, underscoring the need to develop accurate
questions to elicit precise responses from athletes [88]. Despite these
challenges, significant research is conducted in the field of subjective
wellness and performance feedback, resulting in impactful systems like
PMSys, as described in the paper by Johansen et al. [46]. PMSys undergoes
several years of testing and improvements, providing coaches and athletes
with valuable statistics to enhance athletic development.

By using feature extraction techniques on this dataset, this thesis aims to
provide a more detailed understanding of the performance of the players
in the study. Some of the data becomes visualized, allowing for a more
intuitive and accessible presentation of the data. The visualization aims
to provide insight into the patterns and trends that underlie the players’
performance. The data extracted then gets used to create models to forecast
injuries.

Furthermore, the insights gained from this research can and will have
potential applications in a wide range of areas. Research done in this
thesis can get used for further research into areas like injury prevention,
player management, game strategy, tactical decision-making, and player
recruitment. By identifying key features that have an impact on a player’s
performance, players, coaches, medical staff, and recruiters can make more
informed decisions and can gain a competitive edge.

Overall, this thesis seeks to contribute to the growing field of soccer
analytics, by providing insights into a player, or a team’s performance and
well-being. By extracting features from a dataset containing GPS data and
subjective wellness and performance data, visualizing some results, and
creating injury prediction models.

1.2 Problem Statement

In the realm of soccer, the utilization of GPS data holds immense poten-
tial for injury prediction, performance evaluation, and decision-making en-
hancement [75]. However, the effective extraction and visualization of rel-
evant features from large datasets, such as the SoccerMon dataset, remains
a complex challenge. Furthermore, the prediction of injuries using this data
and the determination of the most effective machine learning models for

2

this task require substantial investigation. Therefore, the overarching prob-
lem this thesis seeks to address is:

Can GPS data be used to effectively analyze athlete performance and
injuries in professional female soccer?

To address the problem statement, the problem is split into three research
objectives.

The raw GPS data is difficult to read and analyze, both because of the
vast amount of data, and because of the lack of relevant features available.
Therefore, we want to extract features more relevant for answering the
problem statement, motivating the first research objective:

RO1: Effectively extract relevant features from raw GPS data, to obtain
features more relevant for performance and injury analysis.

In order to aid the analysis of the features extracted in the first objective, we
aim to develop a variety of visualization tools that could provide valuable
insight into the data, motivating our second objective:

RO2: Create visualizations using features extracted in RO1, subjective data
from the SoccerMon dataset and match results.

To delve deeper into the possibilities of analyzing GPS data, our goal is
to implement machine learning models for injury prediction, utilizing the
data extracted during the first objective, motivating the third objective of
this thesis:

RO3: Implement machine learning models to predict injuries based on the
features extracted in RO1.

1.3 Scope and Limitations

This thesis aims to extract key features from the raw data obtained from
the SoccerMon dataset [59]. The features selected for analysis include,
but are not limited to, high-intensity sprints, total distance covered, top
speed, average speed, and metabolic power. The data is collected from two
different professional female soccer teams in the Norwegian top series over
the span of two seasons.

To provide a comprehensive and user-friendly overview of the game
and training components, parts of the extracted data is visualized. This
visualization will facilitate a more straightforward interpretation and
understanding of the performance data. We do not have access to
professional athletes or coaches for this study. As a result, obtaining
feedback on the visualization tools created is not possible.

3

Furthermore, this study investigates how the extracted data can be utilized
to develop models to predict injuries. The prediction models use one-step
ahead forecasting to forecast the injury value for the upcoming day.

However, there are certain limitations to this study. Firstly, the dataset
used is only from two teams over two seasons, which means that the
findings may not be representative of other teams, or even the same teams
in different seasons. Additionally, a lot of the data was collected during
the COVID-19 pandemic, meaning players may have been affected both
physically and mentally by the disease and lockdowns. This also means
that the results may not be representative of other seasons.

All the data being used in this thesis is from the SoccerMon dataset. The
dataset has issues with erroneous data points, missing data, and incorrect
data. This will have an effect on the results derived in this thesis.

1.4 Research Methods

This thesis primarily employs quantitative and experimental research tech-
niques. Quantitative research methods involve the systematic collection
and interpretation of numerical data, allowing for statistical analysis [41].
Experimental research, on the other hand, involves manipulating inde-
pendent variables to study their effects on dependent variables, which
helps establish causal relationships [50].

We analyze the data generated from our experiments using statistical meth-
ods to assess the results. Our experimental process and pipeline is de-
veloped through a combination of trial-and-error and iterative refinement.
We opted for these research approaches since the outcomes of our ex-
periments are uncertain, and we needed to make adjustments based on
the findings. Quantitative analysis enables comparison through statistical
methods, helping to identify factors like the best data and model setups.
Moreover, the use of experimental prototyping guarantees well-defined,
testable experiments, while the iterative approach facilitates the step-by-
step enhancement of our prototype [50].

1.5 Ethical Considerations

The focus of this thesis revolves around the utilization of wellness,
performance, injury, and positional data gathered from professional female
soccer teams in Norway [59]. Given the personal and sensitive nature
of the data, it is imperative to ensure the protection and privacy of the
participants’ information. All data has been thoroughly anonymized by
eliminating all metadata and employing randomly generated file names,
a widely accepted method for data anonymization [93]. Furthermore,
each athlete involved in the study has given informed consent, fully

4

understanding the nature of the data collection and its intended use. This
approach ensures respect for the privacy of the participants and guarantees
the ethical use of their data.

However, some parts of the analysis in this thesis utilize information that
is not publicly available through the SoccerMon dataset. Consequently,
some parts of the analysis may not be entirely reproducible using the
publicly available SoccerMon dataset. This confidentiality is necessary
to preserve personal data about the teams and players involved in the
study. Nevertheless, the findings derived from this private data revealed
interesting insights, warranting their inclusion in the thesis despite the
limitations on reproducibility.

1.6 Main Contributions

In this thesis, our main scientific contribution is answering the main
problem statement stated above. This thesis also makes significant strides
in developing a versatile feature extraction tool, rendering extracted
datasets publicly available, crafting user-friendly visualization tools, and
implementing ready-to-use machine learning models with class imbalance
handling.

Our key contributions include:

• A flexible feature extraction tool accessible via Jupyter Notebooks.

• User-friendly visualization tools slated for integration into the Soccer
Dashboard, an interactive application under development by the
PMSys team. These tools will provide invaluable insights for training
programs and athlete development.

• Machine learning models for injury prediction that handle class im-
balance, complete with preprocessing steps, various model choices,
and techniques for addressing class imbalance.

1.7 Thesis Outline

This thesis is organized as follows:

Chapter 1 - Introduction provides an overview of the problems this thesis
seeks to address, the scope and limitations, research methods, ethical
considerations, and main contributions.

Chapter 2 - Background and Related Work lays out the necessary
theoretical knowledge relevant to our thesis. In this chapter there is a
look at the history of data gathering in soccer and sports in general.
Examples of how data analytics is being used in sports today. Information

5

about machine learning algorithms, and in depth information about the
SoccerMon dataset.

Chapter 3 - Methodology describes the approaches taken in this thesis, the
chapter is split into 5 main parts, corresponding to our pipeline. Explaining
the approaches taken in data import, data preprocessing, feature extraction,
visualization and injury prediction.

Chapter 4 - Implementation takes a deeper look at the implementation of
our pipeline. Explaining how we calculate and extract features, how we
implement different visualization tools, and how we implement machine
learning models for injury forecasting.

Chapter 5 - Results presents the results acquired. The chapter starts
by providing some statistical analysis of the new datasets, before each
visualization tool is explained. Lastly, a look at the injury forecasting
results.

Chapter 6 - Discussion summarizes the thesis, looks at some of the main
contributions from the thesis, and propose future work based on our
findings.

Chapter 7 - Conclusions The conclusion of the thesis.

6

Chapter 2

Background and Related Work

2.1 Athlete Health and Performance Monitoring

2.1.1 Wellness Reporting

The process of wellness reporting enables the athlete to evaluate their
internal state based on various factors like muscle soreness, stress, fatigue,
and sleep, by providing a score for each. These values often combine to
generate a total wellness score. According to Wing et al. [94], wellness
reporting gains widespread recognition in sports science as a useful
metric, surpassing objective measures like heart rate and blood markers.
Nonetheless, the efficiency of wellness reporting depends on the specificity
of the questions and their ability to provide meaningful data for the given
sport [81]. The wellness questions should also be broad enough to be
comprehensible for the entire team and not time-consuming. To minimize
time, the number of questions should be limited, and the response should
preferably be in the form of a numerical score [81].

2.1.2 Training Load

Load monitoring tools can be helpful in identifying how well an athlete
adapts to their training program and in providing insight into the risk of
fatigue or injury, thereby potentially reducing the likelihood of fatigue or
injury occurring. However, fully comprehending and efficiently utilizing
training load metrics can be challenging, as only a few of these metrics
are supported by substantial scientific evidence and no definitive metric
currently exists. It is therefore essential to develop monitoring systems
based on what is most relevant to the particular sport and can provide
meaningful data about the individual [32].

2.1.3 Injury and Illness

Injuries and illnesses are common occurrences among athletes of varying
degrees and can significantly impact their performance and overall well-
being. One way to address this issue is to identify patterns and trends
that could help prevent undesired outcomes. FIFA implements injury

7

prevention programs that focus on areas that are prone to injury. Results
show that such programs can reduce the overall risk of injury by 34%,
and specific exercises like the Nordic Hamstring exercise can lead to a 51%
reduction in hamstring-related injuries in the long term, compared to teams
without such programs [1]. This highlights the importance of identifying
injury patterns and creating preventative programs to significantly reduce
the risk of injury.

2.1.4 Positional Data

The use of positional data provides valuable insights into the athletic
performance of individuals [72, 78]. However, obtaining precise locomotor
movements poses significant challenges, as highlighted by Pettersen et
al. [72]. In their research, Pettersen et al. compare GPS technology to
LPM (Local Position Measurement), which emits signals to local receivers
for triangulation, unlike GPS which only receives signals. While clubs
prefer GPS technology for wearable positional tracking, Pettersen et al.
suggest that LPM technology might be a more effective alternative. LPM
demonstrates greater accuracy, and environmental factors such as cloud
cover and the satellite’s angle to the ground do not impact the accuracy of
data gathered with LPM.

In order to compare the accuracy of GPS and LPM, several studies are
conducted. The first study involves six high-level female players who
wear two GPS tags and two LPM tags while performing the Copenhagen
Soccer Test for Women. The results show that the distance measured by
GPS is 11,668 ± 1,072 meters with a coefficient of variation (CV) of 6%,
while LPM measures a distance of 10,204 ± 103 m with a CV of 1%. When
considering high-intensity runs (HIR), runs with a speed greater than 16
km/h (4,4m/s), GPS measures 612 ± 433 m with a CV of 37.4%, while LPM
measures 1238 ± 38 meters with a CV of 3.1%. The study shows that GPS
data has a wider spread of data points, especially at higher speeds. The
use of two tags of each technology allows for testing of inter- and intra-
reliability, and the data shows that the difference in measurement between
two tags on the same player using GPS data ranges from 800 to 2,071
meters, while LPM data ranges from 25 to 290 meters. These findings are
consistent with Johansen’s paper [47], which finds that 19 players obtain an
average distance of 10,805 ± 847 meters using GPS data compared to 9,891
± 974 meters from using LPM data. The second study supports the results
found in the first study, with GPS-measured data consistently measuring
larger distances for HIR-related tests.

To further test the accuracy of the devices, the players are asked to run
along the edge of the soccer field wearing all four tags. The path taken by
the athletes is drawn on top of the playing field, resulting in two images
that differ significantly. While both images have curved corners, which is
expected due to the players not running at an exact 90-degree angle, the
LPM image is much more accurate than the GPS image. The GPS struggles

8

to stay on the edges and keep its lines from curving out, possibly due to
various forms of interference such as clouds and fog. Although the tests
are conducted at 69.65 degrees north, where the GPS satellite’s inclination
from orbit is 55 degrees north and south, which means there are no satellites
directly overhead, the error of identical tags producing different results
occurs for other GPS models at more optimal orbits. The paper concludes
that LPM shows superior accuracy over the GPS model, but it remains
unclear if the worse accuracy impacts the GPS’s usefulness in quantifying
the athlete’s performance.
The identification of injury patterns and the development of preventive
programs show promising results. However, further investigation is
required to determine the most effective strategies for reducing the risk of
injury in different sports. Machine Learning models are excellent tools to
analyze time series data such as injury and positional data. Therefore, they
can be instrumental in helping identify injury patterns.

2.2 Machine Learning

The field of machine learning falls under the umbrella term of artificial
intelligence (AI) and involves the use of algorithms to detect patterns
and learn from data in order to improve accuracy. These algorithms
create unique models based on sample data to make predictions or
decisions that are not explicitly programmed. The concept of machine
learning is around since the mid-20th century and is first coined by Arthur
Samuel in the 1950s [80]. Recent advances in hardware and algorithms
lead to a resurgence of machine learning over the past decade, with
significant improvements in accuracy and scalability. Different types of
models are tailored to specific areas and data types, such as convolutional
neural networks for computer vision and time series analysis [21], and
transformers for natural language processing [81]. In the following
sections, we discuss a few different machine learning algorithms, and some
terms frequently used in the field.

2.2.1 Supervised Learning

Supervised learning is a prevalent technique in machine learning that relies
on labeled data to train algorithms. The labeled data assigns a label or
category to each data point, allowing the algorithm to learn and predict
outcomes accurately. This method is often used for things like image
recognition, natural language processing, and speech recognition [18].

The aim of supervised learning is to approximate a function f that maps an
input space X to an output space Y. The algorithm trains by adjusting the
model’s weights, which involves mapping X to Y. The model is considered
a good fit when it accurately predicts the label or category of new, unseen
data. Supervised learning is a fundamental concept in machine learning
and a powerful tool for various applications. However, it is crucial to

9

note that the quality of labeled data used for training is critical to the
algorithm’s performance. Moreover, overfitting can occur if the model is
too complex or if there is insufficient data, leading to poor generalization
when it comes to new data [95]. Therefore, choosing the right algorithm
and data is essential to ensure optimal performance.

2.2.2 Unsupervised Learning

Unsupervised learning algorithms do not have preprogrammed instruc-
tions to interpret observations or validate their reasoning. Instead, they
rely on the data to find patterns and make sense of the information presen-
ted to them [6]. This approach is distinct from supervised learning, where
algorithms are given correct outputs and train to recognize patterns in in-
put data that correspond to the correct output.

Clustering is one of the most popular techniques in unsupervised learn-
ing [29]. It groups similar data points together based on their features.
Because the algorithm lacks prior knowledge of the data, it tries to form
clusters based on the similarity of the data points. To summarize, unsuper-
vised learning is a powerful technique that identifies patterns and struc-
tures in data without the need for preprogrammed instructions.

2.2.3 Overfitting and Underfitting

Overfitting occurs when a statistical model fits too well to the training data.
This leads to poor performance on other unseen datasets, as the model’s
ability to generalize diminishes [43]. For example, an overfitted model
produces exact lines separating two data classes, as shown in the rightmost
image in Figure 2.1.

Figure 2.1: Examples of Overfitting, Underfitting and Optimum. [66]

Figure 2.1 shows that when the model becomes too complex, it starts
fitting the noise in the data rather than the underlying patterns, creating
overfitting. The figure also shows how underfitting can be a problem.
Underfitting occurs when a model is too simple and cannot capture the
underlying patterns in the data. This usually happens because there is

10

not enough data to train the model properly, or because the model is not
complex enough to handle the complexity of the task.

To avoid overfitting and underfitting, it’s important to carefully select
the appropriate model architecture and hyperparameters. Additionally,
using techniques such as regularization on the data helps. Lastly, and
most importantly, it is crucial to have a sufficient amount of diverse and
representative data to train the model.

2.2.4 Logistic Regression

Logistic regression is an algorithm that establishes a relationship between
an independent variable and a binary dependent variable to predict the
probability of certain categorical outcomes[39]. It is a statistical method
employed in data science and machine learning for predictive analysis.

The independent variable, also known as the predictor or explanatory
variable, remains unchanged by other variable fluctuations. In contrast, the
dependent variable, which is binary, alters with changes in the independent
variable. The regression model predicts the probability of the dependent
variable being one of the two categories.

The multiple logistic regression equation is an extension of the simple
logistic equation, p = 1

1+e−(β0+β1x) , with the addition of weights and inputs
for the various features represented by p(n)x(n). The multiple logistic
regression formula looks like this:

p =
1

1 + e−(β0+β1x1+β2x2+···+βpxp)

The machine learning model employs this formula and various weight
values to fit curves to the data. In order to identify the curve that best fits
the data, the model assesses different weight combinations that maximize
the relationship between the variables.

2.2.5 Decision Trees

Decision trees find numerous applications in machine learning, covering
both classification and regression tasks [45]. In decision analysis, decision
trees serve as a visual and explicit representation of decisions and decision-
making processes [30].

Real-world datasets typically contain numerous features, resulting in more
complex trees. However, the simplicity of this algorithm is evident,
with clear feature importance and easily discernible relationships [30].
Regression trees function similarly but predict continuous values, such as
house prices. Generally, decision tree algorithms are known as CART, or
Classification and Regression Trees.

11

Figure 2.2: Example of a decision tree. [20]

Underlying processes in decision tree growth involve selecting features and
splitting conditions, as well as determining when to stop. Trees tend to
grow arbitrarily, necessitating trimming to maintain simplicity. A common
splitting technique is recursive binary splitting. This method considers all
features and evaluates various split points using a cost function [30]. The
split yielding the lowest cost is chosen.

For a dataset containing 3 data points, the initial split or root considers all
features, dividing the training data into groups accordingly. With three
features, there are three potential splits. A function calculates the accuracy
cost of each split, and the split with the lowest cost is selected [30]. The
recursive nature of this algorithm allows for further subdivision of groups
using the same strategy. This approach, known as the greedy algorithm,
focuses on minimizing cost, making the root node the best predictor or
classifier.

Split Cost Evaluation

Cost functions for classification and regression aim to identify the most
homogeneous branches or groups with similar responses [30]. This makes
sense as it ensures that a test data input follows a specific path.

Regression

∑(y − prediction)2

The decision tree starts by splitting each feature in the training data. The
mean response of specific training data inputs within a group is considered
the prediction for that group. The function above calculates the cost for

12

all splits, with the lowest-cost split being chosen. Another cost function
involves reducing the standard deviation [30].

Classification

G = ∑ pk(1 − pk)

A Gini score indicates the quality of a split based on the homogeneity of
response classes in the groups created. Here, pk represents the proportion
of identical class inputs within a group. Perfect class purity occurs when a
group contains only inputs from the same class, resulting in a Gini score of
0. Conversely, a node with an even split of classes in a group has the worst
purity [30].

2.2.6 xGBoost

Extreme Gradient Boosting, or xGBoost for short, is an optimized imple-
mentation of the popular gradient boosting algorithm [13, 14]. This power-
ful machine learning approach becomes widely used for supervised learn-
ing tasks like regression, classification, and ranking problems. Created by
Tianqi Chen with exceptional performance and scalability in mind, xG-
Boost sees widespread adoption in various machine learning competitions
as well as real-world applications.

xGBoost utilizes the principle of boosting, an ensemble learning method
that pools multiple weak learners (usually decision trees) to create a
powerful learner. The algorithm trains multiple base models sequentially,
each new one correcting errors made by its predecessors [13, 14].

Gradient boosting in xGBoost involves iteratively adding new decision
trees while updating their weights using gradient descent [13, 14]. The
goal is to find the optimal combination of weak learners that minimizes the
loss function, producing a robust and accurate model.

In conclusion, xGBoost is an impressive and efficient machine learning
algorithm that demonstrates its worth in numerous applications and
competitions. Its speed, performance, and versatility make it a valuable
resource for data scientists and machine learning practitioners working on
regression, classification, and ranking problems.

2.2.7 Neural Networks

Neural networks are a subset of machine learning (ML) that employs an
artificial approach to mimic the way biological neurons, such as those
found in the human brain, communicate with each other. These networks
consist of an input layer, an output layer, and a variable number (N) of
hidden layers in between. Each artificial neuron in the network can be
conceptualized as a node connected to other nodes [31].

13

The first trainable artificial neural network, known as the Multilayer
Perceptron (MLP), is introduced by Rosenblatt [77] in the 1950s. The MLP
features only a single layer between the input and output layers, utilizes a
threshold activation function, and is designed to serve as a linear classifier.
This early neural network design significantly differs from modern neural
networks, which employ non-linear activation functions [69]. The use of
non-linear activation functions allows contemporary neural networks to
learn from a broader range of data and generate more complex decision
boundaries.

Figure 2.3: Example of a Neural network. [63]

The learning process of a neural network primarily consists of three
stages: forward propagation, error computation, and backpropagation.
These stages work together to iteratively enhance the network’s overall
performance [4].

Forward Propagation

During forward propagation, input data travels through all the layers of
the network, ultimately generating a prediction as output. This process
begins with each node receiving outputs from all the nodes in the previous
layer, which are then combined with the node’s unique set of weights.
Subsequently, an activation function is applied to compute the hidden
activation for each node, which serves as input for the following layer of
nodes [36].

14

Error Computation

Once forward propagation yields a prediction, it is essential to compare this
output with the actual prediction that the model is intended to produce.
This comparison, known as error calculation, is achieved using a loss
function, such as mean squared error ∑D

i=1(xi − yi)
2 [91]. The loss function

is employed to adjust the network’s weights, enhancing the accuracy of the
mapping from X to Y using backpropagation.

2.2.8 Recurrent Neural Networks (RNN)

A Recurrent Neural Network (RNN) is a type of artificial neural network
designed to handle sequential or time series data [83]. These advanced
learning algorithms are widely used in ordinal or temporal problems such
as language translation, natural language processing (NLP), speech recog-
nition, and image captioning. They integrate into popular applications like
Siri, voice search, and Google Translate [56]. Like feedforward and Convo-
lutional Neural Networks (CNNs), RNNs learn from training data, but they
are unique due to their "memory," which allows previous inputs to influ-
ence the current input and output. Unlike traditional deep neural networks
that consider inputs and outputs as independent entities, RNN outputs de-
pend on earlier elements in the sequence. However, unidirectional RNNs
cannot incorporate future events into their predictions [83].

One unique feature of recurrent networks is their shared parameters
across each layer. While feedforward networks have distinct weights
for each node, RNNs share the same weight parameter within each
layer [83]. Nonetheless, these weights still adjust through backpropagation
and gradient descent for reinforcement learning.

RNNs employ the Backpropagation Through Time (BPTT) algorithm to
calculate gradients, which is tailored for sequence data and slightly
different from conventional backpropagation. BPTT’s core principles are
similar to traditional backpropagation, as the model trains by computing
errors from the output layer to the input layer. These calculations enable
appropriate parameter adjustment and fitting. BPTT’s distinction lies in
summing errors at each time step, unlike feedforward networks that do
not require error summation since they don’t share parameters across
layers [83].

RNNs often face two challenges: exploding gradients and vanishing
gradients. These issues stem from the gradient size, which represents
the slope of the loss function along the error curve. When the gradient
is too small, it continually shrinks, updating weight parameters until
they become negligible—or zero—meaning the algorithm stops learning.
Exploding gradients occur when the gradient is too large, resulting
in an unstable model. In this case, model weights grow excessively,
eventually being represented as NaN. One way to address these problems

15

is by reducing the number of hidden layers in the neural network, thus
simplifying the RNN model [83].

2.2.9 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural
Network (RNN) designed to address the shortcomings of traditional
RNNs, especially the vanishing gradient problem [37, 90]. This issue arises
when training deep RNNs, leading them to have difficulty learning long-
range dependencies in data, especially sequences. LSTMs find widespread
application in natural language processing, speech recognition and time
series prediction due to their capacity for handling such sequences with
long-term dependencies.

LSTMs utilize an innovative cell structure that helps maintain data for
extended periods. At its core, an LSTM cell consists of a memory cell that
stores information for long periods. An LSTM cell also comprises three
essential gates: input gate, forget gate, and output gate. These controls
regulate information flow into and out of the cell, enabling the network to
learn when to preserve or discard information as required [90].

Input Gate: The input gate controls how much of a new input is added
to the cell state. It uses a sigmoid activation function to produce a value
between 0 and 1, representing the proportion of the new input that will
be incorporated. Simultaneously, a separate path applies the hyperbolic
tangent (tanh) activation function to the input to scale it between -1 and
1 [90].

Forget Gate: The forget gate determines which information from a cell state
is retained or discarded. It uses a sigmoid activation function to generate a
value between 0 and 1. A value closer to zero indicates that the information
will be forgotten, while one closer to 1 indicates retention of that same
data [90].

Output Gate: The output gate controls the flow of information from a cell
state to its output. It uses a sigmoid activation function to generate a value
between 0 and 1, determining how much information from that cell should
be output. Furthermore, it applies a tanh activation function to scale values
between -1 and 1 [90].

LSTM cells are designed with the capacity to learn when to store, update or
output information from their current state. This trait allows the network
to accurately capture long-range dependencies in data. As a result, LSTMs
are ideal for many sequence-based tasks and applications [90].

16

2.2.10 Gated Recurrent Units (GRUs)

Gated Recurrent Unit networks are an alternative type of Recurrent Neural
Network architecture introduced as a simpler option to Long Short Term
Memory networks [16]. Like LSTMs, GRUs address the vanishing gradient
problem found in traditional RNNs, enabling them to learn long-range
dependencies among sequential data. Due to their capability for handling
sequences effectively and with fewer parameters compared to LSTMs,
GRUs become popular in various applications such as natural language
processing, speech recognition, and time series prediction due to their
capability for dealing with sequences more efficiently and having fewer
parameters compared to their LSTM counterparts [90].

GRU networks simplify LSTM architecture by only having two gates
compared to LSTM’s 3. GRUs two gates are the update gate and reset
gate. By eliminating the output gate as well as the cell state from GRU’s
computation requirements, it becomes faster to train and more efficient in
certain circumstances [16].

Update Gate: The update gate utilizes the functionality of both the input
and forget gates from an LSTM model, determining how much of the
previous hidden state should be retained and which part should be used
for new candidate state generation. It uses a sigmoid activation function to
produce values between 0 and 1, with 0 signifying complete replacement
of the previous hidden state and 1 signifying retention [16].

Reset Gate: The reset gate controls how much of a past hidden state should
be considered when creating the new candidate state. Like the update gate,
it utilizes a sigmoid activation function to generate values between 0 and 1.
A value closer to zero implies minimal influence from the past hidden state
on the new candidate state, while one closer to 1 indicates strong influence
from it [16].

GRUs simplify LSTM architecture by condensing input and forget gates
into one update gate and discarding the output gate. As a result, GRUs
have fewer parameters, making them computationally more efficient and
quicker to train than LSTMs; however, their expressiveness may not match
up as well, potentially leading to slightly reduced performance on certain
complex tasks. Overall, GRUs make sense as an option for sequence-
based tasks where computational efficiency and training time are essential
considerations [16, 90].

2.2.11 ROCKET

ROCKET (Random Convolutional Kernel Transform) is not a traditional
Convolutional Neural Network (CNN), yet it borrows some concepts from
CNNs. ROCKET is an algorithm for time series classification that is
both computationally efficient and highly accurate, proposed by Angus

17

Dempster et al. [21]. ROCKET generates random convolutional kernels
that are applied to time series data to form feature maps. Global max
pooling and proportion of positive values (PPV) are then applied to these
feature maps in order to extract features, which then go on to form input
for linear classifiers such as Ridge regression or logistic regression [21].

ROCKET utilizes convolutional operations, but does not follow the tra-
ditional CNN architecture and training process. Instead of learning con-
volution kernels through backpropagation, ROCKET randomly generates
them, making the algorithm faster and more computationally efficient [21].
In conclusion, ROCKET is not a traditional CNN, but it borrows concepts
from CNNs such as convolution and pooling to efficiently classify time
series data [21].

2.3 SoccerMon Dataset

The use of scientific methods in sports increases over the past three
decades, aided by the availability of athlete quantification data, sensor
technology, and advanced analytic software. In soccer, where performance
is affected by multiple factors, there grows a focus on mental and physical
parameters that can impact training response and injury prevention.
However, data availability remains a significant challenge, and there is a
need for more research in women’s soccer. To address this, the creators
of the SoccerMon dataset propose a dataset containing both subjective and
objective data from professional teams in the Norwegian female elite soccer
league, collected over the 2020 and 2021 seasons using wearable tracking
equipment and athlete monitoring systems [59]. The dataset includes
information on e.g. training load, game performance, wellness, sickness,
injuries, and objective measurements of locomotor activity during training
and matches. The creators of the dataset hope that this dataset enables
more research on the effects of various mental and physical parameters
of female soccer and contributes to individualized training, better player
selection, and injury prevention.

2.3.1 Collection Methods

In SoccerMon, the data collects from two teams in the female elite soccer
league in Norway over a period of two years (2020 and 2021) using
various methods to obtain both subjective and objective data. The PMSys
system [46] creates to facilitate efficient and rapid systematic longitudinal
tracking of athletes’ phenotypic and self-reported wellness, performance
and training load parameters. This does to support the logging of
subjectively perceived parameters for athletes. The PMSys app is available
for both Android and ios systems and allows athletes to easily interact with
the system. It is a smartphone-based tool that enables players to report
important parameters such as session Rating of Perceived Exertion (sRPE),
wellness, injury, illness, session participation, game evaluations, and in

18

light of the COVID-19 pandemic, infection symptom checks. The system
operates on the principle that subjective reports should be captured in real-
time with minimal effort, while they are fresh and relevant. For example,
the athlete can report wellness metrics within the narrow time window
after they wake up and before the first morning training session begins.

The Trainer Portal provides a web-hosted Single-Page Application (SPA)
that enables team personnel, such as coaches and physicians, to access
and interact with athlete data. The portal displays submitted data from
team members who have granted access, both in a team view and a single-
player view. The team view includes visualizations of injuries, illnesses,
and session participation (see Figure 2.4a), along with important training
load indicators like daily and weekly load, acute load, chronic load, acute
chronic workload ratio, monotony, and strain. The single player view offers
individual details (see Figure 2.4b). The portal also includes a feature for
sending push messages, either directly or on a schedule, as reminders to
report.

2.3.2 Contents

Subjective Metrics

The initial section of the SoccerMon dataset comprises subjective reports
of wellness, performance, and training load, recorded by athletes via the
PMSys system. The PMSys app features a questionnaire, illustrated in
Figure 2.5, containing parameters for wellness such as fatigue, readiness
to train, sleep quality, soreness, stress, mood, and optionally, menstruation.
Readiness rates on a scale of 1 to 10, sleep length reports in hours, and
menstruation indicates with a single tick button, while the remaining
parameters use a balanced Likert-scale from 1 to 5. The scales accompany
textual explanations to ensure a consistent interpretation of the numerical
ratings. Athletes are to complete the wellness questionnaire once per day.
Figure 2.6 depicts a comparable questionnaire for recording training load,
which is to be reported after every training session or activity, including
games. The questionnaire captures the length and type of the session and
a rating of perceived exertion (1 to 10) for session difficulty.

19

Figure 2.4: An illustration of how the Trainer Portal looks in the PMsys
application (courtesy of ForzaSys).

Figure 2.5: An illustration of how a player can report wellness in the PMsys
application (courtesy of ForzaSys).

20

Figure 2.6: An illustration of how a player can report sRPE in the PMsys
application. (courtesy of ForzaSys)

This data allows for the calculation of several sports scientific measures,
including sRPE, daily load, weekly load, acute training load, chronic
training load, acute chronic workload ratio, monotony, and strain. In
addition to wellness and training load, injury and illness data also
collect. These reports record pain location and severity and symptoms,
respectively, with medical personnel responsible for drawing conclusions.
Injury reports submit using a body silhouette (refer to Figure 2.7), where a
single tap indicates minor pain (orange), and a double tap indicates major
pain (red). The data collection process is similar to the aforementioned
examples.

Figure 2.7: An illustration of how a player can report injuries in the PMsys
application (courtesy of ForzaSys).

21

Objective Metrics

In order to measure movement patterns and physical demands in elite
women’s soccer, both teams are provided with the STATSports APEX
system, which is approved by FIFA [84]. The system, which is built
into a vest worn by the players (as shown in Figure 2.8), includes
10 Hz multi-GNSS augmented units that can track multiple satellite
systems simultaneously (such as GPS, GLONASS, Galileo, and BeiDou).
Additionally, the system is equipped with a tri-axial accelerometer, and tri-
axial gyroscope.

Each player wears a GPS unit, which is the size of a matchbox and is tightly
fitted on their upper back, during both training and matches as illustrated
in Figure 2.8. In addition to the GPS unit, players also have the option
to wear a chest strap to monitor their heart rate. To ensure consistency,
each player uses the same GPS unit throughout the season, which helps
minimize inter-device errors. After each session, the data recorded by
the units are retrieved and uploaded to the respective club’s laptop using
the STATSports Sonra 2.1.4 software. For the data to be used for analysis
purposes, the raw data (in csv-format) is downloaded and saved in a local
folder, where files for a particular year and month (e.g. 2020-06) are zipped
into their respective subfolder. Each zipped folder containing data for a
given year-month is then uploaded to OSF.

Figure 2.8: STATSports GPS tracker in vest during training. (courtesy of
ForzaSys)

2.4 Previous Work on Time Series Forecasting

Forecasting future values in time series sequences is an essential task across
various domains, including finance, meteorology, medicine, and sports
science. Time series analysis aims to extract meaningful insights from

22

historical data and forecast future data points. In this section, we review
some of the current work conducted in this area, focusing on traditional
statistical methods, machine learning, and deep learning approaches.

2.4.1 Machine Learning Approaches

Machine learning techniques are increasingly applied to time series predic-
tion in recent years. These methods can automatically learn complex pat-
terns from the data without relying on strict statistical assumptions. Some
commonly used machine learning algorithms for time series prediction in-
clude support vector machines (SVM) [35], random forests [10], and gradi-
ent boosting machines (GBM) [25]. Feature engineering plays a crucial role
in these models, often requiring domain-specific knowledge to transform
the raw time series data into meaningful input features.

2.4.2 Deep Learning Approaches

Deep learning methods, especially recurrent neural networks (RNN) and
their variants, such as long short-term memory (LSTM) [37] and gated
recurrent units (GRU) [16], have demonstrated remarkable performance
in time series prediction. These models can effectively learn temporal
dependencies and capture complex patterns within the data.

2.4.3 Multivariate and Multi-step Forecasting

In many real-world applications, it is necessary to consider multiple
input variables or predict multiple time steps ahead. Multivariate time
series prediction involves incorporating multiple related time series as
input features, while multi-step prediction aims to predict multiple future
values simultaneously. Several techniques are proposed to handle these
challenges, including multi-output regression [86], direct and iterative
strategies [8], and the use of encoder-decoder architectures [85].

2.4.4 Readiness Forecasting using the SoccerMon Dataset

In 2022, Ragab et al. did a study where they employed machine learning to
predict readiness values, using the SoccerMon dataset [74]. They employed
a LSTM model to predict the self reported readiness value for players.
They concluded that 1: When training on the entire team and predicting
for a single player, the overall accuracy was higher for Team A, which
exhibited greater player consistency, while it was lower for Team B, where
player consistency was lacking. 2: The prediction inaccuracy increased
as the prediction period extended into the future. As a result, an output
window of 1 tracked the peaks more accurately than an output window of
7. Expanding the input window did not noticeably improve the accuracy of
predicted values. 3 It was noted that having more data did not necessarily
enhance prediction accuracy for models trained on either the whole team
or individual players. Nonetheless, training on the entire team using one

23

year of data yielded better results than training on a single player with two
years of data. This suggests that a shorter duration of collected data for a
team may be more advantageous than a longer time frame. 4: Altering
the hyperparameters did not lead to substantial differences. The only
significant factor was shuffling, which slightly improved the results when
activated.

2.5 Predicting Injuries using GPS Data

GPS tracking offers the ability to monitor an athlete’s speed and distance
during games and training sessions. This information converts into
training load metrics, which then get employed to create athlete profiles
for future performance and injury prevention. The study by Rossi et al. [78]
suggests approaches for effectively using GPS data to analyze professional
soccer players by extracting 12 features for a multi-dimensional model that
forecasts potential injuries based on recent training load.

The 12 workload GPS features divide into three categories:

• Kinematic features that describe an athlete’s overall movement

• Metabolic distance features that quantify an athlete’s energy ex-
penditure

• Musculoskeletal load features that provide a general measure of
the strain on the body. Alongside these 12 features, another 43
features are included, such as personal data (age and injury history),
Exponential Weighted Moving Average features, Acute Chronic
Workload Ratio features, MSWR features indicating the monotony
of workload features, and the connection between a current training
session and previous injury.

These features constitute the training dataset and undergo further pro-
cessing to identify the most relevant features by reducing the feature space
dimensionality, minimizing the risk of overfitting. This is achieved through
a feature selection process called Recursive Feature Elimination with Cross-
Validation (RFECV) [60], which results in a subset of features with the
highest score on the validation set.

Various models are tested using the dataset, with the decision tree model
performing the best, achieving a recall and precision of 0.8 and 0.5,
respectively. This indicates that the model identifies injuries 80% of the
time and accurately classifies games/training sessions as injuries 50% of
the time.

Besides being tested with data from an entire season, the model also
gets tested on another season, receiving new data for every training
session/game. This is conducted to evaluate the model’s performance with

24

limited data. The paper reports poor performance during the first few
weeks, but from week six until the season’s end, the model identifies nine
out of 14 injuries with a precision of 0.56. This suggests that the model
becomes efficient after just a couple of months of data collection.

2.6 Chapter Summary

This chapter provides a comprehensive overview of machine learning, a
subset of artificial intelligence (AI), and its applications in the context of
women’s soccer. It discusses the historical background of machine learn-
ing and its resurgence due to advancements in hardware and algorithms.
The chapter introduces supervised and unsupervised learning techniques,
as well as the concepts of overfitting and underfitting, which can im-
pact a model’s performance. To avoid overfitting and underfitting, the
chapter advises selecting appropriate model architecture, hyperparamet-
ers, and data regularization. It also introduces various machine learning
algorithms, including logistic regression, decision trees, xGBoost, neural
networks, Recurrent Neural Networks (RNNs), Long Short-Term Memory
(LSTM) networks, Gated Recurrent Units (GRUs), and ROCKET.

In this research, all the mentioned algorithms are selected to address
injury prediction in women’s soccer. The rationale behind choosing these
algorithms is as follows:

• Logistic regression: A simple yet effective technique for predicting
binary outcomes, which can be useful for analyzing relationships
between player statistics and team performance.

• Decision trees: A powerful method for handling categorical data
and creating interpretable models, allowing insights into the factors
affecting soccer outcomes.

• xGBoost: A robust, ensemble-based algorithm that can handle large
datasets and provide accurate predictions, making it suitable for
analyzing complex patterns in women’s soccer data.

• LSTM and GRU: These algorithms are particularly effective for
handling time-series data and can capture the temporal dynamics of
soccer matches, enabling prediction of match outcomes and player
performance over time.

• ROCKET: A recent addition to the machine learning toolkit, this al-
gorithm is designed for efficient and accurate time-series classific-
ation, making it an attractive choice for analyzing women’s soccer
data.

By using this diverse set of algorithms, there is a comprehensive address of
the challenges of predicting injuries in women’s soccer.

25

The chapter also focuses on athlete health and performance monitoring
in women’s soccer, covering topics such as wellness reporting, training
load, injury and illness prevention, positional data, and the SoccerMon
dataset. Wellness reporting allows athletes to evaluate their internal state,
while load monitoring tools help assess adaptation to training programs
and injury risk. Positional data, gathered via GPS, provides insights into
athletic performance. The SoccerMon dataset, containing both subjective
and objective data from professional teams in the Norwegian female elite
soccer league, aims to enable more research on female soccer performance.
The chapter concludes by exploring the use of GPS data to predict injuries,
with the decision tree model proving to be the most effective in Rossi et
al [78]. [78] study.

In conclusion, there is a growing need for better analysis of athlete perform-
ance in women’s soccer to ensure optimal training, injury prevention, and
overall player well-being. Machine learning techniques show great prom-
ise in addressing these needs by providing deeper insights into the complex
interactions between various performance factors. In the next chapter, there
is a description of the approach to leveraging machine learning algorithms
for enhancing athlete performance analysis and monitoring in the context
of women’s soccer.

26

Chapter 3

Methodology

The significance of data visualization tools and athlete tracking explains
in earlier chapters. Additionally, various machine learning models, data
processing techniques, and prior research related to athlete tracking,
performance, and injury examine.

In this chapter, we look at the proposed pipeline for the data. How to
extract features from the raw dataset, the decision-making process for
selecting visualizations, and a pipeline that incorporates GPS data and
machine learning for forecasting injuries in soccer players.

3.1 Proposed Pipeline

Figure 3.1: Proposed pipeline.

Our proposed pipeline comprises the following modules/steps:

• Data Import: Downloads, and iterates through all the raw data files.
Import parts of the raw data to use in the coming steps in the pipeline.

• Data Preprocessing: Cleans and sanity checks the imported data.

• Feature Extraction: Extracts features from the preprocessed data for
further use in visualization and injury forecasting.

• Data Visualization: Creates visualization based on features extracted
in the previous step, raw GPS data, subjective performance data, and
match results.

27

• Injury Prediction: Implements methods to predict injuries, utilizing
the features extracted in step 3, and injury data.

3.2 Data Import

In this section, we discuss the tools, data structure, and importing process
used in the data import step of our pipeline. Firstly, the PyArrow library
is explained, then we look at the data structure of the raw data. Lastly, we
look at how the data is imported and stored before preprocessing.

3.2.1 Tools

All code for this thesis is developed in Python and executed through
Jupyter Notebook, using several Python libraries for additional features.
Here and in subsequent sections regarding tools used in visualization and
injury prediction, the most important tools are explained.

PyArrow

PyArrow is a Python library developed to provide an efficient memory
interface for Arrow’s in-memory columnar data format, targeting modern
big data and data science applications. Additionally, its data interchange
capabilities facilitate seamless interaction across programming languages
and systems [5].

PyArrow, as part of the Apache Arrow project, provides key features
like memory efficiency, interoperability with other languages and systems,
high performance I/O operations, integration with Pandas, and support
for popular file formats. These features make PyArrow an indispensable
solution for data processing tasks requiring rapid computations.

3.2.2 Data Structure

The SoccerMon dataset is stored in multiple different folders on the OSF
platform. OSF is a free, open-source web application that connects and
supports the research workflow, aiming to enable scientists to increase
the efficiency and effectiveness of their research [64]. There are two main
folders for the data: Objective and Subjective. The Objective folder contains
two subfolders, TeamA and TeamB. Each of these folders contains the
subfolders 2020 and 2021. Under each of these folders is a folder for each
month of the year, and under each month is a zip file for each date. The zip
files contain one parquet file for each player for that specific day.

The subjective data is in the Subjective folder. There are two main folders
here: the per-feature folder and the per-player folder. Under the per-feature
folder, there are multiple CSV and JSON files containing all the data for
all players on both teams for both years. There are files like injuries.csv
and duration.json, which contain data the players have registered in the

28

PMSys application. Under the per-player folder, there are two folders:
one for Team A and one for Team B. Under each of these are five folders:
Daily-Features, Game-Performance, Illness, Injuries, and Session-Features.
Under each of these folders, there is one CSV file for each player containing
all the subjective data corresponding to the category of the parent folder. A
compressed version of the file structure is shown in Figure 3.2

Figure 3.2: Compressed visualization of the SoccerMon dataset structure

3.2.3 Importing Data

To extract features from the dataset, it is essential to import the raw
data, spread across multiple files, into Python. The feature extraction tool
specifically targets GPS data, and thus, only the GPS data is imported at
this stage.

29

The process starts by generating a comprehensive list of all the file paths.
This is accomplished using nested loops, which produce a list that includes
every potential file path. Following this, the pathlib module is employed
to iterate through all accessible files.

Throughout this procedure, data from each file is selectively imported
and saved as a dataframe for subsequent use. As outlined in chapter 2,
the objective data includes information from a GPS tracker, accelerometer,
and gyroscope. Since the gyroscope records values at 100Hz and the
GPS tracker and accelerometer record values at 10Hz, there are multiple
duplicate entries for the GPS tracker and accelerometer. To avoid importing
duplicate values, only every 10th datapoint is imported.

3.3 Data Preprocessing

After importing the raw data into python, several preprocessing steps are
taken to clean and sanity check the data before feature extraction. A more
in depth look at the preprocessing steps taken, why they are implemented,
and how filtering parameters are chosen is explained in chapter 4.

The quality of GPS data is crucial for accurate analysis and reliable insights
in any data-driven application. Raw GPS data, however, often contains
errors and inconsistencies that can compromise the integrity of the results.
Therefore, it is vital to identify and remove bad data from the raw GPS
datasets before conducting further analysis. This section discusses the
importance of this process.

First, inaccurate GPS data can lead to incorrect conclusions and misguided
decision-making. In sports applications, for example, erroneous data may
result in incorrect assessments of player performance or fitness levels,
which can directly impact coaching decisions and team strategy.

Second, the presence of erroneous data can impact the performance of
machine learning models. Many models rely on the quality of input
data to make accurate predictions or classifications. Feeding models with
erroneous or inconsistent data can decrease their effectiveness and result in
suboptimal performance. By cleaning the raw GPS data, we can improve
the performance and reliability of our models.

Last, removing erroneous data can streamline the data analysis process
by reducing noise and complexity in the dataset. Clean data simplifies
the identification of trends and patterns, leading to more efficient data
processing and a better understanding of the underlying phenomena.
Moreover, it can help save computational resources and reduce processing
time by eliminating unnecessary or redundant data points.

30

Based on these arguments, we decide to use metadata from the raw data to
create filters to remove erroneous data before feature extraction. The raw
GPS dataset contains metadata about the quality of the collected data, such
as quality of the GPS signal, horizontal accuracy and horizontal dilution
of precision. By implementing thresholds to this data, erroneous data is
removed.

3.4 Feature Extraction

In order to develop visualization tools and datasets for machine learning
models, we create two new datasets featuring processed and more relevant
attributes compared to the raw data. Ultimately, we create two distinct
datasets. The Session dataset is designed to provide an overview of each
player’s performance during a single session. This dataset is used in
many of the visualization tools, as it is great for seeing team averages,
player development over time, and seasonal changes in team and player
performance. It also serves as the base for the dataset used in the machine
learning models.

The second dataset we create is the High-Intensity Run (HIR) dataset. This
aims to offer a deeper understanding of when and how players execute
high-intensity runs. This dataset enables the generation of intriguing
visualizations. As discussed in chapter 2, HIRs have been associated with
injuries [57]. Therefore, examining the quantity of HIRs and their related
data potentially offers valuable insights into player performance and injury
risks for players, coaches, and medical staff.

3.4.1 Tools

Pandas

Pandas is an open-source data manipulation and analysis library, de-
veloped for the Python programming language by Wes McKinney in
2008 [58, 67]. First released for public usage in 2008, Pandas provides data
structures and functions necessary for seamless analysis of structured data
structures.

Pandas allows users to easily manage missing data, apply custom trans-
formations to datasets, generate informative plots and graphs, as well as
make statistical analyses with ease. With built-in statistical functions that
seamlessly integrate into popular libraries, Pandas is an indispensable as-
set when working with data in Python.

3.4.2 Session Dataset

The Session dataset is created by us using feature extraction to obtain a
comprehensive understanding of each player’s performance and physical
activity during individual training sessions or matches. Organized on

31

a per-player-per-session basis, this dataset contains information such as
player name, session duration, total distance run, and more. The dataset
is created because the raw data does not contain easily understood data,
and because the user can get a better overview of a session, than when
using the raw data. The dataset has multiple potential use cases:

Analyzing session data helps coaches and trainers design customized
training programs tailored to each player’s specific needs, strengths, and
weaknesses. This leads to more effective skill development, better fitness
levels, and overall improved performance on the field [70]. The dataset
allows coaching staff to track the workload of each player over time, which
helps in managing fatigue and preventing over training. By understanding
each player’s workload, coaches make informed decisions regarding player
rotation, rest days, and recovery strategies.

The dataset is also used as a base for multiple different visualization tools,
which help players, coaches, and analysts gain insights into individual
and team performance, and identify patterns or trends that might be
useful for strategic decision-making. The session dataset is employed
for injury prediction as well. By analyzing various performance metrics
and understanding each player’s workload, injury risks are assessed
and proactive measures are taken to minimize the likelihood of injury
occurrence.

In conclusion, the Session dataset offers valuable insights into player
performance and activity, facilitating more informed decision-making by
coaching staff, while also providing motivation and guidance for players
to improve and maintain their fitness levels.

Haversine Formula

To calculate the distance covered by the players, the Haversine formula is
used. The Haversine formula is a mathematical equation used to determine
the great-circle distance between two points on the surface of a sphere,
such as Earth [76]. It is particularly useful when calculating distances
using longitude and latitude coordinates. The formula is advantageous in
this context because it accounts for the Earth’s curvature, delivering more
accurate distance calculations compared to simpler methods like Euclidean
distance.

The Haversine formula looks like this:

a = sin2
(

∆ϕ

2

)
+ cos(ϕ1)× cos(ϕ2)× sin2

(
∆λ

2

)
(3.1)

c = 2 × atan2(
√

a,
√

1 − a)

d = R × c

32

Here, the latitude and longitude values should be in radians, R represents
the Earth’s radius (approximately 6,371 km), and atan2 is the arctangent
function that returns the correct quadrant.

In this study, the Haversine formula is employed to determine the distances
covered by soccer players using their GPS data. Although the curvature of
the Earth may not significantly impact the calculations within the limited
area of a soccer field, the use of the Haversine formula has several merits
that justify its adoption in this context.

First, the Haversine formula is well suited for determining distances
using longitude and latitude coordinates. As the GPS data collected from
the players is inherently in this format, utilizing the Haversine formula
allows for a more straightforward calculation process without the need
for additional conversions. If we were to use a simpler formula, like the
Pythagorean formula, additional conversion from coordinates to meters
would need to be done, making the formula more complex, and negating
the upside of the formula being simpler.

Second, while the Pythagorean formula may be a simpler alternative for
distance calculations, it is based on the assumption that the Earth’s surface
is flat. This assumption can lead to inaccuracies in distance measurements.
In contrast, the Haversine formula takes the Earth’s curvature into account,
providing more accurate distance calculations even for smaller distances
like those encountered on a soccer field [76].

Moreover, using the Haversine formula can be advantageous in terms
of maintaining consistency across studies. Since many research studies
involving distance calculations based on GPS data employ the Haversine
formula [7, 62, 73], using the same approach in this study allows for easier
comparisons and potential cross-referencing with other relevant works in
the field.

In conclusion, the Haversine formula is chosen for this study due to its
compatibility with longitude and latitude coordinates, its ability to provide
more accurate distance calculations compared to the Pythagorean formula,
and its widespread use in similar research. These factors collectively
contribute to the robustness and validity of the distance measurements
obtained in this study.

Metabolic Power

Metabolic power is a measure of an athlete’s energy expenditure during
a physical activity. It is an essential parameter for understanding and
analyzing the demands of various sports, especially in team sports like
soccer, where players perform a wide range of movements with varying
intensities. Metabolic power takes into account not only the speed
and distance covered but also the intensity and energy cost of different

33

types of movements, such as accelerations, decelerations, and changes in
direction [65].

The concept of metabolic power was introduced by Di Prampero et al. in
2005 [22], and it is calculated using the following formula:

P = EC ∗ V (3.2)

Where:
Equivalent slope (ES) = tan(90 − α)
α = the angle between the runner and the terrain

Equivalent Mass (EM) = g′/g
g′ = vectorial sum of forward acceleration and the acceleration of gravity
g = acceleration of gravity

Metabolic Energy (EC) = f n(ES)xEMxKT
KT = a fixed terrain constant of 1.29 to account for the extra energy required
for the grass surface.
f n = 155.4(ES)5 − 30.4(ES)4 − 43.3i3 + 46.3(ES)2 + 19.5(ES) + 3.6

Metabolic power is a valuable tool for assessing an athlete’s energy
expenditure during a game or training session. By calculating metabolic
power from GPS data, coaches and sports scientists can better understand
the physical demands placed on athletes and design more effective training
programs and recovery strategies.

3.4.3 High Intensity Run Dataset

The high intensity run (HIR) dataset is created by us using feature
extraction to provide coaches and players with valuable insights into the
sprints executed by players during a match or training session. The dataset
contains data about every sprint that every player makes. Features include
top speed, sprint duration, average speed, and metadata like start and end
positions to help facilitate visualization.

The HIR dataset has multiple potential use cases. By studying the
frequency, distance, and speed of sprints, coaches and trainers assess
individual player performance and identify areas for improvement. This
helps in designing personalized training programs to enhance the players’
fitness and skill levels [9].

Analyzing the high-intensity runs provides insights into players’ fatigue
levels and their ability to maintain performance throughout the match.
This information is used to optimize player rotation strategies and develop
more effective recovery plans [9].

34

By monitoring the sprint data, sports medicine professionals identify po-
tential injury risks and address them proactively. This can include modi-
fying training loads, implementing targeted injury prevention exercises, or
making strategic substitutions during matches [9].

3.5 Data Visualization

Effective visualization tools are crucial for players, coaches, and medical
staff to gain a deeper understanding of player performance, injuries, and
form. To create valuable visualization tools for individuals who are not
data scientists and lack experience in data analysis, it is necessary to
develop visualizations that are as user-friendly as possible. Additionally,
we have to prioritize the visualizations that we believe are most beneficial
for the intended users.

3.5.1 Tools

GMaps

GMaps is a popular Python library that provides an interactive and user-
friendly interface for visualizing geographical data using Google Maps.
It allows developers to easily create maps with markers, draw shapes,
display heatmaps and more [48]. By taking advantage of Google’s
JavaScript API for the mapping platform, this library makes integration
into Jupyter notebooks or web applications much simpler.

3.5.2 Choosing What to Visualize

When choosing what to visualize and how to do it, we have two important
factors to consider. The people using the visualization tools do not have a
background in data science, and they have varying degrees of technical
knowledge. This means that the most important factor when choosing
what to visualize is how easy it is to use and read.

Many of the tools aim at coaches and other staff at the clubs. These tools
mostly relate to things like team form, the distance the team runs, results
compared to different objective metrics, and some visualizations to look at
the correlation between subjective and objective metrics.

3.6 Injury Prediction

The goal of injury prediction is to determine if it is possible to use machine
learning models and objective GPS data to predict injuries in soccer.
Multiple machine learning models and data preprocessing tools are being
implemented to attempt injury prediction.

35

3.6.1 Tools

TensorFlow

TensorFlow, developed by Google and available as open-source since
2010 [89], provides rapid deployment of machine learning models across
various platforms such as CPUs, GPUs, and TPUs [26].

At its core, TensorFlow represents computations as dataflow graphs to
enable efficient parallel processing and enhanced performance on large-
scale data sets. It supports an array of machine learning and deep learning
algorithms, neural networks, natural language processing, and computer
vision applications.

TensorFlow stands out as an impressive platform thanks to its seamless
integration with Keras, an intuitive high-level neural networks API
designed to make building and training deep learning models simpler
for both newcomers and experts. Keras makes creating and training
deep learning models simple through its user-friendly interface while still
providing advanced functionalities for advanced users.

Sklearn

The scikit-learn library, also referred to as sklearn, is an exceptionally
popular Python library used for machine learning and data analysis.
Leveraging NumPy, SciPy, and matplotlib as its foundation, it offers
an impressive set of tools tailored specifically towards data science
projects [33].

Sklearn provides tools for data preprocessing, such as scaling, normaliza-
tion, and encoding categorical variables - essential steps towards improv-
ing model performance [82]. Furthermore, it offers methods for dimen-
sionality reduction as well as selecting informative features to build models
with.

scikit-learn offers more than just preprocessing tools; it features numerous
supervised, unsupervised, and ensemble learning algorithms - making it
extremely flexible in its scope of applications. Furthermore, the library
includes tools for evaluating model performance such as cross-validation
and various metrics that assist in selecting and comparing suitable models
for comparison and selection.

Imbalanced-learn

Imbalanced-learn (imblearn) is an open source Python library created to
address imbalanced datasets in machine learning [42, 52]. Imbalanced
datasets, where one class significantly outnumbers another, can result
in biased models that favor one over the other, leading to decreased
performance on minority classes.

36

Imblearn provides several strategies for handling imbalanced data, such as
oversampling minority classes or undersampling majority classes, or any
combination thereof. It features an API compatible with scikit-learn that
makes integration seamless into existing machine learning pipelines.

Imblearn offers several key techniques, including Synthetic Minority Over-
sampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN),
Random Undersampling (RUS), and Tomek Links - each helps practition-
ers balance their datasets while producing more accurate and robust mod-
els for classification tasks.

Overall, imblearn is an effective tool for dealing with imbalanced datasets,
providing various resampling methods which integrate seamlessly with
scikit-learn and other machine learning libraries.

3.6.2 One-step Ahead Forecasting

One-step ahead forecasting, as the name implies, involves predicting the
value of a single future time point. In the context of time series analysis,
this is a common approach used to predict the next value in a sequence
based on previous observations [68]. For instance, if you have daily
measurements, like in this study, one-step ahead forecasting involves
predicting the measurement for the next day.

One of the main advantages of one-step ahead forecasting is its simplicity.
Since the model only needs to predict the next point in the sequence, it
can often be simpler and faster to train than models that try to predict
multiple points into the future. Additionally, one-step ahead forecasts can
be iteratively used to create multi-step forecasts.

Injury forecasting for soccer players using GPS data is a compelling
application of one-step ahead forecasting. The main objective in this
context is to predict whether a player is likely to get injured in the next
match or training session, based on the recent historical data of that
player’s physical activity.

The decision to use one-step ahead forecasting in this scenario drives
by the inherent uncertainty and variability in sports injuries. Injuries
are multifactorial events, influenced by a complex interplay of intrinsic
(e.g., age, fitness level) and extrinsic (e.g., type of activity, environmental
conditions) factors.

With one-step ahead forecasting, the model can incorporate the most recent
data, which could include critical information about a player’s fatigue
levels, load management, and other risk factors. This is particularly
important given that the risk of injury can fluctuate significantly from day
to day based on these factors.

37

Moreover, in a practical sense, it is beneficial to predict injuries on a
short-term basis (i.e., the next day) because it aligns well with the typical
decision-making process in professional soccer. Coaches and medical staff
often need to make daily decisions about a player’s training load and
participation in matches. Hence, a model that provides daily injury risk
predictions can be a valuable tool in this context, aiding in the prevention
and management of player injuries.

3.6.3 Creation of Training Dataset

In order to train the models for injury prediction, a dataset is created
by merging the Session dataset and the injury_ts.csv file. The injury file
consists of data for every player from both teams, with one row for each
day over the two-year period. Each row has a corresponding 1 or 0 for
every player, indicating whether they report an injury on that specific day.

The injury file contains daily data for all players over the two-year span,
while the Session dataset only includes data from days when players wear
the GPS tracker. For time series models, daily intervals are preferred, which
leads to a discrepancy in the dataset created for model training as many
days do not have matching GPS data for the injury records. The final
dataset includes one row for each player on each day, containing the GPS
data for that day (if a session is recorded) and the interpolated injury data
for the same day. The interpolation process of the injury data is explained
in Chapter 4.

3.6.4 Machine Learning Models

In this thesis, various machine learning models are implemented to predict
injuries in soccer players using GPS data. These models are selected
based on their ability to capture different aspects of the data and their
suitability for handling time series data. The models implemented include
Logistic Regression, Decision Tree, xGBoost, LSTM, GRU, and ROCKET.
This section discusses the rationale behind implementing each model.

Logistic Regression

Logistic Regression is chosen as a baseline model to provide a simple,
interpretable way to predict binary outcomes using GPS data. It captures
the probability of a particular class or event existing, such as pass/fail,
win/lose, alive/dead or injured/not injured, based on input features,
offering a straightforward comparison point for more complex models.

Decision Tree

Decision Tree is implemented due to its ability to capture non-linear
relationships between variables and provide interpretable decision rules.

38

This model can handle both continuous and categorical variables, making it
a flexible choice for predicting injuries based on diverse GPS data features.

xGBoost

xGBoost, an advanced implementation of gradient boosting machines,
is employed for its exceptional performance and efficiency in handling
structured data. It can capture complex relationships between features and
is robust to noise, making it a suitable choice for forecasting injuries using
GPS data.

LSTM

Long Short-Term Memory (LSTM) networks, a type of Recurrent Neural
Network (RNN), are implemented due to their ability to model long-range
dependencies in time series data. As GPS data is inherently sequential,
LSTMs can capture temporal patterns and relationships, providing a
powerful tool for injury forecasting in soccer players.

GRU

Gated Recurrent Units (GRUs), another variant of RNNs, are chosen for
their simplified architecture compared to LSTMs while maintaining the
ability to model long-range dependencies in time series data. GRUs can
effectively capture temporal patterns in GPS data, offering an alternative
approach to injury prediction with potentially lower computational costs.

ROCKET

ROCKET (RandOm Convolutional KErnel Transform), is implemented for
its ability to provide highly accurate results with minimal computational
requirements. By transforming the input time series data into a high-
dimensional feature space using random convolutional kernels, ROCKET
can efficiently capture complex patterns in GPS data, making it a promising
model for injury prediction.

3.6.5 Hyperparameters

Hyperparameters play a crucial role in determining the performance of
machine learning models, as they control various aspects of the learning
process. To find the optimal set of hyperparameters for each model
implemented in this thesis, a systematic approach using nested loops is
employed.

Hyperparameter tuning involves searching through a predefined range of
values to identify the combination that yields the best performance on a
given task. In this thesis, multiple hyperparameters are tested for each
model using nested loops. By comparing the performance of different
hyperparameter combinations, the optimal configuration for each model is

39

determined, resulting in improved accuracy and generalization for injury
prediction.

One critical hyperparameter for time series models, is the input window,
which defines the length of the input sequence used to make predictions.
The choice of input window size can significantly impact model perform-
ance, as it determines the amount of historical data considered by the
model when making predictions. A small input window might not cap-
ture sufficient context to identify meaningful patterns, while a large input
window could introduce unnecessary complexity and increase the risk of
overfitting.

3.6.6 Addressing Class Imbalance

Class imbalance is a common issue in machine learning, particularly
when dealing with datasets where one class significantly outnumbers the
other [44]. In the context of injury prediction, the majority of data points
represent non-injury instances, while injury instances are relatively rare.
This imbalance can lead to biased models that prioritize the majority class,
resulting in poor predictive performance for the minority class. To address
class imbalance and improve the performance of the model, oversampling
and undersampling techniques are employed.

Oversampling: This technique involves creating copies of instances from
the minority class (injuries) to balance the class distribution. Synthetic
Minority Over-sampling Technique (SMOTE) is a popular method for over-
sampling, which generates synthetic instances by interpolating between ex-
isting minority class samples. This approach enhances the representation
of the minority class without introducing duplicates, allowing the model
to better capture the patterns in the injury data [12].

Undersampling: This technique aims to balance the class distribution
by randomly removing instances from the majority class (non-injuries).
While this reduces the overall size of the dataset, it helps to prevent the
model from being overwhelmed by the majority class. The downside of
undersampling is the potential loss of valuable information due to the
removal of data points. Therefore, it is essential to carefully select the
instances to be removed to minimize information loss [61].

3.6.7 Training Scheme - Whole Team vs Player

Both Wiik et al. [92] and Ragab et al. [74] achieved the best results by
training models on the entire team’s data instead of focusing exclusively
on individual players. This approach primarily addresses the issue of
insufficient data, as each new player starts with no data and may have,
at most, only a few hundred data points if they have been with the team
for an extended period.

40

In our framework, we train the models using the entire team’s data. This
approach is anticipated to be more advantageous, particularly for the more
complex deep learning models we are employing. Furthermore, since team
dynamics greatly affect each player’s performance, training on the entire
team could help identify crucial trends. Preferably, we would compare
team A and B, to see if there are any differences in the teams. But, team
B does not have enough recorded injuries to be able to train models.

3.6.8 Evaluation Metrics

Accuracy

Accuracy can be determined by adding True Positive (TP) and True
Negative (TN) scores and dividing by the total number of entries classified,
giving an accurate representation of how many data points are classified
correctly. This score gives an exact account of how many are correctly
classified [40].

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

Precision

Precision represents the false positive rate, meaning a model that produces
no false positives has an accuracy rating of 1. This metric can be especially
important in cases where false positives must be avoided and is calculated
as follows [40].

Precision =
TP

TP + FP
(3.4)

3.6.9 Recall

Recall, also known as sensitivity or true positive rate, is a metric being used
in machine learning to evaluate the performance of a classification model.
It is especially important in cases where the cost of false negatives is high.
Recall calculates the proportion of actual positives (TP) that are correctly
identified by the model. However, a high recall does not necessarily imply
a good model, as it might also have a large number of false positives.
Therefore, recall is typically used in conjunction with other metrics such
as precision, specificity, and the F1 score to provide a more comprehensive
view of the model’s performance.

Recall =
TP

TP + FN
(3.5)

F1-score

The F1-score is an attempt to optimize both recall and precision simultan-
eously, two metrics which often conflict, by creating one metric which ac-
counts for both False Positives (FP) and False Negatives (FN). It does so

41

ac
tu

al
va

lu
e

Prediction outcome

p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

Figure 3.3: Confusion Matrix

by taking into account False Positives and False Negatives which occur
simultaneously, ultimately its goal is to produce one single score which
optimizes recall and precision simultaneously which would otherwise not
be possible due to competing requirements of recall and precision metrics
working against each other. [40]

F1 = 2
Precision · Recall

Precision + Recall
=

2tp
2tp + fp + fn

(3.6)

3.6.10 Confusion Matrix

A confusion matrix serves as an invaluable tool for assessing the perform-
ance of classification algorithms. It presents the model’s correct and in-
correct predictions in a tabular format, with rows representing the actual
class labels and columns indicating the predicted class labels, as seen in
Figure 3.3. The main diagonal consists of correct predictions (true positives
and true negatives), while off-diagonal elements signify misclassifications
(false positives and false negatives). Analyzing the confusion matrix al-
lows for evaluating classifier performance, detecting biases or imbalances,
and understanding the model’s error types. Used alongside other metrics
like accuracy, precision, recall, and F1 score, the confusion matrix offers a
comprehensive overview of a classifier’s performance.

In this thesis, confusion matrices are employed to easily visualize the
number of injuries correctly and incorrectly predicted. They provide a clear
representation of the performance of different machine learning models,
facilitating comparison and evaluation.

42

3.7 Chapter Summary

This chapter discusses the proposed pipeline for data import and extrac-
tion, feature extraction, visualization, and injury prediction using GPS data
and machine learning in soccer players. The pipeline consists of five main
steps: Data Import, Data Preprocessing, Feature Extraction, Data Visualiz-
ation, and Injury Forecast.

Python libraries such as Pandas and PyArrow are employed for data
import, manipulation, and processing. The Haversine formula calculates
distances using GPS coordinates, while Metabolic Power offers insights
into athletes’ energy expenditure during physical activities.

Two new datasets, Session and High-Intensity Run (HIR), are created. The
Session dataset provides an overview of each player’s performance during
a single session, which can be used for visualization, performance analysis,
and injury prediction. The HIR dataset, on the other hand, focuses on high-
intensity runs and is designed for visualization through animations, and to
help analyze player performance and intensity.

This chapter also focuses on data visualization and injury prediction in
soccer using various tools and techniques. For data visualization, the
Python libraries GMaps and IPyWidgets are used to create user-friendly
interactive visualizations. The data extraction process involves cross-
checking game dates and importing subjective metrics. The visualizations
are designed with non-data scientists in mind and focus on team form,
results, and correlations between subjective and objective metrics.

Injury forecast involves the use of TensorFlow, scikit-learn, and imbalanced-
learn libraries. The models are set up to do one-step ahead forecasting,
meaning they will forecast the injury status of the next day. The datasets
are created by merging the Session dataset and injury data, ensuring daily
intervals are maintained. The models are trained on the entire team’s data
to address the issue of insufficient data and to identify trends. Evaluation
metrics such as precision and F1-score are employed to assess the perform-
ance of the models for predicting injuries.

Overall, the proposed methodology aims to provide valuable insights into
player performance, activity, and injury risks, enabling informed decision-
making by coaching staff and facilitating player improvement. The next
chapter describes the technical implementation of our pipeline.

43

Chapter 4

Implementation

In this chapter, we look at the implementation of our pipeline. Firstly, the
preprocessing steps we take to remove erroneous data from the SoccerMon
dataset are explained. Then an explanation of how we extract features
from the cleaned dataset. Then we explain how we implemented satellite
imagery, game results, and subjective data into our visualization. Lastly, we
explain the preprocessing steps applied before injury prediction, including
injury interpolation. Then we explain how we implement class imbalance
handling.

4.1 Feature Extraction

We begin by importing data from a large set of files containing GPS,
accelerometer, and gyroscope data, followed by cleaning up and filtering
the data to remove any inconsistencies. Once we preprocess the data, we
compute various features for the Session and HIR datasets, including high
intensity runs, duration, total distance, average running speed, top speed,
and metabolic power. Furthermore, we discuss the implementation of the
Haversine formula and the Metabolic Power formula. Finally, to make the
datasets easily accessible and usable for further analysis, visualization, and
machine learning models, we upload the datasets to two different tables in
a MySQL database.

4.1.1 Import data from CSV files

Each file in the objective dataset contains all the data captured from the
GPS, accelerometer, and gyroscopes for a specific session. Each file includes
the data as depicted in Table 4.1.

We download the objective folder stored on OSF and store it locally. The
folder has a total size of 173GB. To iterate over all the files, we use the
Python library pathlib. The fastest way to iterate over all the files is to
create a list of all the file paths, then use a loop to iterate over all the files.
To create the path list, we use the code shown in Figure 4.1.

44

Sensor
technology

Metric Description Unit Value
Range(min-
max)

Collection
Frequency

NA Player name The player uuid NA UUIDv4 10hz
Clock Time Timestamp HH:MM:SS.ms 13:45:53.80

/ 15:47:03
10hz

GPS Latitude Latitude Degrees (°) 00.000000 /
63.444820

10hz

GPS Longitude Longitude Degrees (°) 00.000000 /
10.451715

10hz

GPS Speed Speed Meters per
second (m.s-1)

0.000 /
6.730

10hz

Heart rate
monitor

Heart rate Heart rate Beats per minute
(b.m-1)

0.000 /
199.000

10hz

GPS Horizontal accur-
acy

Horizontal accur-
acy

Horizontal geo-
metric dilution
of precision
(GDOP) coeffi-
cient

0.000 /
7.000

10hz

GPS Horizontal preci-
sion

Horizontal dilu-
tion of precision

Horizontal geo-
metric dilution
of precision
(GDOP) coeffi-
cient

1.000 /
31.000

10hz

GPS Quality of signal Quality of the
GNSS/GPS sig-
nal

dBm 0.000 /
357.000

10hz

GPS Number of satel-
lites

Total number of
satellites used in
the calculation of
the unit’s posi-
tion

Number. More is
better.

0.000 /
25.000

10hz

AccelerometerInstantaneous
acceleration im-
pulse

Absolute acceler-
ation

m/s-2 0.000 /
5.970

10hz

AccelerometerAcceleration X Acceleration
along X-axis

g -10.159 /
8.562

10hz

AccelerometerAcceleration Y Acceleration
along Y-axis

g -12.771 /
11.369

10hz

AccelerometerAcceleration Z Acceleration
along Z-axis

g -9.404 /
10.560

10hz

Gyroscope Gyroscope X Rate of rotation
along X-axis

deg.s-1 -5.931 /
10.265

100hz

Gyroscope Gyroscope Y Rate of rotation
along Y-axis

deg.s-1 -3.678 /
4.825

100hz

Gyroscope Gyroscope Z Rate of rotation
along Z-axis

deg.s-1 -3.256 /
2.323

100hz

Table 4.1: Sensor data metrics

The code in Figure 4.2 shows the loop for importing the data. We use
Pandas to read the Parquet files, with Pyarrow as the engine, as it is
the fastest at reading Parquet files [53]. As seen in Table 4.1, there are
differences in the frequency of the GPS, accelerometer, and gyroscope.
Since the gyroscope has a frequency of 100 Hz, there are 10 rows where
the GPS and accelerometer data are the same, while only the gyroscope
data changes. None of the features for the new datasets use the gyroscope
data. Therefore, we use only every 10th line in the Parquet file.

45

days = [f"{i:02}" for i in range(1, 32)]
months = [f"{i:02}" for i in range(1, 13)]
years = [’2020’, ’2021’]
teams = [’TeamA ’, ’TeamB’]

data_paths = [f"PathToObjectiveFolder/{team}/{year}"
for team in teams for year in years]

file_paths = []
for data_path in data_paths:

for year in years:
for month in months:

for day in days:
folder_path = os.path.join(data_path ,
f"{year}-{month}", f"{year}-{month}-{day}")
file_paths.extend(

[str(file_path) for file_path in
Path(folder_path).rglob("*. parquet")]

)

Figure 4.1: Code showing how the filepath list was created.

4.1.2 Filters and Sanity Checking

Before extracting features from the raw GPS data, several preprocessing
steps are applied to clean and filter the data, ensuring its quality and
reliability. The primary goal of preprocessing is to eliminate incorrect or
unreliable data points that could potentially compromise the results of the
study.

The process of selecting appropriate values for filtering the raw GPS data
is largely experimental, as there is no ground truth to compare against. To
test the effects of the filters, a test is set up to calculate different features
using different combinations of the filters. The raw GPS data from Team A
for 2020 is used for the experiment. A selection of the results from the test
is seen in Table 4.2. The first row of the table contains values where only
latitude and longitude values of 0 is filtered out. We can see that the highest
recorded total distance is 255,5km. Assuming that a player did not run
slightly more than 6 marathons during a singe session is a fair assumption,
meaning that there is significant presence of erroneous data.
The filters applied are as follows:

1. Filter out rows where latitude (lat) or longitude (lon) equals 0: For
lat and lon values, the filtering criterion is straightforward. Any row
with values of 0 is removed. This decision is based on the observation
that a lat and lon value of 0 typically indicates a faulty GPS tracker,
rendering the data point unreliable. Thus, eliminating rows with
these values ensures that the dataset only includes accurate positional
data.

2. Filter out rows where horizontal accuracy (hacc) is more than 3:
Horizontal accuracy is measured in meters and represents the radius

46

for parquet_path in file_paths:
columns = [["time", "lat", "lon", "speed", "

inst_acc_impulse", "
player_name", "hacc", "
hdop", "signal_quality"
]

df = pd.read_parquet(parquet_path , engine="auto",
columns=[columns])

df = df.iloc[::10, :]
df = df[(df[’lat’] != 0) &
(df[’lon’] != 0) &
(df[’hacc’] < 3) &
(df[’hdop’] < 10)]# &
(df[’signal_quality ’] > 100)]

df = df.reset_index ()

vals = calc_sessions_opt(df)
data_frame = pd.DataFrame(data=[vals],

columns=[
"Team_name",
"Player_name",
"Date",
"Session_Id",
"Duration",
"Total_distance",
"Average_running_speed",
"Top_speed",
"Metabolic_power"])

data_frames.append(data_frame)

Figure 4.2: Code showing the import, filtering and dataset creation.

47

Horizontal
Accuracy

Horizontal
Dilution of
Precision

Signal
Quality

Max Total
Distance

Min Total
Distance

Max Average
Running

Speed

Max
Metabolic

Power

7 31 0 255.4722 0.0503 3.0014 5037.4466

7 5 100 39.2901 1.2833 1.7305 1567.7654

5 5 100 39.0240 1.2833 1.7490 4099.1717

5 10 100 39.0240 1.2927 1.7449 1230.7780

3 10 100 36.8384 1.2927 1.9348 2321.2462

3 5 100 36.8384 1.2833 1.9357 4099.1717

7 5 200 35.5284 1.2833 1.7305 1567.7654

7 10 200 35.5284 1.2927 1.7264 1262.2980

5 10 200 35.4611 1.2927 1.7449 1230.7780

3 20 200 35.0822 1.2746 1.9348 2321.2462

3 5 300 13.4574 0.0000 1.6916 2399.9602

7 25 300 13.4574 0.0000 1.6916 2399.9602

Table 4.2: Table showing the effects of different filters on extracted features

of the margin of error for the measurement. Horizontal accuracy is
measured on a scale from 0 to 7, with lower values indicating better
accuracy. To ensure that only the most accurate positional data is
used, rows with hacc values higher than 3 are removed from the
dataset.

Due to the nature of hacc, a smaller value is selected even though
the results in Table 4.2 where hacc is higher, are plausible. Since
the GPS measurements are done on a relatively small surface (soccer
field), when hacc is high, it means that the reported position could be
significantly off from the true position. This could lead to significant
errors. For example, it might appear that a player ran outside the
boundaries of the field, or it could distort the path they took across
the field.

3. Filter out rows where horizontal dilution of precision (hdop) is more
than 10: Horizontal Dilution of Precision is a measure of the relative
position of the satellites that the GPS receiver is currently tracking.
It is a factor that represents the potential error or uncertainty in
a measurement due to the current satellite configuration. If the
satellites are closely grouped together from the perspective of the
receiver, the dilution of precision will be high, and the positional
data less reliable. Hdop values range from 1 to 31, with lower values

48

representing better accuracy.

As seen in Table 4.2, hdop does not influence the total distance, but it
does affect the running speed, and therefore also metabolic power, as
it uses running speed as a variable. We decided to filter out rows
where hdop is more than 10, based on the max metabolic power.
The max metabolic power recorded when hdop is 5, is 4099. This
is a plausible number. But when hdop is anything more than 5,
the highest recorded metabolic power value is 2399. Based on the
significant difference between filtering out rows where hdop is more
than 5, compared to the difference when using higher values such
as 10, 15, or 20, indicates that there are non-erroneous data points in
the range 5 ≤ hdop ≤ 10. Arguments could be made to use higher
hdop values than 10, but considering that the measurements are of a
relatively small surface, errors are minimized when using lower hdop
values.

4. Filter out rows where GPS signal quality is less than 100: Based on
the results from Table 4.2, signal quality is the biggest influencer on
total distance. The signal quality data ranges from 0 to 357 dBm.
We test 3 different values, 100, 200, and 300. As seen in the results
table, when calculating features using signal quality in the range 0
≤ signal quality ≤ 357, multiple erroneous data points are included,
and the calculated total distance is not plausible. When calculating
values using the range 100 ≤ signal quality ≤ 357, we get a max total
distance ranging from 35km to 39km, which is high but plausible.
When calculating features using the range 300 ≤ signal quality ≤
357, the maximum total distance is 13km, indicating that the filter is
too stringent and that multiple non-erroneous data points have been
removed. Based on these findings, we filter out all rows where signal
quality is less than 100.

5. Filter out rows where speed equals 0 (only for calculating Metabolic
power, and HIR): Metabolic power is a metric that estimates the
energy expenditure of an athlete during physical activity, taking into
account factors such as running speed and acceleration. For the
purpose of calculating metabolic power, it is crucial to eliminate
rows with a speed value of 0. Since metabolic power is calculated
by multiplying Energy cost by running speed, metabolic power will
always be 0 when speed is 0. Having a metabolic power of 0 is an
irrelevant data point for use in analysis and can lead to misleading
results when analyzing and creating models. It is therefore removed.
When calculating HIRs, rows where speed equals 0 are also removed
to increase performance.

6. Change speed if it is more than 9.5: Some data points indicate that
a player is running at 11.5 m/s, which is significantly higher than
the world record speed for female athletes of 9.5 m/s. The fact that

49

multiple data points contain the value 11.5 suggests that the GPS
tracker has an upper threshold of 11.5 m/s. To address this issue, it is
necessary to apply an additional filter to change any data points with
speed values exceeding the realistic maximum for female athletes. By
changing all speeds above 9.5m/s to 9.5m/s, instead of removing
them, we ensure that we do not remove potentially valuable data
points for high intensity runs, while still retaining plausible data
points.

4.1.3 Session Dataset

The session dataset contains different features from a single session. To
calculate duration, the first and last timestamp from the raw data are
collected. The Python datetime library is used to calculate the difference
and return the duration of the session. Average running speed and top
speed are calculated by looking at the speed parameter in the raw data.
Top speed simply stores the largest value of the speed column, while
the average speed is calculated by adding up all the speed values, then
dividing it by the length of the resulting dataframe. The number of HIRs
value in the Session dataset is not calculated during the making of this
dataset. To minimize the runtime of the algorithm, the number of HIRs
is added later using the HIR dataset and SQL. The total distance metric is
calculated using the Haversine formula, and metabolic power is calculated
using the metabolic power formula. The resulting dataset can be seen in
Table 4.3

Haversine formula

To use the Haversine formula for calculating distances based on GPS data,
the steps are as follows:

1. Convert the latitude and longitude values from degrees to radians.

2. Calculate the differences in latitude and longitude between the two
points.

3. Plug the values into the Haversine formula to compute the great-
circle distance.

4. Repeat the process for all relevant pairs of GPS coordinates, summing
the calculated distances to obtain the total distance traveled by a
player.

The code implementation of the Haversine formula is shown in Figure 4.3.

Metabolic Power

To calculate metabolic power from GPS data, you need to obtain the
following information for each player:

50

Metric Description Unit Example Value

teamName Name of team player
plays for

- teamA

playerName The anonymised player
name

- TeamA-bcç03181-
2733-45d3-abf1-
f7a709c63e68

sessionId The specific session id,
made up of date and
player name

- 2020-06-01-
TeamA-bcc03f81-
2733-45d3-
abf1:17a709c63e68

duration Duration of session Hours 02:28:24

totalDistance Total distance covered
during the session

Kilometers 11.77

averageRunningSpeed The average running
speed of the session

meter per second 1.64

topSpeed The top speed of the
session

meter per second 7.31

metabolicPower The mean meta-
bolic power exerted
throughout the session

Metabolic power 53.66

HIR Number of high intens-
ity runs throughout the
session

- 9

Table 4.3: Table showing the features of the Session dataset

1. Positional data (latitude, longitude, and altitude) to determine
distance and elevation changes.

2. Timestamps to calculate the time duration of each activity segment.

With this data, you can use the Haversine formula to calculate the distance
between consecutive GPS points and the corresponding speed. There is no
measurement of altitude in the GPS data, so altitude is set to 0. Finally,
apply the metabolic power formula to estimate the energy expenditure for
each activity segment. The code implementation of the metabolic power
formula can be seen in Figure 4.4.

4.1.4 HIR dataset

Detecting a high-intensity run involves identifying all sprints that last more
than one second with a speed exceeding 5.5 m/s. HIRs have well-defined
parameters and are used for multiple different studies[11][23][9]. The
process begins by initializing an HIR when a player’s speed surpasses the
5.5 m/s threshold. Once an HIR is initialized, a loop is created to compute
various features associated with the run (seen in Figure 4.5). They include
the top speed, average speed, and the total distance covered. Total distance
is calculated in the same way as in the Session dataset, using the Haversine

51

def haversine(lat1 , lon1 , lat2 , lon2):

convert decimal degrees to radians
lon1 , lat1 , lon2 , lat2 = map(radians , [lon1 , lat1 , lon2

, lat2])
haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2) **2 + cos(lat1) * cos(lat2) * sin(dlon/2

)** 2
c = 2 * asin(sqrt(a))
Radius of earth in kilometers is 6371
km = 6371* c

return km

Figure 4.3: Code showing the implementation of the Haversine formula.

def calculate_metabolic_power(df):
df = df[df[’speed’] != 0]
df = df.reset_index ()

g=float(9.8)
KT = 1.29
for i in range(len(df.index) -1):

af=float(df.inst_acc_impulse[i])
if af > 0:

EM=(af **2 / g** 2 + 1) **0.5
ES=math.tan(90-math.atan(g/af))
EC=(155.4*ES ** 5 - 30.4*ES **4 - 43.3*ES **3 + 46.

3*ES ** 2 +
19.5*ES + 3.6) * EM * KT
P = EC * df.speed[i]

return np.mean(P)

Figure 4.4: Code showing the implementation of the Metabolic Power
formula.

52

if current_speed > 5.5 and (i == 0 or df.speed[i - 1] < 5.5
):

time_start = df.time[i]
lat_start , lon_start = df.lat[i], df.lon[i]
lat_end , lon_end = lat_start , lon_start
avg_speed , tot_dist , top_speed , counter = 0, 0, 0,

0

for j in range(i + 1, len(df)):
lat_end , lon_end = df.lat[j], df.lon[j]
tot_dist += haversine(lat_end , lon_end , df.lat[

j - 1], df.lon[
j - 1])

current_speed = df.speed[j]
avg_speed += current_speed
top_speed = max(top_speed , current_speed)
counter += 1

if current_speed <= 5.5:
break

avg_speed /= counter
time_end = df.time[j - 1]
duration = find_duration(time_start , time_end)

Figure 4.5: Code showing the calculations of high intensity runs.

formula. The loop continues tracking the player’s movement until their
speed drops below 5.5 m/s, marking the end of the HIR.

Subsequently, the duration of the HIR is calculated to determine if it
exceeds one second. If the HIR meets this criterion, several features,
such as top speed, average speed, distance traveled, start and end time,
and latitude and longitude coordinates for both the starting and ending
positions are stored. The entire process iterates through all available data
files, detecting and recording HIRs for each player. Once all HIRs are
identified and saved, the dataframe is exported to a CSV file for further
analysis, visualization, and storage in a database.

4.1.5 Create MySQL Database for Availability

To ensure that researchers, co-master students, and other stakeholders can
efficiently use the data for visualization and machine learning models, the
two resulting datasets are uploaded to two different tables in a MySQL
database. The tables have the same structure as the datasets shown in
Table 4.3 and 4.4

The number of HIRs column in the Session dataset is extracted from the
HIR dataset using SQL. When the two datasets are converted into tables in
the database, the SQL query seen in Figure 4.6 is used to create the number
of HIRs column in the Session table.

53

Metric Description Unit Example Value

date Date of the HIR - 2020-06-01

sessionId The specific session id, made
up of date and player name

- 2020-06-01-TeamA-bcc03f81-2733-45d3-abf1-f7a709c63e68

playerName The anonymised player name - TeamA-bcc03f81-2733-45d3-abf1-f7a709c63e68

teamName Name of team player plays
for

- TeamA

timeStart Start time of HIR - 14:21:35.9

timeEnd End time of HIR - 14:21:37.6

latStart Players latitude at the start of
the sprint

- 63.44523733

lonStart Players longitude at the start
of the sprint

- 10.45186

latEnd Players latitude at the end of
the sprint

- 63.44517933

lonEnd Player longitude at the end of
the sprint

- 10.452014

avgSpeed The average running speed of
the sprint

meter per second 5.733337944444445

totDist Total distance of the sprint meters 10.124661901838493

topSpeed The top speed of the sprint meter per second 5.958338

duration The duration of the sprint seconds 1.7

Table 4.4: Table showing the values in the High intensity run dataset

4.2 Data Visualization

In this section, we take a look at the implementation and preprocessing
steps taken concerning the creation of visualization tools. Then, we explain
what data and how the data is imported.

4.2.1 Utilizing Satellite Imagery for Visualization

The effective visualization of player positions provides a practical and
intuitive way to understand the movements and patterns of soccer players.
To achieve this, we use satellite imagery from Google Maps, facilitated
by the GMaps library in Python. Google Maps provides high-resolution
satellite imagery, which enables accurate positioning of players on the
actual field where the session occurs. This level of detail offers a real-world
context to the GPS data, significantly enhancing the interpretability and
value of the visualizations.

To position the map accurately around the soccer field, we calculate the
mean of the GPS coordinates for a specific session. This mean value serves
as the central point of the map, aligning the satellite imagery with the field
of play. Once we position the map correctly, we can plot player positions
directly onto the satellite image. Each data point corresponds to a player’s
location at a specific time, providing a clear visual representation of their
movements throughout the session.

54

SELECT sess.Team_Name, sess.Player_name, sess.Date,
sess.Session_Id, sess.Duration, sess.Total_distance, sess.Average_running_speed, sess.Top_speed, sess.Metabolic_power, COUNT(hir.Session_Id) AS Count
FROM mpg_pmsys.LH_session sess
LEFT JOIN mpg_pmsys.LH_HIR hir ON sess.Session_Id like hir.Session_Id
GROUP BY sess.Session_Id;

ALTER TABLE mpg_pmsys.LH_session
ADD HIR_count INT;

UPDATE mpg_pmsys.LH_session AS sess
SET HIR_count = (
SELECT COUNT(hir.Session_Id)
FROM mpg_pmsys.LH_HIR AS hir
WHERE sess.Session_Id LIKE hir.Session_Id
);

Figure 4.6: The SQL query used to create the number of HIRs column in
the Session dataset based on occurrences in the HIR dataset.

4.2.2 Incorporation of Subjective Performance Data

The SoccerMon dataset includes self-reported performance metrics for
each player, for every game. These metrics encompass overall team
performance, offensive performance, and defensive performance. This
subjective data offers valuable insights into a player’s perception of their
game performance, supplementing the objective GPS data. We incorporate
these metrics into multiple visualization tools to further contextualize the
objective data.

We import the performance metrics using the Pandas library. The data
imports from the performance.csv file, which contains a comprehensive
record of player performances. Following the import, we split the
performance data into two separate lists, one for Team A and another for
Team B. This division enables analysis and visualization specific to each
team. Once we split the data, we sort it chronologically based on the date
of each game. The resulting lists for each team contain a record of the
date, player name, overall team performance, offensive performance, and
defensive performance for each game.

4.2.3 Gathering Game Results

To further contextualize the GPS data, and create more interesting visualiz-
ation tools, a dictionary of game results is being created. The dictionary is
generated by cross-referencing the registered game dates from the perform-
ance data, with the historical term lists, which contain the official game res-
ults. A dictionary is created to store the game date, result, and whether the
team loses, draws, or wins.

55

During the process of creating the results dictionary, it is discovered that
some of the registered game dates from the performance data, are not
present in the official term lists. This discrepancy could be due to players
participating in games for different teams (e.g, B-team), not official games
(e.g., training game) or incorrect game dates entered in the PMSys app. A
closer examination of the GPS data for these missing game dates reveals a
significantly lower total running distance for the entire team, as compared
to the game dates found in the term lists. Consequently, these dates are
excluded from the visualizations using game data.

The teams and players participating in the study are required to remain
anonymous, which means that the list of results cannot be published.
The confidentiality requirements ensure that no personally identifiable
information can be linked to the players or teams involved in the study.
Player position and game results can potentially be uniquely identifiable
data, that under the agreement cannot be published, therefore, it is
removed from the open source code.

4.2.4 Extraction of GPS Data from Games

To obtain the GPS data specific to game days, a systematic approach
is implemented, leveraging the dates from the aforementioned results
dictionary. This process ensures that the collected GPS data corresponds
accurately to the dates when the games occur. A loop is constructed
to iteratively traverse the Session dataset. During each iteration, the
algorithm checks if the date in the Session dataset matches any date from
the results dictionary. If a match is found, indicating a game day, the
corresponding GPS data is extracted.

4.3 Injury Prediction

This section begins by explaining the preprocessing steps applied to the
dataset before injury predicting. Then it explains the implementation of
class imbalance handling, the hyperparameters used, and then how we
implement the different machine learning models.

4.3.1 Preprocessing

Create dataset: To predict injuries, a dataset merges from the Session
dataset, and the injury dataset. The session and injury datasets merge
based on the ’Date’ and ’PlayerName’ columns using an outer join. This
ensures that all rows from both dataframes are included in the merged
dataframe, even if there is no matching row in the other dataframe. This
ends up creating the dataset seen in Table 4.5. The first injury data
is gathered at 01.01.2020, while the earliest available GPS data is from
01.06.2020. Because of this, the injury data from before 01.06.2020 is

56

removed. A consequence of this is that only team A can be used for
prediction. There is only one registered injury for team B after 01.06.2020,
making it impossible to predict injuries for team B.

Metric Description Unit Example
value

teamName Name of team player
plays for

- teamA

playerName The anonymised player
name

- TeamA-
bcç03181-
2733-
45d3-abf1-
f7a709c63e68

sessionId The specific session id,
made up of date and
player name

- 2020-06-
01-TeamA-
bcc03f81-
2733-
45d3-abf1-
17a709c63e68

duration Duration of session seconds 1023
totalDistance Total distance covered

during the session
Kilometers 11.77

AverageRunning-
Speed

The average running
speed of the session

meter per
second

1.64

topSpeed The top speed of the
session

meter per
second

7.31

metabolicPower The mean meta-
bolic power exerted
throughout the session

Metabolic
power

53.66

HIR Number of high intens-
ity runs throughout the
session

- 9

Injured Binary value represent-
ing if a player is injured
or not (1 represents in-
jured, 0 represents not
injured)

- 0

Table 4.5: Table showing the training dataset for the machine learning
models

Interpolate injury values: In our analysis of injury data, we identify
inconsistencies and gaps that could affect the reliability of our findings.
Some players do not consistently report their injuries on a daily basis,
leading to misleading values in the dataset. In the dataset, NaN values
change to 0, meaning that days they do not report if they are injured or not,
show as not injured in the data. To tackle this issue, a simple rule is applied

57

during preprocessing of the data: if a player reports being injured both the
day before and the day after a 0 value, the value changes to a 1, meaning
injured. This approach helps to some extent in filling the gaps in the data.
However, there is still an issue where if a player does not register an injury
for multiple days in a row, one consecutive injury interprets as multiple
separate ones.

Create Player Sequences: To create player sequences, a function generates
sequences of the GPS data for a specific player. The function takes the input
dataframe, player name, and sequence length as arguments. The player’s
data is extracted from the dataframe and the ’Date’ and ’PlayerName’
columns are dropped. The function iterates through the player’s data,
creating sequences of the specified length, and returns a NumPy array
containing these sequences. The function splits these sequences into inputs
(X) and targets (y). The inputs for each sequence are all but the last row, and
the target is the ’Injured’ column of the last row. This means that for each
sequence of data, where length equals input window, the model is being
trained to predict the ’Injured’ status of a player in the next time step.

4.3.2 Implementing Class Imbalance Handling

To counteract this issue of class imbalance, various techniques such
as random oversampling, random undersampling, Synthetic Minority
Over-sampling Technique (SMOTE), and Adaptive Synthetic (ADASYN)
sampling are implemented and tested.

Random Oversampling involves duplicating instances from the minority
class to balance the class distribution. Although this method can improve
the model’s sensitivity towards the minority class, it may also lead to
overfitting due to the exact replication of instances [61].

Random Undersampling aims to balance the class distribution by ran-
domly eliminating instances from the majority class. While this technique
can help reduce the bias towards the majority class, it may also lead to loss
of potentially useful information [61].

SMOTE (Synthetic Minority Over-sampling Technique) is an over-
sampling approach where synthetic examples are created based on the fea-
ture space similarities between existing minority instances. Rather than
simple duplication, SMOTE generates new instances that are consistent
with the underlying distribution of the minority class. This technique can
boost the model’s performance on the minority class without risking over-
fitting as much as random oversampling [12].

ADASYN (Adaptive Synthetic Sampling) is an advanced oversampling
technique. Similar to SMOTE, ADASYN generates synthetic instances
of the minority class. However, ADASYN adapts to the underlying
data distribution by generating more synthetic instances for minority

58

Input window = 4, 7, 30
Test size = 0.2, 0.4
Sample modes = "none", "oversample", "undersample", "smote", "adasyn"
Sampling ratios = 0.2, 0.4
Interpolate injuries = True, False
Learning rate (only for GRU) = 0.1, 0.01

Figure 4.7: Hyperparameters tested for model training.

class samples that are harder to learn, as determined by their K-nearest
neighbors. This results in a more nuanced oversampling strategy that can
potentially lead to better performance on complex classification tasks [34].

4.3.3 Hyperparameters

All models run using various hyperparameters to identify the top per-
formers. They test input windows of 4, 7, and 30 days, and experiment
with different sizes for the test and evaluation datasets. To address class
imbalance, several techniques are implemented, and multiple sampling ra-
tios are applied. We also tested to with and without interpolation of injury
values. A comprehensive list of the tested hyperparameters can be found
in Figure 4.7. Each model is assessed in nested loops to determine the op-
timal hyperparameter configuration. The results of each run save in a list
and sort based on the F1 score. The best performers are then presented,
accompanied by a range of evaluation metrics. For LSTM and GRU, the
number of epochs is set to 50.

4.3.4 Implementation of the Machine Learning Models

Logistic Regression: The Logistic Regression model implements using the
Scikit-learn library [33]. Before training the model, the data normalizes
using Tslearn’s TimeSeriesScalerMinMax function [87]. The TimeSeriesS-
calerMinMax function is implemented instead of the more common Min-
MaxScaler function, as it is especially designed for time series data. It scales
time series individually, so each time series in the dataset can have its own
minimum and maximum after scaling. It also retains the shape of each time
series. Even though the overall range of the time series is changed, the rel-
ative distances between points remain the same. After normalization, one
of the sample functions to handle class imbalance is used. The model then
trains and evaluates.

Decision tree: The implementation of the decision tree model is similar
to the logistic regression model. It also implements using the Scikit-learn
library. The data normalizes using the TimeSeriesScalerMinMax function,
samples, trains, and then evaluates. Since the model generates a binary
output, thresholds do not need to implement.

59

xGBoost: The xGBoost model implements using the xGBoost library–[13].
As before, the data normalizes using the TimeSeriesScalerMinMax func-
tion, then samples, trains, and evaluates. When training the model, it
specifies that the classifier should optimize a binary logistic loss function,
meaning it trains to classify instances into one of two classes.

LSTM: The LSTM model implements using the TensorFlow library [26].
The Adam optimizer is implemented due to its unique features. It
maintains separate moving averages for both gradients and squared
gradients. This allows it to adjust the learning rate for each parameter
individually, leading to improved optimization [96]. Binary cross-entropy
utilizes as the loss function. The binary cross-entropy loss function is
well suited for this type of problem because it measures the difference
between the predicted probability distribution and the true binary labels. It
penalizes the model more heavily for making incorrect predictions, which
is important in cases where the cost of false positives and false negatives is
not equal [79].

GRU: The GRU model implements using the TensorFlow Keras library [26].
This model employs Gated Recurrent Units, a type of recurrent neural
network architecture that is designed to tackle the vanishing gradient
problem while being more computationally efficient than LSTM networks.
The Adam optimizer uses in this case as well, maintaining separate moving
averages of both gradients and squared gradients to adjust the learning rate
for each parameter individually. Binary cross entropy is selected as the loss
function for this model.

ROCKET: The ROCKET model implements using the sktime library [55].
The implementation of the ROCKET model is relatively simple, and is
similar to logistic regression and decision tree. The data first scales using
the TimeSeriesScalerMinMax function. A sample function then applies to
handle class imbalance, before the model trains and evaluates.

4.4 Chapter Summary

This chapter explains the implementations of the three research objectives.
Firstly, it discusses the implementation of the feature extraction tool. It
explains the code implemented to create the two new datasets, Session and
HIR.

The section starts by explaining how the raw data is imported. First, the
entire SoccerMon dataset is downloaded from OSF. Then, using nested
loops, a list of every possible filename is created. Once the list is created, it
can iterate over all the files, and import the data for further use.

60

Then, it explains the preprocessing steps applied on the data, before and
after features are extracted. Data is filtered to ensure quality. Filters
applied include removing rows where latitude and longitude are equal to
0, horizontal accuracy is more than 3, horizontal dilution of precision is
more than 10, GPS signal quality is less than 100, speed is equal to 0 (only
for calculating Metabolic power, and HIR), and where speed is more than
9.5.

After explaining the preprocessing steps, it explains how the features
for the Session and HIR datasets are extracted. For the Session dataset,
features like duration, average running speed, top speed, total distance,
and metabolic power are calculated using various methods, such as the
Haversine formula for distance and a specific metabolic power formula.
The HIR dataset includes features like top speed, average speed, distance
traveled, start and end time, and latitude and longitude coordinates for
both the starting and ending positions.

The visualization section starts by explaining how it utilizes high-
resolution satellite imagery from Google Maps, for visualizing player pos-
ition data. Then, it explains how subjective performance data is imported,
which includes overall team performance, offensive performance, and de-
fensive performance.

To contextualize the GPS data, game results are cross-referenced with
registered game dates from the performance data. Inconsistencies are
addressed by excluding games with significantly lower total running
distance, and no registered game on that day in the publicly available
schedule. A dictionary is created to store the game date, result, and
whether the team lost, drew, or won. It is noted, however, that due to
confidentiality requirements, this list cannot be published.

For game specific GPS data, a systematic approach is used, leveraging the
dates from the results dictionary. A loop iteratively traverses the Session
dataset to match dates and extract corresponding GPS data. The game day
GPS data is then divided into two groups: Team A and Team B for team
specific analyses.

The last part of the chapter explains how it implements machine learning
models to predict injuries. The data from the Session and injury datasets
are merged based on ’Date’ and ’PlayerName’ to create a new dataset. To
overcome inconsistencies in the injury data, a rule is applied to interpolate
injury values. Sequences are then created for all players and for each player
individually in the dataset.

To handle the issue of class imbalance, techniques such as random
oversampling, random undersampling, Synthetic Minority Over-sampling
Technique (SMOTE), and Adaptive Synthetic (ADASYN) sampling are im-
plemented and tested. Each technique has its advantages and potential

61

drawbacks, such as possible overfitting or loss of valuable data. Hyper-
parameters are tested extensively for each model, with the aim of identi-
fying the best performers based on their F1 scores. A range of input win-
dows, dataset sizes, and sampling ratios are tested. Several machine learn-
ing models are implemented for injury prediction, including Logistic Re-
gression, Decision Tree, xGBoost, LSTM, GRU, and ROCKET.

62

Chapter 5

Results

In this chapter, we look at the results obtained from our research. First, the
datasets created are examined and analyzed. Then, the visualization tools
are explained, and potential use cases are discussed. Then we look at the
results of the injury prediction models.

5.1 Feature Extraction

In this section, we look at the resulting datasets from the implementation
explained in Chapter 4. We examine the datasets using stationary and
seasonality tests, then the feature correlation of the datasets is examined.

5.1.1 Stationary and Seasonality Tests

In this section, we discuss the stationary and seasonality tests conducted on
the Session dataset. To use the Session dataset as time series, it was devided
into team A and B, then sorted by date. Since the data is not regular in
terms of getting collected on a fixed interval, it consider unequally spaced.
Data collected at irregular intervals are often more complex to analyze, but
works for analyzing stationarity and seasonality.

These tests are essential to understand the underlying properties of the data
and inform the selection of appropriate time series models for predicting or
analysis. Based on our analysis, we conclude that the data is stationary and
does not exhibit significant seasonality.

Stationary Test: To test the stationarity of the data, we employ the
Augmented Dickey-Fuller (ADF) test. The ADF test is a widely-used
statistical test that helps determine whether a time series has a unit root,
implying non-stationarity [15]. A stationary time series has constant mean,
variance, and auto correlation over time, which is a critical assumption for
many time series models [83].

The ADF test is applied to each of the columns in the dataset, and the
resulting p-values are compared to a significance level α of 0.05. In all

63

cases, the p-values are less than 0.05, leading us to reject the null hypothesis
of the presence of a unit root. Consequently, we conclude that the data is
stationary and does not require differencing or transformation to satisfy the
stationarity assumption.

Seasonality Test: To assess the presence of seasonality in the data, we use
the seasonal decomposition of time series (SEATS) method. This method
decomposes a time series into three main components: trend, seasonal,
and residual [38]. By analyzing the seasonal component, we can determine
whether the data exhibits regular and predictable fluctuations over fixed
intervals, such as days, weeks, months, or years.

We apply the SEATS method to each of the columns in the dataset and
visually inspect the seasonal plots, a selection og the plots can be seen in
Figure 5.1. In all cases, the seasonal plots appear flat and do not show any
significant repeating patterns, suggesting the absence of strong seasonality
in the data. Additionally, the residual plots do not display any discernible
patterns, indicating that the decomposition has successfully captured the
main features of the data.
Based on the results of the Augmented Dickey-Fuller stationary test and the
seasonal decomposition of time series method, we conclude that the player
performance data is stationary and does not exhibit significant seasonality.
This information is crucial for selecting appropriate time series models
for predicting or analysis, as it indicates that the data does not require
differencing or seasonal adjustments.

5.1.2 Dataset Feature Correlation

When working with machine learning and visualization, it is important
to thoroughly understand and analyze the data intended for use. By
grasping the relationships between specific features, it becomes possible to
comprehend how and why changes in certain values impact other values.
In the initial analysis, the most significant information extracts from the
correlation matrix, as depicted in Figure 5.2 and Figure 5.3.

The correlation matrices generate using the Session and HIR datasets that
contain all 49 players from both teams. This means that the correlation
scores derive from the averages of all individual players. Utilizing the
average among all players is considered a fairer representation as opposed
to generating the correlation matrices based on a single player, whose
values could fluctuate considerably. Lighter colors in the matrix represent
a stronger correlation, while darker ones indicate a weaker correlation.

As seen in Figure 5.2, there are no strong correlations in the Session
dataset. The only interesting thing to note is the lack of correlation between
Metabolic power and all the other variables. This can be attributed to two
factors. The first being the nature of metabolic power. Metabolic power is
a measure of the energy expenditure during a session. The energy systems

64

Figure 5.1: Results of seasonality test on total distance, and metabolic power

used during exercise can vary, depending on the intensity and duration
of the activity. High-intensity short-duration activities primarily use the
anaerobic energy system, while low-intensity long-duration activities rely
more on the aerobic energy system.

The second factor is that metabolic power is not an independent variable,
but a product of other variables in the dataset. This relationship is non-
linear, which explain the low correlation values. Correlation primarily
measures linear relationships, and this might be why the correlation matrix
does not reflect a strong relationship between metabolic power and other
variables. This mix of energy systems in use and the non-linear relationship
between variables can influence the relationship between metabolic power
and other variables, such as duration or distance [65]."

In Figure 5.3, we can see a clear correlation between duration and total
distance. This is natural, as the longer you run over 5.5 m/s, the more
distance you cover. Other than that, there are no interesting linear

65

Figure 5.2: Correlation Matrix for the Session dataset

relationships between the variables.

5.2 Data Visualization

In this section, we provide detailed explanations for each of the visual-
ization tools we implement. For each tool, we outline the data it utilizes,
followed by a discussion about key features and potential use cases for that
particular visualization.

5.2.1 Satellite Imagery

Visualizing HIRs

The first visualization we create is designed to provide a simple overview
of the amount, length, and position of high intensity runs (HIRs) during
a session. The plot uses data from the HIR dataset to display lines on a
satellite map. The user can choose to view a single HIR or multiple HIRs at
once. As seen in Figure 5.4, 5 HIRs are displayed.

66

Figure 5.3: Correlation Matrix for the HIR dataset

Figure 5.4: Map showing 5 different HIRs by the same player

Key Features

1. Data Presentation: Using a satellite map for the base of the visualiza-
tion gives the viewers a real-world context to the data, and it should
be easy for people familiar with soccer to understand. Displaying the
high-intensity runs (HIRs) as lines on this map is an intuitive way to
show the length and position of each run.

67

2. Interactivity: The ability to select and view one or multiple HIRs is a
allows users to customize the view based on their interest or needs.

Potential Use Cases

1. Player Performance: By observing the patterns and frequency of
HIRs, coaches, sports scientists, and players themselves can assess
a player’s physical output during a game [11]. For instance, they
might conclude that a player is most active during certain periods or
in specific areas of the field.

2. Positioning and Tactical Analysis: Coaches can analyze a player’s
positioning on the field. For example, if a player is a winger and the
HIRs are mostly concentrated along the sidelines, it indicates that the
player is sticking to their position. Conversely, if HIRs are scattered
all over the field, it might indicate a lack of positional discipline, or
it could signal a tactical approach requiring the player to cover more
areas.

3. Fitness and Injury Prevention: Medical staff can use this data to gauge
a player’s fitness and potential risk of injury [11]. If a player usually
performs a high number of HIRs but this number suddenly drops,
it might indicate fatigue, injury, or a lack of fitness. This data can
also help to tailor individual fitness programs, ensuring each player
is getting the right kind of training for their role and current physical
condition.

Animating a Session

To get a better overview of a player’s movement, a real-time animation of
the player’s movement throughout a session is created. The visualization
plots a red dot on the player’s position and then continuously updates as
time goes on. Once per second, the dot updates its position to the next
latitude-longitude pair found in the data. The visualization uses the raw
GPS data from the vests. Since the SATS sport vests gather data at 100 Hz,
a new dataframe is created where only one row per second is included,
meaning the visualization shows how the player moved in real-time.
Key Features

1. Real-Time Animation: The visualization uses a dynamic, real-time
approach to show player movement. This approach provides a con-
tinuous and intuitive representation of player movement throughout
the game, which static maps or charts may not fully capture.

2. GPS Data Utilization: The tool uses raw GPS data gathered at a
high frequency, providing accurate and granular data on the player’s
position. This high level of detail can offer valuable insights into the
player’s movements and positioning.

68

Figure 5.5: Still image of the session animation tool

3. User-Friendly: A red dot representing the player’s position is a
simple, clear visual element that most users should easily under-
stand. It helps to make the tool user-friendly and accessible.

4. Flexibility: The tool’s ability to display the player’s movement
throughout a session allows for flexibility. Users can choose to view
the entire session or focus on specific periods of interest.

5. Compatibility with Other Tools: If used in conjunction with the
previous visualization tool (satellite map showing HIRs), this tool
could provide a more comprehensive understanding of a player’s
performance, combining both high-intensity efforts and general
movement patterns.

Potential Use Cases

1. Player Movement and Tactics: The tool allows coaches and players
to see how a player moves throughout a game. This could lead to
insights about the player’s understanding of the game, their tactical
discipline, or their decision-making under pressure. For instance, a
player might be drifting out of their assigned position too often or
failing to make runs into space at the right time.

2. Effectiveness of Training: If the tool is used during training sessions,
it could help assess the effectiveness of different drills or training
methods. For example, if a training drill is designed to encourage
players to make more forward runs, but the visualization shows little
change in player behavior, the drill might need to be adjusted.

69

Heatmap

A heatmap is also created to give players and coaches a better overview
of where players spent the most amount of time during a session. The
visualization has two different options: it can show a heatmap for a single
player, or it can show the heatmap for an entire team.

Figure 5.6: Heatmap showing one player’s session

Key Features

1. Single Player and Team View: The tool offers the flexibility to view
data for a single player or for the entire team. This allows users
to analyze individual player behavior and overall team behavior,
offering a range of strategic and tactical insights.

2. Player Tendencies and Movement: On a per-player basis, the heat-
map can identify player tendencies and areas where the player is
most active. This can help understand a player’s role, their move-
ment patterns, and whether they’re adhering to tactical instructions.

3. User-Friendly Visual Representation: Heatmaps are an intuitive way
to represent density data. Areas with more activity are highlighted,
making it easy to see patterns and tendencies at a glance.

Potential Use Cases

1. Player Habits and Tendencies: By analyzing individual player
heatmaps, coaches and analysts can identify specific areas where
a player spends the majority of their time [71]. This can provide
insights into player tendencies and habits, and could potentially
reveal areas for improvement. For instance, a winger who tends to
drift centrally might need to focus on staying wider.

70

2. Tactical Effectiveness: Team heatmaps can be used to evaluate the
effectiveness of team tactics [71]. For example, a team trying to
implement a high-pressing strategy should ideally show a high
density of activity in the opposition’s half. If the heatmap shows
otherwise, it might indicate that the strategy isn’t being implemented
effectively.

3. Spatial Dominance: The tool can help in understanding which team
had spatial dominance in a game. For instance, if one team’s heatmap
shows a high density of activity in the opposition’s half, it could
indicate that they had control of the game.

5.2.2 Objective Trend Diagrams

Visualizations regarding objective data is also created to help players and
coaches gain more insight into a player’s form and performance.

GPS Metrics
The first chart, seen in Figure 5.7, shows the average total distance run for
each game. The plot can also display the total distance on a per-player
basis.

Figure 5.7: Chart showing average total distance ran for entire team for each game.

A chart showing the average number of High-Intensity Runs for the team
on a per-game basis is also created. From the charts in Figure 5.8 and
Figure ™5.7, it can be observed that the total distance run and the number
of HIRs are for the most part related, meaning that, in general, games where
they run longer distances also have more sprints.
The charts also share similar key features and potential use cases:
Key Features

1. Season-Long Overview: This visualization provides a holistic view
of a team’s physical output over an entire season. It allows for easy

71

comparison between matches and can highlight trends or anomalies.

2. Game-by-Game Comparison: This type of visualization allows for
easy comparison between individual games. This can highlight
particularly demanding matches or periods of the season.

Potential Use Cases

1. Monitoring Workload: Coaches and fitness staff can use this tool
to monitor the team’s workload over the season. If the average
running distance is consistently high, it might indicate a risk of
overtraining [51]. Conversely, a low average could suggest the team
is not being pushed enough physically.

2. Tactical Analysis: The average running distance and amount of HIRs
can reflect the team’s tactical approach. For example, a high average
might suggest a high-pressing or high-intensity style of play.

3. Preparation for Future Seasons: By looking at the running distances
and amount of HIRs from a previous season, a team can better
prepare for future seasons. For example, they might identify periods
of the season that were particularly demanding and plan their
training and player rotation strategies accordingly.

Figure 5.8: Chart showing average number of HIRs each game

GPS and Results
A bar chart showing the relationship between the results of games,
average total distance run, and the average number of HIRs are created to
potentially reveal relationships between the objective GPS data and game
results. In Figure 5.9, the average distance run is shown in km. As seen in
Figure 5.9, games the team lost have slightly lower average HIRs, while the

72

average total distance is about the same for all results. This information can
help coaches and players analyze game results and potentially help them
draw conclusions about what is going wrong when they lose games.

Figure 5.9: Chart showing average distance ran and average number of HIRs
grouped by results

Key Features

1. Multifaceted Analysis: This tool incorporates multiple variables in
one visualization, providing a comprehensive view of the team’s
performance.

2. Comparison Based on Game Results: By categorizing data based on
the result of the games (win, draw, loss), this visualization allows for
direct comparison of performance metrics across different outcomes.

Potential Use Cases

1. Understanding Game Performance: The visualization can help
coaches and players understand the physical demands and perform-
ance during different game results. This can guide tactical and train-
ing adjustments to improve future performance.

2. Identifying Performance Factors: If the number of HIRs is consist-
ently lower in games that the team loses, this could indicate that
higher intensity running is a key factor in the team’s success. The
team could then focus on improving fitness levels or adjusting tactics
to increase the number of HIRs.

73

5.2.3 Subjective Trend Diagrams

To obtain a better overview of trends, form, and performance over
an extended period, multiple different visualizations are created using
subjective performance data.

Subjective Performance Metrics
Firstly, a plot that displays the average subjective team performance for
each game is made. The goal of the visualization is to provide coaches with
an overview of the players’ mentality.

Figure 5.10: Chart showing average subjective team performance for every game

A more in-depth plot that displays subjective team performance, offensive
performance, and defensive performance is created. Here, coaches can
gain better insight into the players’ mentality, and the coaches can better
understand trends that might not be evident from only analyzing objective
results. For example, based on Figure 5.11, the coaches can conclude
that overall, over the two seasons, the players feel that the defensive
performance is worse than the offensive performance. In many games,
when the overall team performance was good, defensive performance was
rated poor or average. Based on this, coaches can conclude that they need
more work on the defensive side of the game.

74

Figure 5.11: Chart showing average overall, offensive and defensive performance
for every game

To gain even better insight into subjective game performance metrics, a
bar chart showing the average team, offensive, and defensive performance
for different results is created, as seen in Figure 5.12. This visualization
was created with the same overall goal as the line chart in Figure 5.11,
to gain better insight into the mentality of different player positions and
potentially find trends that can help coaches identify issues with the team’s
performance.

Figure 5.12: Chart showing average overall, offensive and defensive performance
grouped by results

The plots in Figure 5.10, 5.11 and 5.12, provide a comprehensive view of
the team’s performance from a subjective perspective. They are designed
to capture the players’ perceptions of their performance, both individually
and as a team. Since they have related goals, they also have related key
features and potential use cases.
Key Features

75

1. Team, Offensive, and Defensive Performance: The plots distinguish
between overall team performance and specific aspects of perform-
ance (offensive and defensive). This allows for a more nuanced un-
derstanding of the team’s strengths and weaknesses.

2. Comparison Based on Game Results: The bar chart categorizes data
based on the results of the games (win, draw, loss), allowing for
direct comparison of subjective performance metrics across different
outcomes.

Potential Use Cases

1. Understanding Team Mentality: By capturing the players’ subjective
assessments, these tools can provide insights into the team’s mental-
ity and morale. For example, a downward trend in subjective per-
formance might indicate a drop in confidence or morale, which could
prompt interventions to boost team spirit.

2. Identifying Tactical Issues: If players consistently rate their defensive
performance as worse than their offensive performance, this could
indicate tactical issues that need to be addressed in training.

Performance vs Goals
Plots showing goals scored vs. offensive team performance (Figure 5.13)
and goals conceded vs. defensive performance (Figure 5.14) are created
to get an even more detailed look into the mentality of the players.
Here, coaches should look for significant differences in goals scored and
offensive performance. If there are regularly low offensive scores while
many goals are scored, it can indicate that the players lack confidence in
themselves and their performance. The opposite can show that the players
are overconfident. The same can be said for defensive performance and
goals conceded.

Figure 5.13: Chart showing total number of goals scored and average offensive
performance for each game.

76

Figure 5.14: Chart showing Goals Conceded and defensive performance.

Key Features

1. Objective-Subjective Comparison: These plots juxtapose the sub-
jective performance evaluation by players (offensive and defensive)
against the objective measure of goals scored and conceded. This
provides a unique perspective on the players’ self-assessment relat-
ive to actual game outcomes.

2. Offensive and Defensive Analysis: These visualizations separate
offensive and defensive performances, allowing for a detailed view
of each aspect of the team’s game.

3. Discrepancy Identification: These plots are specifically designed to
identify significant discrepancies between subjective assessments and
objective results, which can highlight issues of overconfidence or lack
of self-belief.

Potential Use Cases

1. Confidence Assessment: These plots can help assess the confidence
level of the team. If players rate their performance high but the
team scores fewer goals or concedes more goals, it could indicate
overconfidence. Conversely, if the team scores many goals or
concedes few but players rate their performance low, it might indicate
a lack of self-confidence.

2. Tailored Training: By understanding the discrepancies between the
players’ subjective performance and objective outcomes, coaches can
tailor their training plans. For example, if the team scores many goals
but players lack confidence in their offensive performance, coaches
could incorporate activities that boost their confidence.

3. Feedback and Communication: These visualizations can serve as ex-
cellent tools for feedback and team communication. They can trigger
constructive conversations about discrepancies between perception
and reality, leading to a better understanding of performance and ex-
pectations.

77

5.3 Injury Prediction

In this section, we look at the results from the machine learning models
that predict injuries in soccer. We examine multiple machine learning
models, including Logistic Regression, Decision Tree, xGBoost, LSTM,
GRU, and ROCKET. By evaluating each model based on their ability to
accurately predict injuries, we aim to identify the most effective approach
for this task. We also analyze the impact of input windows, data sampling
techniques, and class imbalance on the performance of these models,
providing valuable insights into the factors influencing their success.

5.3.1 Logistic Regression

The best-performing Logistic Regression algorithm correctly predicts 7
out of 11 injuries (63.63%), while incorrectly predicting 27 non-injuries
as injuries as seen in Figure 5.15. The top performing logistic regression
models employ the ADASYN oversampling technique, with a sampling
ratio of 0.2. This results in a training dataset composed of 83% non-
injuries and 17% injuries. Among the top three performers, two utilize a
7-day input window for prediction, while the best performer uses a 4-day
input window. This demonstrates a clear preference for the smaller input
windows of 4 and 7 days.

Input window: 4
Interpolate injuries: False
Test Size: 0.2
Oversample Mode: adasyn
Sampling Ratio: 0.2
Majority class size: 83.3402%
Accuracy: 0.9897%
Precision: 0.2058
Recall: 0.6363
F1: 0.3111

Predicted
Actual Injuries Non-Injuries

Actual Injuries 7 4

Actual Non-Injuries 27 2975

Figure 5.15: Logistic Regression top performer

5.3.2 Decision Tree

Figure 5.16 show that the Decision Tree model performs worse than
Logistic Regression, correctly predicting 3 out of 11 injuries (28.3%),
while wrongly predicting 8 non-injuries as injuries. Interestingly, the

78

top-performing decision tree does not employ any models to address
class imbalance, resulting in the injury class comprising only 0.01% of
the training dataset. The second and third best performers use random
oversampling to address the class imbalance, but they do not end up
getting any better predicting results, with both managing to predict 28%
and 23% of the injuries. The top 3 performers all utilize a 7-day input
window.

Input widow: 7
Interpolate injuries: True
Test Size: 0.2
Oversample Mode: none
Sampling Ratio: 0.4
Majority class size: 0.9963%
Precision: 0.3333
Recall: 0.2727
F1: 0.3

Predicted
Actual Injuries Non-Injuries

Actual Injuries 3 8

Actual Non-Injuries 6 2979

Figure 5.16: Decision Tree top performer

5.3.3 xGBoost

The xGBoost model demonstrates a clear preference for random over-
sampling as its method for addressing the class imbalance, as it is used in
all its top performers. The same applies to the 7-day input window. All the
top performers also show a strong preference for a more balanced dataset,
with the minority class in the training dataset constituting 26%, compared
to the 0.01% used in Logistic Regression and Decision Tree models. The
xGBoost model correctly predicts 4 out of 12 injuries (25%), while wrongly
predicting 6 non-injuries as injuries as seen in Figure 5.17.

5.3.4 LSTM

The LSTM model is the first to show a preference for the smaller input
window of 4 days, with all of its top performers using this input
window. Once again, the ADASYN method is favored for addressing class
imbalance, being employed by all the top performers. From Figure5.18
we see that the best LSTM model successfully predicts 6 out of 16 injuries
(37.5%), while wrongly predicting 10 non-injuries as injuries.

79

Input widow: 7
Interpolate injuries: True
Test Size: 0.2
Oversample Mode: random oversample
Sampling Ratio: 0.2
Majority class size: 74.0770%
Precision: 0.4
Recall: 0.25
F1: 0.3077

Predicted
Actual Injuries Non-Injuries

Actual Injuries 4 12

Actual Non-Injuries 6 2974

Figure 5.17: xGBoost top performer

5.3.5 GRU

The GRU model also show a preference towards using the random
oversample method for handling class imbalance, using it in all of its top
performers. It also prefers the 4 day input window, using it in all the top
performers. The best performing GRU model correctly predicts 7 out of 16
injuries (43.75%), while wrongly predicting 13 non-injuries as injuries, as
we can see in Figure 5.19.

5.3.6 ROCKET

The ROCKET model shows a preference for ADASYN, with all the top
performers using it. The same can be said for the 7-day input window.
Overall, the best run of the model, seen in Figure 5.20, correctly predicts
5 out of 11 injuries (45.5%), while wrongly predicting 7 non-injuries as
injuries. Overall, it is by far the best performing model in terms of F1 score.

5.3.7 Discussion of Results

From the results, the best performing models in terms of F1 score is the
ROCKET model. ROCKET generates features using random convolutional
kernels, which are then fed into a linear classifier such as ridge regression
or logistic regression. It is based on Convolutional Neural Network (CNN)
technology. The main difference between ROCKET and a traditional CNN
is that the convolutional kernels in ROCKET are generated randomly and
are not learned from the data. Instead, the model uses these kernels
to transform time series data into features that can be used by a linear
classifier, such as logistic regression or ridge regression[21]. Meaning that
is more light weight than traditional CNNs and RNNs like LSTM and GRU.

80

Input window: 4
Interpolate injuries: True
Test Size: 0.2
Oversample Mode: adasyn
Sampling Ratio: 0.2
Majority class size: 83.2870%
Accuracy: 0.9934
Precision: 0.375
Recall: 0.0375
F1: 0.375

Predicted
Actual Injuries Non-Injuries

Actual Injuries 6 10

Actual Non-Injuries 10 2987

Figure 5.18: LSTM top performer

This might also explain why it outperformed the more complex models of
LSTM and GRU. As ROCKET uses a simple linear model for classification,
it is less prone to overfitting compared to more complex models like LSTM
or GRU [21].

Overall, we conclude that for this specific dataset, the ROCKET model,
with a 7-day input window, is the best at predicting injuries, correctly
predicting 5 out of 11 injuries, wrongly predicting 6 injuries as non-injuries,
wrongly predicting 7 non-injuries as injuries, and correctly predicting 2978
non-injuries as non-injuries.

The ROCKET model is the best when it comes to F1 score, but it is also best
for real-life use cases. It is much more light weight than the second best
performing model, LSTM. And therefor faster and less computationally
expensive to use and implement on a large scale.

Although the GRU and LSTM models are both RNNs, that aim to address
the vanishing gradient problem, there are key differences that can lead to
GRUs outperforming LSTMs in certain situations. GRUs may outperform
LSTMs due to their simpler architecture with fewer gates, leading to
reduced parameters, faster training times, and better generalization in
certain situations and their computational efficiency allows for improved
performance when training on long sequences or with limited resources.

Logistic Regression, Decision Trees, and xGBoost models perform relat-
ively poorly in comparison to the LSTM, GRU and ROCKET. However,
it is worth noting that the Logistic Regression model predicts the most in-

81

Input window: 4
Interpolate injuries: True
Test Size: 0.2
Learning rate: 0.01
Oversample Mode: random oversample
Sampling Ratio: 0.2
Majority class size: 74.0775%
Accuracy: 0.9926
Precision: 0.35
Recall: 0.4375
F1: 0.3889

Predicted
Actual Injuries Non-Injuries

Actual Injuries 7 9

Actual Non-Injuries 13 2984

Figure 5.19: GRU top perfromer

juries at 63% of the injuries correctly predicted as injuries, but it is also the
model that wrongly predicts the most amount of injuries, meaning that the
model would not be optimal in practice. The differences in performance
among these models can be attributed to their inherent strengths and limit-
ations when handling time series data. RNN-based models, such as LSTM
and GRU, are generally better suited for capturing temporal dependencies
in sequence data, which is essential for injury predicting [83]. In contrast,
models like Logistic Regression, Decision Tree, and xGBoost might be less
capable of capturing these temporal patterns, leading to reduced perform-
ance in injury prediction.

Given the success of the ROCKET model, it’s worth considering that Con-
volutional Neural Networks (CNNs) can produce good results. Imple-
menting a CNN, such as a Temporal Convolutional Network (TCN), might
produced good results. Traditionally, CNNs are used for image and video
processing, while Recurrent Neural Networks (RNNs) are more optimized
for time series data [27]. In this study, RNNs were prioritized. However,
for potential future work, the application of CNNs should be considered.

Looking at the results also reveals a clear preference toward the smaller
input windows of 4 and 7 days. Not a single model preferred the 30-day
input window, for any of its top performers. This is likely because using
the 30-day input window introduces too much noise and irrelevant data.
Looking back at our results, testing using more, and smaller input windows
could increase performance.

82

Input window: 7
Interpolate injuries: True
Test Size: 0.2
Oversample Mode: adasyn
Sampling Ratio: 0.2
Majority class size: 83.2113%
Accuracy: 0.9956
Precision: 0.4167
Recall: 0.4545
F1: 0.4347

Predicted
Actual Injuries Non-Injuries

Actual Injuries 5 6

Actual Non-Injuries 7 2978

Figure 5.20: ROCKET top performer

Another interesting finding from the results is the discrepancy between
high accuracy and a low F1 score in our model’s results. This comes as
a result of the imbalanced dataset. The models achieve high accuracy by
simply predicting the majority class most of the time. Simply predicting not
injured every time results in an accuracy of 0.99. However, this approach
results in a low F1 score because the minority class is largely or completely
overlooked, leading to low precision and/or recall. Since the dataset is so
imbalanced, the accuracy is irrelevant for evaluating the models.

Examining the results of our study in comparison to those obtained by
Rossi et al. [78], it is evident that our performance is lower. The key
advantage that Rossi et al. have is a superior dataset that includes
personal player data such as age, weight, and height. Additionally, their
injury dataset is more comprehensive, with injuries categorized as either
muscle injuries or impact injuries. Interestingly, our results show that the
decision tree model is one of the worst performing models. Based on this
observation, one could speculate that implementing a ROCKET model with
a better dataset, similar to the one used by Rossi et al. [78], could potentially
lead to the development of a model that can reliably predict injuries. This
highlights the importance of having high-quality data when developing
machine learning models and suggests that further improvements in injury
prediction may be possible with the right data.

Looking at this from a bigger perspective, it is clear that further work
needs to be done to draw any clear conclusions about the possibilities of
predicting injuries using GPS data. But based on our findings, and the
work done by Rossi et al., a study where a deep learning model, paired

83

Model Input window Sample mode F1

ROCKET 7 days ADASYN 0.4348

GRU 4 days Random Oversample 0.3889

LSTM 4 days ADASYN 0.375

Logistic Regression 7 days ADASYN 0.3111

xGBoost 7 days Random Oversample 0.3076

Decision tree 7 days None 0.3

Table 5.1: Combined result from the top performing models, sorted based
on F1 score

with a large and well-made dataset, might produce promising results.

5.4 Chapter Summary

This chapter focuses on the results of our experiments. First, the results
from stationary and seasonality tests done on the Session and HIR datasets
are discussed. We conclude that there is no seasonality in the datasets,
and that the datasets are stationary. We then look at feature correlation
for the datasets. Correlation matrices are generated from the Session
and HIR datasets. It reveals no significant correlations in the session
dataset, particularly between Metabolic power and other variables due to
differing energy systems in use, whereas in the HIR dataset, there is a clear
correlation between duration and total distance, with no other noteworthy
linear relationships.

The visualization tools are then explained, for each tool, key features
and potential use cases are discussed. Heatmaps and trend diagrams are
used to assess player habits, tactical effectiveness, and spatial dominance
based on GPS metrics. These tools also facilitate the comparison of
average total distances run and High-Intensity Runs (HIRs) on a game-
by-game basis, potentially highlighting overtraining or a lack of physical
exertion. Objective performance data is juxtaposed with subjective
performance metrics, offering insight into the players’ mentality, perceived
performance, and potential discrepancies between actual and perceived
performance. The identification of these gaps provides opportunities for
tailored training programs, improved feedback, and a better understanding
of team performance and expectations.

84

Lastly, we examine the effectiveness of various machine learning models,
such as Logistic Regression, Decision Tree, xGBoost, LSTM, GRU, and
ROCKET, in predicting injuries in soccer. Each model is evaluated based
on its ability to accurately predict injuries. ROCKET is found to be the
best performing model. Notably, LSTM, GRU and ROCKET outperform,
Logistic Regression, Decision Trees, and xGBoost, primarily due to their
superior ability to capture temporal dependencies in sequence data. The
study also highlights the importance of high-quality data for improving
injury prediction accuracy. In conclusion, while the study provides
promising insights, further research is required to make robust conclusions
on injury prediction using GPS data. The next chapter discusses some of
the limitations of the dataset, before we discuss our main contributions,
limitation of our work and future work.

85

Chapter 6

Discussion

6.1 Revisiting the Problem Statement

In this section, we revisit the problem statement and research objectives
defined in Chapter 1. We discuss the implementation of each research
objective and assess if we effectively address the problem statement.

RO1: Effectively extract relevant features from raw GPS data to obtain
features more suitable for performance and injury analysis.
Using feature extraction and engineering techniques, we effectively extract
features from the raw GPS data. Before extracting the features, we clean
the raw data to remove erroneous entries. We implement multiple filters:
removing data points with latitude and longitude values of 0, eliminating
data points with horizontal accuracy exceeding 3, horizontal dilution of
precision exceeding 10, and discarding data points with GPS signal quality
below 100.

The extracted features divide into two separate data sets. The Session
data set contains features on a per-player-per-session basis, including Date,
session ID, player name, duration, total distance, average speed, top speed,
metabolic power, and number of high-intensity runs. We calculate the
total distance using the haversine formula, average speed by averaging
the player’s speed throughout a session, and top speed by recording the
highest speed value within a session. Metabolic power is calculated using
the respective formula, and the number of high-intensity runs is derived
from occurrences in the HIR data set.

The HIR data set consists of features on a per-sprint basis, encompassing
every high-intensity run (speed > 5.5m/s, duration > 1s) from every
session for each player. It includes Date, session ID, player name, latitude
and longitude of the starting position, latitude and longitude of the end
position, duration, distance, top speed, and average speed. We save the
starting and ending position coordinates and calculate the duration using
the stored timestamps for HIR initiation and completion. Total distance
is determined using the Haversine formula. Top speed is recorded as

86

the maximum speed value, and average speed for a HIR is computed by
averaging all speed values occurring within the sprint.

We successfully implement functions to effectively extract relevant features
from raw GPS data. The extracted data proves to be relevant for
performance and injury analysis as we address the remaining research
questions.

RO2: Create visualizations using features extracted in RO1, subjective
data from the SoccerMon dataset, and match results.
We create multiple visualization tools using features extracted in RO1,
subjective data from the SoccerMon dataset, and match results. We develop
three visualization tools that leverage satellite imagery in conjunction
with data from the HIR dataset and raw GPS data. Additionally, we
create four visualization tools utilizing the data from the Session dataset
and match results. Lastly, we develop four different visualization tools
that incorporate subjective performance data in conjunction with match
results. The visualization tools created have multiple use cases and yield
interesting findings.

RO3: Implement machine learning models to predict injuries based on
the features extracted in RO1.
We implement six different machine learning models to predict injuries,
using the Session dataset as training data. The models we employ are
Logistic Regression, Decision Tree, XGBoost, LSTM, GRU, and ROCKET.
The ROCKET model performs the best, with a Precision of 0.0.4167 and
a Recall of 0.4545, correctly forecasting 5 out of 1 injuries. We manage to
implement machine learning models that can predict injuries to a certain
extent.

Can GPS data effectively analyze performance and injuries in profes-
sional female soccer?
Based on the research objectives, the answer to the research question is
twofold. Can GPS data effectively analyze performance in professional
female soccer? Yes, based on the findings from Objective 2 (RO2), we
can conclude that GPS data is capable of analyzing performance. By
combining GPS data visualization with results and subjective data, we
observe a correlation between GPS data and performance. Furthermore,
the visualization of GPS data offers numerous useful applications for
players, coaches, and other staff members.

However, the second part of the research question, which focuses on
whether GPS data can effectively analyze injuries in professional female
soccer, does not yield as promising results. According to our injury
forecasting models, we cannot conclude that injuries can be predicted
solely based on GPS data. Nevertheless, this does not imply a complete
absence of correlation between GPS data and injuries. Further research

87

exploring the relationship between GPS data and injuries could potentially
yield interesting results.

6.2 Contributions

In this thesis, our major scientific contribution is answering the problem
statement as introduced in Chapter 1. Above in Section 6.1, we elaborate
on how we are able to answer this question through three research object-
ives. However, we also make other significant contributions such as: de-
veloping a comprehensive and adaptable feature extraction tool, making
the extracted datasets publicly available, creating user-friendly visualiza-
tion tools, implementing ready-to-use machine learning models with class
imbalance handling, and integrating our work into the Soccer Dashboard.
These achievements expand our understanding of the relationship between
GPS data, subjective performance data, and injury prediction, and provide
valuable resources for future researchers, players, and coaches.

All the code used in our research is publicly available through GitHub,
providing other students and researchers with the opportunity to use
and modify our work for their projects. The code is written to be easily
modifiable and adaptable to new data or alternative purposes, encouraging
collaboration and further advancements in the field. The code is published
to GitHub (https://github.com/simula/pmsys).

• Feature extraction tool: We develop an effective feature extraction
tool that can process multiple files and create new datasets. The
tool is easily accessible through Jupyter Notebooks and is designed
for user-friendliness. Even individuals with minimal programming
knowledge can add new features or modify filters to extract data
more effectively. The tool’s flexibility allows for easy adjustments,
such as changing the data extraction rate or implementing more
stringent or lenient filters.

• Publicly available datasets: The datasets generated using the
feature extraction tool are uploaded to a MySQL database, making
them accessible to fellow master’s students, researchers at Simula,
and future students. These datasets have numerous potential
applications, such as creating machine learning models that predict
readiness or other performance-related aspects, and developing more
in-depth visualization and analysis tools. They are already used
to build predictive models and offer a valuable resource for future
research.

• Visualization tools: We create a suite of visualization tools that are
easy to use, even for those without prior computer or data analysis
knowledge. These tools will be integrated into the Soccer Dashboard,
providing players, coaches, and staff with valuable insights to inform
the creation of training programs, athlete development, and mental

88

https://github.com/simula/pmsys

processes. The visualizations prove to be effective in helping users
uncover information that can aid in decision-making and overall
team performance.

• Ready-to-use ML implementation with class imbalance handling:
We implement preprocessing steps and multiple machine learning
algorithms for injury prediction. The publicly available Jupyter
Notebook includes preprocessing steps for merging datasets, creating
time series sequences, handling class imbalance using random
oversampling and undersampling, SMOTE, and ADASYN, and
implementing various machine learning models such as Logistic
regression, decision tree, xGBoost, LSTM, GRU, and ROCKET. As the
SoccerMon dataset continues to grow, the notebook can be utilized
for future work on predicting injuries with larger datasets or adapted
to accommodate entirely different datasets.

• Soccer Dashboard: The visualization tools we develop are incorpor-
ated into the Soccer Dashboard, which is currently under develop-
ment. This dashboard, designed for players, coaches, and staff, will
include features such as GPS playback of sessions, charts comparing
various metrics, and injury prediction tools. The integration of our
work into the Soccer Dashboard ensures that our research findings
and tools are readily accessible to those who can benefit from them
the most.

6.3 Limitations of the Dataset

In this section, we discuss some of the limitations of the SoccerMon dataset
that affect the results of this study. SoccerMon is an extensive dataset that
contains a vast amount of information about soccer. However, the dataset’s
quality, quantity, and regularity become a cause for concern. Despite the
significant amount of data, there still exist gaps in the dataset that need
addressing.

In this section, we delve into some of the more significant issues with the
SoccerMon dataset, such as the inconsistency of data points and the lack
of uniformity in data collection. We also explore how these issues impact
the possibilities presented in this thesis. By addressing these concerns, we
ensure that the dataset is reliable and accurate.

Moreover, it is essential to note that the availability of good data is critical
in any research project. Without reliable data, it becomes challenging to
draw meaningful conclusions and make informed decisions. Therefore, we
must take steps to ensure that the data is of high quality and consistent.
This not only benefits this paper but also has a positive impact on future
research on soccer.

89

6.3.1 Lack of Data

The dataset contains GPS data from June 2020 until December 2021,
while the subjective wellness dataset contains data from January 2020 to
December 2021. The dataset is composed of data from two different teams,
with a total of 49 different players appearing throughout the study. In total,
the dataset contains 10750 sessions, Team A players have 5285 while Team
B players have 4790 sessions. There is a wide range of how many sessions
each player registers. The player with the most registered sessions has 365
sessions over 1.5 years. At the other end of the list, 3 players register with
only 1 session. On average, each player registers 134 sessions over the year
and a half.

A big issue with the SoccerMon dataset is that the players do not enter the
subjective wellness data every day. There are a lot of subjective metrics that
players are supposed to enter into the PMSys app. Some of them are on a
daily basis, some after each session, and some only after each game. There
is a substantial difference between how consistent the players have been in
reporting in the app. Looking at a daily data point such as sleep quality,
we can see that the player with the most entries has 708 out of 730 possible
entries over the two years, while the player with the least entries only has
85 out of a total of 730. The mean entries for all the players are 338 of 730
possible. Not every player has been a part of the study from start to end,
so expecting everyone to have filled out the daily features every day for
the entire study is not feasible. But it still means that we lack about half of
the values for this and all the other daily subjective features. This includes
injuries.

The players do not consistently enter the per-game data either. For team
A, we register a total of 33 games. Out of those 33 games, it is possible to
get at least 363 data points if only 11 players register performance metrics
for each game. In total, the dataset contains 136 data points. For 15 out of
the 33 games, only 1 player enters subjective game performance. At the top
end, there are 2 games where 13 players enter subjective game performance
numbers. For team B, we register only 17 matches, where 11 of them have
data from only 1 player.

To comply with data regulations, the dataset is completely anonymized.
This means that the publicly available dataset lacks personal information
about the players, such as names, height, weight, and age. The latter three
are important factors when analyzing and predicting physiological data.
The playing positions of the players are also not publicly available.

6.3.2 Lack of Separation Between Contact and Non-Contact In-
juries

In the context of injury forecasting, not having a separation between contact
and non-contact injuries can have a significant impact on the forecasting

90

models. By nature, forecasting contact injuries based on GPS data is
impossible. The SoccerMon dataset does not separate between contact and
non-contact injuries in its dataset, meaning that when training the models,
contact injuries were included in the training data. This introduces a lot of
noise in the data and will make the models perform worse.

6.3.3 COVID-19 Period

The 2020 soccer season was unlike any other due to the COVID-19
pandemic. The season was compressed, with teams playing more games
in a shorter amount of time, which presented a unique challenge for
players and coaches alike. This compressed season also meant that findings
using data from the 2020 season may not necessarily carry over to other
normal seasons [19]. As a result, it is important to carefully consider the
implications of any research conducted using data from this season and to
ensure that conclusions drawn are applicable to future seasons.

Another notable impact of the COVID-19 pandemic on the 2020 female
soccer season was the absence of fans in the stadium. This may have
affected player performance, as the lack of support and cheering from fans
could impact motivation and energy levels on the field [54]. Additionally,
the pandemic itself may have had long-lasting physiological effects on
players, which could have affected both game and training performance.
Research has shown that COVID-19 can cause a range of physiological
symptoms, including respiratory issues, fatigue, and muscle weakness,
which could impact athletic performance [2].

In addition to the physical effects of COVID-19, the pandemic and
subsequent lockdowns may have had significant psychological impacts
on players. Research has shown that lockdowns and social distancing
measures can lead to increased levels of anxiety, depression, and stress,
which could impact subjective wellness data, such as sleep quality, stress
or fatigue [17]. These factors could have affected player motivation and
overall team performance throughout the 2020 season.

6.4 Limitations of the Study

6.4.1 Limited Scope to GPS Data: Exclusion of Accelerometer and
Gyroscope Data

This research confines its analysis to the GPS data extracted from the
comprehensive SoccerMon dataset. However, it is worth noting that
the dataset also comprises 3-Axis Accelerometer and Gyroscope data,
which could potentially enable a more nuanced understanding of the
athletes’ physical exertion. The incorporation of these sensors could lead
to the extraction of additional features, thereby enriching the dataset and
facilitating a more in-depth analysis.

91

6.4.2 Inability to Verify the Accuracy of Extracted Features

The credibility of the extracted features remains unconfirmed due to the
absence of a ground truth. The rigorous filters employed to eliminate
erroneous data consequently influence the extracted features. A parameter
such as total distance, for instance, could exhibit extreme variations,
ranging from 13km to 250km, based on the stringency of the filters.
While experimental research techniques are applied to fine tune the filters,
ensuring that the extracted features are sensible, their absolute accuracy
remains unverifiable.

6.4.3 Assumptions and Subjectivity in Visualization Tool Devel-
opment

The development of the visualization tools is primarily guided by personal
judgment due to the lack of specific information regarding the preferences
of the players and coaches who utilize the PMSys system. Consequently,
the visualizations created may not accurately reflect the desired parameters
of these end-users.

Furthermore, the tools are not presented to players, coaches, or sports
scientists for feedback, resulting in a lack of professional opinions on their
utility. Consequently, the conclusions drawn from these visualizations
may not align with the potential inferences of professional sports scientists,
coaches, players, or medical staff.

6.4.4 Model Selection Constraints

The timeline constraints of this research limit the number and diversity of
machine learning models tested. The models selected are based on several
criteria, including ease of use and architectural suitability. The implemen-
ted models are chosen either for comparison with similar studies, such as
the decision tree in Rossi et al. [78], or based on their potential effectiveness
for injury prediction, as suggested by prior studies. Consequently, sev-
eral potentially high-performing models, including but not limited to AR-
IMA, SARIMA, Transformer models, and Vector Autoregression, are not
included in this study.

6.5 Future Work

There are several avenues for future work that can build upon the
findings of this thesis. While our research makes significant strides, there
remain unanswered questions and potential improvements. Some of these
opportunities for future work include optimizing filters based on ground
truth, creating more visualizations with different data, and using deep
learning algorithms to predict injuries with larger and better datasets.

92

Optimize Filters Based on Ground Truth

Our research requires the implementation of filters to remove unreliable
GPS data. However, the stringency of these filters can greatly influence the
extracted features, such as total distance covered. Without a ground truth
to compare our processed results against, we cannot confidently determine
the most accurate filter parameters. Future work could involve conducting
a study where players are tracked using a more reliable method than GPS,
and comparing the results to data processed using different filters. This
would help confirm the optimal filters to apply during the filtering process.

Extract Different Features

Expanding the scope of data analysis in future work could involve
extracting different features from the SoccerMon dataset, particularly
focusing on accelerometer and gyroscope data. These sensor data could
provide a wealth of information about players’ movements and physical
states. Accelerometer data can be used to derive features related to the
intensity, frequency, and types of movements, such as jumps, collisions,
or changes in direction. Gyroscope data, on the other hand, can provide
insights into the angular velocity and orientation changes of players,
potentially identifying patterns linked to particular actions or events in
a match. Such additional features could enhance the predictive power
of the injury prediction model, as well as enrich the data available for
visualizations and performance analysis.

Create More Visualization Tools

Due to the strict anonymization of player and team data, our options
for creating visualization tools are limited. If additional data, such as
player positions or game-specific information like expected goals, become
available, more interesting and informative visualization tools could be
developed. Expanding the range of data used in visualizations would
provide users with more insights and help guide their decision-making.

Use Deep Learning Algorithms to Predict Injuries with Better Designed
Datasets

Our dataset has certain limitations, including a lack of data and potential
issues with data reliability. In future work, it would be interesting to
apply the machine learning algorithms and class imbalance models used
in this thesis to larger and higher-quality datasets. This would enable a
more comprehensive investigation into the effectiveness of deep learning
algorithms in predicting injuries and could lead to more accurate and
reliable models.

93

Forcast Injuries using CNNs

Building upon the success of the ROCKET model, future work could ex-
plore the application of Convolutional Neural Networks (CNNs). Similar
to the ROCKET model, CNNs employ convolutional layers, a feature that
enables them to effectively extract both local and global patterns inherent
in time series data. This capability aligns well with the demands of tasks
such as injury forecasting in soccer.

One distinct advantage of CNNs over the ROCKET model is their
proficiency in learning the most predictive features directly from data
through the use of trainable convolutional filters. This is a different from
the ROCKET approach, which leverages randomly generated kernels. As
such, the inherent adaptability of CNNs may allow for the extraction of
more meaningful and task-specific features, thereby leading to potential
enhancements in performance [28].

Multimodal Injury Prediction

The study’s injury prediction model was built solely from GPS data. Future
studies could incorporate other types of data into this model, such as player
medical histories, nutritional information, subjective wellness measures,
and match outcomes. This might lead to more comprehensive and accurate
injury prediction models.

6.6 Chapter Summary

In this chapter, we provide an overview of how we address the main
research question (problem statement) through 3 research objectives, and
the insights we derive in the process. We list the contributions of this
thesis, also including numerous research artifacts we make available to the
scientific community. We elaborate on the limitations of the SoccerMon
dataset, as well as discuss the limitations of our own work, and provide
suggestions on how potential future work can tackle some of these
challenges.

94

Chapter 7

Conclusions

In this thesis, we develop a pipeline for extracting features, visualizing
subjective wellness and performance data, objective GPS data and match
data, as well as forecasting injuries using GPS data from two Norwegian
female soccer teams. The pipeline begins with preprocessing the raw
data and extracting features to create a dataset for visualization and
model training. Before feature extraction, parameters establish, test, and
implement to filter out erroneous data from the raw GPS dataset. After
filtering, two new datasets create. The Session dataset, containing data on
a per-player-per-session basis, includes information about specific sessions
and relevant physical attributes such as distance run, top speed, metabolic
power, and more. The second dataset, High Intensity Run, consists of every
high intensity run (sprints with a speed > 5.5 m/s and duration > 1s). This
dataset contains metadata about the sprints, as well as physical attributes
like length, top speed, and so on. Creating these two datasets is the first
step toward generating visualizations and predicting injuries.

The second part of the pipeline involves visualization tools. We use a com-
bination of the datasets created in the first step, raw data, subjective per-
formance data, and game data to create insightful and useful visualization
tools that can be utilized by players, coaches, medical staff, and other team
personnel. We develop three tools using satellite imagery: one for visual-
izing high-intensity runs, one for animating a player’s position on the field
throughout a session, and one to show heatmaps for players and teams. We
also create multiple charts illustrating the relationship between subjective
game performance, objective GPS metrics, and match data. The Visualiza-
tion tools show potential for multiple different use cases, such as assisting
coaches in managing tactics based on player positions, helping players pre-
pare for higher intensity periods of seasons using trend chart of GPS data,
or assisting in assessing the mindset of player based on subjective perform-
ance data and results data.

The final step of our pipeline is forecasting injuries using machine learning
models. Several models are tested to identify the best-fitting model.
Logistic regression, decision tree, xGBoost, LSTM, GRU, and ROCKET

95

all implement and evaluate with multiple hyperparameters, including
different input windows for the time series. The results reveal that, for this
specific dataset, the ROCKET model performs best, with precision of 0.4167
and recall of 0.4545, correctly predicting 5 out of 11 injuries and correctly
predicting 2979 non-injuries as non-injuries, while incorrectly predicting 6
injuries as non-injuries and 7 non-injuries as injuries. Based on the result
we conclude that on this dataset, we cannot consistently predict injuries
using GPS data.

96

Bibliography

[1] Wesam Saleh A Al Attar and Mansour Abdullah Alshehri. ‘A
meta-analysis of meta-analyses of the effectiveness of FIFA injury
prevention programs in soccer’. In: Scandinavian Journal of Medicine
& Science in Sports 29.12 (2019), pp. 1846–1855.

[2] Yousef Alimohamadi, Mojtaba Sepandi, Maryam Taghdir and
Hadiseh Hosamirudsari. ‘Determine the most common clinical
symptoms in COVID-19 patients: a systematic review and meta-
analysis’. In: Journal of preventive medicine and hygiene 61.3 (2020),
E304.

[3] Jassim Almulla, Abdulrahman Takiddin and Mowafa Househ. ‘The
use of technology in tracking soccer players’ health performance: A
scoping review’. In: BMC Medical Informatics and Decision Making 20
(2020), pp. 1–10.

[4] Martin Anthony, Peter L Bartlett, Peter L Bartlett et al. Neural network
learning: Theoretical foundations. Vol. 9. cambridge university press
Cambridge, 1999.

[5] Apache Software Foundation. Apache Arrow. https : / / github . com/
apache/arrow. Accessed on: April 19, 2023. 2022.

[6] Horace B Barlow. ‘Unsupervised learning’. In: Neural computation 1.3
(1989), pp. 295–311.

[7] M Basyir, M Nasir, Suryati Suryati and Widdha Mellyssa. ‘Determ-
ination of nearest emergency service office using haversine formula
based on android platform’. In: EMITTER International Journal of En-
gineering Technology 5.2 (2017), pp. 270–278.

[8] Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert,
Yuyang Wang, Danielle Maddix, Caner Turkmen, Jan Gasthaus, Mi-
chael Bohlke-Schneider, David Salinas, Lorenzo Stella et al. ‘Deep
learning for time series forecasting: Tutorial and literature survey’.
In: ACM Computing Surveys 55.6 (2022), pp. 1–36.

[9] Paul S Bradley, William Sheldon, Blake Wooster, Peter Olsen, Paul
Boanas and Peter Krustrup. ‘High-intensity running in English FA
Premier League soccer matches’. In: Journal of sports sciences 27.2
(2009), pp. 159–168.

[10] Leo Breiman. ‘Random forests’. In: Machine learning 45 (2001), pp. 5–
32.

97

https://github.com/apache/arrow
https://github.com/apache/arrow

[11] Christopher Carling, Franck Le Gall and Gregory Dupont. ‘Analysis
of repeated high-intensity running performance in professional
soccer’. In: Journal of sports sciences 30.4 (2012), pp. 325–336.

[12] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall and W Philip
Kegelmeyer. ‘SMOTE: synthetic minority over-sampling technique’.
In: Journal of artificial intelligence research 16 (2002), pp. 321–357.

[13] Tianqi Chen and Carlos Guestrin. ‘Xgboost: A scalable tree boosting
system’. In: Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining. 2016, pp. 785–794.

[14] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan
Tang, Hyunsu Cho, Kailong Chen, Rory Mitchell, Ignacio Cano,
Tianyi Zhou et al. ‘Xgboost: extreme gradient boosting’. In: R package
version 0.4-2 1.4 (2015), pp. 1–4.

[15] Yin-Wong Cheung and Kon S Lai. ‘Lag order and critical values of
the augmented Dickey–Fuller test’. In: Journal of Business & Economic
Statistics 13.3 (1995), pp. 277–280.

[16] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho and Yoshua
Bengio. ‘Empirical evaluation of gated recurrent neural networks on
sequence modeling’. In: arXiv preprint arXiv:1412.3555 (2014).

[17] Walter Cullen, Gautam Gulati and Brendan D Kelly. ‘Mental health
in the COVID-19 pandemic’. In: QJM: An International Journal of
Medicine 113.5 (2020), pp. 311–312.

[18] Pádraig Cunningham, Matthieu Cord and Sarah Jane Delany. ‘Su-
pervised learning’. In: Machine learning techniques for multimedia: case
studies on organization and retrieval (2008), pp. 21–49.

[19] Marc Dauty, Pierre Menu and Alban Fouasson-Chailloux. ‘Effects of
the COVID-19 confinement period on physical conditions in young
elite soccer players.’ In: The Journal of sports medicine and physical
fitness 61.9 (2020), pp. 1252–1257.

[20] Decision Trees. Accessed: 2023-04-14. 2017. URL: https://www.xoriant.
com/sites/default/files/uploads/2017/08/Decision - Trees - modified -
1.png.

[21] Angus Dempster, François Petitjean and Geoffrey I Webb. ‘ROCKET:
exceptionally fast and accurate time series classification using ran-
dom convolutional kernels’. In: Data Mining and Knowledge Discovery
34.5 (2020), pp. 1454–1495.

[22] PE Di Prampero, S Fusi, Luigino Sepulcri, Jean-Benoıt Morin, Alain
Belli and Guglielmo Antonutto. ‘Sprint running: a new energetic
approach’. In: Journal of experimental Biology 208.14 (2005), pp. 2809–
2816.

[23] Valter Di Salvo, Warren Gregson, Greg Atkinson, P Tordoff and Barry
Drust. ‘Analysis of high intensity activity in Premier League soccer’.
In: International journal of sports medicine 30.03 (2009), pp. 205–212.

98

https://www.xoriant.com/sites/default/files/uploads/2017/08/Decision-Trees-modified-1.png
https://www.xoriant.com/sites/default/files/uploads/2017/08/Decision-Trees-modified-1.png
https://www.xoriant.com/sites/default/files/uploads/2017/08/Decision-Trees-modified-1.png

[24] Per K Enge. ‘The global positioning system: Signals, measurements,
and performance’. In: International Journal of Wireless Information
Networks 1 (1994), pp. 83–105.

[25] Jerome H Friedman. ‘Greedy function approximation: a gradient
boosting machine’. In: Annals of statistics (2001), pp. 1189–1232.

[26] Peter Goldsborough. ‘A tour of tensorflow’. In: arXiv preprint
arXiv:1610.01178 (2016).

[27] Wolfgang Groß, Sascha Lange, Joschka Bödecker and Manuel Blum.
‘Predicting Time Series with Space-Time Convolutional and Recur-
rent Neural Networks.’ In: ESANN. 2017.

[28] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir
Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang,
Jianfei Cai et al. ‘Recent advances in convolutional neural networks’.
In: Pattern recognition 77 (2018), pp. 354–377.

[29] Yonghao Gu, Yongfei Wang, Zhen Yang, Fei Xiong and Yimu Gao.
‘Multiple-features-based semisupervised clustering DDoS detection
method’. In: Mathematical Problems in Engineering 2017 (2017).

[30] Prashant Gupta. Decision trees in machine learning. Nov. 2017. URL:
https ://towardsdatascience .com/decision - trees - in -machine - learning-
641b9c4e8052.

[31] Kevin Gurney. An introduction to neural networks. CRC press, 1997.

[32] Shona L Halson. ‘Monitoring training load to understand fatigue in
athletes’. In: Sports medicine 44.2 (2014), pp. 139–147.

[33] Jiangang Hao and Tin Kam Ho. ‘Machine learning made easy: a
review of scikit-learn package in python programming language’. In:
Journal of Educational and Behavioral Statistics 44.3 (2019), pp. 348–361.

[34] Haibo He, Yang Bai, Edwardo A Garcia and Shutao Li. ‘ADASYN:
Adaptive synthetic sampling approach for imbalanced learning’. In:
2008 IEEE international joint conference on neural networks (IEEE world
congress on computational intelligence). IEEE. 2008, pp. 1322–1328.

[35] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt and
Bernhard Scholkopf. ‘Support vector machines’. In: IEEE Intelligent
Systems and their applications 13.4 (1998), pp. 18–28.

[36] Kotaro Hirasawa, Masanao Ohbayashi, Masaru Koga and Masaaki
Harada. ‘Forward propagation universal learning network’. In:
Proceedings of international conference on neural networks (ICNN’96).
Vol. 1. IEEE. 1996, pp. 353–358.

[37] Sepp Hochreiter and Jurgen Schmidhuber. ‘Long short-term memory’.
In: Neural computation 9.8 (1997), pp. 1735–1780.

[38] Catherine C Hood. ‘Comparison of time series characteristics for
seasonal adjustments from seats and x-12-arima’. In: ASA proceedings,
business and economic statistics section, alexandria, VA: ASA (2002).

99

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052

[39] David W Hosmer Jr, Stanley Lemeshow and Rodney X Sturdivant.
Applied logistic regression. Vol. 398. John Wiley & Sons, 2013.

[40] Mohammad Hossin and Md Nasir Sulaiman. ‘A review on eval-
uation metrics for data classification evaluations’. In: International
journal of data mining & knowledge management process 5.2 (2015), p. 1.

[41] Kenneth Howe and Margaret Eisenhart. ‘Standards for qualitative
(and quantitative) research: A prolegomenon’. In: Educational re-
searcher 19.4 (1990), pp. 2–9.

[42] imbalanced-learn developers. imbalanced-learn: Over-sampling and
under-sampling in Python. Accessed: 2023-05-11. 2023. URL: https ://
imbalanced-learn.org/stable/.

[43] H Jabbar and Rafiqul Zaman Khan. ‘Methods to avoid over-fitting
and under-fitting in supervised machine learning (comparative
study)’. In: Computer Science, Communication and Instrumentation
Devices 70 (2015), pp. 163–172.

[44] Nathalie Japkowicz and Shaju Stephen. ‘The class imbalance prob-
lem: A systematic study’. In: Intelligent data analysis 6.5 (2002),
pp. 429–449.

[45] Bahzad Taha Jijo and Adnan Mohsin Abdulazeez. ‘Classification
based on decision tree algorithm for machine learning’. In: evaluation
6 (2021), p. 7.

[46] Håvard D Johansen, Dag Johansen, Tomas Kupka, Michael A Riegler
and Pål Halvorsen. ‘Scalable Infrastructure for Efficient Real-Time
Sports Analytics’. In: Companion Publication of the 2020 International
Conference on Multimodal Interaction. 2020, pp. 230–234.

[47] Håvard D Johansen, Svein Arne Pettersen, Pål Halvorsen and Dag
Johansen. ‘Combining Video and Player Telemetry for Evidence-
based Decisions in Soccer.’ In: icSPORTS. 2013, pp. 197–205.

[48] Jupyter Gmaps Developers. Jupyter Gmaps Documentation. https : / /
jupyter-gmaps.readthedocs.io/en/latest/. Accessed on: April 19, 2023.
2023.

[49] Alan B Krueger and David A Schkade. ‘The reliability of subjective
well-being measures’. In: Journal of public economics 92.8-9 (2008),
pp. 1833–1845.

[50] John O Ledyard. ‘of Experimental Research’. In: The handbook of
experimental economics 111 (2020).

[51] M Lehmann, P Baumgartl, C Wiesenack, A Seidel, H Baumann, S
Fischer, U Spöri, G Gendrisch, R Kaminski and J Keul. ‘Training-
overtraining: influence of a defined increase in training volume vs
training intensity on performance, catecholamines and some meta-
bolic parameters in experienced middle-and long-distance runners’.
In: European journal of applied physiology and occupational physiology 64
(1992), pp. 169–177.

100

https://imbalanced-learn.org/stable/
https://imbalanced-learn.org/stable/
https://jupyter-gmaps.readthedocs.io/en/latest/
https://jupyter-gmaps.readthedocs.io/en/latest/

[52] Guillaume Lemaıtre, Fernando Nogueira and Christos K Aridas.
‘Imbalanced-learn: A python toolbox to tackle the curse of imbal-
anced datasets in machine learning’. In: The Journal of Machine Learn-
ing Research 18.1 (2017), pp. 559–563.

[53] Geoffrey Lentner. ‘Shared memory high throughput computing with
apache arrow™’. In: Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines (learning). 2019,
pp. 1–2.

[54] Daniel Link and Gabriel Anzer. ‘How the COVID-19 pandemic has
changed the game of soccer’. In: International Journal of Sports Medicine
(2021), pp. 83–93.

[55] Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kaza-
kov, Jason Lines and Franz J Király. ‘sktime: A unified interface for
machine learning with time series’. In: arXiv preprint arXiv:1909.07872
(2019).

[56] Suresh Malodia, Nazrul Islam, Puneet Kaur and Amandeep Dhir.
‘Why do people use Artificial Intelligence (AI)-enabled voice assist-
ants?’ In: IEEE Transactions on Engineering Management (2021).

[57] Shane Malone, Adam Owen, Bruno Mendes, Brian Hughes, Kieran
Collins and Tim J Gabbett. ‘High-speed running and sprinting as
an injury risk factor in soccer: can well-developed physical qualities
reduce the risk?’ In: Journal of science and medicine in sport 21.3 (2018),
pp. 257–262.

[58] Wes McKinney et al. ‘pandas: a foundational Python library for data
analysis and statistics’. In: Python for high performance and scientific
computing 14.9 (2011), pp. 1–9.

[59] Cise Midoglu, Andreas Kjæreng Winther, Matthias Boeker, Susann
Dahl Pettersen, Sigurd Pedersen, Nourhan Ragab, Tomas Kupka,
Steven A. Hicks, Morten Bredsgaard Randers, Ramesh Jain, Håvard
J. Dagenborg, Svein Arne Pettersen, Dag Johansen, Michael A.
Riegler and Pål Halvorsen. SoccerMon, A Large-Scale Multivariate
Soccer Athlete Health, Performance, and Position Monitoring Dataset.
Open Science Framework (OSF). 2023. URL: https://doi.org/10.17605/
OSF.IO/URYZ9.

[60] Puneet Misra and Arun Singh Yadav. ‘Improving the classification
accuracy using recursive feature elimination with cross-validation’.
In: Int. J. Emerg. Technol 11.3 (2020), pp. 659–665.

[61] Roweida Mohammed, Jumanah Rawashdeh and Malak Abdullah.
‘Machine learning with oversampling and undersampling tech-
niques: overview study and experimental results’. In: 2020 11th inter-
national conference on information and communication systems (ICICS).
IEEE. 2020, pp. 243–248.

101

https://doi.org/10.17605/OSF.IO/URYZ9
https://doi.org/10.17605/OSF.IO/URYZ9

[62] Tareq Monawar, Shafayat Bin Mahmud and Avijit Hira. ‘Anti-theft
vehicle tracking and regaining system with automatic police notify-
ing using Haversine formula’. In: 2017 4th International Conference on
Advances in Electrical Engineering (ICAEE). IEEE. 2017, pp. 775–779.

[63] Neural Network. Accessed: 2023-04-14. 2017. URL: https : / / miro .
medium.com/v2/resize:fit:1400/format:webp/1*Gh5PS4R_A5drl5ebd_
gNrg@2x.png.

[64] Open Science Framework. OsF.io. https://osf.io/4znzp/. Accessed on:
April 19, 2023. 2023.

[65] Cristian Osgnach, Stefano Poser, Riccardo Bernardini, Roberto
Rinaldo and Pietro Enrico Di Prampero. ‘Energy cost and metabolic
power in elite soccer: a new match analysis approach’. In: Med Sci
Sports Exerc 42.1 (2010), pp. 170–178.

[66] Overfitting. Accessed: 2023-04-14. 2019. URL: https : / / media .
geeksforgeeks . org / wp - content / cdn - uploads / 20190523171258 /
overfitting_2.png.

[67] pandas developers. pandas: Powerful Python Data Analysis Toolkit.
Accessed: 2023-05-11. 2023. URL: https://pandas.pydata.org/.

[68] Georgia Papacharalampous, Hristos Tyralis and Demetris Koutsoyi-
annis. ‘One-step ahead forecasting of geophysical processes within a
purely statistical framework’. In: Geoscience Letters 5.1 (2018), pp. 1–
19.

[69] Dabal Pedamonti. ‘Comparison of non-linear activation functions for
deep neural networks on MNIST classification task’. In: arXiv preprint
arXiv:1804.02763 (2018).

[70] Sigurd Pedersen, Dag Johansen, Andrea Casolo, Morten B Randers,
Edvard H Sagelv, Boye Welde, Andreas Kjæreng Winther and Svein
Arne Pettersen. ‘Maximal strength, sprint, and jump performance in
high-level female football players are maintained with a customized
training program during the COVID-19 lockdown’. In: Frontiers in
Physiology 12 (2021), p. 623885.

[71] Charles Perin, Romain Vuillemot and Jean-Daniel Fekete. ‘Soccer-
Stories: A kick-off for visual soccer analysis’. In: IEEE transactions on
visualization and computer graphics 19.12 (2013), pp. 2506–2515.

[72] Svein A Pettersen, Håvard D Johansen, Ivan AM Baptista, Pål
Halvorsen and Dag Johansen. ‘Quantified soccer using positional
data: A case study’. In: Frontiers in physiology 9 (2018), p. 866.

[73] Ryan Herwan Dwi Putra, Herry Sujiani and Novi Safriadi. ‘Pen-
erapan Metode Haversine Formula Pada Sistem Informasi Geografis
Pengukuran Luas Tanah’. In: Jurnal Sistem dan Teknologi Informasi
(JUSTIN) Vol 1.1 (2015).

[74] Nourhan Ragab. ‘Soccer athlete performance prediction using time
series analysis’. MA thesis. OsloMet-storbyuniversitetet, 2022.

102

https://miro.medium.com/v2/resize:fit:1400/format:webp/1*Gh5PS4R_A5drl5ebd_gNrg@2x.png
https://miro.medium.com/v2/resize:fit:1400/format:webp/1*Gh5PS4R_A5drl5ebd_gNrg@2x.png
https://miro.medium.com/v2/resize:fit:1400/format:webp/1*Gh5PS4R_A5drl5ebd_gNrg@2x.png
https://osf.io/4znzp/
https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190523171258/overfitting_2.png
https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190523171258/overfitting_2.png
https://media.geeksforgeeks.org/wp-content/cdn-uploads/20190523171258/overfitting_2.png
https://pandas.pydata.org/

[75] Robert Rein and Daniel Memmert. ‘Big data and tactical analysis in
elite soccer: future challenges and opportunities for sports science’.
In: SpringerPlus 5.1 (2016), pp. 1–13.

[76] C Carl Robusto. ‘The cosine-haversine formula’. In: The American
Mathematical Monthly 64.1 (1957), pp. 38–40.

[77] Frank Rosenblatt. ‘The perceptron: a probabilistic model for inform-
ation storage and organization in the brain.’ In: Psychological review
65.6 (1958), p. 386.

[78] Alessio Rossi, Luca Pappalardo, Paolo Cintia, F Marcello Iaia, Javier
Fernández and Daniel Medina. ‘Effective injury forecasting in soccer
with GPS training data and machine learning’. In: PloS one 13.7
(2018), e0201264.

[79] Usha Ruby and Vamsidhar Yendapalli. ‘Binary cross entropy with
deep learning technique for image classification’. In: Int. J. Adv. Trends
Comput. Sci. Eng 9.10 (2020).

[80] Arthur L Samuel. ‘Machine learning’. In: The Technology Review 62.1
(1959), pp. 42–45.

[81] Anna E Saw, Luana C Main and Paul B Gastin. ‘Monitoring athletes
through self-report: factors influencing implementation’. In: Journal
of sports science & medicine 14.1 (2015), p. 137.

[82] scikit-learn developers. scikit-learn: Machine Learning in Python. Ac-
cessed: 2023-05-11. 2023. URL: https://scikit-learn.org/stable/.

[83] Alex Sherstinsky. ‘Fundamentals of recurrent neural network (RNN)
and long short-term memory (LSTM) network’. In: Physica D:
Nonlinear Phenomena 404 (2020), p. 132306.

[84] STATSports. STATSports: World Leading GPS Tracker Sports Perform-
ance Analysis. Accessed: 2023-04-11. 2023. URL: https : / / statsports .
com/.

[85] Ilya Sutskever, Oriol Vinyals and Quoc V. Le. Sequence to Sequence
Learning with Neural Networks. 2014. arXiv: 1409.3215 [cs.CL].

[86] Souhaib Ben Taieb, Gianluca Bontempi, Amir F Atiya and Antti Sor-
jamaa. ‘A review and comparison of strategies for multi-step ahead
time series forecasting based on the NN5 forecasting competition’.
In: Expert systems with applications 39.8 (2012), pp. 7067–7083.

[87] Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo,
Guillaume Androz, Chester Holtz, Marie Payne, Roman Yurchak,
Marc Rußwurm, Kushal Kolar et al. ‘Tslearn, a machine learning
toolkit for time series data’. In: The Journal of Machine Learning
Research 21.1 (2020), pp. 4686–4691.

[88] Dirk Tempelaar, Bart Rienties and Quan Nguyen. ‘Subjective data,
objective data and the role of bias in predictive modelling: Lessons
from a dispositional learning analytics application’. In: PLoS One 15.6
(2020), e0233977.

103

https://scikit-learn.org/stable/
https://statsports.com/
https://statsports.com/
https://arxiv.org/abs/1409.3215

[89] TensorFlow. TensorFlow: An end-to-end open source machine learning
platform. Accessed: 2023-05-11. 2023. URL: https : //www. tensorflow .
org/.

[90] Greg Van Houdt, Carlos Mosquera and Gonzalo Nápoles. ‘A review
on the long short-term memory model’. In: Artificial Intelligence
Review 53 (2020), pp. 5929–5955.

[91] Zhou Wang and Alan C Bovik. ‘Mean squared error: Love it or leave
it? A new look at signal fidelity measures’. In: IEEE signal processing
magazine 26.1 (2009), pp. 98–117.

[92] Theodor Wiik, Håvard D Johansen, Svein-Arne Pettersen, Ivan
Baptista, Tomas Kupka, Dag Johansen, Michael Riegler and Pål
Halvorsen. ‘Predicting peek readiness-to-train of soccer players
using long short-term memory recurrent neural networks’. In: 2019
International Conference on Content-Based Multimedia Indexing (CBMI).
IEEE. 2019, pp. 1–6.

[93] Rose Wiles, Graham Crow, Sue Heath and Vikki Charles. ‘Anonym-
ity and confidentiality’. In: (2008).

[94] Chris Wing. ‘Monitoring athlete load: Data collection methods and
practical recommendations’. In: Strength & Conditioning Journal 40.4
(2018), pp. 26–39.

[95] Xue Ying. ‘An overview of overfitting and its solutions’. In: Journal of
physics: Conference series. Vol. 1168. IOP Publishing. 2019, p. 022022.

[96] Zijun Zhang. ‘Improved adam optimizer for deep neural networks’.
In: 2018 IEEE/ACM 26th international symposium on quality of service
(IWQoS). Ieee. 2018, pp. 1–2.

104

https://www.tensorflow.org/
https://www.tensorflow.org/

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Scope and Limitations
	Research Methods
	Ethical Considerations
	Main Contributions
	Thesis Outline

	Background and Related Work
	Athlete Health and Performance Monitoring
	Wellness Reporting
	Training Load
	Injury and Illness
	Positional Data

	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Overfitting and Underfitting
	Logistic Regression
	Decision Trees
	xGBoost
	Neural Networks
	Recurrent Neural Networks (RNN)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Units (GRUs)
	ROCKET

	SoccerMon Dataset
	Collection Methods
	Contents

	Previous Work on Time Series Forecasting
	Machine Learning Approaches
	Deep Learning Approaches
	Multivariate and Multi-step Forecasting
	Readiness Forecasting using the SoccerMon Dataset

	Predicting Injuries using GPS Data
	Chapter Summary

	Methodology
	Proposed Pipeline
	Data Import
	Tools
	Data Structure
	Importing Data

	Data Preprocessing
	Feature Extraction
	Tools
	Session Dataset
	High Intensity Run Dataset

	Data Visualization
	Tools
	Choosing What to Visualize

	Injury Prediction
	Tools
	One-step Ahead Forecasting
	Creation of Training Dataset
	Machine Learning Models
	Hyperparameters
	Addressing Class Imbalance
	Training Scheme - Whole Team vs Player
	Evaluation Metrics
	Recall
	Confusion Matrix

	Chapter Summary

	Implementation
	Feature Extraction
	Import data from CSV files
	Filters and Sanity Checking
	Session Dataset
	HIR dataset
	Create MySQL Database for Availability

	Data Visualization
	Utilizing Satellite Imagery for Visualization
	Incorporation of Subjective Performance Data
	Gathering Game Results
	Extraction of GPS Data from Games

	Injury Prediction
	Preprocessing
	Implementing Class Imbalance Handling
	Hyperparameters
	Implementation of the Machine Learning Models

	Chapter Summary

	Results
	Feature Extraction
	Stationary and Seasonality Tests
	Dataset Feature Correlation

	Data Visualization
	Satellite Imagery
	Objective Trend Diagrams
	Subjective Trend Diagrams

	Injury Prediction
	Logistic Regression
	Decision Tree
	xGBoost
	LSTM
	GRU
	ROCKET
	Discussion of Results

	Chapter Summary

	Discussion
	Revisiting the Problem Statement
	Contributions
	Limitations of the Dataset
	Lack of Data
	Lack of Separation Between Contact and Non-Contact Injuries
	COVID-19 Period

	Limitations of the Study
	Limited Scope to GPS Data: Exclusion of Accelerometer and Gyroscope Data
	Inability to Verify the Accuracy of Extracted Features
	Assumptions and Subjectivity in Visualization Tool Development
	Model Selection Constraints

	Future Work
	Chapter Summary

	Conclusions

