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Abstract

This thesis focuses on the modeling of performance non-determinism in
Siddhi, a complex event processing system. The main objective is to assess
the sufficiency of the modeling methodology proposed by Kristansen
et al.[24] in capturing performance non-determinism. The research
methodology employed involves an investigation into the performance
non-determinism induced by cache memories.

The key findings of the study reveal that the time component of cache
memories significantly contributes to performance non-determinism in
event processing within Siddhi. This non-determinism can impact the
overall efficiency and reliability of the system. However, the proposed
modeling methodology does not adequately consider the time dimension,
highlighting a limitation in its applicability to model performance non-
determinism accurately.

Based on these findings, the conclusions drawn from this research suggest
that the existing modeling methodology needs to be extended to incorpo-
rate the time dimension.
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Chapter 1

Introduction

In the realm of distributed applications, a significant number of them
demand real-time or near-real-time processing of high volume and high
velocity data, as it flows from the periphery to the center of the system.
The data stream attributes precludes the data from being stored on disk
before analysis. Examples include: market feed processing and electronic
trading on financial markets[1]; Intrusion detection systems which analyze
network traffic in real-time to identify possible attacks[13]; ubiquitous
computing[25], such as environmental monitoring applications which
process raw data coming from wireless sensory networks (WSN)[6]; and
Internet of Things (IoT)[12].

To address these requirements, complex event processing (CEP) systems
have been developed. CEP systems enable the processing of data as it
flows through the system, allowing users to define new queries for complex
events while the system is operational. These queries can include filters,
aggregates, and correlation of data, providing system administrators with
the ability to notify interested parties about notable results, anomalies,
or significant findings. The development of CEP systems has greatly
enhanced the capabilities of real-time data analysis and decision-making
in diverse domains.[11]

In the classical architecture of CEP systems, event processing is performed
within a single node or cluster of tightly interconnected nodes. However,
certain CEP use-cases, such as automated traffic control and smart cities
need insights from large sets of data quickly to maintain continuous
situational awareness. This with the aim of reacting to certain events as
fast as possible. Event processing in a single CEP node struggles to meet
the speed requirement of real-time analytics demanded by these types of
use-cases[22].

In distributed CEP, complex event processing is performance across several
nodes[37, 22]. It enables the system to scale performance and handle higher
workloads in real-time. Additionally, it allows the system to perform in-
network processing. This can reduce the amount of data that has to be
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transferred through the network, which is especially important in networks
with bandwidth limitations, such as mobile networks and wireless sensory
networks. However, designing and implementing distributed systems
can be exceptionally challenging. The performance characteristics of
distributed applications are intricate, often plagued by “soft failures”
where the application produces correct results but experiences lower
throughput or higher latency than expected[17].

Identifying and troubleshooting performance problems can prove difficult
due to the intricate interplay among various components in a distributed
system. Performance issues in one area may manifest themselves else-
where, making it challenging to track down the root causes. Bottlenecks
can arise at different points along the data flow paths, including the appli-
cations themselves, the operating systems, the device drivers, the network
adapters on both sending and receiving hosts, as well as network compo-
nents like switches and routers[41].

Therefore, having a thorough understanding of the significant performance
pitfalls and considerations associated with designing distributed systems
is detrimental in one’s success. Being proactive and addressing these chal-
lenges beforehand can greatly benefit the development and deployment of
distributed systems. Simulation plays a vital role in this process by pro-
viding a platform to explore and evaluate various performance aspects of
distributed systems. By simulating different scenarios and configurations,
one can gain valuable insights into the potential performance issues and
make informed decisions to optimize system design and performance[21].
Thus, simulation serves as a valuable tool for mitigating risks and ensuring
the success of distributed system designs.

DCEP-Sim, an open distributed CEP framework built on ns-3[37], provides
a simulation framework to run large-scale experiments of distributed CEP
solutions. By utilizing DCEP-Sim, the overall cost and effort associated
with evaluating distributed CEP approaches can be significantly reduced.
This is particularly valuable since the proper evaluation of distributed CEP
approaches often require networks with several hundred nodes, making
real-world experiments unfeasible. However, DCEP-Sim is omitting one
substantial element in its simulations – the intra-node processing time[45].

Capturing the intra-node processing time is crucial in simulation studies
as it allows for a comprehensive assessment of event delivery latency.
If only network latency is considered and the intra-node processing
time is omitted, the simulation results would lack the processing delay
component, leading to inaccuracies in the estimated event delivery latency.
By including the intra-node processing time in simulations, researchers can
obtain a more realistic representation of the overall latency experienced by
events as they traverse the system. This enables more accurate evaluations
and insights into system performance and behavior.

Kristiansen et al.[24] presents a methodology for modeling the execution
of communication software in multi-threaded systems. The methodology
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has been used to successfully extend ns-3 to run accurate simulations of
wireless sensory networks by modeling the packet processing in motes[44].
Furthermore, in a demonstration by Volnes et. al[45], the methodology
was used to model the software execution of T-Rex, a prototype pub/sub
CEP server system, that was integrated into DCEP-Sim. It revealed that
processing delay introduced by software execution in T-Rex is up to several
times higher than transmission delay between nodes. This demonstration
showcased that the methodology is able to model software execution of
systems with higher complexity.

Nevertheless, T-Rex is more straightforward to model than modern
stream-processing engines in terms of programming language, system
architecture, and key properties such reliability, fault tolerance and quality
of service[45]. For instance, consider the complexity of a CEP system like
Siddhi[39]. The intra-node processing time encompasses multiple layers,
including the execution of Siddhi itself, the Java Virtual Machine (JVM),
and the underlying operating system. Each of these layers introduces
potential performance non-determinism, making it challenging to precisely
predict and control system behavior. In this thesis, however, the focus is
on investigating a specific known source of performance non-determinism,
namely cache memories[3].

1.1 Problem statement

The primary objective of this thesis is to improve our understanding of
how to model the performance non-determinism associated with event
processing in a modern CEP system called Siddhi. Specifically, the research
aims to investigate the relationship between wall clock time and non-
deterministic software execution, seeking to uncover any correlations or
dependencies between the two factors. By studying this relationship,
valuable insights can be gained into the impact of time on the variability
of software execution in CEP systems.

Additionally, the thesis intends to evaluate the modeling methodology
proposed by Kristiansen et al.[24] in the context of non-determinism. The
goal is to determine whether this existing methodology is limited in its
ability to effectively model non-determinism, and whether it should be
extended to address the unique challenges posed by performance non-
determinism in event processing. By identifying the limitations and
potential gaps in the current modeling methodology, the research aims to
contribute to the development of more comprehensive and accurate models
for non-deterministic software execution in CEP systems.

Research questions:

1. How can we effectively model the performance non-determinism of
event processing in Siddhi to enhance our understanding?

2. What is the correlation between wall clock time and non-deterministic
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software execution, and how does it impact the performance of Sid-
dhi?

3. To what extent is the modeling methodology proposed by Kristiansen
et al.[24] limited in representing non-determinism, and what poten-
tial extensions can be made to overcome these limitations?

1.2 Methodology and approach

To address the research questions and account for the complexity of the
application and its execution environment, we follow an empirical method
of observation, experimentation, and data analysis. This approach allows
us to assess the impact of caching on event processing time in Siddhi.

In multi-programming environments, where multiple processes running
concurrently[40], caching is known to cause non-deterministic behavior
due to the time component of processes competing for its resources. To
expose caching behavior, we subject Siddhi to a stream of events consisting
of multiple short bursts. Our results demonstrate that when Siddhi
processes a burst of events, the initial events within the burst experience
significantly longer processing times compared to the subsequent events.
This behavior is much like the execution pattern commonly observed in
cache misses, followed by a sequence of cache hits.

We have devised a methodology to isolate and analyze the impact of
caching on event processing, due to the high complexity of Siddhi
and the execution environment. This methodology entails an iterative
process that involves instrumentation, human investigation of trace files,
evaluation of process non-determinism, and system tuning. Through this
iterative approach, we strive to achieve a satisfactory level of performance
determinism, allowing us to design an accurate software execution model
that captures the caching behavior effectively.

1.3 Contributions

This thesis contributes valuable insights into the realm of performance
non-determinism in event processing within the Siddhi stream processing
engine. These insights encompass comprehensive assessments of the
impact of various system attributes, including garbage collection, just-
in-time compilation, paging, dynamic voltage and frequency scaling,
and caching, on event processing. These assessments consider both the
relationship between these attributes and performance non-determinism.

The obtained insights provide descriptive characterizations of the behavior
of event processing resulting from the interplay of these system attributes.
By shedding light on the effects of these factors on performance, the thesis
enhances our understanding of the complexities and challenges associated
with performance non-determinism in event processing in modern CEP
systems.
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Additionally, the thesis presents an effective methodology for fine-tuning
the execution environment, specifically addressing performance non-
determinism. This methodology enables the creation of an optimal
environment for modeling purposes, allowing for accurate and detailed
investigation of performance non-determinism. By providing a systematic
approach for fine-tuning the execution environment, the thesis equips
researchers with a valuable tool for conducting further studies and
analyzes related to performance non-determinism in event processing.

1.4 Outline

The thesis is organized into several chapters, each addressing specific
aspects of the research. The structure of the thesis is as follows:

Chapter 1: This chapter serves as an introduction, presenting the problem
statement, outlining the methodology employed in the research, and
summarizing the contributions of the thesis.

Chapter 2: In this chapter, a comprehensive background is provided on
the modeling methodology proposed by Kristiansen et al.[24] as well as
complex event processing. This background sets the foundation for the
subsequent chapters.

Chapter 3: This chapter delves into the methodology used to evaluate the
impact of caching on event processing. It covers various aspects, including
the application under test, the instrumentation techniques employed, and
the tracing framework utilized.

Chapter 4: Rigorous experimentation is conducted in this chapter to
provide a detailed analysis of performance non-determinism in event
processing. The findings and insights gained from these experiments are
presented and discussed.

Chapter 5: The final chapter presents the conclusive results of the research.
It reflects on the conducted research, summarizes the key findings, and
provides suggestions for future work, thereby concluding the thesis.

By following this structured approach, the thesis systematically progresses
from the introduction to the background, methodology, analysis, and
ultimately, the conclusion, ensuring a comprehensive exploration of the
research topic.
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Chapter 2

Background

In this chapter, we establish a strong foundation by exploring the modeling
methodology proposed by Kristiansen et al.[24] and CEP technology. Sec-
tion 2.1 introduces the fundamental concepts and abstractions of the mod-
eling methodology. We delve into the iterative modeling process, which
have drawn inspiration from to design our own approach. Additionally,
we examine how the methodology evaluates its models and highlight suc-
cess stories where it has been effectively utilized.

Moving forward, Section 2.2 focuses on CEP, which serves as the core
technology in Siddhi. Gaining a deep understanding of its principles is
crucial for comprehending the intricate nature of the system. We explore
key principles, such as events and their relationships, as well as event
patterns, rules, and constraints. Moreover, we explore event hierarchies
and views, providing a comprehensive overview of this domain.

By thoroughly examining both the modeling methodology and complex
event processing, we lay a solid groundwork for our research

Disclaimer: The word “event” is heavily used in the Section 2.1 and 2.2. The
word in each of these sections refer to completely different concepts. In the
modeling methodology, an “event” correspond to instructions that impact
execution flow according to context[24], i.e. the state of shared resources
and threads. Whereas in the section about CEP, an “event” refers to a
computational object that is a record of an activity in a system[27].

2.1 The modeling methodology

The modeling methodology defined by Kristiansen et al.[24] describes how
to use traces from real systems to create execution models. One of the
strong suits of this methodology is that the models are reusable. They
are only required to be created once, and can later be integrated with
other simulators. The methodology has previously been used to model
execution of communication software on mobile devices such as Galaxy
Nexus, Google Nexus, and Nokia N900.
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The basis of this methodology is a set of high-level abstractions and event
definitions. These abstractions facilitate modeling of a wide range of device
types and may even be extended to new types of software and hardware
when desired. The methodology also provides design principles on how
to extend discrete event network simulators. It separates the modeling
of devices from the process of extending a network simulator with new
device types. Following these two principles results in models that are
independent of network simulators, which reduces the overall modeling
effort. Instead of having to create a model of the same device multiple
times, the device models can be distributed and reused in other discrete
event network simulators, given that the simulator provides a well-defined
extension.

The models created are defined by high-level statements, enabling repa-
rameterization and allowing alternative compositions of models. These
types of configurations all impact the simulation results to some degree,
and this level of modularity of Service Execution Model (SEM) definitions
encourages low-effort studies on the impacts of modifications. The over-
all goal of the modeling methodology is to create models that predict the
impact of protocol processing on system performance.

2.1.1 Core concepts and challenges

In this section, we cover the core concepts and abstractions given in [24]:
events, execution units, services, execution context and behavior, and processing
stages. Then we examine how the methodology measures packet processing
delays.

The methodology is designed to model the execution of communication
software in multi-threaded systems. Operating system design and com-
puter architecture make describing software execution in multi-threaded
systems a challenging task. Multi-threaded systems may have separate
physical execution units executing software in parallel, such as the CPU,
DMA controller and NIC. Examples are the CPU running software on mul-
tiple cores, or the DMA controller handling multiple DMA transfers simul-
taneously, or the NIC receiving data from memory in parallel. The method-
ology has to take into account that threads and interrupt handlers share
CPU time, and execute the software in a serialized manner. Furthermore,
software execution in multi-threaded systems are impacted by the com-
plex communication and synchronization behaviors of threads, and these
behaviors are depended on the execution context.

The execution behavior of the communication software is described
through (1) the events that impact the execution flow of the program, (2) the
processing durations of the protocol services, (3) the interactions between
services, and (4) the impact of execution context.

To create the models of communication software, it is crucial to determine
which events describe the program execution, and then capture these
events. Determining events is part of the stage of system analysis which we
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expand on later. Three important abstractions of multi-threaded dynamics
are used to determine events. They are the following: (1) execution units,
(2) services, and (3) behavior and context.

Abstractions of multi-threaded dynamics

Execution units are a high level abstraction of software execution in a
multi-threaded system. There are two types of execution units: Physical
Execution Units (PEUs) and Logical Execution Units (LEUs). The PEUs
represent the hardware executing the communication software. The LEUs
are the threads and interrupts in the operating system. The operating
system assigns programs to run inside LEUs. It also schedules the LEUs
execution, and provides communication between individual LEUs. After
the OS activates an LEU, it dispatches the LEU for execution at some later
point in time. Interrupts are activated by PEUs, while threads are activated
by LEUs.

Services are an abstraction of software running within LEUs. The services
are separate modules assigned to perform particular tasks. They are
implemented by a special function, which calls other functions either
directly or indirectly from within itself. The only functions that cannot
be called from a function implementing a service, are functions that
implement other services, i.e. other special functions. Services are
communicating through LEU-requests. The methodology defines two
types of LEU requests: intra- and inter-LEU request. An intra-LEU request
is a function call from a service running within the same LEU, and an inter-
LEU request is a function call to a service running within another LEU.
Inter-LEU requests are passed via a queue to the targeted service.

Behavior and context are abstractions of the variations in service execution.
The context is the part of the state that affects the service, while the behavior
is the sequence of instructions executed by the service under a given
context. A service can exhibit a number of behaviors less than or equal
to the number of contexts it may execute under.

The program flow within individual services are determined by branching
instructions and processing durations. The overall program flow of
the multi-threaded system is determined by the synchronization and
communication between services running in separate execution units.

Certain conditions in the system affect the service behavior in various
ways. These sets of conditions are called execution contexts. To model the
service effectively, we need to trace all relevant execution contexts of the
targeted service. An execution context is set by the packet characteristics,
the state of queues in the system, and the protocol state. The state of the
threads is included in the execution context for multi-threaded systems.

Packets characteristics such as packet size and type can impact software
execution, for instance large packets may take longer time to process than
small ones. The queue states in the system determine whether an incoming
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packet needs to wait before being processed. If the queue is empty, the
packet can be processed immediately, but if the queue is semi-full, the
packet must wait. In the worst case, the queue is full and drops the packet.
Thread state, such as active or ready, also impact processing times, e.g.,
threads failing to acquire a lock and having to wait.

Measuring packet processing delays

Packet processing delays are measured by the number of cycles spent per
packet and the clock frequency of the CPU. The number of cycles spent
is dependent on the instructions executed. Packet processing delay is
therefore determined by the complexity of the service implementation and
also its execution. The number of cycles are spent per instruction may
vary due to pipeline flushing, branch misprediction, and cache misses.
CPU cycles is an accurate and efficient metric of packet processing delay.
It is effective in estimating processing durations under varying CPU
frequencies.

2.1.2 The iterative modeling process

In this section, we outline the iterative modeling process used in the
methodology. We begin by providing a concise overview of each
processing stage, followed by a comprehensive examination of each stage
in detail.

The goal of the iterative modeling process is to create trace-based models
with sufficient accuracy. Each model obtained is a model of the service
behavior under each individual context. These models are represented
as sequences of events and distribution functions of processing stage
durations between consecutive events. Model accuracy is affected by
the granularity of the model, the number of execution contexts, and the
number of iterations in the modeling process.

The following list is an overview of the step-wise approach of the modeling
process:

• Instrumentation: instrument the software with tracepoints to capture
all relevant temporal behavior of a service.

• Tracing: collect the traces from the knowledgeable trace experiments,
and assess how different parameters impact timing results.

• Automatic analysis: transform the traces into a set of signatures
through filtering and clustering.

• Human investigation: inspect the quality of the traces, and place the
signatures in a device file.

• Model creation: parse the device file and combine signatures into
Service Execution Models.
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The iterative modeling process consist of 5 stages. The modeler performs
modeling stage 1 through 4 on every service of the communication
software. For every service, the modeler performs stage 1 through 3
to achieve acceptable quality of instrumentation. The resulting models
collectively model the execution of the target communication software in
a real device. The models can later be used to extend existing network
simulators.

Instrumentation

The first stage is instrumentation. The modeler places tracepoints into the
code of the service that needs to be captured, and executes it with different
workloads. A tracepoint is merely a function call that generates an event
with a set of attributes, such as the event type, the value of the CPU cycle
counter, and the memory address of from which the tracepoint was called.
The remaining attributes are used to store state variables and identify
shared resources. The memory addresses identify unique locations in the
final model, and these locations can further be associated with functions in
the objective network simulator.

To make the instrumentation effective, the modeler has to find the locations
of the events that characterizes execution behavior of a service. They
will likely perform multiple series of instrumentation, tracing and human
investigation of the service to find all significant events. The methodology
presents multiple classes of events, however we are not delving into every
class in this discussion. Instead, we focus on selected classes and provide
only minor details about them.

Traces of Class 1 and 3 events are used to distinguish between LEUs
and capture interactions with the thread scheduler. Class 1 events are
captured from functions performing context switching and in the moments
right before and after execution of interrupt handlers. Class 3 events are
captured from functions that manipulate the ready queue and functions
that interact with synchronization primitives.

Class 1, 4, 5 and 6 events are used to instrument services. SRVEntry
events are captured at the beginning of a service function, and SRVExit are
captured right before the return statement of the function. Certain device-
specific drivers and non-standard or experimental networking protocols
are not included in the mainline kernel distributions, which means that
they are not covered by the one-time OS instrumentation. If the networking
simulator supports any of these services, they also need to be instrumented.

Class 6 events are determined by the state variables that have non-
negligible impact on service behavior. The addition of Class 6 events
increases the number of attributes in the trace events since it requires the
events to also hold the values of state variables. Identifying these state
variables are crucial to the modeling process. The Class 6 events must be
captured at the point where the state variables start to impact the behavior
of a service. For instance De-Queue events are placed at the beginning of
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queuing functions to capture packet characteristics, and StateRead events
are placed as closely as possible to conditional branching points to capture
the value that determines the branching decision.

Tracing

The next stage is tracing. Here the instrumented software is executed
n times with a static context. Multiple executions are necessary to
collect sufficient amount of data for plotting the empirical processing
distributions. The set of contexts are defined by the parameter values
that cover the parameter spaces. In practice of the methodology, finer
granularity of values increases the accuracy of the final models, but higher
modeling effort also increases the complexity of the resulting models. It
is the main responsibility of the modeler to find the appropriate balance
between sufficient accuracy and simulation overhead.

Certain contextual parameters are difficult to control, especially the
parameters that are part of the non-deterministic behavior of the operating
system. These are parameters such as the state of queues of threads. A
service must therefore be executed under a subset of c′ of defined context
c. Of all possible contexts, we can only stage deliberately a subset of them.
An example of a context that can be controlled is the packet size. Here the
modeler can inject a stream of packets of the same size into the system such
that the instrumented service handles each packet. The resulting event
traces are used at input to the automatic trace analysis.

Automatic trace analysis

In the stage of automatic trace analysis, a trace file is transformed into a set
of signatures. Each signature describes one behavior of the traced service.
A signature is represented as a sequence of events and processing duration
distributions between these events. The signatures are created through
filtering and clustering.

A trace file may contain events that are not specifically related to the target
service S. To extract the relevant events that are part of S, it utilizes a
filtering process. This filtering step aims to isolate and extract the events
that are directly associated with the execution of the service. As a result,
it produces one sequence of events per execution of the service. Each
sequence of events is called a case and describes a single execution of S. The
number of extracted cases n is equal to the number of times the service
was executed to generate the trace file. Loops are also modeled as services,
where each iteration yields a case.

Clustering sort the n cases in m groups. Each group describes one
behavior of the traced service. All cases within a group have the same
behavior, i.e. the same sequence of events and all events in the sequence
share the same attribute values. The only difference between cases in a
group is the execution times of processing stages. This is caused by the
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non-deterministic behavior of the CPU, like memory caching, and minor
variations in the number executed instructions.

Signatures are generated by calculating a probability function that fits the
processing times of each case in a group. Signatures, cases and processing
durations are all stored in human readable form, including metadata that
describe which cases are used to create which signatures. This information
is used during human investigation.

Human investigation

The fourth stage is human investigation. Here, the modeler analyzes the
quality of a signature and investigates whether the collective signatures is
a good model of the service or not. The quality of the instrumentation
is assessed based on the resulting cases from the previous stage and
the signatures themselves. This stage is important since insufficient
instrumentation leads to inaccurate models. The instrumentation needs
to be extended for another iteration of the modeling process if the quality
of the signature does not meet the quality requirements. It is worth to
note that the location attribute of the event traces provide valuable hints
of where to place additional tracepoints. The methodology introduces two
techniques to analyze the quality of a signature.

The first technique is to make sure that the automatic analysis generated
one signature per context, i.e. the number of signatures m are equal to
the number of contexts c′. All context parameters are stored in Class 6
events. Cases with identical event sequences but different attribute values
will be clustered in separate groups, which results in multiple signatures
supposedly describing the same behavior. This implies that the target
service is not properly captured. A signature that is aggregated by a very
low number of cases, describes most likely rare behavior, and can therefore
be excluded from the model.

The second technique is to plot the empirical probability distribution graph
of the processing stage durations. In the cases of one group, the amount
of processing performed in equivalent processing stage should be the
same. In other words, approximately the same number of instructions are
executed in each case. Unimodal probability distributions indicate proper
instrumentation, while multimodal distributions with distant modes, imply
that multiple completely different tasks were executed between events. In
simpler terms, important events were not captured.

Combining signatures

Lastly is the stage of model creation, where the modeler combines the
signatures into an execution model. The iterative modeling process has to
be done for every service of interest of the target communication software.
The end result is collection of all the signatures for all services. This
collection is stored in a device file. The device file is passed to a parser which
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combines the signatures for each service and outputs one executable model
per service. These models are called Service Execution Models (SEMs).

Multiple signatures may share common subsets of events from the
beginning of the sequence until a Class 6 event. However, the sequence
of events following the Class 6 event differ between these signatures. The
signatures with a common subset can be combined into a tree, where they
follow the same path of events from the root until they reach the Class 6
event. Here, a conditional statement creates a branching point based on the
attribute values of the Class 6 event. Each value of the state variable creates
another subtree. The execution of the service statements start at the root of
the tree, and once it encounters a conditional statement, the modeled state
variable is read to select the appropriate subtree to be executed next.

Extending network simulators

The methodology defines a highly flexible mechanism to map SEMs onto
protocol models in existing discrete event simulators. Mapping SEMs onto
protocol models enhances the models with the timing behavior of real
software implementations.

2.1.3 Model evaluation

Each SEM models individual portions of software execution. When the
modeler evaluates the SEMs, it is important that they compare the behavior
of SEMs during execution to the behavior of running the real device. By
making this comparison, the modeler can efficiently assess the accuracy of
the final model.

2.1.4 The methodology in practice

In recent research by Espen Volnes et al.[44] the methodology was used
to simulate protocols in wireless sensory networks. At the time of the
research, the network simulators available ignored the processing delay
of packets within nodes, since intermediate nodes in classical networking
architectures uses specialized hardware that yield almost zero delay in
packet processing. In the case of wireless sensory networks, each node
in the network is a general purpose computing unit with small amount
of processing power. These units are called motes. The intra-OS delay
is substantial in these motes and therefore cannot be neglected. An
alternative was to run emulated motes in the Cooja network simulator
which would capture the packet processing delay. However, WSNs are
usually built out of hundreds to thousands of nodes, and emulating
each node in a large simulation is simply not scalable. The modeling
methodology was successful in simulating the intra-OS delay in a TelosB
mote running TinyOS. The results showed that models created with
this modeling methodology can provide accurate software execution
simulations in motes. These models can also effectively be integrated into
general-purpose simulators such as ns-3.
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2.2 Complex event processing (CEP)

In our every day language, we refer an “event” to something that
happens[28], while in the context of CEP, an “event” refers to an object
that can be processed by a computer. CEP consists of a set of techniques
and tools to help us grasp and control event-driven information systems.
Techniques such as tracking causal histories of events, using patterns of
events and event relationships to recognize the presence of complex events,
and older techniques found in rule-based systems. A complex event is an
event could that only happen if a collection of other events happened.

CEP takes advantage of the fact that there exists some form of relationship
between the events in a system. It focuses on three types of relationships:
time, cause, and aggregation. The presence of relationships between events
add another dimension to event processing. It enables the system to
answer questions raised about events that are more than low-level network
activities, such as questions about high-level activities related to business-
and strategic-level events. For example, “Is our system providing the
correct level of service to our customers?”, “What caused the router in
Frankfurt to be overloaded?”, and “Is the system under a denial-of-service
attack?”. For the system to answer the third question regarding a DoS
attack, it depends on real-time recognition of complex patterns of events
that indicate such an attack.

Lets look at an example of the completion of a financial transaction. It involves
a bundle of financial contracts. In the span of a couple of days, several
merchant banks and brokerage houses participate in the transaction. The
event itself, i.e. the transaction, is the result of hundreds or thousands
of electronic messages and database entries around the world. These
simple events of sending messages and entries to databases, are not
necessarily happening in a linear fashion. They will most likely happen
simultaneously and independently of others, even mixed with events of
other transactions.

The communication flexibility of the Internet makes it challenging to track
the cause of an event. An event can arrive from any place in the Internet,
and when it does, there is no apparent cause behind it. Say we have a
transaction that failed to complete. Why did it happen? Which events caused
it? Without CEP, we would resort to processing many large low-level
network logs in order to answer these questions. Not only is this tedious
work, but it is inefficient, primitive and can easily fail. The fact is that it is
very hard to understand network traffic if we can not, at any point in time,
see who is communicating with whom, or get a view of the events that
cause another event to happen in the network. If we only monitor message
traffic in our systems, we fail to recognize a lot information. The messages
would simply be passed silently between information systems as unrelated
pieces of communication. But when events aggregated together, correlated,
and their relationships understood, they offer great deal of information.
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2.2.1 Events and event relationships

In this section, we cover the main concepts of CEP. First we explain what
events are, where to find them, and how they are created. Then we
discuss the different relationships that exist between events: time, cause,
and aggregation. All definitions and quotes are adopted from the pioneering
textbook on CEP systems by David Luckham[27].

“An event is an object that is a record of an activity in a system.”([27], page 88)
The event signifies the activity, and may be related to other events in the
system.

There are three aspects of an event:

• Form: An event is formed as an object. It may have attributes or data
components. The form is often a tuple of data components, such as
the time period of the activity, the location of occurrence, who did the
activity, and other data.

• Significance: An event signifies an activity. The activity is the
significance of that event. A description of the activity is included in
the form of the event.

• Relativity: An event is related to other events by time, cause, and
aggregation. The relationships between an event an other events are
called its relativity. An event’s form usually contains methods that
can be invoked to reconstruct the relationships with other events.

Creating events

The process of creating events is divided into two parts: observation
and adaption. The part of observation entails observing the activities
happening at any level of the system without affecting behavior. In the
part of adaption, observations are transformed into event object that can
be processed by CEP. The tools performing the transformations are called
adapters.

There are three major sources of events:

• IT layer: The communication between components at different levels
of the system can be observed from the IT layer. This communication
is in the form of messages or method calls.

• Sensors: Sensors detect events and changes in their environment.
An event detected by a sensor can be a button press, a noise or
temperature level hitting a certain threshold, etc.

• Instrumentation: Components of the target system are instrumented
to create events signifying the activities happening in the component.
Low-level events can, for instance, be generated from status probes in
the operating systems, or heartbeats and alerts generated by network
management systems. Higher-level events can be created from the
instrumentation of applications.
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• CEP: Events created by CEP.

Event relationships

Time: “Time is a relationship that orders events – for example, event A happened
before event B.”([27], page 94)

A time relationship between events depends on a clock. When there
is an occurrence of an activity, that has an event that signifies it, the
event is created and given a timestamp. The timestamp is generated
from a read of one of the clocks in the system at the time of the activity.
The order of timestamps defines the time relationship between events.
Similar to systems having multiple clocks, events may have multiple time
relationships, one for each clock. The timing relationship between two
events may not be possible if the clocks are not comparable. This is
dependent on the information available on how the clocks are related (e.g.
synchronized or independent).

Cause: “If the activity signified by event A had to happened in order for the
activity signified by event B to happen, then A caused B.”([27], page 95)

The definition shows a dependency relationship between activities in the
system. An event depends on other events only if it happened because the
other events happened. Consequently, events can be caused by other events.
Two events are independent if neither caused the other.

Aggregation: “If event A signifies an activity that consists of the activities of a
set of events, B1, B2, B3, ..., then A is an aggregation of all events Bi. Conversely,
the events, Bi, are members of A.”([27], page 95)

Aggregation is an abstraction relationship between a single event and a
collection of events. From the definition A yields a high-level event that
signifies a complex activity. The activity is complex in the sense that multiple
event has to happen, possibly in different locations and points in time.
Therefore we call A a complex event. One can argue that a “composite event”
would be a more suitable name for an event such as A, since A is technically
a composition of events that creates the high-level event. The members of
a complex event most likely happened at different times, which means that
a single timestamp would not be representative of the timing of a complex
event. Instead, a time interval attribute is used, where the timing starts
from where the earliest activities of the member events start, and ends
where the latest activities of its member events ends.

Genetic parameters in events

An event’s timing and causal relationships to other events are stored in its
form. This special data structure is the genetic parameters of an event, as
they give information about the event’s timing and causal history. There
are only two genetic parameters: timestamps and causal vector.

Timestamps refers to the readings of various clocks in the system at the
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start and end time of the activity signified by the event. Some events
only contain one time timestamp that correspond to a single point in time
when the activity occurred. The events may also contain a timestamp of
when the event was observed by some observer in the system. In that
case, the timestamp refers to the arrival time at that particular observer.
The timing relationships is especially useful when evaluating the system’s
performance, as well as debugging. For instance, if the system is not
performing properly, we can use timing as a filter to identify which
event happened before the event that is being investigated, consequently
narrowing our search space to the earlier events.

Causal vector is a collection of the unique event identifiers of the events that
caused the event. They define the causal attribute of the event. By storing
the causal vector in the event makes it easier to trace causal relationships
in complex systems. Instead of relying on separate components to fetch the
information, such as a database, one can easily locate the data in the event
itself. This has the benefit of facilitating the task of building tools for causal
tracking.

Event causality

To really understand events, we need to know what caused them, also while
they are happening. When the causing event and the caused events are
happening on the same conceptual level in the overall system, it is referred
to as horizontal causality. Complex events are build by lower-level events
events, and these events can be considered as components or members of
the complex event. This causal relationship is called vertical causality.

Vertical causality has two important use-cases:

• Knowing how are business event is broken down by a group of lower
level-events, is helpful in understanding the properties of the higher-
level event. With this knowledge we can identify bottlenecks in the
business logic, and improve performance at the business level.

• We can use vertical causality to group lower-level events together
based on the higher-level activities they signify. This makes it easier
for us to understand the vast amount of low-level events observed in
network monitoring tools.

Before we can connect a group of lower-level events as the cause of a
single high-level event, the high-level event must already be identified. The
identification of a high-level event are usually rooted in some perception,
suspicion, or a list of complaints on the behavior of the system. However,
whether we can properly identify a high-level event is dependent on our
understanding of the lower level events. If we can not make sense of the
great number of events happening at the lower layers, we are unable to
connect them to high-level events. Similar to downward tracking of vertical
causality, we can aggregate the lower-level events into a single higher-
level event. The resulting event expresses the collective meaning of the
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aggregated lower-level events.

2.2.2 Event pattern, rules and constraints

A fundamental part of viewing and controlling event-driven systems, is
the ability to select a set of events that are of interest as they happen
from large event executions. The selection of events is the result of events
matching defined event patterns. Event patterns, event pattern rules, and
event pattern constraints are the primary concepts that form the foundation
for CEP applications.

An event pattern is a template that matches specific sets of events. The
pattern describes the events, including their causal relationship, timing,
data parameters, and context. Hence, an event pattern is also a template
for posets.

An event pattern rule is a rule that specifies a set of actions to execute in
response to occurrences of events that match a specific event pattern. It
implies a causal relationship between the events that trigger it, and the
events that are created when the rule performs its actions.

The event pattern rule is essentially reactive and consists of two parts:

• “A trigger, which is the event pattern”([27], page 119)

• “An action, which is an event that is created whenever the trigger
matches”([27], page 119)

The causal implication is that the triggering events matching the event
pattern causes the new event to be created. The triggering events are causal
ancestors of the higher level event.

Event pattern rules can either be sequential or parallel. When a sequential
rule is triggered, all of its actions are executed in a sequential manner. As a
result, all the events created are causally ordered in a sequence. Conversely,
when a parallel rule is triggered, the actions are executed independently
from one another. As a consequence, the events are causally independent,
except if the events created on one triggering, match a second triggering of
the rule.

An event constraint expresses a condition that must be met by the events
observed in a system. Constraints are used to specify how a system
should behave, and how its users should use it. A constraint tests for
a certain behavior of the system during runtime. Once the rule of the
constraint is triggered, it produces a result; violated or satisfied. A violation
event is created every time a violation occurs, while a satisfied result
occurs when passing a certain time limit or when the target system ceases
operation. Constraints neither enforce or guarantee behavior, they are
simply watchdogs of the system.
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2.2.3 Event hierarchies and personalized views

In this section, we start by covering event abstraction hierarchies, which is
an important concepts in developing CEP applications. Next, we give and
overview of personalized and role-based view of hierarchical systems.

Event hierarchy

An event abstraction hierarchy is how CEP organizes the events in a
system. It enables CEP to infer higher-level events based on the lower-
level events observed in the system. The inferred events assist us in
understanding the activities that can happen. CEP is limited in what it
can infer by what it can observe at the lowest level of the system.

Event abstraction hierarchies consist of two elements and they are defined
as follows:

• “A sequence of levels of activities. Each level consists of a set of descriptions
of system activities and, for each activity, a specification of the types of events
that signify instances of that activity. Level 1 is the lowest level.”([27], page
131)

• “A set of event aggregation rules for each level. For each level (except level
1), there must be a rule for creating each type of event at that level as an
aggregation of events at levels below.”([27], page 131)

Personalized view

Event abstraction hierarchies are used to specify and implement personal-
ized views of the system.

There is an important distinction between monitoring and viewing the
system. Monitoring refers to observing and analyzing level 1 events,
while viewing refers to computing and analyzing higher-level complex
events. The complex events are computed using aggregation rules, and
analyzed using graphical and drill-down techniques. Drill-down refers to
the process of backtracking from a complex event to its members.

CEP provides great flexibility by allowing configurations of existing
hierarchy definitions, as well as creation of aggregation rules while the
system is running. This flexibility greatly benefits the stakeholders of
the system, as there is natural changes of interests in what the system is
doing. Also, it is difficult to predict the most useful views in advance.
Additionally, views and complex event types can be defined to fit specific
roles and needs, and personalized views can be applied to any level of
system activity, such as the network level and the application level.

Creating a personalized view is a two-step process:

• Specify the types of events of interests at each hierarchical level as
CEP event types. This is the step of personalization. It is important
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that the events are well organized, since grouping high-level and low-
level events at the same level would interfere with the second step.

• Define an aggregation rule for each type of event at each level above
level 1. The rule has to define the event pattern that describes the set
of lower-level events and their relationships that yields the higher-
level event. Next, it has to specify the event object that is created
when the event pattern is matched.

2.2.4 Summary

CEP has a very broad applicability due to the fact that information system
are all driven by events. It provides techniques for defining and applying
relationships between different kinds of events. It even lets you define
your own events as patterns of the events in your system, making your
defined events appear when the patterns are matched, and giving you a
better understanding of what is going on in your system. When CEP is
applied to information systems, not only can we recognize when a complex
event happens, but we can also predict whether it is going to happen, or if
it is tracking off and why.
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Chapter 3

Methodology

The goal of the performance evaluation in this thesis is to model the impact
of caching on event processing performance in Siddhi. Caching is a widely
used technique to improve system performance in various levels of the
system stack. At the operating system level, the buffer cache and the page
cache serve to minimize the number of disk accesses by storing recently
used disk blocks and file data in low latency storage. This approach enables
faster read operations, circumventing access to data located in slower disk
storage. Given the historically high latency of disk I/O, numerous layers of
the software stack attempt to avoid it by caching reads and buffering writes.
However, the types of caches present within a system vary depending on
the environment and intended use-cases. For example, web browser cache
serves as a client cache, while the MYSQL database management system
stores frequently used data in the MySQL buffer cache[16].

Considering that caches exist in multiple levels of the system stack,
identifying their location can be crucial in developing accurate execution
models. The system under test (SUT) is the Siddhi CEP-engine. This is a
highly complex system as it is written in Java, which runs on the JVM and
therefore is prone to all sorts of runtime optimization. Furthermore, the
JVM runs as a software layer on top the operating system and is affected
by optimizations on the hardware level. The system stack is depicted in
Figure 3.1.

These four levels may each contain a caching mechanism that affects event
processing performance:

• Java program (running Siddhi): Due to the overall complexity, we
have written a simple Java program. Although our program itself
does not contain any software caches, it is dependent on the Siddhi
Core Libraries, which have numerous dependencies. For instance,
siddhi-core module, has 21 dependencies alone. If we were to go
through the complete dependency graph, it is hard to imagine that
there are no software caches being utilized. Nevertheless, the concern
really is: Are there any software caches that affect the event processing time?
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Java program (running Siddhi)

JVM (and its magic: JIT)

Operating system (Linux)

Hardware (multiple CPU cores and cache)

Figure 3.1: System stack

• JVM (and its magic: JIT): The JVM optimizes Java bytecode at
runtime, which can cause non-deterministic execution behavior.
This process of optimization is referred to as the JVM warm-
up. Fortunately, this optimization can be completely turned off.
Typically, people often care more about software performance than
performance determinism in real-world applications. Thus, we
are forced to model the optimized, and in affect non-deterministic
execution of the program to create accurate simulations.

• Operating system (Linux): The Linux operating system uses a disk
cache, which is a software mechanism that allows the kernel to keep
some data in memory that is normally stored on a disk, such that
subsequent references to that data can be quickly satisfied without
a slow access to the disk itself[8]. Are there software mechanisms
in the operating system, such as disk cache, that affect event processing
performance?

• Hardware (multiple CPU cores and cache): CPUs have at least
three independent caches: (1) the instruction cache, (2) data cache,
and (3) translation lookaside buffer (TLB). The cache controller is
responsible for keeping track of what parts of memory are stored in
the caches and where. The cache provides faster memory requests of
instructions or data, given that they are present in the cache. Modern
microarchitectures have three levels of cache: L1, L2 and L3. L1 has
the fastest access time, as it is located closest to the CPU. L3 has the
slowest access time and located the furthest from the CPU. The cache
memory is small and is used by multiple processes in the system.
Due to the size of the cache, the data stored is constantly replaced by
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other recently used data. Exactly which data is replaced is dependent
on the cache replacement policy of the CPU. CPUs can also change
frequency depending on the workload, this is known as dynamic
voltage and frequency scaling (DVFS) and can affect event processing
time if the CPU suddenly changes frequency during execution.

The modeling methodology proposed by Kristiansen et al.[24] models
software execution at a granular level, e.g., modeling branching statements.
Our modeling target, however, is a highly complex system in each layer
of the stack, and therefore we can not strictly follow the modeling
methodology, as it would require too much modeling effort. Furthermore,
we observe how time affects event processing behavior, a dimension that
is not considered in the methodology. Therefore, we follow to some extent
the iterate modeling approach by Kristiansen et al.[24] presented in Section
2.1.2, but rely more on human investigation.

Our modeling approach is as follows:

1. Instrumentation: Instrument the software with tracepoints to capture
all relevant temporal behavior of the target service.

2. Tracing: Collect traces from knowledgeable trace experiments, and
assess how different parameters impact timing results.

3. Human investigation: Inspect non-deterministic behavior in traces
and investigate possible causes.

4. System tuning: Strip away external configurations in the SUT that
may cause the non-deterministic timing behavior. Go back to step 2).

5. Model creation: Create execution model.

Figure 3.2 illustrates our modeling approach through a flow diagram. The
process begins by instrumenting the SUT with tracepoints in the source
code. Then we trace its execution, resulting in a trace file. As part
of the human investigation, the file is parsed and analyzed. Based on
the outcome of the analysis, we determine whether the system execution
exhibits deterministic timing in relation to the service. If non-determinism
in service execution is recognized, we investigate the service behavior
further and assess the existing instrumentation.

Insufficient instrumentation of a service is often characterized as multi-
modal distributions featuring distant modes within a probability distribu-
tion graph of the traced service[44]. This typically indicates a failure to
instrument key features of the source code, such as branching statements
or loops. If, despite proper instrumentation of the service, we continue to
observe performance non-determinism, then we need to investigate the po-
tential sources in the execution environment, and assess and mitigate their
impact as far as possible. This represents an iterative process, continuing
until a satisfactory level of determinism is attained.

The following sections of this chapter explores the SUT, its implementation,
and the way it is instrumented. Furthermore, they define the metrics
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Figure 3.2: Flowchart of system analysis and modeling approach.
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used throughout this thesis, and cover the tracing framework that was
implemented to instrument the SUT.

3.1 System under test (SUT)

This section provides an overview of the SUT. We delve into its implemen-
tation and discuss how it is instrumented to capture event processing tim-
ings. The SUT in this thesis is the Siddhi stream processing engine. To
showcase the SUT, we have created a simple application that generates and
processes both bursty and non-bursty traffic of event tuples.

3.1.1 Event stream

The application defines an event stream, where each event tuple comprises
a unique ID, a company symbol, a price, and a volume. See Listing 3.1 for
further details.

StockStream(id long ,symbol string ,price float ,volume long)

Listing 3.1: The defined stock stream.

3.1.2 Pre-generated events

The application parses a text file with 1000 pre-generated events in the
format depicted in Listing 3.2. These pre-generated values can be reused
in order to conduct experiments requiring a higher number of event to be
processed. The parsed events are loaded into memory, and at the point of
injection, each event is assigned a relative timestamp corresponding to the
order they are injected into Siddhi. By storing the pre-generated events in
memory prior to transmission, we aim to minimize the involvement of the
file system in event processing as much as possible. Moreover, we strive
to minimize the computational overhead associated with event injection.
In other words, we aim to achieve a high event injection rate to accurately
simulate event bursts.

<SYMBOL > <PRICE > <VOLUME >

Listing 3.2: Format of the text file of randomly generated stock events.

3.1.3 Injecting events

Events are injected into Siddhi for processing by calling the send method
in the InputHandler class of Siddhi. Listing 3.3 shows how bursts of
events are injected for processing in our application. In the inner loop, the
application first calculates the next sequence number, extracts one of the
pre-generated events, and injects it into Siddhi. The event ID is assigned as
the event’s timestamp. This process is repeated for the number of events
specified in a burst. The outer loop puts the application thread to sleep for
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a specified number of milliseconds (burstDelay) between each burst. The
burst distance is provided by the user as a command-line argument.

1 private static void injectEventBursts(InputHandler inputHandler,
2 int burstDelay)
3 throws InterruptedException
4 {
5 final int total = burstSize * count;
6 final int id_idx = 0;
7

8 for (int i = 0; i < total; i += burstSize) {
9 for (int j = 0; j < burstSize; j++) {

10 long event_id = (long)(i + j);
11 Object[] obj = list.get((int)event_id % list.size());
12 inputHandler.send(event_id, obj);
13 }
14 Thread.sleep(burstDelay);
15 }
16 }

Listing 3.3: Code for injecting event burst from pre-generated events.

When the burst distance is zero, we call a different method that does not
include the Thread.sleep() call. This is because calling Thread.sleep(0)
will cause the thread to yield, and subsequently be rescheduled. Since
we aim for the system to be as deterministic as possible, minimizing the
rescheduling of processes is crucial.

3.1.4 Stream call-back

A StreamCallback instance can be mapped to a defined event stream in the
Siddhi runtime and acts as the endpoint for received events satisfying the
event query, as demonstrated in Listing 3.4. If the received event is marked
with the relative timestamp -1, which denotes the end of the stream, it
writes the collected traces from our tracing utility to a file and shuts down
the Siddhi runtime, thereby terminating the application.

1 siddhiAppRuntime.addCallback("OutputStream", new StreamCallback() {
2 @Override
3 public void receive(Event[] events)
4 {
5 long id = (long) events[0].getTimestamp();
6 if (id == -1) {
7 writeTracesToFile();
8 siddhiAppRuntime.shutdown();
9 }

10 }
11 });

Listing 3.4: The Siddhi runtime callback invoked upon receiving events.
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3.2 Instrumentation

The main goal of our instrumentation is to assess the performance of
event processing by measuring the time taken to process each event in a
specific stream. To achieve this, we instrument the event injection process
by placing tracepoints directly before and after the send call, as shown
in Listing 3.5. In order to capture the precise duration of single event
processing, we measure the event processing time in nanoseconds. This
level of granularity is necessary as measurements in milliseconds do not
provide the required level of detail for accurate estimations of individual
event processing.

1 private static void injectEventBursts(InputHandler inputHandler,
2 int burstDelay)
3 throws InterruptedException
4 {
5 final int total = burstSize * count;
6 final int id_idx = 0;
7

8 for (int i = 0; i < total; i += burstSize) {
9 for (int j = 0; j < burstSize; j++) {

10 long event_id = (long)(i + j);
11 Object[] obj = list.get((int)event_id % list.size());
12 TraceUtil.addTrace(event_id, System.nanoTime());
13 inputHandler.send(event_id, obj);
14 TraceUtil.addTrace(event_id, System.nanoTime());
15 }
16 Thread.sleep(burstDelay);
17 }
18 }

Listing 3.5: Code for injecting event burst from pre-generated events.

3.2.1 Burst processing times

We measure the processing time of a burst from the moment the first event
in the burst is injected into Siddhi to the moment when the last event in the
burst is finished processing. Listing 3.6 shows a heavily truncated version
of a trace file in which only the first and last event of the first three bursts are
included. Each timestamp that is part of the calculation of burst processing
time is highlighted with a unique color for each burst. The calculation of
the processing time for these bursts is shown in Equation (3.1).

0,SiddhiApp.injectEventBursts(SiddhiApp.java:230), 25347858375282
0,SiddhiApp.injectEventBursts(SiddhiApp.java:232),25347865084941
. . .
999,SiddhiApp.injectEventBursts(SiddhiApp.java:230),25347910345938
999,SiddhiApp.injectEventBursts(SiddhiApp.java:232), 25347910375579
1000,SiddhiApp.injectEventBursts(SiddhiApp.java:230), 25348913577706
1000,SiddhiApp.injectEventBursts(SiddhiApp.java:232),25348913947198
. . .
1999,SiddhiApp.injectEventBursts(SiddhiApp.java:230),25348949802146
1999,SiddhiApp.injectEventBursts(SiddhiApp.java:232), 25348949828524
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2000,SiddhiApp.injectEventBursts(SiddhiApp.java:230), 25349950154840
2000,SiddhiApp.injectEventBursts(SiddhiApp.java:232),25349950369623
. . .
2999,SiddhiApp.injectEventBursts(SiddhiApp.java:230),25349983716091
2999,SiddhiApp.injectEventBursts(SiddhiApp.java:232), 25349983741867
. . .

Listing 3.6: Excerpt from log file, cut for readability and brevity, with
highlighted timestamps caption to show start and finish time of a burst.
The colors are unique for each burst.

25347910375579− 25347858375282 = 52000297
25348949828524− 25348913577706 = 36250818
25349983741867− 25349950154840 = 33587027

(3.1)

3.3 Metrics

In this section, we are defining the metrics and their notation that is used
throughout this thesis:

• Sn
m: Event stream of m bursts with n events in each burst.

• Si,∗: i-th burst in stream S.

• S∗,j: j-th event in each burst in stream S.

• Si,j: j-th event in the i-th burst in stream S.

• Sn: n-th event in stream S.

• Time(Si,∗): Processing time of the i-th burst in stream S.

• Time(Si,j): Processing time of the j-th event in the i-th burst in stream
S.

• Time(Sn): Processing time of the n-th event in stream S.

• Min(Si,∗): Minimum burst processing time in stream S.

• Min(Si,j): Minimum event processing time in the i-th burst in stream
S.

• Max(Si,∗): Maximum burst processing time in stream S.

• Max(Si,j): Maximum event processing time in the i-th burst in stream
S.

• Mean(Si,∗): Average burst processing time in stream S.

• Mean(Si,j): Average event processing time in the i-th burst in stream
S.

• std(Si,∗): Standard deviation of burst processing time in stream S.

• std(Si,j): Standard deviation of event processing time in the i-th burst
in stream S.
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• Sum(Si,∗): Sum of the processing time of all bursts in stream S.

In our tracing experiments we set a static distance in time between each
burst injection. This is referred to as burst distance and is denoted by dms,
where ms is specifies that the unit of time is milliseconds.

3.4 Tracing framework

This section covers the design of the tracing framework used in measuring
the performance of event processing in Siddhi. First, we give a brief
overview of our requirements for an effective monitor system. Then, we
present the design and implementation of our tracing utility, and finally,
we evaluate our design.

3.4.1 Requirements

The monitoring system employed to measure the performance of event
processing should satisfy the following requirements: (1) flexibility; (2)
ease of use; (3) minimal overhead; and (4) generation of easily parsable
output. Flexibility and ease of use refers to the ability to place tracepoints
anywhere within the source code of the SUT, without having to modify the
build process or write complicated trace scripts.

Overhead pertains to the monitor’s consumption of shared system re-
sources, such as CPU and memory, which perturbs system operation[21].
Thus, minimizing monitor overhead is crucial in getting representative ex-
ecution timings of the SUT. Parsability is an important attribute for fast
and straightforward processing of trace files in preparation for subsequent
analysis. Fulfilling these requirements will facilitate faster and accurate
analysis of the targeted system.

3.4.2 Tracing utility

Using the monitor terminology from [21], we classify our tracing utility
as a software-event-driven-batch monitor. As a software monitor, it oversees
the SUT by inserting function calls to the tracing utility in the source code.
It operates as an event-driven monitor by measuring the span from the
moment an event tuple is injected into the process chain to when the event
tuple’s concludes. It functions as a batch monitor because the trace is saved
on disk for later analysis using a separate analysis program.

The tracing utility is implemented as a global and static library in the
core module of Siddhi Core Libraries[33]. Its CPU overhead is from the
insertion of tracepoints, and its a memory overhead stems from storing the
tracepoints in memory. The tracing utility can measure event processing
with up to nanosecond precision. It writes the tracepoints to a file after all
tracepoints from the stream have been collected.

Listing 3.7 presents the complete implementation of the tracing utility.
A tuple data structure is used to represent a tracepoint, and a stack
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is used to store the tracepoints in memory. We opted to use a stack
because it allows for tracepoint insertion in constant time. The tuple
comprises three elements: a sequence number, a string representation
of the tracepoint location, and a timestamp indicating the time of the
tracepoint. Tracepoints are placed in the source code by calling the
TraceUtil.addTrace() function.

1 package io.siddhi.core.util;
2

3 import java.util.Stack;
4 import org.javatuples.Triplet;
5

6 public class TraceUtil
7 {
8 public static Stack<Triplet<Long, String, Long>> traceStack =
9 new Stack<Triplet<Long, String, Long>>();

10

11 public static void addTrace(Long id, Long time)
12 {
13 traceStack.push
14 (new Triplet<Long, String, Long>
15 (id,
16 Thread.currentThread().getStackTrace()[2].toString(),
17 time));
18 }
19 }

Listing 3.7: Tracing utility

Listing 3.8 showcases the format of the resulting trace file from the tracing
utility. The trace file adopts the widely used comma-separated values
(CSV) format, which facilitates easy parsing for subsequent processing and
analysis. The first value is the event stream sequence number, i.e., the order
in which the event tuple was injected into Siddhi. The second value denotes
the precise location of the tracepoint in the source code (function, file, and
file number). The third value is the time when the tracepoint was called.

<SequenceNumber>,<Function(<FileName>:<LineNumber>)>,<Timestamp>

Listing 3.8: The format of a trace file generated from instrumentation using
the tracing framework.

3.4.3 Evaluation

Our tracing utility largely meets the requirements we have set for a
monitoring system. Regarding flexibility and ease of use, the tracing utility
allows us to place a tracepoint anywhere in the source code with a single
function call. Moreover, because Siddhi is built with Maven and the tracing
utility is implemented as a global static class in Siddhi, it is automatically
included in the build process. The tracing utility also generates a trace file
in a format that is easily parsable, making it swift and straightforward to
process.
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In order to evaluate the overhead of the tracing utility, we implemented
a monitor that was solely focused on performance, as seen in Listing
3.9. This monitor measures event processing using a timestamp that is
automatically added to the event tuple upon injection into Siddhi. When
the event is received in the stream callback, the event processing time is
measured and then written to a file. This approach significantly reduces
memory consumption and halves the number of function calls needed for
measuring event processing time.

1 siddhiAppRuntime.addCallback("OutputStream", new StreamCallback() {
2 @Override
3 public void receive(Event[] events)
4 {
5 long timestamp = System.nanoTime();
6 long id = (long) events[0].getTimestamp();
7 if (id == -1) {
8 siddhiAppRuntime.shutdown();
9 } else {

10 fileLogger.trace(events[0].toString()+"␣"+timestamp);
11 }
12 }
13 });

Listing 3.9: Timestamp-enabled trace monitor

For our experiment, we instrumented a simple query and processed 50
bursts containing 1000 events each, separated by sleep intervals of 1000
ms. This type of workload is the one we are using to measure the impact
of caching on event processing. We conducted the workload measurement
three times: (1) with the timestamp-enabled trace monitor, which measures
from the injection of an event to it being received in the callback; (2) with
the tracing utility using two tracepoints to measure the same path as (1);
and (3) with the tracing utility measuring the same path as (1) and (2), but
also other aspects of the event process path, seven tracepoints in total. As
Figure 3.3 shows, the tracing utility introduces a noticeable overhead, and
the overhead increases with the number of tracepoints.

Despite the significant overhead of our tracing utility, it provides the
flexibility, ease of use, and parsable trace output that we need to investigate
performance non-determinism of event processing in Siddhi. However, we
need to be aware of the increasing timing that accompanies an increasing
number of tracepoints.

3.5 Summary

This chapter focuses on the methodology employed in the study, which
involves an iterative process of instrumentation, human investigation of
traces, assessment of performance non-determinism, and system tuning.
The systematic approach of the methodology is a valuable tool for
managing the complexity of the SUT and the execution environment,

35



5

10

15

20

25

30

35

40

45

50

55

60

5 10 15 20 25 30 35 40 45 50

Ti
m

e(
S i

,∗
)

[m
s]

Si,∗

7 tracepoints
2 tracepoints

Timestamp-enabled trace monitor
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providing clear steps and procedures to isolate the target behavior for
modeling purposes.

The SUT in this study is a simple Java application utilizing the Siddhi
CEP engine. The application is responsible for generating and processing
a stream of events with different characteristics, such as bursty and non-
bursty traffic. To measure the event processing time, the application has
been instrumented with tracepoints before and after the injection of events
into Siddhi.

A simple and flexible tracing framework has been designed, which is easy
to use and deploy, while ensuring efficient utilization of CPU and memory
resources. Additionally, metrics have been defined to enhance the reader’s
understanding and facilitate analysis of the experimental results.
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Chapter 4

Analysis

This chapter presents the exploratory analysis of performance non-
determinism in the Siddhi stream processing engine. Our approach in-
volves an iterative process consisting of five steps. Firstly, we state our hy-
pothesis. Secondly, we provide essential background information to sup-
port our hypothesis. Thirdly, we present an experimental design to test
our hypothesis. Fourthly, we analyze the traces generated from our exper-
iment to confirm or reject our hypothesis. Finally, we present a plan for
future work based on the results obtained from our analysis.

4.1 Processing event bursts

H1 Performance non-determinism in Siddhi stream processing is caused
by caching.

Caching is often believed to be a major source of performance non-
determinism[19]. To identify the presence of caching in a black-box system,
we subject the SUT to traffic consisting of short bursts of events with idle
time between each burst. This idle time should cause the cache to replace
the data associated with the previous burst with new data until the next
incoming burst arrives. We expect as a result, the system exhibiting a
pattern of cache misses followed by a sequence of cache hits. To better
understand the relationship between bursty traffic and caching, we provide
a brief summary of caching in Section 4.1.1.

4.1.1 Cache memory

Caching plays a vital role in modern computer systems as it enhances
memory access time, which is often a performance bottleneck. To achieve
better performance at lower costs, a hierarchy of memory layers is
constructed with top layers having higher speed but smaller capacity. This
hierarchy starts with CPU registers, followed by cache memory and main
memory, which is divided into cache lines. The most heavily used cache
lines are stored in a high-speed cache located inside or near the CPU.
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Figure 4.1: Comparison of access latency for L1, L2 and L3 cache, as well
as RAM. Each vertical line denote the end of a storage unit. The graph has
been generated based on lm_mem_rd microbenchmark from lmbench[32].

Accessing the main memory takes substantially longer time than accessing
the cache, but not all caches are equal. Modern CPUs computers have three
levels of cache, where the caches located closer to the CPU are smaller and
feature faster accessing times. As a result, timing of cache hits depends on
the cache level in which the memory word is stored, see Figure 4.1. L1 is
the fastest but smallest cache and L3 is the slowest but largest cache. The
L1 cache is always inside the CPU and can hold a few hundred kilobytes,
while the L3 cache is located near the CPU and can store several megabytes
of recently used words.

When a memory word needs to be accessed, the cache hardware verifies
whether the requested line is present in the cache. If it is, the request
is fulfilled from the cache, and no memory request is sent over the bus
to the main memory, this is known as a cache hit. Cache hits typically
require two to three clock cycles. In contrast, cache misses have to go to
memory, resulting in a considerable time penalty, often at least one order of
magnitude more expensive than accessing even the last level of the cache.
The cache line containing the word is temporarily inserted into the cache
for faster accesses in the future[40, 14, 19].

4.1.2 Experimental design

The SUT is executed on a Dell Precision 5520 workstation powered by a 2.9
GHz Intel Core i7-7820HQ Quad-Core processor (with 2 threads per core),
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which can be overclocked up to 3.9 GHz using Intel Turbo Boost 2.0. The
CPU has 128 KiB of data cache (L2d) and instruction cache (L1i), 1 MiB of
L2 cache, and 8 MiB of L3 cache. The machine has 32 GB of memory and
1 TB of SSD memory, and runs Debian Linux 11 64-bit with kernel version
5.10.0. The SUT employs Siddhi Core Libraries version 5.1.20, given that
it was the most recent release at the beginning of this thesis. The HotSpot
JVM from OpenJDK has been selected due to its status as one of the most
widely used JVM implementations to date[36].

To address Hypothesis H1, we instrument the processing behavior of a
simple stream query and exposing it to both bursty and non-bursty traffic.
The query, as shown in Listing 4.1, contains no filters or aggregates. It
processes event tuples from a defined stream StockStream, which contains
a set of four typed attributes: id, symbol, price, and volume. The
select statement selects all four input attributes as query output attributes
for OutputStream. The simple select query is to understand the basic
functionality and behavior of the system before diving into more complex
queries. It also allows us to establish a strong foundation and follow an
incremental approach to model the targeted system.

from StockStream
select id, symbol, price, volume
insert into OutputStream

Listing 4.1: The instrumented event query.

The selected workload is an event stream consisting of 50 bursts of 1000
events each, referred to as S1000

50 . We define a burst as the injection of a given
number of events at the maximum rate, and bursty traffic refers to scenarios
where the burst distance is greater than zero. In contrast, non-bursty traffic
occurs when the burst distance is zero. For S1000

50 , non-bursty traffic simply
refers to a long burst of 50,000 events. We opt to use a workload of 50 bursts
to ensure that we have an adequate number of data points for bursts, even
when excluding the JVM warm-up. We select a burst size of 1000 events,
as it is a reasonable number of events that can be considered a short burst
and is large enough to capture cache misses and hits in a confined manner.

We instrument the query by placing a tracepoint immediately before and
after the injection of an event into Siddhi, as illustrated in Listing 3.5. We
also place tracepoints at several other locations within the source code of
the Siddhi core engine to measure the time between different locations
in the processing path. In total, we add seven tracepoints to the code,
which capture every event and, as explained in Section 3.4.3, results in a
significant overhead.

We execute the application default values and conduct each experiment
only once1 for each burst distance. Our primary variable of interest is

1It is not necessary to run the experiment several times, because the number of bursts in
the sequence provides enough observations of the targeted behavior to verify the validity
and reliability of the results.
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the burst distance, which we varied from 0 to 1000 ms in steps of 100 ms
with each experiment to evaluate the impact of burst distance on event
processing. Here, 0 dms denotes non-bursty traffic. We expect to observe
the first events in a burst to have substantially higher processing time than
the subsequent events in the burst, which will demonstrate the presence of
cache-like behavior in the SUT.

4.1.3 Analysis

Table 4.1 presents statistics of burst processing time for the different
burst distances. The analysis reveals that processing the event stream
as a constant stream, instead of dividing it into smaller bursts, leads to
higher event processing throughput. When burst distances are between
100 and 200 ms, the highest processing times are observed, which are
approximately 150% higher than those for burst distances longer than 300
ms. Additionally, the burst distance of 300 ms leads to high processing
times and a greater variation in burst processing times. The observations
of elevated processing time is discussed in detail in Section 4.4.

Table 4.1: Statistics of burst processing times from processing S1000
50 , includ-

ing JVM and default settings. Time measurements are in milliseconds.
dms Mean(Si,∗) Min(Si,∗) Max(Si,∗) Sum(Si,∗) std(Si,∗)

0 29.73 24.54 66.19 1486.54 7.95
100 62.27 27.84 104.96 3113.38 10.98
200 64.35 28.18 103.17 3217.45 11.06
300 48.66 27.32 101.81 2432.84 18.98
400 33.35 29.17 66.25 1667.29 8.38
500 32.10 28.62 66.38 1604.99 7.22
600 32.22 28.55 62.11 1611.04 7.35
700 32.59 28.44 69.35 1629.27 8.87
800 33.44 28.47 69.08 1671.95 9.71
900 32.24 28.58 69.06 1611.95 8.36

1000 32.31 28.74 67.93 1615.39 7.50

In examining the effect burst distance length, we observe that each distance
yield distinct processing behaviors. Burst distances greater than 300 ms
demonstrate similar processing behaviors, as indicated by the line plot
in Figure 4.2, whereas burst distances between 100 and 200 ms show
similarities in their burst processing behaviors, as depicted in Figure 4.3.
The high standard deviation observed when processing a stream with 300
ms burst distances is also shown in Figure 4.3. As demonstrated in Figure
4.4, the single long burst reaches a higher throughput compared to the
event streams with a burst distance of 1000 ms. In summary, these findings
demonstrate the emergence of different processing behaviors as a function
of burst distances.

The processing times for the initial bursts in the sequence are significantly
longer than those of the subsequent bursts. We postulate that this

40



25

30

35

40

45

50

55

60

65

70

5 10 15 20 25 30 35 40 45 50

Ti
m

e(
S i

,∗
)

[m
s]

Si,∗

Figure 4.2: Burst processing of burst distances longer than 300 ms.
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Figure 4.3: Burst processing of burst distances between 100 and 300 ms.
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Figure 4.4: Comparison of burst processing for a constant stream and a
bursty stream with 1000 dms.

phenomenon is due to the fact that the JVM has not yet been warmed
up[29]. A detailed analysis of this observation is presented in Section
4.3. In addition, we note the existence of common processing time spikes
around S20,∗, S30,∗, and S40,∗ for each burst distance. We hypothesize that
this behavior is caused by the program reaching the limit of the allocated
heap memory and the JVM having to perform clean-up of unused memory
before the program can continue, or the JVM deciding to compile sections
of the program to native code[5]. We provide further discussion on this
topic in Section 4.2.

4.1.4 Head-tail comparison analysis

Upon closer examination of the event processing times, we have identified
a processing pattern in which the initial events in a burst take significantly
longer to process than the subsequent events. This behavior is believed to
be attributed to caching within the system stack as stated in Hypothesis
H1. To investigate this behavior, we conduct a head-tail comparison analysis.
Head-tail comparison analysis entails comparing the average sum of the
processing time for the first N events in a burst with that of the last N
events in the burst for a given stream S. The average sum of the processing
time of the first and last N events is denoted as A and B, respectively.

The results from the head-tail comparison analysis on the bursty stream
S1000

50 , as presented in Table 4.2, suggest that the head of the burst takes
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significantly more time to process than the tail, and there exists a negative
correlation between the ratio in processing time of the head and tail and
the number of events N. In contrast, the head-tail comparison analysis of
the constant stream S1000

50 does not exhibit this behavior, as shown in Table
4.3.

The observation of the first few events in a burst taking longer to process
than the remaining events, strongly indicates the presence of caching in our
black-box system. However, it is not sufficient to confirm Hypothesis H1.
We must isolate the asymmetric event processing in bursts by identifying
and removing factors that cause undefined behavior in bursts, such as
spikes and elevated processing times, which can obscure a potential
caching model. The result is a well-tuned system for cache modeling
purposes.

Table 4.2: Head-tail analysis of a bursty stream S1000
50 with 1000 dms. Time

measurements are in microseconds.
N A B A− B A/B
1 226 2 224 113.00
5 269 10 259 26.90

10 313 21 292 14.90
20 401 46 355 8.72
30 558 69 489 8.09
40 646 90 556 7.18
50 734 110 624 6.67

100 1246 216 1030 5.77
500 4225 1115 3110 3.79

Table 4.3: Head-tail analysis of a constant stream S1000
50 . Time measurements

are in microseconds.
N A B A− B A/B
1 56 159 -103 0.35
5 70 171 -101 0.41

10 83 184 -101 0.45
20 111 208 -97 0.53
30 142 234 -92 0.61
40 178 263 -85 0.68
50 213 288 -75 0.74

100 363 733 -370 0.50
500 3374 3301 73 1.02

4.1.5 Distribution analysis

We look at the distributions of processing times of single events and bursts
to determine whether different tasks were executed during the processing
of an event or in between events. A unimodal distribution indicates a
high level of performance determinism, while a multimodal distribution
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Figure 4.5: Distribution of burst processing times in S1000
50 with 1000 dms.

with distant modes, infers that performance non-determinism is present
during the execution. The distribution will also reveal potential outliers.
This technique is similar to one of the technique used in [24] to validate
instrumentation of communication software.

According to Figure 4.5, out of 50 bursts consisting of 1000 events each,
roughly 80 percent of the bursts take approximately 30 ms to process.
Furthermore, we observe a few outliers between 40 and 70 ms, in which
some of these outliers occur early in the event stream. Table 4.4 presents
the distribution of event processing times. Approximately 92% of the event
processing times fall within 30 µs. Similarly to the distribution of burst
processing times, the event processing time has a few outliers, see Figure
4.6 for more details. We investigate these outliers further in Section 4.2.

Figure 4.7 provides a more detailed distribution of the first two bins
presented in Figure 4.6. It is evident from this figure that the processing
time for an event in a burst falls within the range of approximately 25 to 50
µs. This observation is also supported by the results presented in Table 4.4.
The unimodal distribution of the processing times suggests that simple but
accurate models of event processing times in bursts can be developed by
confining the analysis within this range.
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Table 4.4: The percentage of events in S1000
50 with 1000 dms that fall within a

given time different boundaries. Time measurements are in microseconds.
Time(Sn) %
< 10 0.000
< 20 0.000
< 30 91.676
< 40 93.566
< 50 94.166
< 100 98.938
< 150 99.614
< 200 99.948
< 250 99.968
< 300 99.974
< 350 99.978
< 400 99.980
< 500 99.982
< 700 99.986
< 750 99.992
< 6750 99.994
< 11750 99.996
< 27050 99.998
< 31350 100.000
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Figure 4.6: Distribution of event processing times in S1000
50 with 1000 dms.
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Figure 4.7: Distribution of event processing times shorter than 300 µs in
S1000

50 with 1000 dms.

4.2 Spikes in burst processing time

We observe four spikes in burst processing time when processing S1000
50 with

1000 dms. The spikes are presented in Figure 4.8 and Table 4.5. Table 4.5
displays in descending order the bursts that exhibit the longest processing
time. Each of these bursts coincidentally contains an event with one of
the highest processing times throughout the stream, with the exception
of S44,∗. The average burst processing time for this workload is 32.31
ms, as demonstrated in Table 4.1. This indicates that these abnormal
spikes in event processing time are the sole cause of the elevated burst
processing time for the associated burst. However, the initial bursts in
the sequence (S1−7,∗) are not exclusively impacted by a single event but
rather by the high processing time of events in general. We suspect that
the higher processing time of the first bursts is caused by the JVM warm-
up process[29]. The very first event in the stream will always have a high
processing time due to class initialization. Class initialization is the process
by which a class object is loaded, linked, and initialized when used for the
first time in a Java program[20].

There are several possible factors that can cause spikes in event processing
time. One such factor is the activation of the garbage collector, which
halts event processing until garbage collection is completed. Another
factor is the Just-In-Time (JIT) compiler in the JVM, which may decide
to compile sections of the program that have run “hot” to native code.
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Figure 4.8: Burst processing in S1000
50 with 1000 ms.

Table 4.5: Statistics of burst and event processing time per burst for the
ten bursts with the highest processing time in S1000

50 with 1000 dms. Time
measurements are in milliseconds.

Si,∗ Time(Si,∗) Max(Si,j) Mean(Si,j) std(Si,j)
21 67.93 31.30 0.065 0.989
28 56.39 27.03 0.054 0.854
1 52.00 6.71 0.049 0.212

44 42.78 0.17 0.027 0.017
34 40.87 11.71 0.038 0.370
2 36.25 0.37 0.033 0.024
6 34.58 0.21 0.032 0.021
5 34.02 0.21 0.031 0.023
3 33.59 0.21 0.031 0.023
4 33.37 0.20 0.031 0.021
7 31.41 0.74 0.029 0.031
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The compilation process, although running in the background, requires
shared resources, such as main memory and cache, and thereby affecting
performance, resulting in high processing time of events[29]. These factors
can lead to unexpected variations in event processing time, which can
impact the overall performance of the system. Therefore, understanding
and mitigating the effects of these factors may be important in ensuring
consistent and predictable event processing performance which we can
build our model on.

However, if these spikes in event processing time are periodical or pre-
dictable, we can potentially save time and research effort into identifying
their origin, and instead focus on modeling event processing.

We start the investigation of the spikes in event processing with Hypothesis
H2:

H2 Event processing spikes are periodical or predictable.

4.2.1 Experimental design

To test Hypothesis H2, we extended the experiment by increasing the
number of bursts for a fixed burst distance of 1000 ms. In a sequence
of 50 bursts, we observed four significant spikes apart from the spike in
the beginning of the stream. By extending the sequence to 200 bursts
(4x), we expect that the spikes are going to be observed 16 times for S1000

200 .
Furthermore, we can test Hypothesis H2 by halving the burst size to 500
events or doubling it to 2,000 events. For these burst sizes, we anticipate
that the spikes are going to be observed eight and 32 spikes respectively in
a sequence of 200 bursts. This will demonstrate that the event spikes are
periodical or predictable, confirming Hypothesis H2.

4.2.2 Analysis

Figure 4.9 presents the extended stream of 200 bursts with 1000 ms burst
distance for different burst sizes. The line plot illustrates the relationship
between burst processing time and burst sizes, revealing a more frequent
occurrence of spikes in burst processing time with larger burst sizes. This
observation suggests that the occurrence of spikes is contingent on the
quantity of processed events rather than the duration of the system’s up-
time.

The event distribution from the different burst sizes, as illustraded in
Figure 4.10, 4.11 and 4.12, mark the boundary between typical event
processing times and processing spikes. We can classify a processing spike
when the processing time of an event exceeds 4 ms. Note that the boundary
may be different on different hardware or if we use fewer tracepoints.
With this defined boundary and not including the first event, we observe
8 event spikes for burst size of 500 events, 19 event spikes for burst size
of 1000 events, and 93 event spikes for 2000 events. These results show
that a correlation between spikes in event processing time, the number of
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Figure 4.9: Comparison of burst processing behavior for three different
burst sizes: 500, 1000 and 2000 events.

processed event and wall clock time is not to be found, thereby rejecting
Hypothesis H2 forcing us to investigate event spikes further and identify
their source.

Our tracing utility, which stores all tracepoints in memory prior writing
them to file, or possible software caches utilized within the Siddhi engine,
may activate the garbage collector. This would cause significant delays
in processing time due to the stop-the-world pauses that occur during the
garbage collection process[15]. These delays may be characterized by
spikes in the event processing time.

H2 Event processing spikes are caused by garbage collection.

4.2.3 Garbage collection in the HotSpot VM

Garbage collection is a crucial process in managing memory in software
applications. It involves identifying and freeing up memory that is no
longer in use by the application. As such, it plays a critical role in ensuring
the smooth running of the application and preventing memory leaks.

Tuning the garbage collector is essential for optimizing the performance
of a Java application, as the different collectors available offer varying
performance characteristics. The four main garbage collectors are the serial
collector, throughput (parallel) collector, concurrent (CMS) collector, and
the Garbage-First (G1) collector[29]. The G1 collector is a generational
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200 with 1000 dms.
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Figure 4.12: Distribution of event processing times in S2000
200 with 1000 dms.

garbage collector that is renowned for handling large heaps and reducing
the frequency of stop-the-world pauses. This results in efficient and effective
management of memory.

Stop-the-world pauses refer to situations where the garbage collector
stops the application in order to recover space that is no longer in use.
During these pauses, the entire application is temporarily suspended.
Some operations, such as space-reclamation in the young generation, are
performed in these pauses to improve overall throughput.

Generational garbage collectors divide the heap into multiple generations
based on object age. The rationale behind this is that most objects die
young, and so by segregating young objects and avoiding scanning older
objects unnecessarily, the garbage collector can reduce the frequency and
duration of garbage collection pauses. The young generation holds new
objects that have just been created, while the old generation holds objects
that have survived one or more garbage collection cycles.

The G1 collector’s goal when performing space-reclamation to maximize
the amount of space that is reclaimed in the old generation during a single
garbage collection pause. It does so incrementally in steps and in parallel
to keep stop-the-world pauses short for space-reclamation. A maximum
pause-time goal is used by the garbage collector to limit the longest of these
pauses to achieve predictability in performance.

While garbage collection is critical in managing memory, it can also be a
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source of performance non-determinism. Since the garbage collector can
run at any time, it can introduce unpredictable delays that can affect the
overall performance of the application. Understanding this relationship
is essential in tuning the garbage collection process for higher application
performance or increase predictability.[30, 7]

4.2.4 Experimental design

To assess the activity of the garbage collector, we enable logging
of garbage collection in the JVM by using the command-line option
-Xlog:gc:filename. This sets the file, given by filename, to which in-
formation about the heap and garbage collection at each collection should
be redirected for logging[31]. We process S1000

50 with 1000 dms, which
should trigger garbage collections, considering the sheer amount trace-
points stored in memory. We expect to see logging information of each
garbage collection occurring during the experiment, which can corroborate
or confirm Hypothesis H2.

4.2.5 Analysis

According to the garbage collection log, our instance of the HotSpot JVM
defaults to using the Garbage First (G1) collector and maintains a constant
initial heap size of 504 megabytes throughout the experiment. Table 4.6
presents the parsed log file, demonstrating that the garbage collector is
active multiple times during our experiment.

The garbage collection log provides detailed information about garbage
collection events. Each event is identified by a timestamp, ID number,
type, trigger, and other relevant parameters. The timestamp denotes the
number of seconds the garbage collection occurs from the start time of the
application, while the ID number indicates the order in which collections
occur. The type specifies the type of garbage collection, such as a Pause
Young (Normal) (PY(N)) collection, which collects data objects in the young
generation. The trigger denotes the cause of the garbage collection, such
as a G1 Evacuation Pause (G1EP), which is a garbage collection technique
that reclaims space by collecting live objects in a selected memory area
and copying them into new memory areas while compacting them in the
process. The term “pause” in both the type and trigger refers to the fact that
the garbage collector performs a stop-the-world event, in which it stops the
application to recover memory that is no longer in use. The parsed log file,
presented in Table 4.6, contains information about the memory usage in
megabytes before and after each collection, denoted by the “Before” and
“After” columns respectively, as well as the duration of each collection in
milliseconds.[30]

As the garbage collection log does not provide information on whether the
garbage collections occur in the background while the main application
thread yields between bursts, it is insufficient to determine if these activities
have an impact on the burst processing times. We suspect that the
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Table 4.6: Garbage collection activities during processing of S1000
50 with 1000

dms. Timestamp is in seconds and Duration is in milliseconds.
Timestamp ID Type Trigger Before After Duration

0.355 0 PY(N) G1EP 24 3 10.948
26.323 1 PY(N) G1EP 299 41 31.087
32.530 2 PY(N) G1EP 121 54 25.020
39.739 3 PY(N) G1EP 142 68 10.563
47.989 4 PY(N) G1EP 174 83 12.169
57.383 5 PY(N) G1EP 209 102 13.103
58.003 6 PY(N) G1EP 294 103 9.228
58.583 7 PY(N) G1EP 321 102 1.107

tracepoints stored in memory during the experiment are the primary cause
of the observed garbage collections. This is formulated as Hypothesis H3
and further investigated:

H3 Observed garbage collections are caused by the tracing utility memory
overhead.

4.2.6 Experimental design

To test Hypothesis H3, we switch to the monitor with the smallest memory
footprint. The monitor does not use the tracing utility to store tracepoints
in memory, but instead stores tracing information in the event itself, see
Section 3.4.3 for more details. We process the same workload of S1000

50 with
1000 dms as previously to see if a monitor with less memory trigger the
same amount of garbage collections. Our expectation is that we are going
to see fewer garbage collections in the resulting log, which confirms our
hypothesis that the memory overhead of our tracing utility is invoking
garbage collection.

4.2.7 Analysis

Analysis of the resulting garbage collection log reveals that only a single
garbage collection occurs during S1000

50 , as demonstrated in Table 4.7. This
finding confirms Hypothesis H3 and supports the conclusion that the
number of garbage collections is proportional to the memory usage of
the application. We hypothesize that allocating sufficient memory for the
application would prevent tracepoints stored in memory from reaching
a boundary that would trigger a garbage collection. Hypothesis H4 is
introduced and further investigated:

H4 Garbage collection occurs less frequently when the heap size of the
JVM is large.
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Table 4.7: Garbage collection activities during processing of S1000
50 with 1000

dms using the timestamp-enabled trace monitor. Timestamp is in seconds
and Duration is in milliseconds.

Timestamp ID Type Trigger Before After Duration
0.331 0 PY(N) G1EP 24 3 9.840

4.2.8 Experimental design

To test Hypothesis H4, we switch back to monitor that uses the tracing
utility, and increase the initial heap size of the JVM to maximum size of 4GB
with the command-line option -Xms4g[31]. Then we process the workload
of S1000

50 with 1000 dms. We expect to see fewer garbage collections during
the experiment compared to the ergonomically selected heap size of the
JVM. This demonstrates that we can mitigate the tracing utility’s impact
on application performance. If we can avoid garbage collections from
occurring entirely during our measurement while using the tracing utility,
we can shy from changing to a potentially more complex instrumentation
method, saving time and effort to isolate caching behavior.

4.2.9 Analysis

Our analysis of the resulting garbage collection log, presented in Table
4.8, revealed that garbage collection still occurred five times during the
experiment, which was only three times less than with the default initial
heap size. This finding suggests that our hypothesis was incorrect, and
that the frequency of garbage collections is not solely determined by
the memory allocation of the application. However, the analysis of the
garbage collection log revealed that the type of garbage collections during
the experiment was predominantly “Pause Young (Normal)”, referring to
the young generation of the heap. To reduce the frequency of garbage
collection, we hypothesize that dedicating a greater portion of the heap to
the young generation would be beneficial. We continue our investigation
with Hypothesis H5 formulated as follows:

H5 Garbage collection occurs less when the young generation of the heap
is large.

Table 4.8: Garbage collection activities during processing of S1000
50 with 1000

dms running on the JVM with initial heap size of 4GB. Timestamp is in
seconds and Duration is in milliseconds.

Timestamp ID Type Trigger Before After Duration
17.032 0 PY(N) G1EP 204 27 23.357
31.461 1 PY(N) G1EP 207 53 20.403
45.913 2 PY(N) G1EP 231 78 21.222
57.538 3 PY(N) G1EP 260 102 26.995
58.071 4 PY(N) G1EP 284 102 9.182
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Figure 4.13: A comparison of the impact of heap settings on burst
processing in S1000

50 with 1000 dms.

4.2.10 Experimental design

We dedicate 3GB of the heap to the young generation with the command-
line option -Xmn3g. -Xmn<size> sets the initial and maximum size of the
heap for the young generation[31]. We keep the initial heap size of 4GB
and end up with a 3:1 ratio between the young and the old generation
of the heap. To verify that the garbage collections occurring during our
experiment are caused by the young generation filling up, we process again
the workload of S1000

50 with 1000 dms once, but with the new heap settings.
We expect zero garbage collections during the experiment because the sum
of memory usage before each garbage collection for the given workload
never exceeds 2GB, as illustrated in Table 4.6 and 4.8. This would provide
us measurements of event processing without the involvement of garbage
collection and how garbage collection affects event processing.

4.2.11 Analysis

We observed zero garbage collections during the experiment, confirming
Hypothesis H5. The analysis of the burst processing time also reveals
that the severe spikes in burst processing time were the result of garbage
collections, as shown in Figure 4.13, concluding Hypothesis H2.
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1000 with 1000 dms

and without garbage collection.

4.3 Bimodal distribution

Figure 4.14 presents the distribution of event processing times from the
experiment in Section 4.2.10 where no garbage collection occurs during
runtime. The results reveal a bimodal distribution for a logarithmic Y-
scale. The first modal, between 0 and 400 µs, contains 99.7% of the
events, while the second modal, between 500 and 700 µs, contains only
0.3% of the events. We have excluded the first event in the stream in the
distribution plot, as it will always have abnormal processing time due to
class initialization. Table 4.9 displays the events with processing times
exceeding 500 µs and demonstrates that the majority of these events occur
in bursts past S15,∗ in S1000

50 . This indicates that the majority of observed
high event processing times are not caused by JIT compilation, as the JIT
compilation process is at the start of the application lifetime. However, this
process is known to take an unexpectedly long time[4].

We start the investigation of the bimodal distribution of event processing
time with Hypothesis H6:

H6 Majority of high event processing time are caused by JIT compilation.

4.3.1 Java Virtual Machine (JVM) and JIT compilation

The Java Virtual Machine (JVM) is an abstract computing mechanism that
forms the foundation of the Java platform[10]. Analogous to a tangible
computing machine, the JVM operates by executing a set of instructions
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Table 4.9: Event processing time exceeding 500 µs in S1000
50 when no garbage

collection occurs during runtime. Time measurements are in microseconds.
i j Time(Si,j)
1 1 6734.27

26 118 678.04
11 241 675.43
35 259 661.99
24 159 656.72
28 77 650.67
13 161 640.96
44 196 636.19
48 114 629.21
39 177 623.34
46 155 622.49
37 218 615.58
19 38 614.27
17 79 610.56
6 83 607.76

15 120 606.80
20 344 501.34

and managing several memory regions during runtime. It serves as
the integral component of the Java platform that enables it to operate
independently of hardware and operating system dependencies. Thus,
Java applications are capable of running seamlessly on any computing
system equipped with a Java runtime environment[26].

The JVM runtime executes bytecode instructions generated through com-
pilation of a Java program[10]. When bytecode instructions are interpreted
for execution, the byte compiled Java program run innately slower com-
pared to its C/C++ counterpart that is compiled to native machine code.
The performance evaluation by Wentworth and Langan[47] shows that for
a set of commonly known sorting algorithms, interpreted Java code has a
performance degradation of 20.7 compared to C++.

To improve the performance of the JVM, just-in-time (JIT) compilation
has been incorporated and is now a critical part of the JVM’s runtime
performance of Java applications. JIT compilation in the HotSpot VM
works by compiling only the sections of code that are executed frequently,
also known as “hot spots”. The performance of an application depends
primarily on how fast those hot spots are executed[29].

In the HotSpot VM, the JIT compiler comes in two flavors: client (C1)
and server (C2). The C1 compiler is designed for use with GUI-based
programs that prioritize fast startup times and generates lightly optimized
code while having a small memory footprint. In contrast, the C2 compiler
is a highly optimizing compiler and generates high-quality code at the cost
of longer compilation. It is most often used with long running server-side
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applications and perform better than the client compiler once the JVM has
“warmed up”.[18, 29]

The JVM warm-up refers to the time it takes for the JIT compiler to
optimize code for peak performance[29]. The warm-up process begins
in the initial phase of execution and continues until it reaches a steady
state of peak performance. However, empirical research by Barret et al.[4]
show that even widely studied, small and deterministic microbenchmarks,
fail to consistently reach a steady state of peak performance on several
common VMs, including the HotSpot VM, despite being executed in
heavily controlled environments. Furthermore, the number of function
calls and lines of code have a considerable influence on whether or not
the microbenchmarks reach a steady state[23]. The warm-up period is
characterized by slower execution times and higher memory usage, as
the JVM perform expensive code verification, class loading, bytecode
interpretation, profiling, and dynamic compilation[48].

Since the release of Java 8, the HotSpot VM uses a combination of the C1
and C2 compiler by default to compile Java bytecode to native machine
code, a technique known as tiered compilation[18]. Tiered compilation
systems compile methods multiple times using different compilers to
optimize code at different levels of execution to provide a good trade-
off between speed of compilation and generated code quality. There
are five distinct levels of compilation, starting with interpreted code
(level 0) and progressing through four levels of compiled code. The
initial compilation typically performs only lightweight optimizations and
instruments generated code to gather profiling information. The profiling
information is used in a later compilation to generate high quality code[18].
The best case for performance is when methods are compiled consecutively
from level 0 to level 4[29]. The generated machine code is cached to be
used repetitively without recompilation[10]. Ensuring that the code cache
is sized appropriately is essential for optimal performance[29].

Overall, the JIT compiler is a crucial factor in the performance of
Java applications, and understanding how it works can help developers
optimize their code for better performance.

4.3.2 Experimental design

Achieving accurate performance measurements of software systems
through microbenchmarks requires careful consideration of the warm-up
period for each microbenchmark. The warm-up period provides the com-
piler with an opportunity to finish producing optimal code, ensuring that
the measured performance is representative of the steady-state of peak per-
formance of the system. Therefore, identifying the end of the warm-up
period is essential to create precise and effective models of long running
systems.

We test Hypothesis H6 by processing S1000
50 with burst distances ranging

from 400 ms and 1000 ms, as burst distances below 400 ms exhibit different
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behavior. In each experiment, we vary the burst distance in steps of 100
ms. We set the heap size of the JVM to be 4GB with 3GB dedicated to the
young generation to guarantee that no garbage collections occur during
the experiment and enable logging of garbage collection for validation. We
keep the default JIT compilation settings of tiered compilation running in
the background.

To mitigate the overhead of instrumentation and focus on the event
processing as a whole, we reduce the number of tracepoints in the source
code to two per event. These tracepoints are placed before and after event
injection, thus prioritizing the overall processing of events rather than the
internal behavior of the Siddhi event processing chain. This approach
mitigates the overhead of instrumentation and allows for a more efficient
and accurate evaluation of the event processing performance.

In our experiments, we anticipate that the burst processing in S1000
50 for each

burst distance will reach a stable state of peak performance. We define the
point in the burst sequence in which all streams have reached steady-state
as the end of the warm-up period.

4.3.3 Analysis

Figure 4.15 displays the burst processing time for S1000
50 with different burst

distances, and demonstrate that for our complex event query, we can expect
to reach a steady-state for peak performance after ten bursts, i.e. 10000
events, when burst distances are greater than 400 ms. This might not be
the case for shorter burst distances, as the compilation threads run in the
background. Table 4.9 shows that the events with the highest processing
times when there are no garbage collections, occurs after the JVM warm-up,
which indicate that the higher event processing are not caused by our JIT
compilation. However, microbenchmarks often fail to consistently reach
a steady-state of peak performance[4], which means that the JIT compiler
might still compile in the background later than we anticipate. Due to high
memory and CPU usage of compilation[48], it can cause delays in event
processing.

4.3.4 Experimental design

We note that there is still a possibility that higher event processing times
are caused by compilation overhead, as the JVM may run JIT compilation
after the warm-up period. Considering that the HotSpot JVM uses
tiered compilation, the probability is even higher since tiered compilation
compiles the same section of code multiple times.

To evaluate the impact of compilation overhead on event processing times,
we conduct experiments using the same workloads and JVM configuration
as in our previous experiments, in addition to disabling the JIT compiler.
The JIT compiler is disabled by the command-line option -Xint[31],
causing the JVM to interpret the bytecode entirely. This approach allows
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Figure 4.15: Burst processing times in S1000
50 with burst distances ranging

from 400 ms to 1000 ms and without garbage collection. The dashed line in
dark gray denotes the end of the JVM warm-up.

us to measure the performance of the system without the optimization
benefits provided by the JIT compiler, which is useful for understanding
the impact of compilation overhead on event processing times.

First and foremost, we expect to see behavior characterized as JVM warm-
up to disappear which is a phenomenon caused by JIT compilation. This
will confirm that the higher processing time of the first 10 bursts are caused
by JIT compilation. Next, we predict a reduction of higher event processing
time, which will be demonstrated by a unimodal distribution of event
processing times. This will verify that the higher event processing times
are attributed to JIT compilation.

4.3.5 Analysis

Figure 4.16 confirms that the higher processing times of S1−10,∗ are part
of the JVM warm-up and caused by JIT compilation. The distribution
of event processing time for S1000

50 with 1000 dms, depicted in Figure 4.17
reveals that many of the high event processing times were also caused by
JIT compilation, as we observe only two spikes around 800 µs, in contrast to
16 spikes in the range of 500 to 700 µs. These findings validate Hypothesis
H6 that JIT compilation can cause high event processing times.

Nevertheless, the data in Figure 4.17 reveals that there are still a couple
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Figure 4.16: Comparison of burst processing in S1000
50 with burst distances

ranging from 400 ms to 1000 ms. No garbage collection occurrences during
runtime and JIT compiler is disabled.
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Figure 4.17: Distribution of event processing time in S50
1000 with 1000 dms.

No garbage collection occurrences during runtime and JIT compiler is
disabled.
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of minor spikes event processing times, occurring halfway and at the end
of the stream, as illustrated in Table 4.10. The amount of data stored in
memory throughout the experiment is drastically larger than in our initial
experiment, since we have increased the allocated space for the young
generation of the heap. We postulate that these spikes are caused by page
faults. During initialization, the JVM does not by default get all the pages of
its heap into memory; instead pages are committed as the JVM heap space
fills up[31], which introduces processing delays[40]. This is expressed as
Hypothesis H7 and further investigated:

H7 High event processing times are caused by page faults.

Table 4.10: The 10 events with the highest processing time in S1000
50 with

1000 dms. No garbage collection occurrences during runtime and the JIT
compiler is disabled. Time measurements are in microseconds.

i j Time(S(i,j))

1 1 9722.73
50 12 815.07
25 8 814.27
38 1 378.93
46 1 340.16
20 1 337.40
12 1 331.82
49 1 331.52
17 1 331.18
23 1 331.16

4.3.6 Virtual memory

Virtual memory is a crucial component of modern operating systems which
helps in managing memory resources while giving processes the illusion of
owning the entire or more physical memory than what is available.

To manage virtual memory, the operating system breaks up a process’s
address space into fixed-sized blocks of virtual memory called pages, and
maintains a map between virtual pages and physical page frames in a data
structure known as a page table. When a process references an unmapped
address, i.e., a page that is not in physical memory, a page fault occurs,
which triggers the operating system to complete the page retrieval and
placement process. This process is carried out by the page fault handler.

The page fault handler first saves the process’ “state”, a routine to push
general registers and volatile information, such as local variables, hardware
registers, and program counter on the stack. Then it acquires a page frame
from the available free memory page pool and updates the page table to
reflect the new mapping. For major page faults, the acquired page frame
is filled with data content from a storage device corresponding to the
referenced virtual address, while for minor page faults, the page frame is
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zeroed out. Once the page fault handling is complete, the process’ state is
restored and the instruction that caused the page fault is re-executed.

When a program allocates memory, it is very rare for it to access
(touch) all pages it requests immediately after the allocation request.
Typically, program working sets are much smaller than their whole
memory footprints. Based on this property of programs, the memory
subsystem is not required to allocate memory at the moment of the initial
allocation request. Memory is only allocated when it is required, upon its
first usage. As a result, the operating system can run multiple processes
concurrently without creating a scarcity of memory, and thereby improve
the overall system performance.

This strategy is known as lazy allocation and is a key source of minor page
faults. When the memory is allocated, only a region of the virtual address
space is created by the operating system for the calling program. The
page frames are not allocated to pair with those virtual pages until they
are touched. A memory access within this newly created region triggers
a minor page fault and the page fault handler will check and confirm this
access as legal, and in turn allocate a page frame for it.

Processes produce page faults whenever they access virtual memory
regions which are not mapped to a physical page. Page fault handling
involves significant overhead, including disk I/O, memory allocation,
pushing onto and popping from stack, and context switches results
in pollution of architectural resources like caches, TLB and branch
predictors. Hence, implementing efficient page replacement algorithms
can significantly improve system performance. Furthermore, if the
available memory is too small to hold the working set of a process, it will
cause frequent page faults. Consequently, a high numbers of page swaps
to disk are required, which initiates a vicious cycle of more page faults
and excessive CPU utilization (thrashing), drastically reducing system
performance.

To alleviate thrashing, the operating system may swap some processes out
to disk temporarily, freeing up all the pages they are holding, and allocate
more memory to the processes that are experiencing thrashing. By reducing
the number of processes that are competing for memory, the system can
potentially run more efficiently.

As the memory footprints of a process grow, they gradually induce minor
page faults due to lazy allocation. Handling of each minor page fault can
take a few thousands of CPU-cycles and blocks the application until the
operating system finds a free physical frame. Thus, a high frequency of
minor page faults spread across a process’ lifetime can be detrimental to its
performance. The study by Tirumalasetty et al.[42] shows that minor page
faults alone can cause an overhead of 29% of execution time[40, 42].
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Figure 4.18: Distribution of event processing time for S50
1000 where the JIT

compiler is disabled, no garbage collection has occurred during execution
and the entire heap has been mapped physical memory.

4.3.7 Experimental design

To evaluate the impact of page fault handling on event processing time, we
conduct an experiment on the workload of S1000

50 with 1000 dms. The selected
workload is used to induce caching behavior. We set the heap size of the
JVM to 4GB and dedicate 3GB to the young generation, to ensure that no
garbage collection events occurred during our experiment. We disable the
JIT compiler to eliminate any effects the dynamic compilation process have
on event processing time. Furthermore, to minimize the number of page
faults during our experiment, we instructed the JVM to touch every page
in the allocated heap before entering the main method. This is enabled
with the command-line option -XX:+AlwaysPreTouch[31]. We expect from
the experiment a reduction in higher event processing times, demonstrated
by a unimodal distribution, which would confirm Hypothesis H7 of higher
event processing time being caused by page fault handling.

4.3.8 Analysis

The resulting event processing times are presented in Figure 4.18, demon-
strating that we only observe processing times between 0 and 400 µs, which
affirms Hypothesis H7.

64



4.4 Elevated event processing

Table 4.1 in Section 4.1 displays the burst processing time statistics for
S1000

50 across varying burst distances. It is evident that the total processing
time for bursts distances at 100, 200, and 300 ms are significantly higher
compared to the total processing time for longer burst distances. The
mean processing time for these shorter burst distances is between 48
and 65 ms, and the maximum never surpasses 105 ms. Surprisingly,
burst processing at shorter burst distances leads to considerably increased
processing times, even though our Siddhi program should have on average
completed processing the entire event burst in a timely manner before the
subsequent burst is injected for processing. Initially, we speculated that
an ill-timed garbage collector scheduling during burst processing could be
the underlying cause; however, as demonstrated in Section 4.2, garbage
collection impacts burst processing time across all tested burst distances.
Following our previous hypothesis, we suggest that dynamic voltage and
frequency scaling (DVFS) causes the elevated event processing times, as
DVFS adjusts the CPU frequency and voltage supply based on workload
to minimize energy usage, thus substantially changing one’s perception of
performance.

We start the investigation of elevated event processing time with Hypoth-
esis H8:

H8 Elevated event processing is caused by dynamic voltage and
frequency scaling.

4.4.1 Dynamic voltage and frequency scaling (DVFS)

Dynamic voltage and frequency scaling (DVFS), also known as CPU
frequency scaling, is a widely-used power management technique in
modern processors[49]. By adjusting clock frequencies and voltage supply
based on CPU workload, DVFS can reduce the energy cost of computation.
Specifically, DVFS can decrease processor clock frequency together with
the supply voltage, resulting in energy savings. This technique has been
demonstrated to be particularly effective for memory-bound workloads,
where the CPU wastes a significant portion of CPU cycles waiting for the
memory subsystem to provide operands for instructions[35, 46]. By scaling
down the frequency and voltage when the processor is idle, DVFS can
reduce power consumption and improve energy efficiency.

DVFS helps to strike a balance between the CPU’s capacity and power
consumption, resulting in more efficient and sustainable operation. How-
ever, Le Sueur and Heiser[38] show that the energy saving benefits of us-
ing DVFS are diminishing. Firstly, lower memory access latency reduces
pipeline stalls, which reduces the opportunities to save energy using DVFS.
This means that the benefits of DVFS are reduced when memory access
latency is lower. Secondly, the benefits of using DVFS are less when the
power used in an idle mode is lower. This is because overall, less energy is
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used by running at a high frequency and then spending longer in an idle
state. Thirdly, DVFS becomes more complicated to implement on multi-
core processors, which can limit its effectiveness. This is because each core
on a package must operate at the same frequency and voltage, which can
constrain the ability to scale frequency for workloads running on multi-
ple cores. Finally, transistor sizes get smaller, more current is lost into the
transistor substrate, which reduces the dynamic range of power consump-
tion that DVFS can use. This means that DVFS becomes less effective at
reducing power consumption and can actually increase static power con-
sumption.

Linux supports DVFS by the means of CPUFreq subsystem[49]. The sub-
system consists of three layers of code: the core, scaling governors, and
scaling drivers. The core provides the common code infrastructure and
user space interfaces for all platforms that support CPU performance scal-
ing. Scaling governors implement algorithms to estimate the required CPU
capacity, and as a rule, each governor implements one scaling algorithm.
Scaling drivers talk to the hardware, providing scaling governors with in-
formation on the available P-states and accessing platform-specific hard-
ware interfaces to change CPU P-states as requested by scaling governors.

A P-state refers to a processor’s voltage and frequency configuration that
is used to achieve a certain performance level. Scaling drivers talk to the
hardware and provide scaling governors with information on the available
P-states and access platform-specific hardware interfaces to change CPU P-
states as requested by scaling governors. Typically, they are used along
with algorithms to estimate the required CPU capacity, so as to decide
which P-states to put the CPUs into.

In principle, all available scaling governors can be used with every scaling
driver based on the observation that the information used by performance
scaling algorithms for P-state selection can be represented in a platform-
independent form in the majority of cases. However, performance scaling
algorithms based on information provided by the hardware, e.g., through
feedback registers, is typically specific to the hardware interface it comes
from, and may not be easily represented in an abstract and platform-
independent way. As a result, CPUFreq allows scaling drivers to bypass the
governor layer and implement their own performance scaling algorithms.
The intel_pstate scaling driver is an example of such a driver.[49]

4.4.2 Experimental design

Our computer system uses the intel_pstate scaling driver and operates
in active mode with hardware-managed P-states (HWP) enabled. P-states
refers to the clock frequency and voltage configurations for modern CPUs.
The computer system has two scaling governors available, powersave
and performance, and selects the powersave governor by default. The
powersave governor supposedly sets the CPU frequency statically to
the lowest frequency within the current frequency limits, while the
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performance governor sets it to the highest frequency[49, 50, 9]. If
we change the scaling governor it may exhibit significant differences in
performance, despite the Intel P-state driver overriding our ability to set
a static CPU frequency[4],

We process S1000
50 with burst distances ranging from 0 ms to 1000 ms.

We vary the burst distance in steps of 100 ms for each experiment.
These workloads are processed twice; once with the powersave scaling
governor and once with the performance scaling governor. We use the
JVM default settings as in our initial experiment and instrument the query
with two tracepoints per event. By varying the burst distances, we aim
to identify any discrepancies in processing time between each workload
for both scaling governors, in order to assess the impact of DVFS on event
processing.

We expect the powersave governor to yield similar results to those in Table
4.1 since it is the default scaling governor in our system. Specifically, we
expect to observe the fastest average burst processing time for a constant
stream, elevated processing time for burst distances between 100 ms and
300 ms, and typical burst processing times for burst distances greater than
300 ms. For the performance scaling governor, we expect the scaling
governor to prioritize performance, and thus try to run at the highest
possible CPU frequency, resulting in similar average burst processing times
for each workload. This will indicate that the elevated processing times
are caused by DVFS and that we should further investigate DVFS by
processing the workloads at a fixed CPU frequency.

4.4.3 Analysis

Table 4.11 presents statistics of burst processing time in S1000
50 for various

burst distances when using the powersave scaling driver. The results show
some similarities to those of our initial experiment, as shown in Table 4.1,
albeit with lower values. The highest average burst processing time is
still observed for burst distances between 100 and 300 ms. However, the
lowest average burst processing times are observed for 1000 dms, while 0
dms exhibit the second-lowest average burst processing time. Moreover,
we observe a descending average processing time from 100 to 1000 dms,
indicating that burst processing improves with longer burst distances. This
finding is different from our initial experiment, and we suspect that the
contrasting behavior is caused by the higher instrumentation overhead,
since the experiment collected seven tracepoints per event.

Although our hardware is compromised by Intel’s scaling driver to set a
static CPU frequency, changing the governor exhibit significant differences
in CPU utilization, as shown in Table 4.12. The findings show that burst
distances ranging from 100 ms to 1000 ms yield similar performance. In
contrast, a constant stream exhibits the least efficient event processing
time, with a factor of two compared to the other burst distances. The
contrasting event processing performance between the powersave and
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Table 4.11: Burst processing times in S1000
50 with default JVM settings and

powersave governor. Time measurements are in milliseconds.
dms Mean(Si,∗) Min(Si,∗) Max(Si,∗) Sum(Si,∗) std(Si,∗)

0 10.13 3.82 47.57 506.33 10.41
100 19.69 4.10 62.03 984.52 11.60
200 17.89 7.85 63.08 894.68 12.16
300 16.40 7.70 51.97 819.95 11.21
400 12.31 7.50 61.90 615.54 11.31
500 10.90 7.85 46.43 545.09 7.72
600 10.67 7.63 47.84 533.61 7.67
700 10.63 7.55 49.11 531.45 8.18
800 10.62 7.58 48.83 530.84 7.85
900 10.50 7.52 43.60 525.19 7.60

1000 9.76 7.62 38.87 487.94 5.97

performance scaling governor supports Hypothesis H8 of DVFS affecting
event processing time. This might not be the case for the fine-tuned JVM
runtime accomplished at the end of Section 4.3. Since the garbage collector
and JIT compiler are not involved during execution, the event processing
impacts the system differently, which might change the scaling driver’s
reaction to the same workload. This is formulated as Hypothesis H9:

H9 Elevated event processing are caused by DVFS even for a more
deterministic JVM runtime.

Table 4.12: Burst processing times in S1000
50 with default JVM settings and

performance governor. Time measurements are in milliseconds.
dms Mean(Si,∗) Min(Si,∗) Max(Si,∗) Sum(Si,∗) std(Si,∗)

0 11.19 3.69 64.74 559.64 12.84
100 6.22 3.89 31.89 311.10 6.64
200 5.80 3.74 41.68 290.07 6.75
300 5.90 3.71 35.07 295.14 6.51
400 5.97 3.74 41.55 298.62 7.04
500 6.20 3.73 31.42 310.02 6.88
600 5.70 3.62 41.62 284.97 6.76
700 5.90 3.71 30.87 295.21 6.07
800 5.96 3.72 36.24 298.13 6.45
900 5.82 3.65 41.85 291.13 7.07

1000 6.28 3.67 46.09 314.17 7.90

4.4.4 Experimental design

In order to investigate whether DVFS causes lower event processing
performance on certain workloads in a more deterministic JVM runtime,
we conduct experiments on S1000

50 using varying burst distances ranging
from 0 to 1000 ms. The burst distance is increased in steps of 100 ms for each
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experiment. We use the powersave scaling governor and adopt the JVM
configurations from Section 4.3.7. We anticipate to observe similar event
processing results as presented in Table 4.11, which will provide further
evidence to support Hypothesis H8 and H9.

4.4.5 Analysis

Table 4.13 demonstrates that DVFS reduces event processing performance
for certain workloads even when JIT compilation is disabled and garbage
collection and page faults are avoided. This supports Hypothesis H8 and
H9. To assess the impact of DVFS on event processing, we replicate the
experiments from Section 4.4.2 with a fixed CPU frequency.

Table 4.13: Burst processing times in S1000
50 with JIT compilation disabled,

no garbage collection or page fault occurrences, and powersave governor.
Time measurements are in milliseconds.

dms Mean(Si,∗) Min(Si,∗) Max(Si,∗) Sum(Si,∗) std(Si,∗)
0 61.73 60.56 68.55 3086.26 1.46

100 95.02 68.32 98.85 4751.03 4.02
200 96.09 68.67 99.85 4804.65 4.38
300 82.74 63.18 102.78 4136.83 17.63
400 63.50 62.44 69.25 3175.09 1.34
500 66.91 65.81 72.96 3345.31 0.95
600 61.94 61.30 67.25 3096.87 1.08
700 62.99 62.28 68.24 3149.73 0.99
800 62.68 61.53 67.60 3133.78 0.96
900 64.43 62.54 97.78 3221.68 4.98

1000 62.88 61.69 70.28 3143.99 1.38

4.4.6 Experimental design

The experiments delineated in Section 4.4.2 are replicated under a fixed
CPU frequency. This system employs the acpi_cpufreq frequency scaling
driver, which enable us to set a static CPU frequency. We lock the CPU at
the highest possible frequency of 2.8 GHz. By locking the CPU frequency,
potential fallacies regarding event processing performance under DVFS are
exposed, as the operating system abstains from adjusting CPU frequency
based on workload.

In the initial investigation of DVFS, a correlation between event processing
performance and burst distances ranging from 100 to 1000 ms is observed
under the intel_pstate driver using the performance scaling governor.
This system configuration results in higher event processing performance
for workloads with longer burst distances. When processing identical
workloads on a CPU with a static frequency, we anticipate that the
correlation will be absent. Additionally, we expect that event processing
performance for the constant stream workload will yield the worst
processing time, analogous to operating under the performance scaling
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driver. These findings ultimately demonstrate that DVFS indeed distort
one’s perception of performance.

4.4.7 Analysis

Table 4.14 demonstrates that a static CPU frequency nearly double burst
processing time for a constant processing stream compared to streams
with a burst distance of 100 dms or higher. Similar behavior was observed
when using the performance governor, as illustrated in 4.12. However, the
average burst processing time does not exhibit a decrease with longer burst
distances, which illustrates that setting a static CPU frequency is necessary
to avoid any misconceptions of event processing performance.

Table 4.14: Burst processing times in S1000
50 with default JVM settings and

static CPU frequency of 2.8 GHz. Time measurements are in milliseconds.
dms Mean(Si,∗) Min(Si,∗) Max(Si,∗) Sum(Si,∗) std(Si,∗)

0 13.71 4.89 62.25 685.27 12.01
100 7.53 5.05 40.35 376.59 7.61
200 7.64 5.16 59.72 381.80 9.05
300 7.50 5.01 40.44 375.02 7.27
400 7.60 5.16 48.21 380.09 7.80
500 7.69 5.08 40.63 384.60 7.79
600 7.63 5.18 40.94 381.42 7.26
700 7.65 5.03 43.56 382.58 7.91
800 7.91 4.98 44.76 395.29 7.93
900 7.48 5.17 54.00 373.86 8.36

1000 7.57 5.07 40.53 378.26 7.51

4.5 Asymmetric event processing

In one of our initial experiments, we processed S1000
50 with 1000 dms under

default JVM settings and scaling governor. A head-tail comparison analysis
of the results indicates that the initial events in an event burst take
significantly longer time to process than the subsequent events, as detailed
in Section 4.1.3. It is hypothesized that this behavior is attributable to cache
memories, which we explore further in this section as Hypothesis H10:

H10 Asymmetric event processing in bursts are caused by cache memory.

4.5.1 Cache state

In [16], the following terminology used to describe cache state:

• Cold: A cold cache refers to an empty cache, or one that is populated
with unwanted data. The hit ratio for a cold cache is zero or near zero
as it warms up.
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• Warm: A warm cache refers to a cache that is populated with useful
data, but does not sufficiently yet have a high hit ratio to be deemed
hot.

• Hot: A hot cache refers to a cache that is populated with frequently
requested data and has a high hit ratio, such as over 99%.

• Warmth: Cache warmth describes the extent to which a cache is hot
or cold. An activity that improves cache warmth is on that strives to
improve the cache hit ratio.

Upon initialization, caches start in a cold state and gradually warm up over
time. When the cache has a large capacity or the next-level of storage has
high access times, the cache may take a long time to become populated and
warm.

4.5.2 Experimental design

Three experiments are conducted to process S1000
50 with 1000 dms under the

powersave scaling driver, each employing a distinct tuning configuration
of the JVM:

1. Enabling JIT compilation and preventing garbage collection.

2. Disabling JIT compilation and preventing garbage collection.

3. Disabling JIT compilation, preventing garbage collection, and pre-
touching the entire JVM heap.

In each experiment, the selected JVM configuration aims to highlight the
impact of a particular aspect of the JVM on asymmetric event processing.
This is accomplished by consciously eliminating the target aspect in each
experiment and in the subsequent experiments. The first and second
configurations concentrate on the potential distortion of caching behavior
by garbage collection and JIT compilation, respectively. Both the garbage
collector and the JIT compiler are distinct processes likely to occupy
sections of the shared cache memory, potentially replacing data relevant
to the main application thread processing the event stream, and thereby
impacting the cache miss ratio of the main application thread. The third
configuration underscores the influence of pre-touching the entire allocated
JVM heap on caching behavior. Pre-touching the JVM heap simulates
a long-running system with all virtual pages mapped to physical page
frames, thereby replicating the environment intended for modeling caching
behavior.

The Siddhi application, responsible for generating the event stream,
invokes the standard library function Thread.sleep(long millis) upon
completion of injecting an event burst. This call suspends the active
thread for millis number of seconds, prompting the operating system to
schedule it in the task/process queue and prevent its execution until the
predetermined number of milliseconds have elapsed. Concurrently, the
cache lines associated with the running Siddhi application may be replaced
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by cache lines of other processes. As the number of processes competing for
the same resources is reduced with each experiment, it is anticipated that
asymmetric event processing will progressively diminish as relevant data
at the start of each burst is closer to the CPU. These findings will underscore
the significance of finely tuning the JVM in order to accurately assess the
impact of caching on event processing in Siddhi on a given system.

4.5.3 Analysis

Table 4.15 presents the results of a head-tail comparison analysis of S1000
50

with 1000 dms experiencing no occurrences of garbage collection. The JVM
warm-up is not taken into account, since we are only interested in how
caching impacts event processing in long-running systems. As with the
head-tail analysis in Section 4.1.3, the result demonstrates that the head of
the burst takes significantly longer to process than the tail, showing that
asymmetric event processing in bursts is still present even when garbage
collection does not occur during execution.

Turning off the JIT compiler results in a significant decrease in the head-
tail ratio, particularly between the first and last event in a burst, as
demonstrated in Table 4.16. The avoidance of paging, in addition to
disabling the JIT compiler, only yields a minor decrease in the head-tail
ratio, as shown in Table 4.17. The impact of JVM factors on asymmetric
processing in bursts, depicted in Figure 4.19, suggest that memory plays a
critical role in the observed behavior, given that the JIT compiler competes
for memory resources and pre-touching the JVM heap populates the cache
with relevant data prior to execution.

Table 4.15: Head-tail comparison analysis of S1000
50 with JIT enabled and no

occurrences of garbage collection. JVM warm-up not included. Experiment
executed under the powersave scaling governor. Time measurements are in
microseconds.

N A B A− B A/B
1 60 1 59 60.00
5 99 13 86 7.62

10 143 23 120 6.22
20 229 43 186 5.33
30 316 64 252 4.94
40 418 85 333 4.92
50 505 105 400 4.81

100 978 208 770 4.70
500 3417 1067 2350 3.20

Furthermore, Figure 4.20 and 4.21 demonstrate that event processing time
stabilizes after 25 events when JIT compilation is disabled, no occurrences
of garbage collection, and the entire JVM heap is pre-touched. We
hypothesize that DVFS is amplifying the observed processing behavior by
swiftly adjusting the CPU frequency after processing a small number of
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Table 4.16: Head-tail comparison analysis of S1000
50 with JIT disabled and no

occurrences of garbage collection. Initialization phase not included. Exper-
iment executed under the powersave scaling governor. Time measurements
are in microseconds.

N A B A− B A/B
1 322 36 286 8.94
5 1043 183 860 5.70

10 1925 366 1559 5.26
20 3530 739 2791 4.78
30 3920 1108 2812 3.54
40 4285 1485 2800 2.89
50 4649 1856 2793 2.50

100 6474 3708 2766 1.75
500 21171 18487 2684 1.15

Table 4.17: Head-tail comparison analysis of S1000
50 with JIT disabled, no

occurrences of garbage collection, and JVM heap pre-touched. Initializa-
tion phase not included. Experiment executed under the powersave scaling
governor. Time measurements are in microseconds.

N A B A− B A/B
1 305 37 268 8.24
5 961 185 776 5.19

10 1768 372 1396 4.75
20 3341 746 2595 4.48
30 3900 1119 2781 3.49
40 4269 1493 2776 2.86
50 4636 1866 2770 2.48

100 6483 3731 2752 1.74
500 21369 18672 2697 1.14
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Figure 4.19: Comparison of JVM factors impacting asymmetric event
processing in short bursts of 1000 events.

events in a burst to adhere to the scaling driver’s configured goal. This is
formulated as Hypothesis H11 and explored further:

H11 DVFS amplifies asymmetric event processing in event bursts.

4.5.4 Experimental design

We process S1000
50 with 1000 dms under a fixed CPU frequency of 2.8 GHz

and replicate the third JVM configuration from the previous experimental
design, with the aim of further isolating caching. This eliminates the
potential impact of DVFS on asymmetric event processing in bursts.
DVFS represents the final factor observed to cause performance non-
determinism. We anticipate that the extent of asymmetric event processing
in bursts will decrease, once again underscoring how DVFS can distort
one’s perception of performance and highlighting its importance for
consideration when modeling software.

4.5.5 Analysis

When locking the CPU frequency, we observe an even smaller head-tail
ratio, as demonstrated in Table 4.18. In addition, as indicated in Figure
4.22 and 4.23, event processing time stabilizes even faster, around S∗,3,
thereby confirming Hypothesis H11 that DVFS amplifies asymmetric event
processing in bursts.
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Figure 4.20: Distribution of event processing time for the first, second,
fifth, 10th, 20th, and 25th event in event bursts for S50

1000 with the JIT
compiler disabled and no garbage collection or page fault occurrences
during execution.

Table 4.18: Head-tail comparison analysis of S1000
50 with JIT disabled,

no garbage collection occurrences, and pre-touch enabled. Initialization
phase not included. Executed with the CPU locked at 2.8 GHz. Time
measurements are in microseconds.

N A B A− B A/B
1 129 53 76 2.43
5 346 266 80 1.30

10 612 533 79 1.15
20 1146 1065 81 1.08
30 1678 1599 79 1.05
40 2211 2132 79 1.04
50 2741 2664 77 1.03

100 5402 5325 77 1.01
500 26536 26509 27 1.00
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4.6 Summary

This chapter delves into the analysis of event processing in Siddhi for a
simple query when subjected to a sequence of short bursts and a constant
stream. Through meticulously designed and conducted experiments,
the analysis succeeds in pinpointing the performance non-determinism
related to caching, resulting in a finely-tuned computer environment
optimal for modeling the impact of caching on event processing. The
analysis further recognize several attributes of the JVM, including garbage
collection and JIT compilation, as significant contributors to performance
non-determinism. Likewise, certain features of the computer system, such
as DVFS, are recognized as notable factors that can distort one’s perception
of cache performance.

Figure 4.24 provides an illustration of how each mentioned attribute
amplifies the impact of caching on performance non-determinism. The
default configuration includes all attributes, namely garbage collection, JIT
compilation, JVM heap not being pre-touched, and DVFS. The incremental
configurations are as follows: Config 1 prevents garbage collection; Config
2 disabled JIT compilation; Config 3 pre-touches the entire JVM heap; and
Config 4 locks the CPU frequency to 2.8 GHz.

Based on the results, JIT compilation emerges as the greatest amplifier
of cache-induced performance non-determinism, followed by garbage
collection and DVFS. This observation can be attributed to the memory-
intensive nature of JIT compilation, which involves compiling code to
native format and storing it in a dedicated code cache[18]. Garbage
collection, on the other hand, operates as a background process, competing
for cache resources and contributing to performance variability.
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Chapter 5

Conclusion

In this thesis, we set out to improve our understanding of performance
non-determinism in Siddhi, specifically focusing on the modeling of
caching behavior. Furthermore, we aimed to explore the limitations of the
modeling methodology proposed by Kristiansen et al.[24] when it comes
to capturing performance non-determinism accurately.

To guide our research, we formulated the following three research
questions:

1. How can we effectively model the performance non-determinism of
event processing in Siddhi to enhance our understanding?

2. What is the correlation between wall clock time and non-deterministic
software execution, and how does it impact the performance of Sid-
dhi?

3. To what extent is the modeling methodology proposed by Kristiansen
et al.[24] limited in representing non-determinism, and what poten-
tial extensions can be made to overcome these limitations?

In Section 5.1, we provide a concise summary of the key contributions
made in this thesis. These contributions cover the development of a tuning
methodology, an in-depth analysis of event processing time with a focus
on caching, and critical reflections on the conducted work and its results.
Additionally, section 5.2 discusses open problems and identifies potential
avenues for future research in this field.

5.1 Contributions and critical reflections

The analysis of performance non-determinism in event processing was
conducted using a systematic methodology that involved several iterative
steps. This methodology consisted of instrumentation, human investiga-
tion of traces, assessment of non-deterministic behavior, and system tun-
ing. The iterations continued until a satisfactory level of determinism was
achieved.
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In analyzing the traces obtained through instrumentation, basic statistical
techniques were employed. This involved computing various statistical
metrics such as the average, minimum, maximum, and standard deviation
of burst processing time in the event streams. These metrics were used
to gain insights into the overall performance of the system. Additionally,
empirical distribution graphs of event processing time were plotted
to identify instances of performance non-determinism. A head-tail
comparison analysis was designed to explore cache behavior and highlight
differences in event processing time between the edges of a burst. The
cumulative distribution function (CDF) was utilized to determine the
warm-up time of caching.

From the analysis, it was observed that event processing in Siddhi is indeed
affected by cache memories, and wall clock time plays a crucial role in
this behavior[34]. Furthermore, JVM features like JIT compilation and
garbage collection, as well as system attributes like DVFS, amplify the
impact of caching behavior. Garbage collection introduces unpredictable
spikes in event processing, while JIT compilation leads to variability in
event processing time throughout the application’s lifetime, as it struggles
to reach a steady state of peak performance[4]. Minor page faults also
contribute to higher event processing time due to the overhead of page
replacement algorithms. Hence, when modeling event processing in Siddhi
within a production environment, these attributes must be considered to
ensure accurate simulation of software execution.

5.1.1 Contributions

This research contributes to the understanding of performance non-
determinism in Siddhi and emphasizes the importance of considering
temporal factors in modeling approaches. The findings highlight the
need for further research and development in modeling methodologies
to address performance non-determinism effectively in order to conduct
accurate simulations.

How can we effectively model the performance non-determinism of event process-
ing in Siddhi to enhance our understanding?

The analysis reveals that cache memories, a known source of performance
non-determinism, significantly impacts event processing in Siddhi. The
time dimension, represented by wall clock time, plays a critical role in
this behavior. Thus, to effectively model performance non-determinism
in Siddhi, it is important to incorporate the impact of cache memories and
the associated time dimension into the modeling approach.

What is the correlation between wall clock time and non-deterministic software
execution, and how does it impact the performance of Siddhi?

The analysis reveals a strong correlation between wall clock time and non-
deterministic software execution in the context of Siddhi. Specifically,
when processing short bursts of event tuples, the duration of idle time
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between each burst significantly affects the measured processing time
of the initial events in each burst. Furthermore, the behavior of event
processing, driven by caching, is subject to the influence of various
factors including JIT compilation, garbage collection, and DVFS. These
factors amplify the impact of wall clock time on event processing, further
accentuating the observed event processing behavior related to caching.

To what extent is the modeling methodology proposed by Kristiansen et al. limited
in representing non-determinism, and what potential extensions can be made to
overcome these limitations?

The analysis indicates that the modeling methodology proposed by
Kristiansen et al.[24] has limitations in representing non-determinism,
particularly in relation to wall clock time. The methodology does not
account for the time component of cache memories, garbage collection
spikes, and JIT compilation on software execution. To overcome these
limitations, potential extensions to the methodology should incorporate
the time dimension and its effects on cache memories to provide a more
comprehensive representation of non-deterministic behavior in Siddhi.

5.1.2 Critical reflections

The process of methodically isolating cache behavior turned out to be more
time-consuming than initially anticipated, which prevented the design
of a model capturing the impact of caching on event processing. In
hindsight, it is apparent that employing microbenchmarks would have
been a more effective approach for assessing the impact of caching on
software execution in relation to performance non-determinism, especially
when considering the JVM as the runtime system. Microbenchmarks are
specifically designed to isolate and measure the performance of specific
components or functionalities within a system. By using microbenchmarks,
it would have been possible to focus on the intricacies of caching
behavior and evaluate its impact on software execution in a controlled and
precise manner. Moreover, it would facilitate the design of experiments
that specifically target the complex attributes of the JVM, such as JIT
compilation and garbage collection. By modeling each of these attributes
individually and gradually combining them, a more comprehensive
understanding of their impact on performance could be achieved. Such an
approach aligns well with the modeling abstractions of service execution
models in [24].

5.2 Open problems and future work

This thesis has laid a solid foundation for further exploration and devel-
opment in modeling performance non-determinism in Siddhi, specifically
related to caching. In this section, we discuss some open problems and
future work that could further build knowledge on the topic of modeling
software execution of modern CEP systems.
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5.2.1 Isolation of CPU core

Although we have made progress in isolating caching behavior, additional
empirical evidence would be valuable. One possible approach is to run
the application on a dedicated CPU core using techniques like isolcpus[2]
or cset[43]. This would minimize the number of competing processes,
preventing cache data relevant to the application from being displaced by
other processes. It is expected that the cache would maintain a higher
degree of warmth between each burst. However, it should be noted that
the L3 cache is a shared resource, so there is still a possibility of variability
in event processing times induced by caching.

5.2.2 Control task scheduling

To further reduce variability in event processing time, setting the highest
possible priority value for the running application using chrt --rr 99 can
be considered. This would prevent the operating system scheduler from
interrupting the process mid-burst or at least minimize the duration of
interruptions. Another approach could be using a hard real-time operating
system like RTLinux[51], which would provide a deterministic execution
environment, facilitating the modeling process.

5.2.3 Cache model

The highest priority in the research is to model caching behavior within
the system configuration. This priority is driven by the need to challenge
the modeling methodology introduced by Kristiansen et al.[24] and
potentially propose an extension to enhance its applicability. Specifically,
the immediate focus is on modeling the impact of caching on the select
query under various workloads. This includes exploring constant streams
of different rates, workloads triggering alternating cache states of different
warmth levels (hot, cold, and warm), and workloads with varying tuple
sizes. Subsequently, the modeling expands to different queries or operators
and their performance implications in relation to cache states.
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