
.

Master’s thesis

Designing API
documentation for novice
developers
A qualitative study of documentation obstacles for novice
users

Johannes Skøien

Informatics: Programming and System Architecture
60 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

Spring 2023

Designing API
documentation for novice

developers

A qualitative study of documentation
obstacles for novice users

Johannes Skøien

© 2023 Johannes Skøien

Designing API documentation for novice developers

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Application Programming Interfaces (APIs) play a significant role in the soft-
ware development-process, as they provide access to useful functionality and
endpoints in a broad spectrum of relevant systems. Through this thesis, the
needs and experiences of novice API developers are studied, in order to identify
the needs of said users regarding API documentation, compared to the existing
knowledge obtained by studying more experienced users. Even though there
are similarities in the needs, there are also some di↵erences that needs to be
considered.

The thesis has primarily focused on two elements of the documentation: content
and organizing, in order to identify areas of improvement regarding the percep-
tion for users without necessarily much preliminary experience using APIs. By
looking at what information is presented, as well as how it is presented, weak-
nesses in current documentation can be identified and improved to better suit
users with di↵erent experience levels. Content and organizing are also often con-
nected, making them natural to view together to gain an overall understanding.

The study has been conducted as a qualitative study, where a combination
of interviews and observations has been used to identify irritations, obstacles
and possible improvements when developing with APIs. 15 participants with
varying backgrounds have been interviewed in order to gain insight in the men-
tioned areas from di↵erent perspectives. In addition to this, observations of
users of the DHIS2 Web API have been conducted to understand actual pro-
cesses and development, with the aim to gain insight in approaches to solving
current experienced problems in actual processes.

Considering facilitating learning and development for a broad range of expe-
rience can be beneficial for an API to be perceived as useful by more users.
The thesis identifies six points of recommendation for practice in order for API
documentation to be useful and intuitive also for novice users. These points
are to 1) Consider combining a guide- and encyclopedia-approach, 2) Connect
examples to use cases to explain how concepts are used in practice, 3) Make
examples interactive, 4) Keep descriptions short and precise, 5) Identify and
prioritize presenting the most relevant information first and 6) Gather relevant
resources in categories. By employing these points of focus when designing doc-
umentation, it is possible that novice users can find the documentation easier
to use, thus are more likely to succeed developing with the API.

Keywords: API, API documentation, API usability, novice developers, DHIS2,
platform development

1

Acknowledgements

First, I wish to express my deepest gratitude to my supervisor, Jens Johan
Kaasbøll, for his outstanding assistance, support and supervising through the
process of creating, working with and finishing this project. Our meetings, dis-
cussions and your continuous reviews of my work have been crucial for this thesis
to be successful. Your academic guidance has helped me conquer obstacles faced
through the process, and helped me steer the thesis in a correct direction.

Second, I wish to thank my project-partner, Ashwin Rajeswaran, for great dis-
cussions and support through the whole process of working with this thesis.
Conducting data collections, analyzing and discussing findings with you has
been of great value, and has helped me a lot through the whole process.

Third, I would like to thank everyone involved in the DHIS2 Design Lab and
HISP-group at UiO. Our daily discussions at the Nemko-building has helped
both conquer obstacles, and keep motivation up through the whole process of
working with the thesis. Being able to present parts of the thesis for you, and
getting the thorough feedback you all provided has been of great value.

I would also like to thank all participants in the data collections for this thesis
for taking time out of their schedules to talk to me. Without you, this thesis
would never have been possible to complete. Thank you to each and every one
of you for your valuable contributions to this study.

Finally, I would like to express my deepest gratitude to my girlfriend, my fam-
ily, my friends and everyone else that has supported and motivated me through
the last two years of studying towards the completion of this thesis. Your un-
conditional support and encouragement has been priceless and crucial for the
completion of my work.

Johannes Skøien

University of Oslo

May 2023

2

Contents

1 Introduction 1
1.1 Problematization . 1
1.2 Knowledge gap . 2
1.3 Research question . 3
1.4 Thesis structure . 4

2 Background 6
2.1 DEDICATED . 6
2.2 HISP . 6
2.3 Software platforms . 6
2.4 IN5320 - Development in Platform Ecosystems 8
2.5 DHIS2 . 8
2.6 API . 8
2.7 DHIS2 Web API . 12
2.8 API learning . 14
2.9 Guide vs. encyclopedia . 15
2.10 Simplicity and depth . 16
2.11 Examples of good API-documentation 17

2.11.1 Twitter . 17
2.11.2 Dropbox . 18
2.11.3 GitHub . 18

3 Related literature 21
3.1 Usability . 21
3.2 Learnability . 23
3.3 Learning software development 24
3.4 API documentation . 25

4 Research method 29
4.1 Methodology: Qualitative study 29
4.2 Method . 29

4.2.1 Qualitative data collection 29
4.2.2 Sample group . 30

4.3 Validity and reliability . 31
4.3.1 Validity . 31
4.3.2 Reliability . 35

4.4 Data collection . 35
4.4.1 Literature review . 35
4.4.2 Iteration 1 . 36
4.4.3 Iteration 2 . 37

4.5 Analysis . 38
4.5.1 Open coding . 38
4.5.2 Axial coding . 40

3

5 Findings 44
5.1 Iteration 1 . 44

5.1.1 Content . 44
5.1.1.1 Examples and use cases 44
5.1.1.2 Level of expertise 46
5.1.1.3 Balance simplicity and depth 48
5.1.1.4 Step-by-step descriptions of the API in use . . . 48
5.1.1.5 Handling version updates 49
5.1.1.6 User involvement 51

5.1.2 Organizing . 51
5.1.2.1 Getting inspiration from other APIs 51
5.1.2.2 One page vs. modularized sections 52
5.1.2.3 Organizing the content 53

5.1.3 Iteration summary . 55
5.2 Iteration 2 . 57

5.2.1 Approaches to problem solving with DHIS2 57
5.2.1.1 Exploring . 57
5.2.1.2 Use of documentation 59
5.2.1.3 Other resources 59

5.2.2 Obstacles and possible improvements to problem solving
with DHIS2 . 62
5.2.2.1 Content . 62
5.2.2.2 Organizing . 66

5.2.3 Iteration summary . 71

6 Discussion 72
6.1 Content . 72

6.1.1 From documentation to practice 72
6.1.2 User-group experience level 74
6.1.3 Continuous documentation 79

6.2 Organizing . 82
6.2.1 Layout and design of the documentation 82
6.2.2 Categorization and organization of content 84

7 Conclusion 87
7.1 Research questions . 87
7.2 Recommendations for practice . 90
7.3 Contribution . 91
7.4 Further research . 92
7.5 Limitations . 92

References 94

8 Appendix 99

A Interview guide - Iteration 1 99

4

B Interview guide - Iteration 2 102

5

List of Tables

1 Examples of knowledge boundary resources 9
2 Participants in the interviews of the study 32
3 Participants in the observations of the study 33
4 Categories from open coding of iteration 1 39
5 Categories from open coding of iteration 2 41
6 Revised categories leading into discussion 43
7 Findings from iteration 1 . 56
8 Findings from iteration 2 . 71
9 Suggested suitable uses for the guide- and encyclopedia-approach 89

6

List of Figures

1 Platform ecosystem visualized . 7
2 Visual representation of the role of APIs 10
3 URI API request . 11
4 SDK API request . 12
5 DHIS2 API request . 13
6 DHIS2 data-relations . 14
7 DHIS2 Academy . 15
8 Guide vs. encyclopedia . 16
9 Twitter API Documentation . 18
10 Dropbox API Documentation . 19
11 GitHub API Documentation . 20
12 Reading patterns . 22
13 E↵ect of pair programming for di↵erent experience levels 24
14 Findings from “How API Documentation Fails” 26
15 Sketches . 37
16 Open coding - findings . 40
17 Axial coding - findings . 41
18 DHIS2 endpoint description . 45
19 Metadata identifier scheme . 46
20 DHIS2 - example from project . 47
21 Possible endpoint-layout . 50
22 DHIS2 - deprecated section . 51
23 Iterative approach to API-development 58
24 Dimensions of DHIS2 . 58
25 Perspectives on ”Minimum viable payload” 60
26 DHIS2 YouTube-channel . 61
27 Curl vs. React . 63
28 Deprecated section . 64
29 Path issues . 65
30 DHIS2 developer documentation 67
31 DHIS2 developer portal . 67
32 DHIS2 developer manual . 68
33 Large amounts of information . 69
34 Step-by-step descriptions . 75
35 Simple visualization of DHIS2 data model 78
36 Visualization of DHIS2 data model on a higher level 79
37 GitHub API documentation - best practices-page 80
38 GitHub API documentation - possibility of community contribution 81
39 Android API evolution since 2018 81
40 Dropbox API documentation . 83
41 Twitter API documentation . 83
42 The layer-cake reading pattern 86

7

1 Introduction

1.1 Problematization

Application Programming Interfaces (APIs) play a significant role in the soft-
ware development-process, as they provide access to useful functionality and
endpoints in a broad spectrum of relevant systems. According to the Slash-
Data Developer Economics Survey 19th edition, an estimate of nearly 90% of
all developers work with APIs (Simpson, 2022). Large software systems can be
built up by several smaller sub-systems, often connected by API-connections,
making APIs important links in core systems. Learning and understanding how
to use APIs may therefore be a crucial part of the education of software de-
velopment. Resources like documentation and training modules play a major
role in the e�ciency of self-exploratory learning and development. Especially
in educational settings, students having to understand and learn how relevant
technologies work during the limited duration of projects requires resources to
be carefully considered.

Boundary resources are resources that serve to enable innovation and control de-
velopment in a desired direction. (Ghazawneh and Henfridsson, 2013). Knowl-
edge boundary resources are described by Foerderer et al. (2019) as boundary
resources regarding third parties’ knowledge and understanding of the develop-
ment context, a↵ecting their ability to contribute to a platform. Documentation
often tends to serve as an important knowledge boundary resource for under-
standing and learning new technologies (Wingkvist et al., 2010). Defined both
as a platform- and a social boundary resource in previous literature, documen-
tation is artifacts aimed at helping developers accessing and utilizing platform
resources (Bianco et al., 2014; Rubleske, 2020). However, the documentation
of APIs can often turn out to be complex, overwhelming, and di�cult to com-
prehend. Software developers tend to write their documentation after the de-
velopment is done, making it a last step of the development process often suf-
fering from a lack of motivation (Parnas, 2010). Badly written documentation
can provide a major obstacle for novice developers and API-users, making new
technologies hard to conquer and utilize, potentially strongly a↵ecting the mo-
tivation to proceed. The consequence of this may be that it does not necessarily
fulfill its potential in early stages for novice programmers, potentially leading
to developers not being able to utilize API-connected systems to the scope of
their potential.

Experienced API-users may have developed personal routines and preferences
regarding how to approach new systems. General knowledge regarding naming
conventions, what to search for etc. can make the process of gaining a quick
understanding of new technologies manageable. For novice developers, however,
lack of said experience can make the process significantly more di�cult and time
consuming. In educational contexts, students are required to study relevant
documentation themselves, thus may documentation of poor quality strongly

1

a↵ect the learning outcome and experience. Also in a professional development
environment, poorly written documentation can strongly a↵ect e�ciency and
progress. This challenge is illustrated by a participant in a previously conducted
study:

“The biggest hurdle when learning an API is the documentation. If
the documentation for an API is good, it solves 99% of your

problems”

Robillard and DeLine, 2010, p. 704

Identifying what is commonly perceived as “good and bad” regarding documen-
tation can however turn out to be di�cult, as these are subjective opinions,
varying from person to person (Wingkvist et al., 2010). While experienced
programmers may be fairly well known with how API are typically structured,
beginners may struggle with reading and understanding documentation, making
the concept of APIs hard to comprehend. Thorough examination of the target
group is therefore crucial in order to focus the resources on the right areas.

During IN5320 - Development in Platform Ecosystems, a master level course
running autumn at the University of Oslo, the participating students are faced
with the mentioned challenge of having to learn and utilize new technologies
during a project with limited time. The students are creating applications for
the health-platform DHIS2, using a complex API that requires time and e↵ort
to fully understand. They are required to utilize what boundary resources are
available, and the quality of these can have a major impact on the learning
outcome and feasibility of the project. The presentation of the complex data
structure in said system is crucial for understanding and e�cient use of the API
for project development.

The target group of this study is novice API developers. A novice developer has
previously been described as someone who is not experienced at programming
(Lau and Yuen, 2009). Thus, a novice API developer in this context is someone
without much experience using APIs and the belonging resources. Unlike the
mentioned description of a novice developer, novice API developers are not nec-
essarily inexperienced programmers, but rather have limited experience using
APIs, with the belonging capabilities and challenges that follow.

1.2 Knowledge gap

Previous literature has covered the process of learning and exploring new APIs,
mapping out weaknesses and obstacles regarding the documentation(Aghajani
et al., 2020; Robillard and DeLine, 2010; Uddin and Robillard, 2015). Yet, lit-
erature o↵ers few insights on how the process of using APIs is experienced and
perceived by novice API developers. Most previous studies have targeted expe-
rienced professionals, hence getting detailed data from users working with large
systems daily. Whether these results are covering also for developers with less

2

experience using APIs, however, is not yet mapped out su�ciently to conclude.
The findings of previous studies may also be relevant for novice developers. It
should however be explored more in order to see if these are covering, or if the
novice target group requires other additional perspectives and considerations.

The goal of this study is to research common factors of good and bad docu-
mentation, which can contribute to the Health Information System Programme
(HISP) bettering the learning process of the DHIS2 Web API for current and
future students. It can also be relevant for self-educated developers using the
DHIS2 Web API outside of education. Seeing how ine↵ective and poorly written
documentation can negatively a↵ect the development, it is beneficial to iden-
tify the factors causing the struggles, as well as how to improve these. Good
practices when writing API documentation can have a great impact on API-
education through organized courses, as well as also bettering the usability and
readability of the documentation in general. This thesis aims to provide design-
ers of API documentation insight in considerations that should be made when
facilitating learning and development for novice API developers.

1.3 Research question

Based on the background for the thesis, as well as the previous stated purpose
of the research, the following research question has been constructed:

RQ 1: How can API-documentation be designed to facilitate learning and
development for novice developers?

To help answer this question, some more concrete, descriptive sub-question have
been formulated:

RQ 1.1: What are common factors that make existing documentation di�cult
to understand?

RQ 1.2: What are common factors that make existing documentation easy to
understand?

RQ 1.3: What content is necessary in the documentation?

RQ 1.4: What content is perceived as overwhelming in documentation?

RQ 1.5: How should the information be organized?

This thesis aims to contribute to the HISP-project “Developing EDucation with
Input from CoordinATED research students” (“DEDICATED”), where UiO in
collaboration with universities in Malawi (UNIMA), Mozambique (UEM) and
Tanzania (UDSM) aims to develop subjects aimed at teaching development of
public health-applications for digital platforms. Through the thesis, the aim is
to identify good and bad practices with current API documentation, and thus
come up with a proposed answer to the stated research questions. The result
will be factors to consider regarding structure and content when writing API
documentation in order to ensure usability aimed at novice developers.

3

To address the research question, and gain knowledge and understanding of
how the novice target group perceives documentation as a knowledge boundary
resource for gaining knowledge about new technologies, the study will explore
the design and content of existing documentation, to look at common factors
of well- and bad-formed examples. Researching good and bad factors of exist-
ing documentation, may provide insight in how to improve the usability and
perception of learning about API-development, both in a general matter and in
the context of platform development. The organization and content of the doc-
umentation will be investigated, and users’ experiences will be explored. From
there we will try to map out good practices and guidelines that can be utilized
in forming of future, both new and updated API documentation. The scope for
the study is related to the DHIS2 Web API, but the findings are probable to be
relevant also for other APIs.

The study will be conducted as a qualitative study, where a combination of
interviews and observations creates the basis for the thesis. From this, we aim
to gain an understanding of the needs, as well as the obstacles novice develop-
ers may face when being introduced to new APIs and technologies. The sample
group consists of a variety of participants, including lecturers and researchers,
students in the course IN5320 - Development in Platform Ecosystems at UiO,
developers working daily with DHIS2 as well as developers not a�liated with
said system in any way.

The study aims at contributing to the field by identifying what can be improved
regarding documentation in order to make API-usage in platform development
more manageable for novice developers. In addition, even though this study
primarily has a platform-focus, the findings can also be relevant for designers
and maintainers of API documentation outside the contexts of platforms, pro-
viding relevant insight also for them. To achieve this, it is important to gain
an understanding of what novice developers find challenging and lacking with
current documentation of APIs as a knowledge boundary resource. Comparing
findings from this target group with previous literature’s findings, can provide
the basis for recommendations that will cover a wider group of developers than
just experienced professionals.

1.4 Thesis structure

Chapter 2 - Background gives an overview of relevant concepts to under-
stand for the thesis.

Chapter 3 - Related research presents relevant literature on the topics
usability, learnability, learning software development and API documentation.

Chapter 4 - Research method describes the methodology for the thesis,
the process of data collection and analysis, and describes the sample groups of

4

the di↵erent iterations. It also covers a brief reflection on validity and reliability
for the study.

Chapter 5 - Findings is where the findings from the data collections are
presented in categories identified during analysis. The findings presented bridge
into the next chapter where they are discussed related to existing literature.
The chapter is structured in iterations, containing the sections Iteration 1 and
Iteration 2. Iteration 1 is created as a joint e↵ort with Ashwin Rajeswaran,
thus the chapter may contain some similar paragraphs and partial sections. It-
eration 2 is based on common findings from the data collections, but is written
individually.

Chapter 6 - Discussion is where the findings are discussed and compared
to findings from previous literature. The chapter is separated into two sub-
chapters, Content and Organizing, which contains discussions regarding five
categories: From documentation to practice, User-group experience level, Con-
tinuous documentation, Layout and design of the documentation and Catego-
rization and organization of the content.

Chapter 7 - Conclusion addresses the sub-RQs, then addresses the main
RQ of the thesis in the sub-chapter Recommendations for practice. It also con-
tains a reflection on the contribution, the limitations of the thesis, as well as
reflections on possible future research within this area.

5

2 Background

This chapter aims to provide an introductory understanding of relevant con-
cepts for the thesis. The chapter describes di↵erent concepts and terms that
are important for the thesis (HISP, DHIS2, DEDICATED, IN5320, API learn-
ing), important concepts to understand for the thesis (software platforms, API,
DHIS2 Web API), as well as clarification of terms that are used together later in
the thesis (Guide vs. encyclopedia, Simplicity and depth). Lastly, the chapter
presents descriptions of what’s considered as some good examples of existing
API documentation identifier by others, as well as why these are considered to
be good.

2.1 DEDICATED

DEDICATED (Developing EDucation with Input from CoordinATED research
students) is a collaboration between educational institutions in Tanzania (Uni-
versity of Dar es Salaam), Malawi (University of Malawi) and Mozambique
(Universidade Eduardo Mondlane), South Africa (University of Western Cape),
Ethiopia (University of Gondar), and Norway (University of Oslo). The aim
is to develop several new PhD- and master-courses that can make up new or
complement existing cross-domain master programs that connect health- and
IT-education. The courses target to improve knowledge in public health, com-
munity information systems, design, interoperability, and development of appli-
cations, as well as usage for data analysis etc.

2.2 HISP

Health Information Systems Programme (HISP) is a research project situated at
the HISP-center in Oslo. The project is a multidisciplinary research initiative,
aimed at helping low- and middle-income countries develop and deploy digital
tools to monitor health, prevent and combat pandemics and manage treatments
of di↵erent diseases. HISP was started in 1994, and has since then produced a
large number of PhD- and master-graduates.

2.3 Software platforms

Software platforms are defined by Tiwana (2013) as “...a software-based product
or service that serves as a foundation on which outside parties can build com-
plimentary products or services.” (p. 5). Platforms consist of a platform core,
with one or more APIs that allow developers to connect to them and develop
applications. The API creates connections to applications, creating an ecosys-
tem of applications connected to the same core. Figure 1 displays the relation
between a platform core and applications in a platform ecosystem.

Tiwana (2013) defines two types of software platforms, 1) innovation platforms
and 2) transaction platforms. Innovation platforms are platforms that facilitate

6

Figure 1: Platform ecosystem visualized
Several applications connected to the same platform core.

innovation, by enabling use of resources for a large group of users. Innova-
tion platforms provide functionality that can be used to develop applications on
top of the platform, extending its functionality in di↵erent ways. Examples of
innovation platforms include iOS (the OS of Apple) and DHIS2. Transaction
platforms facilitate interaction between actors in a market, which can be seen as
the supply and demand. Transaction platforms allow for a supplier to provide
something (e.g. an item or a service), and a customer to purchase said thing.
Examples of transaction platforms include eBay, Uber and Amazon.

To support development within a platform ecosystem, platform owners must
provide resources to third-party developers, supporting their development work,
often referred to as boundary resources (Ghazawneh and Henfridsson, 2013).
Boundary resources serve to enable innovation and control development in a de-
sired direction. Ghazawneh and Henfridsson (2013) describe boundary resources
as “... the interface for the arm’s-length relationship between the platform owner
and the application developer.” (p. 174). A major risk of opening a system, thus
exposing it to third parties as a platform, is concerning knowledge. Foerderer
et al. (2019) describes what is known as knowledge boundaries: boundaries
regarding third parties’ knowledge and understanding of the development con-
text, a↵ecting their ability to contribute to the platform. It is important for
platform owners to provide resources addressing these knowledge boundaries,
referred to as knowledge boundary resources (Foerderer et al., 2019). Knowl-

7

edge boundary resources is a term that can cover all resources that helps users
gain knowledge, and can therefore be a wide covering term. Some examples of
knowledge boundary resources are presented in table 1.

2.4 IN5320 - Development in Platform Ecosystems

IN5320 - Development in Platform Ecosystems is a masters level-course con-
ducted at UiO during the fall. The course covers a combination of practical
work, where students learn basic frontend-development and develop applications
for the DHIS2 ecosystem, as well as a theoretical part, introducing students to
theory regarding platform ecosystems. For the fall of 2022, 126 students partic-
ipated and completed the course.

2.5 DHIS2

The District Health Information System 2 (DHIS2) is an open-source platform,
aimed at providing software for data collection, analysis, and management of
health data. The platform is developed, coordinated, and operated by the HISP
Centre at the University of Oslo (UiO). As of 2022, the platform is used in
73 low- and middle-income countries, and in combination with other NGO-
programs this sums up to a usage in over 100 countries, covering the residency
of 3.2 billion people (DHIS2, n.d.). As a public health-initiative, the platform
is free to use, and o↵ers a variety of software applications to fit the di↵erent
areas’ needs for data handling.

2.6 API

APIs, or Application Programming Interfaces, have been defined in previous
literature as “the interface to a reusable software entity used by multiple clients
outside the developing organization, and that can be distributed separately from
environment code” (Robillard et al., 2013, p. 1). They simplify the process
of connecting to and utilizing functionality in other systems infrastructure.
APIs are often described in a simplified way as the waiter at a restaurant:
the customer sees what’s available in the menu (documentation), then places
the order via the waiter. The waiter brings the order to the kitchen (core sys-
tem/application), who processes the order and returns it to the customer via
the waiter. This is illustrated in figure 2.

API usage is a common part of the programming process, as most large sys-
tems utilize libraries and functionality made available through APIs (Uddin
and Robillard, 2015). APIs function as extensions of software, and are there-
fore a↵ected by Lehman’s laws of continuing change and increasing complexity
(Lehman, 1980). Thus, they will by nature be required to evolve to stay com-
petitive, by o↵ering new functionality, correct security flaws, ease usage for
developers and reduce technical debt by removing no longer used functionality
(Lamothe et al., 2021). Continuous development of the documentation is there-

8

Knowledge boundary resource Elaboration

Documentation Serves as the primary knowledge bound-
ary resource for software systems
(Wingkvist et al., 2010). O↵ers knowl-
edge regarding technical aspects of a
software for people intending to use it.
In the context of an API the documen-
tation should present descriptions of the
purpose, what functionalities are avail-
able and how to use it.

Online courses E.g. CodeAcademy, Khan Academy
etc. Online based courses that aim to
teach users fundamentals and advanced
features for use of a technology.

Video tutorials Videos created with the aim to teach as-
pects of or full technologies through a
video, where concepts are explained and
can be presented in practical use cases.

Workshops A gathering where several people in a
common context are gathered to work,
develop or discuss concepts to gain
knowledge and a common understand-
ing of something.

Helpdesks A resource users can approach to get
one-to-one assistance to help solve a
problem.

Community resources E.g. Stack Overflow, DHIS2 Commu-
nity etc. Forums where technical ques-
tions can be asked, discussed and an-
swered in order to gain a deeper knowl-
edge and solve problems.

Table 1: Examples of knowledge boundary resources

9

Figure 2: Visual representation of the role of APIs
Note: Figure from “A is for Application: API Basics” (Layne, 2020)

fore crucial for the service to stay usable and competitive.

By definition, APIs can be anything that connects di↵erent parts of systems
to each other. E.g., when programming in an operating system, it is likely that
the operating system o↵ers some sort of functionality that allows the program
being written to communicate with the OS, making the OS provide functional-
ity internally via an API. Thus, API can be a wide covering term. However, for
the purpose of this thesis, the term API is used as a description of Web APIs:
APIs that are made for communicating via the web (“Web APIs”, n.d.).

There are three main protocols used for Web APIs, REST, SOAP and RPC
(Bigelow, 2023). REST APIs (REpresentational State Transfer) are used when
handling data, and depend on a client/server relationship. The client sends a
request to the server, the server handles the request and returns the data in a
response. The request is not saved in states, thus each request is independent
of other previous requests. REST transmits information through the HTTP-
protocol, limiting it to only transferring text-information.

SOAP APIs (Standard Object Access Protocol) follow more strict rules than
REST, in the sense that it allows responses only in XML-format, compared
to REST being able to respond also with JSON- and HTML-objects. This
allows for more predictable and secure communication, but results in a more
steep learning curve, as well as more complex maintenance. SOAP also allows
for communication using other protocols, e.g. TCP/IP and SMTP, as well as
HTTP.

RCP APIs (Remote Procedure Call) calls for methods rather than data, to
trigger actions in the server it communicates with. The response is a status of

10

whether the request was successful or failed, as well as error messages explaining
why it failed, compared to a document with data which is returned by REST
and SOAP APIs. These APIs are usually internal or private APIs, as they
trigger actual changes in the server with requests, and thus potentially presents
a security threat if provided to the public.

The most common protocol used in development today is REST APIs, as these
requests are simple to create, resource e↵ective and allows for response-data in
di↵erent formats, fitting more experience levels than only responses in XML,
which may be complex to understand.

Communication with APIs can be done in di↵erent ways. The most common is
by sending URI-requests, like the one displayed in figure 3. Here, the request
provides a base-URL (where the request is headed), a path from the base-URL
to the location of the endpoint, as well as di↵erent parameters specifying the
search. This is how developers communicate with REST APIs, as these re-
quests are strictly required to be sent through HTTP. This is also a common
way to communicate with SOAP APIs, including the required payload as pa-
rameters.

Figure 3: URI API request
Example of URI request-structure when communicating with DHIS2.

Sometimes API designers create SDKs (Software Development Kits), that can
either be imported into projects, or downloaded and installed as versions of
text-editors (e.g. Android Studio, a version of the text-editor IntelliJ tailored
for developing applications for the Android-ecosystem). This way, developers
are able to call functions instead of sending URI-requests, making it seem more
like a part of the actual program, and possibly explaining the call in the function-
name (e.g. getUserInfo(...)). Figure 4 displays an example of how SDKs simplify
the process of communicating with APIs.

The DHIS2 Web API uses a combination of these approaches. Developing for
DHIS2, custom React-hooks are available that handles core-issues like authoriza-
tion etc. The requests must still be created somewhat like the first mentioned
URI-approach, but are sent through the mentioned hooks, handling rudimen-
tary things like error-handling etc., and relieving the user of having to handle
complete URLs, which can become long and complex in some systems. Figure
5 displays how the DHIS2 Web API can be used in a React-project.

11

Figure 4: SDK API request
Using an SDK for communicating with the EnTur-API in React.

2.7 DHIS2 Web API

One way to communicate with DHIS2 is through the DHIS2 Web API. This
API facilitates development of capacities for tracking and analyzing data, al-
lowing for extending the functionalities of the platform regarding collection and
analyzing new and existing data. The API provides access to aggregate and
individually-collected data, giving developers the opportunity to develop appli-
cations using the data for analysis using indicators representing various sizes of
samples.

A key part of the DHIS2 Web API is the comprehensive use of metadata to
create a basis for how data is collected and analyzed. Metadata-identifiers in
the DHIS2 Web API include a variety of variables, e.g. orgUnit, identifying the
connected organization, dataElement, identifying the specific piece of informa-
tion, period, indicating what period of time the data is representing etc. The
metadata is essential for connecting values to their corresponding origin, thus
creating a basis for presentation and use of the data. The metadata-identifiers
allows the API to keep di↵erent endpoints needed to access limited, but do how-
ever create potential for complex compositions of di↵erent identifiers to navi-
gate to the data needed. As illustrated in figure 6, dataValues, e.g. numbers

12

Figure 5: DHIS2 API request
Example of fetching data from the DHIS2-dataset “organizationUnits” using

custom React-hooks from DHIS2.

representing recorded amount, are connected to a dataElement, an organizatio-
nUnit and a period. Each of these three metadata elements can contain one
or more dataValues, e.g. an organizationUnit can contain several dataValues
(e.g. dataValues representing di↵erent periods). However, a dataValue can only
contain one dataElement, one organizationUnit and one period, as it represents
only one registration of an occurrence (e.g. value can only be valid for one
period, one orgUnit etc.).

13

Figure 6: DHIS2 data-relations
The relation between DataElement, OrgUnit, Period and DataValue in the

DHIS2 data model.

2.8 API learning

In order to learn a new technology, relevant boundary resources are essential
for understanding. Di↵erent APIs have di↵erent knowledge boundary resources
available, supporting and assisting the developer through their process. The
primary resource for most APIs is the documentation, as this functions as the
first line of support for many developers (Wingkvist et al., 2010). This resource
is supposed to provide an overview of the functionalities within the system, and
provide descriptions allowing developers to use them. Other typical resources
for API learning can include guides, web-tutorials, communities etc.

In the case of DHIS2, the platform provides a learning resource known as
“DHIS2 Academy”. The resource provides courses at several levels, covering
a variety of di↵erent levels, from fundamentals to more advanced use of tracker
and analytics. DHIS2 Academy facilitates both online and in-person courses

14

that allow users from all over the world to attend and learn about DHIS2.
Examples of available levels are displayed in figure 7

Figure 7: DHIS2 Academy
Di↵erent courses provided through DHIS2 Academy.

2.9 Guide vs. encyclopedia

Two di↵erent ways of presenting information are presenting it as a guide, and
presenting it as an encyclopedia. The two approaches have their strengths and
weaknesses and can serve di↵erent purposes. For example, a guide-approach can
be beneficial for a beginner, as it is focused on describing a process or action
step-by-step. This can be done by describing each step isolated, e.g. by having a
separate page for each step, relieving it of noise created by external information
not directly related to the particular action. Thus, beginners can follow each
step of the interaction, being guided through the process while gaining under-
standing little by little. However, a guide can be slower to navigate, thus making
it less e↵ective as the user gains knowledge and understanding of important con-
cepts, and rather wants to look up certain information quickly than to be led
through all steps of a process. Opposite to a guide is the encyclopedia-approach,
where information is presented in a way that can make it quick to locate e.g.
by searching. This can be done in di↵erent ways, by presenting all information
on one page, making it easy to search using “CTRL-F”, or by gathering related
information and presenting it together. However, this way of presenting infor-
mation can quickly become overwhelming for beginners, as a large amount of
information can make it di�cult to understand where to begin searching. Thus,

15

even though it may be e�cient for some users, others may find it di�cult to
use and create more confusion rather than help. Oftentimes, encyclopedia-style
presentations have more focus on presenting information than describing the
approach, thus potentially requiring some degree of initiatory knowledge of typ-
ical steps for di↵erent actions. Possible presentations of both approaches are
presented in figure 8.

Figure 8: Guide vs. encyclopedia
Example displaying the di↵erence between a possible guide-layout and a

possible encyclopedia-style documentation.

2.10 Simplicity and depth

Two important terms that will be used during the thesis are the terms “sim-
plicity” and “depth”. In the context of this thesis, the term “depth” refers to
information about something that is presented thoroughly in detail. For exam-
ple, depth in the description of a car could describe each part of the engine,
chassis, interior etc. in detail, describing how it works as well as why it works
this way, giving the reader a thorough and complete understanding of each
component after reading. By providing detailed information about every little
detail, the user may gain a thorough understanding of what is being described
as a whole. By putting all of this information together, this approach allows for

16

an extremely detailed understanding of the product as a whole. However, the
e↵ort required to obtain this detailed understanding can be high, and require
some previous knowledge of what is being presented.

On the other hand, another term that will be used is “simplicity”. Even though
it is used as a contrast to depth in this thesis, simplicity does not necessar-
ily mean descriptions not touching upon detailed information at all. Instead,
what is meant by simplicity in the context of this thesis is that something is
described in a simple way, by avoiding information that is not strictly necessary
to understand something. Thus, related to the formulation in RQ1.3, simplicity
would imply that the presented content is necessary for understanding, making
the two terms closely connected. However, this does not necessarily apply the
other way around, as something being necessary does not have to mean that it
is presented simply.

In the example mentioned above, a description of a car presented with focus
on simplicity could instead of describing every component and bolt of the car,
rather focus on the essential parts for understanding what a car is and how it
works. Instead of going into detail regarding spark plugs in the engine, their
role and how they work together with other components to create energy in
the engine, a simplicity approach could abstract this away and leave the reader
with the essentials. A car consists of a chassis, four wheels and an engine to
create power. With this knowledge, the user is able to understand the basics of
something, and can then proceed further into more detailed information as the
needs grow.

2.11 Examples of good API-documentation

Bush (2019) presents a number of APIs which have what he perceives as good
examples of documentation, listing the characteristics of what makes them good.
He also presented lessons to take from each case. Especially three mentioned
examples were interesting:

2.11.1 Twitter

The API documentation for Twitter was described as a good example of how
information should be presented, as it was described as feeling more like an
interactive guide instead of a blog post, making it easier and more engaging for
the user to follow than traditional documentation. Each page was described as
having a “Next step”-indicator, connecting relevant parts of the documentation
together in the correct order of use. It was also described how almost every page
has an FAQ, allowing the documentation to remain simple, while more detailed
information can be found in the FAQ. This way, the documentation is kept short
and understandable for the users. The lesson mentioned for this documentation
was to “Be flexible with how you present information”, referring to the value
of keeping information simple with the possibility of presenting more detailed
information in a connected FAQ.

17

Figure 9: Twitter API Documentation
Displaying how an endpoint is accessed interactively.

2.11.2 Dropbox

Dropbox was mentioned as a good example of tailoring documentation to the
di↵erent programming backgrounds, by allowing the user to choose the pre-
ferred programming language from a list, thereafter presenting examples in this
language. This way, it is easier for users to understand the examples and put
them to use in their own project. The documentation was also mentioned as a
good example of simplicity in the descriptions and layout, making the documen-
tation easy to understand. The lesson mentioned from this documentation was
to “cater to unique dev-backgrounds”, referring to the ability to choose what
programming language the developer wants to get the examples presented in.

2.11.3 GitHub

The API documentation for the GitHub-API was mentioned as a good example
of how to keep things simple, by avoiding having too much information in one
place. As with the other examples, this was mentioned as a way for developers
to easier comprehend information and avoid confusion. The documentation pro-
vides links to relevant reference-material, guides and libraries in the top menu,
allowing developers to easily and quickly navigate to relevant resources without
it being a part of the current documentation, avoiding overflow of information.
Documentation is written in a blog-post style, but awareness of simplicity and
avoiding presenting too much information still keeps the documentation clear

18

Figure 10: Dropbox API Documentation
Displaying an example of endpoint presentation in the API Explorer.

despite the presentation structure. They were also praised for having a widget
in every page of the documentation that allows the user to see the status of
the API, allowing them to quickly identify whether problems that appear are
caused by programming errors or system-failure. The mentioned lesson from
this example was to “save developer time wherever you can”, referring to the
status-widget saving developers time in debugging when they face obstacles, as
well as linking to relevant resources.

The mentioned examples have some di↵erent characteristics and functions that
make them good. However, some things were found in all three examples, and
can be seen as a common denominator for documentation to be perceived as
good. First, they all have an authentication- and quickstart-guide, where gain-
ing access and starting to use the documentation is described step-by-step to
allow users to quickly begin using the API. Second, good endpoint definitions
and descriptions were mentioned as good characteristics of all three documen-
tations, and lastly, that they all provide code-examples with example responses
were mentioned as important for them to be perceived as good examples of API

19

Figure 11: GitHub API Documentation
Displaying an example of endpoint presentations.

documentation, allowing the users to see how the API can be used in prac-
tice.

20

3 Related literature

This chapter presents literature that is relevant, and that is used for discussion
of findings later in the thesis. First, literature related to usability is presented,
followed by literature touching upon learnability. Further, literature discussing
the process of learning software development is presented, before presenting rel-
evant literature regarding previous research on API documentation and related
topics.

3.1 Usability

An important factor for a system to be perceived as useful, is that it provides
usability for the user. Usability is defined in a number of ways. Shackel (1981) is
said to have created the first formal definition of usability, by defining it as “...
the capability to be used by humans easily and e↵ectively” (p. 24). Bevan et al.
(1991) argues that it should be defined as “... the ease of use and acceptability
of a product for a particular class of users carrying out specific tasks in a specific
environment” (p. 1). How to measure usability may turn out to be a challenging
task, as it has to consider whether to focus on subjective or objective measure-
ments. Bevan et al. (1991) presents four perspectives on measuring usability:
1) The product-oriented view, measuring the ergonomics of the product, 2) the
user-oriented view, measuring the attitude and e↵ort of the user, 3) the user
performance view, measuring the task performance and interaction of the user,
especially considering ease of use and acceptability and 4) the context-oriented
view, considering the user group, tasks and environment.

Hornbæk (2006) highlights the challenges regarding measuring usability of a
system, including the trade-o↵ between objective and subjective measurements.
It is important to separate the term usability from usableness (Gluck, 1997), as
measuring usableness can refer to reviewing functions regarding whether some-
thing is possible to use, while usability measures the e↵ect of using the said
thing. For something like documentation, usability measurement would con-
sider how the information is perceived, understood and used by the user, while
usableness would simply measure whether the documentation is possible to use
or not.

Several factors can a↵ect the usability of an artifact. Malhotra (1982) and Moy
et al. (2018) discusses the e↵ects of large amounts of text and information on
one page in learning. They find that as the amount of information increases, the
cognitive ability to follow decreases. Large amounts of information also a↵ects
the ability to distinguish between what’s relevant and what’s not negatively.
Moran (2020) finds that people tend to scan pages rather than read everything,
suggesting that information should be presented in a way that allows for un-
derstanding without necessarily reading everything thoroughly. This can be
achieved by separating content into sections with explaining headlines allowing
the reader to quickly locate relevant information for their use. This is further
emphasized by Pernice (2019) who presents four typical reading patterns that

21

are typically used by people when reading information, the layer-cake-pattern,
the commitment pattern, the F-pattern and the spotted pattern. Figure 12
displays visualizations of the di↵erent patterns.

Figure 12: Reading patterns
The four di↵erent reading patterns, from top left: the layer-cake-pattern, the
commitment pattern, the F-pattern and the spotted pattern. Note: Figure
created with images from “Text Scanning Patterns: Eyetracking Evidence”

(Pernice, 2019)

Consistency and standardization is important for the user to be able to under-
stand connections between di↵erent components and parts of a page. Lidwell
et al. (2003), Preece et al. (2019) and Schlatter and Levinson (2013) point out
the importance of consistency as a design principle, underlining its value for
creating a successful solution for user understanding and intuition. However,
Preece et al. (2019) also mention a risk that can occur when trying to achieve
consistency: when trying to design an interface to be consistent with something,

22

one faces the risk of making it inconsistent with something else, emphasizing
that it is not necessarily as easy as it may seem to achieve.

Furnas et al. (1987) discusses what they call “The terminology problem”, cov-
ering the issue regarding how the choice of words can a↵ect the availability and
accessibility of information. They find that “Many, many alternative access
words are needed for users to get what they want from large and complex sys-
tems.”(Furnas et al., 1987, p. 971), emphasizing that finding one word that
provides access for all users is di�cult. Their findings show that a single word
(access term) created by one designer only has a hit rate of only 10-20 percent,
underlining the di�culty of selecting accessible words, as well as the importance
of defining alternative terms.

Some web-resources, e.g. Wikipedia, utilize community contribution for the
users to be able to contribute to the content with additional knowledge they
possess. This way everyone is able to contribute, thus possibly broadening the
knowledge and providing increased quality content to all users and providing
more words for each technical term, thus increasing the chances of a hit when
searching. Xu and Li (2015) discusses two types of motivation for contributing
to a public source of information: content contribution and community partic-
ipation. The first mentioned motivation covers how providing extra/extended
content may be motivated by credit or a feeling of recognition (e.g. Wikipedia
displaying the top recent contributors), or by the wish for self-development.
Community participation however, may be motivated by more intrinsic factors
like a feeling of belonging or ideological factors like the ideology of free knowl-
edge.

3.2 Learnability

An important part of a functioning API documentation is the learnability: the
ability to easily learn and understand the content. Nielsen (1994) argues that
learnability is a fundamental attribute in usability. Learnability is especially
important for novice users (Dzida et al., 1978).

There is a consensus that learnability exists as an aspect of usability (Grossman
et al., 2009). However, it is important to understand that learnability is not
necessarily the same as usability, as the two terms may address di↵erent issues.
Learnability has been defined in several di↵erent ways, emphasizing di↵erent
areas of the learning process. For example, Nielsen (1994) refers to learnability
as the experience of the initial learning curve for novice users, while Shneiderman
defines it as the time it takes ”... typical members of the user community to
learn how to use the actions relevant to a set of tasks” (Shneiderman, 1997,
p.16). Mifsud (2011) discusses the di↵erence and relationship between usability
and learnability, shedding light on the common wrong use of the two terms
interchangeably. If we rephrase learnability to “ease of learning”, and usability
to “ease of use”, it becomes more clear that learnability primarily addresses the
initial process of learning, while usability refers to the easiness of repetitive use,

23

separating the two terms and the issues they aim to address.

3.3 Learning software development

In the case of learning software development, studies have shown positive results
when working in pairs of two when performing tasks, so called pair program-
ming. This approach can result in better understanding and knowledge transfer
than solo programming (Vanhanen and Lassenius, 2005), possibly beneficial for
novice developers. Skill level serves as an important factor for the e↵ectiveness
of programming (Salleh et al., 2011), with the less experienced part of the devel-
oper community having the best e↵ect and most satisfaction of performing pair
programming (Arisholm et al., 2007; Hannay et al., 2009). Figure 14 displays
the e↵ect of pair programming for users of di↵erent experience levels, and shows
how pair programming strongly increases the correctness for juniors, while also
decreasing time used for intermediates.

Figure 13: E↵ect of pair programming for di↵erent experience levels
Note: Figure from Arisholm et al.(2007, p.74)

Trial and error can also be an e�cient way of learning and exploring. Jones et al.
(2010) discusses the benefits of trial and error as an approach to problem solving,
and found it to be a significantly better approach than the compared approach
of errorless conditions. When facing complex concepts and structures, textual
descriptions and explanations can be di�cult to comprehend, thus a↵ecting
the overall understanding of a system. Raiyn (2016) discusses the e↵ectiveness
of visual elements in learning and their e↵ect on learnability. He argues that
use of visual elements can have positive e↵ects on students’ understanding and
learning, thus using it can improve the learning outcome of students in various
fields.

24

3.4 API documentation

Documentation is an important knowledge boundary resource when learning
and using APIs, as they tend to be the first line of support when facing ob-
stacles (Wingkvist et al., 2010). However, documentation is often written as
the last step of a development process, after the software has been written,
rather than parallel with development. Thus, the documentation often su↵ers
from a lack of motivation from the developers when it comes to creating it
(Parnas, 2010). Poor documentation is the primary reason for system quality
degradation (Kajko-Mattsson, 2005), thus may the lack of motivation writing
documentation lead to significant consequences for the system as a whole in the
long term.

Several articles have explored API documentation in an attempt to identify fac-
tors that make documentation good, and what is lacking to improve it. Through
“How API Documentation Fails”, Uddin and Robillard (2015) explores strug-
gles experienced by developers and other employees at IBM, first in Ottawa and
Toronto, then Canada and Great Britain. They tried to gain an impression and
overview of the di↵erent issues in API documentation today, and how these are
perceived by developers in said company. Results from the study are summed
up in figure 14.

Robillard and DeLine (2010) explores learning obstacles when facing new APIs
for employees at Microsoft. Their study was conducted in three stages: (1) a
survey to map out the most common obstacles to create the basis for further
research, (2) qualitative interviews to gather detailed information on issues and
perception of these, and (3) a second survey to confirm findings. The study
highlighted five important factors to consider while creating and designing API
documentation, to improve e�ciency:

1. Documentation of intent: The lack of intent can make developers
uncertain of the provider’s purpose of the API. This can have a great
impact on the system performance, and lead to developers using the API
in ways it is not intended. The intent must however involve a tradeo↵, as
overflow of information can bloat the documentation. Not all participants
consider intent to be of significant help either. It is therefore important
to evaluate the cost/benefit, as well as the scope of the descriptions when
deciding whether to prioritize this.

2. Code examples: Code examples are important for e�cient API learn-
ing. They show the learner concrete utilizations of the di↵erent function-
alities and possibilities, and can help make the API tangible, hence easier
to understand for the developer. There is, however, a balance that must
be considered regarding complexity of the examples displayed. If the ex-
amples are too comprehensive, they can be easy to copy but di�cult to
understand. If they are too simple, respondents indicate that they lose
their value. Finding a universal agreement on what is the best trade-o↵
between these can be di�cult to achieve, as perception of information

25

Figure 14: Findings from “How API Documentation Fails”
Note: Figure from Uddin and Robillard (2015, p. 70). E* = number of

examples that mentioned a problem, D* = number of developers who reported
a problem

amount is highly subjective. A possible solution to this, presented in
the study, is to use simple examples in combination, to exemplify certain
actions and combinations that can be used to reach a goal.

3. Matching APIs with scenarios: As a way of concretizing the di↵erent
functionalities, the point of matching scenarios with the function pattern
that leads to the relevant endpoint is mentioned as one of the points.
This can be connected to the proposed solution from 2., where an action
is presented using the pattern of functions that is used to reach that goal.

4. Penetrability: Penetrability is described as the fine line that the devel-
oper needs to balance on, between an over-exposure of the APIs internal
elements (which violates the principle of hiding information), and a de-
sign that makes the behavior of the API impenetrable (making it hard to
learn). Poorly designed error handling and lack of insight makes working
with the API a di�cult task. A common work-around of this, is for devel-
opers to either inspect the source code, or perform micro-experimentation
with the API, both being complex and time-consuming tasks.

5. Format and presentation: The last factor that is presented is the

26

format of the documentation. A modularized, separated presentation,
displaying the di↵erent functions on separate pages, is more time consum-
ing than having all information gathered on one page. The respondents
also experienced frustration when reading documentation that merely re-
hashed the name of the methods, bloated the presentation with derived
information or provided overly trivial examples that only showed a single
method call. The presentation of the documentation thus plays a major
role in the perception of the developers.

Even though the two previously mentioned articles covers relevant topics, like
common irritations and struggles when it comes to reading and using API doc-
umentation in general (Uddin and Robillard, 2015) and obstacles when learning
new APIs (Robillard and DeLine, 2010), their target group is what separates
them from our study. Their participants have respectively 13 and 9.8 years of
experience, making them outside the scope of this study, targeting novice de-
velopers. They do however present findings that may be relevant also for the
target group of this study.

Garousi et al. (2013) finds that there is a di↵erence in needs regarding the
documentation, depending on the experience level, as well as di↵erence in use
of documentation. They state that experienced users tend to refer less to docu-
mentation than novice users, indicating that the needs of the novices should be
prioritized when creating documentation in order for it to be successful. This
study is conducted as a hybrid, action research study, where they combine min-
ing of project data from an internal system for analysis with results from a
questionnaire-based survey eliciting expert’s opinions to compare what’s being
said and what’s actually being done regarding documentation. The survey was
sent to a group of 135 software engineers, where 25 responded (18.5%). They
do compare documentation-use and perception based on experience level, but
do not inform about the respondents’ distribution of years of experience. How-
ever, since the study is conducted in a professional industry-setting at a large,
Canada-based company, it is likely that the distribution of experience between
the respondents is comparable to other previously mentioned studies of docu-
mentation in similar settings. In said cases the mean years of experience has
been 9-13 years, thus separating it from the target group of our study.

Wyner and Lubin (2011) presents a study exploring how MBA-students with
varying technical backgrounds perceive learning coding and using a simple API
during a 1-week, intensive lab-seminar. They are first given three days of tutor-
ing covering basic programming, before expanding the knowledge by utilizing
the skills using a simple restaurant-API. The paper does not touch a lot upon the
documentation of APIs specifically, but describes how a tailored API and docu-
mentation simplifies the process of learning. The documentation is described as
short and readable, tuned to the students’ experience, and updated every time
the API had changes made. It implicitly underlines the importance of a docu-
mentation made with the experience of users in mind, for them to successfully
utilize its functionality during a short span of time. It does also underline the

27

importance and usability of the APIs role in software development. Seeing how
the general response to the course was positive, it is clear how important and
useful API knowledge is from early stages of learning programming.

Through surveying 146 participants, Aghajani et al. (2020) identify issues from
the practitioners perspective that should be considered when creating docu-
mentation. They identify a series of di↵erent issues categorized as What (what
content is found in the documentation, e.g. inappropriate installation instruc-
tions and outdated version information), How (how information is presented,
e.g. regarding readability, usability and format/presentation) and Process/Tool-
related (covering the issues of tools and processes when creating documentation,
e.g. lack of time to write documentation). Like the previously mentioned arti-
cles regarding API documentation, their respondents leaned towards the higher
end of the experience curve, with 60% of the participants having >10 years of
experience, and 80% having 5+ years of experience. Thus, the findings may be
a↵ected by their level of experience, making the results not necessarily repre-
sentative for the target group of this study. However, as with the other articles,
the findings may still be relevant to some degree, making them interesting to
compare to findings from this study.

McLellan et al. (1998) highlights the importance of examples for understanding
APIs. Their study emphasizes the important role of examples for developers to
be able to use the di↵erent functions and endpoints of an API by presenting
what’s possible to do and what’s not. As mentioned by a participant, “...
if there are examples of it, they’re worth their weight in gold.” (McLellan et
al., 1998, p.80). Zinovieva et al. (2021) discusses the use of “Online coding
platforms” for remote learning, describing how they can contribute to learning
by presenting tasks and an environment where the user can try to solve problems
without having to implement the code themselves. Combining examples and
development environments in a sandbox (Arntzen et al., 2019) can be beneficial
for allowing users to explore the possibilities of the API.

28

4 Research method

This chapter will describe the process of collecting and analyzing data for this
thesis. First, the methodology that has been used is presented. Then, the
method used for data collection is described, as well as why this was chosen
instead of alternative approaches. Further, the sample group for the study
is presented, as well as a description of why they were asked to participate.
After this, the validity and reliability of the study is briefly discussed, before
the process of collecting data through literature review and the two conducted
iterations are described. Lastly, the process of analyzing the data is described,
before presenting the findings from the rounds of open and axial coding.

The study has been conducted as a joint e↵ort with Ashwin Rajeswaran. Orig-
inally, we started o↵ with a similar task and somewhat similar RQs. We have
therefore conducted all data collection e↵orts together. Analysis has also been
carried out together, allowing us to discuss findings and categories as we worked
our way through the process, identifying relevant categories and topics. The fo-
cus of our theses has since been separated, splitting our work into two separate
contributions to the field. As a result, the perspective mentioned through this
chapter is from a group perspective, hence why decision makers are mentioned
as “we”.

4.1 Methodology: Qualitative study

This study has been conducted as a qualitative study. According to Creswell
(2006), qualitative studies are suitable for exploring issues where there is a
need for studying people and identify variables to be considered. It allows
for understanding and knowledge-gathering in situations where thorough and
complex understanding of the issue is needed. Alternatively, the study could
have been conducted as a case study, but seeing how we did not have an identified
case that we wanted to focus on and research specifically, a qualitative study
allowed us to study more broadly and discover the relevant perspectives during
the process.

4.2 Method

4.2.1 Qualitative data collection

The study is largely based on interviews, combined with some observations of the
system in use. This way, we were able to gain qualitative insight in the issue,
providing detailed information about obstacles and suggested improvements.
Previous studies, e.g. Uddin and Robillard (2015) have conducted quantitative
studies by sending out questionnaires to a large number of people. Even though
this approach could have given us a larger amount of responses than we col-
lected, we wanted a purely qualitative approach to gain detailed insight from a
smaller selection rather than general information from more respondents. An
issue with quantitative methods like surveys is the reduced possibility to ask

29

follow-up questions, thus possibly a↵ecting the chances of gaining detailed in-
formation.

A possible alternative approach could be to base the study to a larger degree on
observations. This could have led to detailed insight in actual development pro-
cesses. However, seeing how documentation is a knowledge boundary resource,
aimed at supporting developers, it is not necessarily used in every development
session, and the amount of use can also be very limited, depending on the tasks.
Hence, in a worst case scenario, a period dedicated to only observing in a nat-
ural context (e.g. at the developers place of work) could result in few to no
findings, making it a method that requires su�cient time to provide detailed
information. It could be possible to conduct observations in a controlled envi-
ronment, but as the aim is to explore how API documentation is perceived in
actual development settings, this could have led to findings being less represen-
tative relative to actual cases. Surveys, as mentioned, could also have been used
as a method. However, with limited time to conduct the data collections, and
our wish to collect qualitative data to gain detailed insight, this thought was
abandoned. We found survey to be a less e�cient way of collecting data for our
study, as too broad questions could be di�cult for participants to answer (e.g.
“How do you find API documentation”), and specific questions may face the
risk of being perceived as leading (e.g. “What do you like about *system*”).
Also, finding a su�ciently large number of participants fitting our target group,
both providing a breadth in participants and still ensuring that they fit into the
experience-level that is studied, could have been more di�cult than the benefits
following this method.

4.2.2 Sample group

The sample group consisted of a combination of lecturers, students, DHIS2
developers and developers without experience using DHIS2. The participants
for the di↵erent iterations of interviews and why they were asked to participate
are presented in table 2. Table 3 presents who were observed in the study. We
wanted to gain insight in API development from di↵erent perspectives, thus
collecting data from a broad range of experiences seemed beneficial. Given that
previous research has already focused on experienced professionals, we rather
wanted to focus primarily on the less experienced user group, as well as roles
supporting this group’s development.

The participants from the academic part of the sample group for iteration 1 were
asked to participate because they either lecture or have experience lecturing in
courses using di↵erent APIs for higher education. Thus, the target was to gain
insight in development processes for novice developers, which students often
are, from an outside perspective. As our supervisor, Jens Johan Kaasbøll, has
broad experience within the educational-/research-field, he reached out to some
possible contacts lecturing in courses that seemed fitting for the thesis by email,
forwarding further contact to Aswhin and me. The participants were briefly
presented with our case, and why they were contacted. Five possible partici-

30

pants were contacted, and four responded that their curriculum and experiences
could be relevant and that they were positive to participate.

The non-academic were chosen to gain some initial insight from the perspective
of users, instead of only approaching further data collections with expert in-
sight. The participants were approached in person, as they were found around
locations where we usually either work or study. They were briefly presented
the purpose of the interview, why we wanted to speak with them, and then
planned a time for an interview. All three approached wanted to participate in
the study.

For iteration 2, Ashwin and I conducted data collections individually, with an
interview guide that had been made together beforehand. This way, we were
able to conduct data collections in di↵erent contexts, collecting data that was
discussed and compared when we met up after the iteration. By preparing a
common interview-guide, we were able to ensure that participants were asked
the same base-questions regardless of who and where they were, ensuring that
the data could be used by both of us, and possibly strengthening the reliability
of the study. The participants within the DHIS2 developer-group were working
in a workshop, where Ashwin and the purpose of our study was briefly intro-
duced. The participants were invited to come over for a talk after their session
of work was finished. Notes were taken during their process of work in the
workshop, regarding how they communicated and approached problem solving
in teams. Four participants approached Ashwin after the workshop and partic-
ipated in separate interviews where they were able to elaborate thoughts about
development within DHIS2, as well as the documentation as a tool.

In the same time period, the students were messaged during the last process of
their project work in IN5320. These were students that I had assisted through
the course, and I therefore had some preliminary insight in their process so
far in their project. They were explained the purpose for the interview, and
asked if they were interested in participating. Two groups of students were
approached, and members of both groups participated in the data collections
(1x 1 participant, 1x 2 participants). In addition to this, a participant working
with the DHIS2 Core was approached, and participated in an interview, which
allowed us to gain insight in the issue from the perspective of a representative
for the platform core.

4.3 Validity and reliability

4.3.1 Validity

Validity can be important to assess in order to consider whether the results are
credible and evaluate the quality of the study. Stølen (2023) defines validity by
stating that “An evaluation is valid if it evaluates what it is meant to evalu-
ate” (p.115). He continues to separate validity into four sub-concepts: external
validity, internal validity, construct validity and conclusion validity.

31

Iteration 1

Group Who? Why did they participate?

Academics 4 participants from dif-
ferent universities and
colleges, lecturing in
and/or researching rele-
vant topics for the the-
sis

To gain initial insight in
API-development for novice
developers, from the per-
spective of the lecturing
part

Non-academics 3 participants with
varying development-
background - both with
and without experience
developing using the
DHIS2 Web API

To gain insight in the use
of APIs from the devel-
opers perspective, both di-
rectly connected to DHIS2
and APIs in general

Iteration 2

Group Who? Why did they participate?

DHIS2 Developers 5 developers working
daily with develop-
ment within the DHIS2
ecosystem, with varying
years of experience

To gain insight in the per-
ception of the API and doc-
umentation from the per-
spective of users working
with the platform daily,
and their perception of
the onboarding-/ learning-
process

Students at UiO 3 students at UiO,
participating in the
course IN5320 - “De-
velopment in Platform
Ecosystems”, where
they develop applica-
tions using the DHIS2
Web API

To gain insight in the per-
ception of the API and doc-
umentation from the per-
spective of users dependent
on the API to create ap-
plications in an educational
setting, during a restricted
period of time

Table 2: Participants in the interviews of the study

32

Observations

Group Who? Why did they participate?

Students partici-
pating in the course
IN5320 - Develop-
ment in Platform
Ecosystems

126 students at UiO
on master’s level, with
varying background re-
garding development

To gain insight in the strug-
gles of starting to use the
DHIS2 Web API for stu-
dents without necessarily
much experience using APIs
in an actual development
setting, and to lay the foun-
dation for following inter-
views

DHIS2 Developers 12 DHIS2-developers
participating in a
workshop

To gain insight in the per-
ception of DHIS2 and its
available resources from de-
velopers working with the
system daily.

Table 3: Participants in the observations of the study

External validity covers whether the study is generalizable and relevant also
outside of the actual case. As qualitative studies aim to research specific is-
sues for a certain population (Leung, 2015), naturally their focus is to gather
detailed information rather than quantifiable data that can be considered gen-
eralizable. Thus, generalizability can be di�cult to achieve using qualitative
methods, as answers and opinions can vary significantly between participants.
Semi-structured interviews, the method used for the data collections for this
study, are subject to varying answers, thus resulting in di�culties attempting
to generalize. Naturally, as the study focuses specifically on DHIS2 as a platform
with its belonging Web API, its characteristics and peculiarities can form the
results, separating them from being generalizable. Seeing how DHIS2 provides
an API that is heavily dependent on a complex combination of metadata, the
documentation can quickly become di�cult to grasp for novices without proper
thought regarding presentation aimed at them, thus providing di↵erent results
than other public APIs with simpler logic.

We tried to research a diverse sample group, with varying backgrounds, levels
of experience and roles, in an attempt to achieve an understanding of the target
groups’ experiences. By exploring perspectives of participants also outside of
DHIS2, without experience with said system, the aim was to gain some general
insight in addition to the specific DHIS2-focus. However, the results are still
di�cult to generalize, as our sample group is still of limited size. This, combined
with qualitative data collection methods, which provide varying results as a
result of subjective opinions and experiences, the results are not necessarily
possible to safely generalize. By combining interviews with other methods like

33

observations and literature review, thus triangulating, it is possible to approach
some sort of generalization, but a larger sample group and further triangulation
could be necessary to argue that the results are generalizable for all users.

Internal validity covers the concern of causal relations between variables. In the
case of this study, a discussion regarding internal validity would cover the con-
nection between understanding and usability of an API, and the documentation.
Even though the connection between these factors are di�cult to measure, both
previous studies and responses in this study presents documentation as an im-
portant and highly relevant resource for understanding and using APIs. There-
fore, it is probable that there is a connection between users’ understanding of
APIs and the documentation as a resource. In many cases, the documentation is
the primary, sometimes only resource API creators provide as a resource for de-
velopers being able to use and understand their system. However, other factors
may play in and a↵ect the ability to understand usage of APIs. Programming
experience can play an important role for the ability to understand, making it
di�cult for users to utilize the API. It is however likely that, by providing a
well thought out documentation targeted towards a specific user group, that the
users will be able to understand something that can make them able to use the
system.

Construct validity covers whether the operational measures represent the re-
searcher’s thoughts and investigation according to the research question. The
research question aims to gain a broad understanding of how API documenta-
tion can be designed to improve learning and development for novice developers.
The sub-questions aim to support the main RQ, by providing insight into fac-
tors that make existing documentation di�cult and easy to understand, what
content is necessary and what is perceived as excess, as well as thoughts on how
information should be organized to be perceived as logical and facilitate learning
and understanding. As mentioned, the method was chosen to be able to collect
information by allowing the participants to speak freely, within the borders set
by the interview guide. The questions were formed in a way that allowed us to
gain insight in the experiences of the participants, and provide an understanding
that would allow us to answer the sub-RQs. The formulations of the sub-RQs
were chosen as contrasts, to gain insight into both what is good and bad, thus
identifying what is perceived as things that should be included and not. There-
fore, the questions were constructed in a way that was in harmony with the
thought purpose of the study. As mentioned in the background-chapter, the
terms “simplicity” and “necessary” from RQ1.3 are closely connected. Having
simplicity implies that the content presented is necessary. However, necessary
information is not always presented with focus on simplicity, making the terms
connected in one way but separated in another.

Lastly, conclusion validity covers the connection between findings and the con-
clusion. In this thesis, the conclusion is presented as a sum-up of the discussion,
where findings are discussed up against existing literature. Thus, it can be justi-
fied to indicate that the thesis is conclusion valid, as the conclusion presents the

34

findings that were most frequent and thus can be said to be the most important
consideration mentioned through the study.

4.3.2 Reliability

Reliability in quantitative research concerns whether exact replicability of the
study and results is possible, and is thus challenging and can be counter-intuitive
to evaluate for qualitative studies (Leung, 2015). Following, he mentions that
the essence for reliability in qualitative studies is connected to consistency. In
the case of this study, examining reliability could cover an evaluation of whether
the results would be the same if a similar study was to be conducted by other
researchers. Reliability can be assessed by evaluating whether other researchers
would come to the same conclusions as this study presents (inter-rater reliabil-
ity) or by examining whether the questions used in interviews would produce
consistent results (test-retest reliability) (Golafshani, 2003).

This study is based on qualitative methods, aimed at identifying subjective opin-
ions, thus by nature making it di�cult to reproduce identical results. Regarding
inter-rater reliability, it can be realistic to believe that other researchers would
come to the same conclusions by reproducing the study. As we have explored a
diverse sample group, the collection of di↵erent opinions and insight can create
the basis for common conclusions, even though concrete answers may vary. Re-
garding test-retest reliability, semi-structured interviews are by nature di�cult
to replicate identically, as the purpose of the method is to allow the partici-
pants to freely talk about their opinions and experiences within the boundaries
set by the interviewer. In addition to this, the method allows the participants
to elaborate their answers, as well as the interviewer to ask follow-up questions
not necessarily prepared beforehand. Therefore, it is not certain that the study
is reliable according to the test-retest reliability. However, if the questions used
in the interviews were used in a more structured context, it is possible that they
would provide reliability.

4.4 Data collection

4.4.1 Literature review

To gain initial understanding of what has already been touched upon and ex-
plored regarding issues with existing API documentation, much time was used
to review existing literature, identifying common areas, findings and indicators,
as well as what separates existing research from what we are trying to iden-
tify. Through literature review, we uncovered important areas and points of
interest to bring into the following data collections. The primary focus was
on literature touching directly upon the documentation of APIs and documen-
tation as a resource. However, other relevant literature was also reviewed to
gain an understanding of the underlying concepts as well, such as usability and
learnability. Relevant findings from the literature review are summed up under
related research.

35

4.4.2 Iteration 1

As we started planning the first iteration of our data collection e↵ort, we identi-
fied interviews as beneficial to conduct in order to gain a qualitative insight into
the case we wanted to explore. We wanted the participants to be able to speak
freely in order for us to gain as much insight as possible, and semi-structured
interviews were therefore conducted. The sample group for the iteration was
chosen in order to gain a general initial understanding of issues regarding API
documentation for novice developers. We wanted to begin collecting data cov-
ering issues not necessarily related only to DHIS2, but rather to gain more of a
broad initial understanding of the issue, and thus found lecturers to be interest-
ing to interview. As they have an outside-in view on educational projects, and
experience with planning both processes and resources for courses, we found
that their experiences may be interesting to explore to gain initial understand-
ing. Before approaching API users, we found that this might be beneficial to
have as introductory knowledge going into further data collections. In addition
to this, we wanted to explore the experiences and perceptions of developers both
with connection to DHIS2 and not, to gain initial understanding of their per-
ceived issues. We wanted to broaden the scope also outside of DHIS2 initially,
as more general API-struggles may provide interesting insight that may be ben-
eficial to bring into the next round of data collections. Therefore, we chose to
interview a combination of DHIS2-developers, non-DHIS2-developers and users
with some previous experience with DHIS2, but not necessarily heavily involved
on a daily basis. Common for the last two mentioned participants was the lim-
ited experience developing using APIs, separating them from the sample groups
of previous studies.

The academic participants were asked questions about their experiences with
students’ struggles working with development projects, as well as their own ex-
periences, both in a lecturing setting and outside of educational work, if they
have industry experience as developers as well. The interview guide that was
used for said interviews can be found in appendix 1. When talking with the
developers in this iteration, we wanted to approach in a way that allowed the
participants to speak freely about their experiences. Inspiration for topics dis-
cussed were chosen from the same interview guide that were used in the talks
with the academics, but instead of following the guide slavishly, we let the par-
ticipant lead the way with a basis in the categories from the guide. As some
introductory questions were aimed specifically towards the academics’ educa-
tional experience (e.g. “What does the participant lecture in?”), not everything
was directly relevant for the developers. Instead of constructing a new interview
guide, we decided to follow the existing guide, but skip the questions relevant
only for academics. This way, we were able to gain a broad understanding
of their experiences, providing valuable insight, while still collecting data that
could be compared to the academics’ answers during analysis. During the in-
terviews, all participants were presented some sketches of our initial ideas of
improvement for general API-documentation, and asked to comment on their

36

thoughts on strengths and weaknesses with the concepts presented. The sketches
were inspired by findings from previous studies, and are displayed in figure 15.

Figure 15: Sketches
Sketches presented to the participants in iteration 1, presenting possible

documentation-presentations.

Following the interviews, before proceeding with the next interaction, some
observations were conducted in the setting of IN5320 at the University of Oslo.
During late summer/early fall, the students in said course are approaching a
“Self-paced online course” (UiO, n.d.), introducing them to web development,
APIs and the DHIS2 platform. As a teaching assistant in said course, I was
able to gain insight into their perceived issues, irritations and struggles through
both the said self-paced course and the introduction to work with their project
developing an application for the DHIS2 platform.

4.4.3 Iteration 2

Planning for the next iteration, we used the findings and categories from the first
iteration to create a guide for the next rounds of interviews. Unlike the more
general focus of the previous iteration, the goal for this iteration was to gain
a deeper understanding of the experiences directly connected to development
using the DHIS2 Web API.

To gain the insight we sought for this round of data collection, we decided to
shift the focus onto a purely DHIS2-related setting. Therefore, we proceeded
to study a collection of DHIS2 developers in their daily work, conducting inter-
views to enhance our understanding of their struggles and daily tasks. We also
interviewed a number of students at UiO, conducting their project developing

37

an application using the DHIS2 Web API. As they are required to learn, un-
derstand and utilize the DHIS2 data structure and API during the span of the
project, interviewing them to study their perception of the process and encoun-
tered issues could unveil interesting findings. We also approached a developer
associated with the DHIS2 core, to explore struggles and di↵erent development-
and documentation-aspects from the perspective of the maintainers of the plat-
form core.

The interviews were conducted as semi-structured, with a guide developed based
on the findings from iteration 1. The interview guide can be found in appendix 2.
The participating students were asked questions about their project: how they
had approached the task, which obstacles they had faced as well as how they
had conquered these. The DHIS2-developers were asked about their daily work,
their process of onboarding when they initially joined DHIS2, what obstacles
they faced then and about obstacles they face in daily work. In addition to the
interviews, observations of the students conducting their project in IN5320 were
also performed, to gain insight into their issues and struggles of learning and
utilizing the DHIS2 Web API in a project during a limited period of time.

4.5 Analysis

The analysis for this thesis has been a process of exploring and gaining insight
from existing literature, and analyzing and comparing this to empirical data
collected through the study, to identify similarities and di↵erences leading up
to the result constructing the final contribution of the thesis. The process
of analysis has been based on thematic analysis (Braun and Clarke, 2006), for
sensemaking of empirical data and attempting to find links between findings and
previous literature, shedding light on the similarities and di↵erences. Thematic
analysis is often used to analyze qualitative data, as a way to search for repeated
patterns and identify themes across a data set (Braun and Clarke, 2006).

4.5.1 Open coding

After each iteration, we collected all interview notes in a common Miro-board,
to gain an overview of the findings. We then proceeded with open coding of
each interview, to categorize the information we had been presented through
the interviews. The findings were presented separated into categories within
each isolated interview. In Miro, we constructed an a�nity-diagram to help
analyze and categorize the data. Categories from open coding of the iterations
are presented in table 4 and 5. This way, we were able to categorize internally
within the scope of each interview, laying the foundation for further coding and
analysis. Figure 16 displays how we organized and presented interview notes
from each interview in Miro.

38

Category from open coding Descriptions

Examples and use cases Examples can be important for under-
standing how to use a system, by pre-
senting for the user how to use the dif-
ferent functionalities available.
Use cases can be important for under-
standing the practical use of a system,
connecting examples and descriptions to
cases that are likely to occur when using
the system.

Level of expertise The needs of the user group can depend
on their level of expertise.

Balance simplicity and depth Even though there is a need for thor-
ough information, there needs to be
a balance between the simplicity and
depth in the documentation.

Step-by-step descriptions of the API in
use

In order for the user to understand
how the system can be used in prac-
tice, showing actions step-by-step may
be beneficial.

Handling version updates Core-updates may be frequent, and
needs to be addressed clearly.

User involvement User involvement can help the docu-
mentation fit the needs of the actual
users better.

Getting inspiration from other APIs Designing a documentation accepted by
all users from scratch can be di�cult
to achieve. Getting inspiration from es-
tablished API’s documentation may be
beneficial.

One page vs. modularized sections Large portions of text can be perceived
as overwhelming for the user. It can be
beneficial to consider the trade-o↵ be-
tween having information collected on
one page and separating it in a modu-
larized layout.

Organizing the content The content must be organized in a log-
ical way for the user to be able to easily
find the necessary information.

Table 4: Categories from open coding of iteration 1

39

Figure 16: Open coding - findings
Each interview collected in a separate section with findings (yellow notes)

categorized internally through open coding (categories represented by orange
notes).

4.5.2 Axial coding

After the initial open coding, findings from the di↵erent interviews were com-
pared and collected in common categories with axial coding. We looked at the
categories from the open coding, and identified common categories for the re-
sults. By doing this, we were able to identify common denominators between
the di↵erent interviews, thus identifying categories relevant to present under
findings, initiating the discussion. The relevant notes from each interview were
collected, creating an overview of the collective opinions. From iteration 1,
the following categories were identified: Potential for improvement, Pedagogics,
Content and Structure. As we were conducting interviews together, we collected
data relevant for both our problems. Thus, the category “Pedagogics” was rel-
evant for Ashwin, but not for this thesis. Therefore, it was not brought on as
an important part further in this study. The category “Potential for improve-
ment” turned out after some review to be possible to merge into “Content”
and “Structure”, which ended up being the categories of focus of the iteration.
Figure 17 displays how categories were collected in the Miro-board.

From the interviews in iteration 2, we identified three main areas of interest:
Approach to problem solving, Obstacles faced when problem solving, and Im-
provements for problem solving. As the previous iteration, also the findings from
these data collections revolved around the two important categories, “Content”
and “Structure”. The findings were therefore categorized and collected in these
categories for this iteration.

Within the two main categories, the initial coding of the iterations revealed a
large number of smaller categories, as seen in table 4 and 5. Entering the dis-
cussion, I therefore decided to proceed with further axial coding, to combine

40

Category from open coding Description

Inadequate examples Examples are perceived as inadequate
for the user.
Examples are di�cult to read due to un-
known syntax.

Unclear information Information is perceived as inadequate,
lacking relevant details
Information is perceived as too theoret-
ical and di�cult to put into practice.

No provided information about
platform-/core-issues

The documentation lacks clear informa-
tion about issues and updates .

Unclear categorization The content is perceived as uncatego-
rized.

Design not standardized through all
parts of documentation

The documentation is made up of sev-
eral parts, made with di↵erent designs,
possibly making it di�cult to under-
stand relations and navigate.

Table 5: Categories from open coding of iteration 2

Figure 17: Axial coding - findings
Results of axial coding after iteration 1

identified categories into fewer, larger categories. By looking at the findings,
identifying similarities and creating more broad umbrella-terms covering sev-
eral smaller categories that are touching upon similar areas, the discussion was
cleaned up by containing five main categories instead of the original 15, while

41

still containing the important information. The new sub-categories are pre-
sented in table 6.

42

Category Sub-category Covering findings

Content From documentation to
practice

Examples and use cases

Inadequate examples

Step-by-step descriptions of
the API in use

User-group experience
level

Level of expertise

Unclear information

Balance simplicity and
depth

User involvement

Continous documenta-
tion

Handling version updates

No provided information
about platform-/core-issues

User involvement

Organizing Layout and design of
the documentation

Getting inspiration from
other APIs

Design not standardized
through all parts of docu-
mentation

Categorization and or-
ganizing of content

One page vs. modularized
sections

Unclear categorization

Organizing the content

Table 6: Revised categories leading into discussion

43

5 Findings

This chapter will present the findings from the di↵erent iterations of data col-
lections conducted through the study. The chapter is divided into two main
sections: iteration 1 and iteration 2. Iteration 1 presents the findings from
the introductory interviews and observations, conducted with participants with
varying backgrounds, including academics and developers, as described in re-
search method. Iteration 2 presents the findings from interviews conducted
with participants involved with DHIS2 in di↵erent settings. The iterations are
summed up in a table for each iteration, presenting the findings from the itera-
tion.

5.1 Iteration 1

This sub-chapter is written as a joint e↵ort with Ashwin Rajeswaran. Thus, the
chapter may contain some similar paragraphs and partial sections.

Iteration 1 revealed two main points of interest for this study: Content and
Organizing. Each of these points contains several findings that fall under the
respective category.

5.1.1 Content

5.1.1.1 Examples and use cases

There was a broad agreement among all participants that examples simplify
and enhance the understanding of functionality of the API. Seeing the techni-
cal details put in practice makes actual use easier to picture and understand,
making the documentation seem more focused on actual use than only present-
ing and describing technical information. Some participants mentioned that,
when shown the current version of the DHIS Web API documentation, the doc-
umentation could greatly benefit from using more practical examples. Figure
18 displays an example from the DHIS2 Web API-documentation that presents
an example. As the participants pointed out, the examples do not contain use
cases that connect them to actual use.

When discussing how examples may be applied, participants expressed that
examples without connection to realistic use cases do not yield the developers
much. In other words, if the examples do not reflect circumstances that may be
plausible to face for developers, or use cases that are common and likely to be
faced for the system, it becomes di�cult to understand what the examples are
trying to represent. It also becomes more di�cult to understand the connection
to actual use for di↵erent endpoints, thus imagining how to use the API in
actual projects, which may be important for some developers when planning
their projects and use of APIs to achieve the goals of their project. Relevant
use cases can be used in order to explain the API in an actual setting, rather
than describing the use in a generic way. By doing this, designers can ensure

44

Figure 18: DHIS2 endpoint description
Example of endpoint-description in current DHIS2 Web API documentation.

that users understand how to actually use and utilize the API in the intended
scenarios, potentially reducing the amount of misunderstandings and wrong use.
Use cases can be an e�cient way to describe how to conquer common di�culties
and obstacles, regarding the said issue of struggling to connect and convert
examples to actual use, hence helping the user utilize the API optimally.

The value of making the examples interactive was mentioned multiple times, as
only being presented the solution does not necessarily lead to actual understand-
ing and ability to use the API. Instead, users face the risk of taking shortcuts
by only copying rather than understanding use of di↵erent components in said
scenarios. Connecting the examples to a “sandbox”, an area where users can
try to use di↵erent endpoints in an already set up environment, allowing them
to play around with and test the e↵ect of changing di↵erent parameters, was
mentioned as something that could greatly improve the learning outcome of
the documentation. The examples should provide typical responses: what they
should look like, what response codes the user can expect to receive etc. The
aim of these examples are simply to give the user a low threshold opportunity
to test the API in use, without necessarily having to set up their own program
for testing it. The examples do not necessarily have to provide actual responses
with real data, but they should illustrate how the user can expect to communi-
cate with the API in actual use, thus presenting data that are representative of
what the user can expect to receive as a response.

In addition, some participants expressed that the endpoints need to be clearer
with what capabilities and requirements they have in order to understand what
you can do with them. To do so, they suggested that the documentation should
provide information about what parameters are optional, required etc., and in
addition provide examples of how the data in responses may change correspond-
ing to the parameters changes. This capability is already present in some parts

45

of the documentation, for example under metadata identifier schemes, but they
do not provide example requests that illustrate how the endpoint communica-
tion may look and changes to di↵erent parameters a↵ect responses. Figure 19
displays how a metadata identifier scheme from the DHIS2 Web API documen-
tation presents di↵erent parameters.

A prominent challenge for students of the course IN5320 at UiO is trying to
understand what the responses from di↵erent endpoints actually represents and
provides, as a complete response in DHIS2 often requires communication to-
wards several di↵erent endpoints linked at di↵erent parameters in order to be
able to make use of the content in the responses. This is due to the intercon-
nectedness of the various metadata in the DHIS2 data structure, which connects
di↵erent datasets and makes the user dependent on communicating with several
endpoints to fetch all data necessary. Figure 20 displays how di↵erent endpoints
(dataSets and dataValueSets) must be combined to fetch all relevant data for
a data element. The example fetches information about commodities from the
“Life-saving commodities”-dataset for an organization unit from a specified pe-
riod.

Figure 19: Metadata identifier scheme
Metadata identifier scheme for fetching data from the dataValues dataset.

5.1.1.2 Level of expertise

An important thing that was mentioned several times during the first iteration
of data collection, was the importance of identifying the group that is targeted
with the documentation. Experienced users may have di↵erent needs and re-
quirements than novice users, thus should the documentation be adjusted to the
primary user group in target. The findings show that while experienced users
often may prefer large documents with the possibility to “CTRL-F” (search)
through the document, novice users can benefit from a more step-by-step, guided
approach. Searching through a large document requires some degree of under-
standing of the possibilities that the system provides, as well as some knowledge
about what to look for in order to find what’s relevant. Novice users may have a
need for a more practical approach, providing examples and visual components
rather than plain text- and table-content style encyclopedia in the documenta-
tion.

46

Figure 20: DHIS2 - example from project
Function fetching information from a DHIS2-dataset from a project where the

DHIS2 Web API was used.

One apparent claim made by the participants having experience with DHIS2
was that the degree of di�culty and learning curve for DHIS2 is very steep.
One of the participants stated that the content ”never hits where I am cur-
rently standing”. In other words, the participant expresses that finding content
adjusted to their knowledge level about the underlying logic of the system can
either be too hard to grasp, or too simple for their use cases. As their knowledge
increases, they must proceed further into the learning resources and documen-
tation, as what they have already read is below their current level of knowledge.
However, the next stages are perceived as too advanced, creating the mentioned
issue of struggling to locate resources at the stage the user is currently at.
The participants expressed that, in the case of DHIS2, the data model is the
most challenging component of the API to understand, suggesting that the data
model and metadata needs more attention in onboarding and coaching e↵orts
for new developers to be able to settle in the system with ease.

Some participants also suggested that the content’s level of di�culty should be
grouped in some way. A few participants noted the necessity to take more ”baby
steps” because the documentation’s material can quickly become advanced and,
consequently, less user-friendly. This was either proposed as a way to di↵erenti-
ate between content for novices and content for advanced users, or as a way to
modularize the documentation’s content into smaller steps that allow for grad-
ual mastery. As part of the latter participant’s idea, they also reported that
incorporating gamification techniques could boost the content’s engagement and
learnability by making the distinct modules more comprehensible to the target
audience.

47

5.1.1.3 Balance simplicity and depth

Some participants mentioned that the documentation could be falling short
because it is trying to address complex information textually, which may be
easier to comprehend if presented di↵erently. For structural and architectural
understanding (e.g. the data model in the case of DHIS2), figures and visual
presentation like diagrams may be beneficial in order to understand connec-
tions and relations between di↵erent parts of the system. The academic par-
ticipants expressed that visualizations and illustrations of important concepts
like data structure etc. may facilitate further understanding of the metadata,
which in turn may help the user understand how to utilize the API best possi-
ble in projects. These elements can supplement text-descriptions, thus making
technical concepts easier to understand for the user, as well as allowing the
documentation-designers to compress textual descriptions, and rather refer to
the figure.

However, not all information can be presented visually. Where text-only-descriptions
are used to explain details, it is important to focus on writing good and pre-
cise descriptions that keep the target group in mind regarding formulation. To
ensure understanding and avoid misunderstandings, the language in use should
be adjusted to who the description is intended for. However, deciding what is
good and precise can be di�cult to achieve, as all users possess a subjective
opinion regarding what is understandable and precise. It is therefore important
to consider what information is important to present, and what may be excess,
to keep the descriptions precise and relevant.

5.1.1.4 Step-by-step descriptions of the API in use

When targeting a novice user group, providing step-by-step descriptions of the
possible actions and interactions may be beneficial. There are di↵erent opinions
on what should be presented in which order, but there’s a broad agreement that
simple explanations of the di↵erent steps in an interaction may help to sim-
plify the process of utilizing the API more e�ciently. “Steps” in this context
can be understood as the di↵erent actions and activities that, put together in
a sequence, make up a complete interaction. Actions to cover could include
common activities that all users will have to do, e.g. authentication/getting
access and/or an intro to getting di↵erent data from the API. It is important to
ensure that these descriptions are well formulated and written, so that the user
can both follow along and understand the process which is being done. Another
important consideration is that the descriptions must be complete and include
everything that needs to be done in order to achieve the described goal. Par-
ticipants were however clear that external resources, e.g. descriptions of how to
utilize the underlying technologies (e.g. REST) should be linked to their respec-
tive resources. If the designers of the documentation include all information in
one place, users may experience the documentation as overwhelming and thus
perceive the documentation as less useful and usable.

48

The step-by-step interaction-descriptions should focus on including a brief expla-
nation of di↵erent endpoints, as well as what parameters they accept. Exactly
how the descriptions should be designed depends on what is being presented.
However, participants suggested that tables can be used for a simple overview
and understanding of the di↵erent endpoints. The descriptions should include
what the endpoint expects to receive (what is required), as well as what it
accepts (what is possible to send). It should also include a short description,
explaining what the role of the endpoint is, what its intended purpose is and
what it provides. Figure 21 presents a possible presentation of an endpoint in
documentation. The example contains a title, a short description of the endpoint
(what it is used for), the base URL-path to communicate with the endpoint, a
scheme of parameters with a required (Yes/No)-field, and an example display-
ing the endpoint in use. The example in the figure is thought to be possible to
change by using the left dropdown-menu to select between di↵erent use cases.
The example is thought to be possible to get presented in di↵erent programming
languages, for easy adoption into projects, by selecting the preferred language
using the right dropdown-menu.

5.1.1.5 Handling version updates

One significant challenge for both the lecturers in the educational settings, and
developers in development settings, was keeping up to date with new version
updates and changes as they occur. Whenever the API receives an update,
the documentation must be updated accordingly, in order for it to stay up-
to-date and relevant for users. One of the academic participants mentioned
the challenge of creating educational resources that are up to date, because
APIs often can change rapidly due to innovation and fixes of di↵erent features.
A concrete example mentioned by the participant, was that creating course
material connected to the Android development API can be challenging, because
most content becomes outdated before the end of the term, due to rapid updates.
Thus, creating resources supporting development using the API can prove itself
di�cult. They mentioned that creating guides that utilize third party APIs will
require very frequent updates, as without updates the developers may try to
implement a request and try to communicate towards an endpont that has been
phased out or become legacy. In other words, it can become harder to teach
best practice of the use of said API when some endpoints may be removed
and others may be changed to a point where existing applications may break,
without proper information.

Even though the mentioned example covers the Android API, it can still be
relevant also for DHIS2, as updates of the API are necessary to keep the system
relevant and avoid issues. From the perspective of the developer, issues re-
garding obsoletion of both API-functionalities and documentation may present
major issues. Figure 22 presents an example of a case where a section of the doc-
umentation has been deprecated, thus no longer serving the same purpose even
though it is still available online. This presents new obstacles for developers,

49

Figure 21: Possible endpoint-layout
A possible layout of endpoint-documentation.

as their process is highly dependent on being able to find the reason for errors.
After debugging the code, a natural next step when developing with APIs may
be to approach the documentation for possible reasons and solutions. However,
if cases like this example are not communicated clearly, developers may find it
more di�cult to error-handle and find correct resources.

50

Figure 22: DHIS2 - deprecated section
Example of an outdated section from the DHIS2 Web API-documentation.

5.1.1.6 User involvement

One participant mentioned the possible value of allowing users to contribute to
the documentation by making suggestions to changes or additions from expe-
rience they have gained. After using a system for a period of time, users gain
experiences that may be beneficial for others to learn from, both regarding prac-
tical approaches and possible improvements regarding factors like formulations
and presentations in resources like the documentation. Therefore, by allowing
users to participate and contribute with their experiences, other users, such as
novices, may benefit from learning alternative approaches, possibly simplifying
their process of understanding how to use an API. This means that users can
contribute by developing alternative methods for achieving a goal – for example
suggesting multiple ways to fetch data from endpoints. By allowing users to
suggest changes in the written documentation, it is also possible to expand the
number of phrases used in the documentation, possibly enhancing the likelihood
that individuals will find what they’re seeking by searching.

5.1.2 Organizing

The conducted interviews revealed three main areas of focus regarding organiz-
ing that can influence the users understanding and e�ciency when approaching
the documentation of a new API.

5.1.2.1 Getting inspiration from other APIs

Some participants suggested looking at existing documentations by large cor-
porations (such as Google’s Android development documentation, Twitter etc.)
for ideas on how to design the user journey and user interface of API documen-
tations in order to enhance the current DHIS2 Web API documentation. As

51

described by participants, these large corporations have APIs with documen-
tations that are public and exposed to large amounts of users internationally.
Thus, it is likely that they have grasped the variables that determine the success
or failure of documentations. As a result, it may be good to draw inspiration
from them when developing recommendations for other API documentations.
Instead of “reinventing” how documentation should look from scratch, fetching
inspiration from the documentation of established, public APIs with broad user
feedback, inspiration can be collected and create the basis for documentation,
which can then be tailored to the specific needs of the API.

5.1.2.2 One page vs. modularized sections

The majority of the sample group stated that the content’s disorganization
confuses readers. In other words, there is so much information available that
readers feel like they are ”drowning” and have few tools to help them find
what they need. Participants stated that there should be a trade-o↵ between
having a one page, plain text-presentation, and a presentation of content in
separated, modularized sections, where the di↵erent categories of information
are placed apart from each other (e.g. authentication, fetching data, posting
data etc.).

The participants were unified in the opinion that this modularization of content
should not fully replace the plain text-presentation of the documentation, but
rather supplement it. There is a tension regarding how modularized the docu-
mentation should be, as too much modularization may impair the experience of
locating information if there is too much to navigate. Seeing how experienced
users may appreciate the possibility to search (“CTRL-F”) through the docu-
mentation rather than navigate through a modularized structure, fully replacing
the complete overview can potentially a↵ect the e�ciency and satisfaction of the
experienced programmers significantly. However, the majority of participants
stated that dividing the documentation into multiple pages can result in bet-
ter organization, which may assist users in locating the desired content. New
and novice users may not be familiar with APIs, their structure or naming
conventions, making the mentioned preference of experienced users potentially
di�cult for novice users. Without su�cient knowledge of said factors, searching
through a large overview of all available endpoints may be very di�cult and
time consuming.

It was also mentioned that searching doesn’t always provide the result that
you’re looking for. Sometimes searches for certain things are done via Google,
and in these cases, a modularized, separated content-presentation may turn out
more beneficial. For internal search functionality, said obstacle of not finding
the result you’re looking for from a search may be a large irritation. A possible
approach to avoid this presented by participants was the possibility to have
a “similar”- or “Did you mean . . . ”-functionality for searches, when searches
don’t provide a result but there are similar results that the user might have been
searching for. This way, it is possible to explore and possibly understand more

52

of the documentation without the thorough understanding of the underlying
structure beforehand.

5.1.2.3 Organizing the content

As a continuation of the previous point, the participants touched upon how
to organize the content. The participants identified four main areas of focus
regarding organizing:

1. Structure
The content can be collected on a single page, but this requires some con-
siderations. In order for this kind of collection to be understandable for
novice users, the page requires some sort of structure, making it manage-
able for new users. A large page filled with information faces the risk of
being perceived as overwhelming, hence creating a thought out structure
is important to avoid this.

Another way to avoid an overflow of information, is simply to compress,
or “hide” everything that is not in use or directly relevant, so that only
the relevant information for each case is displayed by default. This can be
solved by separating content into collapsible items, creating sub-sections
etc. Avoiding large collections of information reduces the risk of the docu-
mentation being overwhelming, thus possibly making it more manageable.
It can also be important for designers of documentation to consider what
information is relevant and what is not, to hide information that’s not nec-
essary for that specific use. By reducing information that is not directly
relevant for each case, but rather more of “nice to know”-information, re-
ducing the feeling of information overload for the user can be easier. It
is also important to consider the target group when designing the docu-
mentation. Beginners may have di↵erent needs than experienced users,
thus it is important to separate “beginner-tutorials” from more advanced
descriptions.

2. Separate documentation from side-resources
For relevant side-documentation that may be beneficial to include in the
context (e.g. resources abour REST APIs, frameworks etc.), it can be wise
to link these rather than describing the external tools and resources in the
documentation. It may also be beneficial to separate API-documentation
and other system-documentation, e.g. separate the technical documenta-
tion from the comprehensive data-structure- and descriptive documenta-
tion in the case of DHIS2.

3. Prioritize after importance
Participants mentioned that developers often want to get started quickly,
without having to read more material than necessary. It is therefore im-
portant to organize the documentation according to the relevance and im-
portance of the di↵erent sections. Given that the documentation begins

53

by explaining the most important, basic aspects of the system (authenti-
cation/getting access, getting started etc.), it is possible that new users
will experience a quicker and less complicated introduction to the system.
By ensuring this, it is easier for them to get started and gain a basic un-
derstanding of the API, then instead of reading everything before starting,
rather return when they face concrete issues as those appear.

It is important to introduce what the API does and what overall func-
tionality it provides. E.g. the purpose of an API can be to provide data
about public transport routes, about food recipes etc. This must be com-
municated clearly in order for the user to understand what the purpose of
using the API is. This should however be done carefully and in a short,
informative and precise format, only presenting information directly rel-
evant and important to understand the API, to avoid the user becoming
uninterested before the more important content for use is reached. This
introduction can contain a summary of what data/functionality the API
can provide, as well as briefly how it provides the di↵erent results. Fur-
ther, it is important to begin focusing on usability - how the user can
begin using the API. Describing the key actions that facilitate use of the
API is important for the documentation to serve a purpose for new users.
Making this easily available early in the documentation will simplify the
process of getting started. These descriptions should include brief expla-
nations of the di↵erent endpoints, as well as how to use them. Exactly
what it should contain depends on the individual case. However, it should
contain information that is directly relevant for the use, allowing the user
to get a quick introduction to how it should be used.

At last, after the most important content regarding the endpoint for the
developer has been described, the documentation can continue describing
what participants mentioned as “less important information”. Exactly
what this mention covers depends on the API and its purpose, but typical
examples that were mentioned were e.g. information about rate limit,
pagination etc.

4. Define terms
For novice developers, technical terms can be di�cult to understand. It
was mentioned by participants that the writers of documentation should
make sure to define important terms, in order to avoid confusion. How-
ever, including this must be done carefully, as too much information may
exacerbate the previously mentioned risk of information-overflow. A solu-
tion to this risk proposed by a participant could be to link to a separate
resource with relevant descriptions of terms and concepts. This way, it is
possible to ensure understanding of relevant terms while still avoiding the
risk of cognitive overflow.

54

5.1.3 Iteration summary

The first iteration of data collections was conducted to gain ground knowledge
regarding perception of documentation, from a combined view of API-users and
academics. The sample group consisted of seven participants, mixed between
lecturers and developers, with and without knowledge of DHIS2. The iteration
revealed several topics of interest. Relevant findings for this case are summed
up in table 7.

55

Category Finding Description

Content Examples and use
cases

Examples can be important for under-
standing how to use a system, by pre-
senting for the user how to use the di↵er-
ent functionalities available. Use cases
can be important for understanding the
practical use of a system, connecting ex-
amples and descriptions to cases that
are likely to occur when using the sys-
tem. Lack of examples created from use
cases can make documentation more dif-
ficult to use.

Level of expertise The needs of the user group can depend
on their level of expertise.

Balance simplicity
and depth

Even though there is a need for de-
tailed information, lack of balance be-
tween simplicity and depth in the doc-
umentation can make it di�cult to use.

Step-by-step de-
scriptions of the
API in use

Step-by-step descriptions of functional-
ities can make use of the API easier to
comprehend for novice users.

Handling version
updates

Core-updates may be frequent, and
needs to be addressed clearly.

User involvement Allowing for user involvement can help
the documentation fit the needs of the
actual users better.

Organizing Getting inspiration
from other APIs

Designing a documentation accepted by
all used from scratch can be di�cult to
achieve. Getting inspiration from estab-
lished APIs’ documentation can help de-
signers succeed.

One page vs. mod-
ularized sections

Large portions of text can be perceived
as overwhelming for the user. Modu-
larizing some content into separate sec-
tions can be beneficial to consider.

Organizing the con-
tent

Organizing of the content can have a sig-
nificant impact on the user experience
for the documentation, and needs to be
considered in light of the user group in
target.

Table 7: Findings from iteration 1

56

5.2 Iteration 2

To supplement the findings from iteration 1, providing knowledge about API us-
age in general, we proceeded with a more targeted approach towards the DHIS2
Web-API in iteration 2. The data collections were conducted with DHIS2-
developers, as well as students participating in the course IN5320 - Development
in Platform Ecosystems at UiO, as a combination of interviews and observations.
The goal was to gain insight in the development-process using DHIS2, identify-
ing di↵erent approaches, obstacles experienced, as well as possible improvements
to problem solving.

5.2.1 Approaches to problem solving with DHIS2

From the interviews and observations, two main approaches to problem solving
with DHIS2 were identified: “Exploring” and “Use of documentation”. In ad-
dition to this, a number of other di↵erent approaches were mentioned, covered
under “Other approaches”.

5.2.1.1 Exploring

Even though the participants approach problem solving with DHIS2 di↵erently,
many responses were similar and can be collected in one category: exploring.
Inspecting requests and responses was mentioned as an e↵ective way of exploring
the DHIS2 API. Seeing how DHIS2 has quite a complex data structure, learning
how to use the structure in practice by exploring can make understanding rela-
tions easier. This also allows for the API to be explored without much reading
of background- and technical information. Once you have a basic functioning
request, changing the parameters quickly provides a response on whether this
change works/is allowed or not. The participants noted this as an important
part of their process of getting to know new APIs, gaining initial understanding
of basic relations.

All participants mentioned trial and error as a go-to approach when beginning
to use a new technology, including getting to know the DHIS2 API. Using API-
tools such as Postman to send requests, while changing the di↵erent parameters
to see the e↵ect, was highlighted as a natural early stage activity of exploring
new APIs. This way, the participants learn what works and what does not work
by exploring at their own pace, adjusted to their own skill level. A mentioned
approach to trial and error was to experiment with di↵erent requests test-driven,
by creating a set of tests initially which create the goal for further programming,
which allows for a more targeted approach than just testing without a concrete
purpose. Creating initial tests to be passed, then approaching the API itera-
tively like shown in figure 23, the developer gets the opportunity to explore the
API by adjusting requests on the go to pass the tests.

Exploring freely like mentioned above was described as a practical way of
learning. Seeing how not everyone necessarily views theoretical learning as

57

Figure 23: Iterative approach to API-development

the most e�cient way to gain an understanding, a more practical approach
like self-exploring may be more beneficial. The participants actively working
with DHIS2-development on a daily basis mentioned how they look at the data
through what they described as the “3 dimensions of DHIS2”: Where we are
trying to collect data, the period (time and place) the data is situated in, and
what data is being collected. These three dimensions create a basis for the said
participants to categorically approach the fetching of data, saving both time
and e↵ort in the process. The dimensions are presented in figure 24

Figure 24: Dimensions of DHIS2
3 dimensions of DHIS2. “Additional dimensions” describes everything not

covered by the other three dimensions, e.g. fields etc.

58

One participant mentioned this approach as an e↵ective way to establish what
was mentioned as a “minimum viable payload” - the minimum required to col-
lect the relevant data. By exploring the opportunities the API provides, as well
as what changing di↵erent parameters does, the user is able to create a request
that fetches the basic data needed to solve a task. “Minimum viable payload”
can be seen from two di↵erent perspectives: the user and the API. A minimum
viable payload for the user can be seen as a request that creates the basis for a
more concrete request, by allowing the user to gradually filter out excess data,
making the request gradually less resource demanding. E.g., a minimum viable
payload in DHIS2 from the user’s perspective can be a request that fetches all
data from a specific district, allowing the user to proceed with narrowing down
the search to fetch only the necessary data. Another participant emphasized
the importance of this process, as gathering more data than required exposes
the API to unnecessary data-tra�c, possibly a↵ecting the performance of the
API for other users.

“One have to understand what kind of data is being collected and
what needs to be collected”

- Participant from iteration 2

From the APIs perspective, a “minimum viable payload” can be seen as some-
thing that filters down the search enough to let the API respond with just
the exact information requested. The two perspectives are illustrated in figure
25.

5.2.1.2 Use of documentation

Documentation was a resource mentioned as a natural starting point for the
approach to problem solving with DHIS2, as well as a resource that developers
return to when problems appear later in the development. A prerequisite for
exploring the API as mentioned above, is to have access to the API - a pos-
sibility to send requests. The documentation often creates the basis for this,
by providing requirements for authentication as well as endpoints to begin ex-
ploring. The documentation was mentioned as an important resource to see the
opportunities available when beginning to use an API, such as DHIS2. Whether
it be the structural descriptions or the technical documentation, this lays the
foundation for understanding of the possibilities the API provides, and what it
can be expected to provide.

5.2.1.3 Other resources

A number of other di↵erent resources were mentioned in the interviews. The
students mentioned teaching assistants (TAs) and course-specific forums as an
essential part of their understanding, while the DHIS2-developers mentioned
the DHIS2-community as important for their process of problem solving. Even

59

Figure 25: Perspectives on ”Minimum viable payload”
Presentation of the di↵erent perspectives on “Minimum viable payload”. Note
that the example is purely for illustration and is not necessarily an accurate

request/response.

though these are di↵erent, they represent a similar resource: community re-
sources. Both TAs in course settings, and forums/di↵erent community resources
allow for internal sharing of knowledge within the context, which can help others
understand and pass faced obstacles. An area where users can ask questions re-
garding obstacles they face, and get feedback from others who have conquered
the same issues, allow for sharing of knowledge regarding issue-handling and
sharing of experience. Internal sharing of knowledge was highlighted as im-
portant for individual understanding, as seeing how other developers do things
in practice was mentioned as an important part of understanding how to put
the structure into practice. What is covered under “internal” depends on the
context, but was by the participants describing the community working with
the same system or project (e.g. DHIS2 community for DHIS2-related work).
The students delegated the responsibility of understanding the API to one per-
son, while the others performed other tasks. After some time, they practiced
knowledge-sharing, by working together to understand how to use the API, led
by the person responsible for learning the API from the beginning.

Observations from both the students’ project, as well as the DHIS2-developers
at work, revealed that pair/mob programming and discussions in groups is a
common approach to problem solving. As people possess di↵erent experience,
sharing of knowledge and experience by working in pairs or groups can lead to

60

better overall learning and performances.

External resources, resources not specific for the system or context, are also
important when facing issues and obstacles. Resources of importance that were
mentioned by several participants were Stack Overflow, YouTube and Google.
Stack Overflow is a popular resource for developers, providing a forum where
technical discussions can be conducted amongst developers. Defined as a Com-
munity Question and Answer-platform by Ahmed and Srivastava (2017), Stack
Overflow serves as an important resource in problem solving technical projects.
With more than 10 million users, 92% of all questions answered and a median
answer-time of 11 minutes, Stack Overflow is a natural resource for help with
technical issues (Meldrum et al., 2020).

Participants also mentioned YouTube as an important resource for learning
APIs, DHIS2 in particular. The DHIS2 YouTube-account provides a series of
di↵erent tutorials, webinar recordings etc., making it a possibly important part
of the learning process of DHIS2, explaining data-structures, usage of di↵er-
ent parts of the system and community-updates (“DHIS2 - YouTube”, n.d.).
Other technologies also often have tutorials and other video resources avail-
able through YouTube. Resources are often made either by the creator of the
technology, or independent video-creators (e.g. Web Dev Simplified for web-
development, Programming with Mosh for various technologies etc.), making
YouTube an important resource for information seeking when problem solv-
ing. Figure 26 displays some examples of videos available through the DHIS2
YouTube-channel.

Figure 26: DHIS2 YouTube-channel
Examples of videos available on the DHIS2 YouTube-channel

61

To find the di↵erent resources available, Google was mentioned as an important
tool to locate what’s needed. The students mentioned Google as the ”only”
way to locate some resources, as navigating through the o�cial documentation
sometimes provided outdated or not-su�cient resources. For example, they ex-
perienced that the o�cial documentation directed them to an outdated version
of the UI-documentation, while Google provided links to a working version.
Whether it be API-specific resources, or other supporting resources, using es-
tablished and wide-covering search engines like Google can be an e�cient ap-
proach.

5.2.2 Obstacles and possible improvements to problem solving with
DHIS2

5.2.2.1 Content

Obstacles An obstacle regarding content, especially in the case of the inter-
viewed and observed students, is that the current documentation is perceived as
lacking adequate examples with relevant info. Examples in the documentation
are some places written as cURL-requests, a format the students expressed little
knowledge about. Seeing how DHIS2-applications are often written in React,
especially in the case of IN5320, examples displaying requests formatted for
use in said context could possibly be more informative and relevant. Figure 27
displays a request in cURL, and the same request taken from the context of a
DHIS2 React-project. Curl-requests are perceived as more aimed at experienced
developers, making them e↵ective, but less understandable for user groups with
less experience. The students expressed that examples like the cURL-request
displayed in figure 27 below, were di�cult to comprehend. They also struggled
to convert the examples from the documentation into practical applications for
use in their projects, making the provided examples feel inadequate for the
students.

The examples were also perceived as di�cult to understand, as they seem to
expect an underlying understanding of how the API works. Thus, the exam-
ples do not describe relations between endpoints, functionalities etc. su�ciently
so that novice developers understand what happens when interacting with the
di↵erent requests and responses. For example, the relation between the DHIS2
datasets dataSets (which contains information like item-ID, name, time reg-
istered etc.) and dataValueSets (which contains values registered for objects
within dataSets) is not perceived as su�ciently described for students in IN5320,
for them to easily understand that these datasets must be combined to fetch
complete and comprehensive information about dataElements (items registered
in DHIS2).

Another content-obstacle with the current documentation, is what was men-
tioned by several participants as insu�cient information. This perception was
caused by what was described as unclear explanations, meaning explanations
that were either too broad (not specific enough) or too narrow (too specific to

62

Figure 27: Curl vs. React
Request towards the dataset “dataValueSets” presented in cURL-format and

React

understand). One participant mentioned the struggle of understanding possi-
bilities by describing how “... the API does not tell you what you can do. . .
[the documentation] tells you how to do things, but not what can be done with
the API.”. By this, the participants underlined the mentioned struggle of parts
of the documentation being too specific, as it provides information about how
to do one thing, but not describing the opportunities available. Another par-
ticipant described the opposite struggle, too broad information: “[The docu-
mentation] gives you enough info to understand that it is possible to do things,
but not enough to understand how to do it.”. By this, the participant expresses
the struggle of insu�cient thoroughness in some parts of the documentation.
They understand that something can be done, but not how to actually do said
thing, thus leaving the documentation perceived as less useful than expected.
This describes two issues regarding information: insu�cient information about
what can be done, as well as insu�cient information about how to do things.
Together, these issues present an obstacle for new users understanding the pos-
sibilities of the API. Finding a balance between said issues, where users are both
able to understand what can be done with the API, as well as how to do said
thing can be crucial for the users motivation to interact with the API. It is how-

63

ever di�cult to conclude with what is the su�cient amount of information and
what is too much, as users may subjectively perceive information di↵erently,
making what is perceived by one user as just enough possibly perceived as way
too little, or too much by another.

At last, a struggle that was mentioned, is what was described as missing in-
formation about issues, meaning that core-issues and updates are not commu-
nicated properly from the platform owner. This was primarily an issue de-
scribed by the DHIS2-developers, but during the span of the students’ project,
they experienced several components and parts of the documentation that were
not working. Some of these had indications that they were deprecated, but
some had lacking information about issues. Figure 28 presents an example of a
deprecated section As seen in figure 29, small changes in the URL-path could
separate working documentation and seemingly empty documentation. The
not-working filepath was found by students when they attempted to google the
UI-documentation during their project, with no indicator that the URL caused
the issue. In order for the documentation to serve its purpose, it was suggested
that platform owners and -administrators inform about deprecations in a clear
manner, with provided replacements (if existing) to avoid this confusion.

Figure 28: Deprecated section
Deprecated section in available documentation

Potential for improvement As previously mentioned, the data structure of
DHIS2 can be perceived as complex, and can thus be hard to understand su�-
ciently. Participants highlighted visual elements as an important improvement
that may strengthen their understanding of relations, thus making development
and usage of the DHIS2 API more e�cient. In the case of DHIS2, understand-
ing how things are connected can be important for the ability to utilize the
system. However, it was noted that the documentation should visualize not
only the overall structure, but also how to apply the structure in practice in a

64

Figure 29: Path issues
Example of documentation available online, where small changes in the path

decides whether the documentation contains information or not.

project. One participant mentioned the importance of “... teaching concepts,
not technologies.”. By this, the participant underlined the importance of not
only getting to know how to perform actions, but also understanding how re-
quests work in the underlying structure. Visualizing this can possibly have a
large impact on the outcome for new users’ understanding of the overall sys-
tem.

A mention by several participants is the importance of good, understandable
and practice-oriented code examples. What’s considered understandable may of
course vary from person to person, but the important common denominator is to
adjust the examples to the user group in focus, and use cases that reflect actual
intended use of the system. This way, users can be more likely to find the ex-

65

amples useful for gaining understanding of the use. “Understandable” can vary
based on experience, thus should examples be adjusted depending on what the
focus of the relevant documentation has. As previously mentioned, a suggested
improvement by participants was to combine an encyclopedia-style documenta-
tion with a guided approach. Participants noted that the documentation should
include a balance between short descriptions and examples, combining theory
(descriptions) and practice (examples).

A common perception by the participants was the idea that the documenta-
tion should be a presentation of di↵erent sequences of actions and interactions,
describing how to use the system. A significant issue, especially for the less ex-
perienced participants, was the di�culty identifying how to use the information
from the di↵erent parts of the documentation in practice. Even though there
were descriptions and general examples, the participants struggled to use these
in practice in their projects. The impression regarding exactly how this informa-
tion should be presented varies based on experience. However, all participants
agreed that the documentation should present an easy to find, practical ap-
proach on how to perform di↵erent interactions in order for it to improve their
problem solving. A possible way to achieve this is by integrating relevant use
cases for di↵erent scenarios, to display a practical application of the di↵erent
endpoints.

Another suggestion presented by participants, aimed at continuously improving
the resources, is to implement a way for the community to contribute and ex-
pand the documentation with relevant experiences and best practices. This way,
experienced users can share their ways of working and “shortcuts” displaying
good practices to novices, hence participating in sharing of knowledge, as well
as possibly simplifying debugging for all users by displaying common errors and
solutions directly in the documentation. A suggestion by participants was to
implement a Wikipedia-style community participation-functionality. This way,
everyone has a possibility to contribute and take part in the improvement of
system documentation, while improvement-suggestions are validated and ver-
ified by system-moderators in order to ensure quality. This can also improve
the continuous usability of the documentation by regularly updating procedures
with up-to-date techniques and tips.

5.2.2.2 Organizing

Obstacles Looking at specific issues and obstacles with the current DHIS2
API-documentation, a major obstacle mentioned both by students and devel-
opers was that the documentation lacks standardization. It was mentioned that
“... everyone does things their own way. ”, indicating that the di↵erent sections
of the documentation does not necessarily follow the same design pattern, mak-
ing it di�cult to navigate through the documentation as a whole. An example
of the described di↵erences can be seen in figure 30, 31 and 32, displaying three
di↵erent designs within the documentation of the same system. Even though
the displayed pages have some similarities, e.g. a menu located on the same

66

side, the design di↵ers in such degree that some users can struggle connect-
ing them together, leaving the users with the impression that the parts of the
documentation are independent of each other without connection.

Figure 30: DHIS2 developer documentation

Figure 31: DHIS2 developer portal
DHIS2 Developer portal, displaying information in another design than the

developer documentation

67

Figure 32: DHIS2 developer manual
DHIS2 Developer Manual, displaying a third design within the same

documentation.

Lack of standardization does not necessarily always result in poor quality, but
it was indicated by participants, especially students, that the lack of standard-
ized pages makes navigating the documentation and locating correct resources
di�cult. As seen in the examples above, the di↵erent pages vary in structure,
colors and layout, allowing for confusion and misunderstanding for users. Even
though they have some of the same design-choices, they are di↵erent enough
that users may struggle to see the direct connection between them. In the stu-
dents’ case, they tended to rather choose course-specific learning resources like
the self-paced online course (UiO, n.d.) in an attempt to solve their problems
rather than using the documentation to debug.

Participants also described a lack of clear categorization as a significant obsta-
cle when using the API documentation, as structure in the current developer-

68

documentation is mainly collected in one page. This strengthens a feeling of in-
formation overflow for the lesser experienced participants, making the documen-
tation di�cult to navigate. Combined with another mentioned obstacle, that
the documentation consists of too much text, the documentation can quickly
become hard to comprehend for a new user. Figure 33 presents an example
from the DHIS2 documentation where a large amount of text is presented in
one page.

Figure 33: Large amounts of information
A part of the DHIS2 documentation containing a large amount of text

Participants also mentioned internal search-functionality as an obstacle when
using the DHIS2 API Documentation. Even though the current documentation
has a search-option, the students especially struggled to identify the existence
of this, as it was perceived as a part of the overlying page rather than connected
to the documentation. Observations of said group also uncovered that using
the search-functionality once located turned out not satisfying, as results varied
a lot and gave few answers and solutions in use. The developers working with
DHIS2 however, did not mention the search-functionality as an issue, possibly
indicating that this may be a group-specific obstacle most relevant for students
- the less experienced part of the sample group.

Potential for improvement Seeing how the sample group of this iteration
consisted of both students, fresh graduates and more experienced developers,
an important consideration was identified: how the level of so-called “hand-
holding” in the documentation must be adjusted to the target group. Experi-
enced developers and API-users may have di↵erent needs than less-experienced,

69

hence requiring di↵erent resources than the less experienced group. While some
may require a simple way to quickly search for actions, others need a step-by-step
guide describing how to get started and approach di↵erent actions and obstacles.
As a result, a suggestion from the participants was to structure resources in a
way that makes it function both as an encyclopedia, and a more detailed guide,
allowing the user to decide what level of “hand-holding” is required.

It was mentioned, especially by the novice users, that large pages that must be
searched through should be avoided, in order to ensure understanding. However,
as other participants mentioned, more experienced users may appreciate this
way of navigating, making a combination of encyclopedia and guide possibly a
good solution. A participant mentioned appreciation for the first version of the
documentation (v. 1) more than the current documentation, as it resembled a
book with its structure. Thus, it was described as having a structure that was
easy to follow. Following known structures like this may be a way of adapting
documentation to the di↵erent users.

When discussing learning of DHIS2, the developers highlighted mastery-focused
learning as a purposeful approach. All participants had a somewhat similar ex-
perience when starting to work with DHIS2, as they experienced the onboarding
as an overwhelming process with a lot of information at a time. Not unlike this,
the students’ also experienced a large amount of information without a struc-
ture allowing them to feel mastery as they proceeded. Participants suggested
a structure where theory and practice is taught and connected simultaneously,
allowing for personal mastery over time, could help them improve their problem
solving at an early stage. They also underlined the value of having the possibil-
ity to learn from experience from previous projects. Inspecting previous code
served great benefits for both the students and the developers working with
DHIS2 in their onboarding-phase.

70

5.2.3 Iteration summary

This iteration has covered interviews and observations of developers and stu-
dents working directly with DHIS2. The sample group consisted of five full-time
developers, and three students working with DHIS2 in an educational project.
Seeing how this iteration was aimed more directly towards DHIS2 by exploring
participants working first-hand with the platform, the findings are potentially
more accurate for this particular API than findings from the previous iteration.
Findings from iteration 2 are summed up in table 8.

Category Issue Description

Content Inadequate exam-
ples

Examples are perceived as inadequate
for the user, and are di�cult to read
due to unknown syntax.

Unclear informa-
tion

Information is perceived as inadequate,
too theoretical, lacking relevant details
and di�cult to put into practice.

No provided in-
formation about
platform-/core-
issues

The documentation lacks clear informa-
tion about issues and updates.

Organizing Unclear categoriza-
tion

The content is perceived as uncatego-
rized, making it di�cult to navigate
without experience.

Design not stan-
dardized through
all parts of docu-
mentation

The documentation is made up of sev-
eral parts, made with di↵erent designs,
possibly making it di�cult to under-
stand relations and navigate.

Table 8: Findings from iteration 2

71

6 Discussion

Findings presented a large number of categories, covering the di↵erent pros and
cons with current API documentation. However, to avoid the discussion being
too large and wide covering, the findings were compressed through a new round
of analysis. From this, the following categories were identified: covered under
“Content” are the categories “From documentation to practice”, “User-group
experience level” and “Continuous documentation”. Covered under “Organiz-
ing” are the categories “Layout and design of the documentation” and “Catego-
rization and organizing of the content”. The categories from findings covered by
each of these new categories are presented in table 6 on page 43. Through this
chapter, the findings in said categories are discussed against existing literature,
to identify similarities and di↵erences between them.

6.1 Content

6.1.1 From documentation to practice

As described in the previous chapter, the interviews clearly revealed the value
and importance of having examples available in order to utilize the possibilities
of the API. As mentioned by Robillard and DeLine (2010), code examples are
essential tools for learning how to use systems in software development, for
“... understanding the purposes of the library, its usage protocols, and its usage
contexts” (McLellan et al., 1998, p. 83). Thus, the sample group of our study
emphasizing the importance of having good examples available came as no big
surprise. The participants emphasized how being presented how to use the
di↵erent functionalities in practice can greatly improve the process of learning
and understanding how to use the API. However, the usefulness of the examples
strongly depend on their quality and adaptability into actual use.

Aghajani et al. (2020) found that faulty and incomplete examples serve as an
important issue for usefulness in development. If an example is made in a way
that is di�cult to understand and adapt, e.g. by presenting examples with-
out clear connections to actual use or by providing incomplete descriptions, the
usefulness is significantly lower than an example created to illustrate how to
approach a realistic use case. An example displaying the technical functional-
ity of an API-endpoint, but not connecting it to actual intended use, e.g. by
providing an example of using the endpoint to achieve a described goal, can
make it perceived as little practice oriented, and consequently reduce its us-
ability. On the other hand, formulating use cases reflecting actual issues that
users may face, and using the examples to approach these may result in more
practice-oriented, thus potentially more usable examples. For an example to be
perceived as practice-oriented, it should present and be connected to use cases
that represent situations it is likely that developers will face during development
with a system.

As Uddin and Robillard (2015) found, poor quality in descriptions and exam-

72

ples serve as a major problem for e�ciency when using documentation. Like our
findings, they found that insu�cient explanations can lead to the documentation
being of less use than optimally, thus not serving its intended purpose. In a com-
plex structure such as DHIS2, su�cient understanding of the use cases, as well
as how things are connected can be important for understanding and usability
of the information. Wyner and Lubin (2011) illustrates how a documentation
containing precise, practice oriented descriptions and examples can make an
API usable for developers regardless of previous experience. Findings from our
study indicate that the lack of said practice-oriented focus in the documentation
can have a negative impact on the learning and understanding for novice users,
possibly reducing the usefulness for users without much experience.

Presenting how to use the API with actual use cases is an important finding
from the data collections for our study. If the user is not able to understand
how to utilize the API in their project, it is likely that they will either 1)
struggle finding out how to use the API, strongly a↵ecting both productivity
and satisfaction negatively, and/or 2) avoid using the API at all. Especially
the participating students in our study expressed lacking use cases and the
documentation appearing not practice-oriented as a major struggle for their
understanding and progression using DHIS2 in projects. Robillard and DeLine
(2010) discuss the issue of matching APIs with scenarios, or use cases, where
their findings indicate that documentation without a clear connection between
use case-scenarios and the documentation can cause confusion when trying to
learn and utilize the API. Like the findings from our study, they found that
users often want a clear connection between use cases and the API displayed.
The lack of relevant use cases can cause the user to be confused regarding the
possibilities, as well as how to perform the correct actions to successfully achieve
di↵erent goals. As a result, the documentation can be perceived as di�cult to
use, negatively a↵ecting the development process for users regarding both time
and e↵ort.

Another important mention was the possible benefits having access to interactive
examples can have, e.g. through a “sandbox” where you can play around with
a technology and try di↵erent combinations of features (Arntzen et al., 2019).
This can improve the adaptability and usability of the endpoint documentation,
by allowing developers to test endpoints directly in the sandbox-environment,
instead of having to implement the API call in a program first to be able to test
it. Zinovieva et al. (2021) describes how what they mention as “online coding
platforms” can be used to improve remote learning for educational institutions.
They state that interactive learning contributes to cognitive activity, positively
a↵ecting the educational quality. Like the case of their study, API learning is
generally a remote process, where one is often required to approach the doc-
umentation to gain insight and understanding. It is therefore likely that the
findings of Zinovieva et al. can be relevant also for novice developers approach-
ing new APIs, as the process of approaching new learning material remotely can
be seen as similar to using documentation to understand new APIs. However,
interactivity in examples has not been highlighted as an area of importance

73

in any of the studies exploring API documentation for experienced profession-
als (Aghajani et al., 2020; Robillard and DeLine, 2010; Uddin and Robillard,
2015), indicating that this may be most relevant for the less experienced user
group.

As an extension of the previous section, a possible solution can be to provide
step-by-step descriptions and examples, presenting a scenario in a way that’s
easy to replicate in order to achieve the same goal. As the findings from our
study show, trial and error is a common way to approach a problem, by test-
ing di↵erent parameters and combinations of requests in order to reach a goal.
Jones et al. (2010) discusses how trial and error can be an e↵ective way of
approaching problems with limited preliminary knowledge about the given sce-
nario. Thus can trial and error be a natural way of approaching problem solving
when learning to use an API. However, this approach is not necessarily the most
e↵ective, and can possibly lead to a less e�cient development process as a whole.
With relevant use cases, designers of documentation can present di↵erent actions
and functionalities in practice for cases developers are likely to face, displaying
the di↵erent steps that need to be performed in order to reach di↵erent goals
e�ciently. Trial and error will still be a practical approach to adapt the ex-
amples into the developers own project, but describing the steps one by one
may simplify the process initially and reduce the need for comprehensive trial
and error-exploration for basic actions (e.g. getting access, examples of fetching
di↵erent data etc). A possible way to present step-by-step how to fetch data
from a dataset can look something like presented in figure 34.

6.1.2 User-group experience level

An important thing to consider when designing documentation, is what the
purpose of the documentation is supposed to be, and what experience level the
intended target group possesses. Designers must decide whether the purpose
of the documentation is for it to serve as a guide aimed at describing use step-
by-step or as an encyclopedia where developers can quickly access information
needed to solve a task. Garousi et al. (2013) suggest that the needs of the less
experienced users should be considered when designing documentation. If less
experienced users are able to understand and make use of the documentation,
it is likely that it also functions for developers with more experience. However,
as found by Uddin and Robillard (2015), information aimed at and designed
for novice users may reduce the e�ciency of more experienced users. Thus,
what’s considered an improvement for some may be seen as a deterioration
for others. Participants proposed splitting the documentation as a possible
solution. Seeing how our findings, as well as previous research indicate that
experienced users may value searching through documentation e.g. by using
“CTRL-F”, a design partially focused on supporting this may be beneficial.
Meanwhile, another part of the documentation can be aimed at novice users,
containing more of a step-by-step approach and page-separated categories to
ensure learning also for those with little preliminary knowledge. This way,

74

Figure 34: Step-by-step descriptions
Example of how a step-by-step-guide for an interaction with the DHIS2 Web
API can be presented. Note that the information presented is purely for

illustrative purposes, and not necessarily accurate.

it is possible to increase usability for both ends of the “experience-specter”,
possibly maintaining what’s considered good for some users while improving
what’s considered lacking by others. Providing a detailed introduction to use
for some endpoints and functionalities can lead to an easier understanding of how
the API works, thus making use of the rest of the documentation easier.

Findings from this study shows that all participants that have or have had direct
experience with the DHIS2 Web API, acknowledge that the system has quite
a steep learning curve, and is not perceived as fitted to developers with less
experience, but rather more experienced developers. Thus, knowledge bound-
ary resources like the documentation etc. are perceived as di�cult to use for
novice developers. Also the participants without direct knowledge of DHIS2
agree that level of experience is important to consider when producing API
documentation, as experience can strongly a↵ect the understanding and abil-

75

ity to comprehend technical information. The findings of Wyner and Lubin
(2011), regarding how an API with thought-out, targeted documentation can
be successfully used by users with very limited technical experience, indicates
that considering the experience-level of the target group can be of great impor-
tance when designing documentation for it to be accepted by the user group.
This idea is strengthened by Aghajani et al. (2020), who states that creators
of documentation should “... always keep in mind the actual documentation
users and their needs. . . ”(p.8). Seeing how DHIS2 is an open-source platform
aimed at improving public health monitoring, it may be beneficial to consider
all experience-levels, allowing more than only developers with long experience
to contribute to application development.

A major issue regarding documentation, also in the case of DHIS2, is that in-
formation provided is perceived as unclear, thus not helping users su�ciently to
understand. As found by several previous studies (Aghajani et al., 2020; Uddin
and Robillard, 2015), unclear and incomplete information serve as a significant
problem when using documentation to understand and use APIs e�ciently. Par-
ticipants noted that information often can be perceived as inadequate for their
understanding, as it lacks relevant information in order for them to e↵ectively
understand the descriptions provided. Thus, they perceive the documentation
as lacking su�cient usability. As described by Shackel (1981), usability can be
understood as “... the capability to be used by humans easily and e↵ectively” (p.
24). Seeing this in the context of the user-oriented view (Bevan et al., 1991),
one can argue that documentation with descriptions perceived as unclear does
not have su�cient usability.

Large amounts of information at a time, exceeding cognitive processing limits,
may lead to poor decision making and worse performance (Malhotra, 1982).
Large amounts of text can also make it di�cult to distinguish between what’s
relevant and what’s not. (Moy et al., 2018). Especially for newcomers and
novice users, large amounts of information can make content more di�cult to
comprehend, thus making usage of the API more di�cult. To improve usability
of the documentation, enhancing use of the API for novice users, documentation
designers should strive to keep descriptions short and precise. Short, however,
is a subjective opinion, making it di�cult to define what’s too short or too
long. It is therefore important for the documentation-designer to consider what
information is relevant to include and what is excess for each specific case, in
order to avoid making descriptions perceived as too long, while still including
enough information for the user to be able to make use of it.

Making content aimed at being accessible and perceived as clear, however, is not
necessarily as easy as it may sound. Furnas et al. (1987) discusses what they
refer to as “the vocabulary problem”. They state that “many, many alternative
access words are needed for users to get what they want from large and complex
systems.” (p. 971), referring to how choice of words can a↵ect the availability
of information. Even though this study primarily focuses on words for accessing
functionality, it can also be seen in the context of understanding descriptions as

76

a result of choice of words. Even though technical documentation such as API-
documentation must be expected to contain theoretical phrases, the vocabulary
problem displays how the choice of words can make information di�cult to
locate and use without preliminary knowledge of system-specific concepts and
terms. One participant in our study mentioned that it could be beneficial to
provide an “appendix”, or separate resource providing descriptions of important
keywords, as well as a short description of the context(s) in which these are used.
By doing this, the designers of documentation can eliminate some confusion and
failure due to the vocabulary problem, possibly increasing the understanding,
accessibility and usability of the documentation.

As mentioned by several participants, the data structure of DHIS2 is perceived
as complex and can be di�cult to comprehend. They suggested that use of
visual elements like diagrams and models can increase the learnability of the
system. Students can remember information better when visual elements are
utilized (Raiyn, 2016). Thus, visually presenting the data structure and rela-
tions within DHIS2 can improve the understanding for novice users. As several
participants mentioned through the interviews, e�cient usage of the DHIS2 API
was first possible when they understood the underlying structure. Therefore,
ensuring e�cient learning of this as quickly as possible can greatly improve the
development process for the target group. Using models like the example pre-
sented in figure 35, understanding relations can be perceived as easier than only
textual descriptions, thus possibly making development using DHIS2 easier and
more e�cient. However, in a complex structure like DHIS2, visualizations of
data structures and relations can quickly become as complex as the structure
they are supposed to describe. An example of this can be seen in figure 36,
presenting an overall visualization of the DHIS2 data model on a higher, more
abstract level. It is therefore important to consider the aspect of simplicity
when designing models and diagrams to ensure that they actually improve the
understanding of what they are presenting.

However, both our participants and the respondents of Uddin and Robillard’s
(2015) study also indicated that too much information can create di�culties
locating the relevant and important information. Participants noted that large
chunks of text can create issues understanding the content, as well as being able
to perceive what’s relevant. Thus can too detailed descriptions of context and
relations make the documentation be perceived as bloat, working against its
purpose. It is therefore important to find a trade-o↵ between having thorough
descriptions, and keeping them short to avoid cognitive issues.

Participants also mentioned that a possibility for the community to contribute
may be beneficial. Especially in the case of DHIS2, the community is an im-
portant resource, serving as a forum for QAs when developers face obstacles.
It was noted that the community might have established best practices that
could be beneficial to include in the documentation, supplementing the under-
lying technical information. The community may have di↵erent motivations
for contributing, including content contribution, motivated by the need for self-

77

Figure 35: Simple visualization of DHIS2 data model
Note: “The data model” from Self-paced online course (UiO, n.d.)

development and reciprocity, and community participation, motivated by altru-
ism and a sense of belonging (Xu and Li, 2015). Through the interviews for
our study, the DHIS2 community was mentioned on several occasions, underlin-
ing its importance in the development process of DHIS2 applications. Thus, it
is possible that an opportunity for community contribution in the DHIS2 API
documentation could simplify the process of debugging and problem solving by
allowing developers to add their experiences and best-practices directly into the
documentation. This way, developers can benefit from others’ experience if, or
before encountering similar problems. The existing community FAQ-forums for
DHIS2 displays that there is indeed motivation present for community contri-
bution, and an integrated possibility for this directly in the API documentation
may be beneficial for sharing of knowledge. The GitHub-API provides a good-
practices-page, where developers can see what the API owners perceive as good
practices when developing. Figure 37 presents this page from the GitHub API
documentation. By having a section like this, with the opportunity for the com-

78

Figure 36: Visualization of DHIS2 data model on a higher level
Note: “Core Diagram” from the DHIS2 documentation. “4.5 The Data

Model”, n.d.)

munity to contribute as they discover new best-practices, the user group as a
whole can benefit from others’ experiences. This can be especially useful for
novice developers, as learning best practices and procedures from experiences of
more experienced developers can increase their understanding of how things are
done, thus making it easier for them to develop themselves in future projects.

A possible approach to this is to integrate what was mentioned in interviews as
a “Wikipedia” approach, where users can suggest improvements and additions
to the di↵erent sections of the documentation. This way, the user community
can propose changes and improvements they see fit, while the original designers
of the documentation can still control what changes are accepted and which
are rejected. GitHub has integrated this as a part of their documentation,
allowing users to create “pull requests” with suggestions to the documentation
who is open source. Figure 38 displays how this possibility is presented in their
documentation.

6.1.3 Continuous documentation

Regardless of the system, insu�cient handling of version updates causes a ma-
jor problem for developers. Previous studies have concluded that poor doc-
umentation is the primary reason for quick quality degradation and aging of
software (Kajko-Mattsson, 2005, p. 31). Participating students from our sam-
ple group mentioned how they on several occasions while working with DHIS2
found outdated, no longer functioning parts of the documentation together with
still working resources. Aghajani et al. (2020) found in their study that 69%
of their respondents considered up-to-dateness of documentation an important

79

Figure 37: GitHub API documentation - best practices-page

issue. One participant in our study highlighted the Android SDK as an extreme
case of this issue, with several updates a year suddenly leaving functionality out-
dated without proper notice or information. Figure 39 displays the evolution
of Android versions and API levels since 2018, displaying how the API evolves
continuously. This can make it di�cult to know what version is currently sup-
ported when developing, and maintain existing applications as these need to
be adjusted according to the changes in the API they communicate towards.
Keeping the documentation up to date with system-version updates is therefore
crucial in order to ensure usability for users.

80

Figure 38: GitHub API documentation - possibility of community contribution

Figure 39: Android API evolution since 2018
Android versions and API-levels (compatibility) since 2018, illustrating how
APIs rapidly evolve. Note that each API level also includes updates within
itself, increasing the amount of updates beyond what’s illustrated by the

amount of levels.

The participants also mentioned that lacking information about system-issues
can serve as a significant obstacle when developing. Server-problems, system-
maintenance and similar issues should be clearly communicated from the API-
administrator, so that developers are aware of issues, changes and problems
with the platform. Participants especially noted that some kind of notice of
major server problems would be beneficial, as server-downtime was never noti-

81

fied clearly from the DHIS2 platform core. The GitHub API-documentation is
described as an example of how this can be solved (Bush, 2019), as they provide
small widgets indicating the current status of the API on every page of the doc-
umentation. This way, developers can always quickly check whether problems
they face are due to server-problems or are programming-related. Other ways
of integrating this can e.g. be by adding sections in the page-header or top of
the page informing about status (OK/Downtime + why).

6.2 Organizing

6.2.1 Layout and design of the documentation

A significant struggle for participants trying to explore the DHIS2 documen-
tation, was the lack of standardization through the di↵erent sections of the
documentation. Seeing how the documentation is structured with a separate
developer guide, UI-documentation, developer documentation etc., users may
struggle to navigate without proper consistency in layout and design of the doc-
umentation. Consistency is an important design principle for usability, allowing
users to use a familiar interface throughout the whole experience of a product,
enhancing learning and understanding, and reducing the insecurity for users
whether the information means the same thing (Lidwell et al., 2003; Preece et
al., 2019; Schlatter and Levinson, 2013). Without said principle present, users
may find it more di�cult using resources provided, as they do not necessarily
resemble one another. E.g., the participating students expressed that the di↵er-
ence in design of the developer documentation and the UI documentation made
it appear as documentation for two separate systems. They suggested that a
consistent design through all parts of the documentation for DHIS2 would both
help them navigate easier, and make it appear more as one system, rather than
several separate. The issue and obstacle that lack of standardization creates has
been observed across levels of experience, hence indicating that it is not neces-
sarily a matter of experience (Aghajani et al., 2019). However, consistency is
not always easy to achieve: when trying to design an interface to be consistent
with something, one faces the risk of making it inconsistent with something else
(Preece et al., 2019). It is therefore important to consider the design as a whole
to make it familiar through all parts.

Participants suggested that documentation-designers should look to large, es-
tablished, public APIs when designing documentation (examples mentioned in
data collections included Twitter and Dropbox). Figures 40 and 41 displays
the mentioned APIs’ layout of presenting relevant information for using an end-
point. These are exposed to large amounts of users on a daily basis, generating
feedback quickly regarding issues and weaknesses in the documentation. By
getting inspiration from these organizations’ API-documentation, designers of
documentation can accomplish a design accepted by the users with less e↵ort
than if they were to create it from scratch. Thus, it is likely that users will be
satisfied, possibly perceiving the documentation as usable with less e↵ort for
the designers. Seeing how documentation usually is written as the last step of

82

a development process, often su↵ering from reduced motivation (Parnas, 2010),
creating the documentation with inspiration from established organizations can
lead to good results with reduced e↵ort.

Figure 40: Dropbox API documentation

Figure 41: Twitter API documentation

While the target group of this study is focused on novice developers, Uddin
and Robillard (2015) studied how a target group with significantly more expe-

83

rience perceived API documentation. While some findings are similar, they are
also di↵erent in some areas, e.g. view on modularization (which is appreciated
by novices but seen as an obstacle and irritation by experienced profession-
als), which indicates that di↵erent expertise-levels have di↵erent needs. This
was further strengthened by the more experienced participants of our study, as
they described their own way of working as fitting to a one-page encyclopedia-
style documentation design with less comprehensive descriptions, while still
recognizing that novice users may require more thorough and “hand-holding”,
guide-style kind of documentation. Garousi et al. (2013) found that there is a
significant di↵erence in documentation usage between experience levels. They
found that experienced practitioners refer less to documentation, suggesting that
needs of the less experienced should be considered when creating documenta-
tion. The perception by the participants of this study regarding the current
DHIS2-documentation indicates that they experience it as aimed more towards
professionals with long experience than covering the spectrum from beginner to
professional.

6.2.2 Categorization and organization of content

An important note that was mentioned by the participating students, as well as
some participating developers, was the lack of clear categorization throughout
the DHIS2 API documentation. Without categorization, they perceived the in-
formation as one large chunk of text, and expressed di�culties separating the
di↵erent things from each other, and gathering the related information. They
suggested that a clear categorization of things that are related would help them
see what’s similar and not, thus making it easier to gather relevant informa-
tion for the use case. Aghajani et al. (2019, 2020) found that findability and
information organization were considered important for a large number of the
participants in their studies. Like the participants in our study, they found that
a logical structure with related information gathered together can help under-
standing the documentation easier, and make more use of the documentation.
What’s considered a “logical structure” is a highly subjective opinion, and can
vary depending on experience level and personal preferences. However, clear
connections between related functionalities and categorization grouping func-
tionalities used together for di↵erent use cases is likely to give a feeling of logic
in the structure. Categorizing after common areas of use, e.g. endpoints used
for fetching di↵erent data about users etc. being collected can possibly im-
prove the usability of the documentation for novice users, simplifying the ease
of use.

However, previous studies show that not all users agree on this. Uddin and
Robillard (2015) explored common irritations and obstacles for developers with
long experience (mean ⇡ 13 years experience), finding that the second most
mentioned irritation regarding presentation of information was fragmentation:
that information is separated across several di↵erent pages or sections, indicat-
ing that they might rather want a structure with everything collected at one

84

place. Thus, it can seem like there is a di↵erence between what the users with
di↵erent experience perceive as useful and e�cient when developing. This dif-
ference has also been identified in other literature (Garousi et al., 2013). This
underlines the importance of considering the user group when designing doc-
umentation, and not necessarily trying to make a one-size-fits-all design in an
attempt to find a quick way of dealing with all users. Whether this issue is
solved by separating content into separate pages, compressing related informa-
tion into smaller portions, reorganizing the content or a combination of these
depends on the primary user group in target for the documentation.

Rather than to read thoroughly, people tend to scan pages when they read online
(Moran, 2020). Even though some follow the commitment pattern, observations
and interviews from our study describe developers as more likely to follow the
layer-cake scanning pattern, as seen in figure 42 (Pernice, 2019). It is therefore
important to prioritize and organize the documentation after relevance, so that
the most important information is presented first. This way, developers may
find it easier to locate the information relevant for understanding the use of
the API and solving their problems, possibly improving the usability of the
documentation.

85

Figure 42: The layer-cake reading pattern

86

7 Conclusion

In this chapter, the discussion is summed up, and connected to the research
questions. First, the sub-questions formulated in the introduction-chapter are
addressed (RQ1.1-1.5), and connected to relevant results from the discussion.
After this, the main research question is addressed (RQ1), with basis in the
answers to the sub-questions, and recommendations to practice are presented.
Then, the contribution to practice and research is presented, before a brief
reflection on further research and limitations is conducted.

7.1 Research questions

RQ 1.1: What are common factors that make existing documentation di�cult
to understand?
The findings from this study shows that lack of use cases and practice-orientation
in examples and descriptions serves as a major issue for understanding informa-
tion. Presenting theoretical information without connecting it to possibilities of
actual use, can result in the information being di�cult to adapt and put into use
in projects, reducing the value of the documentation for the users without much
experience. Issues with layout was also found to be a significant issue, espe-
cially in the case of the documentation for the DHIS2 Web API, as participants
struggled to locate relevant information and parts of the documentation.

RQ 1.2: What are common factors that make existing documentation easy to
understand?
Users value simplicity in the documentation. Simplicity can be di�cult to de-
scribe accurately, as it is indeed quite a subjective opinion. What is meant
in this case is that descriptions contain relevant, short and to-the-point infor-
mation regarding relevant details, without information not directly relevant to
what’s being described. Additional information can be included, but should be
put somewhere else than the main description, e.g. further down the page as
additional information to support if needed.

RQ 1.3 What content is necessary in the documentation?
Information about what is required to communicate with the API-endpoints
(e.g. authentication keys etc), as well as information about what is possible
to provide to the di↵erent endpoints, is important information to provide in
the documentation in order for users to be able to use the API. Information
about what the user can expect to get in return is also important for the user’s
understanding of the endpoints. This information is essential for using and
understanding the di↵erent endpoints. Without information regarding what is
required and possible to provide to the endpoint, and what it is supposed to
return, its core functionality remains unknown.

For initial use of an API, information regarding how to get authentication and
getting access to the API is important. Even though processes like authentica-
tion often are similar between APIs, this can require some degree of experience

87

to be perceived as intuitive. Clear descriptions of how this is done is therefore
important for users to gain access to an API and start using it.

Relations and connections between components in the internal structure of the
API may be important to understand in order to utilize the API to its full intent.
Especially in the case of complex data structures like DHIS2, understanding the
underlying relations can be important. This can however be di�cult to perceive
by reading text-only descriptions. Visualizations like diagrams and figures can
help the user understand the information easier, thus serving as important tools
for the understanding of the overall system.

Lastly, information about version updates are important to provide, in order for
users to follow the continuous evolution of the API, and stay updated on what
changes are being made to the endpoints.

RQ 1.4: What content is perceived as excess in documentation?
Findings identify information about external resources (e.g. frameworks (React
etc.), REST APIs etc.) included in the documentation as excess. Whether it is
needed information or if it can be assumed that the user already possesses knowl-
edge about the resources strongly depends on the target user group experience
level. Thus, to encompass all users, this information should not necessarily be
removed fully, but rather be linked to instead of using time and e↵ort describing
the concepts in detail in the documentation. This way, the users that require
additional knowledge regarding relevant external resources can easily find and
navigate to these, while it does not fill the documentation with excess infor-
mation for those not needing it. Too detailed descriptions of concepts can be
perceived as excess in documentation. While it is important to provide enough
information for the user to understand the concepts, too much information can
work against its purpose. It is therefore important to decide what is important
and less important information for descriptions.

RQ 1.5: How should the information be organized?
An important aspect for easy usage of the documentation is regarding organiza-
tion and presentation of data. Visible information, information that is presented
to users upon opening a page, should be reduced so that only the important
information regarding the endpoint is displayed initially, and what’s more in
the category of “nice to know” or less important information can be hidden,
e.g. in collapsible sections. This way, it is possible to reduce the amount of
information visible to the user, thus allowing for easier location of the most
relevant information. If more in-depth, additional information is needed, this
can still be available, but not necessarily visible by default to reduce the feeling
of information overflow for the user.

Exactly how information should be organized, depends on the purpose of the
documentation, whether it is to function as a guide or an encyclopedia for the
user. If the purpose is for the documentation to serve as a guide to using the API,
a more modularized organization of the information can be beneficial, separating
the di↵erent actions being described into separate sections. However, if the

88

purpose of the documentation is for it to function only as an encyclopedia, a
supporting resource for developers while using the API in development projects,
modularizing and separating the content into separate pages can cause more
problems than it solves. A possible solution to this is to combine the two
approaches, by having both a guide-section with certain actions, e.g. getting
access and getting started using the API, presented step-by-step isolated from
other content, as well as a section functioning more as an encyclopedia where
users are able to quickly locate what they’re looking for. This eliminates the
need to browse through content that is arranged for a di↵erent experience level
and need from your own, yet still allows both first time- and novice users,
as well as more experienced users, to find resources that suit them. Table 9
presents some possible circumstances where the two approaches may be suitable
isolated.

Guide-approach Encyclopedia-approach

The guide-approach can be suitable
for situations where it is likely that
users will need or appreciate a thor-
ough, “hand-holding”-approach in-
troduction to a system. If a system
includes complicated logic, intri-
cate procedures or di�cult combi-
nations of functions to reach goals, a
guide-approach can help ensure that
users are guided through the neces-
sary steps to succeed initially. The
guide-approach can also be suitable
for situations where users with little
experience are likely to be exposed
to the system, as presenting actions
in the relevant steps does not re-
quire preliminary knowledge regard-
ing the technology.

The encyclopedia-approach can be
suitable for situations where users
are likely to use the documenta-
tion for quick searches for how to
use certain functionalities, or to
find information regarding related
properties and characteristics. As
an encyclopedia-design can quickly
grow large depending on the system
complexity and available endpoints,
thus possibly di�cult to navigate,
the approach may be more suitable
for users with some degree of pre-
liminary knowledge, or experience
with the system from beforehand.

Table 9: Suggested suitable uses for the guide- and encyclopedia-approach

Regardless of purpose, an intuitive and logical structure will require a categoriza-
tion of content that connects related and relevant resources together. Depending
on the system, related and relevant resources can be resources that are often
used together, resources that lay the foundation for use of others, resources that
strengthen understanding etc. Without this, users may experience confusion
regarding what endpoints are relevant for use together, thus making the overall
usage more di�cult to comprehend.

89

7.2 Recommendations for practice

RQ 1: How can API-documentation be designed to facilitate learning

and development for novice developers?

Summing up the discussion, to address the main research question of the the-
sis, six areas of importance that can be beneficial to consider when creating
and designing API-documentation for novice API users are identified and pre-
sented below. These can be taken into consideration by platform owners and
-maintainers, as well as other documentation designers to improve the usability
of API documentation for novice developers, while still maintaining the usability
for experienced users.

1. Consider combining a guide- and encyclopedia-approach
To embrace all users, a possible solution may be to create a combination of
a guide and an encyclopedia, so that the users can decide what they need
to make progress from the stage of the development process that they are
located in at the time of accessing the documentation. This way, novice
users who need a thorough description of each step to reach a goal are
able to find and make use of that. Meanwhile, more experienced users can
find what they are looking for to progress without necessarily having to
go through a guide-structure, e.g. if they are only looking for information
about a specific endpoint.

2. Connect examples to use cases to explain how they are used in practice
Examples are important for the user to be able to see how the system can
be used. They are therefore important to include for the understanding
of usage when users utilize the documentation to include the API in their
development. However, examples should be connected to realistic use
cases in order for users to easily understand how to adapt the endpoints
into use. Practice-oriented use cases can ensure understandability and
usability, thus making learning and utilizing APIs possible during the
span of a project. It can therefore be important to formulate relevant use
cases based on expected scenarios of use for the API, so that the use of
each endpoint is seen in the context of actual cases that the users are likely
to face.

3. Make examples interactive
For novice users, having a way to test the di↵erent endpoints without
necessarily having to implement them into projects initially can be benefi-
cial. Making examples interactive can therefore be beneficial to create an
arena for new users to explore an API. This way, they are able to see how
di↵erent parameters can a↵ect the response, and create a general request
that can be adapted into their project when it is to be implemented.

4. Keep descriptions short and precise
To avoid users feeling that the documentation provides an overflow of
information, it is important to keep descriptions of endpoints short and

90

precise, and avoid explaining endpoints in too much detail initially. To
achieve this, it is important to identify what information is relevant for
understanding and to start using the endpoint, and what information can
be hidden until the user decides to display it, e.g. in a collapsible sec-
tion. Descriptions can also be elaborated by the use of visual elements
(figures, diagrams etc.) to make understanding of concepts, relations and
data structures easier for the users, while still maintaining simplicity and
avoiding long, overwhelming textual descriptions.

5. Identify and prioritize presenting the most relevant information first
An important factor for documentation to be perceived as usable, is the
ability for the user to quickly and intuitively locate relevant resources for
supporting their development. It is therefore important for designers of
documentation to identify the most important and relevant information
for each endpoint, and present the information accordingly after impor-
tance. This way, it can be easier for new users to locate what information
is most relevant and important for the current endpoint, simplifying the
process of beginning to use it. Following this, additional information can
be presented to elaborate, without taking the initial focus from the user
when entering di↵erent sections of the documentation. Avoid presenting
information and concepts regarding external resources (e.g. REST APIs
etc.) in the documentation. Link to external resources explaining rel-
evant concepts instead of including the information written out in own
documentation.

6. Gather relevant resources in categories
For the user to be able to easily understand relations between endpoints, it
is beneficial to create categories, and collect related content in these. This
way, it is easier for the user to see which endpoints are related, thus likely
to be used together for the same tasks, and which are not directly related.
Consequently, it can be easier for the user to understand relations, and
utilize endpoints together in an e↵ective manner.

7.3 Contribution

This thesis contributes to the research field, by expanding knowledge regarding
problems and considerations that should be addressed when facilitating docu-
mentation for novice users. Seeing how previous studies primarily have targeted
experienced developers (Aghajani et al., 2020; Robillard and DeLine, 2010; Ud-
din and Robillard, 2015), the findings from this study aims to widen the scope
and fill the knowledge gap regarding areas that should be considered in docu-
mentation when novices are in focus or a significant part of the expected user
group. Even though some findings are matching, e.g.:

1. Use cases: Both novice- and experienced users value examples connected
to relevant use-cases, in order for them to present how functionalities are
used in actual settings of use.

91

2. Precise descriptions: Experienced users and novices value precise and
short descriptions of relevant information for di↵erent functionalities.

3. Findability: The ability to find what one is looking for is important for
both novices and experienced users.

there are also di↵erences in our findings compared to said articles. The findings
from this study indicate that novice users highlight the value of:

1. Interactivity: Novice users value interactivity in examples, a point not
mentioned or emphasized in previous studies as important for experienced
users.

2. Guides: Novice users may appreciate being guided through processes
when learning, compared to having the information presented in a way
that requires the user to connect pieces of information and figure out
procedures by themselves. More experienced users are described as ap-
preciating the latter, thus separating the novices from the experienced
users.

3. Modularized layout: Novice users express a positive view on a mod-
ularized design: design distributed between smaller, concretely purposed
pages covering specific purposes (e.g. guide-approach presenting actions
separately), rather than a one-page-design (e.g. encyclopedia-approach
where all information is gathered on larger pages).

The study can act as a possible practical resource for platform owners, -maintainers
and other documentation-designers when designing documentation aimed at a
broader experience range, thus potentially contributing to practical improve-
ments of future API documentation.

7.4 Further research

Further research should focus on further broadening the scope, by continuing
exploring users within the target group more, also beyond the scope of DHIS2.
Gaining more insight, may open the opportunity to develop prototypes that can
be tested and evaluated through a design science research-approach. This way,
it is possible to gain a more hands-on understanding of what works and what
does not, thus extending the knowledge further by providing visual artifacts
that can serve as guidance for documentation-designers. This will also allow for
a more detailed process of evaluation with users, confirming findings.

7.5 Limitations

As I have attempted to gain insight into the experiences of novice developers
regarding API-documentation as a supporting resource, both the data collec-
tion and the process of analysis can naturally have been a↵ected by subjectivity
and my unconscious underlying preliminary opinions and expectations. I have

92

however attempted through data collections and analysis to approach partic-
ipants and data neutrally, in order to avoid bias as a result of my subjective
opinions.

Regarding the interviews of students at UiO, I was employed as a teaching
assistant, thus, there may have been some degree of bias due to my role in the
subject the participants were engaged in. To reduce this, I made it clear from
the start what the purpose of the study was, that this data collection was in no
way connected to the course, that their answers would stay anonymous at all
times and in no way a↵ect the assessment of their project.

Another limitation may be the size of the sample group. We wanted to explore
the topic broadly, thus speak to participants with di↵erent backgrounds, experi-
ence and knowledge. An issue with this, combined with limited time to conduct
data collections and analysis, was that we did not have time to speak with
very many participants from the di↵erent groups. Even though the total num-
ber of participants summed up to 15, we could have gotten deeper knowledge
and insight with even more participants. Especially the number of participants
fitting into the concrete description of the target group would have been ben-
eficial to increase. A di�culty, however, was to identify said participants, as
everybody has di↵erent experience with di↵erent technologies. Identifying lots
of users with a fitting degree of experience and knowledge could therefore be
time consuming, proving di�cult within the time frame of this thesis. It could
also have been beneficial to perform more di↵erent methods for data collection,
in order to triangulate. As mentioned earlier, surveys could have been con-
sidered as an alternative method, supporting the interviews. However, as we
wanted to perform a qualitative study to gain detailed insight, this was aban-
doned. Because of the limitations answers to surveys can provide, e.g. regarding
short, little elaborated answers and reduced possibility to ask follow-up ques-
tions, combined with the previously mentioned di�culty identifying the relevant
users within the time limit of the thesis, in order to separate the research from
previous studies, interviews and some observations were prioritized.

A third limitation may be the DHIS2-focus of the study. Even though the
results are probable to be relevant also for other technologies and APIs, there
are areas of DHIS2 that separates it from most technologies, e.g. the often
mentioned complex data structure that constructs the system, which may be
more relevant for DHIS2 than the average API. Widening the scope of the
data collections could have provided more broad insight in a variety of systems.
However, participants were also asked to reflect on previous use of APIs and
technologies, allowing them to supplement the conversations with experiences
also outside the specific scope of DHIS2.

93

References

4.5 The Data Model. (n.d.). Retrieved March 29, 2023, from https://docs.dhis2.
org/archive/en/2.30/developer/html/techarch data model.html

Aghajani, E., Nagy, C., Linares-Vásquez, M., Moreno, L., Bavota, G., Lanza,
M., & Shepherd, D. C. (2020). Software documentation: The practi-
tioners’ perspective. Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 590–601. https : / /doi . org /10 .
1145/3377811.3380405

Aghajani, E., Nagy, C., Vega-Marquez, O. L., Linares-Vasquez, M., Moreno,
L., Bavota, G., & Lanza, M. (2019). Software Documentation Issues
Unveiled. 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 1199–1210. https://doi.org/10.1109/ICSE.2019.
00122

Ahmed, T., & Srivastava, A. (2017). Understanding and evaluating the behavior
of technical users. A study of developer interaction at StackOverflow.
Human-centric Computing and Information Sciences, 7 (1), 8. https :
//doi.org/10.1186/s13673-017-0091-8

Arisholm, E., Gallis, H., Dyba, T., & Sjoberg, D. I. (2007). Evaluating Pair
Programming with Respect to System Complexity and Programmer
Expertise [Conference Name: IEEE Transactions on Software Engineer-
ing]. IEEE Transactions on Software Engineering, 33 (2), 65–86. https:
//doi.org/10.1109/TSE.2007.17

Arntzen, S., Wilcox, Z., Lee, N., Hadfield, C., & Rae, J. (2019). Testing Inno-
vation in the Real World. London: NESTA.

Bevan, N., Kirakowski, J., & Maissel, J. (1991). WHAT IS USABILITY? [Book
Title: Contemporary Ergonomics Edition: 0]. Contemporary Ergonomics
(1st ed.). CRC Press. https://doi.org/10.1201/9781482272574-76

Bianco, V., Myllärniemi, V., Raatikainen, M., & Komssi, M. (2014). The Role of
Platform Boundary Resources in Software Ecosystems: A Case Study.
https://doi.org/10.1109/WICSA.2014.41

Bigelow, S. J. (2023). What are the types of APIs and their di↵erences? —
TechTarget. Retrieved March 22, 2023, from https://www.techtarget.
com/searchapparchitecture/tip/What- are- the- types- of -APIs- and-
their-di↵erences

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology [Pub-
lisher: Routledge eprint: https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa].
Qualitative Research in Psychology, 3 (2), 77–101. https://doi.org/10.
1191/1478088706qp063oa

Bush, T. (2019). 5 Examples of Excellent API Documentation (and Why We
Think So) — Nordic APIs —. Retrieved February 25, 2023, from https:
//nordicapis.com/5-examples-of-excellent-api-documentation/

Creswell, J. W. (2006). Qualitative Inquiry and Research Design: Choosing
Among Five Approaches (2nd edition). SAGE Publications, Inc.

94

https://docs.dhis2.org/archive/en/2.30/developer/html/techarch_data_model.html
https://docs.dhis2.org/archive/en/2.30/developer/html/techarch_data_model.html
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1186/s13673-017-0091-8
https://doi.org/10.1186/s13673-017-0091-8
https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1201/9781482272574-76
https://doi.org/10.1109/WICSA.2014.41
https://www.techtarget.com/searchapparchitecture/tip/What-are-the-types-of-APIs-and-their-differences
https://www.techtarget.com/searchapparchitecture/tip/What-are-the-types-of-APIs-and-their-differences
https://www.techtarget.com/searchapparchitecture/tip/What-are-the-types-of-APIs-and-their-differences
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://nordicapis.com/5-examples-of-excellent-api-documentation/
https://nordicapis.com/5-examples-of-excellent-api-documentation/

DHIS2. (n.d.). DHIS2 - Home. Retrieved March 23, 2023, from https://dhis2.
org/

DHIS2 - YouTube. (n.d.). Retrieved April 18, 2023, from https://www.youtube.
com/@DHIS2org

Dzida, W., Herda, S., & Itzfeldt, W. S. (1978). User-perceived quality of in-
teractive systems. IEEE Transactions on Software Engineering 4 (4),
270–76.

Foerderer, J., Kude, T., Schuetz, S. W., & Heinzl, A. (2019). Knowledge bound-
aries in enterprise software platform development: Antecedents and con-
sequences for platform governance [eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/isj.12186].
Information Systems Journal, 29 (1), 119–144. https://doi.org/10.1111/
isj.12186

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987). The
vocabulary problem in human-system communication. Communications
of the ACM, 30 (11), 964–971. https://doi.org/10.1145/32206.32212

Garousi, G., Garousi, V., Moussavi, M., Ruhe, G., & Smith, B. (2013). Evaluat-
ing usage and quality of technical software documentation: An empirical
study, 24–35. https://doi.org/10.1145/2460999.2461003

Ghazawneh, A., & Henfridsson, O. (2013). Balancing platform control and ex-
ternal contribution in third-party development: The boundary resources
model [eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-
2575.2012.00406.x]. Information Systems Journal, 23 (2), 173–192. https:
//doi.org/10.1111/j.1365-2575.2012.00406.x

Gluck, M. (1997). A descriptive study of the usability of geospatial metadata.
Annual Review of OCLC Research.

Golafshani, N. (2003). Understanding Reliability and Validity in Qualitative
Research. The Qualitative Report, 8, 597–607. https : / /doi . org / 10 .
46743/2160-3715/2003.1870

Grossman, T., Fitzmaurice, G., & Attar, R. (2009). A survey of software learn-
ability: Metrics, methodologies and guidelines. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 649–658. https:
//doi.org/10.1145/1518701.1518803

Hannay, J. E., Dyb̊a, T., Arisholm, E., & Sjøberg, D. I. (2009). The e↵ectiveness
of pair programming: A meta-analysis. Information and Software Tech-
nology, 51 (7), 1110–1122. https://doi.org/10.1016/j.infsof.2009.02.001

Hornbæk, K. (2006). Current practice in measuring usability: Challenges to us-
ability studies and research. International Journal of Human-Computer
Studies, 64 (2), 79–102. https://doi.org/10.1016/j.ijhcs.2005.06.002

Jones, R. S. P., Clare, L., MacPartlin, C., & Murphy, O. (2010). The E↵ective-
ness of Trial-and-Error and Errorless Learning in Promoting the Trans-
fer of Training [Publisher: Routledge eprint: https://doi.org/10.1080/15021149.2010.11434332].
European Journal of Behavior Analysis, 11 (1), 29–36. https://doi.org/
10.1080/15021149.2010.11434332

Kajko-Mattsson, M. (2005). A Survey of Documentation Practice within Correc-
tive Maintenance. Empirical Software Engineering, 10 (1), 31–55. https:
//doi.org/10.1023/B:LIDA.0000048322.42751.ca

95

https://dhis2.org/
https://dhis2.org/
https://www.youtube.com/@DHIS2org
https://www.youtube.com/@DHIS2org
https://doi.org/10.1111/isj.12186
https://doi.org/10.1111/isj.12186
https://doi.org/10.1145/32206.32212
https://doi.org/10.1145/2460999.2461003
https://doi.org/10.1111/j.1365-2575.2012.00406.x
https://doi.org/10.1111/j.1365-2575.2012.00406.x
https://doi.org/10.46743/2160-3715/2003.1870
https://doi.org/10.46743/2160-3715/2003.1870
https://doi.org/10.1145/1518701.1518803
https://doi.org/10.1145/1518701.1518803
https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1016/j.ijhcs.2005.06.002
https://doi.org/10.1080/15021149.2010.11434332
https://doi.org/10.1080/15021149.2010.11434332
https://doi.org/10.1023/B:LIDA.0000048322.42751.ca
https://doi.org/10.1023/B:LIDA.0000048322.42751.ca

Lamothe, M., Guéhéneuc, Y.-G., & Shang, W. (2021). A Systematic Review
of API Evolution Literature. ACM Computing Surveys, 54 (8), 171:1–
171:36. https://doi.org/10.1145/3470133

Lau, W. W. F., & Yuen, A. H. K. (2009). Toward a Framework of Program-
ming Pedagogy [ISBN: 9781605660264 Pages: 3772-3777 Publisher: IGI
Global]. https://doi.org/10.4018/978-1-60566-026-4.ch601

Layne, C. (2020). A is for Application: API Basics. Retrieved April 18, 2023,
from https://medium.com/programming-for-design-practices/a-is-for-
application-api-basics-744661bb95a2

Lehman, M. (1980). Programs, life cycles, and laws of software evolution [Confer-
ence Name: Proceedings of the IEEE]. Proceedings of the IEEE, 68 (9),
1060–1076. https://doi.org/10.1109/PROC.1980.11805

Leung, L. (2015). Validity, reliability, and generalizability in qualitative research.
Journal of Family Medicine and Primary Care, 4 (3), 324–327. https:
//doi.org/10.4103/2249-4863.161306

Lidwell, W., Holden, K., & Butler, J. (2003). Universal Principles of Design.
Rockport Publishers.

Malhotra, N. (1982). Information Load and Consumer Decision Making. Journal
of Consumer Research, 8, 419–30. https://doi.org/10.1086/208882

McLellan, S., Roesler, A., Tempest, J., & Spinuzzi, C. (1998). Building more
usable APIs [Conference Name: IEEE Software]. IEEE Software, 15 (3),
78–86. https://doi.org/10.1109/52.676963

Meldrum, S., Licorish, S. A., & Savarimuthu, B. T. R. (2020). Exploring Re-
search Interest in Stack Overflow – A Systematic Mapping Study and
Quality Evaluation [arXiv:2010.12282 [cs]]. Retrieved February 2, 2023,
from http://arxiv.org/abs/2010.12282

Mifsud, J. (2011). The Di↵erence (And Relationship) Between Usability And
Learnability [Section: Terminology]. Retrieved March 30, 2023, from
https://usabilitygeek.com/the-di↵erence- and- relationship-between-
usability-and-learnability/

Moran, K. (2020). How People Read Online: New and Old Findings. Retrieved
January 27, 2023, from https : / /www .nngroup . com/articles /how -
people-read-online/

Moy, N., Chan, H. F., & Torgler, B. (2018). How much is too much? The e↵ects of
information quantity on crowdfunding performance. PLoS ONE, 13 (3),
e0192012. https://doi.org/10.1371/journal.pone.0192012

Nielsen, J. (1994). Usability Engineering [Google-Books-ID: 95As2OF67f0C].
Morgan Kaufmann.

Parnas, D. (2010). Precise Documentation: The Key to Better Software, 125–
148. https://doi.org/10.1007/978-3-642-15187-3 8

Pernice, K. (2019). Text Scanning Patterns: Eyetracking Evidence. Retrieved
January 27, 2023, from https : / /www .nngroup . com/articles / text -
scanning-patterns-eyetracking/

Preece, J., Rogers, Y., & Sharp, H. (2019). Interaction Design - Beyond Human-
Computer Interaction (5th). John Wiley & Sons, Inc.

96

https://doi.org/10.1145/3470133
https://doi.org/10.4018/978-1-60566-026-4.ch601
https://medium.com/programming-for-design-practices/a-is-for-application-api-basics-744661bb95a2
https://medium.com/programming-for-design-practices/a-is-for-application-api-basics-744661bb95a2
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.4103/2249-4863.161306
https://doi.org/10.4103/2249-4863.161306
https://doi.org/10.1086/208882
https://doi.org/10.1109/52.676963
http://arxiv.org/abs/2010.12282
https://usabilitygeek.com/the-difference-and-relationship-between-usability-and-learnability/
https://usabilitygeek.com/the-difference-and-relationship-between-usability-and-learnability/
https://www.nngroup.com/articles/how-people-read-online/
https://www.nngroup.com/articles/how-people-read-online/
https://doi.org/10.1371/journal.pone.0192012
https://doi.org/10.1007/978-3-642-15187-3_8
https://www.nngroup.com/articles/text-scanning-patterns-eyetracking/
https://www.nngroup.com/articles/text-scanning-patterns-eyetracking/

Raiyn, J. (2016). The Role of Visual Learning in Improving Students’ High-
Order Thinking Skills. Journal of Education and Practice, 7 (24), 115–
121.

Robillard, M. P., Bodden, E., Kawrykow, D., Mezini, M., & Ratchford, T.
(2013). Automated API Property Inference Techniques [Conference Name:
IEEE Transactions on Software Engineering]. IEEE Transactions on
Software Engineering, 39 (5), 613–637. https://doi.org/10.1109/TSE.
2012.63

Robillard, M. P., & DeLine, R. (2010). A field study of API learning obstacles.
Empirical Software Engineering, 16 (6), 703–732. https://doi.org/10.
1007/s10664-010-9150-8

Rubleske, J. (2020). The tuning of data platform boundary resources: Insights
from Twitter. Journal of Technology Research, 9.

Salleh, N., Mendes, E., & Grundy, J. (2011). Empirical Studies of Pair Program-
ming for CS/SE Teaching in Higher Education: A Systematic Literature
Review. IEEE Trans. Software Eng., 37, 509–525. https://doi.org/10.
1109/TSE.2010.59

Schlatter, T., & Levinson, D. (2013). Visual Usability: Principles and Practices
for Designing Digital Applications [Google-Books-ID: h Ql1uIHftoC].
Newnes.

Shackel, B. (1981). Man-computer interaction: Human factors aspects of com-
puters & people. Springer.

Shneiderman, B. (1997). Designing the User Interface: Strategies for E↵ective
Human-Computer Interaction (3rd). Addison-Wesley Longman Pub-
lishing Co., Inc.

Simpson, J. (2022). 20 Impressive API Economy Statistics — Nordic APIs
—. Retrieved January 23, 2023, from https : / / nordicapis . com/20 -
impressive-api-economy-statistics/

Stølen, K. (2023). Technology Research Explained: Design of Software, Archi-
tectures, Methods, and Technology in General. Springer Nature Switzer-
land. https://doi.org/10.1007/978-3-031-25817-6

Tiwana, A. (2013). Platform Ecosystems: Aligning Architecture, Governance,
and Strategy [Google-Books-ID: IYDhAAAAQBAJ]. Newnes.

Uddin, G., & Robillard, M. P. (2015). How API Documentation Fails [Con-
ference Name: IEEE Software]. IEEE Software, 32 (4), 68–75. https :
//doi.org/10.1109/MS.2014.80

UiO. (n.d.). Home : Development in platform ecosystems. Retrieved March 28,
2023, from https://dhis2-app-course.ifi.uio.no/

Vanhanen, J., & Lassenius, C. (2005). E↵ects of pair programming at the de-
velopment team level: An experiment, 10 pp. https://doi.org/10.1109/
ISESE.2005.1541842

Web APIs. (n.d.). Retrieved April 13, 2023, from https://www.w3schools.com/
js/js api intro.asp

Wingkvist, A., Ericsson, M., Lincke, R., & Löwe, W. (2010). A Metrics-Based
Approach to Technical Documentation Quality. 2010 Seventh Interna-

97

https://doi.org/10.1109/TSE.2012.63
https://doi.org/10.1109/TSE.2012.63
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1109/TSE.2010.59
https://doi.org/10.1109/TSE.2010.59
https://nordicapis.com/20-impressive-api-economy-statistics/
https://nordicapis.com/20-impressive-api-economy-statistics/
https://doi.org/10.1007/978-3-031-25817-6
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1109/MS.2014.80
https://dhis2-app-course.ifi.uio.no/
https://doi.org/10.1109/ISESE.2005.1541842
https://doi.org/10.1109/ISESE.2005.1541842
https://www.w3schools.com/js/js_api_intro.asp
https://www.w3schools.com/js/js_api_intro.asp

tional Conference on the Quality of Information and Communications
Technology, 476–481. https://doi.org/10.1109/QUATIC.2010.88

Wyner, G., & Lubin, B. (2011). From Hello World to Interface Design in Three
Days: Teaching Non-technical Students to Use an API. AMCIS 2011
Proceedings - All Submissions. https : / / aisel . aisnet . org / amcis2011
submissions/407

Xu, B., & Li, D. (2015). An empirical study of the motivations for content
contribution and community participation in Wikipedia. Information &
Management, 52 (3), 275–286. https://doi.org/10.1016/j.im.2014.12.003

Zinovieva, I. S., Artemchuk, V. O., Iatsyshyn, A. V., Popov, O. O., Kovach,
V. O., Iatsyshyn, A. V., Romanenko, Y. O., & Radchenko, O. V. (2021).
The use of online coding platforms as additional distance tools in pro-
gramming education. Journal of Physics: Conference Series, 1840 (1),
012029. https://doi.org/10.1088/1742-6596/1840/1/012029

98

https://doi.org/10.1109/QUATIC.2010.88
https://aisel.aisnet.org/amcis2011_submissions/407
https://aisel.aisnet.org/amcis2011_submissions/407
https://doi.org/10.1016/j.im.2014.12.003
https://doi.org/10.1088/1742-6596/1840/1/012029

8 Appendix

A Interview guide - Iteration 1

99

Iterasjon 1 - Intervjuguide

Innledning

● En kort intro av oss, oppsummering av epostene vi har sendt ut
● Kort forklare oppgaven

○ Motivasjon, mål, tidsramme osv.
● Forklare det vi er ute etter

○ Hvorfor ønsker vi å prate med akkurat denne personen

Hoveddel

● Spørsmål om deltakernes bakgrunn
○ Hvor mye erfaring har vedkommende med undervisning?

■ Generelt
■ I aktuelle emner

○ Hva underviser deltakeren i?
○ Har deltakeren erfaring med API-utvikling utenfor undervisning?
○ Hva slags type APIer de har vært innom? (REST, SOAP etc.)

● Spørsmål om undervisningsopplegget
○ Om passende og relevant, be deltakeren evt. vise fram sitt materiale og be dem

forklare hvorfor det ble slik
○ Hvordan har fokuset i undervisningen vært? Teori vs praksis, forståelse etc.
○ Har de observert noen gjentakende utfordringer som oppstår i

undervisningskontekster?
○ Har de møtt på noen utfordringer selv i prosjekter - enten planlegging eller

gjennomføring?
● Nevn kort noen av våre erfaringer (hvorfor vi synes at dette er noe som bør forbedres)

○ Trekk frem konkrete eksempler fra prosjektarbeid
■ Hvordan samsvarer dette med deres erfaringer?
■ Hvordan samsvarer dette med observasjoner/tilbakemeldinger fra deres

studenter?
○ Vis eksempel fra DHIS2-dokumentasjon

■ Nevn kort DHIS2 Academy, forklar hvordan dette brukes som en ressurs
for å forstå hvordan man kan bruke dokumentasjonen

■ Hvorfor var dette vanskelig å lære/bruke?
● Kompleks struktur
● Mye metadata å forholde seg til for å forstå hvordan man kan finne

endepunktene man ønsker
● Lite ressurser som peker på hvordan man bruker APIet -

eksempler vanskelige å anvende

● Playground-ressursen tilbyr noe interaktivt, men denne er
uavhengig av dokumentasjonen - om man ikke kjenner til curl
forstår man ikke helt hva som foregår eller hva effekten av
endringer i forespørsler gjør, slik de er presentert i
dokumentasjonen

● Strukturen gjør det vanskelig å forstå hvor i APIet man er, kan
være vanskelig å navigere

● Informasjonen er ramset opp, men det fremstår ikke som mye
sammenheng mellom de ulike overskriftene. Handlingseksempler
(“om du vil hente ut denne informasjonen kan du gjøre dette…”)
mangler for å skjønne sammenhengen mellom kallene og
funksjonene som trengs for å få gjort det man ønsker

● Presenter/nevn gode eksempler på dokumentasjon, samt hvorfor
○ Twitter

■ Inneholder eksempler på hvordan man kan bygge opp requests
■ Har eksempler med forskjellig vanskelighetsgrad, viser de enkleste først

for å forklare hvordan man setter det opp og oppfordrer nye brukere å
forstå disse før de går over til vanskeligere kall

○ Dropbox
■ Inneholder funksjonalitet som viser hvordan man bygger requests i ulike

programmeringsspråk
■ Sier noe om hva hver parameter returnerer, hva som kan skje hvis det er

feil i parameteren, situasjoner som kan føre til feil ved kallet osv.
○ Forklar hvorfor disse er gode eksempler og hva som skiller dem

● Ved tid - forsøk å utforme en god struktur sammen med deltaker
○ Presenter våre innledende skisser
○ Be deltaker om å kommentere og nevne styrker og svakheter
○ Diskuter løsning

Avslutning

● Har deltakeren noe mer å legge til?
● Spør om deltaker har noen ubesvarte spørsmål
● Takk deltaker for deltakelse
● Spør om deltakeren kjenner til noen andre som kan ha kunnskap om dette, som vi burde

kontakte?

B Interview guide - Iteration 2

102

Discussion outline

Introduction
● Introduce ourselves
● Explain the thesis/task

○ Motivation, goals, time frame, etc.
● Explain what we are looking for

○ What is the reason we want to talk to this particular person?

Practical information (consent, recording etc.)
No confidential personal information will be gathered. Your personal data will only be used for
the purposes outlined in the introduction. The information will be handled with discretion and in
accordance with applicable privacy legislation. In the transcription and notes, all personal data
obtained in the recording will be anonymized.

Voluntary involvement
Participation in the data collection process is optional. You may terminate the interview or
withdraw any information at any time. You are free to withdraw your consent at any time and
without explanation. Any personal information acquired about you will be discarded if consent is
withdrawn, and there will be no negative repercussions if you choose to withdraw consent.

Questions/structure
● Background

○ Experience with development?
○ Have the participants worked with app development towards APIs?
○ Have the participants had subjects/training to learn app development?

● What obstacles have they faced with learning and the documentation
● Ask participants to tell about their process:

○ How have you progressed?
○ What obstacles did you face?
○ How did you solve these obstacles?
○ What experiences have you made?
○ How was the learning process constructed for you to get started and understand more

about the project/DHIS?
■ Could anything have been changed to make things easier?
■ What types of learning material have been used?
■ Balance between theory and practice?

● Theoretical and practical learning at the same time? (e.g. project,
hand-ins)

● …or separated? (e.g. learn about programming and develop something
after)

● What do you consider to be an ideal amount of distribution of theory and
practice for learning?

○ What do you consider to be an ideal learning resource to learn
app development?

○ What do you consider to be an ideal way of learning about API
capabilities and usage? (encyclopedia vs. usage guide)

■ Are resources for practicalities that surround app development (ex. Learning how
to use supportive tools like Postgres) available to novice students?

○ Have there been instances where the API documentation is not clear on its capabilities?
■ If so, how have you overcome those situations?
■ Also, how do you attempt to learn more about what can be done with the API?

● Do you read more material about it?
● …or do you experiment through coding and seeing the results?

○ Have there been instances where you try methods from online forums/ classes that turn
out to be outdated or unsupported ways to achieve your goals?

■ Example: trying to change data format received from the API to something that is
mutable, but the method is unsupported in newer versions of the programming
language

○ How do you approach large data sets and their relations in order to receive the data you
want?

■ How do you learn about their relations?

○ What tools have been used?
■ Have these been simple to use? Why/why not?

● How could these have been improved?
■ Have the participants used the API Testing Tool?

● How did you use the tool?
● What worked well using this tool? (Some particular cases where it was

useful?)
● What was difficult/could be improved?
● How did it influence your understanding of how to use an API.
● How did it influence your knowledge of the dataModel/Api structure?

■ Have the participants used the DHIS2-documentation?
● How was this perceived?
● How was locating what the participants were looking for perceived?
● What were the biggest obstacles?
● How could the documentation have been changed to improve the

usability for the participants?

Conclusion
● Thank the participants for their participation
● Do the participants have anything more they would like to say?

	Introduction
	Problematization
	Knowledge gap
	Research question
	Thesis structure

	Background
	DEDICATED
	HISP
	Software platforms
	IN5320 - Development in Platform Ecosystems
	DHIS2
	API
	DHIS2 Web API
	API learning
	Guide vs. encyclopedia
	Simplicity and depth
	Examples of good API-documentation
	Twitter
	Dropbox
	GitHub

	Related literature
	Usability
	Learnability
	Learning software development
	API documentation

	Research method
	Methodology: Qualitative study
	Method
	Qualitative data collection
	Sample group

	Validity and reliability
	Validity
	Reliability

	Data collection
	Literature review
	Iteration 1
	Iteration 2

	Analysis
	Open coding
	Axial coding

	Findings
	Iteration 1
	Content
	Examples and use cases
	Level of expertise
	Balance simplicity and depth
	Step-by-step descriptions of the API in use
	Handling version updates
	User involvement

	Organizing
	Getting inspiration from other APIs
	One page vs. modularized sections
	Organizing the content

	Iteration summary

	Iteration 2
	Approaches to problem solving with DHIS2
	Exploring
	Use of documentation
	Other resources

	Obstacles and possible improvements to problem solving with DHIS2
	Content
	Organizing

	Iteration summary

	Discussion
	Content
	From documentation to practice
	User-group experience level
	Continuous documentation

	Organizing
	Layout and design of the documentation
	Categorization and organization of content

	Conclusion
	Research questions
	Recommendations for practice
	Contribution
	Further research
	Limitations

	References
	Appendix
	Interview guide - Iteration 1
	Interview guide - Iteration 2

