
Generation probability of immune
receptors and full sequence implanting

in adaptive immune receptor repertoires

Olav Nybø

Supervisors: Lonneke Scheffer (main supervisor), Milena
Pavlović, Geir Kjetil Sandve

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2023

Generation probability of immune
receptors and full sequence

implanting in adaptive immune
receptor repertoires

Olav Nybø

© 2023 Olav Nybø

Generation probability of immune receptors and full sequence implanting in adaptive
immune receptor repertoires

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

The adaptive immune system protects the body by remembering previously encountered
antigens, so it can react more efficiently when encountering the same antigen in the
future. The adaptive immune receptors, collectively called the adaptive immune receptor
repertoire, on T-cells and B-cells, play a key role when recognizing antigens. Analyzing
these immune repertoires gives us a deeper understanding of them and aids the
development of diagnostic technologies. The immune signal is the set of features in the
adaptive immune receptor repertoire that are associated with antigen binding or disease
status. Simulating these immune signals allows us to have precise control of the ground
truth of the immune signal when using the simulated data to assess machine learning
models. One approach to simulating immune signals is to assume it will take the form
of full sequences. Full sequence implanting simulates the effect of an immune event
on the immune repertoire dataset by implanting one or more sequences many times
into immune repertoires. Due to biases when generating immune receptors naturally,
they have very different probability of generation. This generation probability can be
computed. However, if a full sequence that is unlikely to be generated naturally is
implanted many times in a dataset, this could make it an easily detectable outlier. This
could produce unrealistic simulated data that can give false benchmarking results.

The full sequence implanting in immuneML, an open-source immune repertoire
machine learning platform, can produce generation probability outliers. This thesis
presents two implementations with different approaches to signal implanting strategy
solutions for this generation probability outlier-problem, that will extend the full
sequence simulation in immuneML. The distribution of how the generation probability
of sequences relate to how often the sequences appear were analyzed in synthetic and
experimental datasets to examine how the signal implanting strategies should behave
and what parameters should be controlled by the user. Finally, a method that can detect
candidates for these generation probability outliers was used to assess the new immune
signal implanting strategies.

The new signal implanting strategies both successfully showed that they could
implant the signal in such a way that the generation probability outlier-problem could
not reliably be exploited. The two strategies have different strengths and weaknesses,
and can both be used to simulate full sequence immune signals for different types of
machine learning models.

i

Acknowledgements

I would like to thank my supervisors, Lonneke Scheffer, Geir Kjetil Sandve and Milena
Pavlović, for an interesting thesis and for creating a good environment for me and the
other master students. I’m especially grateful for my main supervisor Lonneke, for our
weekly meetings, her constant availability on Slack and her very thorough feedback on
my writing.

I also want to thank someone whose love and support helped keep me sane during
these last few months.

Olav Nybø,
May 2023

ii

Contents

List of Figures vi

1 Introduction 1
1.1 The adaptive immune system . 1
1.2 The generation and variability of immune receptors 2
1.3 Analyzing AIRR datasets with machine learning 3
1.4 Simulation of immune signals . 5
1.5 Generation probability of immune receptor sequences 6

2 Problem statement and objectives 8

3 Methods 10
3.1 Tools . 10

3.1.1 immuneML . 10
3.1.2 OLGA . 10
3.1.3 vdjRec . 11
3.1.4 Python packages . 11

3.2 Datasets . 12
3.2.1 Previously published experimental data 12
3.2.2 Synthetic data . 12

3.3 Visualization of distribution between generation probability and sequence
occurrence rate . 12

3.4 Integration with the immuneML platform 14
3.4.1 Signal implanter . 14
3.4.2 Signal implanting strategy . 14
3.4.3 General implementation design choices 15

3.5 Designing novel signal implanting strategies 15
3.5.1 Naive full sequence implanting strategy 15
3.5.2 Mutated sequence implanting . 15
3.5.3 Decoy implanting . 20

iii

4 Results 22
4.1 Distribution of generation probabilities and count occurrences in AIRR

datasets . 22
4.1.1 Simulated data . 22
4.1.2 Experimental data . 23
4.1.3 Different datasets with rare and common implanted seeds 24

4.2 The effect of mutation on generation probability 26
4.2.1 One mutated position . 26
4.2.2 Two mutated positions . 28

4.3 Spotting Pgen outliers implanted in datasets using the new signal implant-
ing strategies . 30
4.3.1 Naive full sequence implanting . 31
4.3.2 Decoy implanting . 32
4.3.3 Mutated sequence implanting . 34

5 Discussion 39
5.1 Spotting Pgen outliers implanted in datasets using different signal implant-

ing strategies . 39
5.1.1 Naive full sequence implanting . 39
5.1.2 Decoy implanting . 40
5.1.3 Mutated sequence implanting . 41

5.2 Counting methods: count occurrences and clone occurrences 42
5.3 Effect of mutation on generation probability 42
5.4 Performance and implementation . 43
5.5 Generation probabilities in the datasets . 44

5.5.1 Pgen distribution of experimental and synthetic data 44
5.5.2 Sequences deemed impossible to generate 44
5.5.3 Range of generation probabilities in the datasets 45

6 Conclusion 46
6.1 Future work . 46

6.1.1 Pgen computation in large datasets 46
6.1.2 Future work for full sequence signal implanting strategies 47

Bibliography 51

A Documentation 52
A.1 Mutated Sequence Implanting . 52
A.2 Decoy Implanting . 55
A.3 Naive Implanting . 57
A.4 Sequence generation probability distribution 58

iv

B Tutorial 59
B.1 How to set up immuneML with the branch used in this thesis 59
B.2 How to simulate full sequence disease-associated signals in AIRR datasets

without creating exploitable outliers . 59
B.2.1 Generating a synthetic AIRR dataset with OLGA 60
B.2.2 Creating outliers by implanting immune signals naively 60
B.2.3 Analyzing the Pgen distribution for the dataset 61
B.2.4 Implanting decoy sequences along the immune signal to mask the

exploitable outliers . 62
B.2.5 Implanting mutated versions of the immune signal sequences to

avoid outliers . 64

v

List of Figures

1.1 Structure of adaptive immune receptors. The variable region is created
by a stochastic process called V(D)J-recombination. T-cell receptors have
2 chains, and B-cell receptors have 4 chains. The complementarity
determining regions (CDRs) are where these receptors bind to their specific
antigen. With courtesy: figure by Lonneke Scheffer [6], modified from:
Backhaus [7], and Calis and Rosenberg [8]. 2

1.2 Structure of AIRR data in immuneML. An AIRR dataset has a metadata file
that contains immune signal status for each AIRR. Positive signal status
means that the repertoire contains the specific immune signal that is in
interest for the task the AIRR data is used in. However, AIRRs with
negative signal status can also contain the patterns from the immune signal
by chance. AIRRs can contain many more feature columns, but CDR3,
V- and J-gene, and duplicate count (number of same clonotype in the
repertoire) are the most relevant for this thesis. 5

2.1 An implanted sequence could be easily spotted if it does not fall within
the distribution of the rest of the dataset. Example of common distribution
of Pgen (generation probability of a sequence) and number of count
occurrences (total number of duplicate for a certain sequence in the
dataset) per sequence in an AIRR dataset, and what an outlier implanted
sequence might look like. Abundant sequences in the dataset will almost
always have a high Pgen . Here, the implanted signal sequence is an outlier
because its count occurrence is too high compared to its Pgen 8

3.1 There are 2 ways to count sequence occurrences using sequence generation
probability distribution. 13

3.2 The mutated sequence implanting and decoy implanting classes imple-
ment the abstract signal implanting strategy-class. UML diagram showing
the relations of the old and new simulation classes in immuneML. Mutated
sequence implanting has a sequence dispenser for generating mutated se-
quences. 16

vi

3.3 The naive signal implanting strategy simply implants one or more full
sequences from the given immune signal into AIRRs, that are then marked
as being positive for that immune signal. 17

3.4 Mutated sequence signal implanting strategy implants mutated versions
of the full sequences from the given immune signal. To fit the Pgen

distribution in the dataset, the mutated sequences with low Pgen are
mutated only a few times, while high Pgen mutations can be implanted
many times (but might also only be implanted a few times). 18

3.5 To hide the Pgen outliers from the signal, randomly generated decoy
sequences are implanted in all AIRRs. If both signal positive (“sick”) and
signal negative (“healthy”) repertoires contain Pgen outliers, then the Pgen

outliers cannot be used as a way to classify repertoires. 20

4.1 Synthetic data Pgen distribution. 10 000 000 sequences generated with
OLGA, showing how each sequence’s generation probability relates to
how often the sequence occurs in the dataset. 23

4.2 Experimental data Pgen distribution. 10 000 000 sequences from Emerson
et al.[28], showing how each sequence’s generation probability relates to
how often the sequence occurs in the dataset. 24

4.3 Illustration of rare, semirare and common sequences implanted in exper-
imental (from Figure 4.2) and synthetic (from Figure 4.1) data. Experi-
mental data has been cropped on both axis to have the same ranges as the
synthetic data. The common sequence fits the distribution of both datasets.
Semirare is an outlier in synthetic data, but not in experimental. Rare is an
outlier in both datasets. 25

4.4 The effect of mutating different positions in three sequences generated
randomly with OLGA. Each position in the sequences were swapped with
each amino acid in the amino acid alphabet, meaning that these are all
possible mutations with hamming distance 1 from the seed sequence.
Mutated sequences with Pgen equal to 0 are not shown. 27

4.5 Mutating amino acids in 2 positions at a time in a sequence produces a
wide range of generation probabilities, but the majority of the generation
probabilities are lower than the original sequence and many are 0. The
horizontal line shows the generation probability for the original sequence. 29

4.6 Full sequence signal implanted with a naive implanting strategy in
experimental data. Showing the Pgen distribution compared to each
sequence’s count occurrence makes it possible to spot sequences with low
Pgen that are implanted many times. 32

vii

4.7 Naively implanted signal has low likelihood of occurring through V(D)J-
recombination compared to the rest of the experimental dataset. The y-axis
is the P-value that the clone occurrence pattern of a sequence is explained
by convergent recombination alone, and not due to clonal expansion or
high implanting rates. 33

4.8 Full sequence signal implanted alongside 1000 randomly generated decoy
sequences in experimental data. Showing the Pgen distribution compared
to each sequence’s count occurrence makes it possible to spot sequences
with low Pgen that are implanted many times. The decoy sequences are
implanted in both sick and healthy repertoires to attempt to “hide” the
outliers in the signal sequences that only appear in sick repertoires. 34

4.9 Count by clone occurrences: Full sequence signal implanted alongside
1000 randomly generated decoy sequences in experimental data. 35

4.10 Implanted signal has a low likelihood of occurring through V(D)J-
recombination compared to the rest of the experimental dataset. The
implanted decoy sequences have a large P-value range, where some
decoys have similar P-value to the signal sequences. The y-axis is the
P-value that the clone occurrence pattern of a sequence is explained by
convergent recombination alone, and not due to clonal expansion or high
implanting rates. 36

4.11 Mutated sequences from a signal seed implanted in experimental data.
Showing the Pgen distribution compared to each sequence’s count occur-
rence makes it possible to spot sequences with low Pgen that are implanted
many times. The mutated sequences are implanted to follow the distribu-
tion of the experimental data. 37

4.12 Mutations of the seed sequences from the immune signal have similar
likelihood of occurring naturally as the rest of the dataset. P-value is the
likelihood of each sequence occurring from V(D)J-recombination. 38

4.13 Mutations of the seed sequences from the immune signal have similar
likelihood of occurring naturally as the rest of the dataset. The y-axis is
the P-value that the clone occurrence pattern of a sequence is explained by
convergent recombination alone, and not due to clonal expansion or high
implanting rates. 38

viii

List of Abbreviations

Pgen Generation probability of immune receptor
BCR B-cell receptor
TCR T-cell receptor
AIR Adaptive immune receptor
AIRR Adaptive immune receptor repertoire
ML Machine learning

ix

Chapter 1

Introduction

1.1 The adaptive immune system

The adaptive immune system is a subsystem of the immune system that protects the
body from pathogens. After an encounter with an antigen, an immunological memory
is formed, which leads to a more effective response for future encounters with the same
antigen [1]. The adaptive immune system consists of two key lymphocytes, B-cells and
T-cells [2]. These have adaptive immune receptors (AIRs) which are used to recognize
antigens; B-cell receptors (BCRs) for B-cells and T-cell receptors (TCRs) for T-cells. These
receptors consist of 2 different protein chains made of sequences of amino acids: α and
β chains (or the less common γ and δ chains) for T-cells, and heavy and light chains
for B-cells [3] (Figure 1.1). An individual has many of these AIRs, collectively called
the AIR repertoire (AIRR), which record past and ongoing adaptive immune responses.
Sequencing allows AIRRs to be read at a DNA and amino acid level. The emergence of
high-throughput sequencing have allowed the generation of large AIRR datasets much
faster and cheaper than before, enabling greater AIRR analysis [4]. There are two major
T-cell subtypes: helper T-cells, that activate other cells to start the adaptive immune
system process, and cytotoxic T-cells, that recognize and destroy infected cells. B-cells
are activated by helper T-cells that match the same germs [5].

When the adaptive lymphocytes encounter and bind to an antigen, these cells are
activated and then multiply, where each new cell will inherit the antigen-specific immune
receptor sequence. This process is called clonal expansion. Some of these activated cells
will then mature to be used as long-term memory against antigen re-exposure, which
allows the immune system to react more efficiently after having already encountered
an antigen [1]. This creates an ever-evolving immune system that continuously adapt
throughout a person’s life according to their immune event history.

1

Figure 1.1: Structure of adaptive immune receptors. The variable region is created by a
stochastic process called V(D)J-recombination. T-cell receptors have 2 chains, and B-cell
receptors have 4 chains. The complementarity determining regions (CDRs) are where
these receptors bind to their specific antigen. With courtesy: figure by Lonneke Scheffer
[6], modified from: Backhaus [7], and Calis and Rosenberg [8].

1.2 The generation and variability of immune receptors

An individual human repertoire maintains ∼108–1010 distinct AIRs of each type [9, 10].
A highly diverse range of AIRs play a vital role in an immune system with efficient
control of a wide breadth of pathogens [9, 11]. The diversity of immune receptors is
largely due to the stochastic process called V(D)J recombination. The immune receptors
are created using the gene segments variable (V), diversity (D), joining (J) and constant
(C) [12]. There exists multiple different versions of these gene segments in the germline
DNA. Only the TCR β and BCR heavy chains contain a D segment [13], making them
more variable than the other chains. For this reason, often TCR β and BCR heavy chains
are chosen over the other chains in sequencing studies that use single chained data. This
small set of genes that encode AIRs can produce 1015-1020 possible sequences [9, 10]. First,
the D and J gene segments are joined together, which is then joined with the V gene. The
resulting sequence, along with the C gene, is the resulting DNA sequence of the adaptive
immune receptor. Random insertions and deletions are formed in the junctions when the
genes are spliced together, resulting in high diversity in the junctional regions [11, 14].
Another source of diversity comes from the pairing between the immune receptor chains
(TCR α and β, BCR heavy and light) [11].

The binding site on immune receptors consists of six complementarity determining
regions (CDRs). These are hypervariable regions located on the V region of each chain.
There are three CDRs in each immune receptor’s chain: CDR1, CDR2 and CDR3. CDR3 is
the key determinant for antigen recognition, as it has by far the most sequence diversity

2

of the CDRs [15]. The diversity of the CDR3 region is due to multiple separate factors.
CDR1 and CDR2 regions are encoded just on the V region, but CDR3 straddles the V(D)J
junction, leaving it more stochastic and variable [9]. It contains some of the V- and J-gene
segments and, in the TCR β and BCR heavy chains, all the D-gene segment. The CDR3
region is also quite short, only about 15 amino acids long, making it effective for storage
and computational reasons. CDR3 binds more, a majority of the amino acids that are
in close contact with the antigen are located within the CDR3 [2, 15]. For these reasons,
CDR3 is of most interest for sequencing studies [2].

1.3 Analyzing AIRR datasets with machine learning

The immune signal (or just signal for brevity) is the set of AIRR features that are
associated with antigen binding or disease status [16]. It is not known what this signal
will look like, but here we will assume that immune signals could take the form of
sequence patterns. There is little consensus on whether the signal takes the form of full
CDR3 sequences or shorter sub-sequences [17]. For a specific antigen, these relevant
signal patterns can occur in a very small portion of the AIR sequences, and may be
as rare as one antigen-binding AIR per million lymphocytes in a repertoire [16]. This
makes machine learning (ML) the ideal approach for classification of high-complexity
AIRR datasets [18]. Machine learning is a field that uses algorithms that are able to
learn discriminating patterns in large datasets. ML models train on data and use this
experience to generalize to new similar data. An ML model can for example be trained
with AIRR data where the disease status for each repertoire is known, and then classify
new unlabeled repertoires as either sick or healthy. Classification means that the model
categorizes the input into classes. The data used for creating a machine learning model
is split into three parts: training data, validation data and testing data. First, the training
data is used to fit the parameters of the model. The parameters of a model are the
internal weights that are estimated when learning from the data. Then, the validation
data is used to tune the hyperparameters of the model. The hyperparameters are tunable
variables that change the behavior of the model and are not affected by training the
model. This process is often repeated multiple times to test different hyperparameters.
The same fixed data splits can be used each iteration, or one can use cross-validation,
where different portions of the dataset are used each time. Finally, the test data is used to
give an unbiased assessment of the model.

immuneML is an open-source, collaborative software ecosystem that implements
each step of the AIRR ML process [18]. The main immuneML applications are sequence-
and repertoire-based classification. Sequence-based classification is classification with
respect to sequence-level labels, most commonly antigen specificity, but one could also
learn other properties such as the extent to which the receptor sequence is observed in
multiple individuals [16]. Repertoire-based classification focuses mostly on prediction
of donor’s immune status (such as having or not having a disease, or past exposure to

3

specific antigen) [16]. The main applications of these classification types are therapeutics
discovery and immunodiagnostics respectively[16, 18]. For this thesis, only repertoire-
based classification, as our focus is on distributions of sequences within repertoires.

The data typically used in AIRR ML is a huge oversimplification of biology. Immune
receptors are in reality very complex 3D structures, but, for our ML purposes, we may
only be interested in parts of this information. Often it may only be necessary to have the
CDR3, ignoring TCRα and BCR light chains, and the V- and J-genes. The AIRR data that
is relevant for this thesis is illustrated in Figure 1.2. The D-gene is fully present within
the CDR3 sequence, but is often not explicitly annotated, as it is difficult to acquire from
the sequence. The D-gene segment is often quite short and deformed on both ends by the
random insertions and deletions in the junctions.

The count of each clonotype is affected by the type of sequencing. In this thesis, we
will define a clonotype as all identical CDR3 with the same V-, D and J-genes. When
sequencing individual cells (single-cell sequencing), the clonotypes can be counted as
the number of cells with the same clonotype. Bulk-sequencing reads a population of cells,
instead of sequencing cells individually [19]. In bulk-sequencing, the clonotype counts
are the total number of specific clonotype reads in the sequenced cell population. This
read count can be assumed to be approximately proportionate to cell count. However,
bulk-sequencing is error-prone and only allow single chains to be sequenced; often only
TCR β and BCR heavy, as these are the most variable. Two cells could have the exact
same clonotype in one chain, but be completely different in the other chain. Sequencing
only one chain means this information is lost [20]. While single-cell sequencing is more
accurate, bulk-sequencing is much cheaper and more high-throughput, and is often
adequate for large AIRR data. The distribution for sequence counts follow a heavy-tailed
distribution, meaning that there is a large number of low-abundant clonotypes and some
high-abundant clonotypes [21]. Some have suggested that the clonotype count in AIRRs
follow a power-law distribution [21].

In this thesis, we separate between two ways of counting clonotypes in a dataset:
count occurrences and clone occurrences. Count occurrences sum how many times the
clonotype appears in each repertoire, and clone occurrences simply count how many
repertoires the clonotype appears in. An illustrated practical example of these counting
methods can be found in Figure 3.1 in section 3.3. These counting methods can produce
different sequence frequency distribution behavior. A clonotype that appears in few
repertoires, but has a very high duplicate count within these repertoires will likely have
a high count occurrence, but a low clone occurrence. Counting clone occurrences can
be useful when shared clonotypes between repertoires is of interest. Counting count
occurrences could be useful for spotting high-abundant sequences that occur in few
repertoires.

4

Figure 1.2: Structure of AIRR data in immuneML. An AIRR dataset has a metadata file
that contains immune signal status for each AIRR. Positive signal status means that the
repertoire contains the specific immune signal that is in interest for the task the AIRR
data is used in. However, AIRRs with negative signal status can also contain the patterns
from the immune signal by chance. AIRRs can contain many more feature columns, but
CDR3, V- and J-gene, and duplicate count (number of same clonotype in the repertoire)
are the most relevant for this thesis.

1.4 Simulation of immune signals

Machine learning models vary greatly in performance, and therefore it is necessary to
assess these models to provide a reference benchmark for novel models and provides
realistic expectations of their performance. Large and varied benchmarking datasets
are needed to assess these models, but there is a very limited amount of such datasets
with adequate size [22]. An even bigger challenge is that signals occur chaotically
and there is little understanding regarding their distribution, shape, size, or diversity
[16]. An approach to solve these issues is to use simulated datasets, which include
known ground-truth simulated disease signals [17]. Some argue that simulated and
experimental data should be considered complementary and of equal importance for
method assessment [22]. AIRR data immune signal simulation allows the ground truth
immune signal to be known [22]. This means that we can be clear about our assumptions
of the immune signal, e.g., whether the signal is a k-mer (sequence substring of length
k) or a full sequence, as well as the occurrence rate of the signal. Knowing the ground
truth in simulated data also allows testing whether the ML model has actually learned
the implanted signal, for example by checking if the signal matches the sequences or k-
mers that the model deem impactful. Recovery of a ground truth signal is an important
method for testing whether the models are learning the intended signal pattern or some
other unexpected pattern that coincidentally line up better with the provided data. One
can simulate datasets with different assumptions of the immune signal, and compare
ML models under these different conditions. This could give a better understanding for
which models will work for what type of signal. In the future, we could have a better
idea of what a realistic immune signal will look like. Knowing what models work under
different assumptions will make us more prepared for this eventuality.

5

It is worth noting that it is not a problem if the machine learning model learns
an unexpected pattern that does not 100% correspond to the immune signal, if it just
unexpectedly lines up better. An example of this not being a problem could be if a k-
mer that is deemed important by the model lines up with multiple different immune
signals. However, it may be a problem if there is an unwanted and completely separate
factor that influence the data. Confounders are variables that causally affect the cause
and effect variables (in AIRR ML, these variables would be immune state and AIRR). It
has been shown that age, sex, and genetic background may act as confounders in AIRR
data [23]. Age has been found to be a confounder in Type 1 Diabetes (T1D) data [24]. For
predictive purposes, confounders are not always an issue if the confounder distribution
does not change from source to target population. This means that similar performance
is expected if confounder distribution remains the same in the training and test data [23].

immuneSIM [25] and immuneML [18] are both programs that allow the simulation of
immune signals by implanting k-mer motifs. immuneML can also implant full sequences.
Programs like OLGA [14] and IGoR [26] can be used to simulate immune receptors that
fit the distribution of how they are generated through V(D)J-recombination. These can be
used to form synthetic AIRRs that follow a realistic immune receptor distribution. The
synthetic AIRRs will be like naive AIRRs that has not gone through any immune events.

1.5 Generation probability of immune receptor sequences

Though V(D)J-recombination is a stochastic process, it has been observed that due to
biases in the process, that some clonotypes are created more often than others [9]. These
biases are believed to occur due to convergent recombination, meaning that the same
nucleotide sequence can be produced by multiple recombination events [9]. Multiple
events leading to the same outcome means a higher probability that certain clonotypes
are generated through V(D)J-recombination. The existence of large AIRR datasets
generated from high-throughput sequencing has allowed the development of algorithms
[14, 26, 27] that can infer the generation probabilities of clonotypes (hereafter referred
to as Pgen or generation probability). V(D)J-recombination involves multiple events that
all have a set of possible outcomes. These events mostly consist of the selection of V-
, D- and J-gene templates, the stochastic number of deletions at each end of the gene
segments, and the random inserted sequences in the junctions of the gene segments
[14]. The same nucleotide sequence can be produced by more than one recombination
event. The Pgen of a nucleotide sequence is therefore defined as the sum of all possible
recombination events that produce that specific sequence. Since multiple codons (set of
three nucleotides) can encode the same amino acid, the Pgen of an amino acid sequence is
the sum of all the generation probabilities of the nucleotide sequences that translate into
that amino acid sequence [14]. Due to the diversity of immune receptors, the Pgen of a
typical clonotype is generally quite low and can range from about 10−60 to 10−5 [14]. It is
also possible for sequences to have a predicted Pgen equal to 0, meaning that the immune

6

receptor sequence is deemed to be impossible to generate through V(D)J-recombination
(the reasons for sequences with Pgen equal to 0 appearing in actual experimental data are
further discussed in section 5.5).

Comparing repertoires has shown that there are many shared TCR β clonotypes
between repertoires. Pogorelyy et al. (2018) [27] describes multiple reasons for this. The
two most important are: (1) There are many shared clonotypes due to some clonotypes
having a much higher chance of generation through V(D)J-recombination (convergent
recombination). (2) There are many shared clonotypes due to receptors encountering
the same antigen, thus experiencing clonal expansion that spreads the same (or a
similar) clonotype (convergent selection). The paper reasons that convergently selected
clonotypes should generally have a lower generation probability than convergently
recombined clonotypes. This reasoning is the basis for vdjRec[27], a method which
attempts to identify likely candidate sequences that have many shared clonotypes due to
convergent selection, thus finding possible sequences containing the immune signal. The
program identifies these sequences by looking at the correlation between each sequence’s
generation probability and the number of repertoires the clonotype appears in.

7

Chapter 2

Problem statement and objectives

Figure 2.1: An implanted sequence could be easily spotted if it does not fall within
the distribution of the rest of the dataset. Example of common distribution of Pgen
(generation probability of a sequence) and number of count occurrences (total number
of duplicate for a certain sequence in the dataset) per sequence in an AIRR dataset, and
what an outlier implanted sequence might look like. Abundant sequences in the dataset
will almost always have a high Pgen . Here, the implanted signal sequence is an outlier
because its count occurrence is too high compared to its Pgen .

Simulating immune signals by implanting full sequences without a very high
generation probability will often produce outliers that can be detected and exploited by
the strategy used in programs like vdjRec. See Figure 2.1 for a visualization of what such
an outlier might look like. Notice that even though there are sequences that appear more
often than the implanted signal sequence, its low generation probability still leaves it very
noticeable. For ML models to pick up on the pattern from the signal it must be implanted
multiple times, which even with a very low implanting rate, will in all probability make
the seed sequences from the signal appear noticeably more often than sequences with
similar generation probability if the seed sequences do not have very high generation

8

probability.
Benchmarking is the process of comparing tools and identifying the best-performing

machine learning methods. If such simulated data is used to benchmark methods
that use the same strategy as vdjRec, or a similar strategy, for example, based on
sequence abundance and generation probability, this could give incorrect assessment
of such methods. A machine learning model exploiting the Pgen outlier-problem could
outperform other models when benchmarking with the simulated data, but could have
much worse performance when classifying data from experimental samples. This is
because simulated data with Pgen outlier-problem is a way in which the data is not like
natural data. Natural data has clonotypes that are convergently selected, which can be
called Pgen outliers, but these outliers are much less noticeable and exploitable than the
simulated outliers can be. This is the reason vdjRec can only gather potential candidates
that might be outliers due to clonal expansion. The outliers will still somewhat follow
the Pgen to count occurrence distribution that the rest of the dataset follows. In natural
data, there can be many more sequences that are convergently selected for other antigen
that surround the specific antigen binding signal we are after.

This thesis presents two different implementations for full sequence signal implanting
strategies that attempt to simulate immune signals that do not produce Pgen outliers
in a way that programs like vdjRec can exploit. Both of the novel signal implanting
strategies are implemented within the immuneML framework. immuneML already has
an implementation for full sequence signal implanting, but this existing implementation
does not attempt to solve this Pgen outlier problem. The new methods will extend this
full sequence implanting. immuneML also has immune signal simulation based on k-
mer implanting. These can both be used to test ML-models under different assumptions
of how the immune signal will appear.

This thesis aims to: (1) illustrate how naive full sequence implanting strategies can
create Pgen outliers and how this problem could be “exploited” by repertoire based
ML models, (2) visualize the distribution of Pgen to count occurrences in different
datasets, with and without implanted full sequence immune signals, (3) present two
implementations of signal implanting strategies that will attempt to solve this Pgen outlier
problem, (4) show that implanted sequences in the new signal implanting strategies can
not be “found” by vdjRec.

9

Chapter 3

Methods

3.1 Tools

3.1.1 immuneML

immuneML (GitHub: https://github.com/uio-bmi/immuneML) is an extensible, open-
source software ecosystem that implements each step of the AIRR machine learning
process. It is accessible as a downloadable command line-tool, a Python package
and as an internet application through a Galaxy web interface, and has an extensive
documentation and tutorials both for users and developers [18]. Both signal implanting
strategies and most of the tools implemented for this thesis were implemented withing or
using the immuneML framework. The immuneML code library, as well as its additions
presented in this thesis, are written in Python.

YAML-specification

When running immuneML as a command line-tool, the user specifies the wanted
instructions and definitions using a YAML-file (examples can be found in Appendix
A and B). YAML is a human-readable data-serialization language. The immuneML
YAML-file is divided into two sections: definitions, where the user specifies analysis
components, such as what dataset to use, signals to implant and what reports to use, and
instructions, where the user specifies what kind of workflow to perform with the given
analysis components. The types of instructions most relevant to this thesis are Simulation
(implanting synthetic signals), ExploratoryAnalysis (analyzing datasets using encodings
and reports) and TrainMLModel (training and estimating performance).

3.1.2 OLGA

OLGA (Optimized Likelihood estimate of immunoGlobulin Amino-acid sequences)
[14] (GitHub: https://github.com/statbiophys/OLGA) uses dynamic programming to
efficiently calculate the probability of generating a given clonotype. It was built to be
a faster alternative to IGoR (Inference and Generation Of Repertoires) [26]. IGoR can

10

https://github.com/uio-bmi/immuneML
https://github.com/statbiophys/OLGA

only work with nucleotide sequences, while OLGA can work with both nucleotide and
amino acid sequences. OLGA has default generative models of V(D)J-recombination
for human T-cell alpha and beta, human B-cell heavy, and mouse T-cell beta, but users
can also set their own custom VJ and V(D)J models. These models can also be used
to generate immune receptor sequences. The program can be accessed through simple
command line console scripts provided by OLGA or be imported as Python modules that
can be incorporated in the user’s own pipeline. All Pgen in this thesis are computed using
OLGA. OLGA can compute the Pgen of both nucleotide and amino acid sequences, and
can compute Pgen based on specific V- and J-genes.

Dynamic programming is a programming practice that involves splitting complex
main problems up into multiple smaller sub-problems that are solved only once, but
the answers are can be used multiple times. As mentioned in Section 1.5, the Pgen of
a sequence is defined as all the sum of all the generative events that that can produce
that sequence. These generative events consist of gene template selection (the random
selection of V-, D- and J-genes) and the random insertions and deletions that occur in the
VD and DJ junctions [14]. OLGA splits these into five segments (V, insertion segment,
D, insertion segment, and J), and sums over the probabilities of all possible nucleotide
sequences that are consistent with the given amino acid sequence, as well as the locations
over the boundaries between each segment and the V-, D- and J-gene choices. These
combinations of events are all collected in a matrix where the accumulative generation
probability of an amino acid sequence is computed.

3.1.3 vdjRec

vdjRec[27] (GitHub: https://github.com/pogorely/vdjRec/ (this thesis uses version 0.1)) is
a program that can find candidates for Pgen outliers using the Pgen outlier-exploit. The
method was created to identify clonotypes that are likely to have high count occurrence
due to selection from their response to a shared antigen, and not due to being likely to
generate from V(D)J-recombination. vdjRec relies on the hypothesis that convergently
selected clonotypes will generally have a lower Pgen than convergently recombined
clonotypes. The method computes the likelihood of a sequence being overrepresented
in a dataset compared to its Pgen , correcting for different repertoire sizes.

vdjRec uses a differently formatted files than the AIRR files used in immuneML.
These files are exported when running the sequence generation probability distribution-
data report.

3.1.4 Python packages

The implementations presented in this thesis are extensions of the immuneML frame-
work. These were implemented on a branch (GitHub: https://github.com/uio-bmi/
immuneML/tree/pgen_simulation) that was branched from the main immuneML branch
with version 2.2.2. OLGA with version 1.2.4 was used in this thesis. All plots were cre-

11

https://github.com/pogorely/vdjRec/
https://github.com/uio-bmi/immuneML/tree/pgen_simulation
https://github.com/uio-bmi/immuneML/tree/pgen_simulation

ated using plotly, and the parallelization of the Pgen computation was done using the
multiprocessing package.

3.2 Datasets

3.2.1 Previously published experimental data

The main dataset used in this thesis is an experimental dataset from Emerson et al.[28].
Here, experimental data means actual biological data that have been derived from
blood samples. The dataset contains 666 TCR beta sequence repertoires from humans
with known cytomegalovirus serostatus. It was pre-processed by dropping all rows
with missing values for the amino acid sequence and VJ-genes, as these are needed
for computation of generation probability. Finally, 100 repertoires were then selected
randomly and subsampled down to 100 000 sequences each to form the dataset used in
this thesis. This leaves us with a total of 10 000 000 sequences between all 100 repertoires
used. It would not be feasible to use the whole dataset because the computation of
generation probability is quite resource-intensive and would take a very long time. This
dataset will hereafter be referred to as the Emerson dataset or the experimental dataset.

3.2.2 Synthetic data

OLGA was used to generate a dataset to observe the behavior of a naive repertoire
dataset, meaning a dataset that has not gone through any clonal expansion and is thus
directly as if generated from V(D)J-recombination. This synthetic dataset (also referred
to as OLGA dataset or simulated dataset) consists of 10 000 000 (100 AIRRs with 100 000
sequences each) human TCR beta sequences (the humanTRB generative model).

3.3 Visualization of distribution between generation probabil-
ity and sequence occurrence rate

To observe how the distribution between generation probability and clonotype count
occurrences, an immuneML data report was created. Data reports are a type of report that
can be run within the exploratory analysis environment of immuneML, and shows some
statistic or feature within a given dataset. This data report, called sequence generation
probability distribution, takes an AIRR dataset, counts each clonotype, computes their
Pgen , and visualizes the Pgen distribution for each clonotype count (or clone) occurrence.
The non-implanted dataset sequences are displayed with violin plots and a line plot
showing the lowest Pgen for each count occurrence column. This visualizes the space
that an implanted signal sequence can be in without becoming an outlier. Implanted
signal sequences are displayed as dots, so one can more easily see which sequences are
implanted and if they are outliers.

12

Figure 3.1: There are 2 ways to count sequence occurrences using sequence generation
probability distribution.

The computation of generation probability with OLGA can be very resource-intensive
and time-consuming for larger datasets. The process was therefore parallelized using
Python’s multiprocessing-package. This was done by simply splitting the dataset evenly
by a user specified number of processes, and applying the computation method in
parallel to each part before concatenating the dataset parts after completion. Computing
the Pgen of 100 000 sequences with 4 processes (on a computer with 4 cores), this
parallelization achieved a speedup close to 4 (specifically for the Pgen computation-
section).

The time complexity of the Pgen computation (as well as most other methods in this
class) scales linearly. This means that it will in theory take about 10 times longer when
using a dataset that is 10 times larger.

There are three input parameter unique to the Sequence Generation Probability data
report: (1) count_by_repertoire: the user specifies whether to count sequences by count
occurrences or clone occurrences (see Figure 3.1). (2) mark_implanted_labels: whether to
mark the implanted signal sequence in a different color. (3) default_sequence_label: the

13

name of the non-signal sequences in the plot legend (only if mark_implanted_labels is
enabled).

Because the generation probability computation can be very time-consuming, every
analysis in this thesis that requires Pgen computation of the whole dataset is done using
sequence generation probability distribution. This means that, if a user needs a dataset
with Pgen computed for more than one use, they only need to compute the Pgen once. The
process for this data report is done in a series of steps, where the dataset is formatted
as a pandas dataframe that is passed through a series of methods. This process is
as follows: (1) load the dataset, which involves marking which (if any) sequences
belong to which signal. (2) Count the sequences, either by count occurrences or clone
occurrences. (3) Parallelized computation of the Pgen of the set of all clonotypes. (4) Plot
the Pgen distribution. (5) Generate the occurrence limit Pgen range (for mutated sequence
implanting). (6) Create tables used by vdjRec, which are formatted differently than the
AIRRs used by immuneML. There are separate tables from samples (repertoires) and
sequences. (7) Export plot, dataset with Pgen , occurrence limit Pgen range and vdjRec
tables.

3.4 Integration with the immuneML platform

3.4.1 Signal implanter

The class signal implanter in immuneML handles going through AIRRs and “activating”
each signal, so they are implanted into the correct AIRRs. Only the “diseased” AIRRs are
handled, and immuneML exports an AIRR immediately after implanting the signal. This
implementation complicated communicating information between different repertoires
while implanting, which required extending the signal implanter-class with different
solutions (further explained in Sections 3.5.2 and 3.5.3).

3.4.2 Signal implanting strategy

Signal implanting strategy is an abstract class that the signal implanting strategies classes
described in this thesis will implement the repertoire-based implanting features of. All
signals in immuneML must have a signal implanting strategy to control how the signal
gets implanted.

Signal implanting strategy is given a dataset implanting rate and a repertoire
implanting rate. These are both values between 0 and 1. The dataset implanting rate
is how many repertoires to implant the sequence into. For example, for a dataset with 10
repertoires, a signal with dataset implanting rate 0.4 will be implanted in 4 repertoires.
The repertoire implanting rate specifies how many times to implant the signal in a
repertoire. For example, for a repertoire with 100 000 sequences, a signal with repertoire
implanting rate 0.001 will be implanted 100 times in the repertoire. A signal can also be a
set of multiple sequences. The implanting rates do not apply to each individual sequence,

14

but the set as a whole. So for a repertoire with 100 000 sequences, a signal with multiple
sequences and repertoire implanting rate 0.001, the set of sequences will be implanted
100 times in total in the repertoire.

3.4.3 General implementation design choices

The user can control whether the implanted sequences overwrite some sequences in the
repertoires or to append the new sequences. Overwriting means the repertoire size stays
the same. The repertoires that are being overwritten will be shuffled before implanting.
Overwriting the last sequences without shuffling could be a problem if, for example, the
sequences in the repertoires are sorted or there is already an implanted signal that is only
at the end of the repertoires. In this thesis, all implanted sequences are appended to
repertoires, to avoid distorting the distribution of the dataset.

The new classes’ key features and methods are all unit tested. This allows for a
simple, quick way to test that these methods behave as intended using small datasets
with controlled components. Unit testing is also very useful for the future maintainability
of these classes. Elaborate more on this

In immuneML, the setting for which part of the sequence to import (region type) is set
to IMGT_CDR3 by default. This removes the first and last amino acids when importing
sequences, as these are very conserved positions (often with the amino acids “C” for the
first and “F” for the last position). OLGA needs these conserved positions to compute
Pgen , so the new implanting strategies and the new data report needs them as well.
Therefore, the region type IMGT_JUNCTION, which preserves the full sequence, must
be used for these new implementations.

3.5 Designing novel signal implanting strategies

Two different ideas for how to solve the Pgen outlier-problem were implemented. See
Figure 3.2 to see how these new classes fit into the existing simulation class structure of
immuneML.

3.5.1 Naive full sequence implanting strategy

In this thesis, naive signal implanting means implanting full sequences without trying
to account for the signal sequences becoming outliers. Figure 3.3 shows how naive full
sequence implanting works. The signal is simply implanted according to the specified
implanting rate in the “sick” repertoires.

3.5.2 Mutated sequence implanting

The idea behind mutated sequence implanting (Figure 3.2) is to split the seed sequences
into similar sequences and implant them an appropriate amount of times for their Pgen

15

Figure 3.2: The mutated sequence implanting and decoy implanting classes implement
the abstract signal implanting strategy-class. UML diagram showing the relations of
the old and new simulation classes in immuneML. Mutated sequence implanting has
a sequence dispenser for generating mutated sequences.

, thus preserving the signal while also making it adhere to the dataset’s distribution.
Here, seed sequences are the sequences given by the user that will be used as bases
for mutation. These similar sequences are produced by mutating the original seed
sequence(s), i.e., replacing one or more amino acids in the seed with different amino
acids. For each time a signal sequence should be implanted, a mutated sequence is
generated. The mutated sequences keep the properties such as V- and J-genes from the
seed clonotype. The generation probability of the mutated sequence is computed, and
the sequence gets assigned a limit to how many times it can get implanted in the dataset.

Since the main focus with this idea is to not let each mutated sequence be implanted
too many times, so that it becomes an outlier, it was important to find a way to control
how many times each generated mutated sequence has been implanted. This required
communicating between different repertoires while implanting the signal, which as
previously mentioned was made complicated by how the signal implanter-class handles
the AIRRs. To solve this, a class called sequence dispenser was implemented (Figure
3.2). The sequence dispenser is shared among all repertoires, and given a set of sequence
seeds, generates a random mutated sequence to implant and assigns a limit to how often
it can be implanted according to its Pgen.

When mutated sequence implanting needs a sequence to implant, a seed sequence is
selected and mutated according to the user’s preference. The program then checks if this

16

Figure 3.3: The naive signal implanting strategy simply implants one or more full
sequences from the given immune signal into AIRRs, that are then marked as being
positive for that immune signal.

17

Figure 3.4: Mutated sequence signal implanting strategy implants mutated versions of
the full sequences from the given immune signal. To fit the Pgen distribution in the
dataset, the mutated sequences with low Pgen are mutated only a few times, while high
Pgen mutations can be implanted many times (but might also only be implanted a few
times).

18

mutated sequence is legal, meaning that it has not been implanted too many times or that
the Pgen is 0 (meaning it would be impossible to generate through VDJ-recombination).
If the mutated sequence is not legal, the class generates another one using the same
seed sequence. If this loop does not find a legal mutated sequence to implant after
a set number of attempts (which would ideally cover all possible mutations, but for
performance reasons, the current implementation uses 200 max mutation attempts), the
seed sequence is removed from the selection pool and tries the same procedure with the
next seed sequence. If no seed sequences remain, the simulation is terminated and tells
the user that no mutations were found for the given signal seed sequences.

Different datasets may have different Pgen and count occurrence-distributions.
To control that the mutated sequences are implanted according to each dataset’s
distribution, the user can input the maximum count occurrence for Pgen ranges in the
dataset. This occurrence limit Pgen range can be computed by running the sequence
generation probability distribution-report. When a new mutated sequence is generated,
this range decides the limit for how many times the mutated sequence can be implanted
based on its Pgen . The occurrence limit Pgen range could for example look like:

occurrence_limit_pgen_range:

1e-10: 2

1e-8: 3

1e-7: 4

1e-6: 6

Here, mutated sequences with Pgen less than 1e-10 can only be implanted once. If the
mutated sequence’s Pgen is greater than 1e-10, then the max limit belonging to the Pgen

value closest to the mutated sequence’s Pgen is used. The count occurrence limit here is
then drawn randomly from any integer between 2 and the max limit, inclusive. Using the
occurrence limit Pgen range example above, sequences with Pgen closest to 1e-7 (such as
e.g., 9e-8), will be assigned the limit 4. This actual max occurrence limit for this sequence
will therefore be 2, 3 or 4. It is necessary to draw a random max limit instead of always
using the exact max limit in case multiple mutated sequences draw the same very specific
high limit. For example, if the max count occurrence limit for Pgen = 1e-6 is 50 instead of
6, there could be multiple mutated sequences that could be implanted exactly 50 times.
This could create an artifact that ML models could possibly exploit instead of learning
the intended signal pattern.

To make sure the duplicate count of a sequence is realistic compared to the rest of
the duplicate counts (the number of duplicates for a clonotype within a repertoire) in the
repertoire, rather than choosing an already existing duplicate count from the repertoire
directly, the duplicate count of each mutated sequence is randomly chosen from a
Gaussian distribution. The mean of the distribution is a randomly chosen duplicate
count from the repertoire, and the standard deviation is half of the mean. This is to
avoid multiple sequences having the exact same, very unusual, duplicate count. The

19

Figure 3.5: To hide the Pgen outliers from the signal, randomly generated decoy sequences
are implanted in all AIRRs. If both signal positive (“sick”) and signal negative (“healthy”)
repertoires contain Pgen outliers, then the Pgen outliers cannot be used as a way to classify
repertoires.

duplicate count also takes into account the occurrence limit and does not implant more
than is allowed.

The user can specify the mutation hamming distance, meaning how many positions
to change the amino acid in the seed sequence when generating mutations. Hamming
distance is the number of differences between two strings of the same length. The
positions to mutate are picked randomly and could therefore be the same, meaning the
real hamming distance between the seed and the mutated sequences has a chance to be
lower in practice than the given mutation hamming distance. The amino acids to swap
the positions to are also picked randomly from the amino acid alphabet, meaning they
could be the same as the one already in the position.

Due to the V and J genes being more conserved than the D gene, mutating the
middle of a sequence generally give much higher Pgen than mutating the start or end of
a sequence (see Section 4.2). For this reason, the user decides what positions in the seed
sequence can be mutated and how high the possibility of mutating different positions
are. For example, if mutation position possibilities given is {4: 0.3, 5: 0.4, 6: 0.3}, then
the only positions with index 4-6 can be mutated and there is a slightly higher chance of
mutating position 5.

3.5.3 Decoy implanting

Decoy implanting (Figure 3.2) implants outliers in all repertoires, effectively masking
the outliers produced by the signal. If both diseased and healthy repertoires have Pgen

outliers, the ML model cannot exploit the outlier artifact to predict disease status.
The signal implanter-class only handles the AIRRs that will be introduced to the

immune signal. Decoy sequences are implanted in both “sick” and “healthy” AIRRs.

20

This required altering the signal implanter-class, so it could handle all repertoires.
The user is given the option of how many decoys to generate, as well as the dataset

implanting rate and repertoire implanting rate for each decoy. The same implanting rates
are used for all decoys. These implanting rate options are the same as what the user must
input when implanting the signal, so the decoy implanting rates default to being the same
as the signal’s implanting rates. To avoid all the decoys being implanted exactly the same
amount, the program includes some randomization in the process. The duplicate count
within each repertoire is chosen randomly from a Gaussian distribution, where the mean
is equal to repertoire implanting rate times the repertoire size. The dataset implanting
rate is used as the chance that a decoy will be implanted in the current repertoire.

The decoy sequences are generated using OLGA’s generative model that uses the
default model (organism, receptor type and chain type) that is inferred from the dataset.

21

Chapter 4

Results

4.1 Distribution of generation probabilities and count occur-
rences in AIRR datasets

A series of experiments were made to observe how generation probability compares to
how often sequences occur in an AIRR dataset. The data report Sequence Generation
Probability Distribution (described in Section 3.3) was used to visualize the distribution
in synthetic and experimental data.

4.1.1 Simulated data

In Figure 4.1 we see the distribution of how often each sequence appears in simulated
data compared to how high each sequence’s Pgen is. This dataset is generated based
on V(D)J-recombination statistics, and is therefore expected to be like an AIRR dataset
that has never encountered an antigen, thus never experiencing clonal expansion. The
figure shows a clear trend in the distribution, where sequences that appear more often
in the dataset generally have a very high Pgen . This effect is stronger, meaning that the
lowest Pgen is higher, for sequences with higher count occurrences. The majority of the
sequences only appear once in the dataset. About 90 percent of the simulated sequences
only appear once or twice in the whole dataset.

Counting clonotypes based on their count occurrences (Figure 4.1a) and their clone
occurrences (Figure 4.1b) seem to both follow a similar heavy-tailed distribution.
However, counting by clone occurrences seem to lead to a smoother and less noisy
distribution.

22

Pgen distribution of simulated data

(a) Count sequences by count occurrences (sum of a sequence’s count from all repertoires)

(b) Count by clone occurrences (number of repertoires where the sequence appears)

Figure 4.1: Synthetic data Pgen distribution. 10 000 000 sequences generated with OLGA,
showing how each sequence’s generation probability relates to how often the sequence
occurs in the dataset.

4.1.2 Experimental data

Figure 4.2 shows the distribution of how often each sequence appears in experimental
data and how high each sequence’s Pgen is. Similarly to the simulated data, the plots
seem to follow a heavy-tailed distribution, i.e., most of the sequences appear once or
twice and sequences that appear more often generally having a high Pgen . However, the
distribution is generally less smooth and have more outliers than the simulated data Pgen

distribution. About 60% of the clonotypes in the experimental data only appear once or
twice in the entire dataset. Counting by count occurrences (Figure 4.2a) shows some very

23

highly abundant clonotypes, where the most common clonotype appears about 43 000
times in the dataset. Counting by clone occurrences shows that some sequences appear
in 95 of the 100 AIRRs. About 75 000 (0.75%) of the experimental data have Pgen equal to
0. See Section 5.5 for discussion around this.

Pgen distribution of experimental data

(a) Count sequences by count occurrences (sum of a sequence’s count from all repertoires)

(b) Count by clone occurrences (number of repertoires where the sequence appears)

Figure 4.2: Experimental data Pgen distribution. 10 000 000 sequences from Emerson
et al.[28], showing how each sequence’s generation probability relates to how often the
sequence occurs in the dataset.

4.1.3 Different datasets with rare and common implanted seeds

Figure 4.3 shows what implanted full sequences with different Pgen might look like in
comparison to experimental and synthetic data. There are different Pgen distributions for

24

different datasets. An implanted sequence may be an outlier in one dataset, but might
fall within the commonly observed Pgen -distribution of another dataset. This means that
the specific parameters when implanting in a dataset must be tailored to that dataset.

Figure 4.3: Illustration of rare, semirare and common sequences implanted in experi-
mental (from Figure 4.2) and synthetic (from Figure 4.1) data. Experimental data has
been cropped on both axis to have the same ranges as the synthetic data. The common
sequence fits the distribution of both datasets. Semirare is an outlier in synthetic data,
but not in experimental. Rare is an outlier in both datasets.

25

4.2 The effect of mutation on generation probability

One way to implant signals without the implanted full sequences appearing more often
than their generation probabilities allow compared to the rest of the dataset is to mutate
the given seed, compute the generation probabilities of these new sequences, then
implant some of them in the dataset with an implant rate that matches the probability
(more details on mutated sequence implanting in Section 3.5.2). Here, mutation will be
done by changing one or more positions in the seed sequence into randomly selected
amino acids from the amino acid alphabet. To see how the generation probabilities are
affected by mutating a sequence, a few different seed sequences were mutated to explore
how their generation probability distribution were affected.

4.2.1 One mutated position

First the sequences were mutated once, meaning that only one position in the seed
sequence were swapped with a different amino acid, i.e., the hamming distance between
the original seed and the mutated sequences is equal to 1.

Mutating different positions in CDR3s (Figure 4.4) shows that mutated sequences
with mutations in the middle generally have a higher Pgen than mutations in the start or
end. There are also two high-Pgen peaks in the figures. The mutations with Pgen equal to 0
are not shown in the figure, as the axis is logarithmic. Mutations in the very conservative
first and last position in the CDR3s almost always result in Pgen equal to 0.

While the figure shows that the Pgen distribution of mutations are similar for different
seed sequences, the lengths of the different segments (start, peak, middle, peak, end)
differ a bit. This could perhaps be affected by the length of the seed sequence. The Pgen

ranges are quite different and might be affected by the Pgen of the original sequence.

26

(a) CASSPNGAQKLCQETQYF

(b) CASSQYRGYEQYF

(c) CASRPHRQGPRYEQYF

Figure 4.4: The effect of mutating different positions in three sequences generated
randomly with OLGA. Each position in the sequences were swapped with each amino
acid in the amino acid alphabet, meaning that these are all possible mutations with
hamming distance 1 from the seed sequence. Mutated sequences with Pgen equal to 0
are not shown.

27

4.2.2 Two mutated positions

Mutating 2 positions in a sequence at a time (Figure 4.5) shows that the majority of the
mutated sequences generally have a lower Pgen than the original seed, and only about
0.02-0.03% of the mutations produce a higher Pgen than the original sequence. A large
portion of the mutations have Pgen equal to 0.

28

(a) Sequence: CASGRFVNIQYF.
45% of mutations have Pgen equal to 0.
0.03% of mutations Pgen are higher than the seed sequence’s Pgen .

(b) Sequence: CASSFTLGAGYTF.
32% of mutations have Pgen equal to 0.
0.02% of mutations Pgen are higher than the seed sequence’s Pgen .

Figure 4.5: Mutating amino acids in 2 positions at a time in a sequence produces a
wide range of generation probabilities, but the majority of the generation probabilities
are lower than the original sequence and many are 0. The horizontal line shows the
generation probability for the original sequence.

29

4.3 Spotting Pgen outliers implanted in datasets using the new
signal implanting strategies

A series of tests were conducted to see if the new signal implanting strategies solve the
Pgen outlier problem. Signal sequences were implanted into the Emerson dataset (see
Section 3.2.1) using decoy implanting and mutated sequence implanting. In addition to
this, the same sequences were implanted using a naive full sequence signal implanting
strategy as a control test to test whether outliers can be recovered using Pgen and count
(or clone) occurrence. Here, naive signal implanting means implanting full sequences
without trying to account for the signal sequences becoming outliers.

The implanted signal was the same for all implanting strategies and consisted of 5
clonotypes (see Table 4.1). These clonotypes were generated using OLGA, and were
selected to have a wide range of Pgen .

The datasets with implanted signals were analyzed using vdjRec to test whether the
implanted signal sequences can be retrieved using only their Pgen and count occurrence.
These tests use the pval_post metric from vdjRec to judge which sequences are likely to
be Pgen outliers or not. pval_post is the P-value that the clone occurrence pattern of a
sequence is explained by convergent recombination alone. This means that sequences
that are abundant due to clonal expansion or due to being implanted many times in
the dataset might have a very low P-value. Sequences with high P-value are sequences
where the clone occurrences match the computed Pgen , and therefore have an appropriate
abundance for being produced solely through V(D)J-recombination.

There were sequences in the dataset with Pgen 0. Before passing the data to vdjRec,
the sequences with Pgen 0 were removed from the dataset. Even though these sequences
are outliers, they are not relevant for the Pgen distributions used here. Sequences with
Pgen 0 is discussed further in Section 5.5.

AIR amino acid sequence V-gene J-gene
CASRSGNEKLFF TRBV7-8*02 TRBJ1-4*01
CASSWIEPHIKGEGQTYEQYF TRBV6-3*01 TRBJ2-7*01
CASSYLVAENSGANVLTF TRBV6-5 TRBJ2-6
CASSVMCQDRVSSYEQYF TRBV6-4 TRBJ2-7
CATGGFFSYEQYF TRBV7-7*03 TRBJ2-7*01

Table 4.1: Clonotypes that were implanted in the datasets, that together form the
simulated immune signal.

30

Parameter Value
Number of AIRRs 100
AIRs per repertoire 100 000
Dataset implanting rate 0.5 (50%) (50 repertoires)
Repertoire implanting rate 0.001 (0.1%) (100 implanted sequences per repertoire)

Table 4.2: Parameters and dataset properties that were used in all simulations.

4.3.1 Naive full sequence implanting

Implanting immune signals naively is done here by using the decoy implanting strategy,
but with 0 decoys. The full yaml-specification can be found in Appendix A.3.

As shown in Figures 4.6, it is possible to spot the full sequences that are Pgen outliers
in a distribution showing the full experimental dataset. It is easier to spot the implanted
sequences when counting by clone occurrence (Figure 4.6b) instead of counting by count
occurrence (Figure 4.6a).

Using the vdjRec method to find these outliers shows that the full sequences from
the signal has a low P-value compared to the rest of the dataset (Figure 4.7), however
the outliers are not as distinct as in Figure 4.6. The experimental dataset mostly has
sequences with a high P-value, but there are some low P-value sequences. There are
some non-signal sequences from the dataset that have similar or lower P-value than the
signal sequences.

31

Naive full sequence implanting: Pgen distribution

(a) Count by count occurrences

(b) Count by clone occurrences

Figure 4.6: Full sequence signal implanted with a naive implanting strategy in
experimental data. Showing the Pgen distribution compared to each sequence’s count
occurrence makes it possible to spot sequences with low Pgen that are implanted many
times.

4.3.2 Decoy implanting

The decoy implanting generated 1000 decoys to hide the Pgen outliers from the signal.
The decoy implanting rates were the same as each sequence in the signal. As the immune
signal was formed by five sequences, the repertoire implanting rate had to be divided by
five. See the full yaml-specification in Appendix A.2.

Both Figure 4.8 and 4.9 shows that the Pgen outliers are a little hidden by the decoy
sequences. The reasons as to why these are not hidden more are discussed in Section

32

Naive full sequence implanting: vdjRec results

Figure 4.7: Naively implanted signal has low likelihood of occurring through V(D)J-
recombination compared to the rest of the experimental dataset. The y-axis is the P-value
that the clone occurrence pattern of a sequence is explained by convergent recombination
alone, and not due to clonal expansion or high implanting rates.

5.1.2. Most of these decoy sequences have a high Pgen , but some have low enough Pgen to
somewhat hide the signal sequences with the lowest Pgen . Figure 4.10 shows that, while
most of the decoy sequences have a high P-value, some decoy sequences have similar
P-value to the signal sequences.

33

Decoy implanting: Pgen distribution

(a) Count by count occurrences

(b) Cropped version of (a). X-axis range: 0-1800.

Figure 4.8: Full sequence signal implanted alongside 1000 randomly generated decoy
sequences in experimental data. Showing the Pgen distribution compared to each
sequence’s count occurrence makes it possible to spot sequences with low Pgen that are
implanted many times. The decoy sequences are implanted in both sick and healthy
repertoires to attempt to “hide” the outliers in the signal sequences that only appear in
sick repertoires.

4.3.3 Mutated sequence implanting

The mutated sequence implanting used a mutation hamming distance of 2. This means
that up to 2 positions in the seed sequences were mutated for each mutated sequence.
This mutation hamming distance was chosen to be low enough to preserve as much
of the signal seeds as possible, while being high enough to be able to produce enough

34

Decoy implanting: Pgen distribution

Figure 4.9: Count by clone occurrences: Full sequence signal implanted alongside 1000
randomly generated decoy sequences in experimental data.

varied mutations. The method used a wide mutated position occurrence limit, that gave
a slightly higher chance of mutations in the middle of the sequence. The full yaml-
specification can be found in Appendix A.1.

Both Figure 4.11 and 4.12 show that the mutated sequences mostly match the
distributions of the rest of the dataset. Most of the mutated sequences have a low
count (and clone) occurrence. There are some sequences that might appear to not follow
the distribution perfectly, and have a count occurrence that is higher than most other
sequences with similar Pgen . Figure 4.13 shows that the P-value of the mutated sequences
are varied. The P-values are mostly high, but some are lower and similar to the naively
implanted signal’s P-value.

35

Decoy implanting: vdjRec results

Figure 4.10: Implanted signal has a low likelihood of occurring through V(D)J-
recombination compared to the rest of the experimental dataset. The implanted decoy
sequences have a large P-value range, where some decoys have similar P-value to the
signal sequences. The y-axis is the P-value that the clone occurrence pattern of a sequence
is explained by convergent recombination alone, and not due to clonal expansion or high
implanting rates.

36

Mutated sequence implanting: Pgen distribution

(a) Count by count occurrences

(b) Cropped version of (a). X-axis range: 0-117.

Figure 4.11: Mutated sequences from a signal seed implanted in experimental data.
Showing the Pgen distribution compared to each sequence’s count occurrence makes it
possible to spot sequences with low Pgen that are implanted many times. The mutated
sequences are implanted to follow the distribution of the experimental data.

37

Mutated sequence implanting: Pgen distribution

Figure 4.12: Mutations of the seed sequences from the immune signal have similar
likelihood of occurring naturally as the rest of the dataset. P-value is the likelihood of
each sequence occurring from V(D)J-recombination.

Mutated sequence implanting: vdjRec results

Figure 4.13: Mutations of the seed sequences from the immune signal have similar
likelihood of occurring naturally as the rest of the dataset. The y-axis is the P-value that
the clone occurrence pattern of a sequence is explained by convergent recombination
alone, and not due to clonal expansion or high implanting rates.

38

Chapter 5

Discussion

5.1 Spotting Pgen outliers implanted in datasets using different
signal implanting strategies

This thesis proposes two methods which aimed to implant full sequence immune
signals such that methods can not exploit unrealistic Pgen outlier sequences. These new
implanting strategies, and a naive full sequence implanting strategy, were tested by
visually observing how implanting sequences in different ways relate to the rest of the
Pgen distribution in the dataset, as well as applying the vdjRec-method on the ground
truth-data.

5.1.1 Naive full sequence implanting

By visualizing the Pgen distribution of the dataset along with the implanted signal
sequences, we can clearly see that the naively implanted signal produce outliers (Figure
4.6). However, the number of outliers differed based on the method of counting the
sequences in the dataset. This is discussed further in Section 5.2.

The vdjRec method did successfully identify the naively implanted sequences as Pgen

outlier candidates (Figure 4.7). The P-value of all the signal sequences was very low. This
means that the program deems it likely that the signal sequences occur too often in the
dataset to simply be produced by V(D)J-recombination. There are some sequences in the
dataset with similar P-value. However, these low P-value sequences are very few, only
about 10 have similar P-value to the signal. If one were to select all sequences under
a certain P-value threshold to be significant outliers, one could easily select a threshold
(e.g., 1e-130) where a large portion of the candidate sequences would be the signal. As the
dataset used is very large (10 000 000 sequences), narrowing the candidates down to such
a small number should be seen as successfully “finding” the outliers. The non-implanted
sequences with very low P-value could be due to the experimental dataset having some
naturally occurring “outliers”, likely due to clonal expansion or sequencing errors.

39

5.1.2 Decoy implanting

Results

The signal was somewhat hidden by decoy sequences that are implanted in both sick
and healthy repertoires (Figure 4.8 and 4.9). The signal sequences with higher Pgen were
hidden well by a large number of decoy sequences, but signal sequences with low Pgen

only had three decoy sequences with similar Pgen . Further testing would be required
to say conclusively whether this fully “hides” the Pgen outliers. Using vdjRec shows
that some decoy sequences have P-value similar to the signal sequences (Figure 4.10). If
one were to select all candidates with P-value lower than, e.g., 1e-130, one would select
the entire signal, along with 2-4 decoy sequences (and some non-implanted sequences).
Ideally, there would a larger number of decoy sequences with lower P-value, but this
example still illustrates the effectiveness of the decoy implanting strategy.

Strengths and weaknesses

Decoy implanting does not always preserve the Pgen to count occurrence distribution
of the dataset, but, in contrast to mutated sequence implanting, the decoy implanting
strategy implants and preserves the full signal instead of mutating it.

One weakness of the decoy implanting-method is that the randomly generated decoy
sequences often have a high Pgen , as these are per definition the most likely to be
generated. The decoys with high Pgen will often not be outliers, and will therefore not
mask the outlier sequences from the signal. A solution to this problem could simply be to
generate and implant a higher number of decoys, as there is a higher chance of generating
low-Pgen sequences and hiding the Pgen outliers from the signal. However, with more and
more decoy sequences, the dataset distribution can become more and more distorted.
In the example of decoy implanting provided in this thesis, 1000 decoy sequences are
generated and implanted about 500 times each in the dataset. This is 500 000 sequences,
or 5 percent of the dataset, that are added to a dataset of 10 000 000 sequences. This could
potentially fundamentally change the Pgen distribution of the dataset.

In the future, this method could be extended in order to only select decoy sequences
with similar Pgen as the signal sequences, thus always masking the signal without having
to generate and implant too many decoy sequences. A downside to this solution could
be that computing Pgen for each generated decoy could easily become computationally
heavy and time-consuming, as it could take many attempts to generate decoy sequences
with low enough Pgen . Alongside this extension, the method could let the user specify
their own decoy sequences, which would give more control to the user.

40

5.1.3 Mutated sequence implanting

Results

The mutated signal sequences that were implanted appropriately according to their Pgen

followed the Pgen distribution of the experimental dataset (Figure 4.11 and 4.12). Most
of the mutated sequences followed the Pgen distribution very well, however there were
some sequences that may appear to be Pgen outliers. These are the more abundant
sequences around log10 Pgen -40 (most noticeable in Figure 4.11b). These sequences
appear to be Pgen outliers (and might still be deemed outliers by programs such as
vdjRec), and are caused by Pgen outlier “peaks” in the experimental data. The occurrence
limit Pgen range (explained further in Section 3.5.2) controls how many times each
sequence can be implanted based on their Pgen . This occurrence limit Pgen range is strictly
increasing, meaning that it will follow these outlier peaks and deem them as within the
acceptable distribution of the dataset. However, the “outliers” produced by this are quite
few, not very extreme, and as they are part of the dataset, it can be argued that they do
follow the distribution of the experimental data. In the future, the computation of this
occurrence limit Pgen range could be altered in a way that attempts to not include the Pgen

outlier peaks so that the mutated sequences fit the general distribution better.
The mutated signal sequences had a broad P-value range, and most of the mutated

sequences had a mid to high P-value compared to the rest of the dataset. If one were to
select all Pgen outlier candidates by selecting all sequences with P-value under a certain
threshold, one would not so easily capture a significant amount of signal sequences. If
one did capture many signal sequences, one would also capture many times more non-
implanted sequences.

The Pgen of the mutated sequences seem to group into two major clusters. These
groups appear to match the Pgen of the seed sequences. This could show that mutating
mostly towards the middle of the sequences produces mutations with similar Pgen to the
seeds.

Strengths and weaknesses

It can be said that mutated sequence implanting is the more sophisticated of the two new
signal implanting strategies, as it preserves the Pgen to count occurrence distribution of
the implanted dataset while preserving most of the full sequence seed. However, the
method can be critiqued for not truly implanting the full seed sequences, and might not
fully work very well for machine learning models that rely on full sequences instead
of sequence similarity or subsequences. For instance, the binary classifier proposed by
Emerson et al. [28] relies on the presence of identical sequences across disease-labelled
repertoires.

41

5.2 Counting methods: count occurrences and clone occurrences

Experimental data (Figure 4.2a) have some very high count occurrence sequences
(highest sequence count occurrence is about 43 000). These sequences were selected
randomly from the very large Emerson dataset, along with their duplicate counts. As
these repertoires are very large, these abundant clonotypes could be due to very high
duplicate counts in just a few repertoires. About half of these Emerson AIRRs have
positive CMV status[28], so the high-count clonotypes could possibly be part of this CMV
immune signal. However, the Emerson data is bulk-sequenced, which can heavily distort
the sequence count distribution. The extremely high-count occurrence clonotypes could
also be a product of the added level of random noise produced by this distortion.

The Pgen distribution was generally smoother when counting by clone occurrences
for both experimental (Figure 4.2a) and synthetic data (Figure 4.1a). Counting by
clone occurrences always lead to smaller x-axis, with the maximum x-value being totals
number of AIRRs in the dataset (here, 100). This smaller and more limited axis can give
a better (and often more readable) view of the general behavior of the Pgen distribution.

Counting by clone occurrences (Figure 4.6) was more effective than counting by
count occurrences (Figure 4.6b) as a counting method for spotting naively implanted
Pgen outliers using the dataset and implanting parameters used in this thesis. The signal
was implanted a few times in half the repertoires, meaning the signal had quite a high
clone occurrence, but a low count occurrence. The signal sequences were selected to have
a wide range of Pgen , as it was necessary to implant clonotypes with Pgen low enough
to become Pgen outliers within the experimental dataset used. However, these sequences
were not all outliers for both counting methods. Only two of the signal sequences were
noticeable outliers with the count occurrence-method, but all the sequences were clear
Pgen outliers for the clone occurrence-method.

5.3 Effect of mutation on generation probability

Mutating different positions in CDR3s (Figure 4.4) shows that mutated sequences with
mutations in the middle generally have a higher Pgen than mutations in the start or
end. This could be explained by the fact that the V- (start) and J-genes (end) are more
conserved than the D gene (middle). Mutations in these more conserved regions could
perhaps produce less common sequences, i.e., sequences with lower Pgen . There are also
two high-Pgen peaks in the figures. These peaks could be due to the added diversity in the
junctions from random insertions and deletions during V(D)J-recombination. This added
junctional variability could mean that mutating these positions are more tolerated.

42

5.4 Performance and implementation

The implementation currently has its own branch, but there are plans to merge it with
the main immuneML branch in the future. However, to do this, the code likely needs to
go through multiple rounds of feedback to make it fit into the framework in a way that
allows future development and code maintenance to be easily done by others. The new
programs need very thorough documentation and tutorials (example tutorial that could
be used for the immuneML site can be found in section B).

Pgen computation

The implementation is designed to be quite efficient. The main time-consuming action is
to compute the Pgen of all the sequences in the datasets. For the large datasets used in this
thesis (10 000 000 sequences each), the Pgen computation was done on a high-performance
computing server. Even when using 8 processes with 12 GB memory each, computing
the Pgen of the about 5 500 000 unique sequences from the experimental data still took
more than 7 hours. Therefore, this thesis could not use the entire Emerson dataset, which
is much bigger with its 89 840 865 unique TCR β sequences [28].

A number of choices were made to ensure that Pgen computation of many sequences
were not made unnecessarily. All files that require the Pgen of all the sequences in the
dataset are exported from the sequence generation probability distribution-data report.
For instance, one of these exported files is the occurrence limit Pgen range. To implant
mutated sequences so that they follow the Pgen distribution of the dataset, we need
the lowest Pgen for each value of count/clone occurrence. Computing the Pgen of the
whole dataset every time we simulate with mutated sequence implanting would take
a ridiculous amount of time, so we limit the number of times we need to do this
computation.

Sequence generation probability distribution

Sequence generation probability distribution visualizes the Pgen to count (or clone)
occurrences for each sequence in an AIRR dataset. Showing each clonotype as a point in a
scatter plot often gives the clearest view of the behavior of the dataset’s Pgen distribution.
However, showing every single sequence as a dot is not scalable, and easily becomes
very difficult for the computer to display. Therefore, a violin plot is used for the non-
implanted sequences. This is easier for the computer to handle. For large datasets, these
will appear more like lines, however, they still clearly show the distribution of the Pgen

and sequence occurrences in the dataset.
The plot features a line displaying the lowest Pgen for each value of x. This is an

attempt to find a border that delineates the general distribution of the dataset. This can
be used to have a clear way to distinguish between outliers and that follow the dataset
distribution. In the future, this line could be smoothed in some way so it better reflects

43

the general distribution of the dataset. This “smoothed distribution line” could also be
used to compute the occurrence limit Pgen range.

5.5 Generation probabilities in the datasets

5.5.1 Pgen distribution of experimental and synthetic data

AIRRs generated using OLGA (Figure 4.1a) can be expected to have a similar Pgen

distribution to AIRRs that have never gone through any clonal expansion. The
experimental dataset (Figure 4.2a) has many more sequences that appear more often
than the synthetic dataset. There are also sequences appearing often in the dataset
that has a lower Pgen than what we see in the simulated data. This could possibly be
explained by clonal expansion, and fits the reasoning from Pogorelyy et al. [27]: that
the convergently selected, i.e., sequences that appear more often due to clonal expansion,
have a generally lower Pgen than the convergently recombined, i.e., sequences that appear
more often due to biases during V(D)J-recombination. However, the dataset generated
using OLGA is not experimental data, and we should be careful when comparing the
two. The synthetic dataset is generated through a very generalized generative model
based on V(D)J-recombination. The sequence counts in the Emerson dataset is heavily
distorted due to sequencing. This distortion will appear only in the experimental data.

5.5.2 Sequences deemed impossible to generate

The sequence generation probability distribution-data report (described in Section 3.3)
does not visualize sequences with Pgen equal to 0. These sequences are deemed
impossible to generate through VDJ-recombination by the Pgen computation program.
These sequences would always be outliers no matter the count occurrence, as they can
never occur naturally. The variety of Pgen means the Pgen axis must be log-scale, which
does not include 0.

The experimental Emerson dataset used in this thesis has about 75 000 sequences with
Pgen equal to 0 (according to OLGA’s computations). This is about 0.75 percent of dataset
sequences. The AIRR dataset generated using OLGA does not have any sequences with
Pgen equal to 0, as the model for Pgen computation and generation are the same. There are
a few factors as to why these “impossible” receptor sequences appear in experimental
human blood data. Individuals have different biological models that determine the
mechanisms of V(D)J-recombination, meaning that Pgen for the same AIR sequence can be
different across individuals [29]. OLGA is trying to generalize these repertoire generation
models into a single model, which leads to Pgen computation likely never being exactly
correct for any specific individual. This is a major limitation of OLGA (as well as methods
that also generalize models similarly), and thus also a limitation of the new methods
presented in this thesis. The databases for V, D and J genes are very incomplete. As
OLGA relies on incomplete gene reference databases, the program might not be aware of

44

the genes used to create some of the different receptors. Genetics especially differ with
race, and the genetics of people with European ancestry has been much better mapped
than other people of other ancestries [30]. Ethnic minorities might therefore have less
accurate Pgen computation. Errors when sequencing the dataset could also be a factor for
these sequences with Pgen 0, for example, if there is a sequencing error in a conserved
region in a receptor sequence.

5.5.3 Range of generation probabilities in the datasets

The Pgen ranges for synthetic data and experimental data are quite different. The
experimental Emerson data (Figure 4.2) has sequences with (log10) Pgen down to about
-60, while the lowest Pgen value for synthetic data from OLGA (Figure 4.1a) doesn’t even
go down to -40. The OLGA model is trying to estimate the Pgen using an incomplete
database of V, D and J genes. Sequences generated by OLGA might therefore be a little
biased towards having a higher Pgen , because the same model that created the sequences
is rating how likely it is to create this sequence. If there is any difference between the
statistics of the V, D, and J genes used by OLGA and the gene statistics a given dataset
is based on, then these sequences would generally be less likely to generated according
to the OLGA model. OLGA can generate all sequences it deems to have Pgen higher than
0. The full Pgen range of OLGA sequences is therefore much larger than what is found in
the synthetic dataset used here. The more sequences are generated, the higher the chance
of finding sequences with very low Pgen . This "full Pgen range" would only be found if
one generated an infinitely large dataset.

The highest Pgen in the different datasets are roughly the same. There is likely a
natural maximum value of Pgen , at least according to the OLGA model. Since both
datasets have such a large size, and since the sequences with high Pgen are by definition
the most common sequences, it is likely that they both have sequences with Pgen that
match or approach this maximum Pgen value.

45

Chapter 6

Conclusion

This thesis presents how Pgen outliers can be created when simulating immune signals
by implanting full sequences. These outliers were shown to be noticeable using a
visualization of the Pgen and count occurrences of each sequence in a dataset. The two
new implementations for signal implanting strategies did not produce Pgen outliers that
could be noticed using the same visualization method. vdjRec is a method for finding the
candidates that are least likely to be formed solely through V(D)J-recombination. This
method was used to successfully detect candidates for Pgen outliers produced by a naive
signal implanting strategy. vdjRec could not reliably be used to find the signal sequences
implanted using the new signal implanting strategies.

Both the new signal implanting strategies successfully showed that they can be used
to simulate full sequence immune signals, however, they have different strengths and
weaknesses. Mutated sequence implanting makes the signal sequences follow the Pgen

distribution of the rest of the dataset, but has to alter the signal sequences slightly in
order to do so. Decoy implanting preserves the full sequences, but may alter the Pgen

distribution of the dataset by adding many decoy sequences that do not follow the dataset
distribution. This thesis suggests that the new methods can be used complementary,
filling different roles depending on what ML model is used.

6.1 Future work

6.1.1 Pgen computation in large datasets

The Emerson dataset [28] is still one of the bigger AIRR datasets in the field, but as our
sequencing technologies continue to improve, these large datasets are likely going to
be more prevalent. The Pgen computation used in this thesis is still too slow to handle
these very large datasets (at least without pouring a lot of resources into the analysis).
Future versions of the program could perhaps only compute a subset of these sequences.
The Pgen to count occurrence distribution of datasets follow a heavy-tailed distribution,
meaning there are much more sequences with low count occurrence. For this reason we

46

could, for example, only compute the Pgen of 1 percent of all sequences that occur in 1
repertoire, 5 percent of sequences that occur in 2 repertoires, etc., and compute the Pgen

for all sequences that occur in more than 10 repertoires.
The uses for the generation probability of immune receptors are still quite niche

within the AIRR analysis field. If this interest expanded, we could see more large studies
on, e.g., how Pgen distribution behaves in large datasets. If these studies published the
large datasets with fully computed Pgen for all sequences, we could import them and use
them for our own analyses, without having to go through computing the Pgen .

6.1.2 Future work for full sequence signal implanting strategies

In the future, the new signal implanting strategies should be tested using data from other
chains and AIR types. The new methods have only been tested thoroughly with human
TCR β (for both experimental and simulated data). Based on how repertoires are formed
through V(D)J-recombination and later through clonal expansion, one can assume that
the Pgen to count occurrence distribution follows a similar heavy-tailed distribution as
TCR β repertoires. The method behavior is dynamic for heavy-tailed distributions, so
these methods will very likely work just as well for other organisms, AIR cell types and
chains.

Additionally, the new methods should be tested thoroughly with ML. The current
implementations for the new signal implanting strategies mostly preserve the signal, as
well as the sequences in the dataset, so the methods will very likely work for some ML
scenarios. Datasets with signals with different implant strategies should be tested with
different ML models, so we can compare what models work best for what strategies.
For example, as mutated sequence implanting mutates the full signal sequences, it may
not work very well for models that rely on identical shared sequences for classification.
However, ML models that would learn to detect shared features between clusters of
similar sequences could perform well on this kind of data.

Mutated sequence implanting randomly chooses which positions to mutate and
which amino acids to mutate to. The method allows the user to control which positions
in the seed sequences should be able to have mutations, and what the probability of
mutating each position is. The method could be extended further to allow the user to
control the probability of mutating to certain amino acids. Amino acids have different
biochemical properties, so this could perhaps affect how mutation behaves.

The new signal implanting strategies have individual strengths and weaknesses, and
will likely work differently for different ML models. Other ideas for signal implanting
strategies that seek out to solve the Pgen outlier problem could improve or complement
the implementations presented in this thesis. This thesis provides the groundwork for
the development of such new methods.

47

Bibliography

[1] Jonathan Sprent. ‘Immunological memory’. en. In: Current Opinion in Immunology
9.3 (June 1997), pp. 371–379. ISSN: 0952-7915. DOI: 10.1016/S0952-7915(97)80084-2.
URL: https://www.sciencedirect.com/science/article/pii/S0952791597800842 (visited
on 12/04/2023).

[2] Maryam B. Yassai, Yuri N. Naumov, Elena N. Naumova and Jack Gorski. ‘A
clonotype nomenclature for T cell receptors’. In: Immunogenetics 61.7 (July 2009),
pp. 493–502. ISSN: 0093-7711. DOI: 10.1007/s00251-009-0383-x. URL: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC2706371/ (visited on 12/04/2023).

[3] Hongmei Liu et al. ‘The methods and advances of adaptive immune receptors
repertoire sequencing’. In: Theranostics 11.18 (Aug. 2021), pp. 8945–8963. ISSN: 1838-
7640. DOI: 10.7150/thno.61390. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC8419057/ (visited on 12/04/2023).

[4] Edus H. Warren, Frederick A. Matsen IV and Jeffrey Chou. ‘High-throughput
sequencing of B- and T-lymphocyte antigen receptors in hematology’. In: Blood
122.1 (July 2013), pp. 19–22. ISSN: 0006-4971. DOI: 10.1182/blood-2013-03-453142.
URL: https://doi.org/10.1182/blood-2013-03-453142 (visited on 12/04/2023).

[5] The innate and adaptive immune systems. en. Publication Title: InformedHealth.org
[Internet]. Institute for Quality and Efficiency in Health Care (IQWiG), July 2020.
URL: https://www.ncbi.nlm.nih.gov/books/NBK279396/ (visited on 17/04/2023).

[6] Lonneke Scheffer. ‘Simulation and analysis of immune receptor repertoire fre-
quency distributions’. eng. Accepted: 2019-08-15T23:45:44Z. MA thesis. 2019. URL:
https://www.duo.uio.no/handle/10852/69136 (visited on 04/05/2023).

[7] Oliver Backhaus. ‘Generation of Antibody Diversity’. en. In: Antibody Engineering.
IntechOpen, Feb. 2018. ISBN: 978-953-51-3826-6. DOI: 10 . 5772 / intechopen . 72818.
URL: https://www.intechopen.com/chapters/58467 (visited on 05/05/2023).

[8] Jorg J. A. Calis and Brad R. Rosenberg. ‘Characterizing immune repertoires by
high throughput sequencing: strategies and applications’. English. In: Trends in
Immunology 35.12 (Dec. 2014). Publisher: Elsevier, pp. 581–590. ISSN: 1471-4906,
1471-4981. DOI: 10 . 1016/ j . it . 2014 . 09 . 004. URL: https : / /www . cell . com/ trends /
immunology/abstract/S1471-4906(14)00155-0 (visited on 05/05/2023).

48

https://doi.org/10.1016/S0952-7915(97)80084-2
https://www.sciencedirect.com/science/article/pii/S0952791597800842
https://doi.org/10.1007/s00251-009-0383-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706371/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706371/
https://doi.org/10.7150/thno.61390
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419057/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419057/
https://doi.org/10.1182/blood-2013-03-453142
https://doi.org/10.1182/blood-2013-03-453142
https://www.ncbi.nlm.nih.gov/books/NBK279396/
https://www.duo.uio.no/handle/10852/69136
https://doi.org/10.5772/intechopen.72818
https://www.intechopen.com/chapters/58467
https://doi.org/10.1016/j.it.2014.09.004
https://www.cell.com/trends/immunology/abstract/S1471-4906(14)00155-0
https://www.cell.com/trends/immunology/abstract/S1471-4906(14)00155-0

[9] Daniel J. Laydon, Charles R. M. Bangham and Becca Asquith. ‘Estimating T-cell
repertoire diversity: limitations of classical estimators and a new approach’. In:
Philosophical Transactions of the Royal Society B: Biological Sciences 370.1675 (Aug.
2015), p. 20140291. ISSN: 0962-8436. DOI: 10 .1098/ rstb . 2014 .0291. URL: https : //
www.ncbi.nlm.nih.gov/pmc/articles/PMC4528489/ (visited on 12/04/2023).

[10] Kenneth B. Hoehn, Anna Fowler, Gerton Lunter and Oliver G. Pybus. ‘The
Diversity and Molecular Evolution of B-Cell Receptors during Infection’. In:
Molecular Biology and Evolution 33.5 (May 2016), pp. 1147–1157. ISSN: 0737-4038.
DOI: 10.1093/molbev/msw015. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4839220/ (visited on 25/04/2023).

[11] Jean-Pierre Cabaniols, Nicolas Fazilleau, Armanda Casrouge, Philippe Kourilsky
and Jean M. Kanellopoulos. ‘Most α/β T Cell Receptor Diversity Is Due to Terminal
Deoxynucleotidyl Transferase’. In: Journal of Experimental Medicine 194.9 (Nov.
2001), pp. 1385–1390. ISSN: 0022-1007. DOI: 10.1084/ jem.194.9 .1385. URL: https :
//doi.org/10.1084/jem.194.9.1385 (visited on 14/04/2023).

[12] David G. Schatz and Yanhong Ji. ‘Recombination centres and the orchestration of
V(D)J recombination’. en. In: Nature Reviews Immunology 11.4 (Apr. 2011). Number:
4 Publisher: Nature Publishing Group, pp. 251–263. ISSN: 1474-1741. DOI: 10.1038/
nri2941. URL: https://www.nature.com/articles/nri2941 (visited on 12/04/2023).

[13] Jr Charles A Janeway, Paul Travers, Mark Walport and Mark J. Shlomchik. ‘The
generation of diversity in immunoglobulins’. en. In: Immunobiology: The Immune
System in Health and Disease. 5th edition (2001). Publisher: Garland Science. URL:
https://www.ncbi.nlm.nih.gov/books/NBK27140/ (visited on 12/04/2023).

[14] Zachary Sethna, Yuval Elhanati, Curtis G. Callan, Aleksandra M. Walczak and
Thierry Mora. ‘OLGA: fast computation of generation probabilities of B- and T-cell
receptor amino acid sequences and motifs’. eng. In: Bioinformatics (Oxford, England)
35.17 (Sept. 2019), pp. 2974–2981. ISSN: 1367-4811. DOI: 10 . 1093 / bioinformatics /
btz035.

[15] John L. Xu and Mark M. Davis. ‘Diversity in the CDR3 Region of VH Is Sufficient
for Most Antibody Specificities’. English. In: Immunity 13.1 (July 2000). Publisher:
Elsevier, pp. 37–45. ISSN: 1074-7613. DOI: 10.1016/S1074- 7613(00)00006- 6. URL:
https : / / www . cell . com / immunity / abstract / S1074 - 7613(00) 00006 - 6 (visited on
13/04/2023).

[16] Victor Greiff, Gur Yaari and Lindsay G. Cowell. ‘Mining adaptive immune receptor
repertoires for biological and clinical information using machine learning’. en.
In: Current Opinion in Systems Biology. Systems immunology & host-pathogen
interaction (2020) 24 (Dec. 2020), pp. 109–119. ISSN: 2452-3100. DOI: 10 . 1016 / j .
coisb . 2020 . 10 . 010. URL: https : / / www . sciencedirect . com / science / article / pii /
S2452310020300524 (visited on 11/04/2023).

49

https://doi.org/10.1098/rstb.2014.0291
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528489/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528489/
https://doi.org/10.1093/molbev/msw015
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839220/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839220/
https://doi.org/10.1084/jem.194.9.1385
https://doi.org/10.1084/jem.194.9.1385
https://doi.org/10.1084/jem.194.9.1385
https://doi.org/10.1038/nri2941
https://doi.org/10.1038/nri2941
https://www.nature.com/articles/nri2941
https://www.ncbi.nlm.nih.gov/books/NBK27140/
https://doi.org/10.1093/bioinformatics/btz035
https://doi.org/10.1093/bioinformatics/btz035
https://doi.org/10.1016/S1074-7613(00)00006-6
https://www.cell.com/immunity/abstract/S1074-7613(00)00006-6
https://doi.org/10.1016/j.coisb.2020.10.010
https://doi.org/10.1016/j.coisb.2020.10.010
https://www.sciencedirect.com/science/article/pii/S2452310020300524
https://www.sciencedirect.com/science/article/pii/S2452310020300524

[17] Chakravarthi Kanduri et al. ‘Profiling the baseline performance and limits of
machine learning models for adaptive immune receptor repertoire classification’.
In: GigaScience 11 (Jan. 2022), giac046. ISSN: 2047-217X. DOI: 10.1093/gigascience/
giac046. URL: https://doi.org/10.1093/gigascience/giac046 (visited on 11/04/2023).

[18] Milena Pavlović et al. ‘The immuneML ecosystem for machine learning analysis
of adaptive immune receptor repertoires’. en. In: Nature Machine Intelligence 3.11
(Nov. 2021). Number: 11 Publisher: Nature Publishing Group, pp. 936–944. ISSN:
2522-5839. DOI: 10.1038/s42256-021-00413-z. URL: https://www.nature.com/articles/
s42256-021-00413-z (visited on 19/04/2022).

[19] Xiaoqing Yu, Farnoosh Abbas-Aghababazadeh, Y. Ann Chen and Brooke L.
Fridley. ‘Statistical and Bioinformatics Analysis of Data from Bulk and Single-Cell
RNA Sequencing Experiments’. en. In: Translational Bioinformatics for Therapeutic
Development. Ed. by Joseph Markowitz. Methods in Molecular Biology. New York,
NY: Springer US, 2021, pp. 143–175. ISBN: 978-1-07-160849-4. DOI: 10.1007/978-1-
0716-0849-4_9. URL: https://doi.org/10.1007/978-1-0716-0849-4_9 (visited on
04/05/2023).

[20] Michael J. T. Stubbington, Orit Rozenblatt-Rosen, Aviv Regev and Sarah A.
Teichmann. ‘Single-cell transcriptomics to explore the immune system in health
and disease’. In: Science 358.6359 (Oct. 2017). Publisher: American Association for
the Advancement of Science, pp. 58–63. DOI: 10.1126/science.aan6828. URL: https:
//www.science.org/doi/10.1126/science.aan6828 (visited on 04/05/2023).

[21] Enkelejda Miho, Alexander Yermanos, Cédric R. Weber, Christoph T. Berger,
Sai T. Reddy and Victor Greiff. ‘Computational Strategies for Dissecting the
High-Dimensional Complexity of Adaptive Immune Repertoires’. In: Frontiers in
Immunology 9 (2018). ISSN: 1664-3224. URL: https://www.frontiersin.org/articles/10.
3389/fimmu.2018.00224 (visited on 04/05/2023).

[22] Geir Kjetil Sandve and Victor Greiff. ‘Access to ground truth at unconstrained size
makes simulated data as indispensable as experimental data for bioinformatics
methods development and benchmarking’. In: Bioinformatics (Sept. 2022), btac612.
ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btac612. URL: https://doi.org/10.1093/
bioinformatics/btac612 (visited on 12/09/2022).

[23] Milena Pavlović et al. Improving generalization of machine learning-identified bio-
markers with causal modeling: an investigation into immune receptor diagnostics.
arXiv:2204.09291 [cs, q-bio]. Apr. 2023. DOI: 10.48550/arXiv.2204.09291. URL: http:
//arxiv.org/abs/2204.09291 (visited on 20/04/2023).

[24] Melanie R. Shapiro et al. Human immune phenotyping reveals accelerated aging in type
1 diabetes. en. Pages: 2023.02.24.529902 Section: New Results. Feb. 2023. DOI: 10 .
1101/2023.02.24.529902. URL: https://www.biorxiv.org/content/10.1101/2023.02.24.
529902v1 (visited on 03/05/2023).

50

https://doi.org/10.1093/gigascience/giac046
https://doi.org/10.1093/gigascience/giac046
https://doi.org/10.1093/gigascience/giac046
https://doi.org/10.1038/s42256-021-00413-z
https://www.nature.com/articles/s42256-021-00413-z
https://www.nature.com/articles/s42256-021-00413-z
https://doi.org/10.1007/978-1-0716-0849-4_9
https://doi.org/10.1007/978-1-0716-0849-4_9
https://doi.org/10.1007/978-1-0716-0849-4_9
https://doi.org/10.1126/science.aan6828
https://www.science.org/doi/10.1126/science.aan6828
https://www.science.org/doi/10.1126/science.aan6828
https://www.frontiersin.org/articles/10.3389/fimmu.2018.00224
https://www.frontiersin.org/articles/10.3389/fimmu.2018.00224
https://doi.org/10.1093/bioinformatics/btac612
https://doi.org/10.1093/bioinformatics/btac612
https://doi.org/10.1093/bioinformatics/btac612
https://doi.org/10.48550/arXiv.2204.09291
http://arxiv.org/abs/2204.09291
http://arxiv.org/abs/2204.09291
https://doi.org/10.1101/2023.02.24.529902
https://doi.org/10.1101/2023.02.24.529902
https://www.biorxiv.org/content/10.1101/2023.02.24.529902v1
https://www.biorxiv.org/content/10.1101/2023.02.24.529902v1

[25] Cédric R Weber et al. ‘immuneSIM: tunable multi-feature simulation of B- and T-
cell receptor repertoires for immunoinformatics benchmarking’. In: Bioinformatics
36.11 (June 2020), pp. 3594–3596. ISSN: 1367-4803. DOI: 10 . 1093 / bioinformatics /
btaa158. URL: https : / / doi . org / 10 . 1093 / bioinformatics / btaa158 (visited on
13/05/2023).

[26] Quentin Marcou, Thierry Mora and Aleksandra M. Walczak. ‘High-throughput
immune repertoire analysis with IGoR’. en. In: Nature Communications 9.1 (Feb.
2018). Number: 1 Publisher: Nature Publishing Group, p. 561. ISSN: 2041-1723. DOI:
10.1038/s41467-018-02832-w. URL: https://www.nature.com/articles/s41467-018-
02832-w (visited on 22/04/2022).

[27] Mikhail V Pogorelyy et al. ‘Method for identification of condition-associated public
antigen receptor sequences’. In: eLife 7 (Mar. 2018). Ed. by Arup K Chakraborty.
Publisher: eLife Sciences Publications, Ltd, e33050. ISSN: 2050-084X. DOI: 10.7554/
eLife.33050. URL: https://doi.org/10.7554/eLife.33050 (visited on 31/01/2023).

[28] Ryan O. Emerson et al. ‘Immunosequencing identifies signatures of cytomega-
lovirus exposure history and HLA-mediated effects on the T cell repertoire’. en. In:
Nature Genetics 49.5 (May 2017). Number: 5 Publisher: Nature Publishing Group,
pp. 659–665. ISSN: 1546-1718. DOI: 10.1038/ng.3822. URL: https://www.nature.com/
articles/ng.3822 (visited on 18/01/2023).

[29] Andrei Slabodkin et al. ‘Individualized VDJ recombination predisposes the
available Ig sequence space’. en. In: Genome Research 31.12 (Jan. 2021). Company:
Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory
Press Institution: Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor
Laboratory Press Publisher: Cold Spring Harbor Lab, pp. 2209–2224. ISSN: 1088-
9051, 1549-5469. DOI: 10 . 1101 / gr . 275373 . 121. URL: https : / / genome . cshlp . org /
content/31/12/2209 (visited on 22/04/2022).

[30] Kerui Peng et al. ‘Diversity in immunogenomics: the value and the challenge’. In:
Nature methods 18.6 (June 2021), pp. 588–591. ISSN: 1548-7091. DOI: 10.1038/s41592-
021-01169-5. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842483/ (visited
on 18/04/2023).

51

https://doi.org/10.1093/bioinformatics/btaa158
https://doi.org/10.1093/bioinformatics/btaa158
https://doi.org/10.1093/bioinformatics/btaa158
https://doi.org/10.1038/s41467-018-02832-w
https://www.nature.com/articles/s41467-018-02832-w
https://www.nature.com/articles/s41467-018-02832-w
https://doi.org/10.7554/eLife.33050
https://doi.org/10.7554/eLife.33050
https://doi.org/10.7554/eLife.33050
https://doi.org/10.1038/ng.3822
https://www.nature.com/articles/ng.3822
https://www.nature.com/articles/ng.3822
https://doi.org/10.1101/gr.275373.121
https://genome.cshlp.org/content/31/12/2209
https://genome.cshlp.org/content/31/12/2209
https://doi.org/10.1038/s41592-021-01169-5
https://doi.org/10.1038/s41592-021-01169-5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8842483/

Appendix A

Documentation

A.1 Mutated Sequence Implanting

Example of YAML specification for mutated sequence implanting:

definitions:
datasets:

my_dataset: # user -defined dataset name
format: ImmuneML
params:

region_type: IMGT_JUNCTION
is_repertoire: true # we are importing a repertoire dataset
path: path/to/dataset
metadata_file: path/to/metadata

motifs:
seed1:

seed: CASRSGNEKLFF
v_call: TRBV7 -8*02
j_call: TRBJ1 -4*01
mutation_position_possibilities:

2: 0.1
3: 0.1
4: 0.1
5: 0.2
6: 0.2
7: 0.1
8: 0.1
9: 0.1

instantiation: GappedKmer
seed2:

seed: CASSWIEPHIKGEGQTYEQYF
v_call: TRBV6 -3*01
j_call: TRBJ2 -7*01
mutation_position_possibilities:

2: 0.05
3: 0.05
4: 0.05

52

5: 0.05
6: 0.05
7: 0.05
8: 0.1
9: 0.1
10: 0.1
11: 0.1
12: 0.05
13: 0.05
14: 0.05
15: 0.05
16: 0.05
17: 0.05

instantiation: GappedKmer
seed3:

seed: CASSYLVAENSGANVLTF
v_call: TRBV6 -5
j_call: TRBJ2 -6
mutation_position_possibilities:

2: 0.05
3: 0.05
4: 0.05
5: 0.05
6: 0.1
7: 0.1
8: 0.1
9: 0.1
10: 0.1
11: 0.1
12: 0.05
13: 0.05
14: 0.05
15: 0.05

instantiation: GappedKmer
seed4:

seed: CASSVMCQDRVSSYEQYF
v_call: TRBV6 -4
j_call: TRBJ2 -7
mutation_position_possibilities:

2: 0.05
3: 0.05
4: 0.05
5: 0.05
6: 0.1
7: 0.1
8: 0.1
9: 0.1
10: 0.1
11: 0.1
12: 0.05

53

13: 0.05
14: 0.05
15: 0.05

instantiation: GappedKmer
seed5:

seed: CATGGFFSYEQYF
v_call: TRBV7 -7*03
j_call: TRBJ2 -7*01
mutation_position_possibilities:

2: 0.1
3: 0.1
4: 0.1
5: 0.1
6: 0.2
7: 0.1
8: 0.1
9: 0.1
10: 0.1

instantiation: GappedKmer

signals:
signal:

motifs:
- seed1
- seed2
- seed3
- seed4
- seed5

implanting:
MutatedSequence:

mutation_hamming_distance: 2
occurrence_limit_pgen_range: # from

SequenceGenerationProbabilityDistribution
7.220680062850662e-57: 2
7.794254937992779e-51: 3
6.107826743718888e-48: 4
1.821959985799395e-46: 6
2.0234293791767077e-44: 8
1.4945643833176732e-38: 9
2.6581458481634067e-37: 36
6.937145322949189e-26: 43
1.4747398205160718e-24: 63
5.988660467194418e-23: 76
5.059241689500405e-22: 146
9.634161404115809e-22: 489
1.4251105809584813e-21: 1161
8.749768826698754e-21: 2670
2.218250077134713e-20: 3124
3.727010758499254e-16: 9242
3.5027165748446177e-15: 9750

54

1.313278270448748e-14: 11844
2.0882156617027488e-11: 25145
1.7465323761588067e-10: 44559

overwrite_sequences: False
sequence_position_weights:

0: 1

simulations:
my_simulation:

my_implanting:
signals:

- signal
dataset_implanting_rate: 0.5
repertoire_implanting_rate: 0.001

instructions:
my_simulation_instruction:

type: Simulation
dataset: my_dataset
simulation: my_simulation
export_formats: [AIRR , ImmuneML] # export the simulated dataset to

these formats

A.2 Decoy Implanting

Example of YAML specification for decoy implanting:

definitions:
datasets:

my_dataset: # user -defined dataset name
format: ImmuneML
params:

region_type: IMGT_JUNCTION
is_repertoire: true # we are importing a repertoire dataset
path: path/to/dataset
metadata_file: path/to/metadata

motifs:
seed1:

seed: CASRSGNEKLFF
v_call: TRBV7 -8*02
j_call: TRBJ1 -4*01
instantiation: GappedKmer

seed2:
seed: CASSWIEPHIKGEGQTYEQYF
v_call: TRBV6 -3*01
j_call: TRBJ2 -7*01
instantiation: GappedKmer

seed3:
seed: CASSYLVAENSGANVLTF
v_call: TRBV6 -5

55

j_call: TRBJ2 -6
instantiation: GappedKmer

seed4:
seed: CASSVMCQDRVSSYEQYF
v_call: TRBV6 -4
j_call: TRBJ2 -7
instantiation: GappedKmer

seed5:
seed: CATGGFFSYEQYF
v_call: TRBV7 -7*03
j_call: TRBJ2 -7*01
instantiation: GappedKmer

signals:
signal:

motifs:
- seed1
- seed2
- seed3
- seed4
- seed5

implanting:
Decoy:

nr_of_decoys: 100
overwrite_sequences: False
dataset_implanting_rate_per_decoy: 0.5
repertoire_implanting_rate_per_decoy: 0.0002 # signal implanting

rate / 5 (because 5 seed sequences)
sequence_position_weights:

0: 1

simulations:
my_simulation:

my_implanting:
signals:

- signal
dataset_implanting_rate: 0.5
repertoire_implanting_rate: 0.001

instructions:
my_simulation_instruction:

type: Simulation
dataset: my_dataset
simulation: my_simulation
export_formats: [AIRR , ImmuneML] # export the simulated dataset to

these formats

56

A.3 Naive Implanting

Example of YAML specification for naive implanting (by using decoy implanting with 0
decoy sequences):

definitions:
datasets:

my_dataset: # user -defined dataset name
format: ImmuneML
params:

region_type: IMGT_JUNCTION
is_repertoire: true # we are importing a repertoire dataset
path: path/to/dataset
metadata_file: path/to/metadata

motifs:
seed1:

seed: CASRSGNEKLFF
v_call: TRBV7 -8*02
j_call: TRBJ1 -4*01
instantiation: GappedKmer

seed2:
seed: CASSWIEPHIKGEGQTYEQYF
v_call: TRBV6 -3*01
j_call: TRBJ2 -7*01
instantiation: GappedKmer

seed3:
seed: CASSYLVAENSGANVLTF
v_call: TRBV6 -5
j_call: TRBJ2 -6
instantiation: GappedKmer

seed4:
seed: CASSVMCQDRVSSYEQYF
v_call: TRBV6 -4
j_call: TRBJ2 -7
instantiation: GappedKmer

seed5:
seed: CATGGFFSYEQYF
v_call: TRBV7 -7*03
j_call: TRBJ2 -7*01
instantiation: GappedKmer

signals:
signal:

motifs:
- seed1
- seed2
- seed3
- seed4
- seed5

implanting:
Decoy:

nr_of_decoys: 0

57

overwrite_sequences: False
sequence_position_weights:

0: 1

simulations:
my_simulation:

my_implanting:
signals:

- signal
dataset_implanting_rate: 0.5
repertoire_implanting_rate: 0.001

instructions:
my_simulation_instruction:

type: Simulation
dataset: my_dataset
simulation: my_simulation
export_formats: [AIRR , ImmuneML] # export the simulated dataset to

these formats

A.4 Sequence generation probability distribution

Example of YAML specification for sequence generation probability distribution:

definitions:
datasets:

my_dataset: # user -defined dataset name
format: ImmuneML
params:

region_type: IMGT_JUNCTION
is_repertoire: true # we are importing a repertoire dataset
path: path/to/dataset
metadata_file: path/to/metadata

reports:
my_data_report:

SequenceGenerationProbabilityDistribution:
default_sequence_label: Emerson

instructions:
my_expl_analysis_instruction: # user -defined instruction name

type: ExploratoryAnalysis # which instruction to execute
analyses: # analyses to perform

my_analysis: # user -defined name of the analysis
dataset: my_dataset
report: my_data_report

number_of_processes: 8

58

Appendix B

Tutorial

The branch with the new implementations can be found here: https://github.com/
uio-bmi/immuneML/tree/pgen_simulation.

B.1 How to set up immuneML with the branch used in this
thesis

First, clone the immuneML pgen_simulation-branch:

git clone -b pgen_simulation https :// github.com/uio -bmi/immuneML.git

Then, from the project directory, install the requirements and environment:

pip install -r requirements.txt
pip install -e .

Run immuneML with a yaml-specification by running

immune -ml <yaml -file.yaml > <output/path >

B.2 How to simulate full sequence disease-associated signals in
AIRR datasets without creating exploitable outliers

The immuneML documentation has tutorials (https://docs.immuneml.uio.no/latest/
tutorials.html) that explain how to use certain features. If the new classes presented in this
thesis are merged into the main immuneML branch, there should be a tutorial explaining
their new features. Here is an example of what such a tutorial might look like. All the
files and datasets used in this tutorial are available on the pgen_simulation branch (https:
//github.com/uio-bmi/immuneML/tree/pgen_simulation/example_files_for_tutorial).

In immuneML, it is possible to implant immune signals in an AIRR dataset in order
to simulate the effect of an immune event on the repertoires. A more detailed tutorial for
implanting immune signals can be found in the immuneML documentation (https://docs.
immuneml.uio.no/latest/tutorials/how_to_simulate_antigen_signals_in_airr_datasets.html).

59

https://github.com/uio-bmi/immuneML/tree/pgen_simulation
https://github.com/uio-bmi/immuneML/tree/pgen_simulation
https://docs.immuneml.uio.no/latest/tutorials.html
https://docs.immuneml.uio.no/latest/tutorials.html
https://github.com/uio-bmi/immuneML/tree/pgen_simulation/example_files_for_tutorial
https://github.com/uio-bmi/immuneML/tree/pgen_simulation/example_files_for_tutorial
https://docs.immuneml.uio.no/latest/tutorials/how_to_simulate_antigen_signals_in_airr_datasets.html
https://docs.immuneml.uio.no/latest/tutorials/how_to_simulate_antigen_signals_in_airr_datasets.html

B.2.1 Generating a synthetic AIRR dataset with OLGA

This can be done with any AIRR dataset, but here we will generate a synthetic dataset.
We start by generating a dataset using OLGA. Here we use a dataset with 100

repertoires consisting of 1000 sequences each. As computing the generation probability
of datasets can be time-consuming, we start with a small dataset. Here is a bash script
that can be used for this:

#!/ bin/bash

echo "Generating repertoires ..."

mkdir repertoires

echo filename ,identifier ,subject_id > metadata.csv

for i in {1..100}
do

olga -generate_sequences --humanTRB -n 1000 -o repertoires/rep$i.tsv
echo repertoires/rep$i.tsv ,rep$i ,rep$i >> metadata.csv

done

echo "Finished generating repertoires"

B.2.2 Creating outliers by implanting immune signals naively

Generation probability (Pgen) is the probability that an immune receptor sequence is
created naturally, solely through V(D)J-recombination. Here, we will implant a sequence
with low Pgen in the generated dataset. If implanted enough times, this will create a Pgen

outlier.

definitions:
datasets:

my_dataset: # user -defined dataset name
format: OLGA
params:

region_type: IMGT_JUNCTION # we use the full sequence
is_repertoire: true # we are importing a repertoire dataset
path: . # path to the repertoires -directory
metadata_file: metadata.csv # path to metadata

motifs :
seq_with_low_pgen:

seed : CAPTALDRATWKRSPLQEQYF
v_call : TRBV7 -2
j_call : TRBJ2 -7
instantiation : GappedKmer

signals:
signal_with_pgen_outlier:

motifs:

60

- seq_with_low_pgen
implanting:

Decoy:
nr_of_decoys: 0 # decoy implanting with 0 decoys is the same as

naive implanting
overwrite_sequences: False

sequence_position_weights:
0: 1 # unimportant when implanting full sequences

simulations:
my_simulation:

my_implanting:
signals:

- signal_with_pgen_outlier
dataset_implanting_rate: 0.05 # implanting in 5 percent of the

repertoires
repertoire_implanting_rate: 0.001

instructions:
my_simulation_instruction:

type: Simulation
dataset: my_dataset
simulation: my_simulation
export_formats: [AIRR] # export the simulated dataset to these formats

B.2.3 Analyzing the Pgen distribution for the dataset

To find a Pgen outlier we need to compute the Pgen and count all the sequences in the
whole dataset. This is done here using a data report called SequenceGenerationProbab-
ilityDistribution. Computing the Pgen of a whole dataset can be quite time-consuming
(for 100 000 sequences, about 5–15 minutes using 4 processes). It is recommended to use
multiple processes, as this speeds up the process by a lot.

definitions:
datasets:

my_dataset: # user -defined dataset name
format: AIRR
params:

region_type: IMGT_JUNCTION
is_repertoire: true # we are importing a repertoire dataset
path: path/to/the/repertoires/directory
metadata_file: path/to/metadata/of/the/dataset

reports:
my_data_report:

SequenceGenerationProbabilityDistribution:
default_sequence_label: OLGA

instructions:
my_expl_analysis_instruction: # user -defined instruction name

61

type: ExploratoryAnalysis # which instruction to execute
analyses: # analyses to perform

my_analysis: # user -defined name of the analysis
dataset: my_dataset
report: my_data_report

number_of_processes: 4 # number of processes to use

Applying this analysis to our dataset with naive implants, we get a plot similar to
this:

The signal sequence is easily noticeable due to its high count occurrence (total count
in all AIRRs in the dataset) compared to its low Pgen .

B.2.4 Implanting decoy sequences along the immune signal to mask the
exploitable outliers

The signal is only implanted in diseased repertoires. Implanting decoy sequences in both
diseased and healthy repertoires will mask the outliers from the signal.

definitions:
datasets:

my_dataset: # user -defined dataset name
format: OLGA
params:

region_type: IMGT_JUNCTION # we use the full sequence
is_repertoire: true # we are importing a repertoire dataset
path: . # path to the repertoires -directory
metadata_file: metadata.csv # path to metadata

motifs :
seq_with_low_pgen:

seed : CAPTALDRATWKRSPLQEQYF
v_call : TRBV7 -2
j_call : TRBJ2 -7
instantiation : GappedKmer

62

signals:
signal_with_pgen_outlier:

motifs:
- seq_with_low_pgen

implanting:
Decoy:

nr_of_decoys: 100
overwrite_sequences: False
dataset_implanting_rate_per_decoy: 0.05
repertoire_implanting_rate_per_decoy: 0.001

sequence_position_weights:
0: 1

simulations:
my_simulation:

my_implanting:
signals:

- signal_with_pgen_outlier
dataset_implanting_rate: 0.05 # implanting in 5 percent of the

repertoires
repertoire_implanting_rate: 0.001

instructions:
my_simulation_instruction:

type: Simulation
dataset: my_dataset
simulation: my_simulation
export_formats: [AIRR] # export the simulated dataset to these formats

Applying the Pgen -analysis to the dataset with implanted signal and decoys, we get
a plot similar to this:

Some of the decoys are outliers and mask the signal.

63

B.2.5 Implanting mutated versions of the immune signal sequences to avoid
outliers

Mutating the signal sequence into multiple similar sequences and implanting these
mutated sequence in a way that fits the Pgen to count occurrence distribution of the
dataset will not produce any outliers. To do this, we need an occurrence limit Pgen

range for our dataset, which controls how often each mutated sequence is allowed to
be implanted according to their Pgen . This occurrence limit Pgen range is computed
automatically when running SequenceGenerationProbabilityDistribution (if the other
steps in the tutorial have been followed, this Pgen range is already computed for our
dataset can be found in the exported files in the output directory or in the index.html).

definitions:
datasets:

my_dataset: # user -defined dataset name
format: OLGA
params:

region_type: IMGT_JUNCTION # we use the full sequence
is_repertoire: true # we are importing a repertoire dataset
path: . # path to the repertoires -directory
metadata_file: metadata.csv # path to metadata

motifs :
seq_with_low_pgen:

seed : CAPTALDRATWKRSPLQEQYF
v_call : TRBV7 -2
j_call : TRBJ2 -7
mutation_position_possibilities: # possibilities for which positions

in the sequence to mutate. Here , the mutations are even along the
middle.

4: 0.1
5: 0.1
6: 0.1
7: 0.1
8: 0.1
9: 0.1
10: 0.1
11: 0.1
12: 0.1
13: 0.1

instantiation : GappedKmer
signals:

signal_with_pgen_outlier:
motifs:

- seq_with_low_pgen
implanting:

MutatedSequence:
mutation_hamming_distance: 2
occurrence_limit_pgen_range: # this will differ for each

generated dataset

64

1.0167556408918248e-11: 2
1.671167468445542e-09: 4
1.7699642495296634e-08: 5
2.3559356353530645e-08: 6

overwrite_sequences: False
sequence_position_weights:

0: 1

simulations:
my_simulation:

my_implanting:
signals:

- signal_with_pgen_outlier
dataset_implanting_rate: 0.05 # implanting in 5 percent of the

repertoires
repertoire_implanting_rate: 0.001

instructions:
my_simulation_instruction:

type: Simulation
dataset: my_dataset
simulation: my_simulation
export_formats: [AIRR] # export the simulated dataset to these formats

Applying the Pgen -analysis to the dataset with implanted mutated signal sequences,
we get a plot similar to this:

All the mutated signal sequences are implanted only once each. This means that they
now follow the distribution of the rest of the dataset.

65

	List of Figures
	Introduction
	The adaptive immune system
	The generation and variability of immune receptors
	Analyzing AIRR datasets with machine learning
	Simulation of immune signals
	Generation probability of immune receptor sequences

	Problem statement and objectives
	Methods
	Tools
	immuneML
	OLGA
	vdjRec
	Python packages

	Datasets
	Previously published experimental data
	Synthetic data

	Visualization of distribution between generation probability and sequence occurrence rate
	Integration with the immuneML platform
	Signal implanter
	Signal implanting strategy
	General implementation design choices

	Designing novel signal implanting strategies
	Naive full sequence implanting strategy
	Mutated sequence implanting
	Decoy implanting

	Results
	Distribution of generation probabilities and count occurrences in AIRR datasets
	Simulated data
	Experimental data
	Different datasets with rare and common implanted seeds

	The effect of mutation on generation probability
	One mutated position
	Two mutated positions

	Spotting Pgen outliers implanted in datasets using the new signal implanting strategies
	Naive full sequence implanting
	Decoy implanting
	Mutated sequence implanting

	Discussion
	Spotting Pgen outliers implanted in datasets using different signal implanting strategies
	Naive full sequence implanting
	Decoy implanting
	Mutated sequence implanting

	Counting methods: count occurrences and clone occurrences
	Effect of mutation on generation probability
	Performance and implementation
	Generation probabilities in the datasets
	Pgen distribution of experimental and synthetic data
	Sequences deemed impossible to generate
	Range of generation probabilities in the datasets

	Conclusion
	Future work
	Pgen computation in large datasets
	Future work for full sequence signal implanting strategies

	Bibliography
	Documentation
	Mutated Sequence Implanting
	Decoy Implanting
	Naive Implanting
	Sequence generation probability distribution

	Tutorial
	How to set up immuneML with the branch used in this thesis
	How to simulate full sequence disease-associated signals in AIRR datasets without creating exploitable outliers
	Generating a synthetic AIRR dataset with OLGA
	Creating outliers by implanting immune signals naively
	Analyzing the Pgen distribution for the dataset
	Implanting decoy sequences along the immune signal to mask the exploitable outliers
	Implanting mutated versions of the immune signal sequences to avoid outliers

