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Abstract
This study investigates the potential impacts of Polybrominated Biphenyl (PBB)
exposure, smoking habits, and benzene exposure on methylation in whole blood
samples. These exposures have proven to affect the general health of people
exposed to them, and both smoking and PBB have been proven to affect DNA
methylation.

The main objective of this project is to attempt to use a similar methodol-
ogy used for designing epigenetic clocks to create a predictive model for said
exposures. Along the way we will also be using existing epigenetic clocks to look
at the age acceleration of the subjects to see if its affected by the exposures as
well. Additionally we will look if blood cell composition were affected.

I generated a variety of models for PBB and smoking using Elastic Net neural
network, linear regression and Naive Bayes. Differences between groups of dif-
ferent exposure were analysed by applying linear regression with residual and
intrinsic age acceleration as the dependent variables. The datasets were used to
calculate cell populations to see if there was an observable effect on cell popu-
lation caused by exposure. I also analyzed some of the best predictors used in
the prediction models to see if they could be used as biomarkers for their given
exposure.

I trained ten prediction models for PBB exposure and ten additional models
for smoking habits. For PBB my models performance ranged from an RMSE of
1.33-3.56 and for smoking the models had an accuracy in the range of 0.84-0.65.
I also managed to identify several CpG sites that had strong statistical relation
to exposure. As well as an observable effect on both CD4T and CD8T cells in
the blood.

This work has found that Elastic Net is a well-suited algorithm for predictive
models for exposure, as has also been shown in previously published work. It
also indicates that neither exposure PBB or cigarette smoking have a signif-
icant impact on age acceleration. I did however find that PBB and smoking
and benzene seemed to have an impact on CD4T and CD8T cell population
in blood. Additionally I was able to identify CpGs that might be usable as
biological markers for exposure of PBB, smoking and benzene exposure.
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1 Introduction
Study to explore existing computational methods and develop new methods
for estimating omics clocks in the context of chemical exposure using machine
learning to analyze epigenetic signatures for detection the effects of exposure to
chemical mixtures, while integrating with public databases.

2 Epigenetics
The basis for this thesis is going to be epigenetics which is the study of how your
behaviour and environment can cause changes that affect your genes without
altering the DNA sequence. The term epigenetics was first coined by the de-
velopmental biologist Conrad H. Waddington (1905–1975) to summarize a new
branch of biology which focuses on the links between gene and protein expression
[59]. However the meaning of the term has changed since then to now become
the study of how your behaviors and environment can cause changes that affect
the way your genes work. This includes changes that can affect your overall
health and genetic age which is what this work is going to look further into.
Epigenetic modifications can occur through a variety of mechanisms, including
DNA methylation, histone modification, and RNA-mediated regulation.

2.1 DNA methylation
DNA methylation is a common epigenetic modification that plays a key role in
the regulation of gene expression in eukaryotic cells. It involves the addition of
a methyl group to the cytosine base of DNA molecules, usually at CpG dinu-
cleotides [56].

DNA methylation can occur in different regions of the genome, including pro-
moter regions, enhancers, and gene bodies. Methylation of promoter regions is
generally associated with transcriptional repression, while methylation of gene
bodies is associated with transcriptional elongation and alternative splicing.

The addition of methyl groups to DNA molecules can affect gene expression
by altering the accessibility of DNA to transcription factors and other pro-
teins that regulate gene expression. Specifically, DNA methylation can block
the binding of transcription factors to promoter regions, prevent the binding
of RNA polymerase to the transcriptional start site, and recruit proteins that
repress gene expression.

Furthermore, DNA methylation is a heritable modification, meaning that it
can be passed down from one generation to the next [24]. In this way, DNA
methylation can play a key role in epigenetic inheritance and the regulation of
development.
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Aberrant DNA methylation patterns have been associated with a variety of
diseases, including cancer, cardiovascular disease, and neurological disorders.
As a result, DNA methylation has emerged as a potential target for therapeutic
interventions and a promising biomarker for disease diagnosis and prognosis.

2.2 MicroRNAs
MicroRNAs (miRNAs) are a class of small non-coding RNAs that play a key
role in post-transcriptional gene regulation in eukaryotic cells [6]. miRNAs can
regulate gene expression by binding to messenger RNA (mRNA) molecules and
either degrading them or preventing their translation into proteins.

In epigenetics, miRNAs are considered an important part of the regulatory
machinery that controls gene expression by affecting chromatin structure and
function. miRNAs can target specific chromatin-modifying enzymes or tran-
scription factors, thereby altering the epigenetic state of genes and regulating
their expression [22].

Furthermore, miRNAs have been shown to play an important role in the regula-
tion of cell differentiation, development, and disease. Dysregulation of miRNA
expression has been implicated in a variety of human diseases, including cancer,
cardiovascular disease, and neurodegenerative disorders [39].

Overall, miRNAs are an important component of the epigenetic machinery that
helps to regulate gene expression in response to environmental cues and develop-
mental signals. Their potential as therapeutic targets or biomarkers for disease
underscores the importance of continued research in this field.

2.3 Histone modification
Histone modification is a key mechanism in epigenetics, which refers to changes
in gene expression that are not caused by alterations in the DNA sequence itself
[5]. Epigenetic modifications, including histone modifications, can affect how
genes are expressed or silenced without changing the underlying genetic code.

In particular, histone modifications involve the addition or removal of chem-
ical groups, such as acetyl, methyl, or phosphate groups, to the histone proteins
that make up the nucleosomes [43]. These modifications can alter the struc-
ture of chromatin and affect the accessibility of DNA to transcription factors
and other proteins that regulate gene expression. For example, the addition of
acetyl groups to histone proteins is associated with open chromatin and active
gene expression, while the addition of methyl groups can either promote or re-
press gene expression, depending on the location of the modification and the
context of other modifications.

Histone modifications are reversible and can be dynamically regulated in re-
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sponse to environmental cues or developmental signals. They are known to
play critical roles in a wide range of biological processes, including embryonic
development, differentiation, and disease [69]. Understanding the mechanisms
and effects of histone modifications is essential for elucidating the epigenetic
regulation of gene expression and identifying potential targets for therapeutic
interventions.

3 Genetics
Genetics is the study of genes, heredity, and genetic variation in living organ-
isms. It encompasses the mechanisms by which genetic information is passed
from one generation to the next and how this information is expressed and
regulated within cells.

3.1 Genome
The genome is the complete set of genetic instructions encoded within an or-
ganism’s DNA. It contains all the genes that are necessary for an organism to
develop and function. The genome is organized into chromosomes, which are
long strands of DNA that are coiled and packaged within the nucleus of a cell.
The DNA is made up of four different nucleotide bases adenine, cytosine, gua-
nine and thymine, A, C, G and T for short and the DNA code is based on the
order they appear in.

3.2 Gene
Genes are segments of DNA that contain the instructions for making specific
proteins or RNA molecules. These instructions are encoded in the sequence of
nucleotide bases that make up the DNA molecule. Genes are the fundamental
units of heredity and determine many of an organism’s traits.

One example of a gene is the BRCA1 gene, which is associated with an in-
creased risk of breast and ovarian cancer. Mutations in this gene can lead to
a disruption of its normal function and increase the likelihood of developing
cancer [41].

Another example is the CFTR gene, which is associated with cystic fibrosis.
Mutations in this gene can cause a defect in the transport of chloride ions
across cell membranes, leading to the buildup of mucus in the lungs and other
organs [65].

4 CpGs and CpG islands
CpG is a short term for cytosine-phosphate-guanine dinucleotide, which is a
sequence of nucleotides found in DNA. CpG dinucleotides are usually underrep-
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resented in the genome, but they are frequently clustered in regions known as
CpG islands. CpG sites should not be confused with GpC sites which is when
the order of the guanine and cytosine are the other way around. CpG islands
are regions with a high amount of CpG sites. To qualify as an island it has
to be a region of at least 200 base pairs with a GC percentage greater than 50
percent and an expected CpG ratio of at least 60 percent. The expected CpG
ratio by is calculated by (number of C * number of G)/amount of base pairs.

Figure 1: CpG sequence of one DNA strand versus C-G base pair on comple-
mentary strands [33]

The reason CpG islands are important in epigenetics is because of how they are
related to promoters. A promoter is a sequence of DNA to which proteins bind
to initiate transcription of a single RNA transcript from the DNA downstream
of the promoter. In humans 70 percent of promoters that are near the transcrip-
tion start site of a gene contain a CpG island.The promoter can be hindered in
its function when methylation of CpG islands leads to silencing of the genes.

4.1 Methylation in CpG sites
DNA methylation is a well-researched epigenetic mechanism that regulates gene
expression by adding or removing a methyl group. In CpG sites this occurs
by methyl groups binding to the cytosines forming 5-methylcytosines. When
multiple CpG sites are methylated in CpG islands of promoters it leads to
silencing of the gene. This is not the only cause of a gene being silenced, but
when a gene is silenced the CpG sites in the associated promoter CpG island
usually methylates leading to stable silencing of the gene [8].

5 Extrinsic and intrinsic factors of epigenetics
Steve Horvath and Kenneth Raj [35] categorizes the factors that affect methyla-
tion as either intrinsic or extrinsic. Intrinsic factors are the factors that are the
same no matter do not come from the environment that one lives is such as cell
differences and age. Extrinsic factors are environmental factors that affect epige-
netic markers. This can include diet, smoking habits or chemical exposure such
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as through contaminated water or unsafe work environments. All these factors
cause different changes in methylation and must be evaluated differently.

5.1 Celltypes
Different cell types methylate differently, therefore it is important to consider
what cell type we are testing when looking at epigenetics. This is even more
prevalent when comparing methylation changes in cells from different types of
tissue. [73]

5.2 Age
There is a well-documented relationship between age and DNA methylation.
DNA methylation is known to change with age, and these changes can have
important implications for health and disease.

Several studies have shown that DNA methylation patterns change over time,
with some CpG sites becoming more methylated and others becoming less
methylated with increasing age. For example, a study by Hannum et al. [31]
found that DNA methylation levels at 353 CpG sites were strongly associated
with age across a wide range of tissues, and that these sites could be used to
accurately predict an individual’s age.

Other studies have shown that age-related changes in DNA methylation can
be tissue-specific. In a study by Rakyan et al. [62] found that DNA methy-
lation patterns in blood cells were strongly associated with age, but that the
patterns of methylation in other tissues, such as brain and muscle, were less
strongly associated with age.

Age-related changes in DNA methylation have been linked to a variety of health
outcomes. For example, changes in DNA methylation patterns have been impli-
cated in the development of age-related diseases, such as cancer, cardiovascular
disease, and Alzheimer’s disease [35].

5.3 Smoking habits
Cigarette smoking is a well known for being a major causal risk factor for
various diseases including cancers, cardiovascular disease, chronic obstructive
pulmonary disease, and osteoporosis [38]. When comparing current smokers
against people who have never smoked using the Illumina BeadChip 450K array
on blood derived DNA samples this article [38] found that the samples were
statistically significantly differentially methylated. The genes associated with
the CpGs sites that were found to be methylated in this study have also been
associated with severe smoking related traits.

There are many harmful chemicals found in cigarettes, and they can cause a
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range of health problems, including cancer, heart disease, and lung disease.
Here are some of the most dangerous chemicals found in cigarettes [20, 58]:

1. Nicotine: Nicotine is the addictive substance in cigarettes. It increases
heart rate, blood pressure, and constricts blood vessels [21].

2. Tar: Tar is the sticky substance that collects in the lungs of smokers. It
contains many harmful chemicals, including polycyclic aromatic hydrocar-
bons (PAHs), which are known to cause cancer [63].

3. Carbon monoxide: Carbon monoxide is a poisonous gas that is produced
when cigarettes are burned. It interferes with the ability of the body to
transport oxygen to vital organs, including the brain and heart [32].

4. Formaldehyde: Formaldehyde is a colorless gas with a strong odor. It is
used in the production of many products, including cigarettes. Formalde-
hyde is a carcinogen that has been linked to several types of cancer [37].

5. Benzene: Benzene is a colorless chemical that is used in the production
of many products, including cigarettes. It is a carcinogen that has been
linked to several types of cancer [80].

6. Acetone: Acetone is a colorless chemical that is used in the production
of many products, including cigarettes. It is a toxic substance that can
cause damage to the central nervous system, kidneys, and liver [79].

5.4 Chemical exposure
Chemical exposure is something we are constantly being warned about both in
the food and drink we consume as well as from the environment that we live in
and these chemicals are often linked to health issues and shortened lifespan.
Arsenic contaminated drinking water has of example been associated with a
variety of adverse health effects and shortened lifespan are consumed by an es-
timated 200 million people worldwide [55]. There are also studies that show a
clear differentiation in methylation between people who have been exposed to
arsenic and those who have not [19].
Air pollution exposure is estimated to contribute to approximately seven mil-
lion early deaths every year worldwide. And emerging data indicates that air
pollution exposure changes the epigenetic mark, DNA methylation [64].

5.4.1 Polybrominated biphenyl (PBB)

Polybrominated biphenyls (PBBs) are a class of persistent organic pollutants
that were once widely used as flame retardants in a variety of consumer prod-
ucts, including electronics, textiles, and plastics. PBBs are similar in structure
and toxicity to polychlorinated biphenyls (PCBs), which have been banned in
many countries due to their health and environmental impacts. PBBs have also
been linked to a range of adverse health effects in humans and animals.
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Here are some of the health effects associated with exposure to PBBs:

1. Endocrine disruption: PBBs have been shown to disrupt the endocrine
system by mimicking the effects of hormones such as estrogen. This can
lead to a range of adverse health effects, including reproductive problems,
developmental delays, and thyroid dysfunction [17].

2. Cancer: Animal studies have shown that PBBs can cause cancer in various
organs, including the liver, thyroid, and mammary glands [57].

3. Neurotoxicity: PBBs have been shown to cause neurotoxicity in animals,
with effects including behavioral changes, learning and memory deficits,
and motor dysfunction [42].

4. Immune system effects: PBBs have been shown to affect the immune sys-
tem, with effects including decreased antibody production, altered immune
cell function, and increased susceptibility to infectious diseases [53].

5. Developmental effects: PBBs can cross the placenta and affect fetal devel-
opment. Animal studies have shown that PBB exposure during pregnancy
can lead to developmental delays, altered behavior, and decreased survival
rates in offspring [66].

Overall, exposure to PBBs has been associated with a range of adverse health
effects, and their use has been banned in many countries. However, PBBs are
persistent organic pollutants and can remain in the environment for a long time,
continuing to pose a potential risk to human health and the environment.

5.4.2 Benzene

Benzene as mentioned earlier chemical is found in cigarettes but it is used in
the production of many other chemicals and is present in crude oil ans gasoline.
Benzene exposure can have serious health effects, including:

1. Cancer: Benzene is a known carcinogen and can cause leukemia, a cancer
of the blood-forming organs, and other cancers such as non-Hodgkin’s
lymphoma [80].

2. Blood disorders: Benzene exposure can cause a decrease in red blood cells,
leading to anemia, and a decrease in white blood cells, which can weaken
the immune system and make the body more susceptible to infections [80].

3. Reproductive effects: Long-term exposure to benzene can affect the re-
productive system and cause menstrual disorders and infertility in women
and decrease sperm count in men [61].

4. Neurological effects: Benzene exposure can cause dizziness, headaches,
tremors, and loss of consciousness [80].
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5. Skin disorders: Benzene exposure can cause skin irritation, rashes, and
burns.

6. Respiratory effects: Benzene exposure can cause respiratory distress, in-
cluding coughing, wheezing, and shortness of breath [80].

6 Measuring methylation
Illumina inc. is the leading company when it comes to tools used for measuring
methylation in DNA form human samples. Their first array, HumanMethyla-
tion27k BeadChip could read methylation values of 27,000 CpGs. This tool was
improved upon with Illumina HumanMethylation450k BeadChip which read
450,000 CpGs and has been commonly used to investigate DNA methylation in
human tissues [23]. This has very recently been replaced by Illumina Human-
MethylationEPIC BeadChip (EPIC) covering over 850,000 CpGs.
All three versions of this tool work in the same way, they use bisulfite conversion
to observe the methylation status of the CpGs, This method involves exposing
to cytosine’s to bisulfite and observing what happens to them. The methylated
cytosine’s will remain unchanged while the unmethylated ones will turn into
uracil [45].

7 Epigenetic clocks
An epigenetic clock is a method to measure age based on biochemical data.
The method is based on DNA methylation levels and measuring the build up
of methyl groups in someones DNA. The main motivation for developing these
kinds of clocks are to aid in biological research as age is a very fundamental
characteristic for most living organisms. An accurate measure of biological age
could be useful for

• testing the validity of various theories of biological aging,

• diagnosing various age related diseases and for defining cancer sub types,

• predicting the onset of various diseases,

• serving as data point when evaluating therapeutic methods including re-
juvenation approaches,

• studying developmental biology and cell differentiation,

• forensic applications, for example to estimate the age of a suspect based
on blood left on a crime scene.

The main interest for this paper is how an epigenetic clock could be used to
measure the impact of chemical exposure on the overall health of a population.
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7.1 Age acceleration and reported causes
Age acceleration is calculated by looking at the methylation value of age ralated
CpGs and comparing them to the average methylation value of other people of
the same age. This tells us if a persons epigenetic age is different from their
chronological age. If the difference to the average is a positive number that
means that their epigenetic age is older than their chronological one and if the
difference is negative that means that their epigenetic age is younger.

7.2 The evolution epigenetic clocks
The relationship between age and DNA methylation has been known since the
late 1960s, however the history of epigenetic clocks really kicks off in 2011 when
an article was published by a UCLA team that demonstrated that DNA methy-
lation levels in saliva could generate age predictors with an average accuracy of
5.2 years meaning that they predicted age with an error of ± 5.2 years.

7.3 Evaluation of existing clocks
In order to evaluate the functionality of existing clocks I have compiled a table
which gives a basic overview of their functionality and accuracy.
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Clock Correlation Error Array Sample type Age Sample size Algorithm Clock type
Bocklandt et al. [10] 0.73 5.2 (Avg.Error) 27k Saliva 21-55 68 Regression CA-based
Hannum et al. [31] 0.91 4.9 (RMSE) 450k Blood 19-101 656 Elastic Net CA-based
Horvath Skin & Blood [36] 0.9-0.95 2.5-3 (MAD) 450k & EPIC Skin & blood 0-94 905 Elastic Net CA-based
Horvath Pan-tissue [34] 0.96 3.6 (MAD) 27k & 450k 51 types 0-100 3931 Elastic Net CA-based
Zhang [89] 0.99 2.04 (RMSE) EPIC Blood & saliva 2-104 13566 Elastic Net CA-based
Alsaleh [3] 0.97 2.6 (MAD) EPIC Blood 0-88 527 Elastic Net CA-based
Alsaleh minimal [3] 0.9 4.6 (MAD) EPIC Blood 0-88 527 Elastic Net CA-based
ABEC [44] 0.95 1.13 (MAD) EPIC Blood 19-59 1592 Elastic Net CA-based
eABEC [44] 0.97 1.25 (MAD) EPIC Blood 18-88 2227 Elastic Net CA-based
cABEC [44] 0.97 1.30 (MAD) 450k & EPIC Blood 18-88 2227 Elastic Net CA-based
DeepMAge [27] 0.97 2.77 (MAD) 27k & 450k Blood 4930 Deep learn CA-based
Levine PhenoAge [46] 27k, 450k & EPIC Blood 21-100 9926/456 Elastic Net PT-based
GrimAge [50] 450k & EPIC Blood 66 (mean) 1731 Elastic Net PT-based
AltumAge [48] 0.98 2.071(MAD) 27k & 450k 20 types 8050 Deep learn CA-based

Table 1: Table comparing different epigenetic clocks
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7.4 Data challenges
As with most data sets, the one I will be using is likely to have imperfections
and thus present some data challenges.

7.4.1 Normalization

Normalization in machine learning refers to the technique of adjusting a dataset
to fit within a pre-specified range, typically between zero and one. While nor-
malization is not a requisite step for every dataset applied in machine learning
algorithms, it becomes particularly beneficial when the dataset features vary
significantly in their ranges. For instance, suppose we have two features, x and
y, where x ranges from 1 to 10 and y spans from 1 to 10,000. In this case, due
to its larger numerical values, feature y will exert a greater influence on the
predicted outcomes, regardless of its actual predictive power. By normalizing
both features to the same range, we can circumvent this issue, ensuring that
each feature contributes proportionately to the prediction, thereby facilitating
more balanced and accurate model outcomes.

7.4.2 Batch effects

Batch effects refers to non-biological factors that cause changes in the data
from when the data is gathered. These factors could for example be differences
in capturing times, handling personnel, equipment, laboratory conditions, and
technology platforms. [81]

7.4.3 Missing values

Missing values in a dataset are instances where an observation lacks one or more
of its attributes. A basic, often-used strategy to handle this is to simply discard
the incomplete observations and continue with the data analysis. However, if the
dataset contains a substantial number of missing values, discarding these data
points might not be a feasible solution due to the potential loss of significant in-
formation. Thus, it becomes necessary to explore more sophisticated techniques
to address missing data, such as data imputation or predictive modeling based
on other available data points. One effective strategy to manage missing values
involves normalization, a process that scales numeric attributes to a standard
range. This method can substantially reduce the impact of missing values on
subsequent analyses by minimizing the variability between different attribute
scales, thereby ensuring that each attribute contributes equally to the overall
analysis.

7.5 Cell deconvolution
The complex composition of different cell types within a tissue can be estimated
by deconvolution [67]. This is important as we already established that cell type
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is important to methylation. We can therefore use deconvolution to enhance our
cell data to improve the predictions.

7.6 Elastic net
From table 1 we can observe that elastic net is the most commonly used al-
gorithm for developing epigenetic clocks. Elastic Net is a technique for linear
regression that blends the L1 (Lasso) and L2 (Ridge) regularization approaches.
It seeks to overcome certain limitations inherent in these two methods by incor-
porating a penalty term that represents a linear mix of the L1 and L2 penalties.
This dual approach simultaneously achieves two objectives: it compresses the
coefficients towards zero (similar to Ridge regression) and carries out feature
selection (akin to Lasso regression). Elastic Net is especially valuable when
working with high-dimensional data sets containing a significant number of pre-
dictors that may be interrelated.

L = Σ(Ŷ i− Y i)
2
+ λΣ|β|

Figure 2: Lasso Formula: Sum of squared errors + Sum of the absolute value
of coefficients.

Here, Σ(Ŷ i− Y i)
2

represents the sum of the squared differences between the
predicted (Ŷ i) and actual (Y i) outputs, which is the loss we want to minimize.
λΣ|β| represents the sum of the absolute values of the coefficients, which acts as a
penalty term, discouraging large coefficients and thereby controlling overfitting.
λ is the regularization parameter which balances the trade-off between the loss
and the penalty term.

L = Σ(Ŷ i− Y i)
2
+ λΣβ2

Figure 3: Ridge Formula: Sum of squared errors + Sum of the squares of
coefficients.

Like the Lasso formula, Σ(Ŷ i− Y i)
2

represents the sum of the squared differ-
ences between the predicted and actual outputs. The penalty term λΣβ2 is
the sum of the squares of the coefficients. This serves to control overfitting by
discouraging large coefficients. However, unlike Lasso which tends to select one
variable from a group of highly correlated features, Ridge regression will con-
sider all of them. This means it tends to distribute the coefficient values among
correlated predictors, instead of assigning a zero coefficient to some of them, as
Lasso does. This results in a model that may be better at handling scenarios
where predictors have strong correlations with each other.
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L = Σ(Ŷ i− Y i)
2
+ λ1Σβ

2 + λ2Σ|β|

Figure 4: Elastic Net Formula: Ridge + Lasso.
This formula combines the loss and penalty terms from both Ridge and Lasso
regression. This means it not only minimizes the sum of squared differences be-
tween predicted and actual outputs, but also imposes both the Lasso and Ridge
penalties on the coefficients. The λ1 and λ2 parameters control the balance be-
tween the Ridge and Lasso penalty terms. This hybrid approach helps handle
situations where there are correlations between predictors or where there are
more predictors than observations.

In all the above formulas, L is the loss function to be minimized, β represents the
coefficients or weights for each predictor in the model, and λ1, λ2, and λ are the
regularization parameters that control the impact of the penalty terms in the loss
function. These formulas provide a mathematical basis for understanding how
Elastic Net, Ridge, and Lasso regression control overfitting and make predictions
based on the given predictors.

7.7 Deep learning
The other major algorithm in table 1 is the deep learn algorithm. Deep learn
is not exactly on specific algorithm but a subset of algorithms which have been
inspired by the structure and function of the human brain. The most important
aspect of the deep learn algorithm is the layers of nodes which the inputs are fed
through each node applying its own weight. The weights of each node is then
updated based on the result and this process is repeated to train the model.

Figure 5: Visualization of layers in a deep learn algorithm [18]
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8 Technologies

8.1 Python vs R
Initially when considering this project I assumed that python was going to be
the most suitable environment for the job. However learning more about the
epigenetics I learnt that R might be a better fit. The reason I assumed that
python would be best is because of my previous history with using it for machine
learning and other projects. Python is a very good general purpose language is
highly versatile this can make exploratory data analysis quite smooth. Python
also sports many libraries that help carry out data science and machine learning
functions. R also has those same benefits but it seems to have better tools for
data processing, plotting and graphing. This means that R is probably better
for this project which is very focused on processing and visualising data. In
addition an earlier project titled "Building Epigenetic Clocks for Estimating
Ageing in Life After" [75] by Kristin Aurora Sydhagen that I am attempting
to build on used R to build her which pushes me further towards using R as
I won’t have to recreate many of the solutions that she has already implemented.

Julia is a high-level, dynamic programming language. It is a more general
purpose language when compared to R and python and it is also designed to
give users the speed of C/C++. This means that it is a good choice for writing
all kinds of applications. It also boasts to be as easy to use as Python. Look-
ing at this comparison we can see some evidence for this speed especially when
compared to the worst case scenario for python, the exception to this speed is
when writing R-like vectorized code.
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Figure 6: Comparisons of Python, R and Julia [16]

8.2 Data type
The data set that I am going to use are in the IDAT file format. This is a
proprietary format of Illumina inc that is used by their scanners [70]. There are
two IDAT files for each sample, one for the green channel and one for the red
channel. The red channels tracks which locations are methylated and the green
locations the unmethylated ones.The main issue with this file format is that due
to it’s proprietary nature there is a limited amount of tools that can be used to
read and process the data. R has the minfi package to process these files, this
package has been recommend to me and in my own limited testing it seems to
work nicely. Python and Julia also has packages for reading these files however
if these packages are not as good that might be a bottleneck that forces me into
using the R programming language.

9 Goals
The aim of this project was to analyse existing methods for using methyla-
tion data to predict biological age through epigenetic clocks and see how these
methods could be used to detect or measure chemical exposure. I wanted to
explore how exposure affected the results of Age acceleration from these existing
clocks as well as try to use the method that these clocks used to calculate age
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to develop my own model for predicting the exposure of subjects. In addition I
wanted to explore which CpG’s were affected by each chemical to then identify
which sections of the genome had been changed by the genome and how that
might affect health.

9.1 Aim 1 Analyse how qualitatively and quantitatively
exposure has an effect on age acceleration

There is substantial evidence that exposure to harmful chemicals reduce a per-
sons life expectancy through for example. [47]lung cancer related to smoking.
I am therefore going to see how these exposures affect the biological age of the
subjects and testing the following hypotheses.

Ha : Exposure to chemicals will increase age acceleration in the subject and
subjects that are more exposed will show a bigger impact on age acceleration

Ha : Exposure to chemicals will increase age acceleration in the subject equally

Ha : Exposure to chemicals will have little to no impact on age acceleration
To test these statements I am going to calculate age acceleration using existing
clocks and then plot it against the chemical exposure or in the cases were I only
have exposed and not exposed I will create a density plot of the age acceleration
of exposed and not exposed.

9.2 Aim 2 Identify CpGs related to exposure of different
chemicals

During the development of the genetic clocks researchers found that some CpGs
were much more related to aging and that making the clock using only those
sites was beneficial for the creation of the clocks [7]. These are the hypotheses I
am going to test to investigate whether a similar selection of CpGs can be done
when looking at their relation to chemical exposure.

Ha : Some CpG’s are clearly more or less relevant to exposure of each chemical

Ha : All CpG’s more or less equally relevant to exposure of each chemical

Ha : None of the CpG’s are relevant to exposure of each chemical To test
the CpGs I will run linear models for each of the CpGs relation to the subjects
exposure status individually I will then use the R2 scores of these models to
evaluate how much each CpG is impacted by exposure of the chemical. In addi-
tion I will look at which CpGs were selected by the elastic net model since this
method is also supposed to identify the most important features in the set.
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9.3 Aim 3 Develop a model to predict exposure of subject
based on methylation signatures

I will test the method of using the same method of using an elastic net model
to predict biological age to try and predict the subject chemical exposure. I will
also be testing the newer method of using neural networks as well as a linear
model for regression models and a Bayesian classifier for classification models
as a simple control to see if these more advanced methods provide a significant
benefit.

Ha : The model is able to accurately predict chemical exposure

Ha : The model is able to predict chemical exposure but not with a degree
of accuracy that is required for such a tool

Ha : The model is not be able to predict chemical exposure at all After training
and tuning a variety of models I will measure the accuracy of each model as
well as their rate of false positives and negatives where applicable. I will then
compare the results to see how all the models performed overall and in relation
to each other.
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Part II

Method
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10 Finding and evaluating additional data sets
Initially, I had a dataset obtained from an article that described the association
between exposure to polybrominated biphenyl (PBB) and genome-wide DNA
methylation differences in peripheral blood. This dataset formed the foundation
for my search for additional datasets to explore, with specific requirements that
needed to be met, which were as follows:

• The set should be in the Illumine 850k EPIC array format.

• The set should provide access to raw date in the form of IDAT files.

• The set needs to measure some form of chemical exposure either as how
much the subject was exposed or simply as exposed and not exposed.

• The set should provide at least 400 samples to provide a good sample size
and make it convenient to split the set into a training set and a validation
set.

10.1 Prowling articles on Pubmed and google scholar
To find additional datasets that met these requirements, I started by searching
for relevant articles on PubMed and Google Scholar. My aim was to identify
datasets that could be helpful in furthering my investigation.

10.2 Available sets on GEO
Another approach I took was to search for available datasets on the Gene Ex-
pression Omnibus (GEO), which is a public repository of microarray and next-
generation sequencing data. I searched for datasets that were in the Illumina
850k EPIC array format and that measured some form of chemical exposure.
After many deliberations I ended up including 450k data as well as sets that
did not consist of raw idat files.

10.3 Other sources of data
Lastly, I also considered other sources for potential datasets, such as collab-
orations with other researchers and contacting authors of relevant articles to
request access to their datasets.

29



Set ID Tissue type N Chemical exposure Covariates Array type Existing age clock
GSE116339 [13] Whole blood 674 pbb sex, age EPIC Aurora clock [75]
GSE147430 [84] Whole blood 132 smoking none 450k methylclock
GSE50660 [87] Whole blood 464 smoking sex, age 450k methylclock
GSE85210 [85] Whole blood 253 smoking none 450k methylclock
GSE54690 [9] Whole blood 27 smoking sex, age, cigarettes per day 450k methylclock

GSE106648 [49] Whole blood 279 smoking sex, age, disease 450k methylclock
GSE50967 [1] Whole blood 12 benzene none 450k methylclock

Table 2: Data set table
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11 Downloading and parsing data
Once I have identified potential datasets, I will download and parse the data
using various tools and packages, such as the Python methylprep package [71],
the R Biocoductor package, or by downloading zip files directly. I will then
preprocess the data using methods such as Noob or Swan to normalize the data
and calculate beta values.

11.1 Python methylprep package
The Python Methyprep package is a useful tool for preprocessing and analyz-
ing methylation data. This package provides a variety of functions for qual-
ity control, data normalization, and differential methylation analysis. With
Methyprep, one can load methylation data from file formats such as CSV and
BED, and easily filter out low-quality data points or batch effects. Additionally,
Methyprep includes methods for imputing missing data and performing normal-
ization using algorithms like quantile normalization and ComBat. Methyprep
also provides functions for identifying differentially methylated regions (DMRs)
and genes (DMGs) between different samples or groups, and can output results
in an easy-to-interpret format. For me the main function of the methylprep
package was to download the IDAT files and generate sample sheets from the
GEO. I did consider using this package for further processing of the data but I
found to be lacking when handling the large datasets I was tackling.

11.2 R biocoductor package
The R Bioconductor package is a useful tool for downloading data from the Gene
Expression Omnibus (GEO), a public repository of functional genomics datasets.
Bioconductor provides functions for accessing and downloading data from GEO,
allowing researchers to easily access and analyze a wealth of genomic data. With
Bioconductor, users can search for specific datasets using keywords or GEO
accession numbers, and can download and preprocess data directly within R.
Additionally, Bioconductor provides functions for quality control, normalization,
and differential expression analysis of GEO data, allowing for comprehensive
analysis of gene expression patterns across different experimental conditions.

11.3 Downloading zip files
Downloading and extracting zip files containing methylation data using 7-Zip is
a straightforward process. First, navigate to the website or source from which
you wish to download the zip file. Once you have located the file, download
it to your computer. Once the download is complete, locate the file on your
computer and right-click on it. From the drop-down menu that appears, select
"7-Zip" and then select "Extract Here" or "Extract to [filename]". This will
extract the contents of the zip file to a folder with the same name as the zip file.
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Once the extraction is complete, you can access the methylation data within
the folder and begin analyzing it.

12 Prepossessing
The R minfi package is a powerful tool for analyzing methylation data. This
package is specifically designed to work with data from the Illumina Infinium
MethylationEPIC BeadChip and the 450K array [25]. Minfi provides func-
tions for quality control, normalization, and differential methylation analysis
[4]. With Minfi, you can preprocess and filter methylation data to remove low-
quality probes and batch effects. Additionally, Minfi includes methods for iden-
tifying differentially methylated regions (DMRs) and genes (DMGs) between
different samples or groups. One of the strengths of Minfi is its ability to work
with large datasets, allowing for high-throughput analysis of methylation data.

12.1 Noob
The Noob method is a popular method for normalizing methylation data that
is generated by the Illumina Infinium platform [82]. The method stands for
"normal-exponential out-of-band," and it involves normalizing the data in sev-
eral steps. First, the raw signal intensities are corrected for background noise
using the normal-exponential model. Next, any non-specific binding effects are
corrected using the out-of-band model. Finally, the normalized intensities are
adjusted for dye bias, and the resulting values are transformed into beta values.
The Noob method is particularly effective at correcting for batch effects and
other technical variations that can arise in Illumina methylation data.

12.2 SWAN
The SWAN (Subset-quantile Within Array Normalization) method is a popular
method for normalizing methylation data generated by the Illumina Infinium
platform. The SWAN method is a type of quantile normalization that aims
to remove technical variations between samples and probes by normalizing the
methylation values within a given probe type (either type I or type II probes)
and between the two different probe types [52]. The SWAN method is effective at
correcting for technical variations that arise from probe design and hybridization
differences, and is particularly useful for analyzing methylation data that has
been generated from different Infinium platforms or different array versions.

12.3 NoobSwan
The NoobSWAN method is a normalization technique that combines the Noob
and SWAN methods for normalizing Illumina Infinium methylation data. This
method aims to correct for both technical and biological variations in the data.
The NoobSWAN method first applies the Noob normalization method to correct
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for background noise, non-specific binding effects, and dye bias. Then, the
SWAN method is used to correct for technical variations arising from probe
design and hybridization differences. The combination of these two methods
allows for the removal of technical variations while preserving the biological
variation in the data. The NoobSWAN method has been shown to produce
more accurate and reproducible results than either Noob or SWAN alone and is
becoming increasingly popular for analyzing large-scale methylation datasets.

12.4 Calculating Beta values
The minfi package in R provides functions for analyzing DNA methylation data
generated by the Illumina Infinium platform, including the calculation of beta
values. The package uses the raw intensity data from the IDAT files generated
by the Illumina platform to calculate beta values for each CpG site. The first
step in the process is to perform background correction and color balance on
the raw data. Next, the raw intensities for each probe type (methylated and
unmethylated) are extracted and normalized a method specified by the user
in my case the NoobSWAN method to correct for technical variation. Finally,
beta values are calculated as the ratio of the methylated intensity to the sum
of the methylated and unmethylated intensities, with an adjustment for back-
ground intensity. The resulting beta values range from 0 to 1, representing the
proportion of methylation at each CpG site.

12.5 PCA analysis
Principal Component Analysis (PCA) is a widely used method for reducing the
dimensionality of high-dimensional datasets in various fields, including genomics
and bioinformatics. In R, PCA analysis can be performed using the prcomp()
function, which computes the principal components of a dataset.

The prcomp() function takes the data matrix as input, and optional arguments
can be used to control the centering and scaling of the data. The function
returns the principal components of the data as a matrix, where each column
represents a principal component and each row corresponds to a sample in the
dataset.

To visualize the results of PCA analysis, the ggplot2 package can be used to cre-
ate a biplot, which displays the scores and loadings of each principal component.
The scores correspond to the position of each sample in the reduced-dimensional
space, while the loadings correspond to the contribution of each variable (or fea-
ture) to each principal component.

PCA analysis can be useful for identifying patterns or clusters in the data,
as well as for identifying outliers or sources of variability in the data. It can
also be used as a preprocessing step for downstream analysis such as clustering,
classification, or differential expression analysis.
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Figure 7: PCA plot for PBB colored for sex

This figure shows a PCA plot of the beta-values from GSE116339, normalized
with Noob and SWAN. The colors represents different sex.
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Figure 8: PCA plot for PBB colored for age

This figure shows a PCA plot of the beta-values from GSE116339, normalized
with Noob and SWAN. The colors represents different age values.
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Figure 9: PCA plot for PBB colored for PBB exposure

This figure shows a PCA plot of the beta-values from GSE116339, normalized
with Noob and SWAN. The colors represents different values of ln(total pbb).
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Figure 10: PCA plot for Smoking colored for smoking status

This figure shows a PCA plot of the beta-values from GSE147430, GSE85210,
GSE50660, GSE54690 and GSE106648. The colors represents wether the subject
is a smoker or not.
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Figure 11: PCA plot for smoking colored for set, set 1: GSE147430, set 2:
GSE85210, set 3: GSE50660, set 4: GSE54690 and set 5: GSE106648

This figure shows a PCA plot of the beta-values from GSE147430, GSE85210,
GSE50660, GSE54690 and GSE106648. The colors represents what set the
subject is a part of.
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Figure 12: PCA plot for Benzene colored for exposure

This figure shows a PCA plot of the beta-values from GSE50967. The colors
represents wether the subject has ben exposed to benzene.

13 Age acceleration
Epigenetic age acceleration is when the biological (epigenetic) age is higher than
the chronological age. In other words, based on the DNA methylation patterns,
the body appears to be aging faster biologically than would be expected based
on the number of years since birth.

Intrinsic and extrinsic epigenetic age acceleration are two specific types of
age acceleration:

• Intrinsic Epigenetic Age Acceleration (IEAA): This is a measure of
age acceleration independent of changes in blood cell composition, which
are known to change with age. It’s calculated by adjusting the epigenetic
age for measures of blood cell counts. The concept here is to identify
the aging speed of the body’s cells themselves, separate from the shifts in
blood cell populations that occur with age.

• Extrinsic Epigenetic Age Acceleration (EEAA): This measure takes
into account changes in blood cell composition, which are known to be
reflective of immune system aging. It is calculated by first adjusting the
DNA methylation age measure for blood cell counts and then forming an
epigenetic measure of immune system age. In simple terms, it’s a measure
of immune system aging.
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So, the key difference between intrinsic and extrinsic age acceleration is whether
changes in blood cell composition (reflecting immune system aging) are consid-
ered. IEAA focuses on cellular aging regardless of changes in blood cell compo-
sition, while EEAA incorporates these changes as part of the aging process.

13.1 Cell deconvolution
In order to calculate extrinsic acceleration we need some measure of blood cell
counts. to do this we will use cell deconvolution which is a computational tech-
nique used in the analysis of biological data. This process helps in the extraction
of signals from complex data sets, such as blood samples, by separating it into
its constituent cell types. By using reference data for each cell type, the de-
convolution algorithm estimates the proportion of each cell type present in the
mixed sample. In the context of extrinsic acceleration, this means we can obtain
a more precise measure of blood cell counts, which we can then correlate to the
individual’s physical condition.

13.1.1 Minfi

For our EPIC data we ill use the minfi package and its estimateCellCounts
function. This function is used to estimate the proportion of different types of
cells in a mixed cell population using methylation data.

The function works on the basis of reference datasets that contain known
cell type methylation profiles. When presented with a mixed sample, it uses
these reference datasets to estimate the proportions of each cell type within the
sample. This is accomplished by comparing the methylation patterns in the
mixed sample to those in the reference datasets.

13.1.2 Meffil

For my 450k data I only have post processed bata values so I could not use the
minfi package. Instead I used the mefill package [72] since it has a function to
estimate cell counts based on methylation beta values.This package, meffil, has
been specifically designed to handle methylation beta values and provides a ro-
bust solution for my dataset. It’s function, meffil.estimate.cell.counts.from.betas(),
uses reference-based cell deconvolution methodology similar to minfi, but de-
signed for beta values, allowing me to estimate cell proportions in my mixed
cell population. This alternative approach allowed me to leverage the avail-
able post-processed beta values and avoid the need for raw data. By using this
function, I was able to gain insights into the cell composition of my samples.

13.2 PBB set
For the PBB set I will be using the Aurora clock [75] to calculate biological age.
I will then use minfi as mentioned to calculate cell counts in order to get age
acceleration by getting the residuals from linear models of biological age age
and biological age age + cell populations.
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13.3 Smoking set
For the smoking set I will use the methylclock package to calculate age using
its implementation og Zhang et als [89] EN clock. This package in addition to
calculating biological age implements the meffil package [72] to calculate cell
counts so that it can calculate both intrinsic and extrinsic age acceleration.

14 Model building
To build my models in R I used a package called caret. The caret (Classification
And REgression Training) package in R provides a unified framework for build-
ing and evaluating predictive models. This model includes all the functions
I needed to separate my training data, train my models using K-fold cross-
validation and all the different algorithms that I wanted to test out

In order to separate my training data and test data I used the createDataParti-
tion() function from the caret package. this function allowed me to my to create
a 70%/30% split between my training set and my test set while maintaining the
distribution of exposure of the subjects

14.1 K-fold cross-validation
To tune my models instead of doing this manually i implemented a method
called k-fold cross-validation. This technique used in machine learning to eval-
uate the performance of a model on a limited amount of data.

The basic idea of k-fold cross-validation is to divide the dataset into k sub-
sets of roughly equal size, where k is a positive integer. The model is then
trained on k-1 of these subsets, called the training set, and evaluated on the re-
maining subset, called the validation set. This process is repeated k times, each
time using a different subset as the validation set and the remaining subsets as
the training set.

At the end of each iteration, the performance of the model is measured by
calculating a metric such as accuracy or mean squared error on the validation
set. The k performance metrics are then averaged to obtain a single perfor-
mance estimate for the model.

The advantage of using k-fold cross-validation is that it provides a more reliable
estimate of the model’s performance than a single train-test split, especially
when the dataset is small or imbalanced. It also allows for a more thorough
evaluation of the model’s ability to generalize to new data.

To go even further I am going to use repeated cross validation which means
that the process of splitting the data into K subsets and evaluating the model
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is repeated multiple times. In other words, it involves performing K-fold cross-
validation multiple times, with different random splits of the data into training
and testing sets each time.

The goal of repeated cross-validation is to obtain a more stable estimate of
the model’s performance by averaging the results of multiple cross-validation
runs. This can help to reduce the variance of the estimate and produce a more
reliable estimate of the model’s true performance.

I ended up using 5 folds repeated 5 times which means that my final result
would be based on an estimate of the model’s performance would be the aver-
age of the results from the 25 cross-validation runs.

14.2 Tuning grid
A tuning grid is a collection of hyperparameter values that are systematically
searched to find the best combination for a given model. Hyperparameters are
parameters that are not learned during model training, but rather are set by
the user before training starts. The performance of a model can be highly de-
pendent on the choice of hyperparameters, so it is essential to optimize them to
achieve the best possible results.

In the context of the caret package, a tuning grid is specified using the ex-
pand.grid() function, which creates a data frame containing all possible combi-
nations of hyperparameter values. When using the train() function in caret, the
model is trained on each combination of hyperparameters in the tuning grid,
and the best combination is chosen based on the performance metric specified
(e.g., accuracy, mean squared error).

14.3 Different models
14.3.1 Elastic net

For the elastic net model I specifically used the glmnet model. In caret, the
glmnet model has two main hyperparameters: α and λ. These hyperparame-
ters control the type and amount of regularization applied in the model. The
glmnet model is an elastic net model that combines Lasso (L1) and Ridge (L2)
regularization techniques [76].

1. Alpha (α): The alpha hyperparameter controls the mixing of Lasso (L1)
and Ridge (L2) regularization in the model. The alpha value ranges from
0 to 1.

• When α = 0, the model becomes a Ridge regression model. In Ridge
regression, L2 regularization is applied, which adds the squared val-
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ues of the coefficients multiplied by the regularization parameter
(lambda) to the loss function. This encourages the model to have
smaller coefficients, reducing the risk of overfitting and improving
generalization.

• When α = 1, the model becomes a Lasso regression model. In Lasso
regression, L1 regularization is applied, which adds the absolute val-
ues of the coefficients multiplied by the regularization parameter
(lambda) to the loss function. This encourages the model to have
some coefficients exactly equal to zero, leading to sparse models that
can be more interpretable.

• When 0 < α < 1, the model is an Elastic Net regression model, which
combines both L1 and L2 regularization. This can lead to a balance
between the sparsity of Lasso regression and the smoothness of Ridge
regression, making it useful for datasets with correlated features.

2. Lambda (λ): The lambda hyperparameter determines the amount of
overall regularization applied in the model. A larger lambda value results
in stronger regularization, which can help prevent overfitting by reducing
the complexity of the model. However, setting lambda too high may cause
underfitting, as the model becomes too simple to capture the underlying
patterns in the data.

For my tuning grid for the alpha values I used a range from 0 to 1 with incre-
ments of 0.1. For the lambda value I fit a model using the training set and with
alpha = 0.5 and lambda = to 0 to see the minimum value where all coefficients
equalled 0 and created a range from 1e-2 to this value across 100 increments.

14.3.2 Neural network

For my neural network I used the nnet model, the nnet model is a single-
hidden-layer feedforward neural network implemented using the nnet package
[83]. There are two main hyperparameters when using nnet in caret: size and
decay.

1. Size: The size hyperparameter controls the number of hidden units in the
single hidden layer of the neural network. The hidden units are responsi-
ble for learning and representing the complex patterns in the input data.
Increasing the number of hidden units can enhance the model’s capacity
to learn complex patterns, which may lead to better performance. How-
ever, having too many hidden units can cause overfitting, as the model
becomes too complex and starts to capture noise in the data. It is essen-
tial to find an appropriate balance by trying different values for the size
hyperparameter.

2. Decay: The decay hyperparameter controls the amount of weight decay
(L2 regularization) applied to the neural network’s weights. Weight decay
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is a regularization technique that adds a penalty term to the loss function,
which is proportional to the sum of the squared values of the weights
multiplied by the decay parameter. This encourages the neural network
to have smaller weights, which can help prevent overfitting by reducing
the model’s complexity. Setting the decay parameter too high may lead to
underfitting, as the model becomes overly simplified and unable to capture
the underlying patterns in the data.

For building my models I went with a tuning grid with size values 1, 3, and 5,
and decay values 0, 0.1, and 0.2.

14.3.3 Linear regression

The lm model refers to linear regression, which is a simple linear approach
for modeling the relationship between a dependent variable and one or more
independent variables. Linear regression does not have any hyperparameters to
tune, unlike other more complex models such as neural networks or elastic net.

14.3.4 Bayesian

The naive_bayes model refers to the Naive Bayes classifier, which is a simple
probabilistic classification algorithm based on Bayes’ theorem with the assump-
tion of independence among the features. When using the Naive Bayes classifi-
cation in R, there is one primary hyperparameter: laplace.

The laplace hyperparameter controls the Laplace smoothing (also known as
additive smoothing) applied to the probabilities. Laplace smoothing is used to
avoid zero probabilities for features that have not been observed in the train-
ing data for a particular class. By adding a small constant (specified by the
laplace parameter) to the observed counts, the probabilities are smoothed, and
the model becomes more robust to unseen features. The default value for the
laplace parameter in the Naive Bayes classifier is 0, which means no smoothing
is applied. However, it is common to use a small positive value (e.g., 1) to avoid
zero probabilities. For my tuning grid I used the values 0, 0.5, and 1

15 Model evaluation
Evaluating data models is an important step in the data modeling process, as it
helps to determine the effectiveness and accuracy of the model in making pre-
dictions or classifications. Depending on the type of model, different evaluation
metrics may be used, such as mean squared error, accuracy, precision, or recall.
The choice of evaluation metric should be based on the specific requirements of
the problem being addressed, as well as the nature of the data and the model.
It is also important to consider the potential limitations and assumptions of the
model, as well as the quality and representatives of the data used to train and
test the model. In this project I had to distinct type of models which is a
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15.1 Regression model
• Root Mean Squared Error (RMSE): This is the square root of the MSE.

It is a popular metric as it gives more weight to large errors.

• Mean Absolute Error (MAE): This is the average absolute difference be-
tween the predicted values and the actual values. It measures the average
magnitude of the errors in the predictions.

• R-squared (R²): This measures the proportion of the variance in the de-
pendent variable that is explained by the independent variables. It ranges
from 0 to 1, with higher values indicating a better fit of the model.

15.2 Classification model
When analyzing the classification model it is very useful to create a confusion
matrix. A confusion matrix is a table that is often used to evaluate the perfor-
mance of a classification model. It compares the actual labels of a data set to
the predicted labels generated by the model.

The table is usually a square matrix, where each row represents the instances in
a predicted class, while each column represents the instances in an actual class.
Therefore, the diagonal elements of the matrix represent the instances that were
correctly classified by the model, while the off-diagonal elements represent the
instances that were misclassified.
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Figure 13: Binary confusion matrix [2]

In this matrix you measure how many of the following classification results
occur:

• TP (True Positive) is the number of instances that were actually positive
and were correctly predicted as positive by the model.

• TN (True Negative) is the number of instances that were actually negative
and were correctly predicted as negative by the model.

• FP (False Positive) is the number of instances that were actually negative
but were predicted as positive by the model.

• FN (False Negative) is the number of instances that were actually positive
but were predicted as negative by the model.

By analyzing the confusion matrix, you can compute various performance
metrics such as accuracy, precision, recall, F1-score, and others, which can help
you to understand how well your model is performing on the given data set.

• Accuracy: This is the proportion of correct predictions made by the model.

• Precision: This is the proportion of true positives (correctly predicted
positives) out of all positive predictions made by the model.
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• Recall: This is the proportion of true positives out of all actual positives
in the data set.

• F1 score: This is the harmonic mean of precision and recall, and is a
balanced measure that takes into account both precision and recall.
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Part III

Results
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16 Cell deconvolution

16.1 Cell composition of PBB subjects

Figure 14: Box Plot of Cell Composition by PBB exposure high and low (higher
or lower than the median value)

Upon inspecting the box plot in figure 14 representing the cell composition of
subjects exposed to PBB, it appears that both CD4T and CD8T are lower in
subjects with higher ln(PBB) values determined by wether the subjects ln(PBB)
value weas higher or lower than the median. This observation for CD4T is con-
firmed by a statistical model depicting the relationship between CD4T and
ln(PBB) 15, which shows an estimate of -0.004281. With a p-value of 0.00651,
this model suggests a high probability that the observed difference can be at-
tributed to PBB exposure. Similarly, the model 16 for CD8T yields consistent
results, with an estimate of -0.0039498 and an even more significant p-value of
3.58e-05, further substantiating the likelihood of PBB causing these differences.
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Figure 15: Summary of generalized linear model of CD4T ∼ PBB

Figure 16: Summary of generalized linear model of CD8T ∼ PBB
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16.2 Cell composition of smoking subjects

Figure 17: Box Plot of Cell Composition by Smoking

The box plot in figure 17, which represents cell composition for smokers and
non-smokers, suggests that the CD4T level is elevated in smokers while CD8T
appears to be slightly reduced. The statistical model examining the relationship
between CD4T and smoking, shown in figure 18, corroborates this observation.
The estimate of 0.013244 suggests that smokers tend to have higher CD4T val-
ues, and given the model’s p-value of 0.000758, there is a high probability that
this difference is not merely coincidental.

In a similar vein, the statistical model analyzing the relationship between CD8T
and smoking, displayed in figure 19, shows an estimate of -0.005594. This sug-
gests that smokers have higher CD8T values. Although the p-value of 0.0829
is not as convincing as that of the CD4T model, it still indicates a substantial
correlation between CD8T levels and smoking status.
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Figure 18: Summary of generalized linear model of CD4T ∼ smoking

Figure 19: Summary of generalized linear model of CD8T ∼ smoking
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16.3 Cell composition of benzene subjects

Figure 20: Box Plot of Cell Composition by Benzene exposed subjects and non
exposed controls

The plot shown in figure 20, which represents the cell composition of subjects
exposed to benzene compared to controls, suggests that both CD4T and CD8T
levels are considerably higher in subjects exposed to benzene. This observation
is substantiated by the statistical model depicted in figure 21, which analyzes
the relationship between CD4T and benzene exposure. Here, an estimate of
-0.02352 indicates that the control group tends to have lower CD4T values.
However, given the model’s p-value of 0.257, it implies that the difference may
not be statistically significant.

In the case of the statistical model examining the relationship between CD8T
and benzene exposure (figure 22), an estimate of -0.04774 suggests that the con-
trol group has lower CD8T values. The model’s p-value of 0.0708 indicates a
suggestive, though not highly significant, correlation between CD8T levels and
benzene exposure.
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Figure 21: Summary of generalized linear model of CD4T ∼ benzene exposure

Figure 22: Summary of generalized linear model of CD8T ∼ benzene exposure

17 Age acceleration analysis
When analysing age acceleration for the different subjects, we first have to
calculate the DNAm age or predicted age for all the subjects and then compare
this to the age of the subject. This has to be done a bit differently for each
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set as the data sets are in different formats EPIC and 450k. This can then be
plotted against the exposure data for each subject. The type of plot used will
depend on how exposure is recorded in the data sets.

17.1 PBB age acceleration analysis
For this set since it the data was in EPIC the biological age was calculated
using Auroras’ clock [75]. Then since our data for PBB was recorded using a
numeric value (on ln scale) to represent how much PBB each samples subject
had in their body it was possible to run a scatter plot of age acceleration vs
PBB exposure.

Figure 23: Scatter plot of PBB exposure and age acceleration of subjects
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Figure 24: Summary of linear model of age acceleration ∼ PBB

Figure 25: Scatter plot of PBB exposure and Intrinsic age acceleration of sub-
jects
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Figure 26: Summary of linear model of intrinsic age acceleration ∼ PBB

To use a scatter plot to find correlation between PBB and age acceleration,
we first need to plot the data points. If the points are tightly clustered around
a line that is sloping upwards from left to right, then we can say that the two
variables have a positive correlation. This means that as the values of one vari-
able increase, so do the values of the other variable.

Conversely, if the points are tightly clustered around a line that is sloping down-
wards from left to right, then we can say that the two variables have a negative
correlation. This means that as the values of one variable increase, the values
of the other variable decrease.

However when looking at both our plots 23,24 we can observe that the points
are scattered randomly with no apparent pattern, when fitting a linear model
we get a p-value of 0.7929 24 which indicates that PBB does not have an ef-
fect on acceleration. The same is not true of our linear model for intrinsic age
acceleration 26 which yields a p-value of 0.0298.

17.2 Smoking age acceleration analysis
When looking at the smoking set a different clock had to be used because the
data sets analyzed were in the 450k format. Therfore Aurora’s clock [75] would
not be good way of calculating the methylation age. The clock used here to cal-
culate biological age is the elastic net clock included in the methylclock package
[15]. Then since the smoking subjects are either smokers or non-smokers this
was plotted using density plots one for smoker and one for non-smokers. Since
our populations are similar in size the the resulting difference in plots should
provide meaningful insight.
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Figure 27: Density graph of age acceleration for smoking (green) and non-
smoking (red) subjects

Figure 28: Summary of linear model of age acceleration ∼ smoking
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Figure 29: Density graph of intrinsic age acceleration for smoking and non
smoking subjects

Figure 30: Summary of linear model of intrinsic age acceleration ∼ smoking

A density plot is a graphical representation of the distribution of a con-
tinuous variable. In the case of age acceleration, a density plot can show the
distribution of age acceleration values for smokers and non-smokers separately.

If there is a difference in the shape of the two density plots27,29, it may suggest
that smoking has an impact on age acceleration. For example, if the density
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plot for smokers is shifted to the right (i.e., has higher age acceleration values)
compared to the density plot for non-smokers, it suggests that smoking may be
associated with higher age acceleration.

However, when looking at plot 27,29, we observe no drastic differences in the
shape between the density plots there. Additionally when looking at statistical
tests 28,30 we observe p-values of 0.4833 and 0.3342 respectively.

18 Relevant CpGs
Initially, the objective was to compare the relevant CpGs identified by the Elas-
tic Net model and my method to see if both techniques produced similar out-
comes. To achieve this, I retrieved the CpGs from the Elastic Net model that
were assigned non-zero weights. Since my method maintains all CpGs in the
ranking process without exclusion, I specifically chose to examine the top CpGs,
rounded up to the nearest ten based on their R2 scores, to match the quantity
selected by the Elastic Net model. This approach was designed to see if there
were any overlaps between the CpGs chosen by the Elastic Net and those se-
lected by my method.

Moreover, I decided to scrutinize the top two CpGs chosen by each method
for every stressor, with the aim to evaluate their correlation with the target
variable. When selecting the best two CpGs from my method, I referred to
those with the highest R2 scores, which is consistent with the ranking principle
used for the Elastic Net model. When it comes to the CpGs chosen by the Elas-
tic Net model, we specifically examined the predictor with the most substantial
absolute weight, as the weights can be either negative or positive. Therefore, it
is more suitable to evaluate them based on their distance from zero rather than
purely on their magnitude.

18.1 Relevant CpGs for PBB
Upon examining the top CpGs chosen by both my method and the Elastic Net
for predicting PBB exposure, it’s evident that there are only eighteen CpGs
common to both selections, as depicted in figure 31. When two distinct models
select different predictors for a data model, it suggests that they have recognized
different variables as being most crucial or influential in forecasting the model’s
outcome.
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Figure 31: Venn diagram showing overlap of CpGs selected for predicting PBB
exposure
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(a) Scatter plot of methylation of CpG cg19859270 and PBB exposure

(b) Scatter plot for methylation of CpG cg0265716 and PBB exposure

Figure 32: Scatter plots for PBB exposure and methylation for the top two
CpGs chosen by my method

These figures show the plots of total PBB (transformed by natural logarithm)
against the methylation (percentage) for the top two CpGs as selected by my
method for identifying relevant CpGs. Figure 32a shows cg19859270 specifically
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and figure 32b shows cg0265716.

(a) Scatter plot for methylation of CpG cg04158069 and PBB exposure

(b) Scatter plot for methylation of CpG cg18108008 and PBB exposure

Figure 33: Scatter plots for PBB exposure and methylation for the top two
CpGs chosen by elastic net
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CpG R2 Slope
cg19859270 0.393 -0.036
cg02657160 0.285 -0.043

(a) Table with metrics for the top two
CpGs chosen by my method for PBB

CpG EN weight
cg04158069 -6.590
cg18108008 3.836

(b) Table with metrics for the top two
CpGs chosen by elastic net for PBB

Table 3: Tables with metrics for the top two CpGs chosen by elastic net and
my method for PBB

The table 3 indicates:

• CpG site cg19859270:

– R2 : The coefficient of determination (R2) for this site is 0.393, sug-
gesting that about 39.3% of the variability in methylation in this
CpG site can be explained by PBB.

– Slope: The slope is -0.036, indicating a negative correlation between
PBB and methylation meaning that higher PBB values would lead
to lower methylation values.

• CpG site cg02657160:

– R2 : The R2 value for this site is 0.285, implying that roughly 28.5%
of the variability in methylation in this CpG site can be explained
by PBB exposure.

– Slope: The slope of -0.043 suggests a negative correlation between
PBB an methylation at this CpG site.

For the CpGs chosen by the elastic net for PBB, the weights are as follows:

• cg04158069: The EN weight for this CpG site is -6.590. The negative
weight suggests that an increase in the PBB exposure would result in a
decrease methylation level at this CpG site.

• cg18108008: The elastic net (EN) weight for this site is 3.836. The
positive weight implies that an increase in the PBB exposure would lead
to a a increase in methylation at this CpG site.
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18.2 Relevant CpGs for smoking

Figure 34: Venn diagram showing overlap of CpGs selected for predicting smok-
ing status
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(a) Density plot for methylation of CpG ccg05575921 and smoking status

(b) Density plot for methylation of CpG cg21566642 and smoking status

Figure 35: Density plots for smoking status for the top two CpGs chosen by
both elastic net and my method
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CpG R2 Slope EN weight
cg05575921 0.33 -0.15 -6.67
cg21566642 0.31 -0.11 -3.93

Table 4: Table with metrics for the top two CpGs chosen by both elastic net
and my method for smoking

The table 4 presents the metrics for the top two CpG sites chosen by both elastic
net regression and my alternative method for their association with smoking.
The metrics provided include R2, slope, and elastic net (EN) weight. Let’s an-
alyze each CpG site’s metrics:

• CpG site cg05575921:

– R2 : 0.33 indicates that 33% of the variance in methylation beta
values can be explained by the model. This suggests a moderate
level of association between this CpG site’s methylation status and
smoking.

– Slope: -0.15 implies that as smoking exposure increases, the methy-
lation beta value at this site tends to decrease. The negative slope
indicates an inverse relationship between smoking and methylation
at this specific site.

– EN weight : -6.67, a negative value, highlights that this CpG site
has a strong association with smoking according to the elastic net
regression model. The more negative the value, the stronger the
association.

• CpG site cg21566642:

– R2 : 0.31 shows that 31% of the variance in methylation beta values
can be accounted for by the model, suggesting a moderately strong
association between methylation at this CpG site and smoking.

– Slope: -0.11, similar to the first CpG site, demonstrates an inverse
relationship between smoking and methylation at this site. The de-
crease in methylation is less pronounced compared to cg05575921,
but still noteworthy.

– EN weight : -3.93, although less negative than cg05575921, still indi-
cates a significant association with smoking according to the elastic
net regression model.

In summary, both CpG sites (cg05575921 and cg21566642) show a moderate
association with smoking, as evidenced by their R2 values. Both sites also ex-
hibit an inverse relationship between methylation and smoking, with cg05575921
having a slightly stronger effect. Elastic net regression weights further confirm
the association of these CpG sites with smoking, with cg05575921 having a
stronger association than cg21566642.
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18.3 Relevant CpGs for Benzene

Figure 36: Venn diagram showing overlap of CpGs selected for predicting Ben-
zene exposure
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(a) Density plot for methylation of CpG cg07156839 and benzene exposure status

(b) Density plot for methylation of CpG cg20139683 and benzene exposure status

Figure 37: Density plots for benzene exposure status for the top two CpGs
chosen by both elastic net and my method

69



CpG R2 Slope EN weight
cg07156839 0.994 -0.569 -7.822
cg20139683 0.990 -0.679 -3.709

Table 5: Table with metrics for the top two CpGs chosen by both elastic net
and my method

The table 5 presents the metrics for the top two CpG sites chosen by both elas-
tic net regression and an alternative method for their association with benzene
exposure. The metrics provided include R2, slope, and elastic net (EN) weight.
Let’s analyze each CpG site’s metrics:

• CpG site cg07156839:

– R2 : 0.995 indicates that 99.5% of the variance in methylation beta
values can be explained by the model. This suggests a very strong
level of association between this CpG site’s methylation status and
benzene exposure.

– Slope: -0.569 implies that as benzene exposure increases, the methy-
lation beta value at this site tends to decrease. The negative slope
indicates a direct relationship between benzene exposure and methy-
lation at this specific site.

– EN weight : -7.822, a negative value, highlights that this CpG site has
a strong association with benzene exposure according to the elastic
net regression model. The more negative the value, the stronger the
association.

• CpG site cg20139683:

– R2 : 0.997 shows that 99.7% of the variance in methylation beta
values can be accounted for by the model, suggesting an extremely
strong association between methylation at this CpG site and benzene
exposure.

– Slope: -0.679, like the first CpG site, demonstrates an inverse rela-
tionship between benzene exposure and methylation at this site. The
decrease in methylation is more pronounced compared to cg07156839.

– EN weight : -3.709, although less negative than cg07156839, still in-
dicates a significant association with benzene exposure according to
the elastic net regression model.

In summary, both CpG sites (cg07156839 and cg20139683) show an ex-
tremely strong association with benzene exposure, as evidenced by their R2
values. The cg07156839 site exhibits a direct relationship between methylation
and benzene exposure, while the cg20139683 site demonstrates an inverse rela-
tionship. Elastic net regression weights further confirm the association of these
CpG sites with benzene exposure, with cg07156839 having a stronger association
than cg20139683.
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Model RMSE Rsquared MAE
MEN 1.43 0.19 1.02

MEN1k 2.33 0.057 1.99
MEN100 1.33 0.30 0.99
MEN10 1.38 0.26 1.02
MNN1k 1.72 0.088 1.36
MNN100 1.73 0.17 1.36
MNN10 1.73 0.18 1.36
MLR1k 3.56 0.01 2.48
MLR100 1.55 0.16 1.18
MLR10 1.37 0.25 1.01

Table 6: The error metrics of the different PBB prediction models
The model column refers to which algorithms and predictors were used, MEN:
Elastic net all CpGs, MEN1k: Elastic net top 1000 CpGs, MEN100: Elastic

net top 100 CpGs, MEN10: Elastic net top 10 CpGs, MNN1k: neural net top
1000 CpGs, MNN100: neural net top 100 CpGs, MNN10: neural net top 10

CpGs, MLR1k: logistic regression top 1000 CpGs, MLR100: logistic regression
top 100 CpGs and MLR10: logistic regression top 10 CpGs.

19 PBB model evaluation
1. RMSE (Root Mean Square Error): This measures the average squared

difference between the predicted and actual values. Lower values indicate
a better model fit. In this case, the MEN100 model has the lowest RMSE
value (1.33), indicating that it has the best fit among the tested models.

2. R-squared (R2): This represents the proportion of the variance in the
dependent variable that is predictable from the independent variable(s).
R2 values range from 0 to 1, with higher values indicating a better model
fit. The MEN100 model has the highest R-squared value (0.30), meaning
it explains 30% of the variance in the data, which makes it the best model
among the tested models based on this metric as well.

3. MAE (Mean Absolute Error): This measures the average absolute
difference between the predicted and actual values. Like RMSE, lower
values indicate a better model fit. The MEN100 model has the lowest
MAE value (0.99), suggesting that it has the best fit among the tested
models based on this metric too.

Overall, based on the given error metrics, the MEN100 model appears to
be the best performing model for predicting PBB exposure using DNA methy-
lation data. However, it’s important to note that the highest R-squared value
(0.30) suggests that there is still a significant portion of the variance in the data
unexplained by the model. Further refinement or exploration of other modeling
techniques might be necessary to improve the prediction accuracy.
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20 Smoking model evaluation
In order to evaluate the performance of various smoking prediction models,
several key metrics were utilized: Balanced Accuracy, Precision, Recall (Sen-
sitivity), F1 Score, Specificity, and Negative Predictive Value (NPV). These
metrics provide a comprehensive understanding of each model’s ability to accu-
rately predict both positive and negative cases, while minimizing false positives
and false negatives. The values for each of these metrics, for every model under
consideration, are detailed in the table below. Please note that higher values for
each metric indicate superior performance. The models were constructed using
different algorithms and varying numbers of CpGs. The detailed results are as
follows:

1. Balanced Accuracy: This metric considers both sensitivity and speci-
ficity and is particularly useful when dealing with imbalanced datasets.
Higher values indicate better performance. The MEN1k model has the
highest balanced accuracy (0.8448), making it the best model in terms of
this metric.

2. Precision: This measures the proportion of true positive predictions out
of all positive predictions made. Higher values indicate better perfor-
mance. The MNN100 model has the highest precision (0.7692), suggesting
it has the best ability to correctly identify positive cases while minimizing
false positives.

3. Recall (Sensitivity): This measures the proportion of true positive pre-
dictions out of all actual positive cases. Higher values indicate better per-
formance. The MNB10 model has the highest recall (0.9071), suggesting
it has the best ability to identify positive cases in the dataset.

4. F1 Score: This is the harmonic mean of precision and recall, providing a
single metric that considers both false positives and false negatives. Higher
values indicate better performance. The MEN1k model has the highest
F1 score (0.8173), making it the best model based on this metric.

5. Specificity: This measures the proportion of true negative predictions
out of all actual negative cases. Higher values indicate better performance.
The MNN1k model has the highest specificity (0.8209), suggesting it has
the best ability to identify negative cases in the dataset.

6. Negative Predictive Value (NPV): This measures the proportion of
true negative predictions out of all negative predictions made. Higher
values indicate better performance. The MNB10 model has the highest
NPV (0.9133), indicating the best ability to correctly identify negative
cases while minimizing false negatives.
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Model Balanced Accuracy Precision Recall F1 Specificity Neg Pred Value
MEN 0.8155 0.7301 0.8500 0.7855 0.7811 0.8820

MEN1k 0.8448 0.7640 0.8786 0.8173 0.8109 0.9056
MEN100 0.8173 0.7484 0.8286 0.7864 0.8060 0.8710
MEN10 0.8180 0.7346 0.8500 0.7881 0.7861 0.8827
MNN1k 0.7854 0.7447 0.7500 0.7473 0.8209 0.8250
MNN100 0.8390 0.7692 0.8571 0.8108 0.8209 0.8919
MNN10 0.8302 0.7469 0.8643 0.8013 0.7960 0.8939
MNB1k 0.6552 0.5621 0.6786 0.6149 0.6318 0.7384
MNB100 0.7340 0.6391 0.7714 0.6990 0.6965 0.8140
MNB10 0.7944 0.6649 0.9071 0.7674 0.6816 0.9133

The model column refers to which algorithms and predictors were used, MEN: Elastic net all CpGs, MEN1k: Elastic net
top 1000 CpGs, MEN100: Elastic net top 100 CpGs, MEN10: Elastic net top 10 CpGs, MNN1k: neural net top 1000 CpGs,
MNN100: neural net top 100 CpGs, MNN10: neural net top 10 CpGs, MNB1k: naive bayes top 1000 CpGs, MNB100: naive
bayes top 100 CpGs and MNB10: naive bayes top 10 CpGs.

Table 7: The error metrics of the different smoking prediction models
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Part IV

Discussion
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21 Development and accuracy of prediction mod-
els

I trained ten prediction models for PBB exposure and ten additional moddels
for smoking habits. When looking at the precision metrics of RMSE for PBB
my model ranged from an RMSE of 1.33-3.56 this range is a bit skewed by my
two worst performing models with an RMSE of 3.56 and 2.33 and if we disregard
these outliers the range of RMSE becomes 1.33-1.73

For smoking habits effect we look at the models balanced accuracy for per-
formance and the models I trained ended up with an accuracy within the range
of 0.8448-0.6552.

21.1 Exposure to PBB
Looking at the RMSE, which measures the average squared difference between
predicted and actual values, we find that the MEN100 model (Elastic Net with
the top 100 CpGs) has the lowest value of 1.33. This suggests that, on average,
the MEN100 model’s predictions deviate less from the actual values, indicating
a better fit than the other models.

The R-squared value represents the proportion of variance in the dependent
variable that can be predicted from the independent variables. In this case, the
MEN100 model also has the highest R-squared value of 0.30. While this is the
best among the tested models, it is important to note that it’s relatively low in
absolute terms, indicating that the model accounts for only 30% of the variance
in the data. This suggests that there are other factors influencing PBB exposure
that are not captured by the top 100 CpGs.

The Mean Absolute Error (MAE) measures the average absolute difference be-
tween predicted and actual values, with lower values indicating a better fit.
Once again, the MEN100 model performs the best, with an MAE of 0.99.

Overall, the MEN100 model appears to have the best performance based on
the provided metrics. However, despite its relative success, further work is
needed to improve these models. The relatively low R-squared value for even
the best model when comparing to the existing prediction models for predicting
genetic age as seen in table 1 suggests that a significant portion of the variance
in PBB exposure remains unexplained. This could involve using more or differ-
ent CpGs, employing different algorithms, or incorporating additional types of
data beyond DNA methylation.

21.2 Smoking
The MEN1k model, which uses the Elastic Net algorithm and the top 1000
CpGs, performed exceptionally well according to two of the metrics: Balanced
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Accuracy and F1 Score. The high Balanced Accuracy of 0.8448 suggests that
this model performs well overall, with a good balance between sensitivity and
specificity. This is particularly important in imbalanced data sets This is good
because in my smoking set of 1137 samples 467 of them are smokers which is
significantly less than half. The high F1 Score of 0.8173 indicates that the model
has a strong balance between Precision and Recall, suggesting it can reliably
identify both positive and negative cases and minimize errors.

However, the MEN1k model did not outperform all other models in every met-
ric. The MNN100 model, which uses a Neural Net algorithm with the top 100
CpGs, had the highest Precision of 0.7692. This suggests that, while it may
not have the highest overall accuracy or balance between positive and negative
predictions, it is particularly good at minimizing false positives.

The MNB10 model, which uses the Naive Bayes algorithm and only the top
10 CpGs, showed the highest Recall and Negative Predictive Value. With a
Recall of 0.9071, this model is the most successful at identifying positive cases,
but it might come with a higher rate of false positives. Its high Negative Predic-
tive Value of 0.9133 shows that it is also strong at correctly identifying negative
cases and minimizing false negatives.

Interestingly, the MNN1k model, which uses the Neural Net algorithm and
the top 1000 CpGs, showed the highest Specificity of 0.8209. This indicates
its strength in correctly identifying negative cases, which is crucial in certain
contexts.

22 Effect of stressors on age acceleration
Aurora’s clock [75] and methylclock [15] implementation of Zhang [89] were
used to analyse age acceleration for the different stressors Aurora’s clock for
PBB and Zhang for smoking. All hypotheses were tested with both extrinsic
and intrinsic measures of Age Acceleration for which I examined the variations
in age acceleration.

22.1 PBB exposure
The scatter plots shown in figures 23 and 24 provide a visual representation of
the relationship between PBB exposure and age acceleration. Ideally, if there
were a strong positive or negative correlation between the two, the data points
would be closely grouped along a line sloping upwards (for a positive correla-
tion) or downwards (for a negative correlation). This would indicate that as one
variable increases, the other does too (or conversely, decreases).

In this case, however, the data points appear to be scattered with no visible
pattern, suggesting a lack of correlation between PBB exposure and age accel-
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eration. This is further substantiated by the p-value of 0.7929 obtained from
the linear model 24. In statistical terms, a p-value this high provides weak evi-
dence against the null hypothesis that there is no relationship between the two
variables. As such, based on this analysis, it would appear that PBB exposure
does not significantly influence extrinsic age acceleration.

However, a different story emerges when examining intrinsic age acceleration.
The p-value for this model 26 is 0.0298, which is less than the conventional
threshold of 0.05 for statistical significance. This suggests that PBB exposure
might be associated with intrinsic age acceleration, indicating a need for further
investigation.

These findings provide preliminary evidence suggesting that exposure to PBB
might influence the biological aging process, at least as measured by intrinsic
age acceleration. I found that PBB exposed had lower values of both CD4T
and CD8T and these are both taken into account when calculating intrinsic age
acceleration which might cause the improved result.

22.2 Smoking habits
When inspecting of the density plots referred to as figures 27 and 29, it becomes
apparent that there are no significant differences in the shapes of these distribu-
tions between smokers and non-smokers. If smoking had a considerable impact
on age acceleration, we might anticipate a noticeable shift in the distribution
of one group compared to the other. For instance, if the distribution of age
acceleration values for smokers were shifted to the right (i.e., depicting higher
values), this would suggest that smoking could be associated with increased age
acceleration.

However, the observed similarity in the distributions suggests that the age ac-
celeration does not differ dramatically between smokers and non-smokers, at
least not in a way that could be discerned from these density plots. This visual
interpretation is further supported by the p-values of 0.4833 and 0.3342 from
the statistical models 28 and 30 respectively. In a statistical context, these p-
values are well above the conventional significance level of 0.05, indicating that
we fail to reject the null hypothesis that there is no difference in either intrinsic
or extrinsic age acceleration between smokers and non-smokers.

This suggests that, according to the data and methods employed in this study,
smoking may not have a pronounced effect on age acceleration. However, this
does not negate the vast body of evidence that indicates smoking has numerous
other detrimental health effects [20, 21, 32, 58, 63]. Furthermore, this obser-
vation is specific to the measure of age acceleration used in this thesis which
uses predicted age calculated through Zhang clock [89] and does not rule out
potential effects of smoking detected by other methods or measures of biological
aging.
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23 Cell deconvolution
Since the tissue cell composition of the samples was already computed for use
in intrinsic age acceleration I was additionally able to investigate the difference
ins in cell type proportion for subjects exposed to PBB, smoking and benzene
compared non exposed subjects. PBB exposed to a lower amount of PBB seem-
ingly had a lower amount of both CD4T and CD8T cells than the subjects
with low exposure. For smoking I observed higher CD4T values in smokers and
lower CD8T values when comparing to non non smokers. Benzene exposure
observed significantly higher Values of both CD4T and CD8T in comparison to
the control subjects.

23.1 PBB exposure
The analysis of the cell composition in subjects exposed to PBB, as presented
in figure 14, reveals some interesting patterns. Both CD4T and CD8T cell lev-
els seem to be lower in subjects with higher ln(PBB) values. This finding is
intriguing because CD4T and CD8T cells are integral components of our im-
mune response. This is supported by the article [14] that the set is from which
surmised that PBB affected CpGs related to immune function and autoimmune
disease. Additionally I found an article [51] that found that PBB negatively
affected the immune system in rats.

Statistical models (15 and 16) provide further support for these observations.
The CD4T model shows an estimate of -0.004281 with a p-value of 0.00651,
implying a strong correlation between higher PBB exposure and reduced CD4T
levels. Similarly, the CD8T model presents an estimate of -0.0039498 with a
very significant p-value of 3.58e-05, suggesting a similar trend.

In terms of health implications, it’s essential to understand the distinct roles
that CD4T and CD8T cells play in our immune system. CD4T cells, commonly
referred to as helper T cells, are instrumental in managing the immune response.
They do not directly destroy infected cells, but rather signal other immune cells
to do so. Therefore, they are a key component in a coordinated, effective im-
mune response. [90]

On the other hand, CD8T cells, also known as cytotoxic T cells, are an in-
tegral part of our immune system. They actively seek out and destroy infected
cells, as well as cancer cells. They are our body’s primary defense against inter-
nal threats such as viral infections and tumor growth [68].

Consequently, lower levels of these two critical cell types could potentially im-
pair our immune response [40]. A diminished helper T cell population could
lead to a disorganized or less effective immune response, while a reduction in
cytotoxic T cells could weaken our body’s ability to directly combat infections
and malignancies. This implies that individuals with reduced CD4T and CD8T
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cell levels could potentially be more susceptible to infections and, potentially,
cancer development. This is also supported by findings that show that PBB has
been shown to be carcinogenic in animals [57].

23.2 Smoking habits
The data suggests that smoking has a significant impact on the cellular compo-
sition of blood, specifically on CD4T and CD8T cell levels.

Firstly, the CD4T cell level appears to be higher in smokers than in non-smokers.
This is supported by the statistical model 18 with an estimate of 0.013244, sug-
gesting an elevation in CD4T cell levels in smokers. The model’s p-value of
0.000758, a value well below the threshold of 0.05 for statistical significance,
reinforces the likelihood that this observation isn’t merely due to chance but
rather points to a genuine effect of smoking on CD4T cell levels.

Conversely, the CD8T cell levels in smokers seem to be slightly reduced. The
statistical model 19 provides an estimate of -0.005594, hinting at a decrease
in CD8T cell levels in smokers. However, the model’s p-value of 0.0829, while
not below the commonly accepted significance threshold of 0.05, still suggests
a potential relationship between CD8T cell levels and smoking, albeit less con-
vincing than the correlation with CD4T cell levels.

In terms of health implications, these changes in CD4T and CD8T cell levels
might affect the immune response. CD4T cells, or helper T cells, play a crucial
role in orchestrating the immune response [90], and their increase in smokers
may indicate an effort by the immune system to counteract the harmful effects
of smoking. On the other hand, CD8T cells, or cytotoxic T cells, are responsi-
ble for killing infected cells and cancer cells [68], and their decrease in smokers
might impair the immune system’s ability to combat infections or malignancies
effectively.

23.3 Benzene exposure
The analysis of cell composition in subjects exposed to benzene, as depicted in
figure 20, reveals noticeable differences in the levels of CD4T and CD8T cells
compared to non-exposed controls. Both CD4T and CD8T levels appear to be
substantially higher in benzene-exposed subjects.

Upon examining the relationship between CD4T levels and benzene exposure
through a statistical model (figure 21), we find an estimate of -0.02352. This
value suggests that CD4T levels tend to be lower in the control group. How-
ever, with a p-value of 0.257, the statistical significance of this relationship is
questionable. In other words, the observed variation in CD4T levels might be
due to factors other than benzene exposure,
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Similarly, the statistical model for CD8T levels (figure 22) indicates an estimate
of -0.04774, signifying lower CD8T levels in the control group. The p-value
of this model is 0.0708, which, while not achieving conventional thresholds of
statistical significance, suggests a possible correlation between CD8T levels and
benzene exposure.

From a health perspective, it’s important to note that CD4T and CD8T cells
are fundamental elements of our immune system. The observed increase in these
cell types in benzene-exposed individuals may be indicative of the body’s at-
tempt to initiate a robust immune response to counteract the potential harm
caused by benzene exposure.

However, one must consider the potential adverse consequences of such an im-
mune response. While an initial increase in CD4T and CD8T cells may be
beneficial, a prolonged state of heightened immune activity could result in im-
mune system dysregulation [26]. This could lead to persistent inflammation, a
condition that has been associated with various health complications [54].

Chronic inflammation, as a result of continuous immune activation, is a known
risk factor for several serious health conditions, including cardiovascular dis-
eases and cancer. It is therefore crucial that we consider the potential long-term
health implications of benzene exposure on the immune system. These findings
are also corroborated by this paper on benzene-associated immunosuppression
and chronic inflammation in humans [30].

24 Specific CpGs for investigated stressors

24.1 PBB exposure
The two CpGs chosen by elastic net were also found by the article [14] that
published the dataset that I used for my analysis which heavily supports that
these sites are affected by PBB.

24.1.1 cg19859270

The CpG site cg19859270 has an R-squared value of 0.393, suggesting that
approximately 39.3% of the variability in its methylation can be attributed to
PBB exposure. Furthermore, the slope of -0.036 indicates an inverse relationship
between PBB exposure and methylation at this site. As such, increases in PBB
exposure are associated with decreases in methylation values at this CpG site.
However the magnitude of the slope is rather small as methylation values are
between 1 and 0 a slope value of -0.036 Indicates that this change in methylation
is likely not significant
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24.1.2 cg04158069

The CpG site cg02657160 has an R-squared value of 0.285, indicating that about
28.5% of the variability in its methylation can be accounted for by PBB ex-
posure. The slope of -0.043 further corroborates this relationship, showing a
negative correlation between PBB exposure and methylation at this site. This
suggests that as PBB exposure increases, there is a corresponding decrease in
methylation at this CpG site, implying a potential influence of PBB on the
methylation but again the slope value of -0.043 is very small and might suggest
that the changes in methylation due to PBB exposure are not significant. It’s
important to take into account that while these patterns of methylation change
in response to PBB exposure are noted, the actual biological impact of such
small changes remains unclear.

24.1.3 cg04158069

The CpG site cg04158069 shows an elastic net weight of -6.590, indicating an in-
verse relationship between PBB exposure and methylation at this site. As PBB
exposure increases, a decrease in the methylation level at this site is expected.

24.1.4 cg18108008

The CpG site cg18108008 has an elastic net weight of 3.836. This positive weight
implies a direct relationship with PBB exposure. That is, an increase in PBB
exposure is predicted to result in an increase in the methylation level at this
CpG site. This relationship can be valuable for the prediction of PBB exposure
levels based on observed methylation data at this particular site.

24.2 Smoking habits
For smoking I found to cg05575921 and cg21566642 to be the two most signif-
icant CpGs this is backed up the article Tobacco Smoking Leads to Extensive
Genome-Wide Changes in DNA Methylation [38, 88]. This article includes both
these CpG sites and found a similar relationship where smokers where found to
have a significant lower amount of methylation at given sites. This is further
enforced in another paper by Epigenetic Signatures of Cigarette Smoking [38].

24.2.1 cg05575921

The CpG site cg05575921 exhibits notable characteristics in relation to smoking.
Its R-squared value of 0.33 indicates that 33% of the variance in methylation
beta values can be accounted for by the model, suggesting a moderate associ-
ation between the methylation status of this particular CpG site and smoking
behavior. The slope of -0.15 implies an inverse relationship; as smoking expo-
sure increases, methylation at this site tends to decrease. Further supporting
this association is the Elastic Net (EN) weight of -6.67. This negative value de-
notes a strong relationship with smoking according to the Elastic Net regression
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model, with more negative values indicating stronger associations. Together,
these findings suggest that the methylation status of cg05575921 could serve as
a meaningful biological indicator of smoking exposure.

This CpG has been used by others to predict lung cancer risk [60]. This is
very intruiging as lung cancer is generally considered to be the biggest risk of
cigarette smoking.

24.2.2 cg21566642

The CpG site cg21566642 also displays significant associations with smoking.
An R-squared value of 0.31 suggests that 31% of the variance in methylation
beta values can be explained by the model, indicating a moderately strong re-
lationship between the methylation status at this CpG site and smoking. The
slope of -0.11 further supports this association, revealing an inverse relationship
between smoking exposure and methylation at this site. Although the decrease
in methylation is less pronounced compared to cg05575921, it remains signifi-
cant. The Elastic Net (EN) weight of -3.93, despite being less negative than that
of cg05575921, still underscores a considerable association with smoking as per
the elastic net regression model. Thus, the methylation status of cg21566642
potentially serve as a marker for smoking exposure, albeit potentially less sen-
sitive than cg05575921.

Interestingly one publication [12] found that cg21566642 was also related to
coffee consumption, it was in fact the only CpG that met their criteria for
genome wide significance of P=3.7 × 10−10.However the article did consider
that most smokers also drink coffee and when adjusted for smoking their statis-
tical significance was reduced to P=3.7 × 5.4−4.

24.3 Benzene exposure
For smoking I found to cg07156839 and cg20139683 to be the two most sig-
nificant CpGs. I could not however find any articles that supported this find.
One interesting thing is that even though benzene is considered to be one of the
harmful chemicals in cigarette smoking the articles [38, 88] I found that detailed
CpGs related to smoking. I did however find that findings that reported that
cg07156839 were related to male infertility [74], however this study was done on
methylation in sperm cells. This is mostly interesting as benzene exposure has
been show to have an impact on male fertility [61].

24.3.1 cg07156839

For the CpG site cg07156839, the R-squared value of 0.995 indicates a very
strong association between this site’s methylation status and benzene exposure,
accounting for 99.5% of the variance in methylation beta values. The slope
of -0.569 further corroborates this relationship, illustrating that an increase in
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benzene exposure corresponds to a decrease in the methylation beta value at
this site. This negative slope suggests a direct inverse relationship between
benzene exposure and methylation at cg07156839. In the context of the elastic
net regression model, the EN weight of -7.822 for this site underscores a strong
association with benzene exposure. The more negative this value, the stronger
the association, making cg07156839 a notable indicator in the context of benzene
exposure.

24.3.2 cg20139683

The CpG site cg20139683 exhibits an extremely strong association with benzene
exposure, as indicated by an R-squared value of 0.997, which means 99.7% of
the variance in methylation beta values can be accounted for by the model. The
slope of -0.679 illustrates a strong inverse relationship; as benzene exposure in-
creases, methylation at this site significantly decreases. This decrease in methy-
lation is more pronounced compared to cg07156839, another CpG site. The
Elastic Net (EN) weight of -3.709, while less negative than that of cg07156839,
still highlights a significant association with benzene exposure according to the
elastic net regression model. Taken together, these results suggest that methy-
lation status of cg20139683 could serve as a highly sensitive biological indicator
of benzene exposure.

The lack of articles outlining external effects on these two CpG combined with
my findings that methylation in these sites are not only strongly related to ben-
zene exposure but that the change in methylation is significant indicates that
these sites could be specific to benzene exposure. This specificity could poten-
tially serve as a useful biomarker for benzene exposure in future research and
environmental monitoring efforts.

25 Data availability issues and quality of data
One of the biggest problems I encountered during the thesis was lack of avail-
able data sets. For PBB I had a single set with raw EPIC data which is What I
wanted but It would have been great to have one or two more sets that measured
PBB to make sure that the effects observed on the sets were caused by PBB
and not some other common variable in the cohort.

For smoking I only had 450k data available which means that there were roughly
400 000 CpGs that could potentially have a relationship with smoking that I
am unable to test. Additionally three of the smoking related sets GSE50660,
GSE54690 and GSE106648 did not include RAW idat files only a csv file con-
taining the calculated beta values. This posed a significant constraint as I could
not perform a comprehensive analysis on the raw data, limiting my ability to
detect more subtle relationships or patterns. The absence of RAW idat files
meant that I couldn’t reprocess the data or perform any quality control checks,
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thus leaving potential issues like batch effects, poor probe performance, or out-
lier detection unaddressed. These conditions could potentially skew the results
and lead to inaccurate conclusions.

My benzene set like the smoking set was in 450k format and post processed
beta values. And also like for PBB I could only find one set that contained
metadata on benzene exposure. A unique issue with this set was that it only
contained twelve subjects which means that this set was unfit for creating pre-
dictive models. Additionally this small sample size makes it challenging to draw
definitive conclusions and significantly reduces the statistical power of the study.
The inherent variability among the subjects, along with the potential for out-
liers, might disproportionately influence the results. Furthermore, this limited
number of subjects might not accurately represent the larger population, thus
reducing the external validity of my findings related to benzene.

I also had an issue were many of my sets namely GSE147430, GSE85210 and
GSE50967 did not contain any data on covariates aside from the main stressor
in the study. This meant that I could not look at the age acceleration of subjects
in these sets which limited my observations significantly. Additionally this also
meant that I was unable to verify whether there were any other factors that
impacted my findings on specific CpGs related to stressors.

26 Tissue type
The principle that methylation patterns are cell-specific is a fundamental tenet
of epigenetics [29, 91]. This is partly attributable to the necessity of cell differ-
entiation, which requires distinct active genes for various tissue types. Addition-
ally, the impact of external factors will differ among tissues [11]. For instance,
smoking has been shown to disproportionately alter methylation patterns in
lung tissue compared to blood [28, 77, 86].

This means that an examination of methylation changes without taking into
account the tissue type could lead to a partial understanding of the situation.
In this project, blood was the sole tissue type used for methylation analysis.
Therefore, it’s important to recognize that the results predominantly reflect
changes in blood cells and may not fully capture the impacts in other tissues.
This does not mean that there is guaranteed something to find by looking at
methylation in other types of tissue but it is definitely worth considering, espe-
cially tissue types that are known to be affected by the stressors such as lung
tissue for smoking [78] and sperm cells for benzene [61].
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27 Main discoveries and future work
All of my stressors indicated some level of effect on blood cell composition,
namely the levels of CD4T and CD8T. This suggests a significant immune re-
sponse to these stressors, potentially altering the cellular landscape of the blood.
Notably, these shifts in CD4T and CD8T levels might influence the overall im-
mune function and health status of an individual.The main takeaway from these
observations is that it supports previous articles on the health impacts of these
stressors [30, 38, 53, 80].

My prediction model results were not as good as I had hoped when setting
out on this project. For PBB my best model was MEN100 which was an elastic
net model using my top 100 CpGs and for smoking it was the MEN 100 model
which also was an elastic net model using my top 100 CpGs for smoking. While
these models both show that the pursuit of creating predictive models for these
exposures is not hopeless, I was hoping for results as good as those found when
trying to predict epigenetic ageing. However I do believe that improvements can
be made, particularly by refining the model features and perhaps incorporating
more advanced machine learning techniques. Additionally, the data itself was
a limiting factor. The data available for smoking and PBB is not as readily
available as methylation data with peoples age. It would also be incredibly
interesting If it would be possible to analyse methylation in the same subject
before and after exposure just as you have been able to track someones methy-
lation as they age and observe the differences.

For PBB and smoking the CpGs I idetified as relevant were also the ones found
in similar prior research [14, 38, 88]. This provides further evidence that these
CpG sites are reliably associated with these exposures, reinforcing their poten-
tial value in related health and environmental studies.

The discovery that I am most excited for is the potential of cg07156839 and
cg2013968 as specific biomarkers for detecting benzene exposure. What I am
hoping for here is that these CpG sites could serve as reliable indicators for
benzene exposure in future studies. If these associations are proven consistent
across larger and more diverse population samples, it could significantly enhance
our ability to quickly and accurately assess benzene exposure levels in individ-
uals. This could have significant implications for environmental health research
and public health interventions, potentially enabling targeted preventative mea-
sures for those at high risk of exposure. Furthermore, understanding the specific
methylation patterns associated with benzene exposure could provide valuable
insights into the underlying biological mechanisms of benzene-related health ef-
fects. It’s an exciting prospect to consider, and I look forward to seeing how
this line of research progresses.
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A GitHub
A GitHub has been created that contains all the code I used during this project.
It does not include my result data or the raw The repository is private. GitHub
accounts with access to the repository has therefore been created. Credentials
are provided in table 8, and a link to the repository is also below:

https://github.com/HugoNorholm/Master

Username Password
HugoMasterObserver1 HugoMaster1
HugoMasterObserver2 HugoMaster2

Table 8: GitHub account table
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