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Abstract

Reasonable Ontology Templates (OTTR) is a language designed to improve
the efficiency and quality of building, using, and maintaining knowledge
bases. OTTR introduces templates to create patterns of RDF triples.
Templates are instantiated by template instances, which can be expanded
to an RDF graph, and then stored in a triplestore. It is desirable to use
the template instances to dictate the content of the triplestore. Currently,
OTTR has no way of updating the triplestore when a change to the template
instances occurs, besides rebuilding all triples. In this thesis, we have
created several algorithms to more efficiently update the triplestore based
on changes to template instances. Our algorithms aim to update only the
parts affected by the change. First, we created a simple solution with
excellent performance, but strict assumptions about input data. Then,
we created other solutions that remove one or several assumptions. All
solutions significantly outperform OTTR‘s current solution in a typical
use case. We investigate the performance of the different solutions and
compare them to each other. The result of this thesis lays the groundwork
for how updates can be part of OTTR in the future.
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Chapter 1

Introduction

With the ever-increasing importance of information, data has quickly
emerged as a highly valuable resource. Being able to quickly access, link,
and interpret meaningful data is more important than ever. With this in
mind, the semantic web was created as an extension of the World Wide
Web that enables a web of linked data through defined standards and
technologies [45].

It is vital to make the web of data not only a collection of datasets, but
a standard format for data and their relationships among each other.
World Wide Web Consortium (W3C) [1], the organization responsible
for defining these standards, has created a common data format for this
purpose called Resource description framework (RDF) [9]. Additionally,
W3C has provided standards for accessing and reasoning over the data.
This is made possible through various technologies such as OWL, SPARQL,
and SHACL [22]. RDF enables connecting data from different systems
by expressing everything as triples. Triples connect two data resources
together with a relationship. A large collection of RDF triples are referred to
as an RDF graph. RDF graphs are typically stored in specialized databases
called triplestores [44].

Big RDF graphs can be built by creating many RDF triples of linked
data. The process of creating these graphs can be time-consuming as the
number of triples can quickly become high. Moreover, patterns in the
data have to be manually created, causing repetition and the possibility of
errors. Reasonable Ontology Templates (OTTR) is a framework for making
ontologies and RDF graphs that address these problems. This is done
by introducing templates as a way of creating parameterized modeling
patterns [46]. An instance of a template can be specified with appropriate
arguments and expanded into an RDF graph.

Using OTTR to create and maintain large RDF graphs is a significant
improvement compared to pure RDF. However, whenever the OTTR
instances or templates are changed, all OTTR instances must be expanded
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in order to rebuild the graph. This can be time-consuming, especially when
the graph is large. Therefore, it is desirable to be able to efficiently update
the RDF graph once a change occurs.

Let’s say you are a company creating large ships. For this purpose, a
large ontology is created in OTTR, modeling all ship parts, ranging from
bolts and nuts to water pipes. The parts are related to each other through
different properties based on their compatibility. For example, if a nut fits
on a bolt, a triple describing this fits-relation is created. The ontology
is stored in a triplestore, which makes it possible to modify and query
the data. Periodically new information is added to the triplestore when
new parts are introduced. Information is changed or removed when parts
are changed or no longer in use. For an ontology expert working with a
triplestore, it is desirable to process changes quickly, as this makes for a
better developing experience that is less prone to errors [47]. Engineers
planning ship construction use the triplestore to validate the correctness
of their plans. For them, the triplestore must be up-to-date and available.
In the case where the ontology is very large, a single rebuild might take
hours. During this time, no validation can be performed, making the ship
construction planners less efficient. If the update took minutes instead of
hours, one can expect productivity for both the ontology expert and the
ship planning engineer to increase.

In this thesis, we will investigate whether it is possible to create an efficient
update algorithm for OTTR. Secondly, we will explore how the input data
affects the algorithm’s performance. Lastly, we will evaluate whether the
algorithm is a good addition to OTTR.

1.1 Outline

This thesis is outlined as follows:

• Chapter 2: Background
This chapter covers the background information relevant to this
thesis. We provide an overview of the Resource description frame-
work (RDF). Following this, we introduce SPARQL, a query language
over RDF. Next, we cover a common extension to RDF and SPARQL;
RDF-star and SPARQL-star. Furthermore, we introduce OTTR and
its characteristics. Lastly, we present difference algorithms and how
they are used.

• Chapter 3: Problem specification
In this chapter, we present the problem specification in more detail
and an example of how an algorithm should work. The scope of
the thesis is presented together with a description of how we will
evaluate the results.
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• Chapter 4: Current solution: Rebuild solution
This chapter describes how updates in OTTR are currently per-
formed.

• Chapter 5: Solution assessment
Firstly, this chapter describes the typical use case for OTTR users.
Secondly, we describe what we test and how we test the solutions
in this thesis.

• Chapter 6: Simple solution
This chapter outlines a Simple solution. It describes how the solution
works and two assumptions being made: the duplicate assumption
and the local blank node assumption. Following this, it presents and
discusses its performance based on results from testing.

• Chapter 7: Implementation
In this chapter, the general implementation of the testing program
is discussed. Following this, it describes the implementation of the
Simple solution.

• Chapter 8: Removing the duplicate assumption
The Duplicate solution is presented. It describes how the duplicate
assumption can be removed. An outline of the solution is presented
together with details of the implementation. The results from testing
are presented and discussed.

• Chapter 9: Removing the local blank node assumption
The Blank node solution is presented and discussed. This chapter
outlines how to remove the local blank node assumption and
provides details on the implementation. The Blank node solution is
tested and compared to rebuilding.

• Chapter 10: Combined solution
This chapter explains how the Duplicate solution can be combined
with the Blank node solution to create a working update algorithm with
few limiting assumptions.

• Chapter 11: Comparison
In this chapter, we compare the different solutions to each other by
doing experimental evaluation.

• Chapter 12: Discussion
In this chapter, we discuss the findings of this thesis. We evaluate
if we managed to create a suitable update algorithm for OTTR and
discuss if it is suitable to become a part of OTTR. Then, we look at the
limitations of our evaluations.

• Chapter 13: Related Work
This chapter examines existing works related to this thesis and
evaluates their relevance to our work.
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• Chapter 14: Conclusion
In the final chapter, we summarize the main findings of this thesis.
Lastly, we provide suggestions for future work.
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Chapter 2

Background

OTTR is the framework of focus in this thesis that we want to extend
with and update algorithm. OTTR is created as an extension of semantic
technology to better interact with RDF graphs. In this chapter, we will
introduce the parts of semantic technology relevant to this thesis.

In Section 2.1, we look at RDF, a standard for modeling and exchanging
data on the Web. This section includes the central parts of the syntax
as well as its properties. Following this, Section 2.2 looks at SPARQL, a
query language over RDF. Moreover, in Section 2.3, we examine RDF-star,
an extension to RDF, and SPARQL-star, its corresponding query language.
Section 2.4 covers OTTR, a language used to create and represent RDF
graphs. Lastly, Section 2.5 covers briefly what a difference algorithm is
and the GNU Diffutils interface.

2.1 RDF

Resource description framework (RDF) is a standard for describing data
and is an essential element in the vision of a semantic web. This section
provides a brief description of RDF based on the W3C specification for RDF
1.1 [9].

RDF allows us to unambiguously identify resources through unique
identifiers called IRIs, making connecting data from several places across
different systems very simple. The main idea of RDF is that everything can
be expressed as triples. A triple is a sentence consisting of three resources: a
subject, a predicate, and an object in that order. For example "(Ola likes
food)". Here, "Ola" is the subject, "likes" is the predicate, and "food" is the
object. The end of a triple is marked by ".". A Triple is also referred to as
an RDF statement, or just statement. Resources in RDF are IRIs, blank nodes,
or literals, which we will explain in the following sections. A collection of
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these triples is called an RDF graph. RDF graphs are commonly stored in
purpose-built databases called triplestores [44].

IRI

An IRI (Internationalized Resource Identifier) is a globally unique string
that identifies a resource. In RDF, almost every resource has an associated
IRI to identify it. The exception is data values and blank nodes, which we
will discuss in the following sections. By using IRIs instead of local IDs,
we can combine our graph with another graph that uses the same IRIs for
the same resources, without the need to match the data explicitly. Using
existing IRIs is much better than creating new ones, as it is easier to connect
to existing datasets. URLs, emails, and ISBNs are examples of IRIs. In RDF,
IRIs are surrounded by angle brackets, like this "<IRI>".

1 <https ://en.wikipedia.org/wiki/John_Adams >
2 <http :// xmlns.com/foaf /0.1/ knows >
3 <https ://en.wikipedia.org/wiki/George_Washington > .

Listing 2.1: IRI example

The example in Listing 2.1 illustrates a triple with three IRIs, that all are
unique and unambiguous. If we go to the page
https://en.wikipedia.org/wiki/George_Washington, we will see the first
American president and not another person also named George Washing-
ton. The predicate in this triple is an URL to a page that describes the knows
relation. In this way, we can precisely state that John knows George.

Prefixes and Qnames

In the example in Listing 2.1, there is a triple with three entire IRIs. This
way of writing triples is expressive, but inconvenient for humans because
IRIs are long and hard to read. Therefore, we usually use Qnames [10] to
make them more readable. Qnames consist of a prefix and a local part.
Websites often define multiple concepts within the same domain, resulting
in the beginning of the IRIs being the same for multiple resources, only
differentiated by the ending. We define prefixes for the beginnings and
add local parts for the endings.

1 @prefix foaf: <http :// xmlns.com/foaf /0.1/>
2 @prefix wiki: <https ://en.wikipedia.org/wiki/>
3
4 wiki:John_Adams foaf:knows wiki:George_Washington .

Listing 2.2: Qname example
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In the example in Listing 2.2, we use Qnames three times; wiki:John_Adams,
wiki:George_Washington and foaf:knows. This triple is equivalent to the
one in Listing 2.1.

Literals and Blank nodes

In some cases, representing data without giving it an IRI is desirable. It
would not be beneficial to link all occurrences of the number "1" together
due to how common it is. To achieve this, literals are used. Literals are used
to represent data values and their associated type. By default, all literals
are interpreted as a string, but a datatype can be specified by appending
the value with a data type. For example, "12^^xsd:int" gives the value 12
the xsd:int datatype, which is a standard integer [5].

Blank nodes behave like resources without an IRI. They enable the
specification of resources we cannot or do not want to give an IRI. Blank
nodes can be used when linking multiple resources, like an address
consisting of a street name, street number, and city. Some RDF syntaxes
have blank node identifiers available in the local scope. Blank nodes are
represented by "_:name", where "name" is the name of the blank node.
Blank nodes can also be represented by "[]", but we will use "_:name"
in this thesis. Listing 2.3 is an example where someone we call "X" is 20
years old and knows John.

1 @prefix foaf: <http :// xmlns.com/foaf /0.1/>
2 @prefix wiki: <https ://en.wikipedia.org/wiki/>
3 @prefix xsd: <http ://www.w3.org /2001/ XMLSchema#>
4
5 _:X foaf:knows wiki:John_Adams .
6 _:X foaf:age 20^^ xsd:Integer .

Listing 2.3: Literals and blank nodes

Format

There is a variety of syntax notations for writing RDF triples. All previously
shown examples are in turtle format [6]. Turtle is a widely used format, as
it is easy for humans to read. We will, therefore, continue to use the turtle
notation when showing examples of RDF. In addition to the already shown
features, turtle has syntactic sugar for a single subject used in several
triples. This is done by adding ";" instead of "." after a triple, then
continuing with the predicate and object of a new triple. Similarly, ","
can be used to reuse the same subject+predicate in multiple triples. These
features are common and will be used in RDF examples. This syntactic
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sugar is shown in Listing 2.4, where someone (blank node) knows John
and George, and is interested in freedom.

1 @prefix foaf: <http :// xmlns.com/foaf /0.1/>
2 @prefix wiki: <https ://en.wikipedia.org/wiki/>
3 @prefix xsd: <http ://www.w3.org /2001/ XMLSchema#>
4
5 _:X foaf:knows wiki:John_Adams ,
6 wiki:George_Washington ;
7 foaf:interest wiki:freedom .

Listing 2.4: Turtle format

Properties of RDF

In RDF, there is an IRI for almost everything, even relations. In the earlier
example (Ola likes food), we used the relation "likes" as a predicate.
However, this is also a resource that can be described. For example,
(likes a predicate) where "likes" is the subject and is described as
a predicate. This way, data can specify other data’s semantics, but RDF
also allows it to specify its own semantics. The statement: (owl:sameAs
owl:sameAs owl:sameAs) is a self-describing statement where owl:sameAs
describes itself. The ability to describe the relations in an RDF graph
differentiates it from graphs in graph theory, where giving edges attributes
is impossible.

RDF’s simple structure allows it to express any statement. There are no data
type requirements or conflicting statements that restrict a valid statement,
and this makes RDF suitable for data integration. It is always possible to
add another statement to an already existing RDF graph or combine two
different graphs by simply adding all statements together.

Vocabularies

To make the RDF graph use as few new IRIs as possible, we look to
common vocabularies that already define many resources. In this way,
our graph can be combined with other graphs that use the same IRIs for
the same resources. An example of this is the "Friend of a friend" (foaf)
vocabulary. Foaf is devoted to linking people on the web and has defined
many "Social network" resources like the relation knows.

RDF and RDFS [21] are examples of other famous vocabularies. RDF
contains the property type, but this is usually abbreviated as "a" instead of
rdf:type. This is used to specify the type of a resource. These vocabularies
also introduce several other data-modeling terms like classes, properties,
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resources, subclasses, sub properties, domain and range.

2.2 SPARQL

SPARQL is a query language over RDF [4]. It is used to create, manipulate
and extract data from triplestores, similar to the query language for
relational databases SQL [19]. This section provides an overview of
SPARQL fundamentals and a selection of operations relevant to this thesis.

Basics

A SPARQL query consists of multiple optional and non-optional parts. The
first part of a query is the prefix declarations. This is similar to how RDF
prefixes can be shortened using Qnames as discussed in Section 2.1. The
prefix foaf is defined on line 1 in Listing 2.5.

The second part is where we specify what should be done and returned.
There are different kinds of clauses, for different operations. For example,
select, construct, delete, insert, and more. In the SELECT clause, we choose
which data to be the result of the query. We define variables which we
further describe in a corresponding WHERE clause. Line 2 in Listing 2.5
specifies that we want to SELECT one variable: the ?name. SELECT returns
all or a subset of variables bound in the WHERE clause. A CONSTRUCT query
can be used as an alternative to SELECT. It uses a WHERE clause in the same
way, but creates a graph to return instead of just values [26].

Following this part is the dataset definition. As a dataset can consist of
multiple sub-graphs, SPARQL provides the keyword FROM to specify which
sub-graph we query over [56]. The query will be evaluated on the default
graph if a FROM clause is not specified.

The WHERE clause is used to specify a graph pattern to search for. This
pattern should include the variables specified in the SELECT clause, but it
typically also includes other variables, IRIs, or literals [4]. In the example
shown in Listing 2.5 on lines 5 and 6, we are looking for people who
are 67 years old (line 5) and their names (line 6). Upon execution of the
query, the simple graph pattern is matched with a subgraph of the RDF
data. In SPARQL, joins occur as parts of the triple patterns. If the same
variable name is used in several triples, they are joined, combining their
information.

Lastly, we have the query modifiers as shown on line 8. These are
operations that modify or change the result of the query. The LIMIT
operator limits the number of results returned, 1 in this case. There are
many other operators, for example, ORDER BY, GROUP BY, and OFFSET, that
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order, group, and skip results, respectively.

1 PREFIX foaf: <http :// xmlns.com/foaf /0.1/>
2 SELECT ?name
3 FROM <http :// norway.no/population >
4 WHERE {
5 ?person foaf:age "67" .
6 ?person foaf:name ?name .
7 }
8 LIMIT 1

Listing 2.5: SPARQL query

1 :id1 foaf:name "William" .
2 :id1 foaf:age "67" .
3 :id2 foaf:name "George" .
4 :id2 foaf:age "42" .
5 :id3 foaf:name "Thomas" .
6 :id3 foaf:age "67" .

Listing 2.6: RDF graph being queried

name
Thomas

Table 2.1: Result of the query

Performing the query in Listing 2.5 over the RDF graph in Listing 2.6
Results in Table 2.1. Note that while both "William" and "Thomas" match,
the LIMIT 1 operator limits the result to only one of the matches.

Update

We will now briefly outline the W3C recommendation "SPARQL 1.1
Update" [40]. SPARQL offers two operations to manipulate graphs, INSERT
and DELETE. The operations change the existing graph in a triplestore
by inserting or deleting a triple, respectively. An operation can be made
conditional by using the WHERE clause. In Listing 2.7, we insert a triple
stating that every person of age 67 is a senior.
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1 INSERT {
2 ?person ex:ageGroup :senior .
3 }
4 WHERE {
5 ?person foaf:age "67" .
6 }

Listing 2.7: INSERT query

Updating a triple in the graph can be viewed as deleting the old triple
and inserting a new one with the updated value. This is a common
usage pattern; therefore, SPARQL includes a DELETE/INSERT operation.
The DELETE/INSERT operation is interpreted as one operation rather than
a sequence of operations. This results in a more powerful query than
a sequential one, as the WHERE query will match the triples that will be
updated. In the Listing 2.8, the name is changed from Bill to William for
every Bill that is 30 years old.

1 DELETE { ?person foaf:name ’Bill’ }
2 INSERT { ?person foaf:name ’William ’ }
3 WHERE {
4 ?person foaf:name ’Bill’ .
5 ?person foaf:age "30" .
6 }

Listing 2.8: DELETE/INSERT query

Advanced operations

Apart from the previously mentioned operations, SPARQL provides a
wide range of additional functionality. We will now explore a selection
of SPARQL functionality relevant to this master thesis.

The example in Listing 2.9 shows a query that selects the name of everyone
with an address that no one else has. In other words, the name of all those
who live alone. This is achieved by combining a sub-query, an aggregator,
and a filter. The sub-query from lines 6 to 11 is the first part of the query
to be evaluated. On line 7, we see an example of an aggregation operator:
count. This operator counts the number of occurrences of the ?address
variable bound in the subsequent where clause. The result of this count is
bound to a variable ?num_at_address with the AS keyword.

A filter is applied to the result of this sub-query. By specifying
?num_at_address = 1, only the cases where ?address is bound precisely
one time in the subquery are returned. Finally, the graph in the where
clause is combined with the graph in the subquery and is evaluated over
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the triplestore.

1 SELECT ?name
2 WHERE {
3 ?person foaf:name ?name .
4 ?person foaf:address ?address .
5 # subquery
6 {
7 SELECT (count(? address) AS ?num_at_address)
8 WHERE {
9 ?person foaf:address ?address .

10 }
11 }
12 FILTER (? num_at_address = 1)
13 }

Listing 2.9: Subquery with aggregate function

When we wish to perform the same action for multiple elements, the
VALUES clause allows us to specify a set of possible values for one or more
variables. In Listing 2.10, we specify that the ?name variable can have the
value of either "William" or "Bill".

1 SELECT ?name ?age
2 WHERE {
3 ?person foaf:name ?name .
4 ?person foaf:age ?age .
5 VALUES (?name) {
6 ("William")
7 ("Bill")
8 }
9 }

Listing 2.10: Query with values. Name must be "William" or "Bill"

When only parts of the result is aggregated, as shown in Listing 2.11, it
is necessary to specify how to combine the aggregated variables with the
other variables. We can do this by grouping the results by a variable. An
alternative approach to using the VALUES clause when assigning multiple
values to a variable is by using FILTER (?variable IN ( element1
element2 ...)).
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1 SELECT ?name (COUNT(?known) AS ?nr_friends)
2 WHERE {
3 ?person foaf:name ?name .
4 ?person foaf:knows ?known .
5 FILTER (?name IN ( "William" "Bill" ))
6 }
7 GROUP BY ?name

Listing 2.11: Query with group by. Find the number of friends called
"William" or "Bill"

2.3 RDF-star and SPARQL-star

RDF-star, often referred to as RDF*, is an extension of RDF that allows
statements to be represented as a single resource [31]. This enables
the creation of statements about statements. Being able to describe
the statements in a graph separates RDF* from standard RDF, which is
only intended to describe the resources in a graph [55]. However, RDF
reification makes this possible, by having separate triples to specify subject,
predicate, and object to a resource, then this resource can be referenced to as
the triple. While possible, this is unpractical to use, as it requires describing
every node in a triple with its own triple [42]. We will now look at the idea
behind RDF* and how SPARQL* enables querying over it.

Let us say that we have a small graph with a single triple (<Ole>
:knows <Kari>). With RDF, we have no simple way of describing when
this relation started. We could create another triple with a :gotKnown
relation, but it is not explicit that those two relations are related. That
requires implicit knowledge about the relations. With RDF*, however,
we can describe the statement (<Ole> :knows <Kari>). We can treat
the statement as a single resource by surrounding it with double angle
brackets, << statement >>. In Listing 2.12, we have added a statement
about a statement. We now know when the :knows relation between <Ole>
and <Kari> started.

1 <Ole > :knows <Kari > .
2 << <Ole > :knows <Kari > >> :started

"2018 -08 -28"^^ xsd:date .

Listing 2.12: RDF* example

SPARQL-star, or SPARQL*, is an extension to SPARQL that allows querying
over RDF* graphs. The syntax with angle brackets can also be used
here to represent statements as resources. SPARQL* also introduces some
functions [7] that we do not use in this thesis. In Listing 2.13, we ask for
all triples with a date newer than "2000-01-01". This would return (<Ole>
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:knows <Kari>) from Listing 2.12.

1 SELECT ?s ?p ?o
2 WHERE {
3 <<?s ?p ?o>> :date ?d
4 FILTER (?d < "2000 -01 -01"^^xsd:date)
5 }

Listing 2.13: SPARQL* example

RDF* and SPARQL* have become quite popular and are enabled by default
in Fuseki [11], our triplestore of choice. W3C and other companies are
working on making RDF* and SPARQL* the standard for representing
metadata with triples [55].

2.4 OTTR

Reasonable Ontology Templates (OTTR) is a language with tools for
representing and creating RDF graphs. OTTR has templates to represent
RDF patterns and creates a higher level of abstraction by using these as
building blocks rather than RDF triples, allowing users to easily build and
maintain larger ontologies. We will now present the basic building blocks
of OTTR as well as some of its characteristics.

Templates

An OTTR template, or just template, consists of a signature and a body.
The signature on line 1 in Listing 2.14 specifies the template name and the
parameters, similar to a function in other programming languages. The
body, written on lines 2 and 3, contains instances of other templates.

1 ex:Person[?person , ?name , ?age] :: {
2 ottr:Triple(?person , foaf:name , ?name),
3 ottr:Triple(?person , foaf:age , ?age)
4 }

Listing 2.14: OTTR template

In Listing 2.14, a person template takes ?person, ?name, and ?age as
parameters. The body contains two instances of the ottr:Triple template,
one with the person’s name and one with age. ottr:Triple is a base
template. Base templates are special templates that do not contain a body.
They usually represent a fundamental data structure in the underlying
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technology. OTTR currently contains only one base template, ottr:Triple.
This base template represents an RDF triple and takes three arguments;
subject, predicate, and object. It is also possible to define custom base
templates if needed. Each instance of the ex:Person template will create
two ottr:Triple instances, which we can convert to RDF triples with the
given arguments.

Instances

OTTR can represent an RDF graph by creating OTTR template instances
of the templates. Template instances, OTTR instances, or just instances all
refer to the same unless specified otherwise. In Listing 2.15, there is an
example of an instance of the ex:Person template.

1 ex:Person(<bob >, "Bob Marley", 36) .

Listing 2.15: OTTR instance

The expansion of an OTTR instance is done by populating the instances in
the template body with the corresponding arguments, and then continuing
with expanding them again until all instances are base templates, which
cannot be expanded [32]. The instance of the ex:Person template
(Listing 2.15) expands to the instances in Listing 2.16. These are instances
of ottr:Triple, which is a base template that will not expand to anything
else. ottr:Triple represents RDF triples, so these instances can be
converted to the corresponding RDF triples as shown in Listing 2.17.

1 ottr:Triple(<bob >, foaf:name , "Bob Marley ") .
2 ottr:Triple(<bob >, foaf:age , 36) .

Listing 2.16: OTTR expansion

1 <bob > foaf:name "Bob Marley" .
2 <bob > foaf:age 36 .

Listing 2.17: RDF representation

We now have a more efficient way of creating RDF graphs. The efficiency
is especially prevalent when the same pattern is created many times and
when a single template results in many triples.

Nested templates

A template contains instances of other templates, with the exception of
base templates; this makes templates a recursive data structure. By nesting
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templates, we can represent complex structures, creating several layers of
abstraction. Listing 2.18 is an example of a template for a couple that takes
two persons as arguments and creates one ex:Person instance for each.
Then, the ex:Person instances would further expand to ottr:Triples as
previously shown.

1 ex:Couple[?p1, ?p1Name , ?p1Age , ?p2, ?p2Name , ?p2Age]
:: {

2 ex:Person(?p1, ?p1Name , ?p1Age),
3 ex:Person(?p2, ?p2Name , ?p2Age)
4 }
5
6 ex:Person[?person , ?name , ?age] :: {
7 ottr:Triple(?person , foaf:name , ?name),
8 ottr:Triple(?person , foaf:age , ?age)
9 }

Listing 2.18: Nested OTTR templates

Types

One key benefit of OTTR is the type system. OTTR allows you to specify
the type of the parameters in the templates, and will catch errors early if it
receives data in the wrong format. In this way, OTTR can contribute to a
robust and understandable system. While the type system is an essential
part of OTTR, it is not important for understanding the topics discussed in
this thesis. We will now show a simple example of how types in OTTR are
specified. For more information on OTTR types, see [34].

Specifying a type in OTTR is done by writing the type before an argument.
This is done in Listing 2.19, where the person must be an IRI, the name
a string, and the age an integer. OTTR has several standard types known
from RDF and XSD, but also some OTTR-specific types, like ottr:IRI, none,
and list types. OTTR also checks for type consistency, which means a
parameter cannot be forced to have multiple incompatible types.

1 ex:Person[ottr:IRI ?person , xsd:string ?name ,
xsd:integer ?age] :: {

2 ottr:Triple(?person , foaf:name , ?name),
3 ottr:Triple(?person , foaf:age , ?age)
4 }

Listing 2.19: OTTR template with types
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Other OTTR constructs

OTTR supports optional arguments [34]. A parameter can be marked
optional with a question mark "?". ottr:none is used to represent a missing
or no value. If "none" is used as an argument to an optional parameter, then
the instance is expanded normally as for any other value. If "none" is used
as an argument to a non-optional parameter, then the whole instance is not
expanded. Arguments can also have a default value, marked by setting
?parameter=value. The default value will be used when the argument is
"none".

Arguments can also be lists of a specified type. Parameters can be marked
as a list with List<type>, where type is the type of the elements. If
we want to create several instances with the list-elements as arguments
rather than passing the entire list to a single instance, we must specify an
expansion mode and mark the parameters with ++. There are currently
three expansion modes: cross, zipMin, zipMax. If there is only one list
argument, then it does not matter which expansion mode we choose. An
expansion of a single list is shown in Listing 2.20. In this example, Bob
would end up knowing both Lisa and Roger, and they would know him as
seen in Listing 2.21. Here, cross was used, but zipMin and zipMax would
have given the same result.

1 ex:Friends[?person , List <ottr:IRI > ?friends] :: {
2 cross | ex:Friend(?person , ++? friends)
3 }
4
5 ex:Friend[?person1 , ?person2] :: {
6 ottr:Triple(?person1 , foaf:knows , ?person2),
7 ottr:Triple(?person2 , foaf:knows , ?person1)
8 }
9

10 ex:Friends(<bob >, (<lisa >, <roger >))

Listing 2.20: OTTR, one list parameter

1 ex:Friend(<bob >, <lisa >) .
2 ex:Friend(<bob >, <roger >) .

Listing 2.21: One step of expansion of Listing 2.20

The different expansion modes behave differently when there are multiple
list parameters. If the first parameter in ex:Friends also is a list, then we
would need a way to specify which combination of list elements should be
used as arguments together. Cross means using every combination, i.e.,
Cartesian product. zipMin traverses both lists simultaneously and stops
when one list stops. zipMax is the same as zipMin, but continues until
the longest list stops. When the shorter list stops, it continues with "none"
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values instead. Examples of this can be seen in Listing 2.22 and Listing 2.23

1 ex:Friends[List <ottr:IRI > ?persons , List <ottr:IRI >
?friends] :: {

2 expansion_mode | ex:Friend(++? person , ++? friends)
3 }
4
5 ex:Friend[?person1 , ?person2] :: {
6 ottr:Triple(?person1 , foaf:knows , ?person2),
7 ottr:Triple(?person2 , foaf:knows , ?person1)
8 }
9

10 ex:Friends((<bob >), (<lisa >, <roger >))

Listing 2.22: OTTR, two list parameter

1 # expansion_mode = cross
2 ex:Friend(<bob >, <lisa >) .
3 ex:Friend(<bob >, <roger >) .
4
5 # expansion_mode = zipMin
6 ex:Friend(<bob >, <lisa >) .
7
8 # expansion_mode = zipMax
9 ex:Friend(<bob >, <lisa >) .

10 ex:Friend(ottr:none , <roger >) .

Listing 2.23: One step of expansion of Listing 2.22

Expansion

The expansion of instances continues until all instances are base templates
and can be summarized in these points:

• If it is an instance of a base template, it doesn’t expand as it has no
pattern.

• If an argument has a list expander (++), the list is expanded, and
new instances are created by applying a specified operation (cross,
zipMin, zipMax). The expansion of this instance will be the collection
of all the newly generated instances.

• If an argument has no value and its corresponding parameter is not
optional and has no default value, then the result of the expansion
is the empty set. If it has a default value, then that is used as the
argument.

19



• Otherwise, create the new instances in the template body and replace
the parameters with the corresponding arguments.

Lutra

Lutra is an open source implementation of the OTTR language [49].
It supports reading and writing OTTR templates and instances and
expanding instances into RDF graphs. It is implemented in Java, and is
available as a command line interface and as a library.

2.5 Difference algorithm

The first step in creating an efficient update algorithm is identifying what
needs to be updated. In our case, this would be identifying the difference
between the OTTR instance files before and after a change has occurred.
Creating a representation of the difference between two strings can be done
using a difference algorithm, commonly called a diff algorithm. There
are multiple practical use cases utilizing diff algorithms, including version
control systems like git [27] and data compression with delta encoding [36].

GNU Diffutils

GNU diffutils is an open-source package published under the GNU GPL
version 3+ license [20]. The package contains a diff command which is
used to show the difference between two files. The two files are compared
on a line-by-line basis. The diff algorithm finds sequences of common lines
together with groups of different lines called hunks [20]. The command
minimizes the total hunk size and, in the process, maximizes the length of
sequences of common lines.

Example

Given an instance file A

1 ex:Person(<111>, "Romeo") .
2 ex:Person(<222>, "Juliet ") .
3 ex:Person(<333>, "Mercutio ") .

And an instance file B
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1 ex:Person(<111>, "Changed name") .
2 ex:Person(<222>, "Juliet ") .

The output of a diff command between File A and File B

1 1c1
2 < ex:Person(<111>, "Romeo") .
3 ---
4 > ex:Person(<111>, "Changed name") .
5 3d2
6 < ex:Person(<333>, "Mercutio ") .

The output of the diff command is a sequence of hunks. The hunks are
first described by a change command as seen on lines 1 and 5 in the diff
output, followed by the affected lines. A change command consists of 3
parts. Firstly is the interval of affected lines in the first file. Secondly is the
operation to be performed. This is either change (c), delete (d), or insert (i).
Lastly is the interval of lines affected in the second file.

Gnu Diff utils implement the Myers diff algorithm with a heuristic by Paul
Eggert [38]. The algorithm is versatile and fits different types of input string
pairs. It also scales with the size of the changes, meaning it performs well
in cases where the number of changes is few compared to the total amount
of data in the file. In addition, the Myers algorithm serves as the core
of popular tools such as Google Diff match patch [28] and as the default
algorithm in git diff [27].
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Chapter 3

Problem specification

This chapter covers the objective of this thesis and a short description of the
problem to investigate. Following this, is a short example of the intended
behavior of an update algorithm. Further is a formal definition of the
problem presented. Lastly, we cover the problem’s scope and how this
thesis’ results will be evaluated.

In this thesis, our objective is to answer three questions:

• Is it possible to create an efficient update algorithm for OTTR

• How the input data affects the algorithm’s performance

• Is the algorithm a good addition to OTTR

To answer if it is possible to create an efficient update algorithm for OTTR,
we will investigate the following problem: Given a set of OTTR templates,
a set of OTTR instances, and a triplestore consisting of the expansion of
the instances over the templates. Suppose we now make a change to the
instances. In that case, we want to create an efficient update algorithm
that correctly updates the triplestore to reflect the changed instances. If
the triplestore is equal to the expansion of the new instance file, we
say that the instances and triplestore are synchronized. Conversely, if the
triplestore is not equal to the expansion of the new instances file, we say
that the instances and the triplestore are desynchronized. If we can create an
algorithm that efficiently keeps the triplestore synchronized when a change
is made to the instances, then it is possible to create an efficient update
algorithm for OTTR.

To identify how the input data affects the algorithm’s performance, we will
measure the algorithm with different kinds of input. Since we cannot test
all kinds of data, we will measure a selection that we expect to have the
greatest impact on performance.
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To answer whether the algorithm is a good addition to OTTR, we must
identify the typical use case for an OTTR update algorithm and measure
how our algorithm performs in such a case. If our algorithm gives correct
results, outperforms OTTR’s current solution, which is discussed in the
next chapter, and would perform equally well if implemented in OTTR,
then the algorithm would be a good addition.

Example

Given a template

1 ex:Person[?person , ?name , ?age] :: {
2 ottr:Triple(?person , foaf:name , ?name),
3 ottr:Triple(?person , foaf:age , ?age)
4 }

And a template instance

1 ex:Person(ex:Bob , "Bob", 32) .

This expands to the following RDF triples

1 ex:Bob foaf:name "Bob" .
2 ex:Bob foaf:age 32 .

If one were to change the name from "Bob" to "Bobby"

1 ex:Person(ex:Bob , "Bobby", 32) .

The algorithm should interpret the change in the file and generate the
following query.

1 DELETE { ex:Bob foaf:name "Bob"}
2 INSERT { ex:Bob foaf:name "Bobby"}
3 WHERE { ex:Bob foaf:name "Bob" }

The execution of this query results in the RDF graph being changed to
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1 ex:Bob foaf:name "Bobby" .
2 ex:Bob foaf:age 32 . #this triple is untouched

Listing 3.1: Resulting RDF graph

The graph in Listing 3.1 is identical to the graph that would have been
created if the entire graph had been rebuilt using the new template
instances.

Formal definition

Let L be a template library consisting of OTTR templates. Let I be a
set consisting of instances over L. We assume that both L and I are
syntactically correct. Let the graph G be the result of the expansion of I
over L. Let I ′ be a changed version of I (inserting, deleting, or changing
instances). Let G ′ be the graph computed as a result of the expansion of I ′

over L.

Given L, I , I ′,G, create a set of SPARQL update queries Q such that the
result of executing Q on G results in G ′.

Scope

The scope of this thesis will cover an algorithm that solves the presented
update problem efficiently, as well as the detection of changes in the OTTR
data. To achieve the objective of this thesis, we do not have to create a
robust solution but rather a sufficient solution for providing results for
evaluation.

We make the following simplifying assumptions:

1. The OTTR data is valid and does not contain changes that lead to
inconsistently typed instances.

2. The order of the instances in the new and old instance files are the
same, except for any changes that have been made.

3. The original triplestore is the expansion of the old OTTR data and is
not changed by a reasoner or modified in any way.

4. No blank nodes are passed as an argument to an instance in the
instance files. This assumption is discussed in Section 5.1.
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Evaluation

There are various ways to assess the result of the solutions presented in
this thesis that show different aspects of the solutions. As one of the goals
of this thesis is to evaluate whether it would be advantageous to extend
OTTR with updates, we chose to evaluate the results on how it would
perform practically rather than theoretically. We will evaluate the solutions
by benchmarking.

For the update algorithm to be used in a practical setting, it must
outperform the current implementation in most typical use cases. Given
an existing RDF graph and a change, we will measure the time it takes to
detect the changes, create the update, and execute the update query. The
results will be compared to a baseline, which is the time OTTR currently
uses to handle updates. The benchmark will measure the time spent in
multiple testing scenarios with varying graph sizes and changes as well as
a varying number of duplicates or blank nodes.
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Part II

Solutions
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Chapter 4

Current solution: Rebuild
solution

To evaluate a given solution, it is necessary to compare it to the current way
of updating an OTTR-constructed triplestore. As it stands today, updating
is possible but inefficient.

The current method of updating an OTTR-constructed triplestore consists
of rebuilding the whole graph and replacing the existing data in the
triplestore with the newly constructed graph. More precisely: given a
set of instances I over a template library L, a graph in a triplestore G
resulting from expanding I over L, then if a change has been made to I ,
now I ′, we find the new graph G ′ resulting from expanding I ′ over L, and
replaces G with G ′ in the triplestore. We will refer to this existing update
implementation as the Rebuild solution.

For most practical use cases, this method of updating is inherently slow.
Regardless of the number of affected instances, all instances must be
expanded and inserted into the triplestore. However, this solution is
guaranteed to be correct regardless of the type of change.

As the Rebuild solution is very simple in nature, we can expect it to scale
predictably with varied input. Rebuilding expands all instances and
overwrites the existing triplestore. From this, it follows that the solution
grows linearly as the number of instances increases. Both changed, and
unchanged instances are treated precisely the same by expanding and
overwriting the existing triplestore. This means that as long as the number
of instances is constant, can we expect the Rebuild solution to use the same
amount of time regardless of the number of changes. In other words, it
scales constantly with the number of changes.
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Chapter 5

Solution assessment

In this thesis we want to create an efficient update algorithm. For this
reason, evaluating the solutions created through this thesis is important.
In this chapter, we will first argue what a typical use case of OTTR looks
like. Based on this, we will describe the characteristics of the test data and
how testing is performed.

5.1 The typical use case

To evaluate the performance of our solution under realistic conditions,
we need to establish some general assumptions about the typical usage
patterns of OTTR. These assumptions include the total number of instances,
the number of changes, the types of changes, and other relevant factors that
may affect the design and performance of our solution. This section will
present and justify these assumptions based on existing information and
statements from industry users.

OTTR is designed to improve the efficiency and quality of the building,
using, and maintaining datasets [46]. It is possible to use OTTR for small
datasets, but the benefits of abstraction will be far greater with medium
to large datasets. OTTR templates allow quick and easy creation of bigger
RDF patterns through template instances, which benefits larger graphs. We
will focus on a use case with a large dataset since OTTR is already quick
enough to update small datasets in a reasonable time. OTTR‘s current
update solution is simply to rebuild the whole RDF graph, as shown in
Chapter 4. This approach works well as long as the dataset is small, but
will be very time-consuming with large datasets. Therefore, our update
algorithm will be intended for applications where the RDF graph is of
considerable size. It is neither useful nor necessary for updating very small
graphs.
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A typical case where the dataset becomes very large is when it is used
as a database, that is, for the purpose of storing large amounts of data.
An ontology can be separated into two parts, ABox and TBox [2]. The
ABox contains facts about individuals and things, while the TBox contains
statements that define the relationship between classes and properties.
When stating that a dataset can be used as a database, we imply that it is a
dataset with an empty TBox. On the other hand, we have ontologies used
for reasoning, like Owl ontologies [39], that typically have a large TBox.

Blank nodes are resources without identifiers and are generally used to
imply the existence of a thing without using an IRI to identify it [16]. Since
we want to create large ontologies, getting information from other sources
in a different format would be natural. This information could be stored in
relational databases, CSV files, or other conventional ways and translated
to OTTR instances with bOTTR mappings [48]. Relational databases, Excel,
and CSV files typically do not have any concept of blank nodes; thus, it
would be unnatural to add unidentifiable information. Therefore, we can
assume that no blank nodes will be given as an argument to an instance
in an OTTR instance file. However, it is important to note that it is still
possible for an instance to have a blank node as an argument, but only as
a result of expanding another instance, i.e., the blank node is created by a
template.

In databases, efficient use of space is important. Therefore, it is common
to limit the number of duplicates and superfluous data by normalizing
the database [14]. As such, we can assume that the OTTR instances
created from data in other databases, will create a relatively low number of
duplicate triples. In other cases where the ontology is used for reasoning,
an OTTR representation might create many duplicates. OTTR templates
for reasoning ontologies will usually contain TBox statements that are less
dependent on the arguments. Thus, different OTTR instances of the same
template might create duplicate triples.

We also assume that the update is small relative to the entire triplestore.
If the triplestore is used as a database, a large update could affect millions
of triples, and it seems unlikely that such a large update would happen at
once.

Aibel AS is a leading Norwegian service company in the oil, gas, and
offshore wind industries [3]. From personal correspondence with Christian
Mahesh Hansen, an ontology specialist at the company, we gathered the
following information on Aibel‘s use of OTTR and graph construction in
general:

• The constructed graph is large, consisting of millions of statements

• Most changes are small relative to the overall size of the graph.

• Instances creating duplicated statements are rare
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• Blank nodes occurring in templates are mostly used for making TBox-
statements

• No blank node is passed as an argument to a user-specified instance

5.2 Testing

A series of tests is performed in which the elapsed time of a given solution
is measured and compared with the elapsed time of a baseline solution;
the Rebuild solution. The solutions are timed using the built-in nanoTime
function from Java.

A solution may perform different actions depending on the input data,
which, in turn, can affect performance. Therefore, having various
sets of test data with different characteristics is important. We have
identified three cases that potentially need to be handled explicitly by
our algorithm; instances creating triples containing blank nodes, instances
creating duplicated triples, and all other instances. We will use the terms
blank triples, duplicated triples, and normal triples for triples containing blank
nodes, triples that are duplicates, and all other triples, respectively. An
instance that creates one or more blank triples will be referred to as a blank
instance, while one creating one or more duplicated triples is referred to as
a duplicate instance. If an instance creates only normal triples, we call it a
normal instance. It is possible for an instance to create both a blank triple
and a duplicate triple, in which case, the instance is both a blank and a
duplicate instance.

For each solution, we limit the tests to only relevant properties, as not all
properties may be relevant or applicable. In our test data, we chose to vary
the following properties:

• Number of instances

• Number of changes, which can include:

– Normal instance deletions

– Normal instance insertions

– Duplicate instance deletions

– Duplicate instance insertions

– Blank instance deletions

– Blank instance insertions

As we are creating an algorithm to handle changes efficiently, investigating
how the size of the change affects performance is natural. Further, as we
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discussed in Section 5.1, we assume the total number of instances is large.
For this purpose, seeing how the algorithm performs with an increasing
number of instances is also important. Lastly, we have identified blank
instances, duplicated instances, and normal instances as points of interest.
Therefore, we will investigate how a varying number of each instance type
affects the performance.

By looking at how different properties affect the result of different
solutions, we get a general sense of whether a solution is viable. Also,
it helps us to assess whether one technique is better than another. And
lastly, it helps with understanding what assumptions must be in place for
a solution to outperform the Rebuild solution.

Our datasets are based on the exoplanets dataset created from the Extrasolar
Planets Encyclopaedia [52]. The exoplanets dataset contains 4678 instances
of the same Planet template. The Planet template creates up to 5 triples,
depending on the arguments provided. Listing 5.1 shows an excerpt of the
test data, including the template and one instance.

1 # Planet template
2 ep:Planet [
3 ottr:IRI ?iri ,
4 xsd:string ?name ,
5 ottr:IRI ?star ,
6 ? xsd:string ?starName ,
7 ? xsd:decimal ?mass
8 ] :: {
9 o-rdf:Type(?iri , ex -o:Planet),

10 o-rdfs:Label(?iri , ?name),
11 ottr:Triple (?iri , ex-o:orbitsStar , ?star),
12 o-rdfs:Label(?star , ?starName),
13 ottr:Triple (?iri , ex-o:hasMass , ?mass)
14 } .
15
16 # Instance
17 ep:Planet(ex:XTE_J1751 -305_b, "XTE J1751 -305 b",

ex:XTE_J1751 -305, none , "27.0"^^ xsd:decimal) .

Listing 5.1: excerpt of the test data

We have created a Python program to create the test data. For every test
case, it creates a new and old instance file based on the "seed," which
is the exoplanets dataset. This way, we can create test files with precise
knowledge of the number of instances, changes, blank nodes, and other
properties. If we wish to test with more than 4678 instances, more instances
are created by creating synthetic Planet instances with random arguments.

The test program, including the implementation of all solutions tested in
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this thesis, is available on GitHub [33]. The repository is licensed under the
GNU Lesser General Public License v2.1.

Hardware

All results presented in this thesis were tested using the Asus laptop
described below.

• Laptop: Asus Zenbook UX430UN PURE4

• Processor: Intel® Core™ i7-8550U CPU @ 1.80GHz × 8

• Memory: 16,0 Gib

Program versions

The software used in this thesis is described below.

• Operating system: Ubuntu 22.04.1 LTS 64-bit

• Java: openjdk 11.0.17

• Lutra version: 0.6.13

• Apache Jena version: 4.6.0

• Apache Jena Fuseki version: 4.5.0

• Python version: 3.10.6
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Chapter 6

Simple solution

We will now look at a Simple solution to handling updates to OTTR
instances. It makes certain limiting assumptions about duplicates and
blank nodes but, is much more efficient than the Rebuild solution in most
scenarios.

The idea behind this solution is to only update the triples corresponding to
new, deleted, or modified instances. This differs from the Rebuild solution,
which updates all triples regardless of change. To do this, we look at the
difference between the old and the new instance files. Then, we delete the
result of expanding everything changed from the old file and insert the
result of expanding everything new in the new file.

In this chapter, we will first look at a description of the proposed solution.
Following this, we illustrate the solution with an example. Furthermore,
we will look at what assumptions need to be made for the algorithm to
work. Lastly, we discuss the results of testing. The implementation of this
solution will be shown in Chapter 7.
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Figure 6.1: Simple solution overview
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6.1 Description

The solution can be described as follows:

1. First, the diff algorithm identifies deleted instances D and inserted
instances I . Modified instances are interpreted as deleting the old
version and inserting the new one. Meaning the old version of a triple
is in D, and the new one is in I .

2. Then, a SPARQL delete query is created that explicitly lists all triples
from the result of expanding D.

3. Then, a SPARQL insert query is created that explicitly lists all triples
from the result of expanding I .

4. Finally, execute the two queries on the triplestore.

There is an illustrated overview of the Simple solution in Figure 6.1. This
solution is straightforward and reads modified instances as deleting the
old version, and inserting the new. This means all triples expanded from a
modified instance will be deleted and possibly inserted again.

Example

Given a template

1 ex:Person[?person , ?name , ?age] :: {
2 ottr:Triple(?person , foaf:name , ?name),
3 ottr:Triple(?person , foaf:age , ?age)
4 }

And template instances

1 ex:Person(:bob , "Bob", 32) .
2 ex:Person(:ole , "Ole", 12) .

And a corresponding triplestore

1 :bob foaf:name "Bob" .
2 :bob foaf:age 32 .
3 :ole foaf:name "Ole" .
4 :ole foaf:age 12 .
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Then we make two changes to the instances. We remove Ole and change
Bob’s age to 33.

1 ex:Person(:bob , "Bob", 33) .

Now the Simple solution will add the expansion of ex:Person(:ole,
"Ole", 12) to the delete query, and it will also add the expansion
of ex:Person(:bob, "Bob", 32) to the delete query since it has been
modified. Lastly, the expansion of ex:Person(:bob, "Bob", 33) is being
inserted, as it is the new version of Bob. We now have two queries:

1 DELETE WHERE {
2 :bob foaf:name "Bob" .
3 :bob foaf:age 32 .
4 :ole foaf:name "Ole" .
5 :ole foaf:age 12 .
6 }
7
8 INSERT DATA {
9 :bob foaf:name "Bob" .

10 :bob foaf:age 33 .
11 }

6.2 Assumptions

In order to make the Simple solution work, we will make certain simplifying
assumptions. Blank nodes do not have an ID and can, therefore, not
be explicitly listed in a SPARQL query. This creates problems for the
Simple solution. We can insert blank triples as usual, but deleting becomes
challenging as we cannot identify the triples we want to delete. We split
the blank nodes into two groups; top-level blank nodes and local blank nodes.
Top-level blank nodes are blank nodes that are passed as arguments to an
OTTR instance in the instance file (top-level instance), which means it is
not created during expansion of a template. A local blank node, however,
is created during expansion of a template. In triplestores used as databases,
it makes little sense to put data that lack identifiers as we do not know
what they refer to, therefor we make a simplifying assumption that top-
level blank nodes do not exist.

We believe local blank nodes occur more frequently, for example when
grouping resources such as all parts of an address. Thus, it is in our interest
to allow local blank nodes, which we will look at in Chapter 9. For now,
we assume that blank triples cannot be deleted, to make the Simple solution
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work. We call this assumption the local blank node assumption, as we already
have assumed the absence of top-level blank nodes. This means blank
instances cannot be deleted or modified, as it would result in deleting a
blank triple. This assumption is narrow, and it might be hard to recognize
for users if this will be a problem. As a more general alternative, it is
possible to assume the absence of blank nodes in general.

1 TEMPLATE
2 ex:Car[?brand , ?color] :: {
3 ottr:Triple(?brand , rdf:type , :Car),
4 ottr:Triple(?brand , :hasColor , ?color),
5 ottr:Triple(:Car , rdf:type , :Class)
6 } .
7
8 INSTANCES
9 ex:Car(:audi , :red) .

10 ex:Car(:skoda , :blue) .
11
12 RESULT OF EXPANDING INSTANCES
13 :audi rdf:type :Car .
14 :audi :hasColor :red .
15 :Car rdf:type :Class .
16 :skoda rdf:type :Car .
17 :skoda :hasColor :blue .

Listing 6.1: Synchronized triplestore

An RDF graph is defined as a set of triples, which means that there are
no duplicates, and thus deleting an instance might affect triples created
by other instances. An example is shown in Listing 6.1 where we see that
ottr:Triple(:Car, rdf:type, :Class) is created from both the Audi and
the Skoda. If we then delete the result of expanding the Audi instance
(Listing 6.2), we would delete the only ottr:Triple(:Car, rdf:type,
:Class) in the triplestore. But that triple should still exist, as it also is
created from the Skoda instance.

Solving this problem would require retrieving knowledge of which triples
are created by which instances at query time, which would require an
additional data structure or another efficient way to recognize duplicates.
For now, we can avoid this by assuming that a triple inserted by multiple
instances cannot be deleted, and we call this the Duplicate assumption.
We show a solution removing this assumption in Chapter 8. Although
this assumption may address the problem, it is narrow, and it may be
challenging for users to determine if the algorithm is suitable. As an
alternative, we will propose a few more general assumptions to tackle the
same issue. Although these assumptions are more restrictive, they may be
easier to use.
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1 # TEMPLATE
2 ex:Car[?brand , ?color] :: {
3 ottr:Triple(?brand , rdf:type , :Car),
4 ottr:Triple(?brand , :hasColor , ?color),
5 ottr:Triple(:Car , rdf:type , :Class)
6 } .
7
8 # INSTANCES
9 ex:Car(:skoda , :blue) .

10
11 # RESULT OF EXPANDING INSTANCES
12 :skoda rdf:type :Car .
13 :skoda :hasColor :blue .

Listing 6.2: Desynchronized triplestore after deleting expansion of Audi

An alternative assumption is to only allow insertions. The duplicate prob-
lem occurs only when deleting, meaning removing all delete operations,
including modifying, will also solve the problem. This assumption is more
strict than the previous assumption and significantly limits possible up-
dates, but it is straightforward to evaluate the usability.

Another alternative is something in the middle. We can assume that several
instances do not create the same triple. By making this assumption, we
can delete the triples corresponding to a deleted instance without risking
desynchronizing the triplestore. All these alternatives will make the Simple
solution work.

6.3 Experimental evaluation

Now we will look at the performance of the Simple solution and compare it
to the Rebuild solution.

From Figure 6.2 it is clear that the Simple solution scales much better than
the existing Rebuild solution when the number of changes is relatively low,
10 in this case. Figure 6.3 captures the point of intersection between the
two solutions in a case with 4 changes. Already at 7 instances, the Simple
solution is faster than the Rebuild solution. Figure 6.4 shows that the required
time seems to increase linearly as the triplestore increases in size. Looking
at Figure 6.5 where we vary the number of changes rather than instances,
we see that the Simple solution scales linearly with the number of changes,
while the Rebuild solution is constant. The Simple solution is getting slower
in comparison to the Rebuild solution as the change affects bigger parts of
the triplestore.

38



Figure 6.2: Simple solution VS. Rebuild solution

Figure 6.3: Simple solution VS. Rebuild solution point of intersection
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Figure 6.4: 10 changes, varying number of instances

Figure 6.5: 20000 instances, varying number of changes

40



Figure 6.6 shows what parts of the algorithm use the most time during
execution when the number of instances is relatively high (100000), and
the number of insertions and deletions are high (500). Figure 6.7 illustrates
a similar example where the number of insertions and deletions are few;
10 deletions and 10 insertions. We can see that expanding instances takes
longer as the number of changes increases, while the diff part is consistently
long when the number of instances is this high. The query part also takes
longer with larger changes.

Figure 6.6: 100 000 instances, 250 deletions, 250 insertions
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Figure 6.7: 100 000 instances, 10 deletions, 10 insertions

6.4 Discussion

The Simple solution shows an excellent improvement over the Rebuild
solution when the number of changes is relatively low. Compared to the
Rebuild solution, it performs much better with larger triplestores, which is
how OTTR is typically used.

From Figure 6.5 we see that the Simple solution scales linearly with respect
to the number of changes, while the Rebuild solution scales constantly.
Although the Rebuild solution scales better with the number of changes than
the Simple solution, we see that in Figure 6.5 that the constant time spent by
the Rebuild solution is large. It was not until 15000 out of 20000 instances
changed that Rebuild solution was faster. Nevertheless, this is an unrealistic
scenario as it would require changing a considerable number of instances
simultaneously.

In Figure 6.4, we see that the Simple solution scales linearly with respect
to the number of instances. In Figure 6.2, it is clear that also the Rebuild
solution scales linearly with the number of instances. Still, the Simple
solution heavily outperforms rebuilding. This makes sense as the Simple
solution scales linearly because of the diff operation, and the Rebuild solution
because of the expanding operation. Looking through a file for differences
is cheaper than expanding all instances. From this, we can conclude that
the larger the difference is between the number of changes and the total
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number of instances, the better the Simple solution performs compared to
the Rebuild solution. If the difference becomes too small, rebuilding will be
most efficient.

The Simple solution handles a change to an instance by deleting the entire
expansion of the old instance, followed by inserting the entire expansion of
the new instance. This can cause a few triples to be deleted and inserted
unnecessarily. This should not be noticeable as long as the templates are not
deeply nested or each template expands to relatively few other instances.
However, in an extreme case where one instance expands to very many
triples and a tiny change is made so that only one triple change would be
sufficient, we can expect the a worse performance from the Simple solution.

From Figure 6.6 and Figure 6.7, we see that the number of changes mainly
affects the expansion of instances. Also, the difference algorithm is the most
time-consuming part with small changes. We also know from Section 5.1
that a typical use case involves relatively few changes to a big triplestore.
This means the expansion of changed instances will not be very time-
consuming in the typical case. Thus, it does not matter exactly how many
triples the changed instances expand to. Therefore, we will not perform
tests with different template sizes, as we do not expect them to greatly
impact the results.

We have made strict assumptions for the Simple solution to work; blank
nodes and duplicates cannot be deleted. These assumptions will restrict
the practical use of the algorithm a lot. It might also be difficult for a user
to ensure that no duplicates or blank nodes are deleted. This will be easier
if we use a more general assumption, such as allowing only insertions.
It should be easy for a user to judge whether the insertion operation is
sufficient, and if that is the case, the Simple solution is a good choice.

The Simple solution performs very well but has limited applicability due
to its strict assumptions. In the following chapters, we will find other
solutions without these assumptions rather than focusing on improving
the efficiency of the Simple solution. In Chapter 9, we will show how the
local blank node assumption can be removed, and in Chapter 8, we will
show how the duplicate assumption can be removed.
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Chapter 7

Implementation

We have implemented a program that runs and tests different solutions.
This section provides an overview of the program’s general structure and
explains our choices. Additionally, we will look at the implementation of
the Simple solution. The implementation of other solutions will be explained
in their respective chapters.

An update algorithm in OTTR would be implemented as a part of Lutra,
meaning it would run on the Java virtual machine. We chose to implement
our solutions as a Java program to ensure our testing has the same
characteristics as an actual implementation. We concluded that it would
be unnecessary to implement it directly into Lutra, as the extra time
spent integrating would not give better results. As such, the program is
implemented as a standalone application that reads the input data from
the disk and queries the triplestore directly. Lutra is imported as a library
to read templates and expand instances. We run the triplestore as its own
process on the same computer as the update program. Communication
between the program and the triplestore is done over HTTP on the
localhost.

The testing program has the following characteristics:

1. Runs similarly to a possible implementation in Lutra

2. Easy to implement and test new solutions

3. Is able to swap solution algorithms

The general overview of the program is illustrated in Figure 7.1. The
program reads the template files and the old and new instance files. The
implementation is created as a collection of services and a set of solutions
that use these services. The solutions query a local Fuseki triplestore to
perform the updates.
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Figure 7.1: Program overview

A more detailed look at the program outline is shown in Figure 7.2.

We have used the Apache Jena framework [13] to work with RDF. Apache
Jena is Java-based and supports different RDF formats, as well as different
stream operations that are useful when working with large amounts of
data. Apache Jena also offers a SPARQL server, Apache Jena Fuseki,
that we can host locally and communicate with over HTTP. Apache Jena
is popular and open source, making it a natural choice. Other possible
options are RDF4J [51] and dotNetRDF [24].

7.1 Simple solution implementation

We have implemented a single module for the Simple solution. The path
to the files with old and new instances is passed as arguments. We use
a service with the diff algorithm to get the sets of deleted and inserted
instances. Then, these sets are passed to an OTTR service for expansion,
which returns new and old triples that are put into Jena models [35]. We
pass the models as arguments to Jena updatebuilders [54] to create the two
SPARQL queries. The queries are sent to the triplestore over HTTP.

45



Figure 7.2: Detailed overview
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Chapter 8

Removing the duplicate
assumption

The duplicate assumption used in the Simple solution is very restrictive for
some kinds of datasets, especially ontologies used for reasoning. It might
also be difficult for a user to guarantee that no duplicates will be deleted.
This chapter will discuss different approaches to removing the duplicate
assumption and what new considerations this would entail. We will start
by showing how the problem occurs. Then, we will look at a way to enable
duplicates, followed by the implementation of that approach. After that,
we will discuss some alternative approaches, and lastly, we will present
and discuss the results.

The duplicate assumption is defined as follows: "A triple inserted by
multiple instances cannot be deleted". A triplestore is a set of unique
triples, meaning no duplicates exist [56]. However, multiple OTTR
instances can expand to the same RDF triple. If several instances create
identical triples, only one will appear in the triplestore. Listing 8.1 outlines
a typical case where duplicates occur.

1 ex:subClassOf[?child , ?parent] :: {
2 ottr:Triple(?child , :subClass , ?parent),
3 ottr:Triple(?child , rdf:type , :Class)
4 }
5
6 ex:subClassOf(:A, :B) .
7 ex:subClassOf(:A, :C) .

Listing 8.1: Template and Instances creating a duplicate

We see that the instance on line 6 and the instance on line 7 in Listing 8.1
both create the same triple (:A rdf:type :Class). Expanding the
instances and inserting them into a triplestore will result in only one of
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the two duplicated triples existing. The problem occurs when we want to
delete an instance. If we now delete the instance at line 7, then we have
to delete the triple (:A rdf:type :Class) if we follow the Simple solution.
Doing this leaves us with the instance at line 6 not being synchronized with
the triplestore as a triple is missing. The duplicate assumption avoids this
problem, but restricts the use of the algorithm.

8.1 Counting duplicates in a separate graph

One way to enable deletion of duplicate instances is to maintain a record of
the number of duplicates for each triple. By doing this, we can decrement
the number of duplicates instead of deleting the original triple. We will use
a separate graph in the triplestore to store the duplicates.

Assume that we have a graph G in a triplestore containing the expansion
of the OTTR instances. We can then create a new graph C to contain triples
keeping track of the number of duplicates. It is also possible to use only one
graph, but we believe it is better to separate data and metadata, to avoid
metadata affecting queries over the default graph. We let the triples in C
have the form described in Listing 8.2 and refer to them as counter triples. A
triple t can have a corresponding counter triple, which we will call ct. We
use RDF-star as an unambiguous way to refer to a triple [31].

1 <<original triple >> ex:count 2 .

Listing 8.2: Counter triple

In the following algorithm, we let:
t=triple, ct=counter triple, G=default graph, C=counter graph

Inserting a new triple t into the triplestore:

1. IF t /∈G, THEN

(a) Insert t into G

2. ELSE IF ct ∈ C, THEN

(a) Increment ct count by 1

3. ELSE insert ct into C with count 2
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Deleting a triple t:

1. IF ct ∈ C, THEN

(a) Decrement ct count by 1

(b) IF ct count is 1, THEN

i. Delete ct from C

2. ELSE

(a) delete t from G

When inserting a triple t, as described in the algorithm above, we start
by checking if the triple exists in the default graph G. If it does not, we can
insert t into G, and we are done. If it does already exist, we have a duplicate.
We cannot add duplicates in G, so we use a counter triple representation,
ct of t, in the counter graph C. ct keeps track of how many duplicates there
are of t. If ct does not already exist in C, we insert it with the count 2. If it
already exists, we increment the count of ct by one. In Listing 8.3, we see
the result of using this method for insertion combined with deletion.

Deleting a triple t is fairly similar to inserting a triple. First, we check if
a counter triple, ct, exists in C. If ct does not exist, we know t is not a
duplicate, and the triple can be deleted from G. If ct exists, we decrement its
value. If the decremented count is 1, we delete ct as there are no duplicates.
In Listing 8.3, we see the result of deleting (<a> <b> <c>) and inserting
(<d> <e> <f>) when there exists a counter triple for both triples in the
default graph. The counter triple of (<a> <b> <c>) is decremented by one
and is removed as the counter value is 1. (<a> <b> <c>) will still remain
in the default graph. (<d> <e> <f>) is incremented from 3 to 4.

1 # BEFORE QUERY
2 # default graph
3 <a> <b> <c> .
4 <d> <e> <f> .
5 # counter graph
6 << <a> <b> <c> >> ex:count 2 .
7 << <d> <e> <f> >> ex:count 3 .
8
9 # AFTER DELETE <a> <b> <c> and INSERT <d> <e> <f>

10 # default graph
11 <a> <b> <c> .
12 <d> <e> <f> .
13 # counter graph
14 << <d> <e> <f> >> ex:count 4 .

Listing 8.3: Counting duplicates example
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Duplicates within the update

So far, the implementation does not handle duplicates within the update,
such as when two equal triples should be deleted simultaneously. In that
case, the goal would be to decrement the counter triple by 2 instead of 1.
The problem is that the expansion of the OTTR instances results in a set
without duplicates. This is solved by expanding the instances one at a time
and counting the occurrences in a hashmap, we use 2 occurrences as an
example. We now know how much we should increment or decrement
the counter triple. We will now modify the algorithm to handle larger
increment and decrement operations.

Deleting n equal triples:
given:
t=triple, ct=counter triple, G=default graph, C=counter graph

1. IF ct ∈ C, THEN

(a) Decrement ct count by n
(b) IF ct count < 2, THEN

i. Delete ct from C
(c) IF ct count < 1, THEN

i. Delete t from G

2. ELSE

(a) delete t from G

If we are inserting multiple equal triples, we modify the insertion algorithm
in the same way. We make a hashmap after expansion to find the number of
insertions for each triple. We insert the triple in the default graph if it does
not exist, then update the counter graph with the number of duplicates.

Inserting n equal triples:
t=triple, ct=counter triple, G=default graph, C=counter graph

1. IF t /∈G, THEN

(a) Insert t into G
(b) IF n > 1, THEN

i. Insert ct in C with count n

2. ELSE IF ct ∈ C, THEN

(a) Increment ct count by n

3. ELSE

(a) insert ct into C with count n+1
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Duplicates within the expansion of an instance

The modified update algorithm now handles duplicates within the update
by expanding one instance at a time and storing the occurrences. However,
duplicates may also occur when expanding a single instance. When
expanding OTTR instances, the result is a stream of triples, which is read
and put in a Jena model. The same triple might occur several times in
the stream, but the Jena model is a set of triples, which by default is
without duplicates. This means duplicates from the same instance will be
lost during expansion, even when expanding only one instance at a time.
However, this is not a problem for our algorithm, as shown in the next
paragraph.

Let us say we have an instance I that expands into a multiset of triples
containing n occurrences of the same triple t where n > 1. All solutions
described in this thesis handle instances as a whole, either deleting or
inserting the whole instance. From this, it follows that every operation
done on I affects all n duplicates simultaneously. In other words, the
counter for t can only be changed in increments of size n when I is
changed. We can never delete one of the n duplicates without deleting
the rest, and likewise with insert. If I creates t, then it does not matter how
many duplicates there are. Thus, we can treat all n duplicates from I as
one triple, which is what our solution already does.

Implementation

We have now shown the idea behind the Duplicate solution, and we will
now discuss the implementation and show how the SPARQL queries are
computed.

The implementation of the Duplicate solution is similar to the Simple
solution. The solution is in a single module that communicates with
different services. OTTR-service for expansion of instances, Diff-service for
identifying changes, and Fuseki-service for querying the triplestore. We
use Jena models to represent sets of triples, and we use UpdateBuilders
to create SPARQL queries. However, the Duplicate solution uses RDF* and
SPARQL* when querying the counter graph. Apache Jena Fuseki supports
RDF* and SPARQL* by default [11]. We will now take a closer look
at the implementation of insertion and deletion with duplicates allowed.
Figure 8.1 shows an illustrated overview of the implemented algorithm.
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Figure 8.1: Duplicate solution overview
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Insertion

Insertion starts with checking if t is already in G. We want to check this
with all the triples we are inserting simultaneously. A CONSTRUCT query
allows us to return a graph that contains all the matching triples. We can
use VALUES to specify the triples we are looking for. Listing 8.4 shows a
query looking for three triples. If only (:kari :livesIn :Norway) exists
in G, then a graph with that triple is returned.

1 CONSTRUCT {
2 ?subject ?predicate ?object
3 }
4 WHERE {
5 ?subject ?predicate ?object .
6 }
7 VALUES (? subject ?predicate ?object) {
8 (:kari :livesIn :Norway)
9 (:car :hasOwner :kari)

10 (:car :hasColor :red)
11 }

Listing 8.4: Batch query looking for any triple in VALUES

We start by asking for all triples to insert, I , in the CONSTRUCT query. The
result of the CONSTRUCT query gives us a graph with the existing triples, e.
By doing set difference between I and e, we get the non-existing triples,
¬e. The triples in ¬e can be inserted into G with a normal INSERT query
as they do not already exist. The existing triples e will have at least one
duplicate, so we look at the counter graph C. We can target the counter
graph by using a WITH clause. First, we check if there is a counter triple ct
for each triple in e. We use the VALUES clause to define the possible values
for the ?subject variable, and these are the triples from e. In Listing 8.5,
this is done with (:kari :livesIn :Norway) as the only triple in e, but
we could add several triples to the values clause. Then we use OPTIONAL
to search for the counter triple ct for every defined subject value. If ct
exists, ?old_count will be bound. If ?old_count is bound, ?new_count will
be bound to ?old_count +1. Then we are incrementing the counter with
DELETE and INSERT. Otherwise, if ct does not exist, ?new_count is bound to
2, creating a new counter triple. We can increment it by more than 1 if we
insert several duplicates of (:kari :livesIn :Norway).
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1 WITH <:counterGraph >
2 DELETE {
3 ?subject :count ?old_count .
4 }
5 INSERT {
6 ?subject :count ?new_count .
7 }
8 WHERE {
9 VALUES ?subject {

10 << <:kari > <:livesIn > <:Norway > >>
11 }
12 OPTIONAL {? subject :count ?old_count}
13 BIND(if(bound(? old_count), ( ?old_count + 1 ),

2) AS ?new_count)
14 }

Listing 8.5: Insertion, increment counter

Deletion

Deleting a collection of triples t starts with checking if corresponding
counter triples ct exist in C. This is done with a CONSTRUCT query similar to
the insertion in Listing 8.4, but with counter triples in C instead. The result
is a set of existing counter triples e. By doing set difference we get the set
of not counted triples ¬e. Every t in ¬e, is deleted from G with a normal
DELETE query. For every ct in e, the count value of ct should be decremented
and deleted if below 2. This is done by deleting the old version of ct and
inserting it again with an updated count as long as the updated count is
greater than 2. The query is very similar to the insertion. In Listing 8.6, we
see an example where we want to delete (:kari :livesIn :Norway). We
bind ?new_count to ?old_count -1 to decrease the count value. Note that
we can decrement it by more if we delete several duplicates of (:kari
:livesIn :Norway). SPARQL does not allow us to always delete a triple
while having a conditional insertion of the new version. Thus, we must
remove the counter triples with a count less than 2 in a separate query in
Listing 8.7. We can also decrease the count value with more than 1, if there
are more duplicates within the update. Then it is possible to have a count
value of 0, which means we must delete t from G as well.

This is the tested implementation of the Duplicate solution. The results will
be shown and discussed later in Section 8.3. However, we will first show
some alternative approaches to this solution.
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1 WITH <:counterGraph >
2 DELETE {
3 ?subject ?predicate ?old_count
4 }
5 INSERT {
6 ?subject ?predicate ?new_count
7 }
8 WHERE {
9 ?subject ?predicate ?old_count

10 FILTER (? subject IN (<< <:kari > <:livesIn >
<:Norway > >>))

11 BIND(? old_count - 1 AS ?new_count)
12 }

Listing 8.6: Deletion, decrement counter

1 WITH <:counterGraph >
2 DELETE WHERE {
3 ?subject ?predicate ?duplicates
4 FILTER (? duplicates < 2)
5 }

Listing 8.7: Deletion, clean up all counters less than 2

8.2 Alternative approaches

There are several ways to allow deletion of duplicates. We can use different
data structures, different configurations, and different methods than we
have previously shown. We will now show some alternatives and discuss
why we did not use them as our Duplicate solution.

Counting all occurrences

One alternative approach to storing duplicates would be to not only keep
a counter for the triples that occur two or more times, but a counter for
all triples. An example of how this would look is seen in Listing 8.8. Just
like the Counting duplicates approach, we have a default graph G where all
normal RDF-triples exist. In this approach, however, the graph C keeps
track of the number of occurrences of every triple, not only duplicates.
Since duplicates are rare, most counter triples in C will have the count set
to 1.
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1 # BEFORE QUERY
2 # default graph
3 <a> <b> <c> .
4 # counter graph
5 << <a> <b> <c> >> ex:count 3 .
6
7 # AFTER DELETE <a> <b> <c> and INSERT <d> <e> <f>
8 # default graph
9 <a> <b> <c> .

10 <d> <e> <f> .
11 # counter graph
12 << <a> <b> <c> >> ex:count 2 .
13 << <d> <e> <f> >> ex:count 1 .

Listing 8.8: Counting occurrences example

The steps in inserting and deleting a triple t are as follows:

The steps in inserting t:

Given:
t = triple, ct=counter triple, G = default graph, C = counter graph

1. IF ct ∈C, THEN

(a) Increment ct count

2. ELSE

(a) insert t into G
(b) insert ct with count 1 into C

The steps in deleting t:

bellow we let:
t = triple, ct=counter triple, G = default graph, C = counter graph

1. IF ct ∈C, THEN

(a) Decrement ct count

(b) IF ct count is 0, THEN

i. Delete ct from C and t form G

The major drawback of using this approach is the increased space usage.
This approach stores a counter version of all triples, doubling the required
space. We also know that the speedup will be minimal over the original
approach, as looking for t in G takes the same time as looking for t in C. This

56



approach additionally makes the original graph redundant, as everything
is in the counter graph. We could exclude the original graph to save space,
but then every query would have to be adjusted for the structure of the
counter triple. We consider this a possible, but unpractical approach as one
will have to change the original structure of the triplestore. Thus, we will
continue with the implementation of counting duplicates and not counting
occurrences.

Using an external data structure

We have already seen that we can count duplicates to remove the duplicate
assumption, but we do not have to store the duplicates in the triplestore.
It is also possible to use an external data structure to store duplicates. One
option could be to use a hash map with triples as keys and counters as
values. This hash map could then be saved in a separate file. We would
still have to ask the triplestore about triples in G, which is the slow part.
One could also use a hash map with the counting occurrences approach for
constant time lookup, but this would require loading the entire triplestore
into memory which might not be an option. Loading a large amount of
data into memory can take a long time. More importantly, if the hashmap
is larger than the available memory, reading data between storage and
memory will be time-consuming. Other data structures can be interesting
as well. However, unless we represent the entire triplestore in another way,
we would still have to check with the triplestore to identify new duplicates
with insertion, which is time-consuming.

Multiset configuration

The simplest way to remove the duplicate assumption is to allow duplic-
ates in the triplestore. This could be done by configuring the triplestore
as a multiset instead of a normal set. A multiset is a set where multiple
instances of the same element can occur. Unlike the counting duplicates
approach, this solution does not use a different representation for duplic-
ates. With a multiset, each occurrence of a triple corresponds to precisely
one OTTR instance, allowing us to delete and insert triples safely. If we ex-
pand Listing 8.9 into a multiset, the result becomes Listing 8.10. If there are
two equal triples, we can delete one without deleting the other. However,
for some existing OTTR users, moving away from the RDF definition is not
feasible, as it might not be compatible with other systems. Additionally,
the triplestore might not support a multiset configuration.
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1 ex:subClassOf[?child , ?parent] :: {
2 ottr:Triple(?child , :subClass , ?parent),
3 ottr:Triple(?child , :type , :Class)
4 }
5
6 ex:subClassOf(:A, :B) .
7 ex:subClassOf(:A, :C) .

Listing 8.9: subClass template

1 :A :type :Class .
2 :A :subClass :B .
3 :A :type :Class .
4 :A :subClass :C .

Listing 8.10: Expansion with multiset

8.3 Experimental evaluation

We will examine how the Duplicate solution compares to the baseline Rebuild
solution. This includes how the two solutions measure in a typical use case,
as well as finding the conditions where it is better to use the Rebuild solution.
Lastly, we will see how the insert and delete operations compare.

Figure 8.2 illustrates how the Duplicate solution is faster than the Rebuild
solution for most cases where the number of changes to duplicate instances
is relatively low. Note that all changes in the tests insert or delete duplicate
instances. According to Figure 8.3, using the Duplicate solution is no longer
beneficial once the number of duplicate changes approaches 4000 in a
triplestore with 20000 instances. From Figure 8.4, we see how the duplicate
solution scales as the number of instances increases. However, Figure 8.5
shows how the Rebuild solution performs worse even though they both scale
linearly with the number of instances.
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Figure 8.2: Duplicate solution VS. Rebuild solution

Figure 8.3: Duplicate VS. Rebuild point of intersection
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Figure 8.4: Varying number of instances

Figure 8.5: Duplicate VS. Rebuild changing number of instances
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In Figure 8.6, we see how much time Duplicate solution uses when
only inserting duplicate instances compared to only deleting duplicate
instances. Both insertion and deletion scale linearly, and the difference in
time between the two operations is minimal.

Figure 8.6: Duplicate solution, insertion vs. deletion

Figure 8.7 shows the Duplicate solutions when run on slightly different data.
It compares how it performs on data with duplicate instances to how it
performs normal instances. We see that it performs better when there are
no duplicates.
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Figure 8.7: Duplicate solution, no duplicates vs. duplicates

8.4 Discussion

From the results presented in the previous section, we can see that the
Duplicate solution significantly outperforms the Rebuild solution in cases
where the number of changes does not make up a substantial portion of
the total number of instances.

We know that the runtime of the Rebuild solution is independent of
the number of changes. Therefore, it will take the same amount of
time for the same number of instances, regardless of the number of
changes. As Duplicate solution scales with the number of changes, we
know that at a certain number of changes, using Duplicate solution is no
longer advantageous. In Figure 8.3, this point is at about 4000 out of
20000 instances, or 20%. As discussed earlier in Section 5.1, typical use
cases rarely change this many duplicates or this percentage of the OTTR
instances. This example had 20000 instances, and we can expect the
Duplicate solution to be even more efficient for a higher number of instances.

The key benefit of the Duplicate solution is enabling updates of instances that
create or delete duplicates. The solution does this while still outperforming
the Rebuild solution, as we see in Figure 8.5. Similar to the Simple solution,
the Duplicate solution also scales linearly with the number of changes, as
shown in Figure 8.3. It also scales linearly with the number of instances,
shown in Figure 8.4, which the Rebuild solution also does. However,
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the Duplicate solution‘s linearly scaling operations are much faster than
the Rebuild solutions linearly scaling operations, with respect to the total
number of instances. Thus, we can conclude that the Duplicate solution
performs better than the Rebuild solution as the difference between the
number of changes and the size of the triplestore grows.

In contrast to the test results, a typical update will not change only
duplicate instances. The Duplicate solution performs slightly better when
updating non-duplicate instances than duplicate instances, as shown in
Figure 8.7. This is because duplicate instances require extra operations
to adjust the counter, which includes an HTTP request. However, this
difference is small and will not be a decisive factor.

A downside to the Duplicate solution is that it has to check for duplicates in
all operations. In a case where duplicates are rare but exist, we will always
check for duplicates, but rarely find them. This might seem unnecessary,
but it is essential for the Duplicate solution to work. This case will usually
occur when there is a large triplestore with an empty TBox, which we
assume to be typical for OTTR users.

Another drawback of this solution is the inclusion of RDF-star. The subject
of the counter triple is the original triple represented in RDF-star. RDF*
is not a part of the current RDF standard, but it is a popular extension
and is currently supported by multiple RDF graph database systems like
Apache Jena Fuseki [12], Blazegraph [30], and OpenDB [8]. Furthermore,
an RDF-star working group has been created to extend a set of RDF and
SPARQL-related recommendations, with the ability to represent and query
statements about statements [41]. This means that RDF-star or something
similar will likely be part of the RDF standard in the near future. As
RDF* is commonly supported, and we argue that using it in this solution is
appropriate.

Lastly, while this solution removes the assumption that duplicates cannot
be deleted, it still cannot handle duplicate statements containing blank
nodes or blank nodes in general. This will be addressed in the following
chapters.
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Chapter 9

Removing the local blank node
assumption

This chapter will start by illustrating the problems that occur without the
local blank node assumption. We will discuss the identified problems and
present solutions. Then, we will look at the implementation of the Blank
node solution. Lastly, we will show and discuss the performance of this
solution.

Blank nodes, which allow users to denote resources without an IRI or other
value, are an important and valuable part of RDF. However, they present a
challenge when developing an update algorithm. Blank nodes can only be
referenced by their relations to other resources as they do not have an IRI,
and their label cannot be used as they are local in scope. The local blank node
assumption is the assumption that triples containing blank nodes cannot be
deleted. In the following sections, we will explore how this assumption
can be loosened and what considerations must be taken into account. We
will retain the assumption that the OTTR instances in the instance file (top-
level instances) are not given blank nodes as arguments, as we discussed in
Section 5.1. We will still assume that duplicates do not exist to focus on
the blank node problem in isolation. The issue of removing both the local
blank node assumption and the duplicate assumption simultaneously will
be addressed in Chapter 10.

The challenge with local blank nodes can be illustrated by the examples
in Listing 9.1 through Listing 9.4. Listing 9.1 and Listing 9.2 show the
OTTR files and the corresponding triplestore before the update. Bob has
a child Kari, Kari has a child Lisa, and Bob is the grandparent of Lisa.
If we want to delete ex:HasGrandchild(<bob>, <lisa>) and follow the
rules of the Simple solution, we get the query in Listing 9.3. Note that
we have replaced the blank nodes with variables in the query, as they
act similarly. We want to delete two triples from the triplestore, (<bob>
:hasChild _:b1) and (_:b1 :hasChild <lisa>), but with this DELETE
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query we will delete all four triples, shown in Listing 9.4. This is because
the triples from ex:HasChild(<bob>, <kari>) and ex:HasChild(<kari>,
<lisa>) together form the same pattern. Templates can be significantly
more complex than in the previous example. For example, a template may
contain multiple non-base templates instances with the blank node as an
argument. This increases the size of the matching graph. The complexity
also increases when there are multiple different local blank nodes.

1 ex:HasChild[?person , ?child] :: {
2 ottr:Triple(?person , :hasChild , ?child)
3 }
4
5 ex:HasGrandchild[?person , ?grandchild] :: {
6 ex:HasChild(?person , _:blankChild),
7 ex:HasChild(_:blankChild , ?grandchild)
8 }
9

10 ex:HasChild(<bob >, <kari >) .
11 ex:HasChild(<kari >, <lisa >) .
12 ex:HasGrandchild(<bob >, <lisa >) . #deleting this

Listing 9.1: Two instances creating a blank node

1 # should not be deleted
2 <bob > :hasChild <kari > .
3 <kari > :hasChild <lisa > .
4
5 # should be deleted
6 <bob > :hasChild _:b1 .
7 _:b1 :hasChild <lisa > .

Listing 9.2: Expanded graph

1 DELETE WHERE {
2 <bob > :hasChild ?blankChild .
3 ?blankChild :hasChild <lisa > .
4 }

Listing 9.3: Delete query
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1 # should not be deleted
2 <bob> :hasChild <kari> .
3 <kari> :hasChild <lisa> .
4
5 # should be deleted
6 <bob> :hasChild _:b1 .
7 _:b1 :hasChild <lisa> .

Listing 9.4: Resulting graph, too much has been deleted

9.1 Problems

The main issue with blank nodes is making a query describing exactly the
triples we want and no others. If we use the pattern from an expanded
instance with blank nodes as variables, then the variables can match other
unintended resources in addition to the blank nodes. In this section, we
will identify the different cases where we can get undesirable results and
how to solve those problems. The problems will only occur when deleting
triples, as we will struggle to identify the triples to delete. Insertion works
the same way as in the Simple solution and does not pose any problem.
The result of expanding the instances to delete will be the pattern we are
searching for, referred to as the desired pattern.

There are three cases where the Simple solution can give us a wrong result,
explained in more detail below:

1. An non-blank resource creates the desired pattern across multiple top-
level instances

2. There exists an equivalent graph matching the pattern

3. There is a template creating a super-set of the desired pattern

Non-blank resource creates the desired pattern

We know blank nodes cannot be passed as arguments to top-level
instances. However, identifiable resources (IRIs and literals) can be top-
level arguments, meaning they can form the desired pattern across the
expansion of several instances. This is what happened in Listing 9.1,
Listing 9.3 and Listing 9.4. We are looking for the blank node that is the
child of Bob and the parent of Lisa, however, the resource <kari> matches
that description. This can be solved by ensuring that the variables are blank
nodes. This is because a blank node only exists within the expansion of a
single OTTR instance, and therefore cannot form the desired pattern across
the expansion of several instances.
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An equivalent graph

If expanding another instance results in an equivalent graph to the desired
pattern, we will match too many triples. In Listing 9.5 and Listing 9.6,
there is an example of two different instances that expands to equivalent
patterns. If we try to delete ?person :hasName "Clark", we will delete
both the result of person and employee, which is incorrect. We have no way
of differentiating the person and the employee, which means it does not
matter which one is deleted, but it is important to delete only one of them.
If we can ensure that we only delete the expansion of one of the equivalent
instances, then this will not be a problem. Note that this only applies when
two instances create the exact same pattern without additional triples for
one of them. We can solve this by limiting the number of times a deletion
operation is allowed to run, regardless of the number of matches.

1 ex:Person[?name] :: {
2 ottr:Triple(_:person , :hasName , ?name)
3 }
4
5 # company is optional
6 ex:Employee[?name , ? ?company] :: {
7 ottr:Triple(_:person , :hasName , ?name),
8 ottr:Triple(_:person , :worksAt , ?company)
9 }

10
11 ex:Person(" Clark") .
12 ex:Employee("Clark", none) .

Listing 9.5: Creating equivalent graphs

1 # result from person
2 _:b1 :hasName "Clark" .
3
4 # result from employee
5 _:b2 :hasName "Clark" .

Listing 9.6: Expanded graph, equivalent sets

Template creating a super-set of the desired pattern

If we want to delete a set of triples A, and A is a subset of B, A ⊂ B, then
the Simple solution will delete both A and that subset of B. For example,
in Listing 9.7, there are two templates, ex:Person and ex:Superperson.
The ex:Superperson creates exactly the same triple as ex:Person in
addition to a triple about the superpower. We also have two instances,
ex:Person("Clark") and ex:Superperson("Clark", "flying"). Both put
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"Clark" as name, which means that two equivalent triples will be made as
seen in Listing 9.8. Note that these two triples are not identical as there will
be different blank nodes in them, but since blank nodes are anonymous,
we cannot differentiate them and call them equivalent. Even though both
triples are equivalent, we cannot delete a random one as one belongs to
the Superperson. If (_:b2 :hasName "Clark") is deleted, then the flying
person has no name, and there is still another person named Clark.

To solve this problem, we need to ensure that we do not match with the
result of templates that create a super-set of the desired pattern. We know
that blank nodes cannot exist across top-level instances as they cannot take
blank nodes as arguments, meaning all occurrences of a specific blank node
is from the same top-level instance. We also know that we cannot match
with non-blank resources due to the solution to our first problem. If we ask
for the desired pattern, we can get multiple blank nodes as a result. If we
then count the occurrences of those blank nodes, we can see if a blank node
exists in additional triples. If it does, it cannot be the blank node we seek,
as it must be from a different instance.

For example, if we delete the person instance in Listing 9.7 (line 1 in
Listing 9.8), we know that the blank node exists in exactly one triple.
We can then use the pattern ?person :hasName "Clark" to find the blank
nodes matching. We then get two blank nodes, _:b1 and _:b2, but we
count that _:b2 occurs twice, meaning it cannot be from the deleted person.
If several blank nodes match the pattern and no one occurs in additional
triples, it does not matter which one we delete, as shown in the previously
discussed problem (An equivalent graph). We can then delete a random
one, as it does not matter which one we delete.

1 ex:Person[?name] :: {
2 ottr:Triple(_:person , :hasName , ?name)
3 }
4
5 ex:Superperson[?name , ?superpower] :: {
6 ottr:Triple(_:person , :hasName , ?name),
7 ottr:Triple(_:person , :hasSuperpower , ?superpower)
8 }
9

10 ex:Person(" Clark") . #deleting this
11 ex:Superperson("Clark", "flying ") .

Listing 9.7: Template creating a super set
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1 # person
2 _:b1 :hasName "Clark" . # equivalent triple
3
4 # superperson
5 _:b2 :hasName "Clark" . # equivalent triple
6 _:b2 :hasSuperpower "flying" .

Listing 9.8: Expanded graph

9.2 Implementation

The Blank node solution uses the same approach as the Simple solution. A
single module that uses Jena model, Apache Jena Updatebuilder, OTTR-
service, Fuseki-service, and Diff-service. The difference between the Blank
node solution and the Simple solution is that the Blank node solution has to
identify all blank nodes in the update, and create a more complex SPARQL
query when deleting. This section will look at the case where one instance,
which creates a single blank node, is deleted. Insertion in the Blank node
solution is the same as the Simple solution, so we will only show deletion.
We use the previously explored example from Listing 9.1, and we delete
the ex:HasGrandChild(<bob>, <lisa>) instance. The result of this section
is a complicated query consisting of several parts. We will walk through
these parts one at a time and build the complicated query. The entire query
can be seen in Listing 9.15. We use the method from Simple solution as the
starting point for our query: Listing 9.9. Then, we will adapt the solutions
to the three problems to build our query. An illustrated overview of the
Blank node solution can be found in Figure 9.1.

1 DELETE WHERE {
2 <bob > :hasChild ?blankChild .
3 ?blankChild :hasChild <lisa > .
4 }

Listing 9.9: Delete query, simple solution
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Figure 9.1: Blank node solution overview
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Non-blank resource creates pattern

We have to ensure that the variables represent blank nodes. This can be
done with the isBlank() function. isBlank(?variable) returns true if
?variable is a blank node. By adding FILTER(isBlank(?variable)) to
our query, we only get triples where ?variable is a blank node. The query
is now updated to Listing 9.10.

1 DELETE {
2 <bob > :hasChild ?blankChild .
3 ?blankChild :hasChild <lisa > .
4 }
5 WHERE {
6 <bob > :hasChild ?blankChild .
7 ?blankChild :hasChild <lisa > .
8 FILTER (isBlank (? blankChild))
9 }

Listing 9.10: SPARQL query with isBlank(). ?blankChild must be a blank
node

An equivalent graph

We now know it does not matter which graph we delete as long as the
pattern is the entire expansion of the instance and we only delete one of
the graphs. In two equivalent graphs, all the normal triples are the same,
and the different blank nodes relate to the same resources. Deleting one or
the other yields the same result. In SPARQL, only using the desired pattern
can match several equivalent graphs, but we can use LIMIT 1 to return only
one. Our query now looks like Listing 9.11.

1 DELETE {
2 <bob > :hasChild ?blankChild .
3 ?blankChild :hasChild <lisa > .
4 }
5 WHERE {
6 <bob > :hasChild ?blankChild .
7 ?blankChild :hasChild <lisa > .
8 FILTER (isBlank (? blankChild))
9 LIMIT 1

10 }

Listing 9.11: Delete query, second attempt with LIMIT
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Template creating a super set of the pattern

This is a more complicated problem that will have a complicated query as
a solution. The solution to the problem can be divided into three parts:

1. Find all blank nodes that match the pattern

2. Count the number of occurrences of each of these blank nodes

3. Delete a single set of triples where all blank nodes occur the expected
number of times

The structure of the query is described in Listing 9.12.

1 DELETE {
2 # 3. DESIRED PATTERN
3 <PATTERN >
4 }
5 WHERE {
6 {
7 # 2. COUNT OCCURRENCES
8 SELECT ... AS ?num_blank)
9 WHERE {

10 # 2. BLANK NODE CAN BE SUBJECT OR OBJECT
11 <COUNTING_PATTERN >
12
13 # 1. FIND BLANK NODES MATCHING THE PATTERN
14 {
15 SELECT ?blank ...
16 }
17 }
18 # 3. RETURN ONE BLANK NODE WITH EXPECTED COUNT
19 ...
20 }
21 }

Listing 9.12: Structure of the blank node delete query

To solve this problem, we have to use the solutions to the other problems.
First, we must find all blank nodes that match the pattern. This is already
done with FILTER(isBlank(?variable)) in Listing 9.10. We update the
example query: Listing 9.13.
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1 DELETE {
2 # 3. DESIRED PATTERN
3 <PATTERN >
4 }
5 WHERE {
6 {
7 # 2. COUNT OCCURRENCES
8 SELECT ... AS ?num_blank)
9 WHERE {

10 # 2. BLANK NODE CAN BE SUBJECT OR OBJECT
11 <COUNTING_PATTERN >
12
13 1. FIND BLANK NODES MATCHING THE PATTERN
14 {
15 SELECT ?blankChild
16 WHERE {
17 <bob> :hasChild ?blankChild .
18 ?blankChild :hasChild <lisa> .
19 FILTER (isBlank(?blankChild)) .
20 }
21 }
22 }
23 # 3. RETURN ONE BLANK NODE WITH EXPECTED COUNT
24 ...
25 }
26 }

Listing 9.13: Blank node delete query. Finding the blank nodes.

Now we have found the blank nodes and must count the occurrences
of each one. We can do this by using the COUNT aggregate function and
grouping the blank nodes. To find this set, we have to provide a pattern to
search for. Blank nodes can only occur in the subject and object positions
of a triple, and therefore we must search for all triples where one of our
blank nodes is in the subject or object position. (?blank ?pred ?obj)
matches the subject position, and (?sub ?pred ?blank) matches the object
position. We add these results together by using UNION. We update the
query: Listing 9.14.
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1 DELETE {
2 # 3. DESIRED PATTERN
3 <PATTERN >
4 }
5 WHERE {
6 {
7 2. COUNT OCCURRENCES
8 SELECT ?blankChild (COUNT(?blankChild) AS ?num_blankChild)
9 WHERE {

10 2. BLANK NODE CAN BE SUBJECT OR OBJECT
11 {?blankChild ?pred ?obj}
12 UNION
13 {?sub ?pred ?blankChild}
14
15 # 1. FIND BLANK NODES MATCHING THE PATTERN
16 {
17 SELECT ?blankChild
18 WHERE {
19 <bob > :hasChild ?blankChild .
20 ?blankChild :hasChild <lisa > .
21 FILTER (isBlank (? blankChild))
22 }
23 }
24 }
25 GROUP BY ?blankChild
26
27 # 3. RETURN ONE BLANK NODE WITH EXPECTED COUNT
28 ...
29 }
30 }

Listing 9.14: Blank node delete query. Counting the blank nodes.

Lastly, we have to find which blank nodes occur the correct number of
times in the triplestore and then delete the pattern with one of those blank
nodes. We have already counted the occurrences of the blank nodes that
match the desired pattern by grouping the blank nodes. Now we can use
HAVING to check whether the count is as expected. In the example, the
expected count is two since the blank node occurs in two triples when
expanding the deleted instance; see Listing 9.2. LIMIT 1 can be used to
return only one blank node if several have the correct count. Then we
put the desired pattern in the DELETE clause. The query will now work in
our example, see Listing 9.15, but we have to adjust it if there are multiple
different blank nodes in the expansion of the deleted instances.
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1 DELETE {
2 3. PATTERN WE ARE SEARCHING FOR
3 <bob> :hasChild ?blankChild .
4 ?blankChild :hasChild <lisa> .
5 }
6 WHERE {
7 {
8 # 2. COUNT OCCURRENCES
9 SELECT ?blankChild (COUNT(? blankChild) AS

?num_blankChild)
10 WHERE {
11 # 2. BLANK NODE CAN BE SUBJECT OR OBJECT
12 {? blankChild ?pred ?obj}
13 UNION
14 {?sub ?pred ?blankChild}
15
16 # 1. FIND BLANK NODES MATCHING THE PATTERN
17 {
18 #FIND BLANK NODES
19 SELECT ?blankChild
20 WHERE {
21 <bob > :hasChild ?blankChild .
22 ?blankChild :hasChild <lisa > .
23 FILTER (isBlank (? blankChild))
24 }
25 }
26 }
27 GROUP BY ?blankChild
28
29 3. RETURN ONE BLANK NODE WITH EXPECTED COUNT
30 HAVING (?num_blankChild = 2)
31 LIMIT 1
32 }
33 }

Listing 9.15: Blank node delete query. Delete one correct set of triples.
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9.3 Multiple blank nodes

Having multiple blank nodes in the same pattern increases the complexity
of the implementation in some parts. Although most of the considerations
remain unchanged, a few changes must be implemented. Each blank node
is given its own variable in the SPARQL query. In addition, we must ensure
that the match is exact for all variables, which means we need a subquery
for each blank node. The subquery consists of everything we have seen so
far inside the outer WHERE clause. If we have two blank nodes in the pattern,
the query would look like Listing 9.16.

This solution will work most of the time, but there is a complicated special
case if two of the same blank node are in a single triple, (_:b :hasChild
_:b). _:b will get count two from this single triple, as it appears in the
subject and object position. This single triple can also be used to match
several triples when searching for the desired pattern. If the triplestore
looks like Listing 9.17, and we want to delete the expansion of the second
instance, then we are creating a subquery for _:b1, _:b2 and _:b3 as
previously discussed. The problem occurs in the subquery for _:b2, as
shown in Listing 9.18. First, _:b and _:b2 will be returned as a result of
the inner subquery, _:b is returned because (_:b :hasChild _:b) matches
both triples in the pattern. Then (_:b :hasChild _:b) will occur twice
when taking the union of having the blank node in the subject position and
the object position, as _:b occurs in both positions. When we count the
number of triples in which the blank nodes occur, (_:b :hasChild _:b) is
counted twice, and _:b gets the same count as _:b2, which means that we
will delete a random of them for ?b2 when deleting. If _:b is chosen, then
nothing will be deleted since (_:b1 :hasChild _:b) and (_:b :hasChild
_:b3) do not exist in the triplestore. We can easily solve this by removing
duplicates when counting triples. This can be done with the DISTINCT
keyword. The implementation of the solution is now done, and the query
will look like Listing 9.19.
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1 DELETE {EXPANSION OF ALL DELETED INSTANCES:
2 <id1 > :p ?blank1 .
3 ?blank1 :p ?blank2 .
4 <id2 > :p ?blank2 .
5 <id3 > :p ?blank2 .
6 } WHERE {
7 {SUBQUERY FOR BLANK1
8 SELECT ?blank1 (COUNT(? blank1) AS ?num_blank1)
9 WHERE {

10 {? blank1 ?pred ?obj}
11 UNION
12 {?sub ?pred ?blank1}
13 {
14 SELECT ?blank1
15 WHERE {
16 <id1 > :p ?blank1 .
17 ?blank1 :p ?blank2 .
18 FILTER (isBlank (? blank1))
19 }
20 }
21 }
22 GROUP BY ?blank1
23 HAVING (? num_blank1 = 2)
24 LIMIT 1
25 }
26 {SUBQUERY FOR BLANK2
27 SELECT ?blank2 (COUNT(? blank2) AS ?num_blank2)
28 WHERE {
29 {? blank2 ?pred ?obj}
30 UNION
31 {?sub ?pred ?blank2}
32 {
33 SELECT ?blank2
34 WHERE {
35 ?blank1 :p ?blank2 .
36 <id2 > :p ?blank2 .
37 <id3 > :p ?blank2 .
38 FILTER (isBlank (? blank2))
39 }
40 }
41 }
42 GROUP BY ?blank2
43 HAVING (? num_blank2 = 3)
44 LIMIT 1
45 }}

Listing 9.16: Delete query with two blank nodes
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1 # expansion of one instance
2 _:b :hasChild _:b .
3
4 # expansion of another instance , will be deleted
5 _:b1 :hasChild _:b2 .
6 _:b2 :hasChild _:b3 .

Listing 9.17: triplestore, special case

1 DELETE {EXPANSION OF ALL DELETED INSTANCES:
2 ?b1 :hasChild ?b2 .
3 ?b2 :hasChild ?b3 .
4 } WHERE {
5 SUBQUERY FOR b1 AND b3 analogous to SUBQUERY FOR b2
6 {SELECT ?b1 ...} {SELECT ?b3 ...}
7
8 {SUBQUERY FOR b2
9 SELECT ?b2 (COUNT(?b2) AS ?num_b2)

10 WHERE {
11 {?b2 ?pred ?obj}
12 UNION
13 {?sub ?pred ?b2}
14 {
15 SELECT ?b2
16 WHERE {
17 ?b1 :hasChild ?b2 .
18 ?b2 :hasChild ?b3 .
19 FILTER (isBlank (?b2))
20 }
21 }
22 }
23 GROUP BY ?b2
24 HAVING (? num_b2 = 2)
25 LIMIT 1
26 }}

Listing 9.18: Subquery matching too many blank nodes
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1 DELETE {EXPANSION OF ALL DELETED INSTANCES:
2 ?b1 :hasChild ?b2 .
3 ?b2 :hasChild ?b3 .
4 } WHERE {
5 SUBQUERY FOR b1 AND b3
6 {SELECT ?b1 ...} {SELECT ?b3 ...}
7
8 {SUBQUERY FOR b2
9 SELECT ?b2 (COUNT(DISTINCT *) AS ?num_b2)

10 WHERE {
11 {?b2 ?pred ?obj}
12 UNION
13 {?sub ?pred ?b2}
14 {
15 SELECT ?b2
16 WHERE {
17 ?b1 :hasChild ?b2 .
18 ?b2 :hasChild ?b3 .
19 FILTER (isBlank (?b2))
20 }
21 }
22 }
23 GROUP BY ?b2
24 HAVING (? num_b2 = 2)
25 LIMIT 1
26 }}

Listing 9.19: Complete delete query
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9.4 Experimental evaluation

The following section shows the performance of the Blank node solution with
a varying number of operations on blank instances. First, we compare the
Blank node solution to the Rebuild solution in a typical use case and then find
the point where rebuilding outperforms the Blank node solution. In addition,
we will compare the insert and delete operations.

Figure 9.2: Blank node solution VS. Rebuild solution, varying instances

Figure 9.2 illustrates how the Blank node solution compares to the Rebuild
solution. We observe that both solutions scale linearly with the number
of instances, but the linear scaling operation in the Blank node solution is
faster than the linear scaling operation in the Rebuild solution. In Figure 9.3,
we see that for low numbers of changes to blank nodes, the Blank node
solution is faster. However, once the number of changes is around 60,
the Rebuild solution is more efficient. While the Rebuild solution uses the
same time regardless of the number of changes, we see that the Blank node
solution run time grows linearly with the number of changes. Another
interesting observation is in Figure 9.4 where the number of blank deletions
and insertions is a constant of five, respectively. We see that the insert
operation is not particularly affected by the number of instances, unlike
the delete operation, which scales linearly with the number of instances.
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Figure 9.3: Blank node solution VS. Rebuild solution, varying changes

Figure 9.4: Deleting only blank nodes vs. inserting only blank nodes
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Insertion also scales better than deletion as the number of changes
increases. In Figure 9.5, we compare the Blank node solution performing
only insert operations, only delete operations, and the Rebuild solution. We
can see that the Blank node solution is quicker at inserting blank nodes than
deleting blank nodes. We see in Figure 9.6 that the point of intersection for
inserting blank nodes is about 12500 out of 20000. This happened already
at 25 for deletion, as shown in Figure 9.5. Figure 9.7 shows that when there
are changes to blank nodes, the query execution part of the algorithm is by
far the most time-consuming.

Figure 9.5: Inserting blank nodes vs. deleting blank nodes vs. rebuilding,
point of intersection delete
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Figure 9.6: Inserting blank nodes vs. rebuilding, point of intersection insert

Figure 9.7: Time spent on different parts of the algorithm
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9.5 Discussion

One of the key advantages of the Blank node solution is its ability to remove
the assumption that blank nodes cannot be deleted. Moreover, the Blank
node solution generally outperforms the Rebuild solution in the typical case
from Section 5.1, as we see in Figure 9.2. However, the algorithm performs
much worse when deleting blank nodes than when inserting blank nodes.
The point where this solution is no longer viable is highly dependent
on how many blank nodes that are deleted, as we see in Figure 9.5 and
Figure 9.6. In a graph with 20000 instances, rebuilding is better already
when deleting 25 blank nodes, while the same point for insertion is at about
12500 blank nodes. The significant discrepancy is the result of blank node
insertion being done similarly to the Simple solution, while deletion of blank
nodes requires pattern matching in the triplestore. In this test, we see that
deleting a blank instance is approximately 500 times slower than inserting
a blank instance.

Another advantage of the Blank node solution is that non-blank instances are
treated in the same way as in the Simple solution. The only difference is a
check whether there exist blank nodes in the updated triples, which will
not be noticeable. This trait means that we can use the Blank node solution
instead of the Simple solution in all cases without losing much performance.
Later in Chapter 11, we will see that the Blank node solution will match the
performance of the Simple solution as long as blank nodes are absent.

As we know, the Rebuild solution scales constantly with the number of
changes. The Blank node solution, on the other hand, scales both with
the number of changes and the number of instances. This means that
at a certain number of changes, the Blank node solution will no longer be
more efficient than the Rebuild solution. As we discussed in Section 5.1, we
assume most data have few blank nodes, meaning we can assume that most
realistic updates do not change enough blank nodes for the Rebuild solution
to outperform the Blank node solution.
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Chapter 10

Combined solution

The natural continuation and conclusion of the three previous chapters is
a combination of all three solutions. By creating a solution with both the
duplicate assumption and the local blank node assumption removed, we
end up with a fairly complete solution. We call this solution the Combined
solution. The only remaining assumption is that no blank node is passed as
an argument to a top-level instance. This chapter will present an outline
for the Combined solution. Following this, the results from the experimental
evaluation are presented. Lastly, we discuss the results.

10.1 Description

Implementing the Combined solution will require only minor adaptations to
the other solutions. This section will outline what adaptations must be
done to combine the different solutions. We use the methods from the
Blank node solution to handle blank triples, and use the methods from the
Duplicate solution to handle all other triples. Duplicates of blank triples can
be ignored in this solution, which we will explain later. Thus, the methods
from Duplicate solution and Blank node solution handle separate input data
and will not interfere.

First, we expand the updated instances and split the triples into two
categories. Triples with blank nodes and triples without. Deletion and
insertion of non-blank triples will work as described in the Duplicate
solution. Deleting and inserting blank triples will work as in the Blank
node solution. As this solution keeps the assumption that no blank node
is passed as a top-level argument, it follows that a single blank node can
only originate from one single OTTR instance, meaning that two distinct
instances cannot create triples with the same blank node. Additionally,
we know from Section 8.1 that duplicate triples originating from the same
instance can be ignored. We now know that duplicated blank triples only
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can occur from the same instance, and we also know that we can ignore
duplicates from the same instance. Thus, we can ignore duplicated blank
triples in general. Therefore, we can use the operations from the Blank
node solution to handle blank triples, instead of combining it with Duplicate
solution.

The Combined solution consists of three steps. First, the algorithm separates
the triples containing blank nodes from the ones not containing blank
nodes. Secondly, the blank triples are handled. Lastly, we handle the
non-blank triples. We will not present the insert and delete operations
implemented in pseudo-code:

INSERT

in the algorithm below, we let:
hm=counting hash map, bs=blank set, i = instance, t = triple

1. FOR each instance i to be inserted

(a) FOR each triple t in expansion of i

i. IF t contains blank nodes, THEN
A. Add t to bs

ii. ELSE
A. Add t to hm and increment its count

2. FOR each triple t in bs

(a) Insert t using the blank node solution

3. FOR each triple t in hm

(a) Insert t using the duplicate solution
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DELETE

in the algorithm below, we let:
hm=counting hash map, bs=blank set, i = instance, t = triple

1. FOR each instance i to be deleted

(a) FOR each triple t in expansion of i

i. IF t does not contain blank nodes, THEN
A. add t to hm and increment its count

ii. ELSE
A. Add t to bs

2. FOR each triple t in bs

(a) delete t with the blank node algorithm

3. FOR each t in hm

(a) Delete t using the duplicate algorithm

The Combined solution is implemented using a similar approach as the
previous solutions. It is its own module that interacts with the OTTR-
service, Diff-service, and other services. Additionally, this module imports
the Duplicate solution and the Blank node solution modules in order to have
access to their functions. What sets this implementation apart from the
previous solutions is the fact that the triples are separated into categories
initially; a Model containing blank triples, and a HashMap containing
normal triples. Figure 10.1 illustrates an outline of the combined solution.
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;

Figure 10.1: Outline combined solution
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10.2 Experimental evaluation

This section presents the results of our experiments. As the Combined
solution handles blank tiples and other triples separately, we expect the
Combined solution to perform similarly to the Blank node solution and the
Duplicate solution at their respective tasks.

In Figure 10.2, we see how the Combined solution and Duplicate solution
performs equally in a case with 20000 instances, and all changes are made
to duplicate instances. The figure in Figure 10.3 illustrates another test case
with a similar number of instances and a varying number of changes to
only blank instances. Here we see the Combined solution performs similarly
to the Blank solution.

Figure 10.4 gives an example of how the Combined solution performs in a
case with all types of changes and a triplestore of size 10000. We insert
and delete 5 separate blank instances, duplicate instances, and normal
instances. We see that the Combined solution scales better than the Rebuild
solution.

Figure 10.2: Combined, Duplicate, and Rebuild solution, varying number
of duplicate instance changes
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Figure 10.3: Combined solution, Blank node Solution, and Rebuild solution
varying number of blank instance changes

Figure 10.4: Combined solution vs. Rebuild solution combined example
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10.3 Discussion

We will now briefly discuss the results of the experimental evaluation.

While the Combined solution is a more complicated algorithm, every
changed triple will be handled only by the methods one of the previous
solutions. Non-blank triples are handled by the Duplicate solution, while
blank triples are handled by the Blank node solution, but never both. As
discussed in the previous section, we can ignore duplicate blank triples,
causing the two parts of the algorithms to be separate. The results in
Figure 10.2 and Figure 10.3 show us, as expected, that the Combined solution
performs similarly to the previous solutions in their respective intended
use cases.

We assume that as the number of changes increases, the Combined solution
will have a diminishing performance, compared to the Rebuild solution,
especially with the deletion of blank instances. This is the trend of all
previous solutions. However, it is reasonable to believe that most updates
of OTTR data will still see an improvement in update speed with the
Combined solution. Since it performs similarly to the other solutions, it
severely outperforms rebuilding in the typical case from Section 5.1, but
is heavily affected by deletion of blank instances.

It is important to note that without the assumption about top-level blank
nodes, this solution would look different. The absence of top-level blank
nodes allows us to ignore duplicates of blank triples. Without this
assumption, we would have to combine the delete queries of blank nodes,
with the counting algorithm.

As the Combined solution handles both blank instances and duplicate
instances, it is more complete than the other solutions. Top-level blank
nodes is the only kind of input data it does not handle. However, we
believe that top-level blank nodes are uncommon and it should be easy
to recognize they are present.
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Part III

Discussion and conclusion
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Chapter 11

Comparison

Comparing the different solutions to each other is a helpful tool in gauging
their relative performance, especially compared to our baseline, the Rebuild
solution. The various solutions operate under different assumptions, which
means that not every solution can be applied to every test case. In this
chapter, we look at how the different solutions compare.

The table in Figure 11.1 shows what types of operations the different
solutions support. We see that all solutions support insertions of any kind
of triple. The Simple solution has the strictest assumptions. The Blank node
solution and Duplicate solution remove one assumption each. The Combined
solution can handle the deletion of normal, blank, and duplicated triples.
None of the solutions presented in this thesis can handle blank nodes being
used as a top-level argument, as we in Section 5.1 reasoned that this is not
common in a practical use case.

Figure 11.1: Attributes of all solutions
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When comparing the different solutions in a test with few changes
and many instances, we see that all presented solutions significantly
outperform the Rebuild solution. This is illustrated in Figure 11.2 where five
instances are deleted, and five are inserted affecting only non-blank and
non-duplicated triples. Note that the time in the figure is log scaled.

Figure 11.2: Typical case comparison. Log scale

Figure 11.3 and Figure 11.4 shows how the different solutions scale when
the number of instances stays constant at 20000, and the number of
deletions or insertions increases. Both graphs are log scaled, meaning the
time spent by Rebuild solution is significantly larger than the other solutions
when only non-duplicated and non-blank instances are affected. We also
see that the Duplicate solution and the Combined solution are consistently
slower than the Blank node solution and Simple solution.
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Figure 11.3: Only delete normal triples

Figure 11.4: Only insert normal triples
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Comparing how efficiently the Blank node solution handles blank instances
with how efficiently the Duplicate solution handles duplicated instances is
insufficient for saying anything about their relative performance. However,
this comparison can tell us what types of changes are the most time-
consuming. In Figure 11.5, we compared the different solutions deleting
the type of instance they are created for. This means we look at the time
spent by the Blank node solution deleting 5 to 100 blank instances. This is
compared to the Duplicate solution deleting the same number of duplicate
instances. Additionally, we compare this with the Simple solution deleting
the same number of normal instances. We see clearly that deleting a blank
instance is slower than deleting a duplicate instance or a normal instance.
Figure 11.6 shows a similar graph, but in this case, the solutions are only
inserting as opposed to only deleting. Here we see that the solutions scale
similarly, with the duplicate solutions being somewhat slower than the
other two. The type of instance that is inserted does not have a significant
effect on the time spent.

Figure 11.5: The three solutions deleting instances of their special case

96



Figure 11.6: The three solutions inserting instances of their special case
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Chapter 12

Discussion

We will now discuss the key findings of our results. Then, move on to
how this research will affect OTTR, and discuss some considerations that
must be accounted for in an implementation. Further, we will take a look
at the limitations of our experiments. And lastly, we present some user
recommendations.

12.1 Key findings

It is possible to create an efficient update algorithm for OTTR

Our algorithms will not perform better than rebuilding in all situations.
However, all of our algorithms consistently outperform rebuilding in the
typical cases discussed in Section 5.1. Given some assumptions, the Simple
solution makes an efficient update. The Duplicate and Blank node solution
show that it is possible to remove those assumptions and still have an
efficient update algorithm. And the Combined solution is a fairly complete
update algorithm, with the exception of handling top-level blank nodes.

Rebuilding is better with large changes

In contrast to the solutions presented in this thesis, the Rebuild solution is
unaffected by the number of changes. It will always expand all OTTR
instances and insert the resulting graph. This is very inefficient when
the update is small, but this is the optimal solution if all instances are
updated. When all instances are updated, our solutions would have to
expand all instances in addition to other operations, which means the
Rebuild solution would perform better. Thus, we know that there is a point
where rebuilding the entire triplestore is more efficient than our solutions.
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The point where this happens depends on the solution, the triplestore, the
number of blank nodes and duplicates, and the changes made. Based on
the results in Chapter 6, Chapter 8, Chapter 9, Chapter 10 and Chapter 11,
we can conclude that the change has to be of significant size in comparison
to the triplestore to reach this point. However, we believe such an update
is unlikely when the triplestore is large, as the update would be very big.

An update algorithm without special cases is intuitive and efficient

During development, we found it easy to create an efficient update
algorithm that does not take into account special cases like duplicates and
blank nodes. The Simple solution is a very intuitive approach to the problem,
and we see from the results that the performance is excellent. However, this
solution has very strict assumptions, restricting its practical use.

Insertion is easier than deletion

We can see from Figure 11.1 that all solutions can insert any type of triple
without desynchronizing the OTTR instances and the triplestore. Problems
with blank nodes and duplicates only occur during deletion. If we only
insert triples and avoid deletion, the Simple solution will work with both
blank triples and duplicates. That means the Simple solution is our best
choice if only inserting and non-destructive operations are allowed.

Counting duplicates affects both the insert and delete operation

In our Duplicate solution, the approach is to keep track of the number of
duplicates. That way, we ensure we do not delete a triple with one or more
duplicates. However, even as the desynchronization only happens in the
delete operation, the insert operation must also be modified to check if new
duplicates are added. Both the insertion and deletion operation must find
specific resources in the triple store, meaning the Duplicate solution is slower
at inserting than the other solutions. Still, it is much more efficient than
rebuilding a big triplestore. The Combined solution uses the same method
for inserting non-blank triples and shows a similar performance.

Matching blank nodes is a complex problem

While inserting blank nodes is easy, finding and deleting the correct ones
is expensive. A blank node has no identifier outside a local scope, meaning
we must find it by matching a pattern. That means using variables to
check all combinations of possible values for the blank nodes. This is
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expensive and time-consuming in large triplestores. Finding a triple with
no variables should be easier, especially if indices are used, as there is
only one possible value for each resource. Our data support this theory
since it shows that deleting triples containing blank nodes is much more
expensive than deleting normal triples. The delete operation in the Blank
node solution scales not only with the size of the update, like the Simple and
Duplicate solution mostly do, but also with the size of the triplestore and the
number of blank nodes in the update. The Blank node solution must for each
blank node in the delete query search for a pattern in the entire triplestore.
However, deletion of normal triples without blank nodes is performed like
in the Simple solution, not affected significantly by the size of the triplestore,
as we can see in Figure 11.3. The problem of finding blank nodes is proved
to be NP-hard [53].

Blank node solution is an extension of the Simple solution, Duplicate is
different

Normal triples, which are non-duplicated triples without blank nodes,
are handled very efficiently by the Simple solution. This is also the case
for the Blank node solution, as normal triples are handled in almost the
same way. Since the Blank node solution also handles blank nodes, it is an
extended version of the Simple solution. Inserting and deleting triples with
the Duplicate solution requires checking if the triple is a duplicate and acting
accordingly. Both operations consist of checking if the triple is a duplicate
and keeping track of the number of duplicates for each triple. We have to
do this for all triples, duplicate or not, which results in a performance loss
for all operations. This method is fundamentally different from the Simple
solution and Blank node solution.

Blank triples do not have to be counted

In Chapter 10, we discovered that it was sufficient to use the methods from
the Blank nodes solution when handling blank triples, even when duplicates
are allowed. Our solutions always treat the whole expansion of a changed
instance, rather than specific triples. Thus, duplicates within an instance
can be ignored. We also have an assumption that ignores top-level blank
nodes, which means a single blank node cannot occur in the expansion
of different instances. If we combine these two facts, then we know that
duplicates of blank triples do not need to be accounted for.

All solutions should rebuild when the update is too large

Our solutions perform well with small updates, but are outperformed by
the Rebuild solution with very large updates. This is because rebuilding is
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independent of the update, while our solutions are not. The ideal solution
could be to switch to a rebuild approach if the update is large enough.
However, this point is not at a consistent percentage, as it varies depending
on the solution and the data. Thus, it would require specific testing for a
specific scenario to find the optimal point to switch to rebuilding. Doing an
analysis like this is interesting work that can be done in the future.

12.2 Implication for OTTR

This thesis gives insight into key challenges that must be taken into account
and possible solutions. We also identify what factors affect the performance
of such an algorithm. Implementing our algorithm would make OTTR
a better fit for maintaining triplestores. Currently, OTTR’s only option is
to rebuild the entire triplestore, which in practice means using OTTR to
update large triplestores is not a great choice as it is slow. This is not ideal
since OTTR is intended for large amounts of data.

In this thesis, we have implemented the different solutions in Java using
Lutra as a dependency to perform tests. Implementing the update
algorithms directly in Lutra, in a similar manner, is achievable but comes
with its own considerations. While we have explored how to handle
changes to OTTR instances, it might also be desirable to handle changes
to OTTR templates. Ideally, an implementation of this algorithm would
address both of these cases. An alternative could be to rebuild when there
is a change in the template files. This might be inefficient, but template
changes are probably rarer while also being on average larger in size
than instance changes. This is because template changes typically affect
more triples than instance changes, and as updates scale with the size of
the change, the template updates will probably not be as efficient as the
instance updates.

Another consideration is the robustness of the algorithms. This thesis has
provided a description and an example implementation of several update
algorithms. Still, it has not addressed the issue of robustness, specifically
with regard to handling errors during execution and input handling. This
must be addressed for the update to be a part of OTTR. The most significant
identified problem regarding our solution’s robustness is that there is no
check if the assumptions we have made are in place. It is essential to detect
if an assumption, like the absence of blank nodes or the absence of syntax
error, is maintained and to give an error if that is not the case. Another
critical point to address is unexpected interactions with the triplestore. For
example, if a connection to the database is not established, the algorithm
must be robust enough to detect and handle this. All of the solutions
perform multiple database request, and it is essential that they can handle
if one or multiple of the requests fails.
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Reasoning is another consideration. Reasoning over an RDF graph is
a common use case, and this is still possible when using the update
algorithm, but the derived triples should be stored in a separate graph.
Every time we update the default graph with our algorithm, the derived
triples must also be updated. This is done with truth maintenance [17],
which is another type of update problem. We discuss the similarities
between our update problem and truth maintenance in Chapter 13.

12.3 Limitations

When developing, testing, and evaluating an algorithm in a constructed
environment, as in this thesis, there is no guarantee that the performance
of an actual implementation will reflect our evaluations. The results
presented may not be representative of an algorithm implemented in
Lutra. Nevertheless, we believe the results would be similar since our
implementation is implemented in Java using Lutra and Jena as libraries.

All of our tests are executed with the same setup of hardware and program
versions. Our results do not show how the algorithms will perform with
a different setup. For example, our tests used a locally hosted triplestore.
This is likely not the case in a real-world scenario. Communicating with
an online triplestore is much slower than with a local one, while query
execution takes the same time. How this affects our solutions is not tested.

Our methodological assessment choices limit our research. This thesis uses
a practical approach and evaluates how a solution compares to rebuilding
in justified scenarios. However, the tests are not exhaustive. OTTR is
intended as a general-use template language to create and maintain large
ontologies and RDF graphs. The potential uses of the language are far
too many to be feasibly tested. In this thesis, we have performed a
variety of tests for each solution, where we have focused on the typical
use case and the point where the Rebuild solution and the given solution
perform approximately the same. Further testing of the solutions should be
explored. An aspect of the algorithm that has not been adequately explored
is its performance on very large data sets.

Synthetic test data impact the reliability of our results. All the tests in
this thesis are executed on a modified set of Exoplanets [52]. The tests
vary the number of instances, deletions, and insertions of normal triples,
blank triples, and duplicate triples. This is done by programmatically
changing the dataset. Using synthetic test cases like this to evaluate how
an algorithm will perform during real-world use comes with uncertainty.
Synthetic datasets do not always represent the real world, and our test will
not capture the complexity, nuances, and patterns of actual usage scenarios.
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12.4 User recommendations

Being aware of the strengths and weaknesses of the algorithm allows a user
to make decisions that can increase performance. Therefore, studying how
the algorithm performs in different scenarios can give valuable information
on how to adjust the input data or the use of the algorithm to your specific
use case.

Several considerations can be made to facilitate the efficient use of the
OTTR update. As we have discussed, deleting blank nodes is the most
complex operation, and thus reducing the need for deleting blank nodes
will improve performance. This can be a hard requirement to follow, and
a more manageable goal might be to reduce the number of blank nodes
in general. We also know that allowing instances that create duplicate
triples will require multiple HTTP requests on both the insert and delete
operations, even when handling non-duplicate triples. If it is possible
to ensure no duplicates exist, using only the Simple solution or Blank node
solution will result in better performance. However, both the duplicate and
the blank node problem only occurs when deleting, which means that if
insertion is the only required operation, then the Simple solution will be
sufficient.

The considerations will be different when using OTTR to create ontologies
meant for reasoning. As we have discussed in Section 5.1, a dataset with
a large TBox results in many duplicates. We know that the Duplicate
solution only performs slightly worse when handling duplicated triples
than normal triples. This means there is no need to limit the number of
duplicates created to increase performance. However, you can expect the
storage space to increase, as many counters are stored.

As a user, it is important to identify the requirements. Are you creating
what is effectively a database with empty TBox, or are you creating a
reasoning ontology? Does the algorithm need to handle duplicates and
blank nodes, and is there a need for 100% correctness at all times? If one can
tolerate some temporary inaccuracies and duplicates are rare, then one can
use the Simple solution and occasionally rebuild to correct the inaccuracies.
If 100% correctness is always required, this is not an option.

103



Chapter 13

Related Work

In this chapter, we will look at related work and discuss similarities and
differences to our thesis. To our knowledge, the problem addressed in this
thesis has not been addressed before.

13.1 A Truth maintenance system

A general truth maintenance system is presented in Jon Doyles A Truth
Maintenance System [25]. The system makes assumptions and revises
beliefs with new discoveries. This is done by recording and maintaining
justifications for the beliefs. This system is similar to the algorithms
presented in this thesis if we view the RDF graph as the set of beliefs and
the justifications as a pair containing an RDF triple and the corresponding
OTTR instance.

Our algorithm is more straightforward than the system presented by
Doyle, as introducing new instances can only result in triples being added,
not removed. In a truth maintenance system, this would be equal to adding
new justifications only resulting in adding beliefs, not removing them.
Adding new triples requires minimal logic, just expansion and insertion.

The deletion part of our process bears more resemblance to the truth man-
agement system. In Inferencing and Truth Maintenance in RDF Schema [17],
Jeen Broekstra and Arjohn Kampman creates an algorithm, that is based
on A Truth Maintenence System, for updating derived statements based on
deletion of explicit statements. They aim to outperform a brute-force ap-
proach, where all derived statements are discarded and recomputed. Their
problem is similar to ours, especially deleting duplicate triples, as their al-
gorithm handles the removal of duplicate derived statements. Both their
problem and our duplicate problem occur only when information is retrac-
ted.
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In Broekstra and Kampman‘s algorithm, they store a set of justifications.
A justification contains a derived statement and the justifying facts. They
use the justifications to compute the consequences of removing an explicit
statement. Removing a statement also removes the justifications this
statement justifies. All statements derived from a deleted justification
are not necessarily deleted, since there might still exist other justifications
for those statements. However, if there is no justification for a derived
statement, then it is deleted.

The justifications show why all derived statements is generated. In our
case, a mapping like the justifications would be a mapping between RDF
triples and OTTR instances. This would solve both the duplicate problem
and the blank node problem. Unfortunately, this approach would imply
storing a justification for every triple, which doubles the required space.
As OTTR users are likely to use a large triplestore, doubling the required
space might not be desirable.

13.2 Truth maintenance in datalog

Datalog is a database query language based on the logic programming
paradigm [18]. Datalog implementations often materializes all facts entailed
by a datalog program. This means, from a set of explicit facts, it pre-
computes and stores all entailed facts. This is done in order to answer
queries more efficiently. When the explicit facts are changed, all entailed
facts must be rematerialized. Materialization maintenance algorithms have
been developed to efficiently identify the required updates, to speed up
rematerialization. Materialization maintenance shares many similarities
with our problem if we view the explicit facts as the OTTR instances, and
the materialized facts as the RDF triples. When a change to the explicit facts
occurs, we want to materialize only the affected entailed facts.

The paper Maintaining views Incrementally by Gupta et al. [29] looks at the
problem of changing materialized database views, in response to changes
in the relations. They present a counting algorithm to compute updates
to materialized views, by keeping track of the number of alternative
derivations for each tuple. A change is seen as a set of changes, where
tuples with a positive count represent insertions, and tuples with a negative
count represent deletions. Applying a change to a materialized view
means updating the count, and possibly inserting or deleting tuples. This
approach is similar to the Counting all occurrences approach, discussed in
Section 8.2, where all triples have a corresponding counter triple, and
inserting or deleting triples entails changing the counter. The Duplicate
solution implemented in this thesis only counts duplicates as opposed
to all occurrences. This approach still resembles the counting algorithm
presented by Gupta et al., as a triple without a count implies one occurrence
of that triple.
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Another approach to materialization management is the Delete and Rederive
(RDed) algorithm. This algorithm is originally presented in the same paper
Maintaining views Incrementally [29], but many variations and optimizations
have been presented[37, 50]. The RDed algorithm makes changes to
view relations given a change to the base relation. The algorithm does
this in three steps. First, the algorithm computes an overestimate of the
deleted derived tuples. Second, the overestimate is removed by looking
for alternative derivations for the deleted derived triples. Finally, the new
tuples that need to be added are computed using the partially updated
materializations [29]. Applying a similar technique to remove the duplicate
assumption could look like this: We first overestimate the triples to delete
by deleting the whole expansion of the OTTR instances to delete. Secondly,
we remove the overestimate by looking for any existing instances that
create every triple to be deleted. Lastly, we add the expansion of the
instances to be inserted. The main drawback of this approach, is the lack
of a way to identify the corresponding OTTR instances to a given triple.
It would take too much time to expand all instances for this check, and
a mapping structure from instances to triples would require too much
space, as we mentioned when discussing A Truth Maintenance System and
Inferencing and Truth Maintenance in RDF Schema.

13.3 Other mapping languages

Another RDF mapping language similar to OTTR, is R2RML [43]. R2RML
is a language for expressing mappings from relational databases to RDF.
This is used to view relational data as RDF, for example with a virtual
SPARQL endpoint. The mappings are written in RDF turtle format and
specify how the relational data should be translated into RDF. Users can
also customize the mappings. R2RML has several similarities to OTTR,
as OTTR can also be used to translate relational data to OTTR instances
with bOTTR mappings, and then further translated to RDF via expansion.
However, R2RML has no reason for having an update algorithm, as it only
creates virtual triplestores. This means that there is nothing to update
based on changes in the relational database.

RML [23] is another mapping language based on and extending R2RML,
that can be used for materializing triplestores. RML supports a broader
range of inputs compared to R2RML, which only uses a relational database
as input. However, to our knowledge, RML does not handle updates of
source data [15, 23].
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Chapter 14

Conclusion

In this thesis, we have created multiple algorithms for updating a
triplestore based on changes to an OTTR instance file. The algorithms
outperform OTTR‘s current solution in typical use cases, which is a
small change to a large triplestore. Our update algorithms all use a
difference algorithm to identify changed OTTR instances and then create
a corresponding SPARQL query to update the triplestore.

We have shown that it is possible to create an efficient update algorithm
for OTTR. The different algorithms are created for different use cases with
varying assumptions. The Simple solution performs the best, but under the
strictest assumptions, as no OTTR instances that create triples with blank
nodes can be deleted (local blank node assumption), and no OTTR instances
that create duplicate triples can be deleted (duplicate assumption). The Blank
node solution removes the local blank node assumption. It performs well with
non-blank triples and insertion of blank triples, but deleting triples with
blank nodes scales poorly. The Duplicate solution removes the duplicate
assumption by keeping track of the number of duplicates. Compared to
the Simple solution, we see that it scales similarly, but is generally slower.
Lastly, the Combined solution combines the three algorithms mentioned
above to remove both the duplicate assumption and the local blank node
assumption. This algorithm performs similarly to previous solutions at
their respective input type, as it uses the Blank node solution on triples
containing blank nodes, and the Duplicate solution on all other triples. In
a typical use case with a small change to a big triplestore, all implemented
solutions outperform OTTR‘s current solution, which is to rebuild the
entire triplestore.

We have seen that the input data affect the performance of the algorithm.
The smaller the update is relative to the triplestore, the better our solutions
perform compared to rebuilding. The inclusion of blank nodes affects
performance, as deleting triples with blank nodes requires costly graph
matching in the triple store. Inserting non-duplicated triples is effective
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in comparison. Allowing OTTR instances to create duplicates affects all
operations, also when handling non-duplicates, as all operations need to
check if a triple is a duplicate.

We believe our algorithms would be a good addition to OTTR, as the
inclusion of our algorithms would make OTTR a language for maintaining
triples stores in addition to creating RDF graphs. There is no update in
OTTR‘s current state, and the only option is to rebuild the entire RDF
graph in the triplestore. In many cases, rebuilding would not be feasible,
as it can be very time-consuming. Our update algorithms allow OTTR to
make small changes to a large triplestore efficiently. This is a required
functionality since OTTR intends to improve the efficiency and quality
of maintaining knowledge bases. However, several considerations must
be taken into account before adding this as part of OTTR. It is important
that the update is sound and does not produce incorrect updates. A more
theoretical assessment of this work to ensure soundness should be in place.
Additionally, ensuring that the implementation is robust and capable of
handling errors is important.

14.1 Future work

We propose the following future work related to OTTR and updates:

• Implementation in Lutra
A natural next step from this thesis would be implementing the
update algorithm as a part of Lutra and the OTTR language, not only
as a standalone test program.

• Template update problem
While this thesis looks at handling updates of changed OTTR
instances, another variation worth exploring is the case where the
OTTR templates have been changed. A solution to this can be built
upon the algorithm presented in this thesis, as it supports both
inserting and deleting instances. A simple approach to handling
a change of a template can be: expand the instances over the old
template and delete the result, then expand the potentially modified
instances over the new template and insert these.

• Explicitly handle modified instances
A likely scenario is when an update consists of modifying one or
more instances, not only deleting or adding. This thesis handles
modified instances by deleting the old version and inserting the new
version. Handling these cases explicitly is interesting to explore, as
unnecessary deletions and insertions can be avoided, especially if a
single OTTR instance expands to a large number of triples.
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• Theoretical approach
While this thesis took a practical approach to solving the problem and
evaluating the results, it is also interesting to analyze the theoretical
aspects. Proof of correctness for each solution presented in this thesis
can be an interesting continuation of this work. In addition, other
theoretical aspects, such as what an optimal update is, can also be
explored.

• More extensive testing
There is a need for more extensive testing of the solutions presented
in this thesis. This testing can vary more variables, for example, the
testing system or other test cases.

• Updates specialized for large TBox ontologies
We have seen that the update algorithm presented in this thesis
performs the worst when there are many blank nodes and duplicates.
This typically occurs when the ontology is used for reasoning, and the
TBox is of significant size, as discussed in Section 5.1. Investigating
alternative ways to create the update algorithm in order to perform
better in these scenarios is of interest.

• bOTTR updates
One way OTTR is used to create RDF graphs is by mapping a SQL
database to OTTR instances by using bOTTR [48]. Exploring a way
of creating a correct update to the triplestore by knowing the change
to the SQL database and the bOTTR mapping can be of interest.

• Unknown Update Problem
Another problem variation is the case where the update of instances
and templates is unknown. This problem occurs when we have new
versions of OTTR templates and instances but not the old versions.
This makes it harder to identify changes, which makes it harder to
create an update query, but it removes the need to keep track of old
and new versions of the instance file.
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