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Abstract

Training police officers to conduct interviews with child abuse victims
is an intricate, expensive, and time-consuming endeavor. We recognize
the possibility of using 3D virtual avatars and facial mimicry in training
programs that can assist law enforcement personnel with interviewing
abused children. Transferring expressions and intricate nuances found
in human faces onto a 3D virtual avatar, is one of the most complex
tasks within computer vision. Despite significant progress and recent
advancements in this field, we are still a long way from achieving virtual
humans that are indistinguishable from real humans. An important aspect
of creating realistic looking 3D virtual avatars is capturing the essence
of complex human facial expressions. However, this requires expensive
equipment that can capture and transfer facial mimicry from video onto
a 3D virtual avatar.

In this thesis, we focus on the research and development of tools that utilizes
algorithms and methodologies for facial expression capture and subsequent
transfer onto 3D virtual avatars. We present evaluations of various
animation techniques that employ facial landmark captures derived from
video recordings, live video feeds, and images. Additionally, we showcase
our research and implementation of 3D virtual avatar animation tools.
Furthermore, we assess the effectiveness of utilizing distance algorithms
for computing blendshape weights derived from facial landmarks by
quantifying similarity between facial expressions. Our findings holds the
potential to automate blendshape weight annotations of facial images.
Lastly, we develop a dataset that includes face point clouds and sculpted
3D blendshape face models, which can be utilized in machine learning
pipelines for blendshape weight predictions or facial analysis research.
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Glossary

CNN CNN (short for Convolutional Neural Network) is a type of deep
learning algorithm used in machine learning for image and video
analysis. CNNs are designed to recognize patterns in images by
processing them through a series of convolutional layers and pooling
layers.. 13, 50

CPU CPU (short for Central Processing Unit) is a central piece of electronics
hardware that executes instructions from programs or operating
systems.. 22

FACS FACS (short for Facial Action Coding Systems), is a system that
categorizes human facial expressions into sets of shapes that can be
described by Action Units.. 15

FFHQ FFHQ (short for Flickr-Faces-HQ) is a high-quality human faces
image dataset. Originally created as a benchmark for generative
adversarial networks (GAN), by NVIDIA Corporation. The FFHQ
license is made available under Creative Commons BY-NC-SA 4.0
license.. 4

FPS FPS (short for Frames Per Second) is term that describes the frequency
at which consecutive images or frames are captured or displayed.. 22

GPU GPU (short for Graphics Processing Unit) is a piece of computer
hardware originally designed to accelerate graphics rendering, but
now also widely used within machine learning tasks.. 22

inference Inference within the realm of Artificial Intelligence is the process
of utilizing a neural network to yield results.. 22

LiDAR LiDAR (short for Light Detection and Ranging) is a remote sensing
method that uses light in the form of a pulsed laser to measure
variable distances to the Earth. The data collected using LiDAR can
be environmental 3D objects, which are processed in machine learning
pipelines.. 17

NLP NLP (short for Natural Language Processing) is a the ability given to
a computer to understand text the same way as humans do.. 10
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RAM RAM (short for Random Access Memory) is the fastest memory in
a computer, which temporarily holds data that it needs to store and
retrieve quickly.. 22

SVM SVM (short for Support Vector Machines) is a supervised machine
learning algorithm, meaning they require labeled data to train on. The
goal of SVMs is to find the hyperplane that maximizes the margin
between two classes in a dataset.. 13
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Chapter 1

Introduction

1.1 Background

We see the need for a long-term and result-oriented training program that
gives law enforcement personnel the education and skill-set they need to
be able to perform well-structured interviews with children suspected of
being subjected to sexual abuse. Studies show that both basic and extensive
forensic interview training that police officers undergo already incorporate
interview training which teaches the most effective way of approach to get
the most accurate narrative and the most amount of information [12]. The
benefits of using open-ended questions over option and/or suggestions-
based questions are generally well-known by individual officers. However,
the same studies also show that although the interviewer is trained in the
efficiency of asking open-ended questions, especially in interviews with
children, the method is still not practiced in the actual interviews. In these
emotional settings, the interviewer tends to base the conversation on giving
the child options and suggestions of how a situation might have happened.
What we can understand from the study is that it is essential to improve
the way very young abuse victims are communicated with, and that it is a
necessity to create an interview training program that is capable of showing
trainees the differences in quality and quantity of information depending
on how questions are asked.

The project aims to result in improved emotional and intellectual prepara-
tion for investigators to decrease the use of undesirable questioning tech-
niques, and to increase the use of open-ended questioning that invites the
child to freely tell their story and share their memories of the suspected
abuse. There needs to be a better understanding of how to maximize the
amount of valuable information received from the child [33].

1.2 Motivation

The training program aims to consist of a life-like 3D virtual avatar in
the form of a child that is capable of independently interacting with the
police trainee in an interview situation. To achieve this, the avatar needs
to combine an array of technologies that can generate both customizable
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responses as well as realistic facial expressions. The training program is
currently based on different chatbot technologies that are used both for
material input, machine learning and structuring of the output [46]. For
this program to be successful, it is important for the training to contain
a wide variety of generated interactions. The other major challenge is to
train investigators to be able to pick up on the emotional signs of abuse
that can be conveyed through facial expressions and other non-verbal
communication.

There needs to be better practice for suggestive questioning during child
interviews, and there needs to be a better understanding of how to
maximize the amount of correct information received from the child [44].
We are looking to improve the way police are trained by researching some
of the most complex tasks in computer vision, specifically facial geometry
and driving of realistic facial movements of an avatar. This thesis will
focus on experimentation and development using different approaches
and available technologies to create a realistic virtual human avatar. Our
objective is to gradually increase the complexity as we see the results from
our experiments and get closer to what we can define as realistic. The
motivation behind this thesis is to decrease the number of overturned
convictions and failed prosecutions that result from unfortunate police
interview practices of sexually abused children, as previously seen in highly
publicized cases [65]. Abused children suffer in silence. Children are
traumatized to the extent of central nervous system impairment, life-long
anxiety and depression - and even suicides [34], due to sexual and physical
abuse.

1.3 Problem Statement

Based on the motivation described in the previous section, we see the need
for a training program that gives law enforcement personnel the ability
to improve their skill set for conducting interviews with abused children.
Creating an interactive avatar with realistic facial movements for use in the
training program is a hard task. The process of transferring human facial
mimicry is seen in Hollywood movies like Avatar, where a hired actor is
equipped head to toe with a million-dollar suit consisting of cameras and
sensors to detect face and body movements. Technologies already exist
within the field of facial capture to avatar animation, but these solutions
are proprietary and closed source, like Apple’s ARKit [53]. ARKit’s other
limitation lies in requiring a depth sensor, rendering it unsuitable for
detecting facial expressions and movements in previously recorded child
interview videos that lack depth information. Other alternatives apply
machine learning for driving facial expressions, relying on synthesizing of
faces. Studies in this field have shown that synthesizing a child avatar has
given imprecise results, ranging from blending noise as seen in [64] and
inaccurate synchronizing of mouth shapes seen in [7].

The main problem we are trying to solve is the capture and transfer of facial
mimicry from pre-recorded videos, live video feeds and facial images, using
inexpensive cameras without depth sensors to drive a 3D virtual avatar
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inside the police interview training program. To solve this, we derive our
four research objectives in this thesis;

Objective 1: Research and develop a proof-of-concept implementation for facial
expression transfer from video using facial landmarks.

Provide a proof-of-concept implementation that extracts facial landmarks
from pre-recorded videos of humans and apply them to a 3D face model.
This approach can be utilized in the police training program by mapping
the facial expressions and movements of an abused child, as observed in
police interview videos, onto a 3D face model.

Objective 2: Research and develop a proof-of-concept implementation for
animating 3D virtual avatars using blendshape weights.

Develop a tool that calculates blendshape weights using Euclidean and
Euler calculations on detected facial landmarks from a web camera input
stream, and transfer these onto a 3D virtual avatar for animation. This
method holds the potential to animate a 3D virtual avatar in real-time from
an inexpensive web camera, making it possible for hired actors to remotely
control a 3D virtual avatar inside the police training program.

Objective 3: Develop a dataset of facial landmarks and 3D blendshape face models
for use in machine learning pipelines, and experiment with machine learning
architectures utilizing such dataset.

Research and develop a dataset consisting of facial landmark captures and
3D blendshape face models, to be used in facial expression analysis and
machine learning pipelines for blendshape weight prediction. Experiment
with machine learning architectures that utilize the created dataset.

In order for blendshape weight prediction to yield accurate results on facial
images, a large quantity of data is imperative to construct a dependable and
precise machine learning model.

Objective 4: Research and develop a tool for automatic annotation of blendshape
weights from facial landmark captures in facial images.

Research and develop a tool that automatically annotates facial landmark
captures in facial images with blendshape weights. Evaluate effectiveness of
distance algorithms by creating a visualization tool that renders a 3D virtual
avatar with the blendshape weight results.

1.4 Scope and Limitations

Based on the problem statement and its objectives, the scope of this thesis
is research and development toward 3D virtual avatar animation, without
using depth sensors or expensive equipment. We start by capturing facial
landmarks using the open-source machine learning framework MediaPipe.
The initial research starts by transferring facial landmarks found in pre-
recorded videos onto a 3D face model. We extend the knowledge gained
in the initial research to use Euclidean and Euler calculations to calculate
blendshape weights, and use these to implement animation in a 3D virtual
avatar with blendshape support. Furthermore, we develop a dataset for
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use in machine learning pipelines. The dataset consists of facial landmark
captures done with FFHQ [32] accompanied by a set of 3D blendshape
models. We experiment with different implementations of machine learning
architectures using our newly created dataset. Lastly, we evaluate the
effectiveness of different distance algorithms used in point clouds, for
automatic blendshape weight annotation using facial images.

1.5 Research Methods

In general terms, a research method is a systematic approach used to
collect, analyze or experiment with data for answering research questions
or testing hypotheses to reach a research objective. Research methods can
be qualitative, quantitative, or a mix of both, depending on the data and
analyzation methods used.

Our research methodology is based on the Association for Computing
Machinery (ACM) method. In 1989, a task force was assigned by the ACM
Education Board to compile the core and fundamentals of computer science,
which resulted in the report named “Computing as a Discipline” [25].
The report proposed a new framework for understanding computing as a
discipline, and how it’s being split into three paradigms that are essential
components of computing; theory, abstraction and design.

The work presented in this thesis touches upon these paradigms, work
which is conducted with experimental and iterative prototyping. In the
subsequent subsections we describe each of the aforementioned ACM
paradigms from the report and how our work fits into it.

1.5.1 Theory

The first paradigm is rooted in mathematics and consists of four steps
followed in the development of a coherent, valid theory, according to the
report. The Researchers are expected to iterate these steps when errors,
inconsistencies or unwanted results are discovered.

1. Characterize objects of study (definition).

2. Hypothesize possible relationships among them (theorem).

3. Determine whether the relationships are true (proof).

4. Interpret results.

1.5.2 Abstraction

The second paradigm is rooted in the experimental scientific method
and consists of four steps that are followed in the investigation of a
phenomenon, according to the report. Researchers are expected to iterate
these steps when predictions disagree with experimental evidence.

1. Form a hypothesis.

2. Construct a model and make a prediction.
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3. Design an experiment and collect data.

4. Analyze results.

The abstraction paradigm is supported by the discoveries made when trans-
ferring facial landmarks onto a 3D face mesh. Even though successful facial
landmark transfers were accomplished, we deduced that the occurrence of
jitter and instability in the landmarks gave unrealistic, unwanted results.
These unwanted results subsequently produced iterative experiments, from
calculating simple blendshape weights using Euclidean/Euler calculations
to point cloud distance measurements performed on the landmarks de-
tected in facial images.

1.5.3 Design

The third paradigm is rooted in engineering and consists of four steps
followed in the construction of a system (or device) to solve a given
problem, according to the report. Researchers are expects to iterate these
steps when tests reveal that the latest version of the system does not
satisfactorily meet the requirements.

1. State requirements.

2. State specifications.

3. Design and implement the system.

4. Test the system.

The design paradigm is supported by a proof-of-concept system created
to calculate blendshape weights from face point clouds, utilizing distance
algorithms. The system is initially implemented and tested with a
single blendshape. Subsequently, complexity is gradually increased by
adding more blendshape weights and experimenting with different distance
algorithms.

1.6 Ethical Considerations

When conducting research as a software engineer we need to take certain
precautions and considerations into account. In general, we need to follow
a set of principles that adhere to a certain code of conduct when collecting
user data, releasing software that potentially could be misused, or the
impact a software failure can introduce.

Our work focused on research in the field of facial expression transfer from
human face to avatar, supporting police interview training of abuse chil-
dren, which involves key considerations made when conducting research,
namely:

• Protecting the privacy concerns of individuals seen in facial images or
videos.

• Our work aimed at supporting the police interview training program,
but could be misused.
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• Children will suffer should the police interview training program fail.

• A very accurate solution for transfer of facial mimicry to virtual avatar
is potentially dangerous in the hands of child predators.

In order to address privacy concerns, we made the decision not to utilize
any pre-recorded video interviews of abused children. While our research
serves as a starting point for developing a virtual avatar in the training
program for police interviews, it is not a comprehensive solution. We
believe that it was ethically appropriate to refrain from using these videos,
as our research did not require them.

Regarding technological concerns, we recognize that the training program
has the potential for misuse. The program aims to provide a software
solution for training police officers in conducting interviews, but we
acknowledge that it could be misused if it falls into the wrong hands.

Furthermore, our work reflects the technological considerations we took
into account while developing our tools. A highly accurate virtual avatar
that can be controlled using a simple web camera would be a desired
software solution, but we also consider it to be a dangerous tool in the hands
of child abusers.

We also consider the ethical importance of a comprehensive development
and testing process for the training software, before being utilized in police
interview training. Should such a software fail in any way, it could have a
detrimental impact on affected children.

1.7 Main Contributions

Throughout this thesis, we conducted research and developed tools for
transferring facial expressions from pre-recorded videos, live video feeds,
and facial images. Our focus was on the development of a 3D virtual
avatar that could be controlled by a hired actor through inexpensive camera
equipment, or transfer facial mimicry captured from an abused child in pre-
recorded interview videos.

This thesis aimed at creating a 3D virtual avatar for a training program to
educate law enforcement personnel, enabling them to improve their skill-set
and conduct well-structured interviews with children who are suspected
of being subjected to sexual abuse. Our tools progressively increases
complexity as we discover findings, drawbacks and limitations, within our
experiments.

In this section we go through each of the research objectives we described
in the problem statement stated in section 1.3 with a description of how
we solved each of the stated objectives. Each objective is supported
by experiments conducted using different algorithms and techniques
mentioned throughout this thesis.

Objective 1: Research and develop a proof-of-concept implementation for facial
expression transfer from video using facial landmarks.

The objective is supported by the development of a tool that detects
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facial landmarks in pre-recorded videos and subsequent transfer of facial
landmarks onto a 3D face mesh. Using this tool we can transfer facial
expressions from children in pre-recorded child abuse interviews onto a 3D
face mesh.

Objective 2: Research and develop a proof-of-concept implementation for
animating 3D virtual avatars using blendshape weights.

The objective is supported by the development of a tool that calculates
the Eye-Aspect-Ratio (EAR) and Mouth-Aspect-Ratio (MAR) for measuring
the opening and closing ratios of eyes and mouth, respectively. The ratios
are utilized to compute blendshape weights, which are subsequently trans-
ferred to a 3D virtual avatar with blendshape support. For visualization
support, we create a tool that integrates webcam input feed and displays
blendshape names values corresponding to the calculated eyes and mouth
opening and closing.

Objective 3: Develop a dataset of facial landmarks and 3D blendshape face models
for use in machine learning pipelines, and experiment with machine learning
architectures utilizing such dataset.

The development of PointFaces has supported the objective, which is a
dataset consisting of facial landmark captures in various forms such as point
cloud formats (PLY/PCD) and images (PNG). The dataset is accompanied
by a set of sculpted 3D blendshape face models and can be utilized for
further research in detecting or predicting various blendshapes from image
or video inputs, as well as for facial expression analysis. PointFaces is made
publicly available at Github, https://github.com/olealgoritme/pointfaces, and
Zenodo, https://zenodo.org/record/7900081.

To further support the objective, we conducted experiments by implement-
ing machine learning architectures such as Siamese One Shot and PointNet,
which utilize the produced dataset.

Objective 4: Research and develop a tool for automatic annotation of blendshape
weights from facial landmark captures in facial images.

To support our objective, we have created a proof-of-concept tool that
leverages point cloud distance calculations to derive blendshape weights.
We achieve this by utilizing K-D Tree Nearest Neighbor calculations on
facial landmark captures obtained from our PointFaces dataset, which we
developed specifically for predicting blendshape weights and analyzing
facial expressions. By utilizing this tool, we can generate a 3D virtual avatar
that displays the appropriate blendshape weights based on the input facial
image. This work is made publicly available at Github, https://github.com/
olealgoritme/master_thesis.

1.8 Thesis Outline

This thesis is organized into 7 chapters. The first two chapters provides
the relevant introduction and background information, followed by four
chapters that each are addressing one or more of the research objectives.
The final chapter presents discussions, conclusions and future work.
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The subsequent section provides an overview of each chapter and its
contents.

Chapter 1: Introduction

This chapter provides the background and motivation for our thesis. It
highlights our motivation to contribute to a police interview training
program and discusses the lack of suitable interview techniques for abused
children, as well as statistical data regarding the number of abused children.
The chapter continues with presentation of the problem statement and its
corresponding objectives.

Chapter 2: Background on Facial Geometry, Facial Landmark Detection &
Blendshapes for Virtual Avatar Animation

The purpose of this chapter is to provide background information on the
various topics that are relevant to the subsequent chapters. It covers the
technologies and tools utilized in the experiments conducted throughout
the thesis, with a particular emphasis on facial landmarks, facial geometry,
blendshapes, and avatar animations.

Chapter 3: Experiments on Facial Landmarks and Virtual Avatar Animation

The chapter provides the initial experiments conducted with facial land-
mark detection and avatar animation. The first section introduces facial
landmark captures from pre-recorded videos that are transferred to a 3D
face model. The continuing section describes how we utilize different algo-
rithms to derive blendshape weights by calculating the opening and closing
of eyes and mouth. Lastly, we apply these derived blendshape weights to a
3D avatar model with blendshape animation support.

Chapter 4: Dataset creation for Neural Networks: The PointFaces Dataset

This chapter presents the work related to the creation of our dataset, which
consists of sculpted blendshape 3D models and facial landmark captures
in multiple formats. It covers a proposed pipeline on how the dataset can
be utilized, and issues faced with scaling and transformation of face point
clouds. The chapter continues to demonstrate alignment methods utilized
in point cloud registration, as well as the blendshape 3D model sculpting
process and encountered issues.

Chapter 5: Experiments with Machine Learning for Point Clouds

This chapter provides the experiments conducted with the implementation
of two machine learning architectures. Both implementations utilize our
dataset, which includes captures of facial landmarks and 3D models of
blendshapes. The focus of this chapter is to assess the dataset’s applicability
and potential for predicting blendshape weights.

Chapter 6: Implementations and Experiments with Point Cloud Distance
Algorithms for Blendshape Weight Estimation

This chapter presents the implementations and experimentation in utilizing
different algorithms to measure distances between point clouds. We
present the results obtained from distance computations performed on
facial landmark captures and explain how we derive blendshape weights
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from them. The blendshape weights are applied to a 3D virtual avatar to
evaluate similarity between the computed blendshape weight and the facial
expressions seen in the input facial image.

Chapter 7: Conclusion and Future Work

This chapter presents conclusion of our thesis findings, as well as sugges-
tions for improvements in future work.
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Chapter 2

Background on Facial Geometry,
Facial Landmark Detection &
Blendshapes for Virtual Avatar
Animation

This chapter focuses on the background information and related works for
Facial Geometry, Facial Landmarks, Machine Learning, Blendshapes, Point
Clouds, and Avatar Animations. We cover the technologies employed, their
applications, and the utilized tools that are relevant to this thesis.

2.1 Machine Learning

Machine learning today is connected to what people think of as artificial
intelligence. It is a large field within information technology, neurology,
artificial intelligence, and other fields, where the end goal is to build a model
that is a representation of large datasets. Customized algorithms are applied
to datasets to allow computers to learn the desired outcome. Today’s society
has learned about machine learning through the appearance of a rather
complex NLP model called ChatGPT [1], which seemingly changed the
public opinion on what AI is and how it has the potential to automate
complex tasks to make life easier. The following section describes the
different machine learning types that are relevant for our thesis.

• Supervised Learning Supervised learning is identified by the usage
of annotated training data, where a ’supervisor’ provides guidance to
the learning system regarding the labeling of training examples. The
labeling typically consists of class labels in classification problems.
Models are induced from these training data using supervised
learning algorithms, which can then be applied to classify unlabeled
data. The process of supervised learning involves creating a map
between a set of input variables X and an output variable Y, which can
be utilized to predict the outputs for new data. This technique holds
a crucial position in machine learning and is of utmost significance in
the processing of multimedia data [24].
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• Unsupervised Learning Unsupervised learning is a type of machine
learning in which the machine receives input data without any
supervised target outputs or rewards from the environment. Despite
the lack of feedback, unsupervised learning can be based on the
idea of building representations of the input that can be useful for
making decisions, predicting future inputs, and communication with
other machines. Unsupervised learning is essentially concerned with
identifying patterns in data that go beyond pure unstructured noise.
Clustering and dimensional reduction are two simple examples of
unsupervised learning [29].

• Reinforcement Learning Reinforcement learning is a type of ma-
chine learning that involves a machine interacting with it’s environ-
ment through actions, which result in rewards or punishments. The
aim is for the machine to learn to take actions that maximize the fu-
ture rewards or minimize punishments over its lifespan. Reinforce-
ment learning is closely related to decision theory and control theory,
which deal with similar problems, and the solutions to these problems
are often formally equivalent, although different aspects are empha-
sized [29].

Machine learning is related to our work through this thesis with the us-
age of facial landmark prediction models, our proposed machine learning
pipelines, the dataset we create for machine learning purpose and experi-
ments with machine learning architectural implementations.

2.2 Facial Geometry

Facial geometry refers to the study and measurement of the physical
structure and features of the human face. It involves the analysis of
the shape, size, and position of various facial elements such as the eyes,
iris, nose, mouth, and jaw. Facial geometry plays a critical role in many
applications, including biometrics, computer vision, and facial recognition
technology. By analyzing the geometric features of a person’s face, it
is possible to create a unique identifier that can be used to identify an
individual with a high degree of accuracy [47]. Facial geometry is also
essential in the field of computer graphics, particularly in the creation
of realistic 3D models of human faces. By accurately modeling the
geometric structure of the face, it is possible to create lifelike animations
and simulations that accurately represent the movements and expressions
of the human face [62].

2.3 Facial Recognition

In the field of image analysis and computer vision, face recognition is a
challenging and complex problem. It involves extracting features in the
human face, regardless of lighting, expression, illumination, age, rotation,
or pose [54]. Those features are analyzed to determine if the image contains
a human face. As this paper focuses on extracting facial movements
which can be further used to animate an avatar; face recognition is the
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fundamental and first stage of techniques used in the pipeline going from
an input source image to extracted facial movements that are animated onto
a virtual human.

2.4 Facial Landmarks

Facial Landmarks is the term referred to as the annotation drawn on an
image with a human face, like seen in fig. 2.2. It shows the important areas
of the face that are either manually annotated by researchers or developers,
or automatically obtained through running an image through a machine
learning model that has been trained to recognize facial geometry. The
annotations are geometrical vertex points. Vertices are points where two
or more edges, lines, or curves meet, as seen in fig. 2.1.

%p

%p

%p

%p

Figure 2.1: Vertices shown in 3D triangle. Each corner dot (A, B, C, D) represents a
geometrical vertex point that connects to other vertices. Lines are drawn between
these vertices to form a triangle.
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Figure 2.2: Facial landmarks applied to a static image. A total of 478 vertices
connected by lines.

2.5 Facial Landmark Detection

Facial landmark detection is a computer vision technique that involves
detecting and locating key points on a human face, such as the eyes,
nose, and mouth. These key points are often referred to as landmarks
and are used for various applications, including face recognition, facial
expression analysis, and avatar animation. Facial landmark detection is
typically accomplished using machine learning models, such as CNNs or
SVMs, that are trained on large datasets of annotated facial images. Once
trained, the models can be used to detect landmarks on new facial images.
Facial landmark detection has numerous practical applications, such as in
healthcare, where it can be used for diagnosing conditions such as Down
syndrome and autism, and in augmented reality, where it can be used to
overlay virtual objects onto a person’s face [43, 55, 66].

Popular facial landmark detection frameworks that do not require depth
sensors, are Dlib and MediaPipe. Both of these frameworks employ a
machine learning model that detects facial landmarks, where Dlib detects
68 facial landmarks [8], MediaPipe detects 468 facial landmarks [35].

We utilize the MediaPipe framework for facial landmark detection through-
out thesis, using it’s Face Mesh module. The MediaPipe pipeline can be
observed in fig. 2.3. The landmark detection model works by applying a
UV visualization map of MediaPipe Face Mesh, depicted in fig. 2.4a to the
detected face found in an image. Human faces are extracted from input
sources, such as pre-recorded videos, static images or live video feeds such
as web cameras. A face mesh is created using the runtime face metric land-
marks as the geometry positions (XYZ), while both the texture coordinates
(UV) and the triangular topology are inherited from the canonical 3D face
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mesh seen in fig. 2.4b.

To replicate facial movements from an input source human in 2D space onto
a target 3D virtual avatar in 3D space, one must try to capture the different
attributes of a human face. We are interested in testing MediaPipe for this
purpose, as it has shown promise in annotating landmarks in real-time
video feeds [69]. MediaPipe offers a cross-platform, customizable machine
learning framework for live and streaming media [35]. The framework
offers facial landmark detection through a neural network that is designed
for real-time inference.

The MediaPipe model being used for detecting facial geometry is named
Face Mesh. It is based on a pipeline with different steps in a machine
learning model, as shown in the fig. 2.3. It captures the facial landmarks,
which emphasize capturing landmarks around the eye and mouth area.

Figure 2.3: MediaPipe Face Mesh Pipeline. Figure taken from [35].

(a) UV Visualization map (b) 3D Face mesh model

Figure 2.4: Face Mesh Model. Figure taken from [30].

2.6 Blendshapes

A morph target or shape key is a technique for deforming a mesh from
one shape to another, commonly known as a blendshape. The concept of

14



blendshapes seen in fig. 2.5 is based on FACS, which categorizes human
facial expressions into sets of shapes that can be described by Action Units.
FACS was initially introduced by a Swedish anatomist [37], was further
developed and released by Ekman/Friesen in 1978 [28], which was work
derived from analysis of facial movements.

A blendshape is equivalent to an Action Unit in the FACS system.
Blendshapes today are heavily used in the 3D industry, particularly to
drive character facial animations. Each blendshape defines an interpolated
animation between one shape and another, as illustrated in fig. 2.6.

Figure 2.5: Facial Action Units from the FACS system. Figure taken from [68].

	
Figure 2.6: Deformation from neutral to blinking eye using blendshapes, a
derivation from FACS Action Units.
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2.7 Avatar Animation

Avatar animations refer to the creation of digital representations of individ-
uals or characters, often used in various applications such as video games,
movies, and virtual reality experiences. These animations involve the use
of computer software to generate lifelike movements and actions of the
avatars, enabling them to interact with their environments and other charac-
ters. The process of avatar animation typically involves designing the char-
acter’s appearance, creating a digital skeleton or rig, and then animating the
rig using a variety of techniques such as shape key animation, morph target
animation or blendshape animation, all referring to the same technique of
interpolating between a neutral and a fully expressed expression. This al-
lows for the creation of realistic movements that mimic the way a human or
animal would move in the real world.
Today, avatar animations are widely used in various industries, including
entertainment, education, and healthcare. In video games, for example,
avatar animations enable players to control characters and immerse them-
selves in virtual worlds. In education, avatars can be used to create engag-
ing and interactive learning experiences, while in healthcare, they can be
used to simulate medical procedures or train medical professionals. Avatar
animations are a critical tool in modern computing, enabling developers to
create compelling and realistic digital experiences that blur the line between
the virtual and the real.

Avatar animations driven by facial landmark detection is getting more
popular with today’s focus on The Metaverse [22] and AR/VR/XR
applications now that more powerful computer and mobile hardware is
available at an average household disposal.

A study in this field is based on capturing facial expressions through a real-
time 3D non-rigid tracking system [60]. Expression transfer is achieved, by
combining a basic expression model with a synthetic approach that better
capture person-specific characteristics. The drawbacks are that most of
them exhibit only driving basic emotions; neutral, joy, anger, sad, surprise,
fear and disgust, whereas the human face is far more complex than basic
emotions.

16



Figure 2.7: Semantic expression transfer. Figure taken from [60].

2.8 Point Clouds

A point cloud is a digital representation of a physical object, person,
environment or anything that exists in the real world, which is created by
capturing a large number of points in 3D space using various technologies
such as LiDAR, photogrammetry, structured light scanning, cameras or
similar [48].

Each point in a point cloud is defined by its geometrical coordinates
and may contain additional data such as color, intensity and even light
reflection. Point clouds are often used in fields such as architecture,
engineering, and construction to create accurate 3D models of real-world
objects or environments. They can also be used in robotics, computer vision,
and virtual reality applications. Because point clouds are generated from
real-world data, they are often noisy and may contain outliers or missing
data. As a result, point cloud processing algorithms are often used to
clean and organize the data, as well as to extract useful information such as
surface geometry or object segmentation. Point clouds have many practical
applications, such as creating digital twins of buildings or infrastructure,
generating 3D maps of natural environments, or aiding in the navigation
and control of autonomous vehicles [21]. For our use case, a point cloud
represents points from facial landmark capture as seen in fig. 2.8. The
inference done with MediaPipe gives us predictions in the form of a 3D
mesh model that corresponds to the facial structure and expression from
an input facial image in 2D, where the depth is predicted by the machine
learning model, and the point cloud is the definition of all of the spatial
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coordinate points in that landmark facial capture.

Figure 2.8: Three-dimensional Point Cloud with only geometry coordinates. No
colors, intensity, normals or faces.
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Figure 2.9: A blendshape seen as a Point Cloud. The Point Cloud contains geometry
coordinates that are derived from a facial landmark capture.
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2.9 Tools and technologies

This section represents the tools and technologies applied within this thesis.

2.9.1 Python

Most of the work done within this thesis relies heavily on the Python 3 pro-
gramming language. Python 3 is the latest release of the Python program-
ming language, released in 2008. It is a popular high-level programming
language used in web apps, data analysis, artificial intelligence, machine
learning and scientific computing. Python 3 offers new features and im-
provements over its predecessor, Python 2, including improved unicode
support, enhanced syntax and a cleaner language design. According to the
Python Software Foundation, the main goals of Python 3 are to improve the
language’s usability and eliminate redundancy and inconsistencies in the
language’s design [59] Most of the programming tasks in this thesis utilizes
Python3.

2.9.2 PyTorch

PyTorch is a Python library that facilitates the development of deep
learning/machine learning software. PyTorch is versatile and can be used
for a wide range of applications, suitable for both novice deep learning
programmers and professional real-world applications [38] PyTorch is used
within this thesis in experiments with machine learning architectures.

2.9.3 Blender

Blender is a free and open-source 3D graphics software used for modeling,
animation, rendering and visualization. It includes a real-time 3D viewer
and a graphical user interface. Additionally, Blender provides a Python
interface that enables users to load data into the program [41]. This
thesis utilizes Blender for rendering, visualization and modeling of 3D face
models.

2.9.4 Numpy

NumPy is a Python library used for numerical computing. It is designed
to handle large datasets and perform mathematical operations efficiently.
NumPy provides an N-dimensional array object, which is a fast and flexible
data structure for storing and manipulating large arrays of numerical
data. It also includes a range of functions for performing basic and
advanced mathematical operations on arrays, such as linear algebra, Fourier
transforms, and random number generation [63]. Our work utilizes NumPy
for basic numerical compute, multidimensional arrays and in distance
computing algorithms.
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2.9.5 OpenCV

OpenCV is a computer vision library that provides tools for image and
video processing, feature detection, machine learning, camera calibration,
and GUI development. It is widely used in industries such as robotics,
automotive, healthcare, and security [23]. During the course of this thesis,
we utilized OpenCV for extraction of facial images from pre-recorded
videos, live video feeds and image processing tasks.

2.9.6 Open3D

All point cloud related work within this thesis relies heavily on the Open3D
library using its Python bindings. Open3D is an open-source library for
3D data processing, visualization, and machine learning. It provides a
convenient and powerful interface for working with 3D data, including
point clouds, meshes, and RGB-D images. Open3D is written in C++
and has bindings for Python, making it easy to use in a wide range of
applications. Open3D offers a variety of algorithms and tools for 3D
data processing, such as 3D registration, surface reconstruction, and point
cloud segmentation. It also provides a flexible visualization framework for
displaying 3D data and interacting with it in real-time. One of the main
advantages of Open3D is its Python interface, which allows users to rapidly
prototype and experiment with 3D data processing and machine learning
algorithms. The Python API provides a high-level interface that abstracts
away many of the low-level details of working with 3D data, allowing
us to focus on research or application development [70]. Open3D is used
extensively for all point cloud related work throughout this thesis.

2.10 Summary

In this chapter, we discussed the various fields, subject backgrounds, and
related works that are pertinent to our four research objectives. Firstly,
we introduced the concept of machine learning and its relevant categories.
Additionally, we discussed the MediaPipe framework, which utilizes a
machine learning model for facial landmark capture. The chapter also
covered facial geometry, the working principle of facial landmark detection,
and its primary application in avatar animations. We detailed what
blendshapes are, and we highlighted the essential tools and technologies
used in this thesis, including Open3D and Python 3. We also explained the
significance of point clouds and avatar animations in contemporary society.
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Chapter 3

Experiments on Facial Landmarks
and Virtual Avatar Animation

This chapter focuses on the experiments conducted using facial landmark
detection to drive animations of a 3D face, in accordance with both objective
1 and objective 2, as described in section 1.3. We employ MediaPipe,
described in section 2.5, a machine learning framework for facial landmark
detection, to obtain facial expressions and movements from an input source;
like a video recording or a web camera feed. The obtained facial landmarks
are utilized in two different ways in this chapter; the first section is devoted
to applying detected facial landmarks to a 3D face mesh, and the second
section is devoted to deriving blendshape weights from facial landmarks
and applying these to a virtual avatar. We evaluate and summarize our
findings in the chapter summary.

3.1 Facial Landmark Detection Performance Bench-
mark

To get a performance indication of the facial landmark detection with
MediaPipe, we perform tests on a pre-recorded video, seen in fig. 3.1, to
get reproducible results.

The tests are performed with three consecutive runs utilizing C++ and
Python, with both GPU and CPU as devices for inference. The average is
calculated and the performance metrics applied are FPS and inference time.

Tests are performed on a desktop computer consisting of the following
components:

• CPU: AMD Ryzen 5950X (16 cores, 32 threads)

• GPU: RTX 3080 10GB GDDR6X (8704 Cuda cores, 272 Tensor cores)

• RAM: 64GB DDR4 NON-ECC

Observing the results, depicted in figs. 3.2 and 3.3, we clearly see that
the GPU outperforms the CPU in both FPS and inference when running
MediaPipe facial landmark capture on input video. We conclude that for
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realtime landmark capture there is a clear advantage to utilizing a GPU over
a CPU.

Figure 3.1: Facial landmarks detected from pre-recorded video. Source: [52] 1

1Source Video: https://www.pexels.com/video/a-doctor-interviewing-the-patient-5998346
| License: Free to use
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Figure 3.2: Results showing the number of frames per second from utilizing the
MediaPipe Face Mesh machine learning model to predict facial landmarks on pre-
recorded video shown in fig. 3.1.
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Figure 3.3: Inference time results from utilizing the MediaPipe Face Mesh machine
learning model to predict facial landmarks on the pre-recorded video seen in
fig. 3.1.
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3.2 Applying Facial Landmarks to 3D Face Mesh

We developed a method for detecting facial landmarks from an input video
and transferring them to a 3D face mesh, which has the potential to recreate
a child’s observed facial movements and expressions during interviews.
To streamline this process, we created a Blender plugin that automates
facial landmark detection and expression transfer, as depicted in figs. 3.4
and 3.5. This plugin was created using Python3, a popular high-level
programming language, for rendering output using Blender, MediaPipe
for facial landmark captures and OpenCV for image and video processing,
described in sections 2.5, 2.9.1, 2.9.3 and 2.9.5, respectively.

To be able to visualize and evaluate the results of animating the 3D face
mesh, our Blender plugin pipeline maps the corresponding outputs of facial
landmark points to the points of a 3D face mesh. We employ facial landmark
detection by running inference on the MediaPipe Face Mesh model, which
outputs a vector of geometrical points corresponding to important areas of
the face, as seen in fig. 2.3. The 3D face mesh from MediaPipe, seen in
fig. 2.4b, is used as our 3D face mesh model for our animation purposes,
chosen because this 3D model has the same vertex topology (geometrical
points) that MediaPipe outputs.

The plugin pipeline starts with capturing facial landmarks from an input
video using MediaPipe. Subsequently, facial landmark capture is processed
frame-by-frame on the input video. Each extracted facial landmark point is
individually matched to the 3D face mesh’s topology, and for each point, the
corresponding position in the 3D face mesh is updated in Blender’s render
view.

We observed that when utilizing our developed plugin, we could success-
fully transfer the facial expressions and movements from a person in a video
input onto a 3D face mesh, as seen in the fig. 3.6. However, the predicted
facial landmarks that MediaPipe outputs, are noisy and unstable, which is
very difficult to portray in still images. There is a significant amount of jitter
to each of the landmark outputs, which are not accurate to the source face
and do not give realistic results. Attempts to mitigate these issues using the
1€ filter [11] were unsuccessful.

Figure 3.4: Overview of Face Translation, the Blender plugin we created.
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Face Translation 3D UI VIEW
UI controls to start Face
Translation in Blender. Records
facial landmarks from video
camera or video file. Can also
record facial landmarks to be
replayed on the 3D face mesh
and also view the render output
from the Video in a separate
window.

Figure 3.5: The UI View in Blender.

Figure 3.6: Facial landmark transfer from input video to 3D Face mesh.
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3.3 Virtual Avatar Animation using Blendshapes

Our experiments involve computing the open/close ratios of the eyes and
mouth, which are then used to derive blendshape weights. As explained in
section 2.6, blendshapes are a type of morph targets utilized in animation
technology. The resulting blendshape weights can be transferred to 3D
avatar models that support blendshape animation.

In section 3.2, our findings reveal that the direct mapping of the facial
landmarks to 3D face mesh proved unstable and exhibited significant
jitter. Consequently, we explore an alternative approach to transferring
facial expressions and movements onto a virtual avatar, namely using
blendshapes., In this section, we present the methods used to calculate
blendshape weights from facial landmarks through simple calculations. To
facilitate the process, we have developed a toolset that extracts blendshape
weights from the eyes and mouth, visualizes the calculated blendshape
weights, and applies them to a virtual avatar.

3.3.1 Eye Blink Calculation

For the transfer of eye blink/close animations onto a virtual avatar, we
rely on Euclidean equations for calculating the distances between different
points, as outlined in fig. 3.7. We use the points from the upper and lower
eyelids as well as the corners of the eyes and calculate the distance ratio
between them using the Eye Aspect Ratio (EAR) as proposed by the Czech
Technical University[45]. Using the EAR calculation depicted in fig. 3.8,
we estimate how much each eye is closed or open by finding the Gini
coefficient, which constrains the value to be between 0 and 1 [26]. A value
of 0 would indicate the eye is open, and a value of 1 would indicate the eye
is closed, and 0.5 would indicate half way open.

(a) Eye Open (b) Eye Closed

Figure 3.7: The eye points used in Eye Blink Calculation.

EAR =
‖p2 − p8‖+ ‖p3 − p7‖+ ‖p4 − p6‖

2 ‖p1 − p5‖
(3.1)

Figure 3.8: The EAR calculation. Where p1 and p5 denotes the corners of the eyes.
p2, p3, p4 the upper eye lids and p6, p7, p8 for the bottom eye lids.

3.3.2 Mouth Open Calculation

Similar to the Eye Aspect Ratio, we employ a Euclidean equation to
compute point distances and the corresponding distance ratios for the
Mouth Aspect Ratio (MAR), seen in fig. 3.10. Additionally, we translate
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the mouth open indication to a range between 0 and 1, which indicates the
extent to which the mouth is open.

The MAR algorithm is widely utilized in the automotive industry to identify
driver drowsiness [61]. However, in our case, our focus is solely on
determining the degree to which the mouth is open or closed, and therefore,
we have excluded several of the detected points surrounding the mouth
area, which are deemed unnecessary.

(a) Mouth Open (b) Mouth Closed

Figure 3.9: The mouth points used in Mouth Open Calculation.

MAR =
‖p2 − p4‖

2 ‖p1 − p3‖
(3.2)

Figure 3.10: The MAR formula. Where p1 and p3 denotes the corners of the mouth,
p2 upper lip, and p4 lower lip.

3.3.3 Visualizing Blendshape Weights

To facilitate the visualization of our EAR/MAR calculated blendshape
weights, we developed a tool that utilizes trackbars to display the calculated
weights on a scale of 0-1000. A weight of 0 indicates no detection of
the corresponding blendshape, while a weight of 1000 represents full
expression. The tool is designed to take input from a webcam, which
enables easy and direct control of facial expressions.

We utilized the visualization tool to display the results of our EAR/MAR
calculations for the eyes and mouth, as illustrated in figs. 3.11 to 3.14.
The findings demonstrate our ability to successfully compute blendshape
weights for eyeBlinkRight, eyeBlinkLeft, and mouthOpen, which can be
applied to a 3D virtual avatar for animation purposes.
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Figure 3.11: Neutral Face, no detection

Figure 3.12: Mouth Fully Open, both Left and Right Eyes Closed
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(a) Eye Aspect Ratio - Left Eye Blink (b) Eye Aspect Ratio - Right Eye Blink

Figure 3.13: Eye Aspect Ratio detection

(a) Mouth Aspect Ratio - Halfway Open (b) Mouth Aspect Ratio - Fully Open

Figure 3.14: Mouth Aspect Ratio detection
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3.3.4 Transferring Facial Movements to Virtual Avatar using
Blendshapes

After being able to visualize our calculated blendshape weights, we
experiment with transferring the calculated blendshape weights onto a 3D
virtual avatar. This is done by translating the captured facial landmarks into
blendshape weights using the respective EAR and MAR calculations. These
blendshape deformation weights are applied to the respective blendshapes
of the 3D virtual avatar model frame by frame, updating each point
positions in the model mesh in each frame iteration.

The virtual avatar 3D model with blendshape support is a free sample
model from PolyWink [56], seen in fig. 3.16.

Figure 3.15: Simplified overview of facial landmark detection to virtual avatar
blendshape animation.

Figure 3.16: The virtual avatar 3D model with blendshape support. Source: [56]. 2

2Source Model: https://polywink.com/15-facial-animation-for-iphone-x.html | License:
CC-BY-ND

31

https://polywink.com/15-facial-animation-for-iphone-x.html


(a) Left Eye Blink. (b) Right Eye Blink.

(c) Mouth Open. (d) Mouth Open, Left/Right eye Closed.

Figure 3.17: Blendshape weights derived from our calculations, transferred to
virtual avatar.

3.4 Summary

We carried out experiments to assess the effectiveness of facial landmark
detection on pre-recorded videos and webcam feeds, and subsequently
transferred the landmarks to both a 3D face mesh and a 3D virtual avatar
with blendshape support.

As per the first research objective mentioned in section 1.3, our aim was
to investigate and create a technique for transferring facial landmarks to a
3D face mesh. The research found that the developed plugin was able to
successfully transfer facial expressions and movements from a person in a
video input to a 3D face mesh. However, the facial landmarks predicted
by MediaPipe were unstable and noisy, with jitter, resulting in inaccurate
and blurry expression and movement transfer. Attempts to mitigate these
issues using the 1€ filter were unsuccessful. Furthermore, the 3D face mesh
height and width ratio did not match the input source face, and had to be
manually tweaked for best results. This created unwanted 3D face mesh
deformations at the cost of more human-like facial movements. To achieve
more realistic facial movements while avoiding these issues, we propose
capturing FACS Action Units, as depicted in fig. 2.5, instead of the entire
range of facial movements. This approach needs to derive blendshape
weights that matches the FACS Action Units, and apply them to an output
3D virtual avatar model with blendshape support. By doing so, we can
avoid the issue of having deformed output 3D face mesh models that do
not match the input face’s geometrical width and height ratio.

In pursuit of research objective 2, as outlined in section 1.3, we implemented
our proposed techniques (EAR/MAR) to determine the ratios of eye and
mouth opening/closing. These ratios were then utilized to compute
blendshape weights, which were subsequently transferred to a 3D virtual
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avatar with blendshape support. To visualize the blendshape weight
calculations, we developed a tool that incorporated a webcam input feed
and a trackbar for displaying the corresponding blendshape names. The
findings revealed that we were able to successfully calculate the open/close
blendshape weights for eye and mouth, which were applied to our 3D
virtual avatar with success. However, our results only demonstrate
this achievement for the most basic blendshapes, namely eyeBlinkRight,
eyeBlinkLeft, and mouthOpen. To extend our research to more intricate
blendshapes and animations, further investigation is required. To address
this, we suggest generating a dataset consisting of facial landmark captures
and blendshapes that can be used for machine learning purposes, with the
ultimate aim of learning facial landmark features and predicting blendshape
weights.
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Chapter 4

Dataset creation for Neural
Networks: The PointFaces Dataset

The current chapter will concentrate on objective 3 outlined in our problem
statement as stated in section 1.3. As highlighted in the summary of 3.4,
our aim is to identify an approach to generate multiple blendshape weights
from facial landmark captures. In accordance with our objective, our goal
is to produce a dataset that can be used in machine learning pipelines to
predict blendshape weights from live video feeds, pre-recorded videos or
images with human faces. The predicted blendshape weights obtained
from this approach can be employed to animate a 3D virtual avatar. As far
as we know, there was no comparable dataset available, which motivated
us to produce our own dataset containing facial landmark data and 3D
blendshape models.

The facial landmark data in our dataset was derived from Flickr-Faces-HQ
(FFHQ), an image dataset of high-quality human faces originally designed
as a benchmark for generative adversarial networks (GAN) [32], created
by NVIDIA. We chose FFHQ as our dataset of facial images [39] due to its
high resolution and large collection of human faces, which made it an ideal
choice for our facial landmark capture experiments.

From the FFHQ image dataset, we selected a subset of 1000 facial images to
create our own dataset with facial landmark capture data. We utilized the
neutral face of the canonical model from MediaPipe shown in fig. 2.4b to
produce our own 3D blendshape face models, which were deformations of
the neutral face.

In the following sections, we provide details on the proposed pipeline that
leverages the 3D blendshape face models and point cloud facial landmark
capture data we produced, describing how we transform the captured facial
landmarks using point cloud registration algorithms and how we create the
3D blendshape face models.
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The dataset we have created consists of:

• Original FFHQ facial images (png).

• FFHQ facial images with facial landmark overlays (png).

• 3D point cloud data representing facial landmarks (ply/pcd/png).

• 3D point cloud data with transformation applied (ply/pcd/png).

• Sculpted 3D Blendshape face models based on the canonical neutral
face model from MediaPipe (obj/ply/pcd/png).

Our dataset, which was named PointFaces, is published on GitHub, https:
//github.com/olealgoritme/pointfaces

4.1 Proposed Pipeline

Our proposed high-level pipeline involves utilizing point cloud data
obtained from facial landmark captures on the FFHQ dataset and a set of 3D
blendshape facial models, to train a model capable of learning blendshape
weights that correspond to facial landmarks detected in input facial images,
as part of machine learning pipelines. The pipeline we suggest, depicted in
fig. 4.1, entails using MediaPipe to capture facial landmarks from human
faces in videos, live feeds, or images. Subsequently, the obtained face
point clouds are processed in a model trained on blendshapes and facial
landmarks, to predict blendshape weights.

35

https://github.com/olealgoritme/pointfaces
https://github.com/olealgoritme/pointfaces


Figure 4.1: Proposed pipeline for blendshape weight prediction in neural networks.
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4.2 Facial Images to Landmarks and Point Cloud
Data

We extracted facial landmarks from input facial images in the FFHQ
dataset, as shown in fig. 4.2, utilizing MediaPipe, OpenCV and Python3,
as explained in sections 2.5, 2.9.1 and 2.9.5, respectively.

The facial landmarks we extract are saved in two distinct formats: as
annotation overlays on top of the original images, as shown in fig. 4.3,
and as geometry point clouds (x,y,z) in PCD/PLY file format[20, 49], as
illustrated in fig. 4.4.

Figure 4.2: FFHQ Input image.

Figure 4.3: Facial landmark capture overlay.
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Figure 4.4: Point cloud of facial landmark capture without transformation applied.

4.3 Facial Transformation

Since the FFHQ human faces dataset includes images of faces with
varying orientations, it was necessary to correct the orientation of the faces
programmatically to ensure that all captured 3D face point clouds have their
noses facing forward. The facial orientation can be observed in fig. 4.4,
where the tip of the nose is pointing to the left instead of pointing forward.
We correct this with head-pose-estimation - a non-trivial and unique
challenge in computer science, which is normally used to minimize errors
during machine learning training pipelines [51]. Finding the appropriate
translation and transformation parameters to align the captured point cloud
with the neutral face was a task that required a significant amount of
time. As seen in fig. 4.5, the captured face is significantly smaller than the
neutral face. Initially, we attempted to perform this alignment manually
using Open3D, a library described in section 2.9.6, for scaling the captured
point clouds to match the neutral face, as shown in fig. 4.6. We deem
these steps a necessity to minimize errors when comparisons are performed
between point clouds of blendshapes and point clouds of captured faces.
However, manually rotating and scaling the point cloud is tedious and time
consuming, so we we choose to employ point cloud registration algorithms
instead.

We explore Arun’s Method [6], which is described as "least-squares fitting
of two 3D point sets" and is an alternative to ICP [18], for aligning our
point cloud. Both ICP and Arun’s method are techniques utilized for
point cloud registration, which involves aligning one point cloud with
another. ICP estimates closest points within N-dimensions between two
point cloud sets, whereas, Arun’s Method is a solution for finding the
optimal rigid transformation between two point clouds. This process
includes determining the singular value decomposition (SVD) of a matrix
created by the covariance of two point clouds, and then using the resulting
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Figure 4.5: Neutral face (blue) and captured face (yellow) in their original form,
without translation and transformation applied. The captured face is 25x smaller
than the neutral face.

Figure 4.6: Neutral face (blue) and captured face (yellow) after manual rotation and
scaling (25x) applied.
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matrices to calculate the optimal rotation and translation parameters.

Using Numpy, described in section 2.9.4, with Python3 and Open3D, we
utilized Arun’s algorithm to process the captured point clouds. Arun’s
Method can also be implemented as a step in a neural network module to
facilitate translation and rotation matching to a reference point cloud for
other datasets. In our case, we apply this process directly to our dataset,
rotating the point cloud of captured facial landmarks to align it with the
rotation matrix, and translation of the point cloud representing the neutral
blendshape (canonical face mesh), depicted in fig. 2.4b.

The results from performing rotation and translation on the captured face’s
point cloud to match the neutral face are presented in figs. 4.7 to 4.9. Our
experimentation with Arun’s Method for point cloud registration resulted
in promising outcomes, which were satisfactory for our dataset.

Figure 4.7: Left: Original Capture, Right: Transformed with Arun’s Method to
match the neutral face with nose pointing forward.
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Figure 4.8: Top: Original Capture, Bottom: Arun’s Method applied, final result.
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Figure 4.9: Facial landmark capture after Arun’s Method is applied. Same
landmark capture without the transformation is depicted in fig. 4.4.
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4.4 3D Blendshape Face Models

To enable comparisons between the captured facial landmarks and their
corresponding facial expressions, we sculpted a set of blendshapes. Blend-
shapes are a tool used in animation, described in section 2.6. The neutral
face or neutral blendshape, illustrated as the canonical face model by Medi-
aPipe in figs. 2.4b and 4.11, serves as our base model for creating all of the
blendshapes.

The neutral face comprises of 468 vertices (points), and it is crucial that
the 3D models of the blendshapes we create match the same number of
vertices and vertex topology as the neutral face model. Non-matching
vertex topologies between 3D blendshape models and the neutral face
model makes it impossible for point-to-point comparisons/extractions. We
highlight these issues in fig. 4.10.

To create each 3D blendshape face model, we use the models created by
Apple as reference material, which are available at [5] as part of their ARKit.
However, since the reference models have a vertex count of over 1200 and
a different vertex topology from our neutral face model, we cannot use
them directly. Instead, we manipulate the vertex positions of the neutral
face model using Blender, a tool described in section 2.9.3, to create the
corresponding blendshape models that match the ARKit models. We render
the 3D models from ARKit in fig. 4.12 and create our blendshape models,
seen in figs. 4.13 to 4.17.
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Figure 4.10: Illustrating how our sculpted 3D blendshape models (top) did not
have the correct vertex topolgy when compared with the neutral face base model
(bottom). The first indices of each face is extruded to highlight the first vertex.
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Figure 4.11: Our neutral face starting point. Rendered canonical face by
MediaPipe[31] with 468 vertices. Lines are drawn between each vertex for a better
understanding of how the model looks.

Figure 4.12: The ARKit, imported in Blender and lined up for presentation. Our
blendshapes are based on these models. Each 3D model represents a Facial Action
Unit [68].
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Figure 4.13: Left: ARKit Model, Right: Our model. Initial blendshape 3D Face
creation process. This shows the inconsistencies and difficulties to produce similar
facial expressions.

Figure 4.14: The finished blendshape lineup that was created, based on the
Canonical Neutral Face. All models have the same vertex topology and vertex
count matching the Canonical. Rendered in Blender.
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Figure 4.15: Left: mouthDimpleLeft, Right: mouthDimpleRight. Closeup look at
the finished blendshapes. Rendered in Blender.

Figure 4.16: Left: mouthDimpleLeft, Right: mouthDimpleRight. The finished
blendshapes shown as point clouds.
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Figure 4.17: Left: jawLeft, Right: jawRight. The finished blendshapes shown as
point clouds.

4.5 Summary

In this chapter we focused on producing a dataset that can be utilized in
machine learning pipelines for blendshape weight prediction, in accordance
with objective 3 in our problem statement stated in section 1.3. We created a
dataset of facial landmarks in the form of image annotation overlays and
face point cloud data, derived from the FFHQ dataset of facial images,
accompanied with 3D blendshape face models.

To ensure minimal errors when using our dataset, the face point cloud
data obtained from facial landmark captures had to be aligned with
the translation, rotation, and scale of our base blendshape face model.
Specifically, all of the face point cloud data had to have the nose pointing
forward and be scaled to match the base blendshape face model. This was
initially done manually but later automated with a point cloud registration
algorithm known as Arun’s Method, an ICP alternative.

While creating the 3D blendshape face models, we faced difficulties in
automating the transfer of facial expressions from the ARKit source models
to the models we were developing. This process caused a distortion in the
vertex topology, moving the first vertex in our 3D model from the upper
lip. As a result, we abandoned the automation process and instead opted
for a manual approach, which produced the correct vertex topology and the
results presented in this chapter.

Although creating our own dataset was a challenging and time consuming
task, we met the requirements of our objective, which resulted in a collection
of face point clouds obtained from facial landmark captures of the FFHQ
facial images and sculpted 3D blendshape face models, each representing
a unique blendshape. PointFaces, which we named our dataset, can be
utilized for further research to explore the detection or prediction of various
blendshapes from image or video inputs.
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Chapter 5

Experiments with Machine
Learning for Point Clouds

In this chapter, the emphasis is on the experiments conducted to implement
machine learning architectures using the facial point cloud and blendshape
dataset created in chapter 4, in accordance with objective 3 in our problem
statement stated in section 1.3. The primary objective of this chapter is to
assess the applicability of the dataset and its potential use in blendshape
weight prediction. To accomplish this, we adopt a Siamese One Shot
machine learning network influenced by [36, 58], a computer vision
approach that distinguishes classification based on two separate images.
Additionally, we explore the PointNet deep learning architecture for point
cloud classification. The implementations detailed in this chapter are
executed using Python and PyTorch, as explained in sections 2.9.1 and 2.9.2,
combined with Jupyter Notebook for fast and interactive prototyping. We
detail our findings and conclusions in the chapter summary.

5.1 Siamese One Shot Learning: Implementation
Experiment

Siamese One Shot Learning is a computer vision method used to distinguish
classification based on two separate images with feature mappings [42]. We
selected this method as we aim to conduct straightforward comparisons
between point clouds of our blendshapes and those of facial landmark
captures.

As the name implies, a Siamese machine learning network consist of two
identical networks, like depicted in fig. 5.1. Since the resulting machine
learning weights are constrained to being identical for both of the siamese
networks, we employ a single network and input two images in succession.
Subsequently, we compute the loss value using a Contrastive Loss function
and perform backpropagation.
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5.1.1 Network Architecture

We base our implementation on the architecture in [36], a standard CNN.
Our network is based on three consecutive CNN layers (96, 256, 384 kernels)
using batch normalization for each convolutional layer (ReLU), followed by
dropout. The network accepts 100x100 pixels and has three fully connected
layers after the convolutional layers.

Figure 5.1: Simplied overview of a Siamese Neural Network Architecture.

5.1.2 Data Preparation

As our dataset consists of point cloud data from facial landmark captures
and blendshape 3D models, which are stored as XYZ values in a text-based
file, they cannot directly be processed for training by a Siamese One Shot
Learning network, as it relies on RGB/monochrome data extracted from
images. Thus necessitating the rendering and subsequent capture of the
point clouds as images, as seen in fig. 5.5, a procedure conducted using
Open3D, a tool previously detailed in section 2.9.6.

5.1.3 Training

The training of the Siamese One Shot machine learning network works by
selecting an image pair as input, which in our case means an image of a
blendshape and an image of a facial landmark capture. Each of these images
are passed through the network, where the loss is calculated between the
outputs of the two, using a loss function. The loss is backpropagated to
calculate the gradient descents, and the weights are then updated using an
optimizer. We utilize Contrastive Loss as our loss function, described in
fig. 5.2, where DW is the euclidean distance and GW is the network output
from a single image, depicted in fig. 5.3. The network is trained for 100
epochs, using Adam as our optimizer [15], and hyperparameters consisting
of learning rate 0.0005. The results are shown in fig. 5.6.
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(1−Y)
1
2
(DW)2 + (Y)

1
2
{max (0, m− DW)}2 (5.1)

Figure 5.2: Contrastive Loss Formula

√
{GW (X1)− GW (X2)}2 (5.2)

Figure 5.3: Euclidean Distance Formula

Figure 5.4: Simplified overview of how a Siamese One Shot Learning Neural
Network works.

Figure 5.5: Captured facial landmark point clouds in the form of images.
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Figure 5.6: Contrastive Loss function results after 100 epochs. Graph depicts loss
over time.

52



53



54



55



Figure 5.7: Dissimilarity results after running 100 epochs with Siamese One Shot
Learning. This test is performed using the captured facial images as training
images, and the blendshape images as the testing images. 10 images were extracted
from the training images and compared to a random blendshape image.
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5.2 PointNet: Implementation Experiment

PointNet: a state-of-the-art point cloud deep learning network, developed
by Stanford University in 2017 [13]; used for point cloud data in 3D
classification, segmentation and semantic scene parsing [57].

5.2.1 Network Architecture

The machine learning model for classification takes in n points as its input,
applies input and feature transformations, and subsequently aggregates
point features by utilizing max pooling. The output generated is the
classification score for m classes. On the other hand, the segmentation
network is an expansion of the classification network, which concatenates
global and local features and outputs scores for each point. In the multi-
layer perceptron (MLP), which is represented by the numbers in the bracket,
batch normalization is used for all layers with Rectified Linear Unit (ReLU),
similar to the normalization steps done using the Siamese network, as seen
in section 5.1.1. Furthermore, dropout layers are integrated into the final
MLP of the classification network.

Figure 5.8: The PointNet Architecture.

5.3 Data Preparation

During the initial testing phase, it became evident that our point cloud
data needed to have both vertex data and normals [19] and faces [17].
Unfortunately, our facial landmark capture data only consisted of vertex
points and was missing both normals and faces.

To prepare the data for PointNet, we pre-processed our point cloud data,
attempting to create triangle meshes that were needed for PointNet. We
first estimated normals for our vertex points utilizing the method shown
in fig. 5.10 and then experimented with surface reconstruction algorithms
using the resulting points and normals.

We experimented with several surface reconstruction algorithms, such as
Alpha Shapes [27], Poisson [40], and Ball Pivoting [10], in an attempt
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to reconstruct a triangle mesh representing the subject’s face. Of these
algorithms, Ball Pivoting produced the best results, yet still had missing
triangles in the resulting face mesh, as illustrated in fig. 5.11. These results
were not satisfactory enough for further processing.

Figure 5.9: Simplistic view of what 3D normals looks like. n1 and n2 are 3D normals,
pointing upwards and pointing downwards, respectively.

	 	
Figure 5.10: The 3D normals computation flow. From input image, to point cloud
with vertex data, to 3D normals.
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Figure 5.11: Face reconstruction results using Ball Pivoting. The parts in white
represent the missing triangles after reconstruction.

5.3.1 Summary

This chapter focused on implementing machine learning architectures using
PointFaces: the dataset we created in chapter 4, in accordance with objective
3 in our problem statement stated in section 1.3. We experimented with data
pre-processing for a Siamese One Shot Learning network, and PointNet, a
state-of-the-art deep learning architecture. In this summary we conclude
some observed results for both Siamese and PointNet.

Siamese One Shot Learning

• When comparing blendshapes with captured faces, we got results that
could identify if two faces were exact matches giving us a Dissimilarity
score of 0, or a Dissimilarity score that was difficult to interpret.

• This specific type of training is primarily used with images, so not an
ideal method for getting accurate results based on point clouds. For
us to experiment with Siamese One Shot learning we had to render
point clouds and convert the render into an image that could be used
for Neural Network training and testing.

• Captured faces needed facial transformations using the ICP algorithm
to transform the faces to nose-forward, matching the blendshapes.

PointNet

• We focused on the experimentation of utilizing our dataset with the
PointNet deep learning architecture. We discovered that our dataset
needs pre-processing, and employ different techniques to reconstruct
our data into triangle meshes.

• The results showed that the normals computation were partly accu-
rate, but had missing normals. The resulting point cloud containing
the computed normals were passed on to the Ball Pivoting 3D face re-
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construction algorithm, which resulted in missing triangles in the tri-
angle mesh, as indicated by the facial reconstruction images depicted
in fig. 5.11.

• We can clearly see the resulting gaps indicated by the missing trian-
gles. Our conjecture was that we could restore the missing normals
and faces of the 3D point cloud to be compatible with the PointNet
framework, which is considered a state-of-the-art framework for 3D
point cloud data.

We chose to not further pursue the PointNet implementation, as the data
pre-processing would be both time consuming and with uncertain results.
We conclude that we need a more robust approach to get the results we are
looking for, as the Siamese One Shot Learning network is aimed towards
learning where training data is limited [42]. Siamese One Shot Learning
results show us if two faces are dissimilar, with hard to interpret results,
where as we need to determine how much a captured face resembles two
other faces (neutral and blendshape faces) on a scale between 0 to 1. We
suggest taking a closer look at specific operations and algorithms for point
cloud comparisons, and do experiments with point cloud specific machine
learning architectures.
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Chapter 6

Implementations and Experiments
with Point Cloud Distance
Algorithms for Blendshape Weight
Estimation

This chapter is devoted to exploring the methodology for quantifying the
similarity between the facial expressions found in facial landmark captures
and a neutral and fully expressed blendshape, using distance measuring
algorithms on point cloud data. The measure of facial expression similarity
is obtained between three different faces, namely, a neutral face, a captured
face, and fully expressed face, and is expressed as a blendshape weight.

We propose that to leverage datasets of facial landmark captures and
blendshapes, like we created in chapter 4, we must annotate each individual
face in the dataset with labels that correspond to their facial expressions as
blendshape weights, for the purpose of blendshape weight prediction in
supervised machine learning pipelines.

In this chapter we report the effectiveness of utilizing distance measuring
algorithms on point clouds for such automatic annotation of facial images
with computed blendshape weights that match their respective facial
expressions. This process holds the potential to automate the time
consuming process of data annotation of facial expressions for large scale
facial image datasets, which is described as objective 4 in our problem
statement stated in section 1.3. Ultimately, having large datasets with
pre-annotated blendshape weights could lead us to our overarching goal,
namely, the development of a machine learning model trained to compute
blendshape weights from facial images captured in videos or live camera
feeds, which can be applied to any blendshape supported 3D avatar for
realtime avatar animation.

We propose a method where we can measure the distance between the
points in facial point clouds to determine how much of a similarity there
is between point clouds of a captured face, a neutral blendshape and a
target blendshape, indicating the blendshape weight matching the facial
expressions of a captured face.
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This proposed method is based on our findings when applying the K-D
Tree Nearest Neighbor algorithm, as described in section 6.2.1, for distance
measuring, showing the co-relation of point distances between the neutral
blendshape seen in fig. 6.2a and a target blendshape, as seen in fig. 6.2b. The
distances between individual points were measured between the neutral
blendshape and blendshapes mouthSmileLeft and mouthSmileRight, seen
in figs. 6.2b and 6.2d. The highlighted points between 40-80 in fig. 6.2c show
that the distances was found to be greater in fig. 6.2b, indicating a left smile
in the blendshape. The distance between points 0-40 shown in fig. 6.2e was
found to be greater in fig. 6.2d, indicating a right smile in the blendshape.

Based on our visual similarity findings, we explore our methodology for
blendshape weight calculations. We selected a subset of facial captures from
the dataset we created in chapter 4, for analysis using distance measuring
algorithms on facial points clouds. Specifically, our focus shifted towards
the mouth area and its corresponding blendshapes, not including the entire
face, due to the complex nature of facial expressions. In the following
sections, we present the methods and results obtained by applying these
algorithms to a single blendshape, mouthSmileLeft, depicted in fig. 6.2b,
and then extend our analysis to applying computations of blendshape
weights using 24 different mouth-related blendshapes seen in fig. 6.21.
We discuss our findings and evaluate the effectiveness of the algorithms
employed in the chapter summary.

For all subsequent blendshape weight computations within this chapter we
apply the following equation:

Weight = D(N, B)− (D(C, N) + D(C, B)/2) (6.1)

where D is the point cloud distance algorithm applied, N is the neutral
blendshape, B is the target blendshape and C is the captured face. A
simplified visualization of how the blendshape weight is obtained is
depicted in fig. 6.1.
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Neutral Blendshape

0.0

Captured Face

?

Target Blendshape

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.1: A visualization of how blendshape weight calculation is done for
a captured face. Specifically, the computed blendshape weight value for a
corresponding facial expression will range between 0 and 1. In this example, the
target blendshape is mouthSmileLeft, as depicted in fig. 6.2b.
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(a) Neutral blendshape

(b)
mouthSmileLeft
blendshape

(c) Individual point distances between neutral blendshape
seen in fig. 6.2a and blendshape mouthSmileLeft seen in
fig. 6.2b.

(d) mouthSmi-
leRight blend-
shape

(e) Individual point distances between neutral blendshape
seen in fig. 6.2a and blendshape mouthSmileRight seen in
fig. 6.2d.

Figure 6.2: Visualization of the co-relation between individual points of neutral
blendshape seen in fig. 6.2a and blendshapes mouthSmileLeft and mouthSmi-
leRight seen in figs. 6.2b and 6.2d respectively.
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6.1 Extracting the mouth points

The first step in our distance measurement application involve the extrac-
tion of the mouth region, which is characterized by a specific set of geometry
points. This step is taken to enhance the precision of the measurements, as
our focus is primarily on the mouth area, and other facial features are ir-
relevant to our analysis. From the MediaPipe facial landmark capture, our
resulting facial point cloud comprises a total of 468 points, with 80 points
specifically related to the mouth area, as depicted in fig. 6.3. The mouth
region of 80 points is extracted from the facial point clouds of a captured
face, neutral and target blendshape. Subsequently, the distances between
the three extracted mouth regions of captured face, neutral and target blend-
shape are computed to obtain a blendshape weight.

(a) Point cloud of a facial landmark
capture.

(b) Highlight of the 80 point mouth
area.

Figure 6.3: Mouth points to be extracted for distance measuring between a neutral
and target blendshape.

6.2 The Model Viewer: Web Based Blendshape
Animator

As we saw the need to visualize and evaluate the results of the blendshape
weights on a 3D avatar, we create our own web based model viewer, a fork
of the glTF-viewer [50] from threejs, a 3D JavaScript library [16]. The model
viewer can view any type of glTF 3D model, and we use our previously
used polywink face model with blendshapes, after a conversion from the
original FBX model to a compatible glTF model. The viewer is hosted locally
and accepts HTTP requests along with URL parameters specifying vectors
of blendshape names and blendshape weights to be applied to the avatar.
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Figure 6.4: The Model Viewer showing the polywink 3D face model with multiple
blendshape weights applied to the avatar.

6.2.1 K-D Tree Nearest Neighbor Distance Algorithm

K-Dimensional trees or K-D trees, are binary search trees represented as a
set of N points in K-dimensional space, in our case 3D space. Many kinds
of searches can be performed on a K-D tree, including exact-match, partial-
match, and range queries, which are often used in database applications due
to it’s often tree-like, complex structures [9]. K-D Tree NN is often used as
the nearest neighbor algorithm within Chamfer Distance, like we described
in fig. 6.5, and is used bidirectionally with the following equation:

Dist(A, B) + Dist(B, A)

where as K-D Tree NN computes only one direction with this equation:

Dist(A, B)

We apply the K-D Tree NN distance computations on our point clouds
for distance measuring of all the points residing inside two different point
clouds.

6.2.2 Chamfer Distance Algorithm

The chamfer distance method is a technique used to measure the similarity
between two sets of points in a multi-dimensional space. The method works
by finding the distance between each point in one set to the nearest point
in the other set, and then summing these distances over all points in both
sets. The resulting value is the chamfer distance between the two sets. The
chamfer distance method is a method for comparing two sets of points in
multiple dimensions. It has various applications in fields such as robotics,
computer graphics, and object recognition. [67].
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Cham f er(X, Y) = ∑
x∈X

min
y∈Y
||x− y||22 + ∑

y∈Y
min
x∈X
||x− y||22

Figure 6.5: The mathematical formula for chamfer distance where X and Y are point
clouds with XYZ coordinates [3].

6.2.3 Hausdorff Distance Algorithm

The Hausdorff distance method is a mathematical technique used to
measure the similarity between two sets of points in a metric space. It is
named after mathematician Felix Hausdorff and is also sometimes referred
to as the Hausdorff metric or Hausdorff distance.

The Hausdorff distance method involves calculating the maximum distance
between each point in one set and its nearest point in the other set. This
process is then repeated in the opposite direction, with the maximum
distance between each point in the second set and its nearest point in the
first set being calculated. The larger of these two values is then taken as the
Hausdorff distance between the two sets. The Hausdorff distance method
has applications in a variety of fields, including image processing, computer
vision, and pattern recognition. It is commonly used to compare images or
other geometric shapes to determine how similar or dissimilar they are. For
example, it can be used to compare a digital image of a person’s face to a
database of known faces to determine if a match exists.

One of the benefits of the Hausdorff distance method is that it is relatively
easy to compute and can be applied to a wide range of data types. However,
it is important to note that it can be sensitive to outliers and noise in the data,
and it may not always provide the most accurate or appropriate measure
of similarity. As with any analytical method, it is important to carefully
consider the specific needs and characteristics of the data being analyzed
when choosing whether to use the Hausdorff distance method or another
approach. In conclusion, the Hausdorff distance method is a powerful tool
for measuring the similarity between two sets of points in a metric space.
Its broad range of applications and ease of use make it a valuable tool for
researchers and practitioners in many fields, but careful consideration of
its strengths and limitations is essential to ensure accurate and meaningful
results [2].

Hausdor f f (X, Y) = max
{

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}

Figure 6.6: The mathematical formula for hausdorff distance where X and Y are
point clouds of XYZ, and sup and inf are the supremum and infimum respectively
[4].
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6.3 Single Blendshape Distance Computation

The following sections will detail results obtained from running point
cloud distance measurement algorithms on extracted points from the
obtained facial landmarks of our subjects described in chapter 4. For
single blendshape distance computation, mouthSmileLeft seen in fig. 6.8b
was our selected blendshape, as this particular blendshape should be able
to distinguish between a smiling and non-smiling face. The blendshape
mouthSmileLeft is used in combination with the neutral blendshape
depicted in fig. 6.8a and a captured face of a subject for all subsequent
blendshape weight computations, as depicted in fig. 6.1 . Three subjects
from the dataset we created in chapter 4 were chosen for these evaluations:
68002, 68034, 68037 as depicted in figs. 6.7a to 6.7c. The first two subjects are
smiling while the last one is of a non-smiling nature.

In order to evaluate the precision of the computed blendshape weight
results, we need to visually estimate the expected blendshape weights for
each subject involved in single blendshape computation, as there exists
no other available approach to assess these outcomes, to the best of our
knowledge.

We apply the blendshape weight calculation described in eq. (6.1) with
point clouds extracted from a captured face, neutral and target blendshape,
to obtain the blendshape weight. The weight is a floating point number
between 0 and 1, representing how much a captured face is expressing facial
muscle movements that are present in a blendshape, as illustrated in fig. 6.1.
For each of the subjects, as seen in figs. 6.7a to 6.7c, we visually predicted the
expected blendshape weight of blendshape mouthSmileLeft seen in fig. 6.2b.

Each of the subject facial captures were arranged on a vertical line with a
neutral and fully expressed blendshape for comparison. This was to get
a better visualization of the subject faces relative to the neutral and target
blendshape when estimating the blendshape weight, similar to what can be
seen in fig. 6.1.

In fig. 6.9 we observed that the mouth of the captured face looks more
like blendshape mouthSmileLeft than the neutral blendshape, indicating
that a calculated blendshape weight should be in the range ≈ 0.6 − 1.0.
Comparisons seen in fig. 6.10 indicated that the mouth of the captured
face appeared to be between in the middle, between the neutral and target
blendshape mouthSmileLeft, indicating that a blendshape weight between
≈ 0.4− 0.8 would be within our expectations. Lastly, fig. 6.11 showed that
the mouth of the captured face looked noticeably more like the neutral face
than the blendshape mouthSmileLeft. We expected a blendshape weight
in the range between ≈ 0.0− 0.2, for that particular subject. The resulting
blendshape weights that are derived from the distance computation in this
section are evaluated against these expected blendshape weights.
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Smiling Smiling Non-smiling

(a) Subject 68002 (b) Subject 68034 (c) Subject 68037

Figure 6.7: The three subjects used in single blendshape distance computations and
their respective point clouds.

(a) Neutral (b) mouthSmileLeft

Figure 6.8: Point cloud representation of blendshapes neutral seen in fig. 6.8a and
mouthSmileLeft seen in fig. 6.8b used in single blendshape distance computations.

Neutral Captured Target Blendshape

Figure 6.9: The neutral blendshape, captured face (68002) and fully expressed
blendshape mouthSmileLeft as point clouds. Expected blendshape weight: ≈
0.6− 1.0.
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Neutral Captured Target Blendshape

Figure 6.10: The neutral blendshape, captured face (68034) and fully expressed
blendshape mouthSmileLeft as point clouds. Expected blendshape weight: ≈
0.4− 0.8 .

Neutral Captured Target Blendshape

Figure 6.11: The neutral blendshape, captured face (68037) and fully expressed
blendshape mouthSmileLeft as point clouds. Expected blendshape weight: ≈
0.0− 0.2.
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6.4 Single Blendshape: K-D Tree NN distance

The K-D Tree NN distance measurement algorithm was applied to compute
the point cloud distances, using the formula in eq. (6.1) between the neutral
blendshape from fig. 6.2a, a captured face, and a target blendshape as
depicted in fig. 6.2b. The computed distances were turned into blendshape
weights which were applied to a 3D avatar to visualize the computed
blendshape weight equivalent facial expression.

Results in fig. 6.13 show the point cloud distances measured of the captured
face, as depicted in fig. 6.7a using K-D Tree NN. As we observe, the
distances between the mouths of neutral face and mouthSmileLeft (in green)
is relatively small when compared to distances between captured face
and mouthSmileLeft. We interpret this as a reflection of the computed
blendshape weight of 0.74014 - meaning that this particular subject’s face
has an active facial expression in the lower left mouth area.
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Captured Face: Subject 68002
Computed Blendshape Weight: 0.74014

Captured Face -> Neutral
Captured Face -> mouthSmileLeft
Neutral -> mouthSmileLeft

(a) Distances measured for subject 68002.

(b) Captured landmarks of
subject 68002.

(c) Point cloud of subject
68002.

(d) Avatar with blend-
shape weight applied.

Figure 6.12: Point cloud seen in fig. 6.12c are computed against blendshape
mouthSmileLeft seen in fig. 6.2b. The calculated blendshape weight of 0.74014
is derived from the K-D Tree NN distance computations seen in fig. 6.12a. The
blendshape weight is applied to avatar as seen in fig. 6.12d.
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Captured Face: Subject 68034
Computed Blendshape Weight: 0.57489

Captured Face -> Neutral
Captured Face -> mouthSmileLeft
Neutral -> mouthSmileLeft

(a) Distances measured for subject 68034.

(b) Captured landmarks of
subject 68034.

(c) Point cloud of subject
68034.

(d) Avatar with blend-
shape weight applied.

Figure 6.13: Point cloud seen in fig. 6.13c are computed against blendshape
mouthSmileLeft seen in fig. 6.2b. The calculated blendshape weight of 0.57489
is derived from the K-D Tree NN distance computations seen in fig. 6.13a. The
blendshape weight is applied to avatar as seen in fig. 6.13d.

72



0 10 20 30 40 50 60 70 80
Facial Geometry Points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
is

ta
nc

es
be

tw
ee

n

Captured Face: Subject 68037
Computed Blendshape Weight: 0.16641

Captured Face -> Neutral
Captured Face -> mouthSmileLeft
Neutral -> mouthSmileLeft

(a) Distances measured for subject 68037.

(b) Captured landmarks of
subject 68037.

(c) Point cloud of subject
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(d) Avatar with blend-
shape weight applied.

Figure 6.14: Point cloud seen in fig. 6.14c are computed against blendshape
mouthSmileLeft seen in fig. 6.2b. The calculated blendshape weight of 0.16641
is derived from the K-D Tree NN distance computations seen in fig. 6.14a. The
blendshape weight is applied to avatar as seen in fig. 6.14d.
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6.5 Single Blendshape: Chamfer distance

Chamfer Distance measurement results were computed between a captured
face, neutral face, and blendshape face, as depicted in eq. (6.1). Results are
shown as histogram figures with the computed distances. The computed
blendshape weights are applied to avatar in our model viewer.
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Captured Face: Subject 68002
Computed Blendshape Weight: 0.95127

Captured Face -> Neutral
Captured Face -> mouthSmileLeft
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(a) Distances measured for subject 68002.

(b) Captured landmarks of
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(c) Point cloud of subject
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(d) Avatar with blend-
shape weight applied.

Figure 6.15: Point cloud seen in fig. 6.15c are computed against blendshape
mouthSmileLeft seen in fig. 6.2b. The calculated blendshape weight of 0.95126 is
derived from the Chamfer distance computations seen in fig. 6.15a. The blendshape
weight is applied to avatar as seen in fig. 6.15d.
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Captured Face: Subject 68034
Computed Blendshape Weight: 0.63747

Captured Face -> Neutral
Captured Face -> mouthSmileLeft
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(a) Distances measured for subject 68034.

(b) Captured landmarks of
subject 68034.

(c) Point cloud of subject
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(d) Avatar with blend-
shape weight applied.

Figure 6.16: Point cloud seen in fig. 6.16c are computed against blendshape
mouthSmileLeft seen in fig. 6.2b. The calculated blendshape weight of 0.63747 is
derived from the Chamfer distance computations seen in fig. 6.16a. The blendshape
weight is applied to avatar as seen in fig. 6.16d.
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Captured Face: Subject 68037
Computed Blendshape Weight: 0.15638

Captured Face -> Neutral
Captured Face -> mouthSmileLeft
Neutral -> mouthSmileLeft

(a) Distances measured for subject 68037.

(b) Captured landmarks of
subject 68037.

(c) Point cloud of subject
68037.

(d) Avatar with blend-
shape weight applied.

Figure 6.17: Point cloud seen in fig. 6.17c are computed against blendshape
mouthSmileLeft seen in fig. 6.2b. The calculated blendshape weight of 0.15637 is
derived from the Chamfer distance computations seen in fig. 6.17a. The blendshape
weight is applied to avatar as seen in fig. 6.17d.
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6.6 Single Blendshape: Hausdorff distance

Hausdorff Distance measurement results are computed between captured
and neutral face, captured and blendshape face and neutral and blendshape
face, as depicted in eq. (6.1). Results are shown as plot figures with the
computed distances. The computed blendshape weight is applied to avatar
in the model viewer.
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Captured Face -> Neutral
Captured Face -> mouthSmileLeft
Neutral -> mouthSmileLeft

(a) Distances measured for subject 68002.
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Figure 6.18: Point cloud seen in fig. 6.18c are computed against blendshape
mouthSmileLeft seen in fig. 6.2b. The calculated blendshape weight of 0.15637
is derived from the hausdorff distance computations seen in fig. 6.18a. The
blendshape weight is applied to avatar as seen in fig. 6.18d.
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Figure 6.19: Point cloud seen in fig. 6.19c are computed against blendshape
mouthSmileLeft seen in fig. 6.2b. The calculated blendshape weight of 0.38719
is derived from the hausdorff distance computations seen in fig. 6.19a. The
blendshape weight is applied to avatar as seen in fig. 6.19d.
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Captured Face: Subject 68037
Computed Blendshape Weight: 0.00000

Captured Face -> Neutral
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(a) Distances measured for subject 68037.
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Figure 6.20: Point cloud seen in fig. 6.20c are computed against blendshape
mouthSmileLeft seen in fig. 6.2b. The calculated blendshape weight of 0.0
is derived from the hausdorff distance computations seen in fig. 6.20a. The
blendshape weight is applied to avatar as seen in fig. 6.20d.
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6.6.1 Single Blendshape: Summary

Single blendshape weight (mouthSmileLeft) results
Subject Expected K-D-Tree-

NN
Chamfer Hausdorff

68002 ≈ 0.6− 1.0 0.74014 0.95127 0.00000
68034 ≈ 0.4− 0.8 0.57489 0.63747 0.38719
68037 ≈ 0.0− 0.2 0.16641 0.15638 0.00000

Table 6.1: Point cloud distance calculation results using K-D Tree NN, Chamfer and
Hausdorff measurement algorithms for single blendshape weight computations:
mouthSmileLeft. Bold text indicates the best results.

The experiments for single blendshape demonstrated that by utilizing both
K-D Tree NN and Chamfer distance measuring algorithms to compute
distances between point clouds, we were able to derive a weight value for
the blendshape mouthSmileLeft, that closely resembled the left smile seen
in the facial landmark captures from our three test subjects; and fell within
our predetermined range of values.

K-D Tree NN clearly showed the best results with all three subjects,
as we can see in results table 6.1, however, since Chamfer distance
also yielded results within the expected weight range, we deem this
an alternative distance measuring technique for weight calculations of
blendshape mouthSmileLeft.

The results show that the Hausdorff distance algorithm produced distance
measurements with unexpected results, unable to produce results within
the expected blendshape weights.

In conclusion, we see promising results using distance measuring algo-
rithms for blendshape weight computations in a single blendshape. How-
ever, we recommend implementing additional functionality to support the
computation of multiple blendshape weights instead of only a single blend-
shape weight. As we introduce multiple blendshapes for weight compu-
tations, it will increase the evaluation accuracy and the results will show
methodology relevance for automatic blendshape weight annotations in
datasets.

6.7 Multiple Blendshape Distance Computations

This section shows the details and results of point cloud distance measuring
algorithms including K-D Tree NN, Chamfer and Hausdorff, as described
in sections 6.2.1 to 6.2.3 respectively. Instead of focusing on a single blend-
shape (mouthSmileLeft) as done previously in section 6.3, we concentrate
on the 24 mouth-related blendshapes seen in fig. 6.22. The distance mea-
surement detailed in eq. (6.1) is applied, and this process is repeated for all
distance algorithms. Additionally, we increase our subject count from three
to six subjects, depicted in fig. 6.21. Three subjects are smiling, as we see in
figs. 6.21a to 6.21c, and the other three subjects are non-smiling, as seen in
figs. 6.21d to 6.21f. These subjects are a subset of facial images with land-
mark captures created in chapter 4.
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Smiling Smiling Smiling

(a) 68002 (b) 68034 (c) 68084

Non-smiling Non-smiling Non-smiling

(d) 68037 (e) 68015 (f) 68041

Figure 6.21: Captured facial landmarks and their respective point clouds of the six
subjects used with multiple blendshape distance computations.
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(a) jawOpen (b) mouthClose (c) mouthDim-
pleLeft

(d) mouthDimp-
leRight

(e) mouthFrownLeft (f) mouthFrown-
Right (g) mouthFunnel (h) mouthLeft

(i) mouthLower-
DownLeft

(j) mouthLower-
DownRight (k) mouthPressLeft (l) mouthPressRight

(m) mouthPucker (n) mouthRight (o) mouthRoll-
Lower

(p) mouthRollUp-
per

(q)
mouthShrugLower

(r) mouthShrugUp-
per (s) mouthSmileLeft (t) mouthSmi-

leRight

(u) mouthStretch-
Left

(v) mouth-
StretchRight

(w) mouthUpperU-
pLeft

(x) mouthUppe-
rUpRight

Figure 6.22: The 24 blendshapes used with multiple blendshape distance computa-
tions. Only blendshapes related to mouth movements are used.
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6.8 Multiple Blendshape: K-D Tree NN distance

Similar to our previous approach with single blendshape distance compu-
tation, we replicate the process by measuring the K-D Tree NN distance, as
shown in section 6.2.1, for every mouth-related blendshape in our test; 24 in
total, as illustrated in fig. 6.22. We utilize our blendshape weight calculation
presented in eq. (6.1) to conduct these measurements.

The results show that all of the subjects, both smiling and non-smiling, as
depicted in fig. 6.23, have a high degree of similarity when compared to the
mouths of the subjects seen in fig. 6.21.

Smiling Smiling Smiling

(a) 68002 (b) 68034 (c) 68084
Non-smiling Non-smiling Non-smiling

(d) 68037 (e) 68015 (f) 68041

Figure 6.23: Results for K-D Tree NN distance computations for multiple
blendshapes. Avatars shown have the calculated blendshape weights for each of
the avatar’s 24 mouth-related blendshapes applied.

6.9 Multiple Blendshape: Chamfer distance

Utilizing the blendshape weight calculation presented in eq. (6.1), we
measure the Chamfer distance, as described in section 6.2.2, for every
mouth-related blendshape in our test; a total of 24 as depicted in fig. 6.22.

All three avatars, shown in figs. 6.24a to 6.24c, yield similar poor results
for the smiling subjects. Contrarily, the non-smiling subjects shown in
figs. 6.24d to 6.24f exhibit considerably better results, with small distance
computations, due to the nature of the subjects not smiling.
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Smiling Smiling Smiling

(a) 68002 (b) 68034 (c) 68084
Non-smiling Non-smiling Non-smiling

(d) 68037 (e) 68015 (f) 68041

Figure 6.24: Blendshape weight results from Chamfer distance computations on
each of the subject face point clouds. The avatars visualize the resulting blendshape
weights calculated from the 24 mouth-related blendshapes, seen in fig. 6.22.
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6.10 Multiple Blendshape: Hausdorff distance

Point cloud distance measuring done using the the Hausdorff distance
algorithm described in section 6.2.2, combined with our blendshape weight
calculation, seen in eq. (6.1), are used to calculate the distances for the
selected subjects, depicted in fig. 6.21. The process is repeated for the
24 mouth-related blendshapes seen in fig. 6.22. The resulting blendshape
weights are applied to avatars for visual evaluation.

The non-smiling subjects seen in figs. 6.25d to 6.25f, all showed a satisfactory
outcome when viewing the avatars. In terms of similarity with the subject
faces, the distances measured in non-smiling subjects were very small,
but they produced blendshape weights and avatars that looked similar to
their subjects. We point out that these results have the same issue found
in fig. 6.24, where the small distances seen in non-smiling subjects looks
to be accurate, but we see their inaccuracies when applied to faces with
expressions.

We can visually confirm that the resulting avatars for the smiling subjects
all have similar, almost identical, unsatisfactory outcomes, as displayed in
figs. 6.25a to 6.25c. The resulting avatars had little to no resemblance to their
respective subjects, despite the avatar results of the non-smiling subjects
showing promising results.
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Smiling Smiling Smiling

(a) 68002 (b) 68034 (c) 68084
Non-smiling Non-smiling Non-smiling

(d) 68037 (e) 68015 (f) 68041

Figure 6.25: The avatars displayed are the blendshape weight results of Hausdorff
distance computations which have the calculated blendshape weights applied for
each of the 24 mouth-related blendshapes.
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6.11 Summary

In this chapter we explored the methodology for quantifying similarity
between facial expressions found in facial landmark captures and blend-
shapes. We looked at different algorithms to compute blendshape weights
for a subset of subject faces from our previously created dataset. The evalua-
tion aimed at comparing the effectiveness of three distance algorithms when
applied to point clouds, namely K-D Tree NN, Chamfer and Hausdorff , for
measuring distances between the points found in the mouth area of a subject
face, a neutral blendshape and mouth-related target blendshapes. We initi-
ated the tests with a single blendshape for weight computations using three
test subjects and continued with multiple blendshape weight computations
for six test subjects.

When applying the Hausdorff distance algorithm using only a single
blendshape for weight computation, one could clearly see a flat line
of distances between facial points in the histograms when measuring
distances between the three faces (captured face, neutral blendshape, target
blendshape). This flat line indicated that the applied Hausdorff algorithm
failed to produce any meaningful distances. When applying the same
Hausdorff blendshape weight calculations to all of the 24 mouth-related
blendshapes, we could visually confirm that the resulting avatars looked
nothing like their subject faces. Which in turn meant that the resulting
blendshape weight calculations were wrong for both single and multiple
blendshapes.

For the Chamfer distance algorithm, we had positive results in single
blendshape distance computations, using the mouthSmileLeft blendshape.
However, the multiple blendshape distance computation results clearly
yield poor results, similar to what we saw with the Hausdorff distance
algorithm. For our particular use case, we conclude that whether for
the computation of individual blendshape weights or multiple blendshape
weights, we consider the utilization of both the Hausdorff and Chamfer
algorithm to be ineffective.

The findings indicate that the K-D Tree NN algorithm generated the most
visually correct avatars for both single blendshape and multiple blendshape
weight computations. Specifically, the use of the K-D Tree NN algorithm
for multiple blendshape weight computations led to avatars with mouth
expressions that closely resembled those of the subject faces.

After analyzing the outcomes and assessing the findings, we can deduce
that the utilization of the K-D Tree NN algorithm for measuring point cloud
distance and calculating blendshape weight in point clouds has proven
to be more effective than the other algorithms examined in this chapter.
With reference to research objective 4 described in section 1.3, we have
successfully created a tool that facilitates the annotation of facial landmark
captures with mouth-related blendshape weights, which can be utilized
in training pipelines for machine learning or facial expression analysis
research.
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Chapter 7

Conclusion and Future Work

7.1 Summary

Revisiting the problem statement, our main objective was to overcome
the challenge of capturing and transferring facial expressions from pre-
recorded videos, live video feeds, and facial images using affordable
cameras without depth sensors to animate a 3D virtual avatar within the
police interview training program.

This thesis aimed at creating a 3D virtual avatar for a training program to
educate law enforcement personnel, enabling them to improve their skill-set
and conduct well-structured interviews with children who are suspected of
being subjected to sexual abuse.

We initially conducted experiments to transfer facial landmarks from pre-
recorded videos and webcam feeds to a 3D face mesh and virtual avatar
with blendshape support. We found that MediaPipe’s facial landmark
predictions were unstable and noisy, resulting in inaccurate and blurry
expression and movement transfer. To address this, we proposed capturing
FACS Action Units and deriving blendshape weights that match these
units for more realistic facial movements. The proposed method was
implemented as a tool to calculate blendshape weights based on the ratios
of eye and mouth opening/closing and successfully applied them to a 3D
virtual avatar. However, the results only demonstrate this achievement
for basic blendshape animations, and further investigation was needed
to extend the research to more intricate blendshape animations. From
the observations made during these initial experiments, we suggested
generating a dataset for machine learning purposes to learn facial landmark
features and predict blendshape weights.

The following work focused on creating a dataset of facial landmarks
and 3D blendshape face models for machine learning pipelines to predict
blendshape weights. We derived facial landmarks from the FFHQ dataset
of facial images and created 3D blendshape face models. To minimize errors
encountered, we aligned the face point cloud data with the base blendshape
face model’s translation, rotation, and scale. We faced difficulties in
automating the transfer of facial expressions from the ARKit source models
to our models, so we manually sculpted the blendshape face models.
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Despite the challenges we faced, our dataset, PointFaces, can be used for
further research on predicting blendshapes from pre-recorded videos, live
camera feeds or static images.

Following the creation of the dataset, we conducted experiments on
machine learning for point clouds. We discussesed the implementation
of machine learning architectures using the PointFaces dataset we created
to predict blendshape weights. The Siamese One Shot Learning network
was used, but it was found to be primarily suited for images and difficult
to interpret results with point clouds. PointNet, a state-of-the-art deep
learning architecture, was also experimented with, but it required time
consuming data pre-processing, and the results were not satisfactory due
to missing triangles in the reconstructed facial mesh. We concluded that
a more robust approach was needed and suggested exploring specific
operations and algorithms for point cloud comparisons and conducting
experiments with point cloud specific machine learning architectures.

The work was furthered by implementing and conducting experiments with
point clouds to estimate blendshape weights using distance algorithms. We
discussed the exploration of different algorithms to compute blendshape
weights for facial landmark captures and blendshapes. We compared the
effectiveness of the K-D Tree NN, Chamfer, and Hausdorff algorithms for
measuring distances between points in the mouth area of a subject face, neu-
tral blendshape, and target blendshapes. The Hausdorff and Chamfer algo-
rithms were found to be ineffective for both single and multiple blendshape
weight computations. The K-D Tree NN algorithm produced the most vi-
sually correct avatars for both single and multiple blendshape weight com-
putations, closely resembling the subject faces’ mouth expressions. We con-
cluded that we had successfully developed a tool for annotating facial land-
mark captures with mouth-related blendshape weights, which can be uti-
lized in machine learning training pipelines or research on facial expression
analysis.

Deduced by the work conducted during this thesis, we observed that
our methods holds the potential to animate a 3D virtual avatar in the
training program in two distinct ways. Either by a hired actor through
the use of a live video feed, or by transfer of facial mimicry captured
from an abused child in pre-recorded interview videos. Both of these are
viable 3D virtual avatar animation methods, but suffered from inaccuracte
expression transfers. The dataset we created, PointFaces, includes face
point clouds and 3D blendshape face models. To annotate the dataset
with blendshape weights, we developed a tool that automatically annotates
blendshape weights matching the facial expressions and movements of the
mouth area. The dataset and it’s subsequent annotations can be utilized in
further research in blendshape weight estimation using machine learning,
to predict blendshape weights for use in 3D virtual avatar animation.

7.1.1 Contributions

During the course of this thesis, we conducted research and developed
tools for transferring facial expressions from pre-recorded videos, live video
feeds, and facial images. Our focus was on the development of a 3D virtual
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avatar that could be controlled by a hired actor through inexpensive camera
equipment, or through facial expressions captured from an abused child in
pre-recorded interview videos.

This study is aimed at creating a training program to educate law enforce-
ment personnel, enabling them to improve their skill-set and conduct well-
structured interviews with children who are suspected of being subjected to
sexual abuse. Our tools progressively increases complexity as we discover
findings, drawbacks and limitations, within our experiments.

In this section we go through each of the research objectives we described
in the problem statement stated in section 1.3 with a description of how
we solved each of the stated objectives. Each objective is supported
by experiments conducted using different algorithms and techniques
mentioned throughout this thesis.

Objective 1: Research and develop a proof-of-concept implementation for facial
expression transfer from video using facial landmarks.

The objective is supported by the development of a tool that detects
facial landmarks in pre-recorded videos and subsequent transfer of facial
landmarks onto a 3D face mesh. Using this tool we can transfer facial
expressions from children in pre-recorded child abuse interviews onto a 3D
face mesh.

Objective 2: Research and develop a proof-of-concept implementation for
animating 3D virtual avatars using blendshape weights.

The objective is supported by the development of a tool that calculates
the Eye-Aspect-Ratio (EAR) and Mouth-Aspect-Ratio (MAR) for measur-
ing the opening and closing ratios of eyes and mouth, respectively. The
ratios are utilized to compute blendshape weights, which are subsequently
transferred to a 3D virtual avatar with blendshape support. For visualiza-
tion support, we create a tool that integrates web camera input feed and
displays blendshape names values corresponding to the calcuated eyes and
mouth opening and closing.

Objective 3: Develop a dataset of facial landmarks and 3D blendshape face models
for use in machine learning pipelines, and experiment with machine learning
architectures utilizing such dataset.

The development of PointFaces has supported the objective, which is a
dataset consisting of facial landmark captures in various forms such as point
cloud formats (PLY/PCD) and images (PNG). The dataset is accompanied
by a set of sculpted 3D blendshape face models and can be utilized for
further research in detecting or predicting various blendshapes from image
or video inputs, as well as for facial expression analysis. PointFaces is made
publicly available at Github, https://github.com/olealgoritme/pointfaces, and
Zenodo, https://zenodo.org/record/7900081.

To further support the objective, we conducted experiments by implement-
ing machine learning architectures such as Siamese One Shot and PointNet,
which utilize the produced dataset.

Objective 4: Research and develop a tool for automatic annotation of blendshape
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weights from facial landmark captures in facial images.

To support our objective, we have created a proof-of-concept tool that
leverages point cloud distance calculations to derive blendshape weights.
We achieve this by utilizing K-D Tree Nearest Neighbor calculations on
facial landmark captures obtained from our PointFaces dataset, which we
developed specifically for predicting blendshape weights and analyzing
facial expressions. By utilizing this tool, we can generate a 3D virtual avatar
that displays the appropriate blendshape weights based on the input facial
image. This work is made publicly available at Github, https://github.com/
olealgoritme/master_thesis.

7.1.2 Future Work

Gaining a deeper understanding of the utilization of point cloud data
derived from facial landmark captures in the realm of machine learning and
artificial intelligence is crucial in developing an accurate blendshape weight
prediction model for avatar animations. In chapter 6, we investigated how
to quantify the similarity between a neutral and target blendshape using
a subject’s facial landmarks for blendshape weight approximation. We
recognize that the approach had limitations as the manual process of scaling
and transforming a subject’s captured face to a neutral blendshape face was
slow and time consuming. As future work, we aim to automate this process
so that any input facial landmarks in any rotation, scale, and format can be
transformed to match that of a source blendshape without requiring manual
intervention. Optimizing the code using a low-level programming language
such as C/C++ would lead to additional enhancements and increased
calculation speed of blendshape weights, making it suitable for real-time
processing in virtual avatar applications.

We would also like to employ our annotated blendshape weight dataset
in point cloud feature learning networks, such as RBFNet, a Radial
Basis Function deep learning technique, which has promising features.
Unlike PointNet variants, which face challenges in recognizing local point
patterns, the RBFNet approach explicitly models the spatial distribution of
point clouds by extracting features from sparsely positioned RBF kernels.
A typical RBF kernel, such as a Gaussian function, discourages long-
distance responses and only responds to neighboring points. This localized
response generates highly distinctive features that vary based on the point
distributions and are highly discriminative, as described in [14].
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