
.

Master’s thesis

Grammatical Error
Correction with byte-level
language models
Fine-tuning models for English and Norwegian

Matias Jentoft

Language Technology
60 ECTS study points

Department of Informatics
Faculty of Mathematics and Natural Sciences

Spring 2023

Abstract

Grammatical Error Correction (GEC) is the task of automatically correcting
errors in human language on a sentence level or higher. Good performance
on this task can have many real-world applications for foreign language
learners, children, and people with various language impairments. In
this thesis we explore how different representations of language affect the
performance of GEC systems for English and Norwegian. We compare
sequence-to-sequence language models with byte-level (byt5) and subword-
level (t5/nort5/mt5) language representation. We show that byte-level
representation of model input is just as good for this kind of tasks as
subword-level representation, and for Norwegian it is actually better. We
look at how the different levels of representation affect performance on
specific error types that may occur in natural text. A special focus is put
on how byte-level representation handles noisy text, i.e. text that contains
spelling errors that might not have occurred in the training data of the
models.

We release the first language models for grammatical error correction in
Norwegian. This has been possible with a large annotated second language
learners corpus: Norsk Andrespråkskorpus (ASK). We modify the corpus
into a parallel corpus, and use it for fine-tuning pre-trained models of
the t5-family. Our best system, which is byte-level based and trained on
multilingual data, achieves an F0.5 score of 0.581 on our test set, and beats
the subword-level Norwegian-trained nort5.

i

Acknowledgements

My supervisors deserve a big thank you for making this project happen.
David Samuel came up with the idea to work on Grammatical Error
Correction with byte-level representation, and he figured out that there
was a Norwegian dataset suited for this purpose. He has been patient and
inspiring with his infinite scientific and technical knowledge. My other
supervisor Andrey Kutuzov has given me motivation and inspiration to
keep working and staying curious about new publications. It has been a
great pleasure to work with them both!

I also want to thank my partner Katharina and our cat Tassen for let-
ting me go through with getting a degree at the university. I have heard
absolutely no complaints, even when I’ve been at uni the whole night, or
my self-esteem has been at rock bottom. I want them to know how much
I appreciate the feeling of freedom it gives me to know that I can mold
my own destiny. Lastly, I want to thank the whole gang at lesesal 4126.
Sharing the master thesis boat with them I have realized how important
social interaction is for my style of learning and working. Also that always
having communal snacks available increases life quality.

Matias Jentoft Oslo, 14.05.23

ii

Contents

1 Introduction 1

2 Background 3
2.1 Grammatical Error Correction 3

2.1.1 Evaluation of GEC . 4
2.1.2 Three periods of development in GEC 5
2.1.3 Previous results on shared task benchmarks 9

2.2 Language representation in NLP 9
2.2.1 Word level language representation 10
2.2.2 Subword language representation 11
2.2.3 Byte and character level language representation . . 12
2.2.4 Language representation for GEC 13

2.3 Pre-trained GEC models . 14
2.3.1 Transformers . 14
2.3.2 Transfer learning . 16
2.3.3 t5 . 16
2.3.4 nort5 . 17
2.3.5 mt5 . 18
2.3.6 byt5 . 18

2.4 GEC for Norwegian . 19

3 Datasets 20
3.1 General requirements . 20
3.2 Error annotation . 21

3.2.1 Annotation challenges 22
3.3 Data sparsity . 23
3.4 The datasets we use . 24

3.4.1 CLC-FCE . 25
3.4.2 NAIST . 26
3.4.3 ASK . 27

3.5 Datasets in other languages 30
3.6 Datasets for evaluation . 30
3.7 NoCoLA - another application for a parallel corpus 31

3.7.1 Language model evaluation 31
3.7.2 NoCoLA . 31
3.7.3 Comparing NoCoLA to GEC parallel datasets 32

iii

4 Evaluation 34
4.1 Evaluating seq2seq . 34
4.2 Evaluating GEC . 35

4.2.1 Level of evaluation . 35
4.3 Metrics . 36

4.3.1 F0.5 . 36
4.3.2 Other reference based metrics 37
4.3.3 Reference-less metrics 37

4.4 Scorers . 38
4.4.1 MaxMatch . 38
4.4.2 ERRANT . 38
4.4.3 ERRANT for Norwegian 39
4.4.4 ERRANT for other languages 40
4.4.5 ASKEVAL . 40

4.5 Conclusion . 40

5 Experiments and Results 42
5.1 Methodology and general considerations 42

5.1.1 Pretrained models . 42
5.1.2 Evaluation data . 43
5.1.3 Metrics and reported numbers 43
5.1.4 Software and hardware 43
5.1.5 Model hyperparameters 43

5.2 English . 45
5.2.1 Round 0 - t5 without fine-tuning 45
5.2.2 Round 1 - basic t5 . 46
5.2.3 Round 2 - gradient accumulation 47
5.2.4 Round 3 - training data modifications 49
5.2.5 Round 4 - mt5 and byt5 50
5.2.6 Round 5 - testing on test data 50

5.3 Norwegian . 51
5.3.1 Evaluation for Norwegian 53
5.3.2 On the datasets . 53
5.3.3 Round 6 - Norwegian ASK - development 53
5.3.4 Round 7 - Norwegian ASK - test 55

5.4 Summary . 56

6 Analysis 57
6.1 English - fine-grained-ERRANT 57

6.1.1 Conclusions . 61
6.2 Norwegian - fine-grained-ASKEVAL 62

6.2.1 Caveats when using ASKEVAL 62
6.2.2 Result discussion . 62

6.3 Norwegian - effect of data augmentation 65

7 Conclusion 69
7.1 Byte level representation on English GEC 69
7.2 GEC for Norwegian . 70

iv

8 Suggestions for future work 71
8.1 More GEC training data for Norwegian 71
8.2 GEC evaluation for Norwegian 72
8.3 Language specific byte-level models 72
8.4 GEC and society . 72

Appendix 81
8.5 Error wise results round 5 . 81

v

List of Figures

2.1 Illustration: the transformer architecture 15

3.1 Illustration: source and target for GEC 20
3.2 Example: the XML-format . 21
3.3 Example: M2-format . 21
3.4 ASK: error type distribution 28

4.1 Simple example: error span evaluation 36
4.2 Examples: ERRANT for Norwegian 39

5.1 Timeline: t5 versus byt5, round5 52

6.1 Bar-chart: error-wise comparison of models, granularity
levels 1 and 2 together . 58

6.2 Bar-chart: error-wise comparison of models, granularity level
3: all three plots . 59

6.3 Bar-chart: error-wise comparison of models (Norwegian) . . 63
6.4 Tables for each error type in ASK 64
6.5 ASKEVAL: all results in tables 65
6.6 Bar-chart: effect of data augmentation (Norwegian) 68

8.1 Evaluation: ERRANT on t5 83
8.2 Evaluation: ERRANT on mt5 85
8.3 Evaluation: ERRANT on byt5 87

vi

List of Tables

2.1 Results: shared tasks on GEC 2014/2019 9

3.1 Overview of GEC datasets used in the thesis 25
3.2 FCE: error-type explanations 25
3.3 Explanations: ASK error types 29
3.4 Sizes of NoCoLA datasets . 32

5.1 Default generation hyperparameters of t5 45
5.2 Results: round 0 . 45
5.3 Example predictions: zero-shot example with t5 45
5.4 Results: round 1 . 46
5.5 Example predictions: round 1 47
5.6 Sizes of the models in the t5-family 48
5.7 Results: round 2 . 48
5.8 Results: round 3 . 49
5.9 Results: round 4 . 50
5.10 Results: round 5 . 51
5.11 ASK datasets: sizes . 53
5.12 Results: round 6 (Norwegian) 54
5.13 Results: nort5 adjusted learning rates 54
5.14 Results: round 7 (Norwegian) 55

6.1 ERRANT error-types abbreviations 57
6.2 Examples: nort5 versus byt5 in round 7 66

vii

Chapter 1

Introduction

Natural Language Processing, or just NLP, is a field within informatics that
concerns itself with automating tasks related to human natural language.
A familiar automated task for many users is that of spell-checking, where
user generated text is the input, and the system identifies wrongly spelled
words and suggests corrections. For the same kind of task, on a higher
level, a sentence that possibly contains language errors can be the input,
and a correctly spelled version of the same sentence can be the output. In
practice this can mean suggesting the changes to the user, or changing the
text automatically. This task is called Grammatical Error Correction (GEC) in
NLP. Today it is usually performed on individual sentences, but it could also
be performed on a paragraph or document level. A system that solves this
task does not only correct misspelled words, but also tackles grammatical
and semantic errors, like those related to word order or agreement between
words.

There are at least three groups of people that could benefit from the use
of GEC: children learners, foreign language learners, and people of all ages
with language impairments. Society as a whole can also benefit from GEC
availability in saving costs from correcting texts written by these groups.
An additional social benefit is that all citizens would be able to participate
in the public discourse, regardless of their linguistic background.

Our contribution in GEC research is two-fold. First, we have
experimented with different levels (byte and subword) of language
representation for GEC on well-known English datasets. Second, we have
trained the first GEC models for Norwegian with modern neural network
architectures.

GEC is an NLP task that can be cast as a sequence-to-sequence (seq2seq)
task (Omelianchuk et al., 2020), where the original sentences are the input
and the corrected sentences are the output. This is similar to how modern
neural machine translation (NMT) works, except that GEC is done within
one single language. In this analogy the possibly erroneous sentence is in
the source language for translation, and the corrected version is the target
language for translation. From a training perspective, given the appropriate
neural network architecture, the system only needs pairs of original and
corrected sentences as input. After training, the system can automatically

1

perform corrections on unseen, possibly faulty, input sentences. For our
experiments, we have used pre-trained seq2seq models in the t5 family
(Raffel et al., 2020) when doing fine-tuning on the task of GEC. The original
English t5 model, and its multilingual counterpart mt5 (Xue et al., 2021),
represent sentences with subword level embeddings. The family also
includes a byte-level model, byt5 (Xue et al., 2022). By comparing the
subword- and byte-level versions we have the opportunity to study how
the difference in text representation affects performance on GEC. One
hypothesis is that byte-level language models are good at handling so-
called noisy data, meaning surprising and misspelled words not seen by
the system before. We ask whether different representation levels influence
overall GEC performance, and also performance on specific error types.

Our second contribution is to introduce the first models trained for
conducting GEC in Norwegian, a North Germanic language with about 5
million native speakers, considered a medium resource language in the NLP
community. We have achieved this by utilizing the Norwegian corpus of
second language learners (Norsk andrespråkskorpus: ASK; Tenfjord et al.,
2006). We compare the use of pre-trained models trained on multilingual
data, and models only trained on Norwegian data. Also for Norwegian
we ask how byte-level representation affects GEC system performance.
Can a multilingual, byte-level model, be just as good for GEC as a model
specifically pre-trained on Norwegian data? Lastly we explore some
possibilities for maximising the utility of limited training data, called data
augmentation.

In chapter 2, we give an overview of previous work on grammatical error
correction, as well as a description of the models we are using to conduct
our experiments. Chapter 3 introduces the datasets that we are using, both
for English and Norwegian. For the Norwegian dataset we also describe
some other uses for the parallel corpus we have created. Evaluating the
quality of GEC predictions is not a straightforward exercise, and chapter 4
is dedicated to that subject. The main weight of the thesis is the experiments
and analysis in chapters 5 and 6, where we among other things test the
brand new nort5 (Samuel et al., 2023) model, and try to answer the research
questions outlined above. Lastly we summarise the thesis and suggest some
possible future lines of inquiry in chapters 7 and 8.

We release our code and Norwegian GEC dataset1, and the Norwegian
GEC model checkpoints 2 together with the thesis.

1https://github.com/matias-jjj/matias_master
2https://huggingface.co/MatiasJ

2

https://github.com/matias-jjj/matias_master
https://huggingface.co/MatiasJ

Chapter 2

Background

In this chapter we give an overview on background work that is relevant for
our experiments. Section 2.1 is about how grammatical error correction is
defined as a task, and how the progress on solving it has been through the
years. In section 2.2 we discuss what language representation alternatives
there are in NLP. Section 2.3 describes the architectures of the neural network
models that can be used for automating GEC development. The last section
summarises the state of GEC for Norwegian language.

The main purpose of the chapter is to motivate our experiments, as well
as to give the necessary background info needed to understand the research
questions from chapter 1 and the experiments in chapter 5.

2.1 Grammatical Error Correction

The goal of a GEC system is to automatically transform all sentences, faulty
or not, into grammatically acceptable sentences. This task is traditionally
performed by human experts, such as teachers, proofreaders, or other
proficient language users. They read the original texts and either mark
mistakes with a red pen or transform the mistakes so that the result is
correct. This can be a very resource consuming task. There are some benefits
to this human approach in a language learner situation, because learning,
especially for children, can be a very social activity. In this thesis, that
aspect is not in focus, and the focus is primarily on systems that create new,
corrected sentences, without any annotation or pedagogical considerations.
Methods for how to best make use of automatic GEC in society is left for
future work, requiring knowledge from various other scientific fields.

A note on the term Grammatical Error Correction itself. Most datasets
used for training and evaluation consist of natural text by language learners
who generate errors on all levels, all the way from from orthographical
to pragmatical. Thereby the corrections asked for are not exclusively
“grammatical” in nature. The nature of the task is largely defined by what
errors and corrections are included in each dataset, and particularly what
errors are included in the test sets of the shared tasks ConLL14 (Ng et al.,
2014) and BEA-19 (Bryant et al., 2019) (Bryant et al., 2023). As suggested in
the aforementioned survey, perhaps the term Language Error Correction

3

Replacement (eng):
I look forward to hear some news from you!
I look forward to hearing some news from you!

Replacement (nor):
Da jeg kom hit, begunte jeg på norskkurs.
Da jeg kom hit, begynte jeg på norskkurs.

Omission (eng):
But it was most important place in the world.
But it was the most important place in the world.

Omission (nor):
Først gikk jeg på norskkurs i Oslo 3 måneder.
Først gikk jeg på norskkurs i Oslo i 3 måneder.

Insertion (eng):
I was in her room and helping her.
I was in her room helping her.

Insertion (nor):
Hun fortalte alt om sitt liv, og jeg om mitt liv.
Hun fortalte alt om sitt liv, og jeg om mitt.

Listing 1: Examples of the three broadest categories of errors in both English
(CLC-FCE) and Norwegian (ASK). The original, or source, sentence is first,
and the corrected, target, version second

(LEC) would be more descriptive. But GEC is the term universally used in
the field, and we are following that tradition in this thesis.

So what exactly do we want a GEC system to do? The changes required
from a GEC model can be broadly classified into three categories. The first
is replacement, where a word or phrase should be substituted by another.
The second is omission errors, where a word or phrase should be added.
The third is insertion errors, where a unnecessary word should be removed.
Some examples of the three types of actions are listed in table 1.

2.1.1 Evaluation of GEC

A more thorough discussion on the metrics and scorers we use for GEC in
this thesis can be found in chapter 4. Here comes a short explanation of
what we need to know about evaluation before we delve into the history of
GEC.

To be able to know how well a system performs a task, one needs a good
strategy for automatically evaluating the quality of the output. Correction-
span based F0.5 is the standard metric to evaluate GEC. The minimum score
is 0.0, and the maximum is 1.0. The methodology relies on a source sentence,
a target sentence, and the prediction from the model. Identical corrections
in prediction and target are rewarded. The parts of the sentences that are
identical in all three are ignored during evaluation, and comparison and
evaluation is only done on the parts that are different. A scorer, for example
MaxMatch (Dahlmeier & Ng, 2012) or ERRANT (Bryant et al., 2017) is

4

needed to automatically detect the spans and calculate the score.

2.1.2 Three periods of development in GEC

Our primary sources in this section are the three survey papers by Y. Wang
et al. (2021), Bryant et al. (2023), and M. R. Qorib and Ng (2022). We follow
Y. Wang et al. (2021) in dividing the development within the GEC field into
three phases. Following this taxonomy, the upcoming subsections present
how the approach towards the task has developed in the technological era,
and how this specific task relates to the rest of NLP research — specifically
machine translation.

Early

As in many other subfields of NLP, deductive thinking dominated the early
years of GEC. Strict rules are defined by human experts, and these rules
can be applied to new text so as to generate corrected text, or suggestions
for corrections. Examples of tools created with this strategy, mentioned
in Y. Wang et al. (2021), are the Language Tool (Naber, 2003) and the ESL
Assistant (Gamon et al., 2009). The kind of rules seen in such systems can be
formulated on the form: if the word “thanx” appears in the input, change it
to “thanks”, or if next word starts with a vowel, change “a” to “an”.

Rule based models are not very flexible, and are limited to the mistakes
that the expert rule-makers remember to include explicitly. Such rules are
also harder to device for very context-dependent error-types, as it can be
hard to generalize rules for them. It also takes a lot of work to create, and
the rules have to be updated when problems are detected.

In these earlier stages of development, the GEC task was sometimes
split up into subtasks. The task was not necessarily to do a correction of all
mistakes, like it is in later years of development in the field, but perhaps
just focus on correcting wrong prepositions. One strategy for correcting
particular errors, or error types, is to use classifiers. The input is defined as
a feature vector, and the prediction is a class from a closed group of classes.
Then one needs to have a separate classifier for each error type. Keeping in
mind the vast array of possible errors language learners might make, the
list of different classifiers quickly becomes very big.

Middle - statistical

When access to big data and storage capacity has grown, data-driven,
induction-based systems have gradually taken over for rule-based systems.
This shift of attention simmered into GEC research through machine
translation (MT), as GEC can also be cast as a translation task from erroneous
to correct sentences. Rules can be indirectly inferred from the patterns in
texts already written and annotated by humans. Instead of rules making up
the model, the model is created from patterns seen during training on the
parallel sentences of the corpus.

5

In the first phases of development, the application of this data-
driven strategy to “real” translation and GEC is called statistical machine
translation, or SMT. The important consideration is that the input and
output sequences can be of arbitrary length, and it is not a word-by-word
translation. There are many reasons why this is beneficial, for example a.)
words missing in the original text, b.) there are superfluous words in the
original sentence or c.) large parts of the sentence have to be rewritten. This
becomes evident in (human) translation and machine translation as well, as
the translations of the same book can have radically different page counts
than the original work.

SMT is inspired by the noisy channel model, which again is based
on Bayes rule (Bryant et al., 2023). An SMT model roughly creates a
probability for possible target sentences given source sentences, and chooses
the output sentence with the highest probability. Mathematically this means
to maximise the probability p(y|x), where y is the target sequence, and x
is the input sequence. In addition, a language model is often used for the
target language to make sure the output sentence is statistically probable,
and thereby natural and fluent.

The paper by Brockett et al. (2006) is a seminal study of SMT-techniques
for GEC. It focused only on a subset of the general GEC task: on correcting
countability errors of mass nouns (Y. Wang et al., 2021). Their system was
able to correct 61.81 percent of mistakes in a set of naturally-occurring
examples of mass noun errors. At the height of SMT development, SMT-
models achieved first and third place in CoNLL-2014 shared task (Ng et al.,
2014).

Next we describe in some detail how a GEC-SMT might work. In Behera
and Bhattacharyya (2013) a hierarchical phrase-based SMT is presented.
As is typical for the pre-neural era, the training consists of an extensive
pipeline of processes. The tokens are pre-processed with regards to case,
and the words of the original and corrected sentences are aligned. Then
the system learns which phrase-level transitions are needed to go from
source to target sentence, and these transitions become rules. Now the rules
can be applied to the source sentences of the development data, and the
result of this is compared to the gold data. In this way the ordering of
the rules can be tuned for the task at hand. They report a BLEU-score of
0.774 on the NUCLE (National University of Singapore Corpus of Learner
English) dataset (Dahlmeier et al., 2013). BLEU, a metric common in machine
translation, is further described in chapter 4. Shortly, it must be seen as a
less strict metric than the F0.5 metric we use in this thesis.

Foreshadowing the use of character level language models in later
neural systems, there is already experimentation with using elements of
this thinking in SMTs applied to GEC. Chollampatt and Ng (2017) uses
a character level SMT for spellchecking, which according to the writers
improves the performance. This component is used only for generating
candidate corrections for misspelled words. The candidate that best fits the
context is chosen. It seems that this is a separate component only meant to
take unknown words and outputting a collection of correct candidates, and
is not in use for representing known words.

6

Late: neural

There has been a neural revolution in NLP in the last 5–10 years. This means
a new type of models called neural networks that transform input to output
without the need for explicit feature selection. The architecture consisting
of multiple layers of neurons, or nodes, where linear transformations
are performed on the data. Between these transformations, non-linear
transformations are performed on the output values of the nodes, or on
the input feature values in the case of the first layer. The non-linearity
allows such networks to handle data which is not linearly separable in
a multidimensional vector space. The linear transformations consist of
parameters, or weights, that control how different aspects of the input affect
the output. The central part is that these parameters can be automatically
trained on training data with an algorithm called back-propagation, which
automatically improves the predictive abilities of the model by adjusting the
weights according to current predictions. Again, since a lot of the strategies
used for GEC have inspiration from the machine translation community, the
name neural machine translation, NMT, is used in the field of GEC as well.

Some techniques for performing a seq2seq transformation are recurrent
neural networks (RNNs) and convolutional neural networks (CNNs), which
both “read” a sequence sequentially; either one way (left to right in European
languages), or both ways. The latter gives a model the ability to use words
from the future to make predictions at the current time-step. Fo long term
dependencies, which are grammatical or semantic relationships between
words that are not adjacent in sentences, gated units are used in RNNs. Two
of the most widely used gated units are Long Short Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Cho,
van Merriënboer, Gulcehre, et al., 2014).

The historical survey paper by Y. Wang et al. (2021) describes the prime
advantages of these new models to be that such models map directly from
input to data, without need to manually define features to describe the
input. One can say that the important features are automatically learned in
the early “hidden” layers of the models. Another advantage is that neural
models can better correct mistakes on a phrasal and sentence level, and they
are also better at generalizing, by correcting mistakes not previously seen in
the training data.

NMT based models in GEC were first applied in Yuan and Briscoe (2016).
They achieved an F0.5 score of 39.90 on the CoNLL-2014 shared task test
set (Ng et al., 2014). The shared tasks created for GEC are presented in
section 2.1.3. The score is significantly lower than the state-of-the-art models
of today, but was competitive at the time. Their architecture consists of a
bidirectional recurrent neural network (RNN) transforming the sentence
into a uniformly sized context vector. This part of a translation-type
model is called the encoder. The decoder, which generates the corrected
sentence from the context vector and the original sentence, is attention-based.
Attention is a mechanism that allows the model to focus on the relevant parts
of the source sentence at any given timestep when predicting the next word.
To solve the problem of unknown words, for example misspelled words

7

which are not in the vocabulary of the language, they apply an unsupervised
alignment model called GIZA++, which creates an alignment between the
predicted unknown words and their counterparts in the source sentence.
Then these two words can be used to build a word-level translation-model,
which is much simpler, and is treated as a separate task.

Xie et al. (2016) were the first to apply a character-level elements in their
GEC system. Their architecture consists of an advanced version of RNNs
called Gated Recurrent Units GRUs (Cho, van Merriënboer, Bahdanau, et al.,
2014) in both encoder and decoder, with an attention mechanism that binds
each character generation time-step to the different parts of the input. To
surpass problems with out-of-vocabulary-words (OOV), like web addresses
and misspellings, the system operates on character level instead of on token
level. To save computing costs from doing calculations at each time step,
one for each character in both encoder and decoder, for several layers of
a the RNN, they construct a pyramid scheme where the higher layers are
smaller than the lower ones. Their system achieves an F0.5 score of 40.56
CoNLL 2014 test set. This is still significantly below the state-of-the-art
results achieved in later years. However, the work of Xie et al. (2016) serves
as important background and inspiration for the experiments in this thesis.

Attention, introduced in Bahdanau et al. (2014), is a mechanism which
can be included in an RNN. At each prediction step in the decoder, the
model is allowed to pay attention to the elements of the input to a varying
degree. This mechanism produced better results in machine translation, and
was introduced to GEC in Yuan and Briscoe (2016).

This attention mechanism would later become even more central in GEC
models. After RNNs and its derivatives like LSTM and GRU, transformer-
based models (Vaswani et al., 2017) have taken over as the most popular
and standard tool for performing sequence-to-sequence tasks. Transformers,
just as RNNs, have an encoder-decoder architecture. The main difference is
that each token in the encoder and decoder are not processed sequentially
based on the previous tokens, but rather processed all at once. This is done
solely with the help of the attention mechanism. The prime advantage of
using transformers instead of RNNs for the encoding and decoding in a
seq2seq type architecture, is that operations can be conducted in parallel
to a higher degree, and thereby training speed is increased. Conceptually,
the use of transformers is very different from RNNs and human language
processing, as a sequence is seen as a whole, and the processing of a unit
is not dependent on the processing of the previous context. This is what
makes parallel processing possible. The central feature behind this ability is
called self-attention.

An example of GEC by using transformers is presented in Grundkiewicz
et al. (2019). The model is an seq2seq architecture, just like in the RNNs
mentioned above. But the encoder and decoder are transformer self-
attention blocks instead of RNNs. The output of each cell in each block
is not calculated based on the previous time step, but instead the calculation
is based on the content of all the other elements in the sequence and trained
weights. In addition to implementing a transformer architecture, this paper
focuses on unsupervised synthetic training data generation, which is a

8

subject we get back to in chapter 3.

2.1.3 Previous results on shared task benchmarks

Authors System type F0.5 score

2014
Yuan and Briscoe (2016) rnn 39.39
M. Qorib et al. (2022) ensemble, including t5 69.51
Rothe et al. (2021) tf 68.87
Grundkiewicz and Junczys-Dowmunt (2018) smt + rnn 56.25

2019
Grundkiewicz et al. (2019) tf 69.47
M. Qorib et al. (2022) ensemble, including t5 79.90
Rothe et al. (2021) tf 75.88
Li et al. (2019) ensemble/rnn 66.78
Tarnavskyi et al. (2022) tf 76.05

Table 2.1: Previous results on the 2014 (Ng et al., 2014) and 2019 (Bryant et al.,
2019) shared tasks. In the authors column is a reference to the paper which
accompanies each system. tf: transformer, rnn: recurrent neural network,
smt: statistical machine translation

Quite many shared tasks have been created for English GEC. This means
at its core that a parallel GEC-corpus is held hidden. Participants create their
own systems which are then tested and evaluated on this hidden data. Other
rules might also apply, like the data one is allowed to train the systems on.
In table 2.1 we show a selection of results on the shared tasks of CoNLL-2014
and BEA-2019. Some of the results are not listed in the official listings of
the shared tasks, as the tests on the test set have been done after the official
deadlines of the task, or the results have not been officially presented on
conferences yet.

There have been efforts to stimulate GEC development through shared
tasks for other languages as well. One example is the Second Ukrainian
Natural Language Processing Workshops (UNLP) shared task for Ukrainian
GEC of 2023 1.

2.2 Language representation in NLP

For any neural architecture used for NLP one needs to have a useful,
numerical representation of the training data. This is true for all modern
NLP-tasks where calculations are to be performed. The usefulness of such
a representation is an abstract concept. We can loosely describe usefulness
as how much semantic information the representation contains. For GEC,
the language representation is relevant in the way a sequence is represented
when it is used as input for training, and the way the possible output

1https://unlp.org.ua/shared-task/

9

https://unlp.org.ua/shared-task/

vocabulary is represented numerically. For efficiency and environmental
reasons, creating such representations is often a shared effort, in the sense
that the same base model is used by several teams for different tasks.

A quick note on the term “language models”. The term might sound
confusing to some, as are not all models developed and used in NLP
related to language? The etymology of the word comes from the field
of automatic speech processing, where processing is sometimes done in
two steps: first the physical sound signal is processed into a sample of
its most likely language sounds. Then a model that gives probabilities to
different sequences decides the output. This has been called a language
model. In NLP this term has come to mean two different things: the first
and strictest is a model that has the ability to predict the most likely next
word of a sequence, or to similarly predict what a missing word in a phrase
could be. Some examples of such models are BERT (Devlin et al., 2019), ELMO
(Peters et al., 2018) and GPT-2 (Winata et al., 2021). Second, it can be a term
describing all kinds of models within NLP that have language as output,
including seq2seq models.

Now we delve into the subject that at the core of this thesis: the different
ways and levels of representing language in NLP systems.

2.2.1 Word level language representation

One traditional, and arguably intuitive, way to represent textual data
numerically is that each word is represented as a numerical feature. The
process of turning continuous text into smaller chunks is called tokenization,
and in the case of word level tokenization, the split is done on white-spaces.
With this scheme a token corresponds to what is considered a word in layman
terms.

There are variations within word-level representation. The first and
second variations is to represent words as word types. In its simplest form
this means that a word is represented a one-hot vector which is a unique
identifier for each word type. The vectors generated from such tokens is the
size of the vocabulary, and consists of only zeros (0) except for one one (1)
identifying the target word. This has several problems: the vectors are huge
and slow to operate on, and there is no relationship between words. The
identifier for the English word “cat” is as different from “kitten” as it is from
“advanced”. These kind of representations are solely unique identifiers for a
given string of characters.

If one is to build a language model based on these word representations,
the probabilities for a given sequence is based only on the frequencies seen
in the training data for exactly matching sequences, and the similarity in
meaning between words is ignored.

The second more complex type-style variation is to represent words
with a low-dimensional array of continuous values, called static word
embeddings. This representation strategy requires training on training
data. Static word embeddings contain semantic information about the
tokens they represent, following the distributional hypothesis of lexical

10

semantics. The semantic information is not referential in the sense that the
information points to aspects or objects in the world around us. Instead it is
constructed from the context that the word appears in in the training data, in
a closed, linguistic system. Words that appear in similar contexts get similar
numerical representations, with the help of automated machine learning
algorithms like skip-gram and CBOW (Mikolov et al., 2013). The context
consists of the words surrounding the focus token in the texts. This means
that the probabilities generated by a language model built on static word
embeddings will reflect the fact that some words are more semantically
similar than others, and the occurrence of “the kitten was sleeping” will
increase the probability of “the cat is sleeping”, given that the embeddings
for kitten and cat are similar. But the representation is still of the type-style,
since any given word type will always have exactly the same representation.

A third variation of word-level representation is contextual embeddings,
which take context into account at inference time, and not only during
training. With such embedding-systems, the English word “tree” will have a
different representations in “a tree grows in the forest” and “she constructed
a syntactic tree” at inference time. This is because the words around it, often
referred to as the context, are different. This type of representation is often
combined with subword tokenization, more on those in the next subsection.

Even if word level units might seem like a good solution for
representation, several problems arise. The process of splitting up
continuous text into tokens by whitespace leaves many decisions to be
taken by the system designers, such as how to treat compound words
like “menneskeape” in Norwegian, and how to treat multiword tokens like
“don’t” in English. Punctuation use also leads to decisions having to be
made, such as with apostrophes and dashes.

Another issue with word-level tokens is that the creativity of language
use means that even with a huge training data, there will always be
unknown (out-of-vocabulary words, OOV) words to the system. This
means words that have not been seen during system training. For GEC
an additional problem arises, which is how to represent wrongly spelled
words. All possible misspellings of a word will most likely be absent or rare
in the training data. As misspellings are a common, and arguably essential,
feature of the GEC datasets we are using, word-level embeddings might not
be optimal for our purpose.

2.2.2 Subword language representation

All solutions to the representation-problem that involve units that are
smaller than words but bigger than single characters, can be called subword
representations. This describes a wide array of different solutions for
tokenization, everything from 2 character n-grams to units the maximal
size of known units from a given system vocabulary.

The subword strategy solves the OOV problem to a large degree, as
there are much fewer types of subword units than there are word-level
units in a language. But this comes at the cost of complexity. In the context
of subword tokens, splitting text into word-sized units which was before

11

called tokenization, is now called pre-tokenization, see Mielke et al. (2021). The
term tokenization is now describing the transition from word-sized tokens to
smaller pieces. We end up with two pre-processing stages.

A solution with maximally sized units within a given vocabulary is
exemplified in the pre-trained language model BERT (Devlin et al., 2019).
Any word-level token which is not in the vocabulary gets represented by
the minimal amount of constituent parts that do exist in the vocabulary of
the pre-trained language model. For example the English word monkeytoe
will be represented by two parts: monkey and ##toe. BERT models have
other differences from previous language models, in that each subword
token representation is not static, but rather it is contextualised and varies
according to the context it appears in, as described in section 2.2.1.

Three of our models, t5, nort5 and mt5, correspond to this scheme of
subword tokenization. More on these models later in this chapter.

2.2.3 Byte and character level language representation

In this thesis we try out another representation strategy called byte-level
language modelling (BLLM), which is tried out (among others) in Xue et al.
(2022). The strategy is to represent the text as an array of single bytes, which
can be seen as the ultimate granularization of language representation. The
tokenization step of such a model is to split up the text according to bytes,
which is a task that does not leave a lot of choices to the model developers.
The models that utilize this scheme can therefore be said to operate on raw
text.

As mentioned, language models have traditionally operated on word-
or subword-level. This old way of thinking demands that one performs
so called tokenization or segmentation, where raw text is split into multi-
character units. This task is different across language orthographies. When
doing tokenization for a specific language there are several decisions which
are up to the researchers to decide, like whether to split compound words
into several units or not. The whole tokenization-step can be bypassed
by operating on the bytes of the raw text directly. If one splits on bytes,
the task is more or less trivial. A related approach, splitting on characters
(CLLM) instead of bytes (BLLM), is also possible. If one splits on characters,
some consideration has to be taken with regards to the language used, as
some Unicode characters have longer byte representations than others. The
resulting units are the tokens of the model, in the same sense that words or
sub-words were tokens in the models previously mentioned. In addition to
not requiring expensive and error-prone pre-processing, another advantage
of CLLMs and BLLMs compared to static embedding methods and BERT is
that they are robust to misspellings and other orthographically variation,
as representations for words with only one letter difference will tend to be
similar. There are some subword strategies that take the latter issue into
consideration as well, like the contextualised embedding in ELMo (Peters
et al., 2018).

The immediate problem facing byte- of character-based language models
is that it demands a lot of computing power to operate on raw text (Xue

12

et al., 2022), since the “memory” has to go further back (or both left and
right in the case of bidirectional RNNs and transformers). This is because a
sequence of character-level representations will consist of more tokens than a
word-level representation of the same sentence. Xue et al. (2022) argues that
with modern architectures like transformers these costs can be surpassed.
Another issue with BLLMs and CLLMs is that the parameters have low
interpretability, because of the very low granularity of each representation.

CLLMs and BLLMs depend on character-level vocabularies (e.g. based
on utf-8) and byte-level vocabularies (Xue et al., 2022). The former usually
has many more vocabulary-related parameters than the latter, as it has an
embedding for each character. For a given language that could be as few as
20-100, but a multilingual model should include a large proportion of the
Unicode characters (144,000 as of February 11, 2022), and therefore can grow
up to 47,000 vocabulary parameters in CharT5-36 (Xue et al., 2022). It will
have some redundant embedding-parameters for any given language, as not
all characters in a encoding scheme are present in all languages. Byte-level
vocabularies, however, only have 256 parameters for the vocabulary, and
can therefore “move” the saved parameters to other places in the model,
keeping the same efficiency.

One of the models we use in this thesis, byt5, conforms to the BLLM
scheme of language representation. More on that model later in this chapter.
One of the objectives of this thesis is to study how these advantages and
disadvantages of byt5 affect the results on the task at hand, namely GEC.
We do not use any CLLMs in this thesis.

Previous results from using BLLMs

Xue et al. (2022) creates a minimal-pair comparison of a subword-model
(mt5) and a byte-level model (byt5), by testing the models on some
downstream tasks. The general impression from their results is that byt5
performs comparably, and even outperforms a subword-level model in some
tasks, namely on noisy tasks and generative tasks. These task descriptions
fit with our task at hand: GEC.

Architecture-wise the benefits can be summarised as simplicity and
robustness, the disadvantages as additional computations both at training
and inference time.

BLLMs have been successful in tasks like Lexical Normalization, see
Samuel and Straka (2021), which was the winning entry of the shared task
on the topic in 2021. GEC is a quite similar task, just on sentence level. We
therefore think it could be fruitful to apply this new language modelling
strategy to this task as well. As far as we know (March 2022) this has not
been done yet, probably because the application of BLLMS and CLLMs is a
very recent development in the field.

2.2.4 Language representation for GEC

If the GEC task is to be cast as a sequence-to-sequence (seq2seq) task,
where then is the use of a particular language representation relevant? The

13

network architecture requires a sequence of numeric input-units for both
the encoder (source sentences) and decoder (target sentences). Each of this
units represent some aspect of the text, which can be either a byte, character,
subword, or word. The important thing is that these units are indivisible,
even if the text they are representing consists of multiple characters. The
conversion from running text to such units, the tokenization, is where
language representation level comes into play. It is worth noting that even
with small units like bytes, the relationship between them gets represented
at some point deeper in the network.

2.3 Pre-trained GEC models

In this section all the models we use in experiments are presented and
described. As previously discussed we need models that take sequences
of arbitrary length as input, and that also output sequences of arbitrary
length. These kind of models are called sequence-to-sequence language
models, or seq2seq, in NLP. Theoretically one could build such models
from scratch. We have instead chosen to fine-tune pre-trained models for
our experiments, instead of developing our own models with a seq2seq
architecture. This means models that are first trained on general language
modelling tasks on large text corpora, but are not yet fine-tuned for GEC or
any other particular language task. Choosing to use pre-trained models has
many good reasons. As discussed below in the section on transfer learning,
exploiting the similarities between tasks in natural language saves resources
and time.

We utilize the t5-family (Raffel et al., 2020) of pre-trained seq2seq models
in our experiments. The models are presented in more detail in the following
subsections. We choose this particular model family because it has a byte-
level version of it that allows us to focus on the aspect we are interested in:
language representation levels.

2.3.1 Transformers

Now we go into a bit more detail on the transformer architecture introduced
in section 2.1. The transformers caused a revolution in NLP when they were
first suggested in the paper “Attention is all you need” (Vaswani et al., 2017).
Before this, most machine learning on sequenced data (like language in
NLP) was done with sequential models like Recurrent Neural Networks
(RNN) and Gated Recurrent Units (GRU).

The transformer is a sequence-to-sequence model at its base, which
means that both the input and the output are sequences of some sort. It
consists of an encoder and a decoder (see figure 2.1. They are trained with
self-supervised and supervised learning. The crucial difference between
RNNs and the transformer is that the transformer operates on a whole
sequence at once, and not sequentially through the tokens. This is done with
the help of the self-attention mechanism, which draws global relationships
between source and target tokens, and between the tokens of each of

14

Figure 2.1: An illustration of the transformer architecture. Picture from
Vaswani et al. (2017): “Attention is all you need”. This is the architecture
used by t5, which again is used in this thesis.

them separately. This means that it can do parallel operations to a higher
degree than RNN-type models, and simply train much faster. In Vaswani
et al. (2017) the researchers show that they can perform state-of-the-art
translations from English to French at one fourth the cost of previous state
of the art models.

A famous derivative of the transformer model is the Bidirectional
Encoder Representation for Transformers (BERT; Devlin et al., 2019), which,
as the name implies, only utilizes the encoder part of the transformer. Since
BERT only uses the encoder, it does not output a text sequence. Rather
it outputs a numerical representation of the input sequence where the
individual tokens representations are affected by their context. These type
of representations are called contextualized embeddings, and are a central
part of modern NLP.

15

2.3.2 Transfer learning

Transfer learning exploits the similarities that are between different NLP
tasks. The concept involves two main steps. First, a model goes through
pre-training on one task. Later, the model is fine-tuned for another, target,
task. This methodology has two advantages. First, fine-tuning an already
pre-trained model can be less costly than a from-scratch training directly on
the target task. Second, there could be limited training data for a particular
target task, which would cause sub-optimal performance. A model that
already contains some understanding of the language, can help increase
performance on the target task.

2.3.3 t5

The pre-trained model t5 (Raffel et al., 2020) gets its name from the 5 t’s
in “Text-to-Text Transfer Transformer”. This model uses the transformer
architecture which was outlined in section 2.3.1, and is pre-trained (transfer
learning, section 2.3.2) on several NLP tasks. In addition it is trained on the
enormous C4 corpus, which stands for Clean Common Crawl Corpus, in an
unsupervised way. The important aspect about t5 is that it converts all NLP
problems into a text-to-text format, where the input is a sequence and the
output is a sequence as well. This is opposed to models that are classifiers
which choose from a set of classes as predictions. The exact way the model
is trained is outlined in the subsections below.

Looking at the leaderboards on shared tasks on GEC we see that t5 is
one of the most popular starting points for GEC. It is also used in ensemble
with other models with great success, for example in M. Qorib et al. (2022).

The architecture of the base t5-base model is as follows. The encoder
and decoder parts of the model are of the same size, consisting of 12 blocks
each. It uses SentencePiece (Kudo & Richardson, 2018) to encode text into
a numerical representation on a subword basis. The other models have
slightly different architectures, we refer to Xue et al. (2021) and Xue et al.
(2022) for details on this.

Together with mt5 (Xue et al., 2021) and nort5 (Samuel et al., 2023), t5
is the model we use as subword-level point of comparison with the byte-
level byt5 (Xue et al., 2022) model. mt5 has the advantage of being the
most similar to the byte-level model on many parameters. They are both
trained on the same multilingual dataset. Since the level of representation
is the core difference, we can easier determine how representation affects
performance. t5 on the other hand is mostly trained on English data, with a
small percentage of Romanian, German and French text. It is also trained
on some supervised tasks, which is not the case for neither byt5 or mt5. But
despite of these differences we still want to use t5 as point of comparison
for byt5, because it has shown good performance on GEC, for example in
M. Qorib et al. (2022).

All the models in the t5 family are released in different sizes. These
sizes are determined by how many trainable parameters there are in their
architecture. If nothing else is mentioned, we always use the base versions,

16

but there are smaller and larger versions available as well.

Unsupervised training of t5

t5 is pre-trained on a self-supervised task called denoising or masked language
modelling. This mirrors the way BERT (Devlin et al., 2019) is trained. During
pre-training, 15% of tokens in a sequence are dropped or hidden at random,
and constitutes a span. If multiple tokens come after each other, that becomes
one span. These spans are substituted by a sentinel token. The model is
then trained to predict what should be in those missing spans. This kind
of training does not need any other targets or golden standards than the
text itself. The dataset used for the unsupervised training is C4 (Raffel et al.,
2020).

Supervised training of t5

This part of the training is sometimes referred to as fine-tuning. This is
not to be confused with the fine-tuning we do in this thesis to develop
the models performance on GEC. After the unsupervised training on huge
amounts of data, the model is trained on a wide variety of NLP tasks. This
includes question answering, text classification, machine translation, and
summarization. This is the transfer learning part of the training process,
as the “knowledge” it acquires during this part is assumed to transfer
knowledge from one task to another.

One of the supervised tasks t5 is trained on is that of Linguistic
Acceptability assessment, with the CoLA (Warstadt et al., 2019) dataset.
During work on this thesis we have created such a dataset also for
Norwegian: NoCoLA (Jentoft & Samuel, 2023). You can read more about
this project in chapter 3.

2.3.4 nort5

nort5 (Samuel et al., 2023) is a very recent version of t5 that is trained
on Norwegian text, and pre-trained at the Language Technology Group
(LTG) of the University of Oslo. nort5 is trained with the same scheme as
the English t5, with pre-training on self-supervised text-to-text masked
language modeling. In the paper, the model is benchmarked on four
generative tasks against mt5 (the multilingual version of t5) and north-t5
(mt5 further fine-tuned on Norwegian text found online). The results are
strongly in favor of the new model, with even the smallest version over-
performing the larger versions of the old models by a large margin on three
out of four tasks.

The model is openly available in four different sizes at https://
huggingface.co/ltg/nort5-base. We use it together with mt5 as a
subword tokenized point of comparison for the Norwegian experiments
with byt5 in chapter 5.

17

https://huggingface.co/ltg/nort5-base
https://huggingface.co/ltg/nort5-base

2.3.5 mt5

mt5 (Xue et al., 2021) is one of the models we compare our byte-level model
to. It is a multilingual version of t5, and just as t5 it uses subword-level
language representation. It is pre-trained on over a hundred languages
on the multilingual dataset named mC4: multilingual Colossal Cleaned
Common Crawl. The training of the model mirrors that of t5 closely, but
differs both in that is was trained on a multilingual corpus, and that it
was only trained with the mask language modelling objective without any
supervised training. Therefore, the model cannot be used in a zero-shot
manner, i.e. it has to be fine-tuned before it can be used for any task that is
not prediction of masked words.

mt5 was competitive in the multilingual benchmark XTREME (Hu et al.,
2020) when the paper came out in 2021, but has been surpassed by several
competitors since then. The main reason for using it in this thesis is that
it gives us an opportunity to compare it one-to-one with the byt5 model
described in the next section, as the pre-training schemes of these two
models are very similar.

Just as t5, mt5 uses the software SentencePiece to tokenize text on a
subword basis.

2.3.6 byt5

byt5 (Xue et al., 2022) is a version of mt5 that has been trained on the exact
same data (mC4), but which uses a byte level representation of text for the
input. Therefore, comparing byt5 and mt5 makes for an ideal opportunity to
compare different representation levels. Some arguments for why byte-level
models might be beneficial are presented in section 2.2. The model has a
very small vocabulary for input (256), and handles all the complexity in the
later layers of the model. Some adjustments have been made compared to t5
and t5. While the other two models have a balanced amount of parameters
in the encoder and decoder, byt5 has more parameters in the encoder. byt5
does not conduct any text-processing prior to training, and it feeds the
UTF-8 encoded text straight into the model as a byte representation. The
model creators have also made some adjustments to the pre-training tasks,
we refer to the paper for more details on this. Otherwise the models are
very similar. But as one of the main goal of the researchers was to prove the
usefulness of byte-level representation, the training scheme have been left
as similar as possible to mt5.

The model has been shown to work well on noisy data. In Xue et al.
(2022) the writers show that the model outperforms mt5 both “on word-level
tasks sensitive to spelling and/or pronunciation, and in the presence of
various types of noise”. Therefore, we hypothesise that the model might
work well for the GEC task, where we assume there to be a lot of noisy
data. The noisiness in our task comes from words or phrases that have not
been seen in the training data of the model, like wrongly spelled words,
unlikely combinations of words and morphology that is inappropriate for a
particular word.

18

2.4 GEC for Norwegian

As far as we know, no open research or models have been published on
GEC for Norwegian using modern neural techniques. The SCARRIE project
(Povlsen et al., 1999) worked with creating spell checking and grammar
checking tools for all three Scandinavian languages in the mid-nineties. As of
2023, the project does not seem to have resulted in any publications or openly
available products. The popular grammar checker for English, Grammarly,
does not support Norwegian as of 2023. A special tool for children with
language impairments: Lingdys2 is offered to private customers and schools.
We have tested a free demo version, and it only seems to correct misspelled
words, and is not a GEC system as we have defined it in section 2.1. The
company Tansa3 offers a collection of tools to facilitate writing which
includes what they call grammar control. They claim that they can detect
common mistake types not only on word level. The tool is too expensive for
us to use, and we do not find any open reviews of the product. We do not
know what kind of technological architectures are behind their system.

As long as one has enough training data, the model architectures that
are used in this thesis have base characteristics that make them more or less
language independent. The experiments and results in chapters 5 and 6
show how relatively successful GEC systems can easily be developed for
Norwegian.

2https://lingit.no/
3https://www.tansa.com/no/

19

https://lingit.no/
https://www.tansa.com/no/

Chapter 3

Datasets

3.1 General requirements

Figure 3.1: “Fresh (the) air is good for the body and the health” - example of
sentence with error from the ASK parallel corpus

For training a system as described in chapter 2 we need a collection of
pairs of uncorrected (source) and corrected (target) sentences: a parallel
corpus. Uncorrected source sentences that possibly contain errors are
not necessarily that hard to come by, since children, people with various
language impairments, and language learners produce lots of possibly faulty
texts all the time. But until we have automatic GEC systems that match
human performance, the target corrections have to be created by humans,
which is difficult and costly. Therefore such parallel datasets are not trivial
to obtain, and GEC is sometimes described as a low resource task (Junczys-
Dowmunt et al., 2018). Efforts have been made to collect and create such
datasets, especially for English. Every day, foreign language students are
generating texts that contain errors, and if these texts are corrected by
professionals, a parallel dataset can be created. Especially the two last
shared tasks on GEC have made some such datasets openly available.

In addition to presenting the datasets used in our experiments, this
chapter discusses how the errors in GEC datasets can be annotated, how
the lack of data can be compensated for with synthetic data generation, and
how we are using our datasets for evaluation. Lastly, we show how the
Norwegian ASK (Tenfjord et al., 2006) dataset can be used for evaluating

20

large language models, another big important topic in NLP.
A quick note on terminology. The different elements of a parallel corpus

and the output of a model are described in various terms. For the original
learner sentence, or a synthetic imitation of such, terms like original, source,
unacceptable, input or learners text are used. The human annotated correct
version can be called corrected, target, acceptable, output or reference. The
latter can even be described as input in the context of feeding it into a neural
network, as opposed to the output prediction of the model. The output of
the model can be called output, prediction or hypothesis. Even if the terms
source and target are a bit technical in nature, we try to stick with those for
consistency throughout the thesis.

3.2 Error annotation

Figure 3.2: An example of a sentence in the xml-format, with one
replacement error marked. Source: the CLC-FCE corpus

Figure 3.3: An example of a sentence in the M2-format, with multiple
annotators (Bryant et al., 2019). The “noop” edit indicates no change by that
annotator.

Knowing the types of errors in the source sentences is not a base
requirement for a GEC dataset that is to be used for training neural network
model. It is still useful in some cases. When developing GEC systems, one
might want to know what types errors are present in the datasets, and how
models behave when it comes to specific error types.

In manual error annotation a trained annotator marks error types into
specific token spans in learner text. One common format for storing
such annotations is eXtensive Markup Language (XML). See figure 3.2
for an example of this format. Error annotation can also be directly and
automatically derived from the difference between a source and target
sentence. The implicit M2 format is claimed to be the most common
data representation style for grammatical error correction in Y. Wang et
al. (2021). It accommodates corrections from multiple annotators. The

21

original sentence (S) is presented in its original form, and below it each
line (A) represents one correction (span), marked as offset in the original
sentence. Other included information is the error type and the correct string.
See figure 3.3 for an example on the use of M2. The M2 format should not be
confused with the MaxMatch GEC evaluation system, which is sometimes
shortened to M2.

M2 is automatically created from a source sentence combined with either
a target sentence, or a system prediction. When one has both a source-target
and source-prediction M2 file, these can again be compared to assess how
well a model performs compared to the target. The scorer named ERRANT
(Bryant et al., 2017), which is further described in chapter 4, does evaluation
of GEC systems in exactly this way.

3.2.1 Annotation challenges

As mentioned earlier, parallel corpora for GEC require human annotation.
Humans have to make the correct versions of the sentences, and this causes
some challenges for the consistency of annotations. Annotating GEC is a
challenging task for several reasons.

Firstly, one can strive to generate grammatical sentences with as few
corrections as possible, or aim for the maximal fluency of the corrected
sentences. These strategies are called minimal and fluent corrections
respectively (Bryant et al., 2023). The ASK dataset, which we base our
Norwegian GEC dataset on, is annotated with the minimal correction
principle.

Secondly, it can be challenging to have full consistency on alignment of
edit spans. In the sentence “The apple red is” there could be either one

red is → is red

or two
red → is

is → red

edit spans. This variation can occur both within the annotations of only one
annotator, or between annotators (Bryant et al., 2023).

Thirdly, one can annotate on sentence level or based on a bigger span.
In the case of CLC-FCE and ASK, which are our primary corpora for
English and Norwegian respectively, the annotators have corrected full
learners essays, but most development of GEC systems from the datasets
have been based on independent sentences. This causes noise for the
models, as a correction might only be valid with knowledge on previous
context. Sentence tokenization and change of sentence boundaries also
causes misalignment.

Lastly, there is no agreed standard on how to categorize different types
of errors. The schemes have varying numbers of subcategories, from less
than thirty in NUCLE (Winder et al., 2017) to almost a hundred in CLC-FCE
(Nicholls, 2003).

22

3.3 Data sparsity

One of the challenges in modern, neural NLP is the need for huge amounts
of data to train the models. For tasks where datasets do not need annotation,
one can use so-called self-supervised or unsupervised training. In those
cases there has been great success for example in the creation of large
language models, since the enormous amount of accessible digitized textual
data can be used for training without a human annotator providing gold
targets. These systems do however have tendencies to recreate human
biases. For an overview of the different ways human biases can affect
machine learning systems, we refer to Shah et al. (2020).

The situation is very different in GEC and the related task of (neural)
machine translation (NMT). The methods in NMT have inspired most
modern approaches to GEC. Both tasks require parallel corpora, and the
problem of too little data becomes apparent. We can first look at the case
of NMT. Optimal parallel corpora like official bilingual documents are
comparatively rare and have a limited domain, and other corpora like movie
subtitles are noisy. Multilingual Wikipedia can also be used, but as an article
in two languages does not necessarily have sentence level correspondence,
these kind of corpora can better be described as multilingual corpora aligned on
the document level. For GEC structured datasets with original and corrected
sentences are needed. These kinds of datasets do not have any other real-
world use other than for research, so they have to be collected and annotated
specifically for GEC development or similar purposes. Lacking appropriate
data is therefore a bottleneck for these kinds of tasks.

One central focus in the fields of NMT and GEC has been to loosen up
this bottleneck by creating additional training data synthetically. In the case
of GEC, this means automatically creating text with errors to be used as the
source part of a parallel corpus. Hereafter we list some techniques that have
been used to do this.

The primary strategy is to create parallel corpora from clean monolingual
text, by corrupting it in different ways. This can be called data augmentation,
synthetic data generation, or artificial error generation. Then the corrupted
version can be regarded as source, and the clean, original text is the target.
Many of the participants of the 2019 BEA shared task (Bryant et al., 2019)
focus on the use of data augmentation in the papers published related to
the competition contributions. This is a confirmation that the data sparsity
problem is a bottleneck for modern neural GEC, since these participants are
“chasing the dragon” when it comes to achieving state-of-the-art results.

The following methods can be called noise injection, as in injecting noisy
or erroneous elements into clean text. On word level, one can use pre-
existing spell-checking tools to create wrongly spelled words (Grundkiewicz
et al., 2019). This can be done by reversely converting, with some probability,
correctly spelled words into some of the most common misspelled versions
of the same word. The sets that each replacement word is taken from is
called a confusion set. If one would replace words with random words from
the vocabulary, one get very unlikely sentence pairs, that do not prepare the
system for the challenges of a test set or real world applications.

23

In Omelianchuk et al. (2020) other kind of grammatical errors are
automatically infused into the target sentences with a certain probability,
which then become the source sentences. There are 4 errors. For “append
error”, a random word is added to a random position, for “verb error”, a
random verb is replaced by a different morphological form of the same verb,
for “delete error”, a spurious word from a dictionary of commonly deleted
words is added to a random position, and finally for “replace error” the two
first actions are performed in the same position.

In addition to noise injection, another method is back-translation. In
Kiyono et al. (2019) the authors focus on some different strategies for
data augmentation for GEC. They describe a method where a sequence-
to-sequence model is trained on the available parallel corpora, but with the
correct sentences as source and the corrupt sentences as target. This model
can then create corrupted sentences from any available text, which in turn
can be used as source sentences for training a GEC model.

Lastly, a more creative strategy is termed round-trip translation. Here
one relies on the idea that automatic language-to-language translation tools
yield errors. In Kementchedjhieva and Søgaard (2023), the researchers show
that this way of augmenting data can improve the performance of medium
sized models, but not on large models. For pre-training, they channel clean
English sentences through another language and back to English again, and
use the output as a source sentence and the input as target.

We have not explored any of the aforementioned techniques in our thesis.
We have, however, expanded the amount of sentences available for training
our Norwegian GEC models by extracting the ASK-EXPANDED (see section
3.4.3) version of the Norwegian ASK dataset, which doubles the amount of
available training data. The obvious shortcoming of this strategy is that the
“new” sentences have a lot in common with the “old” ones, consisting of the
same vocabulary and the same errors. The experiments in chapter 5 show
that this is not necessarily a fruitful strategy, especially not when evaluating
on natural datasets as opposed to a dataset in the one-error-per-sentence
style of ASK-EXPANDED.

In summary, data augmentation and creation of synthetic training data is a
central part of the development of robust GEC systems today. Changing only
individual words from correct to incorrect is not enough to cover the range
of mistakes found in natural, faulty, text. If creating text mirroring actual
faulty text, one has to add grammatical and semantic errors on sentence
level as well.

3.4 The datasets we use

Table 3.1 gives an overview over the datasets that we use in this thesis. In
addition to containing the required parallel sentences, the datasets differ in
what metadata they have attached to the mistakes, and some don’t have any
at all (NAIST). Either the mistakes in the original texts are marked explicitly

24

(e.g. with an XML-system), or the mistakes are implicit in the sense that they
can be detected by comparing the original and the corrected text with a tool
such as ERRANT. There can also be some metadata about each text, such
as the age of the writer, the country of origin (if the writer is not writing
in their native tongue), an the proficiency level of the writer in the target
language.

For the training of a system, we only need the source and the target.
No other explicit features of the source are taken into account, as neural
networks implicitly learn the most useful features in the early layers. But
to be able to do an error-wise analysis of the models at a later stage in the
research, annotations of mistakes can help discover patterns in how the
system works.

Corpus Sentences Words Errors Err/sent Corr/sent Level

NAIST (Eng) 1 047 384 na na na 0.564 varied
FCE (Eng) 32 841 523 730 52 992 1.61 na B2
ASK (Nor) 47 145 753 755 94 000 2.00 na B1/B2

Table 3.1: Basic statistics on the datasets we use to train GEC-models. Not
all data is available for all of the corpora. “Corrections” are the number of
users who have added a suggested correction for the sentence as a whole.
The values of the cells marked with “na” are either not obtainable, or need
to be extracted with a error-alignment software, for example ERRANT.

3.4.1 CLC-FCE

Error-code Explanation

S spelling error
RV replace verb
RP replace punctuation
TV wrong tense or verb
RT replace preposition
MD missing determiner
MP missing punctuation
R word or phrase needs replacing

Table 3.2: Explanations for the most common error types in the CLC-FCE
corpus

This dataset presented in Yannakoudakis et al. (2011) consists of answers
to prompts, written by candidates who have taken the Cambridge ESOL
First Certificate in English (FCE) examination in 2000 and 2001. The publicly
released subset of the dataset, named FCE-public, is the part we have access
to, and it consists of 1,244 exam scripts. The dataset is created based

25

on a test to prove that learners are eligible for work or study in the UK,
corresponding to the CEFR level B2. The dataset comes as scripts with two
essays each. Each submission/script is in XML-format, with the mistake
types explicitly marked. The essays are marked with a grade, which can be
used to differentiate between essays with many or few linguistic problems.
Some essays need many corrections, and some don’t.

An error-code system with 88 different types of errors (Nicholls, 2003)
is used. Each error is marked with one or several letters. The first letter
usually describes the general problem: whether something is missing or
lacking. The second letter describes word class. Other error codes do not
follow this logic, for example “AGA” is anaphoric pronoun agreement error.
The most common error codes are listed in table 3.2. For the rest of the
codes, please refer to Nicholls (2003). We do not use these error codes for
error analysis in chapter 5, because of the problem that arises when there are
multiple errors in a single sentence. The scorer that we use for evaluation,
ERRANT, cannot take anything else than source, target and prediction as
input. Priorly annotated error tags from the dataset cannot be added. So
aligning the error types with the predictions becomes impossible, and we
will rather rely on the fine-grained analysis possibilities in ERRANT itself.

Converting CLC-FCE for GEC training

As is common in most GEC research, our models operate on sentence
level. Each sentence is considered a completely independent training
example. CLC-FCE comes in a essay separated structure in the XML format.
Extracting the original sentences as source, and the corrected versions as
target, from this is straight forward. This is, as long as the corrections
are not related to sentence tokenization, where the corrector wants to split
up or merge some of the source sentences. When this happens, we risk
losing the alignment between source and target sentence. We have therefore
relaxed the condition of only operating on sentence level, and we have
always extracted the longest version, whether that is the source or the target
sentence. In the rest of this thesis, the term sentence must therefore be
understood more broadly as a sequence or phrase, possibly a bit longer than
a single sentence.

For tokenization, i.e splitting the flowing text into tokens, we have used
word_tokenizer from the Natural Language Tool Kit (NLTK) (Bird et al.,
2009).

3.4.2 NAIST

The NAIST dataset, also called LANG-8 dataset presented in Tajiri et al. (2012)
is created from learners texts on lang-8.com, a free language-exchange
social network. There are 1 million sentences, and it is currently the largest
dataset suitable for GEC. The suggested target sentences are supplied by
non-professional users. The metadata is: number of corrections added
by users, original text (sentence), a unique id for each sentence and a
unique id for each collection of sentences. Just below half (0.491) of the

26

sentences have corrections, and there can be several corrected versions
of the original non-native sentence. Therefore the mistakes are implicit,
and must be extracted with some automatic tool. The corrections might
come from several contributors, as many of the corrections are identical.
If a sentence has alternative corrections, we can expand them to separate
training examples. The two main limitations with this dataset is that the
mistakes are not categorized in any way, and that the corrections are made
by non-professionals, which is a phenomenon often described as “noise”
in the literature. The basic statistics about the corpus are in table 3.1. The
ERRANT software, mentioned in section 2.1.1, can be used to extract the
error types from just the source and target sentences.

NAIST is considered the noisiest of the publicly available GEC datasets in
Bryant et al. (2023). To counter the noisiness, Rothe et al. (2021) have made
a cleaner version of NAIST LANG-8 which they call cLANG-8. The method
was to use their best GEC model on the target sentences of the original
corpus to exclude non-fluent language created by non-trained correctors.
Unfortunately, we were not aware of this improved version in time to use it
in our experiments in chapter 5.

We made several changes to NAIST in preparation for GEC training. We
only made use of the train part of the dataset, and ignored the much smaller
test part. We truncated the training part of the dataset from 1 000 000 to
40 000 sentences to have reasonable training times. For the sentences with
multiple suggested targets, we picked only the first, since our evaluation
scheme does not accommodate multiple hypotheses for comparison with
the prediction. We did not perform tokenization on the data, as the originals
where already tokenized.

3.4.3 ASK

We are thankful for the University of Bergen and Clarino for granting us
access to the ASK corpus for this project. Without this corpus, we could not
have developed GEC training corporas or GEC models for Norwegian.

This dataset, presented in Tenfjord et al. (2006), consists of about 50
000 sentences written by non-native language learners at two different
levels of Norwegian knowledge. The dataset consists of essays corrected
by professionals. The essays are written as solutions to two separate
Norwegian language exams. The levels are estimated in Berggren (2019)
to approximately CEFR-levels B1 and B2. For the essays, there is a rich
collection of metadata, like age, native language, age, and occupation. Each
mistake is also coded according to an error-coding system. A description of
each error-tag can be found in figure 3.3. There is not complete agreement
between annotators, as sometimes a separate xml-tag “del” and “add” is
used to mark removal or addition of words, while other times the M and
R error-markers are used with the most common “sic” tag for the same
purpose. The use of the different strategies are merged in figure 3.4.

The ASK correctors are instructed to use the principle of minimal
correction when correcting the learners sentences. This means that the
goal is to achieve a grammatical sentence with as few corrections as possible,

27

F W
OR

T M
PU

NC
M R O

CA
P

PU
NC

R
IN

FL SP
L

PA
RT

PU
NC DE

R FL X

0

2500

5000

7500

10000

12500

15000

17500

20000

Error types in the ASK dataset

Figure 3.4: Distribution of error types in the ASK dataset. The bar with no
label represents errors with no error tag marked.

and not necessarily maximising the fluency of the target sentence.
The dataset is also annotated with a CEFR-score (for parts of the set),

which can be used as gold labels in the task of Automated Essay Scoring,
as has been done in Berggren (2019) in their master thesis on automatic
essay scoring. The dataset can also be used for NLI: Native Language
Identification, because the data is annotated with the authors L1.

The distribution of error types in the dataset is shown in figure 3.4. Some
basic statistics about the size is shown in table 3.1. These statistics are picked
out before any train/test split has been done. There are approximately the
same amount of errors per assignment in the B1 and B2 level submissions.

Preparing ASK for GEC training

When converting ASK for GEC training, we have taken some precautions
to preserve the anonymity of the original authors. The corpus is annotated
with rich metadata about the learners. We have decided to surpass all
this metadata, including the CEFR-level of the test. ASK has already gone
through a anonymization process, where possibly sensitive words have
been replaced by placeholders. Still, some of the topics of the essays deal
with so specific topics about the lives of the learners, that we decided to
sentence-scramble the essays to achieve maximum anonymity.

For the GEC datasets we want sentences as the unit for evaluation.
Therefore we need to split the continuous text of ASK into sentences.
However, since some of the corrections suggested by the correctors affect

28

Error-code Explanation Additional comment

F wrong morphosyntactic category:
wrong form or inflection.

the code INFL also ex-
ists, which is used
mostly for over-
generalization

W wrong choice of word
ORT orthography: spelling mistakes
M missing word: for pronouns and

function words mostly
for content words a spe-
cial tag <add> is some-
times used

PUNCM/
PUNC/
PUNCR

punctuation missing/ punctuation
missing/ superfluous punctuation

If the missing element is
a full stop, the corrected
sentence consists of two
original sentences

R superfluous word superfluous punctua-
tion is a separate error
type

O problems with word order on word
or phrase level

CAP error with letter casing (Det/det)
PART mistakes regarding compound

words
SPL is for splitting up
compounds, a common
mistake for Norwegian
learners

FL word from other language than
Norwegian

Table 3.3: Explanations for some of the error types in the ASK corpus

the way the text is split into sentences, and we need alignment between the
source and target sentences in the pairs for GEC training and evaluation, we
decided to always keep the longest available version in cases where there
is disagreement between source and target. Thus, the unit referred to as
“sentence” in this paper can consist of multiple sentences, just as is the case
for CLC-FCE.

We conducted a few additional post-processing measures to the dataset.
All sentences are heuristically detokenized and removed if they contain
an uneven count of quotation marks. If no error type is mentioned for a
given correction, we also remove that sentence. The sensitive words that
have been replaced by placeholders like “@sted” (place) and “@navn” (name)
are replaced with a substitute representation of that category, i.e. “Oslo”
instead of “@sted”, to normalize all sentences. This is to avoid feeding too
many tokens to the models which they have not seen during pre-training.
In rare occasions, these replacements might cause some sentences to become
erroneous, since the possible genitive and plural conjugations in the original
texts are not annotated with separate placeholder-tokens.

29

ASK-RAW and ASK-EXPANDED

We have made two versions of the ASK GEC corpus: ASK-RAW and ASK-
EXPANDED. ASK-RAW is a straight-forward extraction of source and target
sentences from the corrected learner essays. In ASK-EXPANDED, for each
sentence, we first extract a corrected version. Then we generate one source
sentence for each error found in the original source. If one or zero errors,
only one pair is generated. With this method we extract almost 100 000
sentence pairs, as many of the original sentences have multiple errors. This
means that there are multiple sentences in the source category that only
differ on one parameter, and multiple target sentences are the same.

We have made these variations on the ASK GEC corpus for two reasons,
one related to training and the other to evaluation. Firstly, to compensate
for the the data scarcity problem discussed in section 3.3, we wanted to
have more training examples to study how that might affect performance.
Secondly, we want to enable access to error types when evaluating sentences.
To be able to align error types with prediction results, we require sentences
to contain maximum one error each. Read more about how we use this
dataset for evaluation in section 3.6.

3.5 Datasets in other languages

In our current uni-polar world, English language is by far the primary
focus for model development in NLP. But efforts are being made to create
parallel GEC datasets also for other languages. An Arabic GEC dataset is
presented in Zaghouani et al. (2014). It consists of about 1600 documents.
The annotations are made by trained annotators, and the source sentences
are both from second language learners and native speakers. For Chinese
language there are several resources and a shared task available, a more
thorough overview can be found in Bryant et al. (2023). Czech, Japanese,
Ukrainian, German and Russian languages also have parallel corpora
available to them. The Norwegian ASK-derived corpus will hopefully
be considered part of this collection in the future.

3.6 Datasets for evaluation

The purpose of this thesis is not to chase state-of-the-art performance on
GEC in English. Rather, we want to study particular aspects of training
and development. Therefore we have not used the official test sets from
the shared tasks, which would have been the currently best way to assess
the absolute predictive power of our models. Our results should not be
directly used for comparison outside the scope of this thesis. Instead, for
both English and Norwegian, we have created our own splits on the data,
with 80% of the data being used for training, 10% is used as evaluation
data during development and hyper-parameter fine-tuning, and 10% being
withheld for the final test rounds.

30

For English, we only use CLC-FCE for evaluation. The predictions on
development and test data are fed directly to the ERRANT tool (Bryant et al.,
2017) for comparison with source and target sentences.

For Norwegian, we use two separate datasets for evaluation: the test
subset of ASK-RAW and the test subset of ASK-EXPANDED. Both can be
used for a estimation of performance on the relevant metrics with ERRANT.
But in addition, the subset of ASK-EXPANDED can be used for error-type
level analysis. Since each sentence has a maximum of one error, we can
annotate each error with a single error type. Then we can estimate the
models performance on those error types, based on whether the whole
sentence was successfully transformed from source to target. From now on,
we call this evaluation scheme ASKEVAL to distinguish it from ERRANT.
This is the scheme that is used for fine-grained error analysis in chapter 6.

3.7 NoCoLA - another application for a parallel corpus

As has been discussed previously in this chapter, parallel corpora for
machine learning are not trivial to come by, as opposed to monolingual
free text, which is abundant on the internet. Now that we have actually
found a source for such parallel data in Norwegian with erroneous sentences
and their corrected counterparts, we can think of other uses for this data in
NLP.

3.7.1 Language model evaluation

Modern large language models like BERT (Devlin et al., 2019), GPT-3 (Winata
et al., 2021) and ELMO (Peters et al., 2018) have become familiar to the wider
public in recent years, especially after the user interface ChatGPT became
available in 2022. These models are used directly, or further fine-tuned, for
a variety of tasks. Therefore there is a need for a strategy to quantitatively
evaluate their overall quality and capabilities. In English the General
Language Understanding Evaluation (GLUE) benchmarking suite (A. Wang
et al., 2018) is commonly used for this purpose. It includes evaluations
on nine tasks, including sentiment classification and question answering.
Among the datasets used is the Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2019), which is used to test the models ability to distinguish
acceptable sentences in English from unacceptable ones. The corpus consists
of 10 000 sentences that are annotated as either acceptable or unacceptable.
The large language models are fine-tuned to classify these sentences into
one of the two categories.

3.7.2 NoCoLA

In recent years large language models have been developed even for
Norwegian, like NorBERT1, NorBERT2 (Kutuzov et al., 2021) and NB-BERT
(Kummervold et al., 2021). During the work with this thesis we decided to
contribute to the development of Norwegian language models by creating

31

Dataset Train Dev Test

NoCoLAclass 116 195 14 289 14 383
NoCoLAzero — — 99 115

Table 3.4: Number of sentences and sentence pairs, respectively, for both the
NoCoLA datasets.

the benchmark NoCoLA (Jentoft & Samuel, 2023), the Norwegian Corpus of
Linguistic Acceptability. It is based off the ASK-derived datasets we created
for grammatical error correction, with some adjustments. We are happy to
note that NoCoLA has recently been included in the benchmarking suite
NorBench (Samuel et al., 2023) created by the Language Technology Group
at UiO.

There are two versions of the dataset, and the sentences counts for each
are shown in table 3.4. For NoCoLAclass all the ungrammatical sentences from
the learner essays are annotated as unacceptable, and both the grammatical
learner sentences and the corrected versions of the ungrammatical sentences
are annotated as acceptable. For evaluating a language model, it is fine-
tuned on a binary classification task. The standard fine-tuning approach
from Devlin et al. (2019) is used for this.

For NoCoLAzero all the learners sentences with more than one error
are modified to contain only one error each. This results in multiple
unacceptable sentences for each original sentence with more than one error.
These sentences, and the ones containing only one error, are mapped to
their corresponding acceptable sentence. This was done so that one can
identify the type of error that distinguishes the two sentences in each pair,
and thereby get a more fine-grained description of a language models
performance. Learner sentences without errors are discarded. Now we
have a collection of pairs of unacceptable sentences and their acceptable
counterparts. Since language models natively give probabilities for language
sequences, language models can be evaluated by how often they give a
higher probability to the acceptable sentence in a zero-shot manner.

The modification done to the multi-error sentences mirrors the way we
create the EXPANDED version of the GEC dataset, described in section 3.4.3.

3.7.3 Comparing NoCoLA to GEC parallel datasets

There are many similarities between the NoCoLa datasets and the
GEC datasets, for example that both applications demand a source for
unacceptable sentences. The difference between NoCoLAclass and our GEC-
dataset is that in NoCoLAclass the unacceptable sentences are not coupled with
their acceptable counterparts. The sentences are simply lumped into one
of the two categories and shuffled. When a model under evaluation sees a
sentence, it has to judge whether it is unacceptable without seeing the other
version of it.

The difference between NoCoLAzero, which is also a parallel dataset, and

32

our GEC-dataset is that NoCoLAzero does not contain the sentences from ASK
that did not have any mistakes. This is because one cannot make a judgment
of acceptability between two identical sentences, which would be the case
if the target is the same as the source in such cases. In GEC on the other
hand we want the models to be able to preserve the source sentence if it is
correct, so we need to have some negative examples. Otherwise the models
in production would be inclined to change every single input sentence, even
if it was grammatically correct and acceptable. Another difference to the
raw version of our GEC dataset is that any unacceptable sentence contains
only one error.

33

Chapter 4

Evaluation

4.1 Evaluating seq2seq

To be able to create good automated NLP systems we need to have a clear
goal of what we want to achieve, and how to measure whether we have
achieved it. This requires us to have some sort of golden standard, or
target, that is manually created. We want to be able to do the measurement
automatically, not by having humans inspect and judge every single output
of the models. For tasks where the possible outputs is a closed set, this is
relatively easy. One example would be when developing a model to classify
documents into a closed set of non-hierarchical and mutually exclusive
classes. If the model outputs the correct class for unseen documents, it
succeeds in its task. It is either yes or no, a binary evaluation. When
aggregating multiple predictions, one can count successful and unsuccessful
predictions, which again give rise to such metrics as accuracy, precision,
recall and f1-scores. These metrics give us an understanding of the models
performance, and become proxies for how good it is.

But for sequence-to-sequence (seq2seq) types of tasks, having a closed
set of classes that the prediction belongs to is usually not as optimal. Human
language is generative and practically unlimited in its creativity, as claimed
by linguists like Noam Chomsky (1965). If human language is unlimited,
then how can we limit the possible successful predictions of a model to a
set of outputs or a specific reference sequence? This is the first challenge
of evaluating seq2seq tasks like Machine Translation (MT), summarization,
and GEC. For translation tasks there can be multiple good translations
that convey the semantic meaning of the source language sentence well,
but which differ in lexicality, morphology and syntax between themselves.
The same goes for summarization, where a longer text or paragraph
can be summarized in multiple ways. For grammatical error correction,
different corrector instructions can lead to vastly different target possibilities.
Creating only one specific target sequence can make the evaluation too strict
if doing a binary decision, because it does not allow for this variation.

Researchers have worked on coming up with solutions to alleviate these
problems. One obvious way is to create multiple reference sequences. But
the workload for annotators increases linearly for each new reference, and it

34

is difficult to decide the right time to stop creating more reference sentences.
In neural machine translation metrics that compare substrings between
target and prediction are dominant, specifically the BLEU score (Papineni
et al., 2002). In addition to span-comparison it has a brevity penalty, to
avoid too short predictions. In NMT the source and target are usually
from completely different languages, and any overlap between target and
prediction is rewarded. For summarization, according to Fabbri et al.
(2021), a metric derived from BLEU called ROUGE is the default automatic
evaluation metric. It combines overlap between target and prediction with
a measure of the fluency of the prediction. As we will see in the following
section, some other considerations have to be taken when evaluating GEC.

4.2 Evaluating GEC

The difference between machine translation and GEC is that, depending on
the proficiency level of the original text, in GEC there are many similarities
and overlappings between source and target. Sometimes even whole
sentences might be identical, as the source text does not have any errors.
Using a pure span-based strategy like BLEU would reward a system too
much for those similarities, to the extent that even a copying machine would
get a high score. Most decent systems would be scoring at close to 1.0,
without much room to differentiate between them. The scores of a given
system would also vary widely depending on the language proficiency of
the source sentences.

Therefore, the most common, evaluation for GEC is correction-span
based. This means that the similarity between source and target sentences
are ignored, and only the spans where prediction and target differ from the
source are compared and used for evaluation. This also compensates for
differences in proficiency levels of source text, as it is the relative portion of
corrections that are made, and not of total number of words, that is counted.

4.2.1 Level of evaluation

In both the recent shared tasks GEC has been framed as a sentence level
task. This means that during training and evaluation, each sentence is
treated as an independent unit without taking context into consideration.
But as the corrections have usually been made based on a larger context, a
misalignment arises. A corrector might correct He loves ice cream into She
loves ice cream, if the preceding sentence in the source text is This is Annabelle.
This would introduce noise into the parallel, sentence-wise, dataset. Usually
it means that the evaluation becomes too strict if the system has not made a
correction in the above example, even if the context available to it indicates
that the prediction is in fact grammatical.

To deal with this problem, some researchers have explored to perform
GEC on document level (Chollampatt et al., 2019). Their models strive
to take a wider context into consideration by implementing an auxiliary
encoder for modeling previous sentences. Sentence level training and

35

evaluation is still the standard in GEC research, and it is how the task is
defined. Some of the issues that still cause the task to be defined on sentence
level are that our current models cannot deal with sequences of much longer
length than sentences, and that we lack of corpora the appropriate structure
(Bryant et al., 2023). But this might change in the future. For example in
Náplava et al. (2022) a GEC dataset for Czech is released in three alignment
levels: sentence, paragraph and document, in anticipation of possible future
work with larger contexts.

4.3 Metrics

Figure 4.1: Simple example on how the source, target an prediction are used
to calculate error-span based scores

4.3.1 F0.5

One possible source of confusion needs to discussed. Even if error-span
based F0.5 can be called a metric regardless of the methodology for how to
obtain it, the survey literature, for example Bryant et al. (2023) and Y. Wang
et al. (2021), describe the different ways to obtain it as metrics. In this thesis
we reserve the term metric only for such concepts as accuracy, precision,
recall, F0.5 and I-measure, while we use scorer for the methodologies to
obtain them. The scorers are discussed in section 4.4.

As mentioned earlier, correction-span based F0.5 is the standard metric
to evaluate GEC, and is the one used for both the benchmark shared tasks
mentioned in section 2.1.3. For each span of words that make up a correction,
the source, target and prediction are compared, see figure 4.1. True positives
(tp) are corrections matching the target, false positives (fp) are corrections
made by the system that should not be there, and false negatives (fn) are
corrections that the system missed. Notice here that true negatives (tn)
are indirectly ignored, which means that correctly uncorrected sentences
do not affect the score other than by subtracting examples from the other
three possible outcomes. From aggregating the counts we can get precision:
tp/tp+fp and recall: tp/tp+fn. The formula for deriving F0.5 from this is:

f 0.5 =
(1 + 0.52) ∗ precision ∗ recall
(0.52 ∗ precision) + recall

36

.
For GEC, the most common is to value precision higher than recall, so

we go for F0.5 instead of F1,0, which would value precision and recall equally.
Weighting precision more than recall in this way is an indicator that in this
task one would rather have some mistakes left uncorrected, which would
decrease recall, than have many corrections that are not correct, which
would decrease precision. Accuracy, another measure derived from the
comparisons of prediction and target that also takes false positives into
account, is useless in such as case. This is both because one can assume that
in GEC the majority of text is error-free, and in any case, the rate between
erroneous and correct text is unknown, so-called unbalanced classes.

There are however, several issues with using the F0.5 score as well. When
looking at the participant contributions of the ConLL shared task (Ng et al.,
2014), the F0.5 scores for the systems do not correlate with rankings based
on human judgement. As human judgment is inherently hard to quantify,
we can look at some of the features of the F0.5 score that could possibly
cause the low correlation. One of the aspects not addressed by F0.5 are that
ungrammatical edits are rewarded, although not as much as a grammatical
edit. Another is that non-edits are not rewarded in any way, even if they can
be argued to be an important part of the task. A third is that different kinds
of edits are rewarded and penalized equally, while human judges might
weight for example adding a comma as a greater error than adding an extra
letter (Napoles et al., 2015).

4.3.2 Other reference based metrics

F0.5 on error-spans seems to be the preferred metric for evaluating GEC. But
there are other metrics as well. The improvement measure, or I-measure
for short, is based on the alignment between source, target and prediction.
It is a weighted accuracy score where True Positives and False Positives
are weighted higher than True Negatives and False Negatives. It does
not require explicitly annotated error types (Y. Wang et al., 2021). The
Generalized Language Evaluation Understanding metric (GLEU) (Napoles
et al., 2015) was derived from the BLEU score from machine translation. It
was motivated by the fact that human-annotated edit spans are somewhat
arbitrary and time-consuming to collect. It does not require explicit
edit annotations but rather only corrected reference sentences. In GLEU
prediction n-grams that match the target but not the source are rewarded,
while prediction n-grams that overlap with the source, but not with the
target, are penalised (Bryant et al., 2023). Compared to F0.5 it thereby also
rewards non-corrected words and sentences.

4.3.3 Reference-less metrics

Some strategies for evaluating GEC strive to avoid the use of manually
defined references. This has the obvious advantage of bypassing the need
for human annotations. Another motivation is that metrics based on target
always penalize edits that are not included in reference, which can result

37

in underestimation of GEC systems (Y. Wang et al., 2021). Since we only
use reference based evaluation in this thesis, we will now only look at one
example of a reference-less evaluation scheme. Choshen and Abend (2018)
proposes a measure of semantic faithfulness to evaluate the transformation
from source to prediction. Their system compares the semantic symbolic
structure of the source and prediction. This is done with help of a automatic
semantic graph system called UCCA (Bryant et al., 2023). If the semantic
structures in source and prediction are similar, a correction can be considered
faithful. This system would rate a copying of source highly by its own, and
is thus just meant as a complimentary evaluation scheme to other schemes.

4.4 Scorers

To obtain F0.5 scores we need a automatic scorer. There are some practical
challenges connected to calculating F0.5. Detecting what constitutes a
correction-span is not trivial. In the minimal case one needs to align
the predicted sentences with the target sentences, decide what the unit
of “correction” is, and then find the overlap between them. The alignment
algorithm should ideally be linguistically motivated, which makes such a
system language specific. One might also want a more fine-grained analysis,
where different correction types are categorized directly from source, target
and prediction. In its simplest form, this could be just add, remove, and
replace.

4.4.1 MaxMatch

The MaxMatch (M2) scorer (Dahlmeier & Ng, 2012) is the official scoring
strategy used for evaluating the participants of the shared task from 2014
(Ng et al., 2014). It accommodates for multiple target sentences as options. It
delivers a span based F0.5, and emphasises the need to have maximal overlap
between the edits of the hypothesis and the edits inn the multiple reference
sentences. This method relies on Levenshtein alignment (Levenshtein, 1966)
to explore and find this maximal alignment.

4.4.2 ERRANT

ERRANT (Bryant et al., 2017) is a fine grained, rule-based, correction-
categorization scorer developed for English GEC. It is a two-stage automatic
standardization process. It has 25, mainly part-of-speech based, error
categories. In addition all of these can again be subdivided into replacement,
omission and insertion, giving a total of up to 75 different error types. It
was developed by Bryant et al. for the shared task in GEC in 2019, and is
thoroughly described in Bryant et al. (2017). It is officially only created for
English, and has language specific tools for POS-tagging, stemming, and
alignment. It uses the python package Spacy (Honnibal & Montani, 2017)
for this purpose. This is the package we use to evaluate the English part of
our GEC experiments.

38

For evaluation of our models we have used ERRANTs command line
interface. When conducting inference, the predictions are written to text-
files, and ERRANT produces two files in the M2 format (see chapter 3): one
for the changes from source to target and one for the changes from source
to prediction. These two M2 files are then compared, and the metrics are
calculated. We utilize ERRANTs option for granularity to access separate
scores for different error-categories in chapter 5. Some examples of the
ERRANT output are to be found in the appendix of this thesis.

4.4.3 ERRANT for Norwegian

Figure 4.2: Examples of ERRANTs treatment of Norwegian. This format is
called M2, and shows the original sentence with a list of changes needed to
be made to transform the source sentence to either reference or hypothesis
sentence.

In this thesis we are using the ERRANT scorer for Norwegian as is,
meaning we are not making any adjustments to the software. The software
is not able to categorize error types at all, like in example 2 in figure 4.2
where a punctuation error is categorized as a spelling error. This it because
it relies on linguistic cues and word lists. The overall scores seem to be
reliable. Looking at the result tables in chapter 5, the results for Norwegian
correspond reliably with the ones for English. The scores should, however,
not be read as absolute scores for GEC performance, both because the test
set is not a officially defined one, and because ERRANT shows some errors
in span-detection for Norwegian. In errors with word order, it sometimes
defines two errors where there is only one, like in example 1 in figure 4.2.
For English, such a switch of word order would have been considered one
error. But at other times ERRANT correctly defines a two-word span, and
only registers one error, like in example 2. In example 3 ERRANT registers
2 errors, while the more correct analysis would be that there is one error
of the replacement type. The tense of the verb should be changed, and the
past perfect just happens to be two words in Norwegian, as opposed to

39

the preterite one-word. It is hard to automatically estimate the rate of such
errors.

Therefore the performance scores between languages are not comparable,
also because we use different evaluation datasets. ERRANT is still useful
to compare the performance of different models. The fine-grained analysis
offered by ERRANT is ignored for Norwegian.

4.4.4 ERRANT for other languages

A version of ERRANT for the Czech language is published in Náplava
et al. (2022). They have adapted the original error types, and added a
few language specific error types. A German version is available at Boyd
(2018). Belkebir and Habash (2021) presents ARETA, a version of ERRANT
for Arabic. They aim to address morphological richness and orthographic
ambiguity of the language. Those peculiarities cause challenges, especially
when Arabic with and without diacritics are mixed. There is also a version
of ERRANT for Greek.

None of the adaptations of ERRANT for other languages than English
are official. We have decided that doing the necessary adjustments for
creating a Norwegian ERRANT is too time consuming, and have left that for
future work. See chapter 8 for a discussion on what this task might require.

4.4.5 ASKEVAL

Since we do not have an ERRANT for Norwegian, we have developed
a scheme for the purpose of fine-grained error analysis in chapter 6
which we call ASKEVAL. With the help of the one-error-per-sentence ASK-
EXPANDED evaluation dataset (see chapter 3 section 3.4.3), we can align
error types with prediction success. We only count a successful prediction
(TP) when it is identical to the target sentence. If the source and prediction
are identical, but not the target, we count a False Negative. If the source and
target are the same, but the prediction is different, we count a False Positive.
Here we diverge from the principle of only comparing error-spans. But this
can be justified when we know that the systems are good at copying the
source, and that there is only one error in focus per sentence. The obvious
caveat is that the predictions might have errors in other parts of the sentence
than the focus. That will lead to an unfair amount of False Positives.

4.5 Conclusion

Evaluation on GEC is still a field of active research. The same is the case for
evaluation of other seq2seq tasks as well. In this chapter we have discussed
the pros and cons of different metrics and ways to obtain them, as well as
the challenges connected to using the existing tools for Norwegian GEC.

As none of the scorer-delivered metrics for English have been conclu-
sively shown to correlate optimally with human judgment, Bryant et al.
(2023) recommends using different scorers and metrics for different test

40

datasets. This is to have a fair comparison between systems, as the scores,
even the F0.5 scores of different scorers, do not correlate perfectly with each
other. As the goal of this thesis isn’t to challenge the state of the art systems
for GEC, and we do not evaluate on one of the benchmarking test sets, we
choose to use the ERRANT scorer because it allows us to study metrics on
specific error types.

41

Chapter 5

Experiments and Results

In this chapter we go through the experiments we have done with fine-
tuning seq2seq models from the t5-family for grammatical error correction.
The prime objective is to compare the byte-level byt5 model to the subword-
based t5, mt5 and nort5 models. First we go through some general
considerations regarding the way we conduct the fine-tuning and evaluation
of the models. Then we look at the performance of the models when fine-
tuning mainly on the English FCE-CLC dataset, and then on the Norwegian
ASK dataset. During the English experiments we try out different flavours
of pre-trained models, changing training hyperparameters, use different
sizes of datasets, and test out ways to facilitate training large models. In the
Norwegian experiments we simply run the same pre-trained models on our
Norwegian ASK dataset, changing the English t5 to the Norwegian nort5
model. Finally we summarize the results achieved during the chapter.

Since we have experimented with quite many combinations of models,
datasets and hyperparameters, we have numbered the rounds of training
from 0-7. If the reader wants to see the results of our final models directly,
these are reported in round 5 for English and round 7 for Norwegian.

5.1 Methodology and general considerations

5.1.1 Pretrained models

For performing our experiments we fine-tune language models to do the
GEC task with the help of appropriate dataset of the parallel type, described
more thoroughly in chapter 3. We have chosen to use pretrained models
in the t5-family of sequence-to-sequence (seq2seq) models. The models
have been pre-trained on unsupervised and supervised tasks. They have
been used extensively for fine-tuning for GEC before, and many of the
recent state-of-the-art models are based on t5. You can read more about
the architectures of these models in chapter 2. One such example of the
successful use of t5 on GEC is in Rothe et al. (2021). Their best model
achieved an F0.5 score of 68.87 and 75.88 on the ConLL14 and BEA19 shared
tasks respectively.

42

5.1.2 Evaluation data

If nothing else is mentioned, all evaluation results are obtained on a withheld
development set. Later in rounds 5 and 7 we are using test datasets. All
evaluation data is simply a subset of the parallel datasets that is not used by
the systems during training, and does not affect the models in any way.

5.1.3 Metrics and reported numbers

For all experiments we report results with three different metrics. All of them
are based on comparison of source, target and prediction. The important
aspect of GEC evaluation is that we only compare corrections, and ignore the
tokens in sequences that are identical between source, target and predictions.
The first is precision, which is how many of the corrections made by the
model are the same as in the reference. The second is recall, which tells
us how many of the corrections expected by the reference that the model
managed to capture and correct. The third is F0.5, which is a function of
precision and recall that weighs precision higher than recall. You can read
more about these metrics and the justifications for them in chapter 4.

For some of the runs we also report training time, which is relevant when
making decisions on what models to use. If the performance difference is
minuscule, but the training time (and resource) difference is huge, one might
want to consider using a model setup that is slightly weaker in performance.
If other hyperparameters are varying between the experiments within a
round, those are also reported in the tables.

5.1.4 Software and hardware

For training neural networks, using Graphical Processing Units are
shortening training time significantly, on the order of 100x. The reason
for this is that the job such units are specialised on, namely accelerating
graphical rendering for video games, is quite similar to the linear algebra
operations used for training neural networks. Students at the University of
Oslo have access to the high-performance computing platform Educloud-
FOX. This is a platform shared by students and researchers, and opens up
for running multiple experiments at the same time on high speed.

Software-wise we have used the framework PyTorch (Paszke et al., 2019).
It is a framework for building deep learning models, written in Python. It
allows us to abstract away from the actual matrices of parameters, and focus
on the relevant parts of the work.

For evaluation we use both the ERRANT scorer (Bryant et al., 2017) for
English and Norwegian as well as a self-made evaluation scheme, ASKEVAL,
for fine-grained analysis of error type-wise performance only for Norwegian.

5.1.5 Model hyperparameters

Some considerations and decicions need to be taken when fine-tuning a
pre-trained model like t5.

43

Number of epochs

One epoch of training is one run through the whole training dataset. If a
model is trained for one epoch, all source and target sentences are only fed
to the model once. But as the weight updates are quite small, it can be useful
to go through the dataset more times, and for all our experiments we have
used either 5, 10 or 15 epochs. The specific number is mentioned together
with the results in each round.

Regularization

All the t5 models we have used have a default dropout rate of 0.1. This
means that during training, 10% of elements in the hidden vectors are
skipped or dropped out temporarily and at random. This has been shown
to decrease the chance for overfitting the model to the training data, as no
single parameter gets too much to say to decide the prediction. Rather, the
predictive power is distributed among the parameters. Dropout was first
introduced to neural networks under that name in Hinton et al. (2012), and
further popularized in Srivastava et al. (2014).

Learning rate

For each forward-pass in the neural network, a gradient is calculated, which
tells us the direction each parameter should go to improve the performance
of the model. The learning rate is the value the gradient value is multiplied
with when updating the parameters of the model. A high learning rate
makes big changes on the model at the time, while a small learning rate
does small changes.

With models in the transformer-family, it has been showed that starting
the training with a high learning rate is detrimental to the result. See Popel
and Bojar (2018) for some empirical evidence for this. The solution is to use
an optimizer with warmup, meaning that the learning rate starts low, and
reaches its highest value after about 10% of training time, and then decreases.
An optimizer is a part of the program that updates the weights of the neural
network. We have used this methodology throughout all experiments, as
this has been shown to be successful in other transformer contexts, also the
in the original transformer paper (Vaswani et al., 2017).

Generation hyperparameters

During training with a transformer type model, the predictions are not
generated autoregressively, but in parallel. When generating the predictions
for inference the tokens are generated autoregressively, and some hyper-
parameters can be chosen. We are using the default parameters which come
with the models. Some of the most important ones are listed in table 5.1.

44

Parameter Value Description

max_length 50 tokens when subword, 250
bytes when byte-level models

Maximum length of gener-
ated sequence

min_length 10 for both Minimum length of gener-
ated sequence

do_sample False Each next token/byte is cho-
sen with greedy search

Table 5.1: These are some of the generation hyper-parameters that come as
default with the models in the t5 family. We have not modified them when
generating with our models.

5.2 English

As a source of training sentences we use the CLC-FCE dataset (Yan-
nakoudakis et al., 2011), with a 80/10/10 split. This means that there are
about 40 000 sentence pairs in the training data, and the rest of the data is
for evaluation purposes. We are using the native t5-tokenizer to convert
the input sentences into integers in the t5-vocabulary, as well as adding
padding tokens for the batched input.

5.2.1 Round 0 - t5 without fine-tuning

Model Precision Recall F0.5 score

t5-base 0.043 0.043 0.043

Table 5.2: These are the results for t5-base without any fine-tuning, i.e. zero-
shot. Remember that the F0.5 score metric is based on correction spans and,
input-copying ability is ignored.

Input Target Prediction

This is a first class ho-
tel.

This is a first-class ho-
tel.

The staff were very
helpful and friendly.

I am questioning my-
selfs - am I sick man?

I am asking myself - am
I a sick man?

- am I sick man?? - am I
sick man?

It happened at the end
of school year.

It happened at the end
of the school year.

It happened at the end
of school year.

Table 5.3: Some examples of the predictions when using t5-base without
fine-tuning. The target column indicates the desired outcome

As the t5-model (Raffel et al., 2020) is a text-to-text model by nature
and from pre-training, it already outputs something based on input by
default. As a baseline and comparison point we want to test how well

45

t5-base performs without any fine-tuning, also called zero-shot prediction,
on the Grammatical Error Correction task. The hyper-parameters for the
prediction generation are outlined in section 5.1.5.

For some particular tasks one can use a prefix (concatinated with the
input string) to direct the model in a specific direction. The task are
summarization (having a multi-sentence text as input and outputting a
shorter summary of it), translation from English to German, translation
from English to French and translation from English to Romanian. These
are the tasks that the model has been trained with supervised training to
solve. Unfortunately GEC is not one of these tasks, so we do not utilize this
feature, and feed the input sentences to the model as they are, without a
prefix.

As we can see from the example-outputs in table 5.3 the input is relevant
for the predicted output, and sometimes the prediction is a copy of the input.
At other times, the model is creating output that is not a valid sentence. As
our evaluation metric is quite strict and does not premiere just copying the
output, the results as shown in table 5.2 are very poor.

We did not use mt5 for this baseline. The researchers from Google who
released the model write on their Huggingface repository that mt5 was
only pre-trained on mC4 excluding any supervised training. Therefore, this
model has to be fine-tuned before it is usable on a downstream task, unlike
the original t5 model 1.

So to conclude we can see that to be able to perform grammatical error
correction, t5 needs to be fine-tuned for this particular task with a suitable
parallel dataset.

5.2.2 Round 1 - basic t5

Model Casefolding Precision Recall F0.5 score

t5-base no 0.573 0.358 0.512
t5-base yes 0.569 0.36 0.51
t5-large no 0.581 0.382 0.526
t5-large yes 0.579 0.384 0.526

Table 5.4: These are the results from round 1 of experiments. Model-sizes
and casefolding is in focus.

The zero-shot prediction with t5 did not yield any good results. In this
phase of experiments we try out how the base-sized pre-trained t5-model
performs on our data after some epochs of fine-tuning. We also try a version
of the model with more parameters, called t5-large. The disadvantage of
this model is that the training and evaluation takes more time, and it is more
demanding on the GPU of the training computers.

In addition we experimented converting the whole dataset to only lower
case characters, hereby called casefolding. The motivation for this is a feature

1huggingface.co/docs/transformers/v4.16.2/en/model_doc/mt5

46

of this particular dataset, where a significant portion, 390 out of 19880
sentence pairs in the training data, are only in upper case. As the tokenizer
of the t5-models is case-sensitive, this means that CAT and cat are two
independent tokens from the models point of view. Our hypothesis is that
the variation between the two forms prohibit optimal generalization in the
training phase. One obvious argument against doing casefolding is that the
model will not be able to distinguish between proper and common nouns,
and that the model in “production” predicts sequences of characters all in
lower case, which would be an undesired feature (bug) of the model.

Model Sentence

Example 1 - Articles - success

Source Accident like that can really make you livid.
Target An accident like that can really make you livid.
t5 An accident like that can really make you livid.

Example 2 - Conjugation - success

Source We aren’t allowed to smoke and drink any alcohol.
Target We aren’t allowed to smoke or drink any alcohol.
t5 We aren’t allowed to smoke or drink any alcohol.

Example 3 - Verb-tense - failure

Source I would be glad if you consider my suggestions.
Target I would be glad if you considered my suggestions.
t5 I would be glad if you would consider my suggestions.

Table 5.5: Some examples of fine-tuned t5 predictions in round 1 of
experiments.

The results on prediction from this round can be found in table 5.4. We
have added some examples from the predictions from the models trained
in this round, these can be seen in table 5.5. The errors are categorised
according to the authors intuitions, and do not necessarily coincide with any
other error-annotation scheme. The main purpose of including the examples
here is to remind the reader of the task we are performing, so as to not get
completely lost in metrics and hyperparameters.

As we can see from the results in table 5.4, casefolding the sentences
does not increase the performance of the models. With the disadvantages of
casefolding in mind, we do not use casefolding in the rest of the experiments.

5.2.3 Round 2 - gradient accumulation

Now that we have seen the significant, but still minor, improvement
achieved by using the large model instead of the base model, we return to
using the base model. This is to save the shared training resources we have
available.

As some of the models used have many millions of parameters which

47

t5-model checkpoint Parameter count

t5-small 60 million
t5-base 220 million
t5-large 770 million
t5-3b 3 billion
t5-11b 11 billion

Table 5.6: A comparison of the parameter counts of t5-base versus t5-large

Model Gradient
Accumulation

Batch size Precision Recall F0.5 score

t5-base no 32 0.564 0.364 0.508
t5-base yes 8 0.562 0.363 0.506

Table 5.7: Studying the effects of using gradient accumulation. Each result
is an average of 3 runs to exclude bad luck as a source of difference. For the
second row the batch gradients are accumulated 4 times so that gradients
are accumulated after 32 examples

need to be stored in the memory of our hardware, we experience crashes
while fine-tuning some of the models. The more detailed reason for the
problem is that as many training examples are processed at the same time
in a batch, each example increases the workload linearly. The memory load
on our hardware can be decreased by decreasing the batch size, but this
can cause problems for the training. When a batch is small, the sample
is less representative of the dataset as a whole. Thereby the direction of
the gradients could be very different from the direction that improves the
performance on the whole dataset.

For all experiments from now on we have implemented a trick called
gradient accumulation (Kozodoi, 2021). Here we divide each batch into
mini-batches,2 and accumulate the gradients for each of the mini-batches
before updating the weights of the network.

We compare a run with batch size 32, and one with mini-batch size 8
with 4 iterations before the updating of weights. The latter also adds up
to 32 examples. As wee can see in table 5.7 the results are more or less
equivalent, which means we can safely use this trick to decrease the batch
size when needed. However, gradient accumulation makes the training
slightly slower, but less than 10%.

The reason for the slight difference for the model without gradient
accumulation from the experiments in round 1, is that we limited the number
of epochs to 10, and truncated all sentences of above 150 sub-word tokens.

48

Sentences Duration
(h:m)

Data source Precision Recall F0.5
score

6 666 (small) 1:42 clc-fce 0.564 0.309 0.484
20 000 (standard) 1:58 clc-fce 0.564 0.363 0.508
60 000 (large) 2:59 clc-fce + naist 0.576 0.317 0.495

Table 5.8: These are the results from round 3 of experiments: studying
the effects of training data size. All experiments are with the pre-trained
model t5-base. Duration is the time it took to fine-tune the model, including
intermediate evaluation steps.

5.2.4 Round 3 - training data modifications

Since Gradient Accumulation seems to be a valid way to modify the training
procedure, we use it for the rest of the experiments.

In this section we want to study the effect of the size and quality of
our training corpus. We create a small and a large version of the training
data. The small, one third of the standard size, version consists of a subset
of FCE-CLC. For the large version, three times the standard size, we have
added a subset of the NAIST dataset, which you can read more about in
chapter 3. Evaluation data is the same for all sizes of training data, and
consists of the same development split from CLC-FCE used for evaluating
all our English models.

From the results in table 5.8 we can see that using the standard
sized training dataset is positive, while enlarging the data from NAIST
is detrimental to the results. The resources saved by cutting the data down
to small are quite insignificant compared to the loss of almost 2 points on
performance.

The reason for difference in performance between standard and large
need some explanation. The general trend in machine learning and NLP is
that “more is more”, which would result in a steady increase of performance
when the training data size increases. In the worst case, the results should
plateau at some point because of the variation in possible reference sentences.
In our case the reason for the decrease in performance could be that there
is a problem with the NAIST dataset, maybe related to the fact that the
target sentences are crowd-sourced. This means that the target could be sub-
optimal and noisy, which results in the model learning wrong corrections, or
ignoring some mistakes that should have been corrected. Another possibility
is simply that NAIST and CLC-FCE are two different datasets, with different
prompts, learners with different backgrounds, and different subjects being
written about.

Because of the poor results, from now on we surpass this crowd-sourced
dataset completely. We also stick to the standard-sized dataset, as we do
not think the time saved using the smaller subset to be worth the loss of
performance.

2The terms batch and “mini-batch” are sometimes used to denote “the whole dataset”
and “batch” respectively, but not so in this thesis

49

5.2.5 Round 4 - mt5 and byt5

Model Epochs dur. (h:m) LR Precision Recall F0.5

t5-base 10 1:58 default 0.564 0.363 0.508
mt5-base 10 1:50 default 0.471 0.141 0.321
mt5-base 10 1:49 0.00003 0.082 0.046 0.071
byt5-base 10 5:36 default 0.598 0.341 0.520
byt5-base 10 5:27 0.00008 0.562 0.33 0.493
byt5-base 10 5:34 0.00003 0.607 0.17 0.401

Table 5.9: Results after introducing byt5 and mt5. Learning rate (LR)
“default” is 0.0003. This is the learning rate that was used for all experiments
so far in this chapter. All experiments with Gradient accumulation 8x4,
except for byt5 which uses 4x8.

Now we get to introduce the byte-level model byt5 to fine-tuning for
GEC. To make byt5-base (as opposed to byt5-small) work we needed to
make some adjustments to the training setup. This is because the GPU
cannot handle byt5-base de jure batch size of 8, so we switch it to 4 with
gradient accumulation 8 times. As we have proven in a previous section,
adjusting the gradient accumulation parameters does not significantly affect
the results, so we can safely make comparisons between training-procedures
on different de jure batch sizes when the de facto number of examples used
for each optimizer update are the same

The multilingual model mt5 is also introduced in this round, as a
subword-level direct point of comparison to byt5. Theoretically there
should be no advantage of using it over t5, as long as we assume that
most of the training and evaluation data is monolingually English, which
is to be expected in a dataset collected from an English learners test of
super-intermediate level.

In this round of experiments we want to also experiment with some
other learning rates, to see if this might increase the performance of models.

There is a significant increase in training, evaluation and prediction time
when moving to byte-level systems. This is due to several reasons, but
all relate to each sequence consisting of about 5 times more tokens. In the
prediction and evaluation phases a calculation is made for the next token
for each token, and thereby the duration is increased five-fold.

In table 5.9 all the results from this round are listed. With the learning
rates we have chosen, the multilingual model mt5 struggles to give good
results. With the default learning rate, the one we have used for all
experiments so far, byt5 performs better than t5, while the other learning
rates come short.

5.2.6 Round 5 - testing on test data

Now we have come to the focus of our experiments. These are the results
we use to conclude on how byte-level models perform GEC compared to

50

Model Epochs Precision Recall F0.5 score

t5-base 20 0.569 0.364 0.510
mt5-base 20 0.545 0.231 0.428
byt5-base 20 0.572 0.343 0.504

Table 5.10: Results when testing the three models on withheld test data.
Scores are averages of 3 identical runs for each model type

subword-level models. We do two types of comparisons. The first is to
compare byt5 to the model that is most similar to it on all other parameters
except for the representation level: mt5. The second is to compare it to the
subword-level model that is trained specifically on English data, namely t5.
The latter is the more likely subword-level alternative for developing GEC,
as the results are in the same range as those for the byte-level model.

In this round we turn to the completely unseen part of the datasets: the
“test” data. In the preparatory stages of training there was a slight instability
for byt5. Because of this, we run 3 fine-tuning runs for each model, with
exactly the same hyperparameters, for 20 epochs each.

Lets first compare byt5 to mt5. From table 5.10 we see that the byte-
level representation is clearly advantageous for overall F0.5 score. Even if
precision is emphasized in F0.5, it is primarily the extremely low recall score
of the subword-level model that pulls the overall score down. Recall tells
us how many of the total errors the model managed to notice and correct.
Since the precision is not as low, this means that mt5 tends to copy the input,
but is too conservative when it comes to changing anything.

Then we can turn to comparing byt5 to t5. Some of the clear tendencies
we can see from the results in table 5.10 are that the precision is pretty equal
between the two models, but the recall of byt5 is a bit weaker. This means
that the model copies the input well, the changes it does are correct, but it
does not notice as many mistakes. Even if the recall is weighted lower than
precision in F0.5, the final result is slightly better for t5. In figure 5.1 we can
see how the models learned during the epochs. t5 takes only one epoch to
achieve stable and decent F0.5 score, while the byte-level model takes more
time. The high precision score early on for byt5 indicates that it is copying
input, but not yet correcting many of the errors. Between epochs three to ten
the model stabilizes, and precision falls together with the increase in recall.

In chapter 6 we look in more detail at the error-wise predictive
capabilities of these models. For now we can conclude that byt5 and t5 are
relatively equal on overall performance, while mt5 is falling behind and is
not a competetive option for GEC in English.

5.3 Norwegian

We now turn to Norwegian language and fine-tuning the models on the
ASK corpus. Using the experience gained during the English experiments,
we go straight to comparing how the different models perform compared to

51

Figure 5.1: Round 5 (English): t5 versus byt5 on test data. Red color is byt5,
blue is t5. The plot shows how the models scored when measured after
each training epoch.

each other. We substitute the English-specific t5 model with the brand new
nort5, which is pre-trained on Norwegian data.

52

5.3.1 Evaluation for Norwegian

We use the ERRANT scorer for obtaining our metrics for Norwegian as well.
As the tool is not developed for Norwegian language, some caution should
be taken when looking at the evaluation metrics. You can read more about
this in chapter 4 section 4.4.3. The fine-grained analysis offered by ERRANT
is ignored for Norwegian.

5.3.2 On the datasets

First a quick note on the datasets themselves. In chapter 3 we described how
we have created two versions of our ASK-derived GEC datasets, for both
training and evaluation purposes. In the first version we use the original
sentences, with their corresponding corrected versions. This is called raw
or ASK-RAW. The second is a bit more complicated. Since each original
sentence might have more than one error, we create a set of sentences which
include only one of the error each. This is dataset is called expanded or
ASK-EXPANDED. The sizes of the two datasets can be observed in table
5.11, repeating the table here for convenience.

Corpus Total sents Train sents Dev sents Test sents

ASK raw 45807 36534 4519 4757
ASK expanded 110947 88887 11168 10895

Table 5.11: There are two versions of the ASK dataset for GEC training. Here
are the sizes of the two datasets, i.e. the sentence counts. We always evaluate
on both datasets, while which training sets are used is varied.

When it comes to evaluation, we always use two separate evaluation
sets, one from each of the aforementioned categories. ASK-RAW is the focus
of our overall performance judgement, and ASK-EXPANDED is the one we
use for error-type analysis in chapter 6.

5.3.3 Round 6 - Norwegian ASK - development

It is the raw evaluation we should focus on from table 5.12. This is from
the testing on naturalistic data. We included the exp results because those
are the ones we use when we dive deeper into the different error types in
the next chapter. By including them here we get an idea of the correlation
between the two evaluation schemes. You can read more about the different
training sets in chapter 3.

Looking at the results in table 5.12, byt5 is by far the model that performs
the best on Norwegian GEC, regardless of the training data or evaluation
scheme. The model only pre-trained on English data is much weaker than
the rest. mt5, the most direct point of comparison to byt5, is significantly
weaker than its byte-level counterpart. nort5, the subword-level model
pre-trained solely on Norwegian data, performs surprisingly badly, and we
get back to that subject in the next subsection.

53

Model Training data Precision raw/exp Recall raw/exp F0.5 raw/exp

t5 (eng) both 0.402/0.232 0.277/0.321 0.369/0.246
nort5 both 0.485/0.341 0.369/0.438 0.456/0.357
nort5 raw 0.532/0.373 0.417/0.467 0.504/0.388
nort5 exp 0.49 /0.4 0.268/0.444 0.42 /0.408
mt5 both 0.583/0.442 0.391/0.46 0.531/0.445
mt5 raw 0.57 /0.411 0.293/0.346 0.479/0.396
mt5 exp 0.588/0.468 0.34 /0.441 0.513/0.462
byt5 both 0.614/0.496 0.465/0.534 0.577/0.503
byt5 raw 0.631/0.482 0.451/0.507 0.584/0.487
byt5 exp 0.636/0.565 0.35/0.554 0.547/0.563

Table 5.12: Norwegian: trained on the ASK corpus. Evaluated on both raw-
style sentences and expanded-style sentences. All models are “base”-sized.
10 epochs each for t5 and mt5, 5 epochs only for byt5. Remember that the
results with ERRANT have some issues, read more in chapter 4.

The models (especially byt5) trained only on the expanded dataset (with
maximum one error in each sentence) seem to be conservative in error-
detection, and thereby have a high precision but lower recall. This makes
sense because the training data is sparser on errors than the raw dataset.

The fine-tuning of byt5-models on our huge Norwegian dataset is very
costly, and we have decided to only run them for 5 epochs instead of 10.
The reason we feel confident to stop the training early for the byt5-models,
is that the improvement stagnates already after 3 epochs. For the run with
byt5-both the evaluation between epochs shows the following F0.5-scores for
the last three epochs: 0.574, 0.576 and 0.577. This pattern is representative
for all three runs.

English t5 is included as a sort of baseline: the model architecture is
appropriate for our seq2seq task, but the model is not trained on Norwegian
data at all, and the tokenizer is English-specific.

Are there benefits from using any particular dataset or combination
of datasets for training? How about if one takes training time into
consideration? At a first glance it looks like training on ASK-EXPANDED or
both is not advantageous. In chapter 6 we study these effects in more detail.

Improving nort5 with learning rate modification

Model Learning rate Precision raw/exp Recall raw/exp F0.5 raw/exp

nort5 0.0001 0.598/0.459 0.465/0.523 0.566/0.47
nort5 0.00005 0.608/0.481 0.484/0.548 0.579/0.493

Table 5.13: Results when fine-tuning the hyper-parameter “learning rate”
for nort5, because the initial experiments were worse than expected. Both
runs use only the raw training dataset

The surprisingly low results on nort5 inspired us to experiment with some

54

of the hyperparameters to see if we can improve the result. The results were
surprising, because the corresponding model for English performed at the
same level as byt5. We run nort5 with learning rate medium (0.0001) and
low (0.00005). Since training only on the raw dataset gave us the best results
on the raw evaluation (which we consider the most important), and the
second best on the expanded evaluation, we only use the raw dataset for
fine-tuning these two models with new learning rates.

The results when using these new learning rates can be seen in table 5.13,
and show how a decreased learning rate is very beneficial for nort5. The
moderately lowered learning rate improved the performance on all three
metrics, and the significantly lowered learning rate even more so. Therefore
we will keep this lower learning rate for the final evaluations on the test
dataset in the next section.

5.3.4 Round 7 - Norwegian ASK - test

Model Learning rate Precision raw/exp Recall raw/exp F0.5 raw/exp

nort5 0.00005 0.608/0.515 0.477/0.539 0.577/0.52
mt5 0.0003 0.568/0.426 0.295/0.341 0.479/0.406
byt5 0.0003 0.626/0.524 0.452/0.514 0.581/0.522

Table 5.14: Results from round 7 of experiments. Comparing nort5, mt5 and
byt5 on the withheld ASK test dataset

We now move over to using the test splits of the ASK dataset. Here
we compare our best versions of the nor-t5, mt5 and byt5 models. The
predictions from these runs will be analysed in more detail in chapter 6.
Also, the model checkpoints are released on Huggingface Hub 3 so that they
can be used for inference by the reader under the names norgec_nort5.pt,
norgec_mt5.pt and norgec_byt5.pt respectively.

Optimization of learning rate was only done on nort5. The other two
models did not benefit from lowering the learning rate in our English
experiments, so we stick to our default value for this hyper-parameter.

The final results are shown in table 5.14. Even with only 5 epochs of
training, byt5 performs the best on both testing corpora. It is its high
precision score that is responsible for this, even if the recall is weaker than
that of nort5. This result means that if one needs a language model only
to perform GEC, it is not necessary to train a Norwegian-specific model to
achieve good results. The multilingual mt5 is weaker than the other two
models on all parameters, but especially its ability to detect error seems to
be weak, reflected in the low recall score.

In chapter 6 we will look at the error-wise predictive capabilities of these
three particular models.

3https://huggingface.co/MatiasJ

55

https://huggingface.co/MatiasJ

5.4 Summary

In this chapter we showed how we have fine-tuned our GEC models, and
what results different pre-trained models, hyperparameters and datasets
have generated. When comparing t5 and byt5 on English GEC, we saw
fairly similar performances when measuring F0.5 scores, albeit differing in
the distribution between precision and recall. This means that byte level
representation in language models is a viable alternative when training GEC
models. mt5, the subword-level representation version of multilingual t5,
did not perform comparably to its byte-level counterpart.

We have presented the first GEC models for Norwegian, consisting
of pre-trained models from the t5 family fine-tuned on the Norwegian
ASK parallel corpus. We have seen that mt5 is not a viable solution to
conduct GEC in Norwegian, but byt5, the version of mt5 that has a byte-
level tokenization, performs very well on GEC after fine-tuning. This shows
that the best way to reap the benefits of multiligually trained models is
to have byte-level representation, at least for Norwegian. And if the only
requirement of a language model is to perform grammatical error correction,
one can safely use a multilingual, byte-level model instead of training a
Norwegian specific model from scratch.

In chapter 6 you can read more about the detailed performance the
models had on different error-types. There we will see how the byte-level
models handle different error types compared to subword-level models. We
will also study in more detail how our experiments with dataset expansion
affected performance.

56

Chapter 6

Analysis

In this chapter we aim to explore some of the research questions posed in
chapter 1. In chapter 5 we saw that the overall performance of byt5 matched
t5 and was significantly better than mt5 on grammatical error correction.
But how does representation level affect performance on an error-type level?
And what did we learn from using the expanded training data when training
our Norwegian GEC models?

All the analysis in this chapter is done based on predictions by the GEC
models trained in chapter 5. In section 6.1 we use the ERRANT scorer to
look at error-type-wise scores. In section 6.1 we use ASKEVAL to do the
same thing for the Norwegian models. Finally in section 6.3 we discuss
how our data augmentation tricks affected performance on our different
evaluation sets.

A note on terminology: if a model is described as for example t5, it is
not the pre-trained model itself, but the fine-tuned GEC version.

6.1 English - fine-grained-ERRANT

Abbreviation Explanation Abbreviation Explanation

M Missing ORTH Orthography
R Replacement PREP Preposition
U Unnecessary PRON Pronoun
CONJ Conjugation WO Word order
CONTR Contraction SVA Subject-Verb agreement
POSS Possessive PART Particle

Table 6.1: Table explaining some of the possibly ambiguous abbreviations in
figures 6.1 and 6.2

One hypothesis regarding byte or character level models is that they are
good at dealing with noisy data. In the case of GEC, this could mean dealing
well with error types such as wrongly spelled words and morphological
issues, and the correction of those. It would be beneficial to see if this is

57

(a) t5, mt5 and byt5 F0.5 results on GEC by error type: highest granularity level.
Round 5: English

(b) t5, mt5 and byt5 F0.5 results on GEC by error type: medium granularity level.
Round 5: English

Figure 6.1: t5, mt5 and byt5 F0.5 results on GEC by error type: high and
medium granularity levels. Round 5: English

58

(a) t5, mt5 and byt5 F0.5 results on GEC by error type: lowest
granularity level: “Missing”. Round 5: English

(b) t5, mt5 and byt5 F0.5 results on GEC by error type: lowest
granularity level: “Replacements”. Round 5: English

(c) t5, mt5 and byt5 F0.5 results on GEC by error type: lowest
granularity level: “Unnecessary”. Round 5: English

Figure 6.2: Errant English: lowest granularity level. The charts are split
according to edit type: M/R/U 59

evident as a difference in performance between t5 and mt5 as compared to
byt5 on some of the relevant subcategories of errors.

Now we will take advantage of the ability of the ERRANT (Bryant et al.,
2017) scorer to look at the corrections in a more fine-grained manner. For
this analysis we pick only one version of each of the three models, more
precisely the one with the median F0.5 score out of the three in round 5 of
experiments on test data. For the overall results on that round see table
5.10. ERRANT gives us 3 options for how granular we want the evaluation
to be. Level 1 (see figure 6.1a) only shows operation tier scores; e.g. R.
(replace). Level 2 (see figure 6.1b) shows main tier scores; e.g. NOUN, but
not operation tier scores. Level 3 shows all category scores; e.g. R:NOUN.

Please remember that as the overall ability of t5 is slightly better than
byt5, we can expect the same slight difference for each score without
concluding that t5 is better at this particular sub-category. The same goes
for mt5 compared to the two other models. Its performance is overall
significantly worse than the two others.

The full evaluation outputted by ERRANT on all fine-grained parameters
for all three models can be found in the appendix, and in the bar-charts we
only show a comparison of performance measured in F0.5. In the appendix
you can find counts for True Positives, False Positives and False Negatives,
as well as scores for precision, recall and finally F0.5. But it might be easier to
just look at the F0.5 scores compared in the bar charts in figures 6.1 and 6.2.

Let us first look at the patterns that are common to the three models.
There is after all a great deal of correlation between them. All three models
are best at correcting replacement errors, and worst at removing unnecessary
words or phrases. mt5 has a noticeably lower score on unnecessary edits,
with F0.5 0.251. The strongest second level categories for all models are
errors in noun inflection, spelling, verb form, orthography, noun number,
morphology and determiners. They struggle with errors with conjugation,
adjectives, adverbs and punctuation. Errors of the “other” type also seem to
pose a challenge to all three models.

For comparison between the different models we will focus on only a
few aspects of the results. Lets first do byt5 versus mt5. These models are
pre-trained in the most similar way, and the comparison of these is our best
way to study how the representation level (byte versus subword) affects
prediction abilities. On the highest granularity level, mt5 struggles more
than byt5 on Unnecessary words and phrases. On granularity level 2, we
can see that mt5 performs better on only two categories: noun inflection
and punctuation. For the two noise-related error types (morphology and
spelling) the advantage of byt5 is smaller than one would expect from the
difference in overall performance. From the lowest level of granularity
we can highlight some of the results that stand out as different from what
could be expected from overall performance. mt5 is good at errors related to
missing pronouns, replacing of noun-inflections, replacing prepositions,
and replacing punctuation. It is noticeably bad at correcting missing
adverbs, conjugations, particles and verbs, as well as removing unnecessary
adjectives and nouns.

Now we can turn to comparing byt5 to t5, where the overall result is

60

more comparable. Just a reminder that the overall F0.5 scores were 0.504
and 0.510 respectively. For level 1 of granularity (figure 6.1a) we see that
both models are strongest on Replacement and weakest on Unnecessary
type edits. There is no significant difference between the models, with a
0.48/0.48, 0.53/0.52 and 0.41/0.40 relation for Missing, Replacements, and
Unnecessary type edits for t5/byt5 respectively. If anything, byt5 is a bit
weaker on correcting Replacement type edits than one would expect from
the overall difference in performance. We can also note that Replacements
account for 71 percent of the errors in the test data, so being best on this is
important for the final score. As long as the distribution is the same in the
training data, it could also explain why both models are best at this type of
errors, as they have seen more examples of that type of error.

Level 2 (6.1b) of granularity focuses on the different parts-of-speech,
while also including orthographical and punctuation categories. We ignore
each category with less than 10 instances, and they are omitted from the
figure. All scores are given in F0.5. For t5 the strongest categories are
VERB:FORM 0.67, SPELL 0.82, NOUN:INFL 0.95. The corresponding
numbers for byt5 are 0.60, 0.80 and 0.95. The strongest scores for byt5
are on NOUN:INFL 0.95, SPELL 0.80 and NOUN:NUM at 0.67. The biggest
differences between the models are that t5 is better on word order, adverbs,
particles and subject-verb agreement, while byt5 is significantly better at
punctuation, and slightly better at adjectives and “other”.

Level 3 (figures 6.2a, 6.2b and 6.2c) of granularity is the most precise
categorization of error types, where part-of-speech (POS) and edit-type are
combined. One example could be that M:ADJ means a missing-adjective
error. In the strong end: The three strongest categories with edit-type + POS
for t5 (corresponding score for byt5 in parenthesis) are R:NOUN:INFL 0.95
(0.95), R:SPELL 0.82 (0.80) and R:VERB:FORM 0.67 (0.60), while for byt5
(t5 in parenthesis) it is R:NOUN:INFL 0.95 (0.95), R:SPELL 0.80 (0.82) and
M:VERB:FORM 0.71 (0.60). The similarity in results on these particular
categories compared to level 2 is explained by the fact that change in
inflection, spelling, or morphological changes are always considered to
be of the type Replacement.

Now lets look at the biggest differences between the models on
granularity level 3. t5 is better at correcting missing conjugations, particles
and pronouns, replacement errors in adverbs and particles, and unnecessary
adverbs and prepositions. byt5 is better on missing punctuation and verb
forms, replacing adjectives and punctuation, and noticing unnecessary
adjectives, nouns and punctuation.

6.1.1 Conclusions

For English GEC, byt5 is significantly better than mt5, and on the same level
as t5. In this section we compared the byte-level model to the subword-
level models on a error-wise basis. Our hypothesis about byte-level models
handling noisy data is not supported by the results for the ERRANT granular
evaluation, as we did not see any specific patterns showing that byte-level
models excel at correcting errors on spelling and morphology compared

61

to any of the two subword-level models. The scores on spelling and
morphology are more or less identical between byt5 and t5. The byte-
level model is clearly better at fixing punctuation-related errors than t5,
but this pattern does not hold when comparing to mt5. Some of the other
sub-word level categories, like verb and noun form and tense, are in favor
of t5.

6.2 Norwegian - fine-grained-ASKEVAL

To be able to do a more fine-grained error-analysis for Norwegian, we
have created a new evaluation scheme: ASKEVAL. This evaluation is only
done on the ASK-EXPANDED evaluation dataset, which is not the same
dataset as the one we used for F0.5 score comparisons in chapter 5. Since
this evaluation dataset has a maximum of one error in each sentence, we
can easily categorise the sentences by their ASK-annotated error type and
get scores for each of the error types based on the comparison of whole
sentences.

Since the expanded evaluation set gives us one error tag per sentence,
we can use a comparison of predictions to targets directly to study the
abilities of the models. There are four (tp, fp, fn, tn) possible outcomes of
an evaluation. From these we calculate precision and recall, and finally F0.5.
This is done for each error type.

The reason why we made a custom evaluation, instead of using a pre-
made Python Library, is that for GEC we need to include the source sentence
in the comparison stage. Most Python libraries, for example ScikitLearn,
compare only target with prediction when calculating precision, recall and
F0.5/F1,0 scores. But for the particular case of source, target and prediction
being equal, ScikitLearn would give true positives when we want true
negatives. A copying of the input when the reference is the same should
not contribute positively to a GEC models score, as that is a too easy task.
Therefore we need access to the source sentence at evaluation time.

6.2.1 Caveats when using ASKEVAL

There are two disadvantages to this scheme. First, the evaluation happens
on a partly artificial set of sentences. This does not match the final use case
of a GEC system, which is to correct naturalistic sentences. Second, the
comparison of whole sentences does not differentiate between predictions
errors on the span in focus and random errors occurring other places in
the sentence. Therefore a scoring of a sentence describes how well a model
predicts sentences as a whole, and not necessarily corrections of the error in
focus.

6.2.2 Result discussion

We present the results on ASKEVAL for nort5, mt5 and byt5 both as tables
(6.4 and 6.5) and as a bar-chart (6.3).

62

Figure 6.3: Comparing the performance of three models on the different
error types in ASK. Round 7: Norwegian

In this section all the results are from round 7 in chapter 5, meaning it
is from evaluation on unseen test-data, and with an adjusted learning rate
for the nort5 model. Before looking at the comparisons in figure 6.3, we
again need to establish that mt5 had an overall significantly lower score than
the two other models. It outperforms any of the other models only on one
error-type. All the comparisons with that model are therefore taking that
into account, and if mt5 is described as doing well on a error-type, this is
only in relative terms.

First we can quickly summarize the patterns shown in figure 6.3 that are
common to all three models. The strongest categories are errors related to
letter casing, morphology, inflection, orthography, and removal and addition
of punctuation. The models seem to struggle with errors with derivation,
foreign word insertions, missing words and wrong word choices.

Now we can move to the variation between the three models. First we
take the error-types where we expected the byte-level model to excel based
on our hypothesis about noisy data: orthography (ORT) and morphology
(F). nort5 and byt5 have very even performance on these categories.

Then to where the models differ. When comparing byt5 to mt5, the
byte-level model is around 0.1 better on most parameters. The exceptions
are casing issues, derivatives and compound missing. There mt5 performs
comparably or better than byt5.

Then we compare byt5 to nort5. nort5 is better than byt5 on casing
(CAP), derivation (DER) and unexpected compounds (PART). The opposite

63

model precision recall F0.5

nort5 0.569 0.857 0.61
byt5 0.507 0.831 0.55
mt5 0.504 0.697 0.534

(a) Casing

model precision recall F0.5

nort5 0.38 0.633 0.413
byt5 0.333 0.282 0.321
mt5 0.394 0.317 0.376

(b) Derivation

model precision recall F0.5

nort5 0.614 0.75 0.637
byt5 0.621 0.747 0.643
mt5 0.507 0.449 0.494

(c) Morphology

model precision recall F0.5

nort5 0.333 1 0.384
byt5 0.5 0.333 0.454
mt5 0.375 0.429 0.385

(d) International words

model precision recall F0.5

nort5 0.624 0.918 0.667
byt5 0.673 0.8 0.695
mt5 0.521 0.581 0.532

(e) Wrong inflection for this word

model precision recall F0.5

nort5 0.427 0.464 0.434
byt5 0.432 0.441 0.434
mt5 0.283 0.193 0.259

(f) Missing word

model precision recall F0.5

nort5 0.49 0.741 0.526
byt5 0.509 0.717 0.54
mt5 0.451 0.525 0.464

(g) Word/phrase order

model precision recall F0.5

nort5 0.658 0.908 0.696
byt5 0.669 0.782 0.689
mt5 0.578 0.627 0.587

(h) Spelling

Figure 6.4: One table for each error type in ASK and how the different
models handled those error types. The rest of the error types are in figure
6.5

is the case for the use of foreign words (FL), punctuation in general (PUNC),
superfluous punctuation (PUNCR) and compound missing (SPL). We
have found some examples (table 6.2) where the models differ on these
parameters. In example 1, nort5 manages to correct the derivation error
while byt5 does not. Rolighet is not a valid derivation of ro in Norwegian,
but the pattern adj-to-noun exists with words like god - godhet. In example 2,
the form vennenskap follows the exact same pattern as example 1, being a
derivation error. This indicates that we cannot completely trust the error-
codes of our augmented ASK corpus. In example 3 alt for should be written
together, and in example 4, a comma could be argued to be correct.

So what conclusions can be drawn from this? Again, as for English, we
see that the byte-level model is good at punctuation. Other than that there
are no clear patterns in the differences between the models, and we did
not find evidence to support that byte-level representation is advantageous
on the so-called “noisy” error-types. In compounding t5 and byt5 behave
oppositely for the two subcategories unexpected compounding and compound
missing. That indicates that byt5 “prefers” to write words together when

64

model precision recall F0.5

nort5 0.5 0.56 0.511
byt5 0.458 0.318 0.421
mt5 0.339 0.276 0.324

(a) CompoundingPART

model precision recall F0.5

nort5 0.36 0.529 0.385
byt5 0.48 0.61 0.501
mt5 0.411 0.545 0.432

(b) Punctuation (general)

model precision recall F0.5

nort5 0.647 0.68 0.653
byt5 0.633 0.698 0.645
mt5 0.563 0.558 0.562

(c) Punctuation (missing)

model precision recall F0.5

nort5 0.6 0.531 0.585
byt5 0.683 0.617 0.669
mt5 0.586 0.456 0.554

(d) Punctuation (remove)

model precision recall F0.5

nort5 0.492 0.666 0.519
byt5 0.443 0.615 0.469
mt5 0.308 0.35 0.316

(e) Superfluous word

model precision recall F0.5

nort5 0.432 0.662 0.464
byt5 0.508 0.759 0.544
mt5 0.505 0.629 0.526

(f) Compounding - should be together

model precision recall F0.5

nort5 0.374 0.375 0.374
byt5 0.361 0.306 0.348
mt5 0.241 0.138 0.21

(g) Wrong word

Figure 6.5: One table for each error type in ASK, showing how the different
models handled those error types. Listing precision, recall and F0.5 score

unsure. mt5 follows this pattern of the byte-level model when it comes to
compounding errors.

6.3 Norwegian - effect of data augmentation

The problem of data sparsity for GEC training was discussed in chapter
3 section 3.4.3. This problem has motivated a lot of research into data
augmentation, also called synthetic data generation. We have made a simple
augmentation of ASK, and the augmented datasets were tested for GEC
model fine-tuning in chapter 5.

We will now look at the effect of these training data augmentations on
final F0.5 scores for our models, on both types of evaluation datasets. The
results are shown in the bar charts of figure 6.6. These results are from
round 6 of training (section 5.3.3), before the hyper-parameter adjustments
for nort5 which significantly improved that models performance. This
unfortunately means that the absolute results on that model should be
interpreted with caution, as the results are unfairly weak. All the evaluation

65

Model Sentence

Example 1 - Derivation

Source Det gir rolighet.
t5 Det gir ro.
byt5 Det gir rolighet.

Example 2 - Unexpected compounding

Source Uten kjærlighet og vennenskap kan man ikke leve.
t5 Uten kjærlighet og vennskap kan man ikke leve.
byt5 Uten kjærlighet og vennenskap kan man ikke leve.

Example 3 - Missed compounding

Source Nå for tiden sitter barn alt for mye inne.
t5 Nå for tiden sitter barn alt for mye inne.
byt5 Nå for tiden sitter barn altfor mye inne.

Example 4 - Punctuation

Source Å vise ansvar gir trygghet for andre mennesker.
t5 Å vise ansvar gir trygghet for andre mennesker.
byt5 Å vise ansvar, gir trygghet for andre mennesker.

Table 6.2: Some examples of when nort5 and byt5 differ in the predictions
they output. Representative for the differences in error-types performance
differences. Correct corrections are highlighted

is done on development data, not test data.
The two bar charts in figure 6.6 show the effect the training data used

has on performance, F0.5 score specifically. For the evaluation on raw data,
nort5 and byt5 show the same pattern: using only expanded training data
is worst, and using only the raw data is the best. Since using both datasets
more than doubles the training cost, it is clear that using only the raw
dataset is the best option. For mt5 the results are quite different, and using
the expanded dataset is positive for its performance.

Looking at the second chart with evaluation on the one-error-per-
sentence expanded evaluation set, it is clear that training on the expanded
dataset is advantageous. It shows how training on the same data as we are
evaluating on is an important factor.

mt5 has a particular behaviour across the two evaluation schemes.
Training solely on raw data seems to be detrimental for the model.

What can be the reason the expanded dataset did not increase
performance the way other data augmentation techniques have been shown
to do? First of all, our technique does not add any new vocabulary to the
training data. Seeing more vocabulary, and how that vocabulary behaves
when it comes to GEC, could give a model an ability to correct a larger
variation of errors. Many other data augmentation techniques add new
vocabulary to the data, since they are using new (clean) sources of text. Our

66

method does not add any new errors either, and only repeats the already
existing errors in slightly new contexts. These new contexts are the same
sentences, but without any additional errors. This variation in context did
not seem to be enough to give the models better performance.

To conclude, we can say that the ASK-EXPANDED dataset is only useful
for fine-tuning the mt5 model. Using both datasets together is never better
than only using one of them, especially when considering the increased
fine-tuning cost. Other data augmentation methods have to be tried out for
Norwegian to significantly improve performance on GEC.

67

a.)

b.)

Figure 6.6: Exploring the effect of different training data (x-axis) on GEC
performance. Three models. a.) is evaluation on ASK-RAW, b.) is evaluation
on ASK-EXPANDED.

68

Chapter 7

Conclusion

7.1 Byte level representation on English GEC

In this thesis we have tried out byte-level language representation for
grammatical error correction models. We have experimented with various
hyperparameters, and achieved a F0.5 score of 0.51 for English with our best
model, with training and testing on the CLC-FCE dataset. We used the
ERRANT scorer (Bryant et al., 2017) to evaluate our models.

We compared the performance of the multilingual byte-level byt5 model
(Xue et al., 2022) with two subword-level models. First with the t5 model
(Raffel et al., 2020), which is pre-trained mostly on English data. Second
with byt5s subword-level, multilingual counterpart mt5 (Xue et al., 2021).
For English, the subword-level t5 model slightly over-performed the byte-
level model, with F0.5 scores of 0.51 and 0.504 respectively. Compared to
the multilingual mt5 however (F0.5 0.428), the byte-level representation was
clearly better. This shows that byte-level representation can be a good option
when training GEC models for English.

We have also compared the performances between these models on
an error-type level. Our hypothesis that byte-level representation might
help with noisy data like orthographical and morphological errors did not
hold water. But there were some differences arising from difference in
representation level, like the fact that byte-level models performed better
on punctuation-related errors, but worse on particle-, word order- and
agreement-related errors.

In addition to comparing performance on GEC, we have looked at some
advantages and disadvantages of using byte level representation. We have
seen that our byte-level models took almost three times as long to develop
due to longer sequences, which is a disadvantage. The advantage of byte-
level models is that all decisions regarding tokenization are by-passed,
and these kind of models can be pre-trained almost “out-of-the-box”. The
fact that subword-levels need a tokenization step is not a great problem
for English, as the current methods for doing this in English yield results
that compare with without-tokenizer systems when measured in F0.5. For
the researcher who has to decide what language representation level to
use for training a GEC model for English, it comes down to whether to

69

emphasize quicker training time subword models, or better performance on
punctuation errors and less pre-processing with byte-level models.

7.2 GEC for Norwegian

With the help of the ASK dataset (Tenfjord et al., 2006) we have fine-
tuned several pre-trained models that can now perform grammatical error
correction in Norwegian. We fine-tuned models built with both subword-
and byte-level text representation. We have established a baseline for GEC
on Norwegian, and achieved a F0.5 score of 0.581 with our best model. Like
in modern NLP in general, the key to perform this task was a suitable
dataset.

The multilingual byte-level model (F0.5 score 0.581) clearly outperforms
its subword-level, multilingual, counterpart mt5 (F0.5 0.479), just as for
English. It is performing just as well as, and even slightly better than,
the subword-level model nort5 (F0.5 0.577) (Samuel et al., 2023), which
was pre-trained only on Norwegian texts. This raises the question whether
language-specific pre-training is necessary for a task like GEC when one has
access to byte-level multilingual models.

We created our own evaluation scheme for Norwegian GEC, so that
we could study the error-wise performance of byt5 compared to subword
models. We primarily compared its performance to nort5, as the overall
performance of mt5 was not very good. As was the case for English, we
did not find that byte-level representation helped with performance on
what we expected to be typical noise-infused error types. The model did
however excel at punctuation related errors, and errors related to wrong
use of foreign words. It was a bit weaker than nort5 on derivation-, letter
casing-, and some compounds-related errors.

For Norwegian, we tested out a new scheme for data augmentation,
where we split the original parallel dataset into one-error-each sentences,
thereby increasing the size of the dataset. Training on this dataset did
not increase performance of our main models, but was beneficial for the
multilingual sub-word based mt5. The latter model did not however
compare well with the other models on overall performance.

The Norwegian models we fine-tuned on the ASK dataset are made
accessible for everyone through HuggingFace Hub.1 With intermediate
knowledge of PyTorch, one can use these models to perform grammatical
error correction on an possibly erroneous input sentence. We hope that the
work done in this thesis will be of help for anyone wanting to continue work
on GEC for Norwegian and other low and medium resource languages.
The byt5 and nort5 models we have fine-tuned have pretty similar results.
When it comes to the decision on whether to use byte-level or subword-level
for fine-tuning, it boils down to a priority of higher performance on certain
error-types like punctuation and less pre-processing for byt5, and faster
fine-tuning time and advantage on some other error-types with nort5.

1https://huggingface.co/MatiasJ

70

https://huggingface.co/MatiasJ

Chapter 8

Suggestions for future work

The study of GEC for English is a huge field with many researchers engaged
in it, and there are still several challenges before the task is completely
solved. In this thesis we have focused on a small part of the process of
model development for English, and several other parts have remained
untouched. For Norwegian, the GEC slate is mostly clean, and we have
created a baseline for others to improve on. Some suggestions for possible
system improvement and future research are discussed in the sections below.

8.1 More GEC training data for Norwegian

As we have only tested one class of training architectures for developing
GEC for Norwegian, namely utilizing the t5 family of pre trained seq2seq
models, a wide landscape of possible approaches remain to be studied and
tested.

Training of GEC systems with modern neural methods requires parallel
corpora of non-corrected and corrected sentences. Creating such corpora
is resource consuming, so there is a limited amount of training data for
GEC. A focus of many recent approaches in GEC for English is to bypass
the training data sparsity problem by using artificially generated datasets
for model pre-training (see chapter 3 for more on this subject). The methods
used for English could be applied in a Norwegian context as well.

One way of creating more training data is to insert errors into
monolingual, error-free text. A possible source for such clean text is a
Norwegian Wikipedia dump. Then one can introduce artificial errors to the
corpora according to some set of rules.

Another method for creating more data is back-translation. A seq2seq
model is trained in a “mirrored” fashion to what we have done when
creating our GEC system. One could use the ASK GEC corpus, but the
source and target swap places. Thereby we train a model to automatically
corrupt clean text by adding errors. The resulting model can then be used
on the sentences in a clean corpus like a Wikipedia dump. The output of
the model become the source sentences in the new corpus, and the input
becomes the target.

71

We are curious to see how much adding artificial pre-training data could
improve GEC performance for Norwegian.

8.2 GEC evaluation for Norwegian

In this thesis we have had a limited set of tools for optimally evaluating the
models we have created. For future work on GEC for Norwegian, a common
evaluation framework would be beneficial. Improving evaluation of
Norwegian GEC could involve adopting the ERRANT scorer for Norwegian.
This adaptation has been done for several other languages already (see
chapter 4). ERRANT uses linguistically motivated rules to perform
alignment between source, target and prediction, and to categorize the
error types according to properties of the text. These rules are facilitated
by language-specific pre-processing steps like part-of-speech tagging and
lemmatization. A language-specific word list is also needed for recognizing
wrongly spelled words. The Czech adaptation of ERRANT (Náplava et al.,
2022) relies on UDPipe, which is also available for Norwegian (Straka, 2020).

8.3 Language specific byte-level models

The byte-level models we used in our experiments, byt5, were pre-trained
on data from over 100 languages, including English and Norwegian. These
models turned out to be roughly equal in predictive power compared to the
language-specific subword-level models when fine-tuned for GEC. What
would happen if a byte-level model was trained on data only from one
particular language? Would it just affect the number of fine-tuning steps
needed to achieve the same performance as we did in our experiments? Or
would it improve performance overall?

Intuitively, language-specificity sounds like a good idea. With
the subword-level models, there is a significant improvement in GEC-
performance when a model is pre-trained on language specific data. But
we have to remember that the subword-level models depend on a language
specific tokenization step for text representation, and the byte-level models
do not have any such step. Perhaps some of the advantage of the subword-
level models comes from the language-specific tokenization step, and the
multilinguality might not be such a big issue for multilingual byt5. If this is
true, a language-specific byte-level model might only give an improvement
in terms of saved training time.

Empirical evidence is needed to answer this question, and we encourage
future researchers to experiment with language-specific byte-level models.

8.4 GEC and society

In this thesis we have limited our considerations regarding GEC to the
conversion of source sentences to predictions that match a target sentence.
But what are the consequences when this task is possibly solved some time

72

in the future? Can school teachers be completely freed from correcting
learner texts? Should we stop teaching correct writing to children, as they
can just rely on a automatic system guessing what they tried to write?
Will every writing software automatically correct everything we write in a
digital format? All of these questions require knowledge from fields such
as pedagogy, psychology and sociology. Society will undoubtedly be faced
with these questions at some point, and political decisions will have to be
made regarding them.

73

Bibliography

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. ArXiv, 1409.

Behera, B., & Bhattacharyya, P. (2013). Automated grammar correction using
hierarchical phrase-based statistical machine translation.

Belkebir, R., & Habash, N. (2021). Automatic error type annotation for
Arabic. Proceedings of the 25th Conference on Computational Natural
Language Learning, 596–606. https://doi.org/10.18653/v1/2021.
conll-1.47

Berggren, S. J. (2019). Automated assessment of norwegian l2 essays using
multi-task learning. master thesis, university of oslo.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with python:
Analyzing text with the natural language toolkit. O’Reilly. https://doi.
org/http://my.safaribooksonline.com/9780596516499

Boyd, A. (2018). Using wikipedia edits in low resource grammatical error
correction. Proceedings of the 4th Workshop on Noisy User-generated Text.
http://aclweb.org/anthology/W18-6111

Brockett, C., Dolan, W., & Gamon, M. (2006). Correcting esl errors using
phrasal smt techniques. Proc. ACL. https://doi.org/10.3115/1220175.
1220207

Bryant, C., Felice, M., Andersen, Ø. E., & Briscoe, T. (2019). The BEA-
2019 shared task on grammatical error correction. Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for Building Educational
Applications, 52–75. https://doi.org/10.18653/v1/W19-4406

Bryant, C., Felice, M., & Briscoe, T. (2017). Automatic annotation and evalu-
ation of error types for grammatical error correction. Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 793–805. https://doi.org/10.18653/v1/P17-
1074

Bryant, C., Yuan, Z., Qorib, M. R., Cao, H., Ng, H. T., & Briscoe, T. (2023).
Grammatical error correction: A survey of the state of the art.

Cho, K., van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On
the properties of neural machine translation: Encoder–decoder
approaches. Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, 103–111. https://doi.
org/10.3115/v1/W14-4012

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., & Bengio, Y. (2014). Learning phrase representations
using RNN encoder–decoder for statistical machine translation.

74

https://doi.org/10.18653/v1/2021.conll-1.47
https://doi.org/10.18653/v1/2021.conll-1.47
https://doi.org/http://my.safaribooksonline.com/9780596516499
https://doi.org/http://my.safaribooksonline.com/9780596516499
http://aclweb.org/anthology/W18-6111
https://doi.org/10.3115/1220175.1220207
https://doi.org/10.3115/1220175.1220207
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.3115/v1/W14-4012

Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 1724–1734. https://doi.org/10.3115/
v1/D14-1179

Chollampatt, S., & Ng, H. T. (2017). Connecting the dots: Towards human-
level grammatical error correction. Proceedings of the 12th Workshop
on Innovative Use of NLP for Building Educational Applications, 327–333.
https://doi.org/10.18653/v1/W17-5037

Chollampatt, S., Wang, W., & Ng, H. T. (2019). Cross-sentence grammatical
error correction. Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 435–445. https://doi.org/10.
18653/v1/P19-1042

Chomsky, N. (1965). Aspects of the theory of syntax. The MIT Press. http :
//www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/
dp/0262530074

Choshen, L., & Abend, O. (2018). Reference-less measure of faithfulness for
grammatical error correction. Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), 124–129. https:
//doi.org/10.18653/v1/N18-2020

Dahlmeier, D., & Ng, H. T. (2012). Better evaluation for grammatical
error correction. Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 568–572. https://aclanthology.org/
N12-1067

Dahlmeier, D., Ng, H. T., & Wu, S. M. (2013). Building a large annotated
corpus of learner English: The NUS corpus of learner English.
Proceedings of the Eighth Workshop on Innovative Use of NLP for Building
Educational Applications, 22–31. https://aclanthology.org/W13-1703

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding.
Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.
18653/v1/N19-1423

Fabbri, A. R., Kryściński, W., McCann, B., Xiong, C., Socher, R., & Radev,
D. (2021). SummEval: Re-evaluating summarization evaluation.
Transactions of the Association for Computational Linguistics, 9, 391–
409. https://doi.org/10.1162/tacl_a_00373

Gamon, M., Leacock, C., Brockett, C., William B Dolan, J. G., Belenko, D., &
Klementiev, A. (2009). Using statistical techniques and web search
to correct esl errors.

Grundkiewicz, R., & Junczys-Dowmunt, M. (2018). Near human-level
performance in grammatical error correction with hybrid machine
translation. Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), 284–290. https : / /
doi.org/10.18653/v1/N18-2046

75

https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/W17-5037
https://doi.org/10.18653/v1/P19-1042
https://doi.org/10.18653/v1/P19-1042
http://www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074
http://www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074
http://www.amazon.com/Aspects-Theory-Syntax-Noam-Chomsky/dp/0262530074
https://doi.org/10.18653/v1/N18-2020
https://doi.org/10.18653/v1/N18-2020
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://aclanthology.org/W13-1703
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.18653/v1/N18-2046
https://doi.org/10.18653/v1/N18-2046

Grundkiewicz, R., Junczys-Dowmunt, M., & Heafield, K. (2019). Neural
grammatical error correction systems with unsupervised pre-
training on synthetic data. Proceedings of the Fourteenth Workshop
on Innovative Use of NLP for Building Educational Applications, 252–263.
https://doi.org/10.18653/v1/W19-4427

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. (2012). Improving neural networks by preventing co-adaptation
of feature detectors. CoRR, abs/1207.0580. http://arxiv.org/abs/1207.
0580

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9, 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735

Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding
with Bloom embeddings, convolutional neural networks and incremental
parsing [To appear].

Hu, J., Ruder, S., Siddhant, A., Neubig, G., Firat, O., & Johnson, M.
(2020). XTREME: A massively multilingual multi-task benchmark
for evaluating cross-lingual generalization. CoRR, abs/2003.11080.
https://arxiv.org/abs/2003.11080

Jentoft, M., & Samuel, D. (2023). NocoLA: The norwegian corpus of linguistic
acceptability. The 24rd Nordic Conference on Computational Linguistics.
https://openreview.net/forum?id=UcWZrerHDCe

Junczys-Dowmunt, M., Grundkiewicz, R., Guha, S., & Heafield, K. (2018).
Approaching neural grammatical error correction as a low-resource
machine translation task. Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), 595–606. https:
//doi.org/10.18653/v1/N18-1055

Kementchedjhieva, Y., & Søgaard, A. (2023). Grammatical error correction
through round-trip machine translation. Findings of the Association
for Computational Linguistics: EACL 2023, 2208–2215. https : / /
aclanthology.org/2023.findings-eacl.165

Kiyono, S., Suzuki, J., Mita, M., Mizumoto, T., & Inui, K. (2019). An
empirical study of incorporating pseudo data into grammatical error
correction. Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), 1236–1242. https:
//doi.org/10.18653/v1/D19-1119

Kozodoi, N. (2021). Gradient accumulation in pytorch. https://kozodoi.
me/python/deep%5C%20learning/pytorch/tutorial/2021/02/
19/gradient-accumulation.html

Kudo, T., & Richardson, J. (2018). Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text
processing. CoRR, abs/1808.06226. http://arxiv.org/abs/1808.06226

Kummervold, P. E., De la Rosa, J., Wetjen, F., & Brygfjeld, S. A. (2021).
Operationalizing a national digital library: The case for a Norwegian
transformer model. Proceedings of the 23rd Nordic Conference on
Computational Linguistics (NoDaLiDa), 20–29. https://aclanthology.
org/2021.nodalida-main.3

76

https://doi.org/10.18653/v1/W19-4427
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2003.11080
https://openreview.net/forum?id=UcWZrerHDCe
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://aclanthology.org/2023.findings-eacl.165
https://aclanthology.org/2023.findings-eacl.165
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://kozodoi.me/python/deep%5C%20learning/pytorch/tutorial/2021/02/19/gradient-accumulation.html
https://kozodoi.me/python/deep%5C%20learning/pytorch/tutorial/2021/02/19/gradient-accumulation.html
https://kozodoi.me/python/deep%5C%20learning/pytorch/tutorial/2021/02/19/gradient-accumulation.html
http://arxiv.org/abs/1808.06226
https://aclanthology.org/2021.nodalida-main.3
https://aclanthology.org/2021.nodalida-main.3

Kutuzov, A., Barnes, J., Velldal, E., Øvrelid, L., & Oepen, S. (2021). Large-
scale contextualised language modelling for Norwegian. Proceedings
of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa),
30–40. https://aclanthology.org/2021.nodalida-main.4

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions and reversals. [Doklady Akademii Nauk SSSR, V163 No4
845-848 1965]. Soviet Physics Doklady, 10(8), 707–710.

Li, R., Wang, C., Zha, Y., Yu, Y., Guo, S., Wang, Q., Liu, Y., & Lin, H. (2019).
The LAIX systems in the BEA-2019 GEC shared task. Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for Building Educational
Applications, 159–167. https://doi.org/10.18653/v1/W19-4416

Mielke, S. J., Alyafeai, Z., Salesky, E., Raffel, C., Dey, M., Gallé, M., Raja,
A., Si, C., Lee, W. Y., Sagot, B., & Tan, S. (2021). Between words
and characters: A brief history of open-vocabulary modeling and
tokenization in NLP. CoRR, abs/2112.10508. https://arxiv.org/abs/
2112.10508

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation
of word representations in vector space. Proceedings of Workshop at
ICLR, 2013.

Naber, D. (2003). A rule-based style and grammar checker.
Náplava, J., Straka, M., Straková, J., & Rosen, A. (2022). Czech grammar

error correction with a large and diverse corpus. Transactions of the
Association for Computational Linguistics, 10, 452–467. https://doi.
org/10.1162/tacl_a_00470

Napoles, C., Sakaguchi, K., Post, M., & Tetreault, J. (2015). Ground truth for
grammatical error correction metrics. Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
2: Short Papers), 588–593. https://doi.org/10.3115/v1/P15-2097

Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., & Bryant, C.
(2014). The CoNLL-2014 shared task on grammatical error correction.
Proceedings of the Eighteenth Conference on Computational Natural
Language Learning: Shared Task, 1–14. https ://doi .org/10.3115/
v1/W14-1701

Nicholls, D. (2003). The cambridge learner corpus - error coding and analysis
for lexicography and elt.

Omelianchuk, K., Atrasevych, V., Chernodub, A., & Skurzhanskyi, O.
(2020). GECToR – grammatical error correction: Tag, not rewrite.
Proceedings of the Fifteenth Workshop on Innovative Use of NLP for
Building Educational Applications, 163–170. https : / / doi . org / 10 .
18653/v1/2020.bea-1.16

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: A method
for automatic evaluation of machine translation. Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics,
311–318. https://doi.org/10.3115/1073083.1073135

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang,
E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,

77

https://aclanthology.org/2021.nodalida-main.4
https://doi.org/10.18653/v1/W19-4416
https://arxiv.org/abs/2112.10508
https://arxiv.org/abs/2112.10508
https://doi.org/10.1162/tacl_a_00470
https://doi.org/10.1162/tacl_a_00470
https://doi.org/10.3115/v1/P15-2097
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.3115/1073083.1073135

Fang, L., . . . Chintala, S. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Advances in neural information
processing systems 32 (pp. 8024–8035). Curran Associates, Inc. http:
//papers.neurips.cc/paper/9015-pytorch-an- imperative-style-
high-performance-deep-learning-library.pdf

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., &
Zettlemoyer, L. (2018). Deep contextualized word representations.
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), 2227–2237. https://doi.org/10.18653/v1/
N18-1202

Popel, M., & Bojar, O. (2018). Training tips for the transformer model. CoRR,
abs/1804.00247. http://arxiv.org/abs/1804.00247

Povlsen, C., Hein, A. S., de Smedt, K., Löfvendahl, B., Paggio, P., Persson, O.,
& Rosén, V. (1999). Final project report, scarrie.

Qorib, M., Na, S.-H., & Ng, H. T. (2022). Frustratingly easy system
combination for grammatical error correction. Proceedings of the
2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 1964–1974.
https://doi.org/10.18653/v1/2022.naacl-main.143

Qorib, M. R., & Ng, H. T. (2022). Grammatical error correction: Are we there
yet? Proceedings of the 29th International Conference on Computational
Linguistics, 2794–2800. https://aclanthology.org/2022.coling-1.246

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.,
Li, W., & Liu, P. J. (2020). Exploring the limits of transfer learning
with a unified text-to-text transformer. Journal of Machine Learning
Research, 21(140), 1–67. http://jmlr.org/papers/v21/20-074.html

Rothe, S., Mallinson, J., Malmi, E., Krause, S., & Severyn, A. (2021). A simple
recipe for multilingual grammatical error correction. Proceedings
of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), 702–707. https://doi.
org/10.18653/v1/2021.acl-short.89

Samuel, D., Kutuzov, A., Touileb, S., Velldal, E., Øvrelid, L., Rønningstad,
E., Sigdel, E., & Palatkina, A. S. (2023). Norbench – a benchmark
for norwegian language models. The 24rd Nordic Conference on
Computational Linguistics. https : / / openreview. net / forum ? id =
WgxNONkAbz

Samuel, D., & Straka, M. (2021). ÚFAL at MultiLexNorm 2021: Improving
multilingual lexical normalization by fine-tuning ByT5. Proceedings
of the 7th Workshop on Noisy User-generated Text (W-NUT 2021).

Shah, D. S., Schwartz, H. A., & Hovy, D. (2020). Predictive biases in
natural language processing models: A conceptual framework and
overview. Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 5248–5264. https://doi.org/10.18653/v1/
2020.acl-main.468

78

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/1804.00247
https://doi.org/10.18653/v1/2022.naacl-main.143
https://aclanthology.org/2022.coling-1.246
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://openreview.net/forum?id=WgxNONkAbz
https://openreview.net/forum?id=WgxNONkAbz
https://doi.org/10.18653/v1/2020.acl-main.468
https://doi.org/10.18653/v1/2020.acl-main.468

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov,
R. (2014). Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15, 1929–1958.

Straka, M. (2020). Udpipe norwegian bokmaal: Morphosyntactic analysis of
raw text. version 1.2.1-ud2.4. https://doi.org/10.57771/hvn0-kb58

Tajiri, T., Komachi, M., & Matsumoto, Y. (2012). Tense and aspect error
correction for ESL learners using global context. Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), 198–202. https://aclanthology.org/P12-2039

Tarnavskyi, M., Chernodub, A., & Omelianchuk, K. (2022). Ensembling and
knowledge distilling of large sequence taggers for grammatical error
correction. Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 3842–3852. https:
//aclanthology.org/2022.acl-long.266

Tenfjord, K., Meurer, P., & Hofland, K. (2006). The ASK Corpus – A Language
Learner Corpus of Norwegian as a Second Language. Proceedings from 5th
International Conference on Language Resources and Evaluation (LREC),
Genova 2006. http://www.lrec-conf.org/proceedings/lrec2006/pdf/
573%5C_pdf

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. CoRR,
abs/1706.03762. http://arxiv.org/abs/1706.03762

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. (2018).
GLUE: A multi-task benchmark and analysis platform for natural
language understanding. Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 353–
355. https://doi.org/10.18653/v1/W18-5446

Wang, Y., Wang, Y., Dang, K., Liu, J., & Liu, Z. (2021). A comprehensive
survey of grammatical error correction. ACM Trans. Intell. Syst.
Technol., 12(5). https://doi.org/10.1145/3474840

Warstadt, A., Singh, A., & Bowman, S. R. (2019). Neural network accept-
ability judgments. Transactions of the Association for Computational
Linguistics, 7, 625–641. https://doi.org/10.1162/tacl_a_00290

Winata, G. I., Madotto, A., Lin, Z., Liu, R., Yosinski, J., & Fung, P. (2021).
Language models are few-shot multilingual learners. Proceedings of
the 1st Workshop on Multilingual Representation Learning, 1–15. https:
//doi.org/10.18653/v1/2021.mrl-1.1

Winder, R. V. P., MacKinnon, J., Li, S. Y., Lin, B. C. T. L., Heah, C. L. H.,
Morgado da Costa, L., Kuribayashi, T., & Bond, F. (2017). NTUCLE:
Developing a corpus of learner English to provide writing support
for engineering students. Proceedings of the 4th Workshop on Natural
Language Processing Techniques for Educational Applications (NLPTEA
2017), 1–11. https://aclanthology.org/W17-5901

Xie, Z., Avati, A., Arivazhagan, N., Jurafsky, D., & Ng, A. (2016). Neural
language correction with character-based attention.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S., Kale, M., Roberts,
A., & Raffel, C. (2022). ByT5: Towards a token-free future with
pre-trained byte-to-byte models. Transactions of the Association for

79

https://doi.org/10.57771/hvn0-kb58
https://aclanthology.org/P12-2039
https://aclanthology.org/2022.acl-long.266
https://aclanthology.org/2022.acl-long.266
http://www.lrec-conf.org/proceedings/lrec2006/pdf/573%5C_pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/573%5C_pdf
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1145/3474840
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/2021.mrl-1.1
https://doi.org/10.18653/v1/2021.mrl-1.1
https://aclanthology.org/W17-5901

Computational Linguistics, 10, 291–306. https://doi.org/10.1162/tacl_
a_00461

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barua,
A., & Raffel, C. (2021). MT5: A massively multilingual pre-trained
text-to-text transformer. Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 483–498. https://doi.org/10.18653/
v1/2021.naacl-main.41

Yannakoudakis, H., Briscoe, T., & Medlock, B. (2011). A New Dataset
and Method for Automatically Grading ESOL Texts. The 49th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies.

Yuan, Z., & Briscoe, T. (2016). Grammatical error correction using neural
machine translation. Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 380–386. https://doi.org/10.18653/
v1/N16-1042

Zaghouani, W., Mohit, B., Habash, N., Obeid, O., Tomeh, N., Rozovskaya,
A., Farra, N., Alkuhlani, S., & Oflazer, K. (2014). Large scale arabic
error annotation: Guidelines and framework. https://doi.org/10.
13140/RG.2.1.3273.6169

80

https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.13140/RG.2.1.3273.6169
https://doi.org/10.13140/RG.2.1.3273.6169

Appendix

8.5 Error wise results round 5

On the following pages are the full evaluations from the ERRANT automatic
scorer on the experiments in round 5 from section 5.2.6. The first pdf is from
the predictions of the GEC-trained t5 model, the second for mt5, and the
third is for the GEC-trained byt5 model. The numbers in these tables are
used to create the bar-charts in figures 6.1 and 6.2.

81

Granular evaluation for round5 - T5
Run identifier: number3

Top level evaluation
=========== Span-Based Correction ============

 TP FP FN Prec Rec F0.5
 2284 1742 3988 0.5673 0.3642 0.5104

==

Granularity level 1
===================== Span-Based Correction ======================
Category TP FP FN P R F0.5
M 353 304 691 0.5373 0.3381 0.4807
R 1729 1182 2851 0.594 0.3775 0.5329
U 202 256 446 0.441 0.3117 0.4073

Granularity level 2
===================== Span-Based Correction ======================
Category TP FP FN P R F0.5
ADJ 26 46 126 0.3611 0.1711 0.2955
ADJ:FORM 3 1 2 0.75 0.6 0.7143
ADV 23 28 123 0.451 0.1575 0.3286
CONJ 1 7 27 0.125 0.0357 0.0833
CONTR 1 3 4 0.25 0.2 0.2381
DET 316 192 346 0.622 0.4773 0.5865
MORPH 55 27 50 0.6707 0.5238 0.6351
NOUN 224 227 598 0.4967 0.2725 0.4265
NOUN:INFL 16 1 0 0.9412 1.0 0.9524
NOUN:NUM 62 32 57 0.6596 0.521 0.6263
NOUN:POSS 1 0 0 1.0 1.0 1.0
ORTH 99 53 78 0.6513 0.5593 0.6306
OTHER 214 448 1016 0.3233 0.174 0.2759
PART 19 15 34 0.5588 0.3585 0.5026
PREP 315 204 385 0.6069 0.45 0.5674
PRON 104 54 130 0.6582 0.4444 0.6005
PUNCT 6 22 46 0.2143 0.1154 0.1829
SPELL 378 67 138 0.8494 0.7326 0.8232
VERB 117 150 412 0.4382 0.2212 0.3663
VERB:FORM 106 48 66 0.6883 0.6163 0.6726
VERB:INFL 7 1 0 0.875 1.0 0.8974
VERB:SVA 40 25 29 0.6154 0.5797 0.6079
VERB:TENSE 123 84 265 0.5942 0.317 0.5058
WO 28 7 56 0.8 0.3333 0.625

Granularity level 3
===================== Span-Based Correction ======================
Category TP FP FN P R F0.5
M:ADJ 6 8 25 0.4286 0.1935 0.3448
M:ADV 4 6 26 0.4 0.1333 0.2857
M:CONJ 1 3 13 0.25 0.0714 0.1667

82

M:DET 175 99 144 0.6387 0.5486 0.6184
M:NOUN 8 19 59 0.2963 0.1194 0.2286
M:OTHER 7 38 167 0.1556 0.0402 0.0989
M:PART 2 3 10 0.4 0.1667 0.3125
M:PREP 64 46 87 0.5818 0.4238 0.5415
M:PRON 42 26 43 0.6176 0.4941 0.5882
M:PUNCT 1 7 19 0.125 0.05 0.0962
M:VERB 16 33 52 0.3265 0.2353 0.303
M:VERB:FORM 6 4 4 0.6 0.6 0.6
M:VERB:TENSE 21 12 42 0.6364 0.3333 0.5385
R:ADJ 19 33 82 0.3654 0.1881 0.3074
R:ADJ:FORM 3 1 2 0.75 0.6 0.7143
R:ADV 14 16 59 0.4667 0.1918 0.3627
R:CONJ 0 2 9 0.0 0.0 0.0
R:CONTR 0 2 1 0.0 0.0 0.0
R:DET 63 45 123 0.5833 0.3387 0.5097
R:MORPH 55 27 50 0.6707 0.5238 0.6351
R:NOUN 210 189 494 0.5263 0.2983 0.4565
R:NOUN:INFL 16 1 0 0.9412 1.0 0.9524
R:NOUN:NUM 62 32 57 0.6596 0.521 0.6263
R:NOUN:POSS 1 0 0 1.0 1.0 1.0
R:ORTH 99 53 78 0.6513 0.5593 0.6306
R:OTHER 195 305 775 0.39 0.201 0.3283
R:PART 14 12 17 0.5385 0.4516 0.5185
R:PREP 196 130 220 0.6012 0.4712 0.5698
R:PRON 48 18 62 0.7273 0.4364 0.6417
R:PUNCT 5 9 12 0.3571 0.2941 0.3425
R:SPELL 378 67 138 0.8494 0.7326 0.8232
R:VERB 95 101 331 0.4847 0.223 0.3926
R:VERB:FORM 96 43 60 0.6906 0.6154 0.6742
R:VERB:INFL 7 1 0 0.875 1.0 0.8974
R:VERB:SVA 40 25 29 0.6154 0.5797 0.6079
R:VERB:TENSE 85 63 196 0.5743 0.3025 0.4868
R:WO 28 7 56 0.8 0.3333 0.625
U:ADJ 1 5 19 0.1667 0.05 0.1136
U:ADV 5 6 38 0.4545 0.1163 0.2874
U:CONJ 0 2 5 0.0 0.0 0.0
U:CONTR 1 1 3 0.5 0.25 0.4167
U:DET 78 48 79 0.619 0.4968 0.59
U:NOUN 6 19 45 0.24 0.1176 0.1987
U:OTHER 12 105 74 0.1026 0.1395 0.1083
U:PART 3 0 7 1.0 0.3 0.6818
U:PREP 55 28 78 0.6627 0.4135 0.5914
U:PRON 14 10 25 0.5833 0.359 0.5185
U:PUNCT 0 6 15 0.0 0.0 0.0
U:VERB 6 16 29 0.2727 0.1714 0.2439
U:VERB:FORM 4 1 2 0.8 0.6667 0.7692
U:VERB:TENSE 17 9 27 0.6538 0.3864 0.5743

Figure 8.1: The full ERRANT fine-grained, error-wise, evaluation from
round 5. Model: t5

83

mt5
Granular evaluation for round 5 - mt5
Run identifier: number1-mt5_x

Top level evaluation
=========== Span-Based Correction ============

 TP FP FN Prec Rec F0.5
 1450 1211 4828 0.5449 0.231 0.4284

==

Granularity level 1
===================== Span-Based Correction ======================
Category TP FP FN P R F0.5
M 190 110 858 0.6333 0.1813 0.4226
R 1141 791 3438 0.5906 0.2492 0.4636
U 119 310 532 0.2774 0.1828 0.2514

Granularity level 2
===================== Span-Based Correction ======================
Category TP FP FN P R F0.5
ADJ 21 29 132 0.42 0.1373 0.2975
ADJ:FORM 1 0 4 1.0 0.2 0.5556
ADV 7 24 139 0.2258 0.0479 0.1296
CONJ 0 2 28 0.0 0.0 0.0
CONTR 2 1 3 0.6667 0.4 0.5882
DET 177 114 485 0.6082 0.2674 0.4847
MORPH 43 22 61 0.6615 0.4135 0.5907
NOUN 134 188 692 0.4161 0.1622 0.3169
NOUN:INFL 16 0 0 1.0 1.0 1.0
NOUN:NUM 35 23 84 0.6034 0.2941 0.4986
NOUN:POSS 1 0 0 1.0 1.0 1.0
ORTH 72 67 103 0.518 0.4114 0.4925
OTHER 116 320 1112 0.2661 0.0945 0.1952
PART 6 10 47 0.375 0.1132 0.2564
PREP 201 105 499 0.6569 0.2871 0.5223
PRON 58 29 176 0.6667 0.2479 0.4983
PUNCT 8 8 49 0.5 0.1404 0.3306
SPELL 331 79 185 0.8073 0.6415 0.7676
VERB 57 68 473 0.456 0.1075 0.2767
VERB:FORM 71 54 102 0.568 0.4104 0.5275
VERB:INFL 2 0 5 1.0 0.2857 0.6667
VERB:SVA 25 24 44 0.5102 0.3623 0.4717
VERB:TENSE 52 37 336 0.5843 0.134 0.3495
WO 14 7 69 0.6667 0.1687 0.4192

Granularity level 3
===================== Span-Based Correction ======================
Category TP FP FN P R F0.5
M:ADJ 2 1 30 0.6667 0.0625 0.2273
M:ADV 1 3 29 0.25 0.0333 0.1087

84

M:CONJ 0 0 14 1.0 0.0 0.0
M:DET 94 46 225 0.6714 0.2947 0.5347
M:NOUN 2 12 65 0.1429 0.0299 0.0813
M:OTHER 1 5 174 0.1667 0.0057 0.0251
M:PART 0 0 12 1.0 0.0 0.0
M:PREP 47 14 104 0.7705 0.3113 0.5949
M:PRON 26 16 59 0.619 0.3059 0.5138
M:PUNCT 1 0 21 1.0 0.0455 0.1923
M:VERB 3 6 65 0.3333 0.0441 0.1442
M:VERB:FORM 5 5 5 0.5 0.5 0.5
M:VERB:TENSE 8 2 55 0.8 0.127 0.3883
R:ADJ 19 21 82 0.475 0.1881 0.364
R:ADJ:FORM 1 0 4 1.0 0.2 0.5556
R:ADV 4 11 69 0.2667 0.0548 0.1504
R:CONJ 0 1 9 0.0 0.0 0.0
R:CONTR 0 0 1 1.0 0.0 0.0
R:DET 24 13 162 0.6486 0.129 0.3593
R:MORPH 43 22 61 0.6615 0.4135 0.5907
R:NOUN 131 153 576 0.4613 0.1853 0.3554
R:NOUN:INFL 16 0 0 1.0 1.0 1.0
R:NOUN:NUM 35 23 84 0.6034 0.2941 0.4986
R:NOUN:POSS 1 0 0 1.0 1.0 1.0
R:ORTH 72 67 103 0.518 0.4114 0.4925
R:OTHER 112 162 855 0.4088 0.1158 0.2714
R:PART 6 9 25 0.4 0.1935 0.3297
R:PREP 125 63 291 0.6649 0.3005 0.5351
R:PRON 25 8 85 0.7576 0.2273 0.5165
R:PUNCT 6 4 12 0.6 0.3333 0.5172
R:SPELL 331 79 185 0.8073 0.6415 0.7676
R:VERB 51 52 376 0.4951 0.1194 0.3039
R:VERB:FORM 63 45 94 0.5833 0.4013 0.5348
R:VERB:INFL 2 0 5 1.0 0.2857 0.6667
R:VERB:SVA 25 24 44 0.5102 0.3623 0.4717
R:VERB:TENSE 35 27 246 0.5645 0.1246 0.3308
R:WO 14 7 69 0.6667 0.1687 0.4192
U:ADJ 0 7 20 0.0 0.0 0.0
U:ADV 2 10 41 0.1667 0.0465 0.1099
U:CONJ 0 1 5 0.0 0.0 0.0
U:CONTR 2 1 2 0.6667 0.5 0.625
U:DET 59 55 98 0.5175 0.3758 0.4812
U:NOUN 1 23 51 0.0417 0.0192 0.0338
U:OTHER 3 153 83 0.0192 0.0349 0.0211
U:PART 0 1 10 0.0 0.0 0.0
U:PREP 29 28 104 0.5088 0.218 0.4017
U:PRON 7 5 32 0.5833 0.1795 0.4023
U:PUNCT 1 4 16 0.2 0.0588 0.1351
U:VERB 3 10 32 0.2308 0.0857 0.1724
U:VERB:FORM 3 4 3 0.4286 0.5 0.4412
U:VERB:TENSE 9 8 35 0.5294 0.2045 0.4018

Figure 8.2: The full ERRANT fine-grained, error-wise, evaluation from
round 5. Model: mt5

85

Granular evaluation for round 5 - BYT5
Run identifier: number4

Top level evaluation
=========== Span-Based Correction ============

 TP FP FN Prec Rec F0.5
 2152 1627 4126 0.5695 0.3428 0.5029

==

Granularity level 1
===================== Span-Based Correction ======================
Category TP FP FN P R F0.5
M 332 276 716 0.5461 0.3168 0.477
R 1646 1150 2933 0.5887 0.3595 0.5221
U 174 201 477 0.464 0.2673 0.4045

Granularity level 2
===================== Span-Based Correction ======================
Category TP FP FN P R F0.5
ADJ 31 38 122 0.4493 0.2026 0.3613
ADJ:FORM 3 0 2 1.0 0.6 0.8824
ADV 15 37 131 0.2885 0.1027 0.2119
CONJ 1 11 27 0.0833 0.0357 0.0658
CONTR 3 1 2 0.75 0.6 0.7143
DET 299 195 363 0.6053 0.4517 0.5667
MORPH 60 35 44 0.6316 0.5769 0.6198
NOUN 207 194 619 0.5162 0.2506 0.4259
NOUN:INFL 16 1 0 0.9412 1.0 0.9524
NOUN:NUM 71 31 48 0.6961 0.5966 0.6736
NOUN:POSS 1 0 0 1.0 1.0 1.0
ORTH 100 49 75 0.6711 0.5714 0.6485
OTHER 214 327 1014 0.3956 0.1743 0.3154
PART 12 14 41 0.4615 0.2264 0.3822
PREP 286 221 414 0.5641 0.4086 0.5242
PRON 88 60 146 0.5946 0.3761 0.5327
PUNCT 11 17 46 0.3929 0.193 0.3254
SPELL 364 74 152 0.8311 0.7054 0.8025
VERB 101 132 429 0.4335 0.1906 0.3454
VERB:FORM 96 61 77 0.6115 0.5549 0.5993
VERB:INFL 7 1 0 0.875 1.0 0.8974
VERB:SVA 35 34 34 0.5072 0.5072 0.5072
VERB:TENSE 104 80 284 0.5652 0.268 0.4626
WO 27 14 56 0.6585 0.3253 0.5466

Granularity level 3
===================== Span-Based Correction ======================
Category TP FP FN P R F0.5
M:ADJ 5 5 27 0.5 0.1562 0.3472
M:ADV 4 4 26 0.5 0.1333 0.3226
M:CONJ 1 8 13 0.1111 0.0714 0.1

86

M:DET 171 99 148 0.6333 0.5361 0.6112
M:NOUN 5 18 62 0.2174 0.0746 0.1572
M:OTHER 6 30 169 0.1667 0.0343 0.094
M:PART 1 1 11 0.5 0.0833 0.25
M:PREP 63 34 88 0.6495 0.4172 0.5844
M:PRON 38 33 47 0.5352 0.4471 0.5149
M:PUNCT 3 7 19 0.3 0.1364 0.2419
M:VERB 15 21 53 0.4167 0.2206 0.3538
M:VERB:FORM 6 2 4 0.75 0.6 0.7143
M:VERB:TENSE 14 14 49 0.5 0.2222 0.4
R:ADJ 22 25 79 0.4681 0.2178 0.3806
R:ADJ:FORM 3 0 2 1.0 0.6 0.8824
R:ADV 6 13 67 0.3158 0.0822 0.2013
R:CONJ 0 2 9 0.0 0.0 0.0
R:CONTR 1 0 0 1.0 1.0 1.0
R:DET 63 48 123 0.5676 0.3387 0.5
R:MORPH 60 35 44 0.6316 0.5769 0.6198
R:NOUN 195 168 512 0.5372 0.2758 0.4516
R:NOUN:INFL 16 1 0 0.9412 1.0 0.9524
R:NOUN:NUM 71 31 48 0.6961 0.5966 0.6736
R:NOUN:POSS 1 0 0 1.0 1.0 1.0
R:ORTH 100 49 75 0.6711 0.5714 0.6485
R:OTHER 199 248 768 0.4452 0.2058 0.3612
R:PART 9 13 22 0.4091 0.2903 0.3782
R:PREP 175 145 241 0.5469 0.4207 0.5159
R:PRON 41 24 69 0.6308 0.3727 0.5541
R:PUNCT 7 7 11 0.5 0.3889 0.473
R:SPELL 364 74 152 0.8311 0.7054 0.8025
R:VERB 82 103 345 0.4432 0.192 0.3513
R:VERB:FORM 87 55 70 0.6127 0.5541 0.6
R:VERB:INFL 7 1 0 0.875 1.0 0.8974
R:VERB:SVA 35 34 34 0.5072 0.5072 0.5072
R:VERB:TENSE 75 60 206 0.5556 0.2669 0.4568
R:WO 27 14 56 0.6585 0.3253 0.5466
U:ADJ 4 8 16 0.3333 0.2 0.2941
U:ADV 5 20 38 0.2 0.1163 0.1748
U:CONJ 0 1 5 0.0 0.0 0.0
U:CONTR 2 1 2 0.6667 0.5 0.625
U:DET 65 48 92 0.5752 0.414 0.5337
U:NOUN 7 8 45 0.4667 0.1346 0.3125
U:OTHER 9 49 77 0.1552 0.1047 0.1415
U:PART 2 0 8 1.0 0.2 0.5556
U:PREP 48 42 85 0.5333 0.3609 0.4868
U:PRON 9 3 30 0.75 0.2308 0.5172
U:PUNCT 1 3 16 0.25 0.0588 0.1515
U:VERB 4 8 31 0.3333 0.1143 0.241
U:VERB:FORM 3 4 3 0.4286 0.5 0.4412
U:VERB:TENSE 15 6 29 0.7143 0.3409 0.5859

Figure 8.3: The full ERRANT fine-grained, error-wise, evaluation from
round 5. Model: byt5

87

	Introduction
	Background
	Grammatical Error Correction
	Evaluation of GEC
	Three periods of development in GEC
	Previous results on shared task benchmarks

	Language representation in NLP
	Word level language representation
	Subword language representation
	Byte and character level language representation
	Language representation for GEC

	Pre-trained GEC models
	Transformers
	Transfer learning
	t5
	nort5
	mt5
	byt5

	GEC for Norwegian

	Datasets
	General requirements
	Error annotation
	Annotation challenges

	Data sparsity
	The datasets we use
	CLC-FCE
	NAIST
	ASK

	Datasets in other languages
	Datasets for evaluation
	NoCoLA - another application for a parallel corpus
	Language model evaluation
	NoCoLA
	Comparing NoCoLA to GEC parallel datasets

	Evaluation
	Evaluating seq2seq
	Evaluating GEC
	Level of evaluation

	Metrics
	F0.5
	Other reference based metrics
	Reference-less metrics

	Scorers
	MaxMatch
	ERRANT
	ERRANT for Norwegian
	ERRANT for other languages
	ASKEVAL

	Conclusion

	Experiments and Results
	Methodology and general considerations
	Pretrained models
	Evaluation data
	Metrics and reported numbers
	Software and hardware
	Model hyperparameters

	English
	Round 0 - t5 without fine-tuning
	Round 1 - basic t5
	Round 2 - gradient accumulation
	Round 3 - training data modifications
	Round 4 - mt5 and byt5
	Round 5 - testing on test data

	Norwegian
	Evaluation for Norwegian
	On the datasets
	Round 6 - Norwegian ASK - development
	Round 7 - Norwegian ASK - test

	Summary

	Analysis
	English - fine-grained-ERRANT
	Conclusions

	Norwegian - fine-grained-ASKEVAL
	Caveats when using ASKEVAL
	Result discussion

	Norwegian - effect of data augmentation

	Conclusion
	Byte level representation on English GEC
	GEC for Norwegian

	Suggestions for future work
	More GEC training data for Norwegian
	GEC evaluation for Norwegian
	Language specific byte-level models
	GEC and society

	Appendix
	Error wise results round 5

