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Abstract 

Adaptive immune receptor repertoire (AIRR) data is used for research into the immune 

system. immuneML is a machine learning platform used for analysis of adaptive immune 

receptors. Previously immuneML only supported data in the AIRR1 format. The AIRR format 

presents the immune receptors as a flat sequence. In reality the immune receptor binding takes 

place in the 3D space. Running analyses on 3D structure files might prove beneficial.  

This project expands immuneML’s capabilities by adding PDB2 file support. PDB files can 

now be used to create datasets in immuneML. This enables users to utilize the information 

that 3D structures provide, such as the distance and the position of amino acids.  

Numerous classes have been made for handling the user provided PDB files and creating a 

dataset object that is suited for storing the information inside.  

There has also been implemented a few functionalities to show the potential of work that can 

be done with the data from the PDB files. 

This project lays the foundation for future analysis of 3D AIRR-data with immuneML when 

more suitable data is available, which may assist future implementations of 3D AIRR 

machine learning methods. 
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1 Introduction 

Machine learning is a widely used tool that is being utilized in many different areas of 

research, including the biological sciences. Machine learning brings the advantage of rapidly 

analysing large amounts of data and make corresponding predictions. Machine learning 

algorithms are very valuable in biology where there are large amounts of complex data. One 

particularly interesting area in the biology community is the deciphering of our adaptive 

immune system3, which is the part of the immune system that detects and fights viruses, 

bacteria, and cancer cells. Our immune system detects these threats through immune 

receptors. These immune receptors are proteins consisting of sequences of amino acids. 

Machine learning techniques can process the sequence or structure of the protein and find 

patterns which are associated with binding to a particular target antigen 4. Categorizing these 

patterns could be important for diagnosing diseases, developing vaccines and other treatments 

5. Not all machine learning algorithms are equally suited for any given prediction problem 6. 

How well they perform depends on the data and the purpose of the task. To find which 

machine learning algorithm performs best in a specific situation, you would need to try to run 

them all and compare the results.   

immuneML7 is a platform that brings multiple machine learning algorithms for adaptive 

immune receptor data together, under a united framework. immuneML is a comprehensive 

machine learning platform that can be used to learn whether an immune receptor binds to a 

specific antigen or whether a repertoire of immune receptors from an individual is associated 

with a sick or healthy person. 

Currently, immuneML only supports immune receptors as text sequences. The text sequences 

are parts of the amino acid sequences of immune receptors. Immune receptor bindings are 

made of proteins interacting with an antigen in the 3D space. Therefore, there might be 

advantageous by running machine learning algorithms directly on a 3D structure, rather than a 

text sequence. 3D structures provide information that flat text sequences do not, such as the 

position and the distance. This could prove advantageous for a deeper understanding of our 

immune receptors.  
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This master thesis is centred around developing and implementing support for 3D structure 

data to the immuneML platform, as well as providing a few basic tools for analysing 3D 

structures. 
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2 Background 

2.1 Adaptive immune system 

Our immune system is a vast network of connected biological processes 8. Its purpose is to 

protect our body from foreign pathogens and malicious cells, by detecting and removing them 

8. The immune system consists of two main parts, the innate immune system and the adaptive 

immune system 9. The innate immune system provides fast and general countermeasures 

against threats, and is the body’s first line of defence 9. The adaptive immune system on the 

other hand, provides targeted countermeasures based on its memory 9. The adaptive immune 

system is a subsystem of our immune system and focuses on detection and removal of 

molecules that the system recognizes as a threat. The adaptive immune system consists of T- 

and B-cells 9. 

T- and B-cells are two types of white blood cells 8. White blood cells are used to defend the 

body against infections and foreign substances 8.  

There are several types of T-cells, and they all work together to maintain these main 

objectives: 

• The cytotoxic T-cells detect and eliminate infected and cancerous cells 9. 

• The helper T-cells are used to activate other nearby immune system cells to start 

appropriate countermeasures 9.  

• After neutralizing the identified threat, some T-cells become memory T-cells 9. These 

memory T-cells will remember the neutralized threat and if it encounters it again, it 

will handle it much faster than the initial time 9. 
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B-cells detect and eliminate free floating pathogens and other free floating foreign objects in 

the blood 9. B-cells also produce antibodies which neutralizes the identified threat 9.  

Both the T- and B-cells recognize an epitope in the antigen 9. The antigen is recognized by the 

immune receptors in the T- and B-cells 8–10. Immune receptors are displayed on the cell 

surface, and can recognise and bind to a specific antigen 9. This works like a lock and key, 

only one key will fit the specific lock 9. The binding causes the immune system to become 

activated and countermeasures are started 9. The T-cell receptors are called TCR, and the B-

cell receptors are called BCR. Antibodies are BCRs excreted from the B-cell 11. 

Both the TCR and the BCR consist of two chains. The chains are made of sequences of amino 

acids 8.  

The TCR consists of an alpha and beta chain, and the BCR consists of a light and heavy  

chain 8. 

The TCR and BCR share a lot of similarities.  Both have two chains and the same type of 

regions 12. More specifically, both have a constant and a variable region. The variable region 

contains the complementary determining regions (CDR) 12, which are the parts of the immune 

receptor in direct contact with the antigen13. 

There are in total six CDRs in an immune receptor 14, three in each chain 15. Figure 116 shows 

the structure of a BCR. The tip of the variable region contains the CDR regions. 

 

 

 

 

 

 

 

 

Figure 1: The two different regions are distinguished by colour and letters. C corresponds to constant region, 

while V corresponds to variable region. The subscript H and L corresponds to the heavy chain and the light 

chain, respectively. The regions are the same on both sides of the immune receptor, although mirrored. The 

binding between the antigen and the immune receptor takes place at the tip of variable regions. The framework 

region is the part between the CDR loops. (Figure by Wang16) 
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2.1.1 Antibodies 

When a B cell recognises an antigen, it becomes activated. An activated B cell starts to 

excrete antibodies. An antibody is a B-cell receptor floating17 around in our bloodstream, 

which will help neutralising the antigen by binding itself to it. Each B-cell will only produce a 

single type of antibody17 in its life, although there might be slight variations due to mutations.  

Since antibodies bind to a specific antigen it can be used in therapeutic drugs to treat specific 

conditions. This is the field of monoclonal antibodies(mAbs), that are creating antibodies in 

laboratories18 that will be used for treatments and therapy. 

Monoclonal antibody therapeutics is based on finding the specific antibody that binds to the 

antigen of the desired disease, and then mass producing them 19. The victims of the specific 

disease might not naturally have the antibodies to fight it, therefore the monoclonal antibody 

will be injected into the bloodstream of the patient. The monoclonal antibody works the same 

as a natural antibody and will bind to the desired antigen.  

The global sale of monoclonal antibodies therapeutics was $20.6 billion in 200620, and 

$153.33 billion in 202021. That’s a yearly growth of 46%. In 2021 the second most sold drug 

was Humira made by AbbVie 22, which is a monoclonal antibody drug used to treat a number 

of conditions, including Crohn’s disease, psoriatic arthritis, and ulcerative colitis 23. Humira 

was only surpassed by Comirnarty22 which is the covid vaccine made by Pfizer and 

BioNTech, which signifies the market value of monoclonal antibody therapeutics.  

2.1.2 AIRR data 

A deeper understanding of whether immune receptors bind to an antigen could prove 

advantageous when developing monoclonal antibodies for therapeutics. Adaptive immune 

receptor repertoire sequencing (AIRR-seq) can be used to sequence the genes encoding TCRs 

and BCRs 24. A repertoire is a collection of immune receptors from an individual.  

The AIRR data format is used to store the data from the TCR and BCR, and the AIRR 

community has guidelines for how to use it 25. The data stored is represented as several text 

sequences, which represent amino acid sequences. These text sequences can be used for 

machine learning analyses for prediction of their properties. There have been machine 
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learning experiments where they have been analysing large amount of AIRR data to create 

models for predictions 26. These experiments have proven that machine learning is a powerful 

tool that can be utilized to get a better understanding of our adaptive immune receptors 26.  

The AIRR-seq data contains sequencing data of the TCR and the BCR, which are represented 

as linear (2D) text sequences. There is an abundance of 2D data compared to 3D data. When 

in reality the binding between the immune receptor and the antigen take place in the 3D space. 

3D data enables the usage of properties such as distance and position, which might provide 

additional information that could be important for predicting antigen binding. Running 

machine learning on 3D data has already been done 27. The results were promising and 

indicates that this is a feasible way forward 27, although there is an issue of limited 3D data 

available.  

Figure 2 displays the binding between an antibody and the SARS-CoV2 spike protein in 3D 

space. The green part is the heavy chain, the orange part is the light chain, and the purple part 

is the spike protein. The figure shows how the chains interact with the spike protein.  
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Figure 2: This is the PDB file “2dd8” that contains the crystal structure of a SARS-CoV2 spike binding with an 

antibody. The heavy chain(green) and light chain(orange) binds with the spike protein(purple). Figure from 

RCSB28 deposited by Prabakaran28 

2.2 immuneML 

immuneML is an open-source machine learning platform that is used to analyse adaptive 

immune receptors and repertoires (AIRR) 7. immuneML provides several functionalities for 

analysing an AIRR dataset. One of them is training machine learning classifiers. To run 

machine learning classifiers, the dataset should be annotated with labels, the label is the 

property that the machine learning model will learn to predict. 

There are currently two types of machine learning classification analyses. The first one is 

repertoire classification, which takes a repertoire dataset and will try to categorize the 

different repertoires based on the labels given by the user. Usually this is used with a 

“sick/healthy” label. immuneML will then try to train a machine learning model that will 
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predict if the repertoire is associated with a person who is healthy or one that has a sickness. 

 

The second is the receptor classification functionality, which takes in a receptor or a sequence 

dataset. The receptor dataset contains information about a paired immune receptor, while a 

sequence dataset contains information about an unpaired immune receptor.  

The receptor classification will do the same as the repertoire classification, namely try to 

categorize the examples in the dataset based on the user given labels, except this time, each 

example that needs to be classified is a single immune receptor rather than a repertoire. When 

working with machine learning, not only is the machine learning model important, but also 

the way the data is represented. This data representation is called encoding. 

The main difference between repertoire and receptor/sequence classification, is of course that 

the data is different, but this also means that they might need different encodings. In 

immuneML, repertoires, receptors, and sequences each have their own encodings. 

Receptor and sequence classification is usually used with data of receptors/sequences that are 

known to bind to antigens and some that do not. immuneML will try to train a machine 

learning model that can be used to predict/categorize the data and split them into binders and 

non-binders.  

In immuneML the user can choose multiple machine learning algorithms to run on the AIRR 

dataset and compare the results to decide which one has the results best suited for the 

situation. Each machine learning algorithm also has settings the user can define 

themselves(hyperparameters), for example KNN allows the user to select the n_neigbour 

value, which determines the number of neighbours required for each sample 29. immuneML 

allows the user to select multiple hyperparameter values to get the optimal score between the 

selected values. To accomplish this, immuneML uses nested cross validation to train and 

compare the machine learning models, which is a technique based on splitting the data into an 

inner loop and an outer loop. The outer loop is used to determine the performance of the 

machine learning model on new data, while the inner loop is used for finding the optimal 

hyperparameters 30. These two loops together will find the optimal combination of the 

machine learning model and hyperparameter values. 
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Figure 3: (A) The data is split into four outer identical folds. Each fold’s data is split into training and testing. 

The split is handled in a way that there is no overlap between the testing data across the different folds. 

(B) The training data from outer training fold 1 (red box from step A) is split into three inner folds. The data in 

the inner folds are then split again into a training and testing data, as it was in step A. This is done for feature 

selection and hyperparameter tuning by using grid search. 

(C) The model with least overfitting (green box from step B) is used for testing on 1st outer fold’s testing data 

(blue box in step A). 

(D) The model with the best results from this outer fold is saved, as are the features and test accuracies. Then the 

process is repeated with the remaining outer folds. 

(E) The outer model with the least overfitting is selected and is used to train on the full data, to create the final 

model. 

(F) The last step is to validate the model on an independent data set. 

Figure by Parvandeh et al (2020). 30  

 

 



11 

 

 

The user is also able to select which encoding should be used for machine learning. Encoding 

is a way to translate the raw data, which might be in the form of text to a numerical 

representation of it. Which encoding that is used for machine learning has a definite impact on 

the results of the run. Different encodings and its settings will expose different parts of the 

data. For example, k-mer encoding, which encodes a dataset based on the presence of 

subsequences of length k, can have different values of k. A k-value of 1 is simply just a single 

letter, which will make the total number of edges 4 in a DNA sequence (the distinct letters in 

a DNA sequence are “ATCG” 31) regardless of the length of the sequence.  

While a k-value of 3 will create substantially more edges, because it will create an edge for 

every distinct three letter combination of ATCG. 

These encodings and machine learning algorithms can be used to make machine learning 

models. immuneML supports multiple combinations of encodings and machine learning 

algorithms in a single run, combined with the nested cross validation, the user can see which 

encoding, machine learning algorithm, and setting gives the best suited results. The results are 

provided in a html file that aggregates the data and shows it in a clear way.  

 
Figure 4: This is an excerpt from an html file that is generated by immuneML after a run with the kmer encoding 

and the machine learning algorithms: logistic regression, random forest, and SVM (support vector machine). The 

selected metrics were precision, auc, recall and balanced accuracy. 

immuneML also support certain “exploratory analysis” functionalities. These functionalities 

are not related to machine learning algorithms but provides ways to analyse the data without 
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training machine learning models. With exploratory analysis the user can select multiple 

combinations of encodings and reports. Reports generates information about the dataset, for 

example the SequenceLengthDistribution report creates a histogram of the lengths of the 

sequences in the repertoire. Certain reports require specific encodings for them to work. 

Others reports like DesignMatrixReport will work with all encodings, since it will just output 

the design matrix from the encoding, in the form of a tabular file.  
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3 Goals 

3.1 Adding 3D structure support to immuneML 

immuneML supports several machine learning algorithms and encodings. In addition, it also 

provides exploratory analysis reports that can aggregate information about the dataset. All 

these functionalities only work on datasets of 2D sequences. Since the antibody-antigen 

binding takes place in 3D space, it might prove beneficial to utilize the properties that 3D 

structure data provides 27, for example coordinates and distance. This project will focus on 

adding 3D structure support to immuneML, which will make it possible to use immuneML’s 

functionalities on 3D data in the future. The focus will be on creating support of 3D antibody 

data, not TCR data. 

The goals and sub-goals of this thesis are as follows: 

Implementing 3D structure support: 

• Importing 3D data from files: immuneML will be able to find and parse the 3D files. 

• Internal representation of 3D data: immuneML will use the parsed 3D files to 

create a dataset object that is suited for storage of 3D structures. 

Implementation of some first basic analyses to show what is possible with the new 3D 

structure data: 

• A proof of principle exploratory analysis application: The provided 3D structures 

will be used in an encoding that calculates the distance between antibody and antigen, 

and a corresponding report that will display it in a heatmap. 

• A proof of principle machine learning application: The provided 3D structures will 

be used with an encoding that compares structure similarity, and then use machine 

learning classification algorithms to classify the different structures, based on 

similarity. The goal is not to get good machine learning results, but rather to show that 

with the added functionality, machine learning can be done on 3D data.  
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4 Methods 

4.1 immuneML – YAML & workflow 

4.1.1 YAML specifications 

immuneML takes an AIRR dataset and a YAML specification file as input, and then outputs 

the trained machine learning models and a summary in the form of an HTML file.  

YAML32 is a data serialization file format that was made to be human readable. It is mostly 

used as a configuration file for applications. The syntax is a simple key-value format. Where 

the user specifies the key first, and then a value with a colon separating them. The placements 

of the key are space sensitive, which means that they need to be placed with the correct length 

of whitespace in front. 

The YAML specification file must follow a specific format to be used in immuneML. The 

YAML file consists of two main sections and each of them have several sub-sections.  

The first main section is the definition section. This section contains the user’s selection of 

dataset, simulation, encoding, machine learning methods, reports, and pre-processing. Each 

one of these selections have their own settings that the user can define as well.  

The second main section is the instruction section. This section the user will define what 

should be done with the definitions the user specified in the earlier section. immuneML 

currently have these instructions available for use: 

• TrainMLModel – Trains machine learning models and provides hyperparameter 

optimization through nested cross validation. 

• DatasetExport – Exports the dataset to a specific format such as AIRR. The user is 

also able to apply preprocessing steps on the initial dataset before export. 
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• Exploratory analysis – Enables the user to combine multiple encodings and reports for 

an analysis of the dataset, without machine learning. 

• MLApplication – Uses already trained ML models and encoders on new datasets. The 

new dataset does not need to be labelled. 

• Simulation – Implants a synthetic signal into the dataset. Outputs a new dataset with 

the implantation of the synthetic signal. 

• Subsampling – Splits the dataset into multiple smaller datasets based on user provided 

parameters. 

All of these instructions have their own settings that the user can specify to get a run specific 

to their own requirements and needs. See figure 5 for an example of a YAML file. 
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Figure 5: YAML file that specifies a TrainMLModel instruction with PrecomputedKNN on an AIRR dataset. 

The two main sections are “definition” and “instructions”. Both main sections have sub sections that define the 

run and its properties. 
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4.1.2 immuneML order of execution 

immuneML requires a YAML file and a path to the output directory to run. When run; it will 

first parse the YAML file, which specifies what the user wants to do. The parsing is divided 

into two parts. The first is parsing the definition section of the YAML file and the second is 

parsing the instruction section. 

After parsing the definition and instructions the specified run will be executed it. The order of 

specifications defined in the definition section does not matter for the execution order.  

If we follow the example YAML from figure 5, it starts with defining the dataset. Here the 

dataset is specified as AIRR, which is the most common datasets used by immuneML. For 

immuneML to be able to read the local files, the user needs to specify the path to the folder 

containing the files, and if it is a repertoire dataset it also requires a metadata file.  

The metadata file is a csv file containing information about the datasets. The only requirement 

for a metadata file is to have a column which contains unique values for each of the files, such 

as id or filename. The user is free to add more fields to represent specific attributes of the 

dataset, like diseases. The additionally added fields can be used as labels for machine 

learning.  

This is followed by specifying the encoding and machine learning method to use with the 

dataset. In figure 5 the specified encoding is Distance, which is an encoder that calculates the 

distance between each of the repertoires. The calculated distances are stored in a distance 

matrix. 

The specified machine learning method is precomputed KNN, which is a variant of regular 

KNN, where the distance matrix is already calculated. Different machine learning algorithms 

have different settings that the user can specify. If it is not specified, it is run with default 

settings. 
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The instruction section defines what the user wants to run. Here the user wants to train a ML 

model. The TrainMLModel instruction has several settings that can be specified by the user to 

get a run best suited to their needs. If we continue with the YAML from figure 5, the specified 

settings are: 

• Dataset – The dataset that will be used to train the machine learning model. Here it is 

specified as “my_dataset”, which is the AIRR dataset that was defined in the 

definition section above.  

• Labels – The label that will be used for machine learning classification. In repertoire 

datasets the label is a column in the metadata file, while for receptor and sequence 

datasets, the label is a column in the data file. The values usually used for labels are 

TRUE and FALSE. In the example this is set to the label “signal_disease”, which is a 

column in the metadata file. 

• Settings – This is where the user specifies what kind of machine learning model that is 

going to be trained, and which encoding to be used on the dataset. In the example this 

is set to the encoding “my_distance_encoder” and machine learning model is set to 

“my_knn”.  

• Assessment – The settings for the assessment of the outer loop in the nested cross 

validation. The outer loop is focusing on the model’s performance. In the example the 

split_strategy is set to “random”. Split_count is 1, which means that it will only split 

once. Training_percentage is 0.7, which means that it will use 70% of the data for 

training the model.  

• Selection – This sub-section has the same settings as the assessment section above, but 

these settings will be used in the inner loop of the nested cross validation.  

• Optimization_metric – The metric that immuneML will try to optimize when running 

nested cross validation. In the example it is set to balanced_accuracy. 

• Metrics – Other metrics that also will be computed and presented in the output. This is 

set to auc, precision and recall in the example. 
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• Strategy – How immuneML will search for the different hyperparameters. In the 

example this is set to Gridsearch, which will try all combinations. 

• Number_of_processes – The number of processes that will run concurrently to speed 

up the analysis. 

• Refit_optimal_model – This is a Boolean that decides if the model created from 

running the instructions should be refitted on the entire dataset. 

After running all the specified instructions, immuneML outputs the results in the form of a 

HTML file. See figure 6 for a visual representation of the immuneML order of execution. 

 

 

 

Figure 6: immuneMLApp calls on the immuneMLParser which parses what the user wants to run, then sends the 

order to the SemanticModel who runs the instructions and presents the results. 
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4.2 Implementation of 3D structure support  

3D structures can be stored in PDB files, which are commonly used within the biological 

scientific community, and also what will be used in this project. 

The PDB file format2 is a format for storing 3D structural data of biological macromolecules 

such as proteins. It stands for Protein Data Bank which is a data bank with over 200 thousand 

structures. The PDB file format has a central role in this project, which is why the structure 

will be explained in-depth. 

  

PDB is a text file format that contains information about the atoms and bonds that make up 

the 3D structure. The format also includes metadata such as the name of the molecule, the 

author(s) who submitted the structure, and the date the structure was deposited. 

See excerpt of the start of a PDB file below. 

HEADER    COMPLEX(ANTIBODY-ANTIGEN)               11-AUG-88   3HFM               

TITLE     STRUCTURE OF AN ANTIBODY-ANTIGEN COMPLEX. CRYSTAL STRUCTURE            

TITLE    2 OF THE HY/HEL-10 FAB-LYSOZYME COMPLEX                                 

COMPND    MOL_ID: 1;                                                             

COMPND   2 MOLECULE: HYHEL-10 IGG1 FAB (LIGHT CHAIN);                            

COMPND   3 CHAIN: L;                                                             

COMPND   4 ENGINEERED: YES;                                                      

COMPND   5 MOL_ID: 2;                                                            

COMPND   6 MOLECULE: HYHEL-10 IGG1 FAB (HEAVY CHAIN);                            

COMPND   7 CHAIN: H;                                                             

COMPND   8 ENGINEERED: YES;                                                      

COMPND   9 MOL_ID: 3;                                                            

COMPND  10 MOLECULE: HEN EGG WHITE LYSOZYME;                                     

COMPND  11 CHAIN: Y;                                                             

COMPND  12 EC: 3.2.1.17;                                                         

COMPND  13 ENGINEERED: YES                                                       

SOURCE    MOL_ID: 1;                                                             

SOURCE   2 ORGANISM_SCIENTIFIC: MUS MUSCULUS;                                    

SOURCE   3 ORGANISM_COMMON: HOUSE MOUSE;                                         

SOURCE   4 ORGANISM_TAXID: 10090;                                                

SOURCE   5 MOL_ID: 2;                                                            

SOURCE   6 ORGANISM_SCIENTIFIC: MUS MUSCULUS;                                    

SOURCE   7 ORGANISM_COMMON: HOUSE MOUSE;                                         

SOURCE   8 ORGANISM_TAXID: 10090;                                                

SOURCE   9 MOL_ID: 3;                                                            

SOURCE  10 ORGANISM_SCIENTIFIC: GALLUS GALLUS;                                   

SOURCE  11 ORGANISM_COMMON: CHICKEN;                                             

SOURCE  12 ORGANISM_TAXID: 9031                                      

Figure 7: Excerpt from “3HFM.pdb”. PDB files start with the name of the file, followed with naming of the 

chains and the source of them. 
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In the excerpt of the pdb file “3HFM” in figure 7, it shows that the file contains a: 

“STRUCTURE OF AN ANTIBODY-ANTIGEN COMPLEX. CRYSTAL STRUCTURE OF 

THE HY/HEL-10 FAB-LYSOZYME COMPLEX”. This structure has the three chains: L, H, 

and Y. Where the L chain corresponds to “HYHEL-10 IGG1 FAB (LIGHT CHAIN)”. The H 

chain corresponds to “HYHEL-10 IGG1 FAB (HEAVY CHAIN)”, and the Y chain 

corresponds to “HEN EGG WHITE LYSOZYME”.  

The light and heavy chain are from a mouse while the lysozyme is from a hen egg. 

The main part of a PDB file is the ATOM section, which contains a list of all the atoms in the 

structure; their coordinates, which amino acid it is a part of, which chain it is a part of, and 

their atom id.  

1   2  3    4  5   6      7      8       9      10    11       12 

 

ATOM      1  N   ASP L   1       9.718  19.693  42.129  1.00 17.12        N   

ATOM      2  CA  ASP L   1       9.822  19.540  43.611  1.00 17.22        C   

ATOM      3  C   ASP L   1       8.785  20.459  44.250  1.00 17.48        C   

ATOM      4  O   ASP L   1       7.582  20.251  43.934  1.00 17.85        O   

ATOM      5  CB  ASP L   1      11.270  19.694  43.974  1.00 16.97        C   

ATOM      6  CG  ASP L   1      12.090  20.763  43.302  1.00 17.07        C   

ATOM      7  OD1 ASP L   1      11.684  21.923  43.122  1.00 16.76        O   

ATOM      8  OD2 ASP L   1      13.242  20.408  42.935  1.00 16.88        O   

ATOM      9  N   ILE L   2       9.156  21.411  45.084  1.00 17.23        N   

ATOM     10  CA  ILE L   2       8.185  22.322  45.717  1.00 16.97        C   

ATOM     11  C   ILE L   2       8.644  23.772  45.576  1.00 16.85        C   

ATOM     12  O   ILE L   2       9.803  24.075  45.917  1.00 17.12        O   

ATOM     13  CB  ILE L   2       7.917  21.969  47.222  1.00 16.96        C   

ATOM     14  CG1 ILE L   2       6.989  23.059  47.818  1.00 16.46        C   

ATOM     15  CG2 ILE L   2       9.221  21.781  48.040  1.00 17.24        C   

ATOM     16  CD1 ILE L   2       7.191  23.372  49.312  1.00 15.57        C    

Figure 8: The beginning of the atom part of the PDB file “3HFM” 

The atom part has in total 12 columns that contain information about each of the atoms in the 

structure.  
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Column 

number 

from left 

 

What the column contains 

1 This is the section identifier. “ATOM” means that this is the atom section 

containing information about all the atoms in the structure. 

2 This is the atom identification number; each atom has their own unique id 

number 

3 See explanation after the table. 

4 What type of amino acid it forms. Every amino acid has their own unique 

three letter identifier. 

5 Which chain it is a part of. Normally L = light chain, and H = heavy chain. 

6 This is the amino identifier in the PDB file. Every amino acid in the file will 

have their own unique id number. 

7 X coordinate of the atom 

8 Y coordinate of the atom 

9 Z coordinate of the atom 

10 This column corresponds to Occupancy. Occupancy indicates how certain it 

is that the atom is located at that location. Since the atoms are always 

moving, it might not be easy to distinguish atoms of different amino acids 

from each other. Having an occupancy score of 1 means that it is certain that 

the specific atom is located at the given position. While a score of 0.5 means 

that the atom was not present at the location in half of the times it was 

checked.   

11 This is the temperature column. Given that the atoms are constantly moving, 

it is important to know the temperature of the different atoms. Higher 

temperature means that the atoms are moving faster and vice versa. 
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Table 1: Table explaining the columns in the atom section of a PDB file. 

 

Column 3: 

This column contains the atom type identifier. For example: N means the atom nitrogen. Note 

that there might be multiple occurrences of the same atom in the same amino acid. To 

differentiate them from each other, they can have numbers and Greek letters after the normal 

atom letter. For example: in row 2 the atom is a “CA”, which corresponds to carbon alpha.  

The order of atoms within an amino acid residue is determined by their location within the 

amino acid, whether it is in the main chain or in the side chain. 

The main chain consists of the carboxyl group, amino group and a carbon alpha that is bound 

to a hydrogen atom.  

The atoms in the main chain will not have any Greek letters or numbers, just simply the atom, 

except the carbon alpha. The carbon alpha is often considered to be the centre of the amino 

acid, because it is the atom connecting the main chain to the side chain. 

Carbon betas and gammas corresponds to carbon atoms in the side chain. This is a naming 

convention widely used in the biological community. That’s also the reason why there are 

instances of “OD1” and “CG2” in the PDB example above. These names correspond to atoms 

at specific locations with certain properties. For example, OD1 and OD2 are both oxygen 

atoms bonded to carbon gamma, but it is important to differentiate between them.  

12 The last column simply shows the atom element symbol. This doesn’t 

contain any Greek letters or numbers. 
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Figure 9: Composition of the amino acid Aspartic acid (ASP). 33 

 

 

 

Figure 10: Composition of Leucine (Leu). This amino acid contains both CD1 and CD2, who has their own 

individual chain. This figure shows the importance of the naming conventions, otherwise the atoms could get 

mixed up. 33 

The PDB file is great for storing 3D structures but are insufficient for storing specific 

information about immune receptors. This is why the IMGT numbering scheme has been 

made. The IMGT numbering scheme is especially useful since it keeps the different CDRs at 

specific positions. For example, a basic length CDR3 is always at the positions 105-117. The 

IMGT numbering scheme is not a file format, but rather a standard for where to place the 
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different amino acids. This numbering scheme is usually used in combination with the PDB 

file format. IMGT numbered PDB files are the best suited files for this project. 

Currently immuneML only supports sequence, receptor, and repertoire datasets. These 

datasets cannot properly store the data in a PDB file. This makes it necessary to create a new 

dataset; the PDBDataset.  

 

 
Figure 11: This is a UML class diagram of the current immuneML data model. The repertoire, sequence, and 

receptor datasets are all sub-classes of the «Dataset» object.  

 

In immuneML each dataset has its own importer class that handles the import of the local files 

to the corresponding dataset object. In this case there needs to be a PDBImporter that gathers 

the files from the user and generates a PDBDataset object with the file paths. It should also 

handle the metadata file and labels. The metadata file will contain the filename and the label 

as columns.  
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Every dataset class in immuneML has these attributes: 

Attribute Value/type and why 

Identifier Is a random UUID used to differentiate between 

datasets in the memory, if multiple instances are run 

simultaneously. 

Name User can name the dataset, otherwise it is set to the 

same as identifier 

Labels Is a dictionary where the key is the columns in the 

metadata file, and the value is a list of all the 

distinct values in the column. 

This dictionary is used to access the labels specified 

by the user. 

Encoded_data Is an EncodedData object, which is generated by 

the different encoders. If immuneML is run without 

an encoder, this will be a “None” object. 

EncodedData class contains a two-dimensional 

matrix and information about the data in it, such as: 

labels, ids, and feature names.  

Table 2: The attribute column describes the variable names. The value/type and why column describes the type 

of the attribute and the purpose of the variable. 
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In addition to these attributes the PDBDataset has these as well: 

File_names List of names of the pdb files. The names are used as row values 

in eventually generated two-dimensional matrices. 

Pdb_file_paths List of the entire path to the pdb files. These file paths are used to 

access each of the pdb files. 

List_of_pdb_structures List of PDBStructure objects. Its these objects that are accessed 

for performing calculations. 

Metadata_file Is a Path object from the pathlib module. This is used to access the 

entire metadata file. 

Table 3: This table has the same columns as Table 2 and follows the same style. 

 

The PDBDataset contains many lists. There is a list of all the PDB filenames, paths to these 

files, and a list of PDBStructures. Which is another class made specifically in this project for 

handling the data stored in a PDB file. 

There already exists a python module for parsing pdb files. This parser is called PDBParser34 

and is a part of the PDB package35 made by BioPython 36. The PDB parser is made 

specifically for converting the information in a PDB file, to a Structure object37, which is 

another class from the PDB package. It only requires a user defined name for the structure, 

and a path to the PDB file as arguments.  

The Structure class consists of a “Model” object. This object consists of a dictionary of 

chains, which in turn consists of residues and atoms. Each chain has a key that corresponds to 

the name given in the PDB file. With this key, the user can specify which chain it wants to 

access. The model, chains, residues, and atoms are all iterable. 

The classes provided by the PDB package are great assets, but they cannot contain all the 

necessary information that immuneML would like. Information such as, if the PDB file 
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contains an antigen, which part of the region it is, and if it is IMGT numbered, are useful 

information for immuneML. Which is why the object PDBStructure was created. This object 

keeps tracks of variables that can be used by immuneML. The new PDBStructure object also 

contains a Structure object from the PDB package.  

Figure 12: The classes PDBDataset and PDBStructure; their variables and types. 

PDBDataset uses the list of file paths to generate a list of PDBStructures. When generating 

this list, the first thing the PDBDataset does is to check whether the PDB file is made with 

IMGT-numbering38 or not. With IMGT-numbering it's much easier to determine the CDRs. 

Especially if the user wants specific parts of the 3D structure in the analysis. The user can 

select which CDR they want, but only if the PDB file has IMGT-numbering, otherwise the 

user needs to specify the start and stop position of the amino acids to be included in the 

analysis. In the PDBStructure class the CDRs are specified as a RegionType object. The 

reason the CDRs are so important is because these are the regions that are in direct contact 

with the antigen. This is the most interesting part of the 3D structure. Some analyses may 

want to focus on a specific CDR and not the entire antibody structure. 
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The PDBDataset makes it possible to process the data contained in the PDB file. In this 

project we want to make some basic encodings and reports, that will run on the new dataset, 

as a proof of concept. 

 

Figure 13: The new updated immuneML data model with the new data structures “PDBDataset” and 

“PDBStructure”.  
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4.3 Generating distance heatmap 

4.3.1 DistanceToAntigenMatrixEncoder 

The main goal by creating a distance heatmap generator is to show the information that the 

PDBDataset can provide. This will be an ExploratoryAnalysis functionality, which means that 

it will give an analysis of the data, but it will not run machine learning. 

The DistanceToAntigenMatrixEncoder is an encoder that will take a PDBDataset and 

calculate the distance between each carbon alpha from the antibody chains to the antigen 

chain in each of the PDB files.  

PDB files containing an antibody-antigen binding usually consists of a light, a heavy and an 

antigen chain. The light chain is usually given the chain id “L” or “A” and the heavy chain 

given the id “H” or “B”. The antigen has a larger variety of ids, but the most commons ones 

are “A”, “E”, “P”, and “C”. But this isn’t always the case, as authors of PDB files are free to 

choose whatever character they want. It is therefore important that the distance calculations 

are done on the correct chains, specifically between the light and the antigen, and between the 

heavy and the antigen, thus avoiding calculations between the light and the heavy chain. 

This is why the encoder starts with trying to detect which chain is which. The detection is 

based on the light chain is named “L”, and the heavy chain is named “H”. If both the light and 

the heavy chain are detected, the last remaining chain is then designated as the antigen. If the 

detection fails to detect the chains, it will initiate the fallback routine which is selecting the 

first chain as the light chain, the second as heavy, and the last as the antigen.  

Note that there is an overlap on the id “A”, both the light chain and the antigen tend to be 

given that id. The detection will encounter problems when faced with a PDB file where the 

antigen is listed first and given the id “A”. A solution to this problem could be a provisional 

detection first, and then a final one based on all the three detected ids. This solution was not 

implemented because of time constraints. 

With the implemented detection of chains, it decreases the chances of distance calculations 

between the light and the heavy chain. Furthermore, the detection will not work when the 

chains are named something else than the ids listed above. For example, if a PDB file lists the 
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light chain as G, the heavy as Y, and the antigen as T, the detection will go with the fallback 

routine. 

There are many ways to calculate distance between the antigen and the antibody chains. One 

approach is calculating the distance between the carbon alphas in the antibody to the carbon 

alphas in the antigen. Carbon alphas are considered the “centre” of the amino acids.  

Other approaches could be calculating the distance from the centre of mass in each amino 

acid, or closest atom to closest atom. In this project carbon alphas are used. Although in the 

future, the algorithm could be extended to support the other types of distances as well. 

The encoder class calculates the distances from the carbon alphas of the amino acids in the 

light and heavy chains to the antigen. The distances are put in a two-dimensional matrix, both 

the light and the heavy chain have a two-dimensional matrix each. These two-dimensional 

matrices are stacked, where each 3D structure has their own entry. Which means that the data 

structure is now a four-dimensional matrix. See figure below for a visualized representation. 

Figure 14: The structure array consists of two matrices for each structure. The matrices contain the distance 

between the chain and the antigen. The four dimensions are: Structure#, chains, antigen#, and antibody#. 

 

Notice how different structures have different length of antigens and chains. This makes it a 

three-dimensional matrix where the sides have notches. Although these are the actual shapes 
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of the different structures, the matrix can’t have notches since it needs to square. Because of 

this, the matrix needs to be padded to the length of the longest chain in that axis. In this 

encoder the matrix is filled with the numpy.inf value. This number was preferable than filling 

it with zeroes because that could potentially be a valid distance. The numpy.inf value is later 

removed for the generation of heatmaps. In the future there could be a suitable machine 

learning model that can directly use the matrix, but for generation of heatmaps the numpy.inf 

value is not useable. 

 

Figure 15: The light- and heavy chains of both structures are padded to the same shape of their respective chain. 

The padded four-dimensional matrix is used to create an EncodedData object, which is added 

to the PDBDataset.  
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4.3.2 DistanceToAntigenHeatmapReport 

After encoding the dataset with the distance from the light and the heavy chain to the antigen 

for every structure, we need to display it in the form of a heatmap. This is simply done by 

iterating over the four-dimensional array stored in the EncodedData object.  

The numpy.inf values are removed before the heatmaps are created for each of the structures.  

The encoder also supports selection of specific regions. By doing so, the user can reduce the 

amount of carbon alphas in the graph, to only the parts the user wants. Currently the options 

are the three different CDRs and the full sequence, which is the entire PDB file. If the user 

selects CDR3, the encoder will only use the carbon alphas in the CDR3 region. This is only 

possible if the PDB file is IMGT numbered. IMGT numbered PDB files have the specific 

CDRs at specific amino acid placements. For example, CDR3 are located with the amino acid 

placements between 105 and 117.  

If the PDB file is not IMGT numbered, the encoder will use the start and stop positions 

provided by the user in the metadata file.  

4.4 Training a machine learning model with a 

PDBDataset 

The previous encoder and report show the basic functionalities that the PDBDataset can 

provide. In the future it can be used for machine learning as well, but only when a suitable 

machine learning method has been implemented.  

immuneML is fundamentally a machine learning platform, therefore the PDBDataset should 

also work with machine learning algorithms. That is why the next encoder was made with 

utilizing KNN for classification (K-nearest neighbours) in mind. This encoder will produce a 

design matrix that is more similar to the already existing design matrices, that are created by 

the other dataset types. 

The KNN classification algorithm is a machine learning algorithm that tries to categorize the 

data based on which neighbour it’s close to. It is a supervised algorithm, meaning that it 

requires labelled data. In immuneML the label is provided in the metadata file. 
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The goal is to see if the KNN algorithm can categorize different PDB files based on the 

structure of the antibody. 

4.4.1 DistanceBetweenStructuresEncoder 

The purpose of this encoder is to categorize the different antibodies based on their structural 

similarities. For example, are binding antibodies structurally similar? Are non-binding 

antibodies? Are antibodies that bind to a specific antigen? These are a few of the 

categorizations that could occur when training a machine learning model, based on structural 

similarities.  

Therefore, for the purpose of this encoder, only the antibody is used, and not the antigen.  

The encoder will take the PDB dataset and remove all the antigens. To do this, we use the 

PDB.Select39 module, which also is a part of the PDB package by BioPython. This module 

will take a PDB structure and create a new one based on specific rules. In this case, it will 

only accept chains that are named “L” or “R”. These letters usually correspond to the light 

and the heavy chain in the antibody. Although, since the author of the PDB file is free to 

name the chains whatever they want, there are cases where they are named something else. 

The light and the heavy chain are also named “A” and “B” quite often, but the probability of 

an antigen chain named “A” is higher. Accepting an antigen chain could ruin the machine 

learning model, which is why only “L” and “R” are accepted. 

 

After generating the new PDB files without the antigen, they are re-read by the PDB parser 

and treated as new PDB structures. This is preferable to overwriting the existing local files. 

The next step is to determine how similar the structures are to each other. An approach for 

structure comparison could be to compare the root mean square deviation (RMSD) of the two 

structures. This is calculated by taking the average of the distances between the atoms of the 

different structures. An issue with RMSD is that all residue pairs are weighted evenly. This 

makes it heavily influenced by the magnitudes of errors, especially when the RMSD value is 

large 40. For example, if two structures have a similar topology, but there are local areas where 

there are significant differences, the score in the local areas will skew the total score towards 

dissimilarity 40.   
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This is one of the motivations behind the creation of TM-score(Template modelling score)41. 

The TM-score is based on RMSD but correcting some of the limitations. TM-score is made to 

capture the global structure similarity. It also takes the protein size into account, by using 

scale factor for differences between protein sizes.  

TM-score has been used in previous studies, such as Polychronidou et al (2018) 42, and is the 

distance metric that will be used in this encoder. Although multiple distance metrics could be 

added in future implementations. 

TM-score mainly works on structures of the same length. In this project the structures might 

have very different lengths, which means that only using TM-score won’t be possible. This is 

where TM-align43 will be useful. This algorithm will align the structures in a way that will get 

the highest TM-score, even when the structures have different length. The TM-score 

generated by the TM-align algorithm is put in a two-dimensional array. KNN will use this 

array and the labels from the metadata file to a train machine learning model. 

 

Figure 16: Example of the two-dimensional distance matrix of tm-scores. The TM-scores range from 0 to 1, 

where 1 means that the structures are exactly alike, and 0 means the structures are significantly different. A TM-

score of ≥0.5 signifies that the structures are in the same fold, and ≤0.5 signifies the opposite44. 

Since the encoder calculates the TM-score between every structure, the encoding’s time 

complexity is quadratic (N*N), which is quite long. Normally when working with native K-

fold cross validations, the encoder would have to perform these calculations multiple times. 
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This is not the case for immuneML since it provides caching functionalities, ensuring that the 

TM-score calculations are only computed once, and then saved in a pandas.Dataframe that is 

accessible between different folds. The usage of caching drastically reduces the runtime of the 

encoder. 

K-Fold cross validation is a technique in machine learning where you create multiple folds of 

the dataset, and then dividing the usual training, testing and validation data differently in all 

the folds.  

After calculating and creating the two-dimensional distance matrix of tm-scores, it is passed 

to the next step, namely the training of the machine learning model. The two-dimensional 

array is used as the distance matrix for the precomputed KNN machine learning algorithm. 

After implementing these mentioned classes, they are ready to be used. The first step in 

starting an immuneML PDB run is gathering the PDB files. There are certain databanks 

where there are PDB files available for download. 

4.5 Data selection and handling 

The most used databank is the RCSB Protein Data Bank(https://www.rcsb.org/). This 

databank has over 200,000 PDB structures. These structures could be anything, from sperm 

whale DNA to parts of cancer cells. Even though it is called a protein data bank, it doesn’t 

necessarily mean that every structure in it is a protein either. It simply means that the structure 

is stored in the PDB file format. For this immuneML application, antibody-antigen structure 

data is required, which is a small fraction of what is in the RCSB databank.  

Another databank is the IMGT 3D-structure databank (https://www.imgt.org/3Dstructure-

DB/). This is the same IMGT that created the PDB IMGT-numbering system. The PDB files 

in this databank are all IMGT numbered and related to immunology. This databank is ideal 

for finding files for the DistanceToAntigenMatrixEncoder. The reason is because these files 

contain the CDR at specific locations.  

Even if the PDB files are IMGT numbered, they might not be suited for the encoder. The files 

need to have a light, heavy and antigen chain. And it also needs to have at least one carbon 

https://www.rcsb.org/
https://www.imgt.org/3Dstructure-DB/
https://www.imgt.org/3Dstructure-DB/
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alpha in the region specified. The search system on their webpage isn’t that extensive which 

makes it harder to gather files with specific properties. A better approach would be to use 

RCSB’s search fields and then try to find that same file in IMGT’s database. This is easier 

because RCSB has more precise search options, but also because PDB files have the same 

name between databases. It usually is a combination of numbers and letters with a total length 

of four. PDB files in the IMGT database are normally files from RCSB’s database, just 

renumbered with their own numbering system.  

Finding enough suitable files for DistanceBetweenStructuresEncoder is a much more 

challenging task. Not because the encoder can’t handle it, but because it will be used with 

KNN for classification. The data for this encoder needs to be in different large groups, so 

KNN can try to categorize them.  

PDB files are usually created when researching a specific antigen-antibody binding. There are 

rarely created a larger amount of PDB files that share a common property or behaviour. A 

property could for example be that they all bind to a specific antigen, or that they all are 

associated with sick individuals. A way to gather a dataset would be to first decide on a 

category and then manually find the PDB files in that category.  

It would be ideal to have datasets of different antigens, and then see if KNN is able to 

distinguish them from each other. Unfortunately, there are very few larger datasets of specific 

diseases. In addition, there are certain requirements of the PDB files to be used with this 

encoder. The previous encoder needed the PDB files to have a light, a heavy, and an antigen 

chain. The current one has the same requirements, but it also needs to be a protein.  

A database that might have enough data in a category is Oxford Protein Informatics Group’s 

CoV-AbDab 45. This is a database of coronavirus antibodies. After the covid outbreak, there 

has been a drastic increase of coronavirus samples, which makes it an ideal target for the 

machine learning use case. 

On their site there is a downloadable csv file containing information about every entry in the 

database. The csv file has over 12000 lines of different antibodies, but only some of them 

correspond to PDB files. 

 

It would be rather time consuming going through every single entry marked with the find 

function. A better approach would be to convert the information in the csv file to a 
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pandas.Dataframe and then use the functionalities it provides. The converted dataframe has 

many columns, but the ones relevant in this run are these: 

 

Column Explanation 

Name Unique ID for every entry 

Ab or Nb Antibody or Nanobody 

Binds to Which antigen it binds to 

Protein + Epitope What type of protein it is, and where it binds 

itself to the antigen 

Origin Where the antibody originated from 

Structures Link to a database where the structure is 

stored 

Sources Which research paper the structure is a part 

of 

Table 4: The different columns and what information it contains. 
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Using the functionalities pandas provides we can extract all the rows that fulfil these 

conditions: 

Column Value Why 

Name * This is only to get the row ID. The value can be 

anything. 

Ab or Nb Ab Antibodies would be better used for this project than 

Nanobodies. Since nanobodies is only a part of an 

antibody. 

Binds to SARS-CoV2 There are many types of SARS-CoV2. For this KNN 

run, it doesn’t matter which version it is. 

Protein + Epitope S S is short for spike protein, which is the protein that 

contains the payload that starts the viral infection. 

Origin * For this run it doesn’t matter where the antibody 

originated from. 

Structures RCSB This is the most important requirement for the row. 

Only the rows containing RCSB has an obtainable 

PDB file. 

Sources */RCSB Some rows contain the RCSB link here instead of the 

structure. 

 

Table 5: This table shows what values are being filtered and why. 

 

These requirements give us a much smaller dataframe with a length of around 500 rows. 

Since we want KNN to classify two different categories, we should find two groups of data 

that the algorithm will try to classify. 

Figure 17 shows the different unique values in the “Protein + Epitope” column. 
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Figure 17: Protein is “spike” in all of the rows. The main difference is the Epitope part. Epitope is the region on 

the antigen where the antibody binds to. NTD means N-terminal domain and is a specific part of the antibody 

that binds to the epitope. RBD is receptor binding domain, which also is a specific part of the antibody that binds 

to the epitope. 

There is a clear abundance of RBD files, and the second highest value is NTD. The ideal run 

with this data would be an NTD vs RBD classification run with KNN. There are over 450 

RBD files and around 30 NTD files.  

The CoV-AbDab site also provides the option to download all the pdb files as several zipped 

folders. Not all of the files are usable for the project, which means that we need to find the 

files listed by our pandas’ requirements. Manually finding each file listed would take quite an 

extensive amount of time. The best approach would be to write a python script that uses the 

list generated in the pandas dataframe and iterate through it, finding the corresponding PDB 

file and moving it to a folder.  
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Figure 18: Pseudo code of the file handling operation. The rows are all stripped of all characters except the last 

four, because that’s the PDB id. Then the script will use the id and iterate through the directory until it finds the 

corresponding PDB file. After finding the file it is copied to a new directory. 

The new directory now contains all the files fulfilling the earlier requirements. To find the 

NTD files, either run the previous script again, with a list of the NTD structures, or just 

manually find them since there are fewer files.  

After the PDB files are split between the RBD and the NTD, they need to be examined again 

to see if they fulfil the requirements given by the DistanceBetweenStructures encoder. The 

encoder currently has these requirements: 

- Must contain a light and a heavy chain. 

- The light and heavy chain must be named “L”, and “H” respectively. 

There is no requirement of the PDB file to contain an antigen. Since the encoder will only 

accept chains named “L” and “H”, it makes no difference if the file contains an antigen or not, 

since it is removed either way. On the other hand, there will be issues if the antigen is named 

“L” or “H”.  

To find the PDB files that fulfil these requirements, another python script was made. 
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Figure 19: Pseudo code of the script used for finding the PDB files fulfilling the encoder requirements. It is 

creating a PDB structure for every PDB file, and then iterating through the chains in each of the structures. The 

variable counter is used to ensure that the chains “L” and “H” are encountered in succession. There have been 

instances where there were more than two chains, and the “L” and “H” did not correspond to a light and a heavy 

chain. 

 

After running the python script, there are 25 NTD PDB files and 160 RBD PDB files, making 

it a total of 185 files ready to be used for this machine learning use case. 

4.5.1 Creating the metadata file 

The PDBDataset requires that the PDB files are accompanied by a metadata file. Creating a 

metadata file is rather simple and can be written by the user themselves for smaller datasets. 

However, this becomes challenging when working with larger datasets.  

For the DistanceToAntigenMatrixEncoder the metadata file is very simple. It only needs the 

column “filenames”, and then list each of the PDB files under.  

When it comes to creating a metadata file for the DistanceBetweenStructures encoder, it is 

recommended to create a python script. This encoder usually requires larger datasets, which is 

why it might be tedious for the user to manually create the metadata file. 

The metadata file for this encoder requires the columns “filename” and one that represents the 
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label, in this case the label is RBD or NTD. After running the previous scripts, the PDB files 

are split between two folders, one containing the NTD files and one containing the RBD files. 

There are multiple ways to generate a metadata file for a new combined dataset.  

One option is to first generate a metadata file for each of the folders, and then merge the two 

metadata files together with pandas and output it to csv. Then move the PDB files to one large 

folder. Remember that the operating system usually sorts the folder alphabetically, which 

means that the metadata also needs to be sorted alphabetically. This is easily done with 

panda’s utility functions. The appendix section contains some of the python scripts made for 

handling the PDB files. 

With a suitable dataset and a metadata file, immuneML is ready to start its first run on 3D 

structures. 
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5 Results 

5.1 Classes created 

immuneML now has the necessary classes for providing functionalities on 3D data. The 

supported 3D data format is the PDB2 file format. immuneML can read PDB files and create a 

PDBDataset object that stores the data contained in a PDB file. It can also utilize two 

different encodings, one machine learning algorithm (Precomputed KNN), and one report 

function on 3D data. 

These classes have been implemented to support 3D structure data: 

Class What it does 

PDBImport • Gathers the user provided PDB files 

to a list. 

• Gets the user provided label from the 

metadata file. 

• Creates a PDBDataset object. 

PDBDataset • Stores information about the dataset. 

• Checks if the PDB files are IMGT 

numbered or not. 

• Generates a PDBStructure object for 

each of the PDB files. 

PDBStructure • Stores the data in the PDB file.  

• Stores other relevant information 

Table 6: Every class that has been created for supporting 3D structure files, and what the classes do. 
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These classes have been made to provide the distance to antigen heatmap functionality: 

Class What it does 

DistanceToAntigenMatrixEncoder • Automatic detection of the chains 

• Gathers all the carbon alphas in the 

user specified location of the 

structure (default is CDR3) 

• Calculates the distance between 

carbon alphas in the antibody to the 

carbon alphas in the antigen. 

• Returns a dataset object containing 

the 3D array with structures and their 

distances 

DistanceToAntigenHeatmapReport • Uses the 3D array with structures 

and their distances to create a 

heatmap for each structure. 

• Returns a list of heatmaps to be 

displayed in the html file. 

Table 7: Classes created for the distance to antigen heatmap functionality, and what the classes do. 
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This class was made to make it possible to run the precomputed KNN machine learning 

algorithm on 3D data: 

Class What it does 

DistanceBetweenStructuresEncoder • Removes the antigen from the file 

and creates a new PDB file without 

it. 

• Calculates the TM-score between 

every structure. 

• Returns a distance matrix with all the 

TM-scores. 

Table 8: Classes created for the distance to antigen heatmap functionality, and what the classes do. 

 

With the created classes the user can now specify a PDBDataset in the YAML file. The 

format is closer to specifying an AIRR repertoire dataset than a receptor/sequence dataset. 

This is because the repertoire data format is more like the PDB data format than the 

receptor/sequence data format. Even though the data inside the receptor/sequence files are 

closer to the data inside the PDB files. The PDB data format consists of a folder with many 

PDB structures, the same way the repertoire data format consists of a folder of repertoires. 

They both also require a metadata file. The metadata file needs to have a column that contains 

the PDB filenames. The DistanceBetweenStructuresEncoder also requires a label column in 

the metadata file. 
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Figure 20: This figure shows all the functionalities that immuneML can provide. Updated with the new PDB 

functionalities. 
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5.2 Starting a run with the new classes 

5.2.1 Generating heatmaps with distances to the antigen 

To define a PDB dataset, simply write “PDB” as format in the dataset section.  

The dataset section requires the user to specify the path to the folder of PDB files, and the 

path to the metadata file. In addition, the user can specify a specific region with the 

region_type variable. The possible values for region_type are: IMGT_CDR1 -> 

IMGT_CDR3, and FULL_SEQUENCE. Currently the region_type variable is unused by the 

other classes. The only class that has region slicing capabilities is the 

DistanceToAntigenMatrixEncoder, which has its own parameter for specifying. This is 

because the region shouldn’t be locked by the dataset, but rather the encoding which is the 

class performing actions on the dataset. 

 

This is the format for defining a PDB dataset: 

 

Figure 21: Example of how to define a PDB dataset. The required params are path and metadata_file path. 

Region_type is a parameter that the user can use to specify the region of the protein to be used. Here it is set to 

IMGT_CDR3, which is the default value. The region_type parameter in the Dataset is not currently in use by any 

classes. 

 

To generate a distance to antigen heatmap, the user needs to first ensure that the PDB files are 

acceptable for the encoder. This encoder requires that the PDB file contains a light chain, a 

heavy chain, and an antigen.  
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The DistanceToAntigenMatrix encoding can be defined like this: 

 

encodings: 

  my_encoding: 

    DistanceToAntigenMatrix: 

      region_type: FULL_SEQUENCE  

Figure 22: Example of how to define the encoding “DistanceToAntigenMatrix”, with the chosen region 

“FULL_SEQUENCE”  

 

The user can select a region_type for which region of the protein it should collect carbon 

alphas from. If region_type is left blank by the user, it is assigned to IMGT_CDR3. 

FULL_SEQUENCE means that the entire structure is being used for the encoding. 

After defining the encoding, the user needs to define the report, which is the 

DistanceToAntigenHeatmapReport. This is the end of the definition section of the YAML 

file. The user should end up with a YAML file close to the one in figure 23. 

definitions: 

  datasets: 

    my_dataset: 

      format: PDB 

      params: 

        path: path\to\folder\of\PDB_files 

        metadata_file: path\to\metadata_file.csv 

        region_type: IMGT_CDR3 

  encodings: 

    my_encoding: 

      DistanceToAntigenMatrix: 

        region_type: FULL_SEQUENCE 

  reports: 

    my_data_report: DistanceToAntigenHeatmapReport  
Figure 23: The definition section of a distance to antigen heatmap generation run in immuneML. 

After the definition section is the instruction section. This section the user needs to specify 

what should be used and with what. 
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The distance to antigen heatmap generation is an immuneML ExploratoryAnalysis 

functionality, which means that no machine learning will be used. To run an exploratory 

analysis the user simply needs to specify it under “type”. Then specify which dataset, 

encoding and report to use. See figure 24 for the entire YAML file specifying this run. 

definitions: 

  datasets: 

    my_dataset: 

      format: PDB 

      params: 

        path: path\to\folder\of\PDB_files 

        metadata_file: path\to\metadata_file.csv 

        region_type: IMGT_CDR3 

  encodings: 

    my_encoding: 

      DistanceToAntigenMatrix: 

        region_type: FULL_SEQUENCE 
  reports: 

    my_data_report: DistanceToAntigenHeatmapReport 

instructions: 

    my_expl_analysis_instruction: 

      type: ExploratoryAnalysis 

      analyses: 

          my_first_analysis: 

              dataset: my_dataset 

              encoding: my_encoding 

              report: my_data_report  

Figure 24: This YAML file specifies a DistanceToAntigenHeatmapReport with the encoding 

DistanceToAntigenMatrix on PDB data. The region_type in the encoding is set to FULL_SEQUENCE 

immuneML will then generate heatmaps with the distances from the light and the heavy chain 

to the antigen. See figure 25 and 26 for example heatmaps generated with region selected as 

FULL_SEQUENCE, and figure 27, and 28 for example heatmaps with region IMGT_CDR3. 

The x-axis is the amino acid number in the light/heavy chain, and the y-axis is the amino acid 

number in the antigen. 
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Figure 25: This is the heatmap generated with the distances from the carbon alphas in light chain, to the carbon 

alphas in the antigen. The carbon alphas are closest in the blue areas. This is from the PDB structure “2p8l”. 

 

Figure 26: This is generated from the same PDB structure as the figure above, but with the distances from the 

heavy chain instead of the light. 
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Figure 27: Heatmap generated with the distances from the carbon alphas in the CDR3 region in the light chain, 

to the antigen in the PDB file “2p8l”. 

 

Figure 28: Heatmap generated with the distances from the carbon alphas in the CDR3 region in the heavy chain, 

to the antigen in the PDB file “2p8l”.  
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The generated heatmaps show that there are certain areas in the light and heavy chains that are 

closer to the antigen. This is especially clear from the heatmaps with FULL_SEQUENCE as 

selected region. The areas that are closer to the antigen correspond with the IMGT numbering 

scheme of the location of the CDRs. The CDRs is where the antigen binding is located 46. 

The IMGT numbering scheme places CDR1 at 27-38, CDR2 at 56-65, and CDR3 at 105-117. 

Figure 26 have the lowest distance around these locations as well. 

5.2.2 Starting a precomputed KNN run on a PDB dataset 

Specifying and starting an immuneML TrainMLModel instruction on a PDB dataset is quite 

simple. All the user needs to do is select the PDB dataset, the encoding 

DistanceBetweenStructures, and PrecomputedKNN as ML method. See figure 28 for the 

complete YAML file. 

During this project it has been trained three machine learning models, with different sizes of 

PDB datasets.   

The first one is named knn_quickstart. This model was trained on a small dataset of 24 PDB 

files. Where there were 12 RBD files, and 12 NTD files. The runtime for training this 

machine learning model was around 15 minutes. 

The first model ended up with these metric scores: 

Metric Score 

Balanced accuracy 0.733 

AUC (Area under ROC curve) 0.833 

Precision 0.667 

Recall 0.667 

Table 9: The performance of the knn_quickstart machine learning model with the metrics balanced accuracy, 

auc, precision, and recall. 

The model ended up with a decent balanced accuracy and auc score. However, the precision 

and recall were not that impressive. 
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The second one is named knn_run_normal. This model was trained on a medium data set of 

50 PDB files, which were divided into 25 RBD files and 25 NTD files. The runtime for 

training this machine learning model was around 45 minutes. 

The second model ended up with these metric scores: 

Metric Score 

Balanced accuracy 0.611 

AUC (Area under ROC curve) 0.768 

Precision 0.462 

Recall 1 

Table 10: The performance of the knn_run_normal machine learning model with the metrics balanced accuracy, 

auc, precision, and recall. 

 

The model has quite poor balanced accuracy and precision, but a decent auc score. A recall 

score of 1 means that the model correctly identified all the positives.  
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The third and last one is named knn_large_run. This model was trained on a large dataset of 

185 PDB files, which were divided into 160 RBD files and 25 NTD files. There is a 

significant imbalance in the data between the two categories. This is caused by the lack of 

NTD files. The runtime for training this machine learning model was around 8 hours. 

The third model ended up with these metric scores: 

Metric Score 

Balanced accuracy 0.58 

AUC (Area under ROC curve) 0.588 

Precision 0.925 

Recall 0.961 

Table 11: The performance of the knn_large_run machine learning model with the metrics balanced accuracy, 

auc, precision, and recall. 

The balanced accuracy and auc from the third model are quite poor. While the precision and 

recall score are quite high. This was expected as the dataset was heavily imbalanced from the 

beginning.  

In the end it is important to remember that the main goal of this project was to add 3D 

structure support to immuneML, and not well performing machine learning models.  
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definitions: 

  datasets: 

    my_dataset: 

      format: PDB 

      params: 

        path: path\to\folder\of\PDB_files 

        metadata_file: path\to\metadata_file.csv 

        region_type: IMGT_CDR3 

  encodings: 

    my_encoding: 

      DistanceBetweenStructures: 

        name: TM_Score_Distance 

        distance_metric: TM_score 

  ml_methods: 

    my_precomputedKNN: PrecomputedKNN 

 

instructions: 

    my_expl_analysis_instruction: # user-defined instruction name 

      type: TrainMLModel # which instruction to execute 

 

      dataset: my_dataset 

      labels: 

        - RBD 

 

      settings: 

      - encoding: my_encoding 

        ml_method: my_precomputedKNN 

 

      optimization_metric: balanced_accuracy # the metric to optimize 

during nested cross-validation when comparing multiple models 

      metrics: # other metrics to compute for reference 

        - auc 

        - precision 

        - recall  

Figure 29: A complete YAML file for running the encoding DistanceBetweenStructures with the ML method 

PrecomputedKNN on a PDB dataset. 

 

 

All of the outputs can be found here: 

https://drive.google.com/drive/folders/1pZ9Lk1HGH-Qo5scQaBJki8ShZIzQfYht 

 

https://drive.google.com/drive/folders/1pZ9Lk1HGH-Qo5scQaBJki8ShZIzQfYht
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6 Discussion 

6.1 Results from this project 

PDBDataset 

immuneML can now take PDB files as input and run some analyses with them. Although the 

functionalities do not provide an extensive analysis of the immune receptors, it still proves 

that immuneML can handle 3D structure files. 

DistanceBetweenStructures 

Using the distance between structures encoder with precomputed KNN classification 

produces a machine learning model with an average balanced accuracy of 0.64, which is not a 

great score.  The result from the classification run shows that it is not substantially capable to 

correctly classify the two groups of 3D structures.  

DistanceToAntigenMatrixEncoder + HeatmapReport 

The DistatanceToAntigenMatroxEncoder used with the heatmap report produces heatmaps, 

that usually show the light and the heavy chain closer to the antigen in the CDRs. Which is 

expected since that is where the binding is located. 

Ideally the colours in the heatmap should be inverted. Warmer colours should be used when 

the distances are short, and colder colours should be used when the distances are far. But this 

proved harder to implement than anticipated on heatmaps in Plotly express. 
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6.2 PDB files and numbering scheme 

The KNN classification run could be improved with larger amounts of suitable data. Suitable 

data are any protein structures that can be grouped together based on their properties. For 

example, a classification run with immune receptors that bind to a specific antigen vs immune 

receptors that don’t bind to it, would require many PDB files of different antibodies that are 

known to bind to the same antigen. It would also require research into if the non-binders 

actually don’t bind to the specified antigen, since there are cases where some immune 

receptors can bind to multiple47. This would be a better dataset to run machine learning on, 

compared to the one that was used in this project, since it might learn what features determine 

that it binds to the antigen.   

Normally PDB files are created by authors when they are researching a specific topic or 

structure. The research is usually on the binding between the antibody and the antigen. This 

causes the databanks to be filled with single antibody-antigen bindings, if other antibodies 

bind to the same antigen is not known since it is not tested.  

In numbers alone it can seem like there are a lot of PDB files of immune receptors available 

for machine learning, but that is unfortunately not the case. These files can be useful when 

conducting research into a specific antibody-antigen binding, but for machine learning the 

data is not enough. Only recently there has been a large amount of PDB files gathered related 

to the same antigen. This was caused by the Sars-Cov2 pandemic, which many started 

researching and creating PDB structures. These files all have the same protein spike, but 

possibly different bindings.  

The PDB format itself is also not extensive enough to accurately display the information in 

the antibody-antigen binding structures. Usually when working with immune receptors the 

focus is on the CDRs 48, this is the section that contains the binding to the antigen. While the 

PDB format contains information about the entire structure, it is insufficient for storing all the 

details of the variable regions in an antibody. This is one the reason there have been created 

many numbering schemes that are specifically made for storing antibody variable regions.  
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Dondelinger et al. (2018) 49 explains the difference between the numbering systems Kabat50, 

Chotia51, Martin52 (Based on Chotia numbering), and IMGT53.  

Kabat is a numbering scheme standard for antibodies, specifically sequence based52 ones. The 

Kabat scheme is widely used, but there are some limitations. 

Firstly, it ignores antibody chains that has unconventional lengths49, or chains that has been 

altered with insertions49 or deletions49. 

Secondly, the scheme doesn’t translate the 3D structure well enough 49. There are also regions 

defined in the Kabat scheme that do not exactly match the binding regions 49.  

While Kabat is a sequence based numbering scheme, Chothia is a structure based52 one, 

which also brings the advantage that topologically aligned residues across different antibodies 

are assigned the same position number. 49 Additionally, the CDR definition in the Chothia 

scheme closely matches the structural antigen-binding loops in most antibody sequences. This 

scheme also has the same limitation as Kabat, where it ignores antibody chains of 

unconventional lengths. 

The Martin numbering scheme makes changes to the Chotia numbering scheme52, by 

changing the cut offs for designating amino acids as framework region and the CDRs52. These 

changes were made based on analyses of large amount sequences and structures 52. The 

Martin numbering scheme can be viewed as an updated version of the Chotia scheme 49. 

IMGT is a numbering scheme that was made for numbering protein sequences of antibodies, 

as well as their variable domains and chains 49. The numbering scheme is based on the amino 

acid sequence alignment of the germ-line V gene 49. The germ-line V is significant for 

antibody research because it is located in the CDRs 54. IMGT uses the germ-line V as an 

alignment and then counts residues from position 1 to 128 49.  

IMGT is a primary reference for work in immunogenetics and immune-informatics 49, and is 

currently in use49 and endorsed55 by the World Health Organization - International Union of 

Immunological Societies.  

A drawback with IMGT is that it is quite rigid with its structure, in the sense that it does not 

allow insertions directly in the structure, but rather places them at the end 49.  

Each of these numbering schemes also have different definitions of the CDR lengths. Where 

one CDR ends and where the next one begins are different between the mentioned numbering 
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schemes. Kabat’s and IMGT’s definition of the CDRs are based on sequence alignment 49. 

Chotia, on the other hand, is based on the actual structure of the loops in the antibody 49.  

What each numbering system defines as CDR might have an impact on how well machine 

learning algorithms perform on the data. This is something that needs to be taken into 

consideration when selecting a numbering scheme for usage.  

The three mentioned numbering schemes are also not built on the PDB file format, but they 

are often used together. The numbering scheme is simply a standard for deciding which 

amino acid gets which position number. Combined with the PDB file format, additional 

information can be stored about each of the atoms, such as coordinates and position in the 

amino acid.  

In this project the IMGT numbering scheme was used, but the other mentioned numbering 

schemes could perform better. immuneML will benefit from supporting all of the mentioned 

numbering schemes. Especially since every one of them have their own way of defining the 

CDRs. By supporting multiple numbering schemes, the user can compare and see which 

performs best. 

The PDB file format is a great file format for storing biological 3D structures. However, there 

aren’t strict rules for what to name the different chains. There are guidelines that many follow, 

but no requirement. Although the light and heavy chain are usually named L and H 

respectively, there are instances where they have been named A and B as well. This is 

especially confusing since the alpha and beta chains in the T-cell receptors are usually named 

A and B. Even though every PDB file has a description in the beginning explaining what each 

chain is, it might still be confusing. The author’s description might not be sufficient for a 

complete understanding of the different chains, which might cause misunderstandings. Since 

there can be a high variation of PDB files, there have been created tools that handle parsing. 

The PDB parser 34module by Biopython36 is one such tool. This module parses information in 

the PDB file and stores it in a python object called PDB.Structure 37.  

In the work of adding 3D structure support to immuneML, the PDB Parser is a central piece. 

It handles all the parsing of the PDB files, and the PDB.Structure object is the object accessed 

for data in the use of encodings. immuneML now uses numerous classes from the PDB 

package 35, which is a sub-package of the main Bio36 package. These tools by Biopython are 
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updated regularly, providing further functionality and fixes for bugs, and issues. Throughout 

this project, there have been PDB files that are formatted so differently, that even the PDB 

Parser couldn’t handle it. Or the PDB Parser did handle it, but the object created doesn’t 

follow the expected structure. Every one of these different formatted PDB files are an edge 

case that needs to be dealt with, either by catching the error, rectifying it, or simply discarding 

the PDB file. See figure 30 for an example of a PDB file where the PDB Parser encountered a 

file it couldn’t parse. 

HETATM11274  N2  NAG B 406     -12.860  16.084   6.039  1.00102.30        N   

HETATM11275  O3  NAG B 406     -13.984  13.563   4.841  1.00110.87        O   

HETATM11276  O4  NAG B 406     -16.624  13.899   3.710  1.00 96.54        O   

HETATM11277  O5  NAG B 406     -16.452  16.649   6.158  1.00117.50        O   

HETATM11278  O6  NAG B 406     -18.635  14.591   6.212  1.00108.47        O   

HETATM11279  O7  NAG B 406     -10.749  16.129   6.777  1.00 91.74        O   

HETATM11280 CA    CA B 407      -4.282  -4.553   5.515  1.00 92.00       CA   

HETATM11281 CA    CA B 408      -5.222  16.659   1.879  1.00 71.80       CA   

HETATM11282 CA    CA B 409       4.014  -0.762  19.387  1.00 88.09       CA   

HETATM11283 CA    CA B 410       4.513  12.329  20.461  1.00 72.95       CA   

HETATM11284 CA    CA B 411      33.544  13.902   9.049  1.00 83.28       CA   

HETATM11285 CA    CA B 412      25.435  22.791   1.274  1.00100.43       CA   

HETATM11286  C   ACT B 413      11.881  -0.453  -1.914  1.00 63.92        C   

HETATM11287  O   ACT B 413      11.493  -0.123  -3.053  1.00 60.79        O   

HETATM11288  OXT ACT B 413      12.283   0.300  -1.020  1.00 58.43        O   

HETATM11289  CH3 ACT B 413      11.835  -1.996  -1.598  1.00 69.60        C   

HETATM11290  C   ACT B 414     -13.980  24.139  18.189  1.00 80.35        C   

HETATM11291  O   ACT B 414     -12.840  23.886  17.710  1.00 71.42        O   

HETATM11292  OXT ACT B 414     -14.508  25.263  18.420  1.00 82.34        O   

HETATM11293  CH3 ACT B 414     -14.870  22.905  18.550  1.00 77.46        C   

HETATM11294 CA    CA H 301     -21.177 -29.892  59.357  1.00 64.92       CA   

HETATM11295 CA    CA H 302     -22.104 -20.508  54.958  1.00 71.09       CA   

HETATM11296 CA    CA H 303     -23.980 -42.780  40.146  1.00 74.03       CA   

HETATM11297 CA    CA H 304     -20.434 -31.682  20.124  1.00 89.70       CA   

HETATM11298 CA    CA H 305     -15.474 -24.081  33.977  1.00 87.81       CA   

HETATM11299 CA    CA H 306     -21.449 -19.479  69.957  1.00103.08       CA   

HETATM11300 CA    CA H 307     -33.111 -42.735  85.062  1.00 72.65       CA   

HETATM11301  C   ACT H 308     -13.628 -32.451  53.443  1.00 76.28        C   

HETATM11302  O   ACT H 308     -13.893 -33.340  52.586  1.00 66.44        O    

Figure 30: This is an excerpt from the PDB file “7L2C.pdb”, which the PDB parser couldn’t handle. The issue is 

in the HETATM section, where the author added “CA” to the carbon alphas in the far-right column. This column 

is supposed to list the element symbol of the atom, which for carbon is “C”. The author has listed it as “CA”, 

which causes the PDB Parser to stop with exceptions. 
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6.3 Other related 3D structure methods 

 Polychronidou et al (2018) 42 shows one method for clustering  a set of proteins based on 

their 3D structure. In this paper they also used TM-align for alignment of the 3D structures42. 

After aligning them with TM-align, they extracted several different 3D descriptors from 

them42. 3D descriptors are properties that describe the conformation of the structure 56. The 

3D descriptors were then used for calculating the distance between the structures. The chosen 

distance metric was RMSD (Root Mean Square Deviation).   

With the RMSD score they started clustering the data. There were three clustering methods 

used: k-medoids, hierarchical agglomerative, and DBScan. 

The k-medoids clustering method is quite like the k-means method, but instead of using 

vectorial representations of the objects, it uses a distance matrix as input 42. The k-means 

algorithm guesses the cluster centre positions within the feature space and updates them when 

the available data provides a better fit. In contrast, the k-medoids method does not define a 

feature space and has no concept of cluster centre positions. Instead, it uses objects to 

represent the set of objects, called medoids, to act as the cluster centre. Initially the medoids 

are set randomly but are updated based on their similarity to other objects in the same cluster, 

and their dissimilarity to objects in other clusters. 

The hierarchical agglomerative clustering algorithm is a method that starts with every data 

point being a cluster itself. Then merges two and two clusters together based on their distance. 

The distance in this paper42 is the mean value between each cluster. The algorithm stops when 

all the clusters are merged into one large cluster. At the end there is one large cluster, but the 

main advantage from this algorithm is the tree-like structure that forms after completing each 

step/merge. This tree-like structure can be cut at different heights to show the clustering at 

different stages. 

The last clustering algorithm is DBScan which is a density-based clustering method42. This 

algorithm works by selecting a random data point and if there are N data points close, it is 

considered dense, then forming a cluster42. N is the lowest number of data points to be 

classified as dense. The algorithm repeats this action until there are no points that can be 

considered as close to a cluster.  
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Utilizing these three machine learning algorithms on the combined 3D descriptor, the Rand 

index ended up at 89.8% for clustering labelled data to six, and 92.2% for optimal numbers of 

clusters.42 These results are promising for research using 3D structures and should be further 

explored. 

immuneML could benefit from recreating the methods used in Polychronidou et al (2018) 42. 

Especially the part with the usage of 3D descriptors instead of the raw PDB file. In addition, 

implementing RMSD could also prove beneficial for immuneML. 
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7 Conclusion 

immuneML is a machine learning platform for analysis of adaptive immune receptor 

repertoires. The main objective of this project was to add 3D structure support to immuneML. 

This has been achieved with the implementation of the PDBDataset and the PDBStructure 

classes. These classes use BioPython’s PDB package, modules such as PDB Parser, and the 

class Structure, are used to read and store the PDB files. In addition, the users are now able to 

run exploratory analysis and machine learning on 3D structures. 

The main challenge for training machine learning models on 3D structures, is the lack of 

larger datasets of suitable data with the same properties. Classification algorithms require the 

data to be split into different categories, usually based on their properties, for example if the 

antibody binds to a specific antigen or that it does not bind to a specific antigen. In the future 

when more of such data is available, immuneML will already have support for them. 

 

 

7.1 Further work 

7.1.1 Improvements to the PDBDataset 

Here are some ways forward for improving the PDBDataset: 

- Currently PDBDatasets only support BCRs, which means that implementing TCR 

support is a clear way forward.  

- Implement support for multiple numbering schemes in addition to IMGT, such as 

Chotia, Martin and Kabat. These numbering schemes also have different definitions of 

CDR, which could give new perspectives of the data, or better performance. 
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7.1.2 DistanceToAntigen 

The DistanceToAntigen encoder could be improved with better detection of chains. The 

current implementation works for most of the PDB files, that fulfil the requirements specified. 

This can be further improved by implementing a dynamic detection of the chains based on all 

the possible names of chains. For example, if the chain “A” and “B” are detected, that should 

mean that “A” is the light chain, and “B” is the heavy chain. Thus, the last chain will be the 

antigen. But if “A” is detected with no “B”, it probably means that the antigen is named “A” 

and the other two chains are the light and heavy chain. 

Another approach could be to let the user specify the chains themselves in the metadata file. 

This approach would fix all of the issues with the detection of chains but will be tedious for 

the user. 

A small improvement could be to reverse the colours in the heatmap. Closer distances will 

have a warmer colour, while longer distances will have a colder one. Adding titles to the axis’ 

will also be an improvement. 

7.1.3 DistanceBetweenStructures 

The DistanceBetweenStructures encoder could be improved with implementation of the 3D 

structure descriptors that were used in Polychronidou et al (2018) 42. Using 3D structure 

descriptors instead of the PDB file itself, could prove beneficial in clustering performance. 

Other ways to improve the encoder: 

- Implementation of multiple numbering schemes gives the user the possibility to select 

one that is best suited for the user’s situation.  

- Optimization of code will improve the runtime. Currently it is quite long for larger 

datasets, which should be decreased. 
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Appendix A – How to run immuneML 

with PDB functionalities 

Easiest: Access the UiO VM that has been setup for this. (The tutorial is for Windows based 

systems) 

Other: Install it on your own device. 

Accessing the UiO virtual machine 

Simply download the private key used for connecting to the VM from this link: 

https://drive.google.com/file/d/1T75rE-XsHH6S83yrnE1QLqss-KviU75H/view?usp=sharing  

If you have windows the command to connect to the VM is: 

$ ssh -i nrec_vm debian@158.39.75.182 

Gain root access with these commands: 

[debian@testvm ~]$ sudo -i 

[root@testvm ~]# whoami 

root 

 

If there are any issues, follow the guide here: 

https://uh-iaas.readthedocs.io/ssh.html#connecting-to-the-instance  

IP of VM: 158.39.75.182 

After gaining access to the VM use this command to go to the correct directory: 

[root@testvm ~]# cd /usr/immuneML/immuneML/immuneML/Run_files 

https://drive.google.com/file/d/1T75rE-XsHH6S83yrnE1QLqss-KviU75H/view?usp=sharing
https://uh-iaas.readthedocs.io/ssh.html#connecting-to-the-instance
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From here you can use these four commands. Remember to delete the “Output” folder 

between each run. The KNN classification run also generate new PDB files in the current 

directory, these files can be deleted but do not need to. They can easily be deleted with the 

command at the end of this guide. 

 

1. Generate heatmaps of the distance between the chains and the antigen. 7 PDB 

structures (Fast runtime) 

$ immune-ml heatmap.yaml Output 

2. Starts a KNN classification run on the TM-score distance between 24 different PDB 

structures. 12 RBD and 12 NTD (Runtime is around 15 minutes) 

$ immune-ml KNN_quickstart.yaml Output 

3. Starts a KNN classification run on the TM-score distance between 50 different PDB 

structures.  25 RBD vs 25 NTD(Runtime is around 50 minutes) 

$ immune-ml KNN_run_normal.yaml Output 

Starts a KNN classification run on the TM-score distance between 185 different PDB 

structures. 160 RBD and 25 NTD (Runtime is around 9 hours) 

$ immune-ml KNN_LARGE_run.yaml Output 

The commands above will generate a folder called Output and store the results there.  

If you want to see the results and open the html file, you need to send the results to your local 

computer. To do this, you need to zip the folder, and then open another terminal and request 

the zipped folder from the VM. 

Use this command to zip the Output folder: 

$ zip -r Results.zip Output 
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Then send the zipped folder with this command (Not the same terminal that is connected to 

the VM): 

$ scp -i nrec_vm debian@158.39.75.182://usr/immuneML/immuneML/immuneML/Run_files/R
esults.zip Results.zip 

The zipped folder should appear in your current directory. 

 

How to delete the generated PDB files (Use in the current directory): 

$ rm *.pdb 
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Installing immuneML with PDB support on your own device 

You can install immuneML with PDB support by cloning this branch: 

https://github.com/uio-bmi/immuneML/tree/pdb_support_final 

Simply install the setup.py file with python 

Then run:  

 

$ pip install biopython  

$ pip install tmtools 

To check if immuneML is installed run: 

$ immune-ml -h 

 

Running immuneML with PDB files 

The necessary files for running immuneML with PDB files are already provided in the 

branch. You are free to add or remove files as you see fit, but remember to update the 

metadata file to correctly match the data. The files are located in the “Run_files” folder. 

You need to update the YAML files with the correct path to the metadata file and the folder of 

PDB files.  

immuneML takes in two arguments. The first is the path to the YAML file, and the second is 

the path to the folder where the output will be stored. The arguments are separated by a single 

whitespace.  

Remember to delete the “Output” folder between each run. The KNN classification runs also 

generate new PDB files in the current directory, these files can be deleted but does not need 

to. 

 

 

https://github.com/uio-bmi/immuneML/tree/pdb_support_final
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The command for running the heatmap.yaml is (replace the path with your own):  

$ immune-ml immuneML/Run_files/heatmap.yaml immuneML/Run_files/Output 

1. Select which YAML file you want to run by replacing the path with the path to 

YAML file you want to run. 

2. Run the command above with your choice and an output path. 

There are currently four yaml files in this example branch. 

The first is the heatmap.yaml. This file should generate heatmaps with the distance from the 

antigen to the different chains. There are in total 7 PDB files in this folder, which makes the 

total of heatmaps 14. The runtime is quite low for this run.  

The second one is KNN_quickstart.yaml. This run uses the 

DistanceBetweenStructuresEncoder, and calculates the TM-score between the different 

structures. Then it runs the KNN classification algorithm on the distance matrix. There are in 

total 24 PDB files used for this run. The data is split between 12 RBD files, and 12 NTD files. 

The runtime is around 20 minutes for this run. 

The second one is KNN_run_normal.yaml. This run is the same as the second one, but has a 

larger dataset. There are in total 50 PDB files used for this run, 25 RBD files and 25 NTD 

files. The runtime is around 40 minutes for this run. 

The last one is KNN_LARGE_run. This is the same as the previous run, but here there are in 

total 185 PDB files. The dataset contains 25 NTD files and 160 RBD files. The runtime is 

around 8 hours. 
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Appendix B – Code  

Code used to data filtration: 

import os 

from Bio.PDB import PDBParser 

import shutil 

 

 

 

directory = “Directory\of\files” 

 

 

files_to_keep [] 

 

for filename in os.listdir(directory): 

    pdb_parser = PDBParser( 

        PERMISSIVE=True 

    ) 

 

    pdb_structure = pdb_parser.get_structure("pdbStructure", directory + 

"\\" + filename) 

 

    for model in pdb_structure.get_models(): 

        counter = 0 

 

        for chains in model: 

            if str(chains) == "<Chain id=L>" or str(chains) == "<Chain 

id=H>": 

                counter = counter + 1 

                if counter == 2: 

                    files_to_keep(filename) 

                    break 

 

            else: 

                counter = 0 

 

 

print(len(files_to_keep)) 

for file in files_to_keep: 

    shutil.copyfile(directory + "\\" + file, "new_folder\\" + file) 
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Code used for generating the metadata file 

import csv 

import os 

 

directory = 'RBD_PDB' 

 

with open("metadata.csv", 'w', newline='') as file: 

    writer = csv.writer(file) 

    writer.writerow(["RBD","filename"]) 

    id_counter = 0 

    for filename in os.listdir(directory): 

        writer.writerow(["True",filename]) 

        id_counter = id_counter+1 

 

 

 

    for filename in os.listdir("NTD_PDB"): 

        writer.writerow(["False",filename]) 

        id_counter = id_counter+1 

 
 


