
.

Master’s thesis

KIVS - Graph K-mer Indexer

& Variant Signature Finder
Improving the performance of index creation for alignment-free

genotyping

Sindre Ask Vestaberg

Programming and System Architecture

60 ECTS study points

Department of Informatics

Faculty of Mathematics and Natural Sciences

Spring 2023

Sindre Ask Vestaberg

KIVS - Graph K-mer Indexer &

Variant Signature Finder

Improving the performance of index creation

for alignment-free genotyping

Supervisors:

Ivar Grytten

Knut Rand

Geir Kjetil

Abstract

Genotyping is the process of determining what genotypes (DNA se-
quences) an individual has at specific locations in the genome. The tra-
ditional approach to determine these genotypes is through variant calling.
However, variant calling is computationally intensive as it requires the
individual’s genome to be aligned to a reference genome, which is an ex-
pensive process. Thus, alignment-free alternatives were developed that,
while less accurate, are significantly faster than alignment-based methods
by skipping the variant calling step. These alignment-free methods rely
on identifying important k-mers (strings of k bases) for a species, to then
look for these in individual genomes. These important k-mers are refered
to as variant signatures, as they signify the presence of a variant. Finding
these variant signatures requires computationally intensive preprocessing
of data on known genetic variation for the species. For the human genome,
the 1000 Genomes Project [1] provides this vast knowledge base on genetic
variation to great benefit for alignment-free genotyping.

KAGE [13] is a recent and competitive alignment-free genotyper, both
in terms of accuracy and speed. Compared to other existing solutions,
such as Malva and PanGenie, KAGE is able to genotype both faster and
more accurately. However, while KAGE has impressive performance
when genotyping, this is not the case for the preprocessing of k-mers and
variant signatures. Analyzing the vast amount of variant data to find
and index all relevant k-mers is a time consuming process and makes
it impractical to construct new indexes or update existing ones. As
such, efficient solutions to these preprocessing steps would significantly
improve the practicality of alignment-free solutions such as KAGE.

This thesis explores performance improvements for these preprocess-
ing steps, resulting in KIVS, a high performance Python module for k-mer
and variant signature analysis. KIVS achieves high performance and us-
ability by being implemented in C++, wrapped in an easy-to-use Python
interface. The genome and its possible variations are also represented by
an optimized graph using 2-bit encoding to further improve performance.
While made with KAGE integration in mind, KIVS is a standalone module
that can be used by other genotyping implementations as well.

i

Acknowledgements

I would first and foremost like to thank my supervisors for their continued
support and guidance while working on this thesis. Completing this
project was made significantly easier thanks to them setting aside time
for regular meetings, as well as providing quick answers and feedback to
questions and drafts. Working alongside a fellow student whom shared
my supervisors and field of study was also a great help.

Further I am also thankful for the support of both my family and the
friends that have studied alongside me since starting at university.

ii

Contents

1 Introduction 1

2 Thesis Aims 3

3 Background 4
3.1 Biology . 4

3.1.1 DNA . 4
3.1.2 Genome . 5
3.1.3 Reference Genome . 5
3.1.4 Alleles & Variants . 5
3.1.5 DNA Sequencing . 6

3.2 Variant Discovery . 7
3.2.1 Variant Calling . 7
3.2.2 Genotyping . 7
3.2.3 Alignment-based methods 7
3.2.4 Alignment-free methods 8

3.3 The K-mer Indexing Problem 10
3.3.1 Existing Solutions . 10

3.4 The Variant Signature Problem 11
3.4.1 Existing Solutions . 12

3.5 Data Formats . 12
3.5.1 FASTA & FASTQ . 12
3.5.2 VCF (Variant Call Format) 13
3.5.3 Genome Graphs & GFA 13

3.6 Software Development . 15
3.6.1 Python . 15
3.6.2 NumPy . 15

iii

3.6.3 C and C++ . 16
3.6.4 Cython . 16

4 Methods 17
4.1 Initial Considerations . 17

4.1.1 Python Tools . 17
4.1.2 Graph Representation 18

4.2 First Prototype (Cython) . 19
4.2.1 Implementation . 19
4.2.2 Testing . 20
4.2.3 Lessons Learned . 20

4.3 Second Prototype (Python) . 21
4.3.1 Considerations . 21
4.3.2 Implementation . 21

4.4 Iterating on the Second Prototype 24
4.4.1 Changing the Output Format 24
4.4.2 2-Bit Encoding Output 24
4.4.3 Utilizing NumPy . 26
4.4.4 Loading Larger Graphs 27
4.4.5 Differentiate Reference Nodes from Variant Nodes . 28
4.4.6 Separate Graph Traversal to Another Class 28
4.4.7 2-Bit Encoding the Whole Graph 29
4.4.8 Thorough Correctness Tests 34
4.4.9 The Final Algorithm 35

4.5 Translating the Prototype to C 39
4.5.1 Module Setup . 39
4.5.2 Considerations . 39
4.5.3 Graph Representation 39
4.5.4 Graph Traversal . 41
4.5.5 Cython Wrapping . 41

4.6 Further Improvements . 42
4.6.1 Reversing Results . 42
4.6.2 Map-Based Encoding 42
4.6.3 Graph Export and Import 43
4.6.4 Move to C++ . 45
4.6.5 C++ Tests . 45

iv

4.6.6 Reading GFA . 46
4.7 Finding Variant Signatures . 47

4.7.1 Considerations . 47
4.7.2 Preparatory Implementation 47
4.7.3 Determining Signatures 50

4.8 Finalizing . 51
4.8.1 Creating an Index . 51
4.8.2 Reading FASTA and VCF 52
4.8.3 Additional Variant Signature Options 52
4.8.4 Additional Python Methods 53
4.8.5 KAGE Integration . 53

5 Results 54
5.1 The Final Module . 54
5.2 Performance . 55

5.2.1 Accuracy . 55
5.2.2 Performance . 57

5.3 Usage . 58
5.3.1 Python . 58
5.3.2 C++ . 60

6 Discussion 62
6.1 The Effect of KIVS for Genotyping 62
6.2 Potential Improvements . 63

6.2.1 Returning All Signature Candidates 63
6.2.2 Include Reverse Complements 63
6.2.3 Command-Line Interface 63
6.2.4 Parallelization . 64
6.2.5 GPU Processing . 64
6.2.6 32-mer Limit . 65

7 Conclusion 66

8 Appendix 67
8.1 Benchmarking . 67

8.1.1 System Specifications 67
8.1.2 Datasets . 68

v

Chapter 1

Introduction

With recent and ongoing developments in high-throughput sequencing
methods, there is more genetic data available than ever before. Analyses
of this data can provide important insights into genetics as a whole.
For example, through analysis of an individual’s genome, one could
determine their risk for certain diseases to preemptively take steps to
minimize it. This means that efficient algorithms are required to keep up
with the demand for analyses of each individual.

The traditional method used to discover an individual’s genetic
variation relies upon the step of variant calling. Variant calling involves
comparing the genome to a reference genome, and inferring the variants
based on where they differ. This is generally done using alignment-based
methods. Alignment-based methods require aligning a genome’s reads
to a reference genome so that they can be compared correctly. While
highly accurate, this alignment process takes a significant amount of time
and computational resources to perform, especially when variations are
complex. This makes alignment-free methods very useful as they can avoid
this costly processing step.

Alignment-free methods skip the variant calling step by use of
established knowledge about variants, making them considerably faster
and less expensive. These methods rely upon identifying what k-mers
(strings of k bases) signify a variant’s presence based on prior knowledge,
to then look for those in sequenced genomes [26]. These k-mers are called

1

variant signatures. Projects such as the 1000 Genomes Project [4] present
overviews of genetic variation amongst the population, and can be used
to create indexes of such signatures. While alignment-free approaches are
much faster than sequence alignment, it has trouble identifying variants
with no unique k-mers that signify them, making it less accurate than the
alignment-based methods. Therefore, attempts at improving alignment-
free accuracy and speed has been developed in recent years, like Malva
[7], PanGenie [9] and KAGE [13], all using different techniques.

KAGE in particular uses two novel ideas to handle these variants. The
first idea is to model the expected k-mer counts of the population. This
allows non-unique k-mers to still be identified as they would change the
expected total count. The second idea is to infer one variant based on the
presence of another, which involves analyzing what variants usually occur
and don’t occur at the same time in individuals. KAGE also considers
many possible signatures for each variant when creating an index, in order
to find the ones most likely to yield correct results. These ideas, combined
with an effective implementation, grants KAGE as good or better accuracy
than many other alignment-free genotypers, while also being significantly
faster. However, this speed comes at the cost of some time consuming
preprocessing steps. [13]

The main bulk of preprocessing for KAGE is creating indexes of
expected k-mer counts and variant signatures. While these only need
to be made once to be used for multiple individuals, they may need to
be updated when the reference genome or variant information changes.
The preprocessing steps are also required when creating indexes for
other species. As such, it would be beneficial to be able to reconstruct
them efficiently. Improving the computational performance of these
preprocessing steps is the focus of this thesis.

2

Chapter 2

Thesis Aims

This thesis focuses on KAGE and aims to explore potential performance
improvements for 1) counting the expected k-mer counts for a population,
and 2) determining the most suitable variant signatures. For use with
KAGE and general availability, this will be implemented as a Python
module. While it is a priority to make the module work as a stand-alone
tool that can be used for multiple aligment-free implementations, it will
be made with KAGE integration in mind.

KAGE currently has impractically slow solutions for counting k-mer
frequency and finding variant signatures. As it stands now, these tasks
require several hours to complete for the entire human genome. As such,
these are the two main problems I will be tackling. For both problems,
the goal is to implement an algorithm that provides KAGE with the
necessary k-mer information in a much shorter time, while still achieving
comparable accuracy.

Throughout the thesis I will explore various avenues that may speed
up the indexing process, while fully implementing the promising ones.
The goal is for the module to be several times faster than the existing
solution while not requiring much more memory. Another goal is to make
it practical, as ease of use should make it easier to integrate into existing
solutions, such as KAGE.

3

Chapter 3

Background

The background section will cover the necessary information to fully
understand the content of the thesis. This includes understanding biology
and genotyping terms, the details of the problems, and relevant software
development tools.

3.1 Biology

3.1.1 DNA

Deoxyribonucleic acid, or DNA for short, serves as the language in which
genetic information is written. The DNA itself takes the form of two
strands forming a double helix where hydrogen bindings between four
nucleotide bases encode the data. These four nucleotide bases consist of
two purine bases, adenine (A) and guanine (G), and two pyrimidine bases,
cytosine (C) and thymine (T). The purine bases are always bound to the
pyrimidine bases, in bindings between A and T, and C and G [27, p15].
Thus we can say that the DNA is written in the alphabet {A, C, T, G}.

Further, if one strand contains the DNA sequence ACTG, the comple-
mentary strand would have TGAC at the same location, as A pairs with T
and C pairs with G. This is the sequence’s complement. The reverse of this
complement is often used for bioinformatics, which would be CAGT. This
is then the reverse complement of the original ACTG sequence.

4

3.1.2 Genome

The genome refers to an individual organism’s ”recipe”, with its ingredi-
ents, genes, encoded in the DNA. While the genome includes all genetic
information of an organism, it is often narrowed down to the entire DNA
sequence of one set of chromosomes [27, p13]. Humans have 46 chromo-
somes total, consisting of one pair of sex chromosomes and 22 additional
pairs, where each pair consists of one chromosome from each parent [29].

3.1.3 Reference Genome

A reference genome is a representation of a species’ genome used
to spot irregularities in the DNA sequence of individual organisms.
These reference genomes are constructed from multiple individuals in
an attempt to make a general sequence that best represents the genetic
diversity in the population [15].

The human reference genome is continually getting more refined, with
the latest version as of 2022 being GRCh38.p14 [14]. This reference genome
was released by the Genome Reference Consortium (GRC), stemming
from the Human Genome Project [23].

3.1.4 Alleles & Variants

An allele is one of multiple possible DNA sequences at a specific location
in the genome where variation exists. For each such location, an
individiual has a pair of alleles, with one allele from each chromosome in a
pair. If both alleles in a pair are the same, they are homozygous. Otherwise,
they are heterozygous.

Alleles of a genome that differ from the reference genome are referred
to as variants. Variants are divided into one of three categories: insertions,
deletions and substitutions. Insertions and deletions are collectively
called indels. For insertions, new bases are inserted into the reference
genome. With ACTG as a reference, an insertion of A between C and T
would yield ACATG. Deletions on the other hand deletes bases from the
reference genome. With ACTG as reference, a deletion of C would yield
ATG. Lastly, substitutions both add and remove bases by replacing bases

5

from the reference genome with other bases. With ACTG as reference,
a substitution of T to A would yield ACAG. Further, if a variant is a
substitution of exactly one base for exactly one other base, it is called an
SNP (Single Nucleotide Polymorphism). If a variant is particularly large and
changes many bases, it is called a structural variant.

AC

A

TG

ACATG

A CX

X

TG

ATG

AC T

A

G

ACAG

AC T

AC

G

ACACG

Figure 3.1: From left to right, examples of an insertion, a deletion and two
subtitutions. The first substitution is an SNP while the other is not.

3.1.5 DNA Sequencing

In order to analyze an organism’s genome, its DNA first needs to be
sequenced into strings of bases. High-throughput sequencing methods,
also called next-generation sequencing (NGS), presents highly efficient
methods of sequencing DNA that yield massive amounts of data by way
of parallel short-read sequencing. [20]

Short-read sequencing involves sequencing many shorter strings of at
most a few hundred bases in parallel with thorough quality control. This
allows for both accurate and fast sequencing of DNA. These sequences
can then be mapped to a reference genome for comparison. However, the
shorter reads become weakness when dealing with larger variations such
as structural variants. These can make it difficult to map the sequence to a
reference genome or to construct whole-genome sequences. [2]

Third-generation sequencing methods address this issue by use of
long-read sequencing, supporting reads of several thousand bases at once.
While this generally has a higher error rate than the short-read alternative,
they allow for proper reading of complicated areas of the genome.
Short-read and long-read sequencing methods can together provide large
quantities of accurate genetic data. [2][17]

6

3.2 Variant Discovery

3.2.1 Variant Calling

Variant calling is the process of analyzing sequenced data to identify
information about variants. After a whole genome has been sequenced,
its sequences are aligned to a reference genome (see section 3.2.3). The
aligned sequences can then be used to find differences from the reference
genome to infer what variants an individual has. [3]

3.2.2 Genotyping

Genotyping is the process of determining an individual’s genotypes. A
genotype can have different definitions for different purposes, but within
the domain of variant discovery refers to the presence or absence of a
variant in an individual’s genome for both alleles at a given location. As
with pairs of alleles, a genotype is either homozygous or heterozygous
based on whether the two alleles are the same or not. When determining
an individual’s genotype for a specific variant, they have one of three
results. The first is to be homozygous for the variant, meaning it is
present in both alleles. The second is being homozygous for the reference,
meaning it is present in neither. Finally, if the variant is present in one
allele, but not both, they are heterozygous for the variant.

3.2.3 Alignment-based methods

Genotyping and variant calling has traditionally been done with
alignment-based methods. These methods rely on aligning an individ-
ual’s sequenced DNA to the reference genome, which is a costly process
both in terms of time and memory [26]. Alignment-based genotypers
such as GATK [11] show very high accuracy for genotyping at the cost
of several hour runtimes and tens of gigabytes of memory. These methods
are very important as they allow finding previously unknown variations,
compared to the alignment-free counterparts.

7

3.2.4 Alignment-free methods

Alignment-free methods attempt to resolve the runtime issues of
alignment-based methods, and also sometimes lowering the memory re-
quirement. This is achieved by avoiding the variant calling step alto-
gether through the use of established variant information, also avoiding
the alignment step in the process [26]. These alignment-free methods are
generally less accurate than their counterpart, as they are unable to find
unknown variations, but they make up for this in terms of performance.
Solutions such as KAGE can genotype an individual in a few minutes
compared to the hours an alignment-based method would require, and
also needs much less memory. Instead of alignment, alignment-free meth-
ods rely on k-mers to identify variants in a genome. K-mers are polymers,
strings of bases, of k length. For example, ACGT would be a 4-mer. The
overall idea behind alignment-free approaches is to find rare k-mers that
usually only exist in a genome if a variant is present [26]. These k-mers
are referred to as a variant’s signature, and can then be looked for in an
individual’s genome to prove a variant’s existence or lack thereof.

For alignment-free solutions to function, they first need a vast amount
of established variant information. The more variant data available, the
more variants these alignment-free methods can prepare signatures for
and identify. From 2008 to 2015, the 1000 Genomes Project gathered large
amounts of data on human genetic variation for public use [1]. This
data has proved indispensable for alignment-free methods that rely on
established knowledge.

Alignment-free Solutions

Lightweight assignment of variant alleles (LAVA) [26] presented a baseline
methodology for alignment-free solutions, greatly reducing the processing
needed for genotyping known variants. LAVA paved the way for iterative
improvements to the alignment-free approach, making them both faster
and more accurate, especially for indels. Malva, PanGenie and KAGE are
prominent examples of alignment-free solutions that iterate on LAVA’s
work. They both introduce additional techniques to further refine the
quality of their results.

8

Malva [7] uses k-mers centered on a variant as its signatures, but
dynamically chooses to use larger k-mers when necessary to uniquely
identify a variant. This improves accuracy compared to LAVA’s fixed k-
mer size of 32. It also supports multiple signatures for the same variant,
to handle variation dense areas where multiple k-mers may signify a
variant’s existence. While this approach functions well, large k-mers
become more expensive to process, especially in dense areas. Malva
especially struggles with variants that do not have any unique k-mers to
use as signatures.

PanGenie [9] improved upon Malva’s approach by use of known
population information to infer the likelyhood of a variant based on the
existence of other variants. This was done using a Hidden Markov Model
(HMM), which grows quadratically in memory usage with how many
variant states it has to consider. While PanGenie outperforms both the
alignment-based GATK and the alignment-free Malva in terms of speed,
it uses significantly more memory than both of them.

KAGE

KAGE is yet another alignment-free solution that builds upon the work of
LAVA, Malva and PanGenie, with new ideas to make it both faster, less
memory-intensive and more accurate. Much like Malva, KAGE supports
multiple signatures for a single variant, but unlike Malva, these signatures
are chosen more carefully. Rather than centering the signatures on the
variant, KAGE’s approach considers several different k-mers that span the
variant to find the best signature available. It also has a second set of
signatures that instead signify that the reference is present, rather than
the variant, to further refine its results. In addition, to handle variants
with non-unique signatures, KAGE considers the expected number of
occurences of each k-mer in the genome. This way a non-unique signature
can be identified if the expected count changes. Both the counting of
expected k-mers and evaluation of signatures are preprocessing steps that
are done before genotyping an individual, and thus do not contribute to
the actual time spent genotyping. This allows KAGE to be significantly
faster and more memory-friendly than Malva and PanGenie, while also
achieving a higher accuracy.

9

3.3 The K-mer Indexing Problem

Reference
& Variants

ACGAC T

X G

Finding Possible 3-mers

ACGAC T

X G

ACG

ACGAC T

X G

CGA
CGC

ACGAC T

X G

GAC
GCT
GCG

ACGAC T

X G

ACT
ACG

Counting Frequency
3-mer

Count

ACG

2

CGA

1

CGC

1

GAC

1

GCT

1

GCG

1

ACT

1

Figure 3.2: Example of an input sequence with two possible variants and its
resulting 3-mer frequencies. In the case of the deletion of A (signified by the red

X), the next base in the sequence is appended to the 3-mer.

Whether it comes to counting the expected occurences of k-mers or
determining variant signatures, gathering information about which k-
mers exist and what variants and parts of the reference genome they
span are of utmost importance. When the genome is dense with possible
variants, the many combinations can make this indexing process taxing.
As such, fast solutions for this process are of great benefit to genotyping.
Figure 3.2 shows an overview of this process for 3-mers in a short sequence
with one deletion and one SNP variant.

3.3.1 Existing Solutions

There are a few existing solutions to the k-mer indexing problem,
such as vg (variant graphs) [33] and odgi (optimized dynamic graph
implementation) [25]. Both of these are C++ implementations with
detailed command-line interfaces with many highly sophisticated graph-
based operations. This contributes to making them more complex and less
accessible compared to a Python module focused on this specific task.

10

KAGE uses its own implementation for this problem that is provided
by the graph-kmer-index module [12]. Contrary to vg and odgi, this is
a Python module, but it is also severely slower than its competitors. As
such, an optimized Python module for this task would prove useful.

3.4 The Variant Signature Problem

Reference
& Variant

ACG T AC T

G

Finding Signature Candidates

Window Reference Variant

ACG T AC T

G

ACGT ACGG

ACG T AC T

G

CGTA CGGA

ACG T AC T

G

GTAC GGAC

ACG T AC T

G

TACT GACT

Ranking Signatures by Frequency

Reference Variant Ref. Freq. Var. Freq.

ACGT ACGG 2 3

CGTA CGGA 1 3

GTAC GGAC 2 1

TACT GACT 7 2

Total Freq.

5

4

3

9

Chosen as Signature

Figure 3.3: Example of determining 4-mer signatures for a variant. The
frequencies used for ranking are from a hypothetical frequency index

constructed prior to finding signatures.

When using a more pre-determined approach for variant signatures
such as Malva’s where they are simply centered, finding variant signatures
is fairly straight forward. However, with KAGE’s approach of finding the
optimal signatures, this process quickly grows demanding. Several k-mers

11

have to be considered for each variant, and for each of them their rarity
needs to be compared against the expected k-mer counts to determine the
most suitable signatures. An overview of this process for 4-mer signatures
of a single variant is shown in figure 3.3.

3.4.1 Existing Solutions

There are currently no other solutions that determine variant signatures
in the same thorough manner that KAGE does, whose implementation is
very slow. Therefore, this is one of the central processes in need of an
alternative with better performance.

3.5 Data Formats

3.5.1 FASTA & FASTQ

chromosomes.fa

>1

acccactttttgatgaggttgtttggtttttccttctaaatttgtttaag

ttccttgtagattctggatattagccctttgtcagatggatagattgcaa

...

>2

aaattttctcccattctgtaggttgcctgttcactctgatgagagtttct

...

Figure 3.4: Example of a FASTA-file’s contents.
The descriptions denote chromosome numbers.

FASTA and FASTQ are file formats used to store sequences of single
letter codes, and is often how DNA sequences are stored. The structure
of FASTA files are quite simple, with a description line starting with a
greater-than (”>”), followed by the entire sequence over the next lines.
One FASTA file can include multiple sequences, where a new sequence
is denoted by another greather-than on the next line following a previous
sequence. This allows all chromosomes to be in a single file. [34]

FASTQ files are an extension of FASTA files that also include quality
scores for each sequence [10]. These quality scores specify how likely it is

12

for the sequence to have been sequenced incorrectly [16].

3.5.2 VCF (Variant Call Format)

variants.vcf

##fileformat=VCFv4.1

...

##INFO=<ID=AC,Number=A,Type=Integer,Description="Total number of

alternate alleles in called genotypes">

##INFO=<ID=VT,Number=.,Type=String,Description="indicates what

type of variant the line represents">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT

21 9411239 . G A 100 PASS AC=1;VT=SNP GT

21 9411245 . C A 100 PASS AC=4;VT=SNP GT

21 9411264 . A C 100 PASS AC=1;VT=SNP GT

...

Figure 3.5: Example of a VCF-file’s contents.
Many more options can precede actual data.

Variant information is stored in the VCF file format. This format allows
for the definition of several tags and options used to further describe each
variant. The actual variant data is stored in a tab-delimited manner. Each
row includes the relevant chromosome number, the variant’s position in
the reference genome, what bases are changed, and other useful metadata.
They can also outline genotype information for one or more specific
individuals. [31]

3.5.3 Genome Graphs & GFA

A genome graph is a representation of a reference genome and variants
tied to it. Whereas a reference genome acts as a standard to compare
other genomes to, a genome graph allows the representation of not only
the standard, but also the genetic variation. This makes them useful for
genotyping as they also support standard graph traversal approaches to
find k-mers that help identify variants.

A graph, G = (V, E), of length nG is defined as a set of vertices
(generally refered to as nodes), V = {v0, v1, ..., vnG−1}, and a set of edges,

13

E = {(x0, y0), (x1, y1), ...}, where x and y are nodes from V. Further, each
node, v, of length nv is defined as a sequence, S = {s0, s1, ..., snv−1}, over
the alphabet Σ = {A, C, T, G}. Finally, the nodes that originate from the
reference genome is a subset of nodes, R ⊆ V.

TGA G

A C

TG AG GTA

sequence.fa

>1

TGAGTGAGGTA

variants.vcf

#CHROM POS ID REF ALT ...

1 3 . G A ...

1 3 . G GC ...

1 6 . AG

Figure 3.6: Example of a section of a genome graph and its source files.
Reference nodes are red while variants are black. Here deletions are represented
by empty nodes, but a graph does not necessarily have empty nodes. The edges

going to said empty node could instead go directly to the node after.

Genome graphs can be constructed from pairs of FASTA-files and
VCF-files. There is also a format to describe graphs directly, GFA
(Graphical Fragment Assembly). The GFA format can describe nodes, the
edges between them, and even overlaps in more complicated files. Nodes
are specified with S, while edges (called links) are with L. Paths can also be
specified with P, for example to list what nodes are reference nodes. [30]

The main caveat of using GFA-files is the loss of variant information
only the VCF-file can provide. A VCF-file can contain much more
metadata about a variant than a GFA-file. Examples of such metadata
include information about a variant’s frequency or the genome it was
sequenced from. Furthermore, while the GFA format can distinguish
reference nodes from variant nodes by use of a path, the variant can have
no node at all if it is a deletion. In such a case, the variant may simply be
an edge skipping part of the reference, making it difficult to locate later. A
similar issue with locating specific variants occur in dense regions where
many variants may overlap. VCF-files can circumvent these issues as each
variant is explicitly mentioned.

14

graph.gfa

H VN:Z:1.1

...

S 299961 TTGAGAGTATCTTCACTGAGTG

S 299962 C

S 299963 T

S 299964 TTAGGTCCATG

...

P 1 0+,1+,2+,...,299961+,299962+,299964+,...

...

L 299961 + 299962 + *

L 299961 + 299963 + *

L 299962 + 299964 + *

...

Figure 3.7: Example of a simple GFA-file where the reference node 299962 has
a substitution variant, node 299963.

3.6 Software Development

3.6.1 Python

Python is a dynamically typed interpreted language, whose interpreter
is written in C. It has become a central programming language and
is often used for data analysis [28]. However, Python is very slow
compared to compiled languages and requires high-performance libraries
for demanding operations. As such, Python is often used to quickly and
easily glue together complicated tasks from these libraries into more easily
readable code. For ease of use, Python features a garbage collector that
automatically clears unused memory.

3.6.2 NumPy

NumPy is a Python library for managing large arrays of data and perform
efficient transformations [22]. In Python, neither variables nor lists are
fixed-type, which make them much less efficient and requires significantly
more memory to store. NumPy on the other hand manages and operates

15

on arrays as fixed-type objects in C instead of Python. Because of this,
NumPy is used by almost every Python developer working with large
quantities of data.

3.6.3 C and C++

Both C and C++ code is compiled to high performance programs orders
of magnitude faster than Python. In addition to their compiled nature,
high performance code can also be written thanks to manual memory
management. While Python uses a garbage collector to manage memory,
C and C++ require the developer to explicitly specify when memory is to
be allocated and deallocated. This allows for efficient reuse of the same
pieces of memory and can help avoid unneccessary copying of data. C++
is an iteration of the C programming language that introduces object-
oriented programming.

3.6.4 Cython

Cython is a library that grants Python access to the performance of C
and C++.[6] To achieve this, the Cython code has a more granular syntax
compared to regular Python, which then allows the code to be translated
by Cython into C or C++ code that can then be compiled. Thanks to hooks
created by Cython, this compiled code can the be loaded into Python as
a module to utilize high-performance code. Cython code can also act as
a wrapper to make the pure C and C++ code accessible for Python. To
maximize the performance gain Cython can provide, all major demanding
tasks should be done exclusively in C or C++ when possible, returning the
result as a Python-object. These characteristics make Cython an excellent
tool for writing high-performance code for Python.

16

Chapter 4

Methods

This chapter will cover the chronological process of exploring implemen-
tation options and creating the final Python module. Additional details
about performance results, such as datasets, system specifications and the
steps to reproduce results can be found in section 8.1 of the appendix.

4.1 Initial Considerations

4.1.1 Python Tools

As the goal was to make a high performance implementation in Python,
I quickly decided that I wanted to utilize C. C is a low-level compiled
programming language, which means it has very granular instructions
and is compiled to machine code. Both of these properties make it suitable
for writing high performance code. As such, it was a logical choice to look
into Cython (see section 3.6.4) to combine Python and C. With Cython
there would be two main options of how to use it. The first is to use
it directly, by writing Python-like code, but with some more granular
additions in order to properly compile it to C or C++ code with hooks to
be Python compatible. The second is for Cython to simply be a wrapper
for code written entirely in C or C++, with some intermediate Cython
code to connect the two. A mixture of both options would also be an
alternative. To properly consider which option would be best, I decided
to start exclusively with Cython to gauge the potential of that option.

17

For Python, NumPy [22] is the go-to module when working with data.
Its data structures are a standard amongst Python developers, and as such,
are highly suitable as input and output values. I believe NumPy helps the
module be both more practical and accessible. NumPy is also fast thanks
to its own C implementation, and even has specific support for passing its
data to Cython, C and C++.

4.1.2 Graph Representation

An efficient genome graph exploration solution also requires an efficient
representation of the graph it will explore. The choice of representation
would need to be properly considered and implemented before the graph
traversal algorithm could be made.

There are many ways to represent graphs in code, for example...

• Having a list of nodes and a list of edges, similar to the graph
definition in section 3.5.3.

• Having a list of nodes and a matrix of edges that spans the entire
node count in both dimensions.

• Having a list of nodes and a 2-dimensional list of edges, where each
index contains the edges of one node.

• Having a list of nodes, where the nodes are data structures that store
their own edges, and possibly other information.

Out of these options, the first two can be immediately excluded. For the
first option, such a list of edges would mean that the entire list would
need to be searched to find the edges of any one node. This is in O(n)
time, compared to the three other options that can do as well as O(1).
The second option has issues with very large graphs, as the memory
requirement for the matrix scales in O(n2). From the final two options,
the last approach allows passing nodes around as complete units of data,
while also making it easier to add more information to each node if
necessary. This is contrary to the alternative, where a node’s index in the
list of nodes would be passed around, not the node itself. Finally, the data
structure approach allows for a node’s sequence to be intuitively stored

18

within the structure. Therefore, the last option was chosen.

Going for the final option I decided on two data structures, one for the
graph and one for the nodes. The graph structure is quite simple, only
having a list of nodes. For the nodes, I decided to start small and only
feature the bare minimum: the sequence as a list of characters and a list of
edges. A node’s ID is determined by its index in the graph’s node list, and
the lists of edges has node IDs a node has outgoing edges to.

4.2 First Prototype (Cython)

4.2.1 Implementation

The first prototype was made entirely in Cython, to get an overview of the
indexing problem itself and how suited a pure Cython solution would be.
To start I chose to ignore the variant signature problem and get the actual
graph traversal correct first, to then work from there.

To keep the graph’s data in C, the graph and node data structures were
defined as C structs in Cython. Then, to have the graph itself be accessible
as a Python object, I wrapped this struct into a Python class. This class
would have the relevant class methods to interact with the data stored
in the struct. For this prototype, the graph is constructed from a list of
sequences and a 2-dimensional list of edges, similar to that of the third
option explained in section 4.1.2. Once the graph has been made, it is
immutable as the class has no methods to mutate it.

The methods used to traverse the graph and return its k-mers are class-
methods for the Graph-class. The create_kmer_index function makes a
call to the recursive function get_kmers. This function then starts at the
root node of the graph and explores the entire graph recursively, adding
k-mers it finds along the way. Each node also has a visited property to
avoid exploring a path that has already been traversed, and is set to false

when create_kmer_index is called. The found k-mers are then added to a
regular Python dictionary, where the key is the k-mer, and the value is a
list of node IDs that k-mer was found in.

19

4.2.2 Testing

Initial testing was done by use of an example program where I wrote
input values in the code and manually confirmed if the output values
were as expected for a few cases. Once that looked to be in order, I
made more formalized tests using a parametrized test with pytest. For
this test the correct results were figured out manually for a few different
cases including, but not limited to, the tests I did manually in the example
program. The test takes the input values and directly compares the output
to the manually calculated values. All the tests passed without issues.

4.2.3 Lessons Learned

This prototype mainly served as a proof of concept, with several issues
to address during further development. For example it was implemented
with a fully recursive method to traverse the graph, which is an approach
too naı̈ve for the final implementation. Given the length of genomes and
the many genetic variations that may span them, the number of recursive
steps would rapidly grow too large. This would in turn likely lead to a
stack overflow error, causing the program to crash.

Further, for Cython code to achieve C-like performance, the syntax
has to be fairly verbose. Extra syntax has to be added on top of the regular
Python syntax, which can grow disorderly when writing large blocks of
code. The most obvious example of this is the need to put cdef before
every variable that will use a C data type. On the other hand it was
very practical to be able to access a Python dictionary in the midst of the
other high performance code. While such cases work, they are not entirely
converted to C, and leave Python artifacts in the code. To ensure that the
Cython code is properly converted where necessary, Cython can generate
an HTML file with an overview of code that is still an issue. This adds
another step to the process when writing high performance Cython code.
In addition to this, compiled Cython code made it difficult to determine
the source of compilation issues. Instead of the issue originating from a
specific line in the original Cython-file, the error would occur a thousand
lines down in a C-file generated by Cython. After using Cython for this
prototype, I concluded that the better option was to use Cython as a

20

wrapper for pure C code. This decision was done mainly because it would
make for easier troubleshooting, while also allowing for additional tests to
be done in C, without the Python-layer on top. However, when interacting
with Python objects, some functionality could still be delegated to Cython.

Furthermore, the overall structure of the code got somewhat messy, as
it was a first draft. There are two issues I think are particularly important.
The first is that while the purpose of the Graph-class is to just represent
a genome graph, it has class methods for traversing it. A better structure
would leave these methods to another object that reads from an assigned
Graph object. The second issue is that the recursive method used to find
the k-mers is very convoluted. For recursive calls only, a boolean variable
is set that makes the function behave quite differently, adding unnecessary
noise to the code. The better solution would be to split the initial call
and the recursive calls into two separate functions. These issues would be
adressed while iterating on the second prototype (see section 4.4).

4.3 Second Prototype (Python)

4.3.1 Considerations

As the Cython prototype had a fair amount of issues, I decided to make
a new cleaner prototype in Python that would later be translated to C.
While Python is not fast by itself, it is a high-level language with easy
to read syntax that can showcase the overall steps of an algorithm. This
makes it suitable for prototype development, as one can more easily test
new ideas to refine the algorithm itself, before implementing it in a low-
level language like C. The goal is to iterate on this prototype until the
performance enhancements deemed most important are implemented,
before translating it to C. Tests would also be both made and used during
development to ensure correct results.

4.3.2 Implementation

The first version of the prototype closely resembled the Cython prototype,
but with a change in recursion strategy. Instead of performing recursive
calls through the entire graph, the algorithm would iteratively start a

21

smaller recursive traversal from every node. Each of these searches would
terminate when no more bases from the starting node are included in
found k-mers. This strategy has four major benefits:

1. There will be no risk of causing a stack overflow.

2. There is no longer a need for each node to have a visited flag to
ensure they are not explored more than once.

3. Given the predetermined value of k, each traversal from a node
would never go further than k− 1 bases from the starting node. This
makes it possible to use fixed-size arrays or buffers, which becomes
relevant when transitioning to them in section 4.4.3.

4. The traversal from each node is a completely separate process,
making parallelization much easier to implement.

The one main downside to this approach is that the bases for each node
might be handled multiple times by different traversals, instead of just
once. However, when exploring multiple paths in a graph, this would be
likely to happen anyway. Thus I believed this approach to be best suited
for the problem.

Listing 4.1 shows pseudocode for the main method to be called when
creating an index, while listing 4.2 is the recursive function for traversal.
This implementation returns an index in the same format as the Cython
prototype, but this will be changed later to better match the format
expected by KAGE.

Listing 4.1: Pseudocode for the main call that will return the entire index.

nodes is the graph’s list of nodes

function create_kmer_index(nodes, k)

index ← empty dictionary

N ← length of nodes

for node_id ∈ 0 to N

get_kmers(nodes, k, index, node_id, node_id, "", 0, 0, false)

end for

return index

end function

22

Listing 4.2: Pseudocode for the graph traversal function. The kmer buffer
parameter is the sequence of the current path, and kmer length is its length. The
rec kmer length parameter is the kmer length at the first recursive step, while

recursive is boolean and indicates if the current call is recursive.

function get_kmers(nodes, k, index, start_node_id, node_id,

kmer_buffer, kmer_length, rec_kmer_length, recursive)

node ← nodes[node_id]

for base ∈ node.sequence

Append each base of the node to the buffer

kmer_buffer ← kmer_buffer + base

kmer_length ← kmer_length + 1

if kmer_length ≥ k then

Only add k-mer if buffer has at least k bases

kmer ← kmer_buffer[(kmer_length - k) to kmer_length]

add kmer to index for start_node_id

end if

if recursive and kmer_length ≥ rec_kmer_length + k - 1 then

break # Stop if more than k - 1 bases from start node

end if

end for

if not recursive then

Cut the buffer to the last k - 1 bases for initial call

new_buffer_start ← max(kmer_length - k + 1, 0)

kmer_buffer ← kmer_buffer[new_buffer_start to kmer_length]

kmer_length ← min(kmer_length, k - 1)

end if

if not recursive or kmer_length < rec_kmer_length + k - 1 then

Recurse further if not in recursion or not k - 1 bases away

for edge ∈ node.edges

new_rec_kmer_length ← kmer_length

if recursive then new_rec_kmer_length ← rec_kmer_length

get_kmers(nodes, k, index, start_node_id, edge,

kmer_buffer, kmer_length, rec_kmer_length, true)

end for

end if

end function

23

4.4 Iterating on the Second Prototype

4.4.1 Changing the Output Format

The current output format of the prototype did not adhere to the output
KAGE would expect. The format expected is two NumPy arrays, one of
which has k-mers and one that has the nodes each k-mer was found at.
Figure 4.1 shows the difference between the two formats.

Old Output Format
key

ACT

CTG

TGA

value

[0, 3]

[1]

[2, 3]

New Output Format
kmers

ACT

CTG

TGA

TGA

ACT

nodes

0

1

2

3

3

Figure 4.1: Example of output format difference with 3-mers.

In addition to this, KAGE expects the k-mers to be 2-bit encoded, the
implementation of which is explained in the next section.

4.4.2 2-Bit Encoding Output

As there are four possible bases (A, C, T and G), two bits are enough to
represent one base. One example would be, A = 010 = 002, C = 110 = 012,
T = 210 = 102 and G = 310 = 112, but they may be encoded in any
order. Using 64-bit integers, one integer can then represent a k-mer up to
32 bases long. This k-mer representation reduces the memory required to
store bases by up to 75% compared to the ASCII format where each base
would require 8 bits each. In practice however, less than 75% is saved
because not every 64-bit integer will always store 32 bases.

The goal was to have the returned array of k-mers (as in figure 4.1)
be 2-bit encoded. This way, the output can be an array of 64-bit integers,
instead of a 2-dimensional array of character sequences.

As bases will be encoded billions of times for just a single run
through a human genome graph, an efficient encoding implementation

24

A C G T C A G T

00 01 10 11 01 00 10 11

11100100 01 00 10 11 6987

Figure 4.2: Example of encoding an 8-mer with the encoding
A = 0, C = 1, G = 2 and T = 3.

is necessary. More specifically, it needs to be in O(1) time per base, or O(k)
time per k-mer. I thought of two different solutions to this problem.

The first solution was to use a map. That would be an array where the
ASCII value of each base would serve as an index, and that index has the
correct encoded value. For example index[’A’] = 0 and index[’G’] = 2

for an encoding where A = 0 and G = 2.

The second solution was an entirely bit-operation based approach. Af-
ter investigating the binary values for the four relevant ASCII characters,
I discovered that the encoding of A = 0, C = 1, T = 2 and G = 3 would
support such an approach. They supported this idea as the two second-to-
last bits of the ASCII values corresponded with the desired encoded values
(as shown in table 4.1). This meant that it was possible to avoid using a
map and instead encode the bases with a simple bit-wise operation:
encoded = (character >> 1) & 3

Base Upper-Case Binary Lower-Case Binary

A 0100 0001 0110 0001
C 0100 0011 0110 0011
T 0101 0100 0111 0100
G 0100 0111 0110 0111

Table 4.1: ASCII values of A, C, T and G with the notable two bits in bold.

The bit-operation approach would not support other encodings, but it
was almost 15% faster (as shown in table 4.2). As the encoding process
would eventually be implemented in C, I made smaller C programs
to compare the performance, even though it would be implemented in
Python for the prototype. Luckily this was also the encoding used by

25

KAGE, so at this point I decided to choose the performance improvement.
However, later in development I went back on this decision (see section
4.6.2).

Map-Based Bit-Operation

Time 6795ms 6009ms

Table 4.2: Speed comparison of map and bit-operation approaches encoding
100 million 31-mers. The median time after seven tests.

4.4.3 Utilizing NumPy

At this point, the prototype still used many high-level Python operations
and structures, such as string concatenation. To move the prototype
towards code more translatable to C, the buffers where changed to fixed-
size NumPy arrays. As NumPy stores data in a C-like format with
a Python interface and can perform efficient operations on the data, I
hypothesized that this would also improve the performance.

Thanks to the style of recursion discussed in section 4.3.2, I knew the
exact size these fixed-size arrays needed to be. This made the move to
NumPy arrays much easier overall. By encoding the Python strings to
ASCII, the NumPy arrays could also use 8-bit integers.

The prior string concatenation solution would pass the current k-mer
buffer to each recursive call, and create new strings when concatenating.
With NumPy on the other hand, all recursive calls share the same buffer,
which is added to when a call starts and cleared when a call ends. This
meant that the new solution had to manage a fair bit more array indexing
than the previous solution.

Python Strings NumPy Array

Time 1800ms 19308ms

Table 4.3: Time spent finding and encoding all k-mers for dataset 1 (see
appendix 8.1.2). The median time after seven tests.

Contrary to expectations, the new NumPy solution was significantly
slower than the Python string solution (as shown in table 4.3). I believed

26

this to be because of overhead in NumPy’s implementation. NumPy is
designed to work with large amounts of data, and therefore has specific
methods to quickly perform operations along large arrays. In this case
however, NumPy had to handle many smaller operations, where I believe
the overhead overtook the time saved. To test this new hypthesis, I
made a simple Python program to test setting values individually in a
Python-list and a NumPy-array. The results in table 4.4 indicate that this
is indeed the case. Regardless, I decided to move on with this NumPy
solution, as it would make translation to C easier. In C, this will be directly
implemented, and therefore suffer no such overhead.

Python List NumPy Array

Time 1711ms 4142ms

Table 4.4: Time spent setting the value of 100 million elements with a
standard Python for-loop. The median time after seven tests.

In an attempt to make the NumPy implementation perform better in
Python, I changed all iterative loops over NumPy arrays to use NumPy’s
array slicing methods. This still uses a fixed-size buffer, but avoiding
Python loops allows more of the actual iterative loops to happen within
NumPy’s low-level code, and makes the code itself more readable. As can
be seen in table 4.5, this slicing made the algorithm perform slightly better,
as there was less NumPy overhead to handle.

NumPy Arrays
Python Strings Without Slicing With Slicing

Time 1800ms 19308ms 17360ms

Table 4.5: Time spent finding and encoding all k-mers for the dataset 1 (see
appendix 8.1.2). The median time after seven tests.

4.4.4 Loading Larger Graphs

To help test the implementation with larger sets of data, it needed a way to
load that data. For this I decided to create a method that could construct
my graph format from an obgraph [24]. These graphs are what KAGE
uses, and they are constructed from FASTA and VCF files. As such, this

27

will ensure that the implementation works well with KAGE. This was
fairly straight forward as it just needed to move values from one object
to the other. Constructing graphs from source files would wait until later,
as that will likely be handled in C.

4.4.5 Differentiate Reference Nodes from Variant Nodes

Until now, the prototype could in no way differentiate what nodes pertain
to the reference or to variants. To remedy this, I added a boolean
reference value to each Node-object. The function that constructs a
Graph-object also gained an optional parameter for a list of reference node
IDs. If this parameter is provided, all nodes with IDs from said list will be
labeled as reference nodes, with the rest being variant nodes.

In addition to this, the create_kmer_index method gained a new
parameter, max_variant_nodes. This parameter allows one to limit
recursions to only pass through the specified number of variant nodes.
This can be particularly useful for dense graphs where exponential growth
makes for a tremendous amount of paths, causing the algorithm to work
for an unnecessarily long time. Ignoring these variant riddled paths will
likely not affect the results significantly, as it is unlikely for most of them
to be real-world cases.

4.4.6 Separate Graph Traversal to Another Class

To make for better quality code, I decided it was best to move graph traver-
sal to a class separate from the Graph-class. The Graph-class is only sup-
posed to represent a graph and handle graph-related methods. Traversal
of graphs is outside the scope of the Graph-class’ responsibilities. This
way, graph traversal methods can be changed separately from the graphs
themselves, and one graph can be used across multiple traversal meth-
ods. For these reasons I made the KmerFinder-class. This class took a
graph, the value of k and the maximum variant nodes as constructor pa-
rameters, and uses the function find() for the same purpose as the prior
create_kmer_index function.

Another benefit of using a separate class is that it opens the way to
use class-variables for certain values instead of passing them for each

28

recursive call. These include the NumPy k-mer buffer, the value of k, the
maximum variant nodes, and the result arrays of k-mers and node IDs.
This greatly shortened the list of parameteres required by the get_kmers

function, and will also push less values to the stack.

4.4.7 2-Bit Encoding the Whole Graph

Before translating to C I chose to implement 2-bit encoding of the entire
graph, meaning each node’s sequence would be 2-bit encoded during
construction. This would not only reduce the memory required to store the
graph, but also mean all bases are already encoded when indexing k-mers,
skipping the encoding step when gathering results. It is also beneficial
to do this before translating to C, as it requires major restructuring of the
graph traversal code. This restructuring would take much longer to do in
C than in Python.

Hypothetically, encoding the entire graph would be up to k times
faster than encoding individual results. For example, if the algorithm was
to find 3-mers in the sequence ACTGCA, it would find ACT, CTG, TGC
and GCA and encode each of them. In this scenario, the bases not close to
the edges (T and G) were encoded three times, or more specifically k times.
This means that when finding 31-mers, all bases not by the start of end of
the entire graph would be encoded 31 separate times. In comparison, if
the graph was encoded as a pre-processing step, all the bases in ACTGCA
would be encoded exactly once, with those encoded values then being
used in result gathering. For a dense graph with many paths, even more
encoding steps are avoided.

This is why I believed that much time could be saved by encoding
ahead of time. To further confirm this point, I did a direct comparison
between two miniature test programs that collect 2-bit encoded 31-mers
from a randomly generated 100 million base string. One test had a string
of bases with one byte per base and encoded each 31-mer on demand as
it was found. The other test had its bases encoded into a sequence of 64-
bit integers, before then finding 31-mers with bit-wise operations between
pairs of such integers. The results of which can be seen in table 4.6.

I estimated that the time spent encoding should have been divided by

29

Encoding Time Collection Time

Encode k-mers on demand 6742ms

Encode k-mers ahead of time 194ms 180ms

Table 4.6: Time spent by on-demand encoding compared to ahead of time
encoding in milliseconds for k = 31.

k in this linear graph case, and the results further prove this point. We can
see that 6742

31 = 217.483..., which is very close to the actual time of 194ms.
Further, given how quickly the computer can perform bit-wise operations,
the gathering of the k-mers after the graph preprocessing is also very
quick. Even with the graph encoding and k-mer collection time combined,
the preprocessing solution is 18x faster. This is only accounting for the
process of encoding and collecting. The speed increase is likely even
higher if buffer updates and other value management while traversing
the graph is considered too, as well as for denser graphs where more time
is gained on the pre-processing.

Encoding the graph itself mainly involved changing a node’s sequence
from an ASCII string to an array of 64-bit integers. I also added a node
property for how many bases long its sequence is. Then it was only a
matter of encoding its sequence into 64-bit integers (32-mers) to fill the
array. However, handling this new node sequence format in the graph
traversal function required significant changes.

K-mer Buffers

Previously the k-mer buffer was a NumPy array of k ∗ 2 length as to store
any necessary bases during recursion. As the bases are now condensed
into integers, this would no longer work. Instead they were replaced by
two 64-bit integers serving as buffers. As one base requires 2 bits, this
allows for 128/2 = 64 bases to be stored, and would support any value
of k up to 32. These buffer are the kmer_buffer and the kmer_buffer_ext

(”ext” is short for ”extended”). The purpose of these buffers is to allow
for both efficient storage of bases and quick construction of result k-mers
with bit-wise operations. The former is used to store the sequence of the
start node, while the latter stores concatenated sequences from the nodes

30

following the start node for recursive calls. As the graph is already stored
in a 2-bit encoded format, and the results are also returned that way, all
buffer operations can be done in a few bit-wise operations.

Both buffers are left-aligned by default, meaning that for example the
k-mer ACTG, which would be encoded as 8 bits (00011011), would be
stored with 56 trailing zeros to the right. However, the kmer_buffer is
shifted to be right-aligned before recursion, for reasons explained later.

0: ACTGACT 1: TC

4: G

2: ACTG

5: CT

3: TGTA

Figure 4.3: Example graph to showcase how buffers are handled.

In a graph such as figure 4.3, if a traversal was started from node 0
with k = 5, the kmer_buffer would simply be set to that full sequence.
In cases where the start node has a sequence of more than 32 bases, the
first 32 bases will be set first. All k-mers within those 32 bases are saved to
the results. Then the first 33− k bases are removed from the buffer before
another 33− k bases are appended, and the process is repeated until the
entire sequence is explored. This means that for sequences of more than
32 bases, only the last 32 bases are in the buffer when finished. These are
the buffer states at this point (the alignment of the encoding is represented
by ... on the side of the trailing zeros):

kmer buffer kmer buffer ext

bases ACTGACT empty
encoded 00 01 10 11 00 01 10... empty

When a k-mer is extracted from the buffer to be saved to the results,
this formula is used:

kmer = (kmer_buffer >> (64 - i * 2)) & mask

Here, mask is a bit-mask that only keeps the right-most k bases when
applied. This mask is premade when the KmerFinder is initialized. i
is how many bases from the buffer will be kept, right-aligned, before
applying the mask. For this example of 7 bases, ACTGACT, the formula is

31

done for i = 7 to k, adding 3 k-mers total, ACTGA, CTGAC and TGACT.
Once all k-mers from the start node are added, the buffer is shortened to
only up to the last k − 1 bases from the start node, as no other bases are
needed for recursive calls. The buffer is also right-aligned at this point,
for easier bit-wise operations during recursion. Right-aligning the buffer
means that the left bit-shifting operations do not need to consider the
actual length of this buffer. The buffer states then are as such:

kmer buffer kmer buffer ext

bases GACT empty
encoded ...11 00 01 10 empty

Now it is time for the first recursive call, going to node 1. TC is added
to the extended buffer, and the k-mers GACTT and ACTTC are added to
the results. When the extended buffer is empty, the buffer is simply set
to be equal to the node’s sequence. The saved k-mers are made with this
formula:

kmer = (kmer_buffer << i * 2) | (kmer_buffer_ext >> (64 - i * 2)) & mask

Here, i determines how many bases will be kept from the extended buffer,
and removed from the base buffer. The formula is used for values of
i between the length of kmer_buffer_ext before and during the current
recursion step, excluding the first value. In this case, that means it is
done for i = 1 to 2, where 0 is excluded (a base from the extended buffer
should always be used). The buffers are now as follows:

kmer buffer kmer buffer ext

bases GACT TC
encoded ...11 00 01 10 10 01...

The recursion now continues to node 2, adding ACTG to the extended
buffer. As the buffer is not empty this time, the buffer is updated by:

kmer_buffer_ext = kmer_buffer_ext & (full_mask << (64 - i * 2))

kmer_buffer_ext = kmer_buffer_ext | (sequence >> (i * 2))

Here, i are the number of bases currently in the extended buffer, sequence
is the sequence of the current node, and f ull mask is a 64-bit integer with
all bits set to 1. The first operation ensures the that all the currently unused

32

buffer space is set to 0 before the following operation adds the sequence to
the extended buffer. After this, the formula shown previously is done for
i = 3 to 4, adding CTTCA and TTCAC to the results. Note that i = 5

and i = 6 are excluded, because those exceed k− 1, which means that no
bases from the start node are included anymore. For this same reason, the
recursion does not continue to node 3. The buffers are as such:

kmer buffer kmer buffer ext

bases GACT TCACTG
encoded ...11 00 01 10 10 01 00 01 10 11...

With the current search reaching its maximum depth, it backtracks to
node 1. The content from node 2 is not cleared from the buffer until new
data comes to replace it. Instead, the buffer length is updated so the old
values are ignored entirely. The previous steps are then repeated for all
paths up to k− 1 bases long, before moving on to other start nodes.

Splitting the Function in Two

Given that the second buffer was only needed for the recursive calls,
keeping the initial call and the recursive calls in the same function
grew impractical and disorderly. Because of this, I split the function in
two, making get_kmers and get_kmers_recursive. This way, get_kmers
only had to consider the first buffer, before passing its state along to
get_kmers_recursive, which would then call itself moving forward. This
helped make the code much more manageable, and likely also faster
as both functions got less to consider. The initial call could ignore the
extended buffer entirely, while the recursive calls would only need to
consider the first 64-bit integer in a node’s array of encoded sequences,
as the recursive calls never exceed 31 bases in length anyway.

Performance

With this final improvement to the prototype, the runtimes of each major
prototype iteration are shown in table 4.7. As can be seen, encoding the
Graph beforehand ended up significantly decreasing the time used by the
latest version. However, in order to ensure that all bit-operations were
performed correctly I converted Python’s numeric values to NumPy 64-

33

bit integers for several steps of every call. For the Python prototype,
this added a significant amount of overhead that made it much slower.
Even so, the prototype served its purpose in ensuring this approach still
functions properly and yields the correct results, which it does.

Prototype Version Time

Python Strings 1800ms
Numpy Without Slicing 19308ms

Numpy With Slicing 17360ms
Encoded Graph 3883ms

Table 4.7: Time spent finding and encoding k-mers for the dataset 1 (see
appendix 8.1.2). The median time after seven tests.

4.4.8 Thorough Correctness Tests

I made several tests alongside the implementation of improvements, to
ensure that everything worked correctly. These are explained in this
singular section for convenience and structure. All the tests were added as
parametrized tests in pytest, such as for k-mer encoding, where tests were
added that confirm the expected results from various k-mers.

To thoroughly ensure that the implementation yielded the correct
results, I tested it with many graphs aimed at discovering specific issues,
as well as comparing results directly against KAGE’s existing solution,
which is provided by the graph-kmer-index module [12]. The most
thorough test was to find all k-mers for the entirety of dataset 1 (see
appendix 8.1.2) and compare them against graph-kmer-index’s results.
This was done for several values of k, ranging from 4 to 24, and took a
long time to complete and compare. Without a max variant nodes filter,
the massive list of results were entirely identical, except for the order of
results. However, with a max variant nodes filter the results differed, but
generally not by much. This was ultimately considered a non-issue, as a
filter will already provide an incomplete set of results anyway.

34

4.4.9 The Final Algorithm

In the end, the graph traversal algorithm prototype became a highly
custom depth-first search that starts traversal from each node in the
graph until reaching a maximum depth. This solution considers possible
recursion depth and stack-size issues, makes parallelization possible, and
also attempts to avoid doing work such as encoding more than necessary.

Step-by-Step Traversal Example

The following is a step-by-step example of how the graph traversal
explores the graph from a single node, showcasing both the max variant
nodes filter and how the buffer is updated. For a full-graph exploration,
this procedure would be performed for every single node in the graph.
For this example, the buffer will simply be shown as a string of bases that
are not encoded. All saved results are also shown at each step.

0: ACTGA 1: G

4: A

2

5: C

3: TG

Buffer: empty
Variants: 0

k: 3
Max Variants: 1

Step 0

Figure 4.4: A limited depth-first search is started from the specified node,
which in this case is node 0. For this example, k is set to 3 and max variants is
set to 1. The path currently being explored will be colored blue, and the results
the algorithm writes will be displayed to the right as they are added. The red

and black nodes are reference and variant nodes respectively.

35

0: ACTGA 1: G

4: A

2

5: C

3: TG

Buffer: ACTGA
Variants: 0

k: 3
Max Variants: 1

Results:
0: ACT, CTG, TGA

Step 1

Figure 4.5: Starting from node 0, the variant counter is not incremented as it
is not a variant node. The node’s sequence is added to the buffer, which is then
iterated through to add all 3-mers, as k = 3. Three results are found which are

added to the results for node 0. Lastly, the edges of node 0 are explored.

0: ACTGA 1: G

4: A

2

5: C

3: TG

Buffer: ACTGAG
Variants: 0

k: 3
Max Variants: 1

Results:
0: ACT, CTG, TGA
0, 1: GAG

Step 2

Figure 4.6: Node 1’s sequence, ”G”, is appended to the buffer. Then all 3-mers
that include bases from both nodes in the path are added to the results for those

nodes.

36

0: ACTGA 1: G

4: A

2

5: C

3: TG

Buffer: ACTGAGTG
Variants: 0

k: 3
Max Variants: 1

Results:
0: ACT, CTG, TGA
0, 1: GAG
0, 1, 2, 3: AGT

Step 3 & 4

Figure 4.7: Because node 2 is empty, it is only added to the path before
continuing to node 3. Node 3’s sequence, ”TG”, is then appended to the buffer
and all 3-mers that span the entire path are added to the results. Note that the

3-mer ”GTG” is not added to the results even though it exists in the buffer.
This is because ”GTG” does not include any bases from node 0. To avoid

duplicate k-mers in the results, ”GTG” will be added to the results once the
starting node is node 1, not node 0. Here the depth-first search terminates and

backtracks to node 1’s other edge.

0: ACTGA 1: G

4: A

2

5: C

3: TG

Buffer: ACTGAGC
Variants: 1

k: 3
Max Variants: 1

Results:
0: ACT, CTG, TGA
0, 1: GAG
0, 1, 2, 3: AGT
0, 1, 5: AGC

Step 5

Figure 4.8: While backtracking, the contents of node 2 and 3 were cleared
from the buffer. As node 5 is a variant node, the variant counter is incremented.
The variant counter did not exceed the max variants, so the search continues as
normal. After ”AGC” is added to the results, the search terminates because no

bases from node 0 would be included in any new k-mers past this point.

37

0: ACTGA 1: G

4: A

2

5: C

3: TG

Buffer: ACTGAA
Variants: 1

k: 3
Max Variants: 1

Results:
0: ACT, CTG, TGA
0, 1: GAG
0, 1, 2, 3: AGT
0, 1, 5: AGC
0, 4: GAA

Step 6

Figure 4.9: After backtracking to node 0, the variant counter is decremented
back to 0. When moving to node 4, it is again incremented to 1 and the node is

explored as per usual.

0: ACTGA 1: G

4: A

2

5: C

3: TG

Buffer: ACTGAA
Variants: 2

k: 3
Max Variants: 1

Results:
0: ACT, CTG, TGA
0, 1: GAG
0, 1, 2, 3: AGT
0, 1, 5: AGC
0, 4: GAA

Step 7

Figure 4.10: Going from node 4 to node 5, the variant counter has now
reached 2, exceeding the max variants. Thus, node 5 is not added to the buffer

and the search terminates early, backtracking to node 4 to explore its other edge.

0: ACTGA 1: G

4: A

2

5: C

3: TG

Buffer: ACTGAATG
Variants: 1

k: 3
Max Variants: 1

Results:
0: ACT, CTG, TGA
0, 1: GAG
0, 1, 2, 3: AGT
0, 1, 5: AGC
0, 4: GAA
0, 4, 2, 3: AAT

Step 8 & 9

Figure 4.11: Once again the search skips through node 2 as it is empty before
going to node 3. The max variants is not exceeded and new 3-mers are added to

the results. After these results are added, all relevant paths from node 0 have
been explored. This same search can then be carried out for node 1, then node 2,

and so on. Starting from node 1, without a full step-by-step explanation, the
3-mers ”GCT” and ”GTG” are added to the results.

38

4.5 Translating the Prototype to C

4.5.1 Module Setup

Before translating the prototype to C, I decided it would be best to set
up the proper Python module development environment. For this I used
cookiecutter [5] for a project template. Afterwards I had to configure the
project to properly compile Cython files. After ensuring that Cython files
for the Graph and KmerFinder classes properly compiled, it was time to
translate the prototype.

4.5.2 Considerations

When moving from Python to C, the data types to use for every variable
had to be considered. It is important to balance being able to store large
enough numbers, while also not using excessively large data types. This is
especially true for nodes, as there will be millions of nodes. Thus reducing
the size of each individual node will greatly reduce the memory required
by the whole graph.

As there are no classes in C, each data structure would need to be
represented by a C struct. For the initial C implementation I used data
types like unsigned short, unsigned int and unsigned long long to
store integers. This would later be changed to more explicit data types like
uint16_t and uint64_t provided by the stdint header while improving
the implementation. However, for the sake of clarity I will show these
explicit data types from the start, as they are more concise and better
illustrate the number of bits each integer has.

4.5.3 Graph Representation

The graph struct (shown in listing 4.3) only has an array of nodes and the
nodes_len variable that tells the length of said array. A 32-bit integer was
chosen over a 64-bit one for nodes_len as it halves the size of each node’s
edge arrays by limiting the relevant node ID range. This however limits a
graph to a maximum of 232 − 1 = 4 294 967 295 total nodes. Realistically
this limit is not expected to be an issue given that each node can have a

39

sequence of up to 4 294 967 295 bases as well.

Listing 4.3: Implementation of the graph struct.

struct graph {

struct node *nodes;

uint32_t nodes_len;

}

The graph’s nodes are defined by the following struct,

struct node {

uint32_t length;

uint64_t *sequences;

uint32_t sequences_len;

uint32_t *edges;

uint8_t edges_len;

uint8_t reference; // Either 0 or 1

}

where each variable is as such:

• length: The length of the node’s full sequence in number of bases.

• sequences: An array of 64-bit integers, each with up to 32 bases.

• sequences len: The length of sequences, equal to ⌊ length−1
32 ⌋+ 1.

• edges: An array of node IDs the node has outgoing edges to.

• edges len: Number of outgoing edges.

• re f erence: Whether or not the node pertains to the reference genome.

As mentioned, each node has a maximum length of 232 − 1 =

4 294 967 295. Thus the sequences array can be up to ⌊4 294 967 295−1
32 ⌋+ 1 =

134 217 728 integers long. The purpose of the sequences len variable is to
simplify iteration over sequences by removing intermediate calculations.
Removing this could be considered if memory usage for graphs become
an issue.

The edges array holds 32-bit unsigned integers, in accordance to the
nodes len variable of the graph struct. Each node supports a maximum
of 28 − 1 = 255 outgoing edges, as edges len is an 8-bit unsigned integer.

40

Much like with node IDs being 32-bit, this was done to reduce the memory
required by each node. For genome graphs, it is unlikely that a node
will have anywhere close to 255 edges, as that would require an absurd
number of variants in a single location.

Lastly, the boolean value re f erence keeps track of whether a node is
from a reference or a variant.

For graph construction, I decided to reuse the interface I made for the
first prototype. As that prototype was in Cython and already used structs,
it was a simple matter to make it populate the new structs.

4.5.4 Graph Traversal

Thanks to the prototype choices, such as using NumPy, the algorithm
could more or less be translated to C line by line without issue. The
most notable change was to saving results, because I could no longer use
Python’s dynamic lists. Instead I added a new function, add_found that
adds these results, and allocates more memory to store them whenever
necessary. Any time more space is needed in the result arrays their size is
doubled, while a separate variable tracks how many elements are actually
in the arrays.

The KmerFinder-class would now be represented by the kmer_finder

struct, with all the variables previously in the class. These include the
graph, result arrays, k, max variant nodes and buffers. Most of the data
type choices for this structure were intuitive. Both k and max variant
nodes could be 8-bit integers, as they would never get close to 255. Any
variables related to k-mers would need 64-bit integers and node IDs would
need 32-bit integers.

4.5.5 Cython Wrapping

In order to wrap the new C implementation in Cython, Python classes
were used to hold the C data structures, with methods where they pass
said data structure to the relevant C functions. This made the Python
interface close to that of the Python prototype while utilizing C. The
wrapper function that required the most handling was the one calling the

41

kmer_finder and gathering the results. After traversing the graph and
gathering k-mers, the wrapper function had to create NumPy arrays of
the correct size and copy the results into them to properly pass them to
Python. Thankfully NumPy supports C-like operations within Cython,
so I could directly use C’s standard memory copy function memcpy to
move data from the C arrays to the NumPy arrays quickly. Once this was
finished, I could free the C arrays from memory as only the NumPy arrays
would be needed moving forward.

4.6 Further Improvements

4.6.1 Reversing Results

Not all k-mer based applications encode the bases in the same direction,
which would make this solution less practical to use if there is a mismatch.
To address this, I added a function to reverse every k-mer in the result
arrays, such that they are encoded in the opposite direction (shown in
figure 4.12). The k-mers are always saved the same way when found,
but this function can be called afterwards to reverse the already found
results. For the Python interface however, reverse_kmers is simply an
optional parameter to the pre-existing k-mer indexing function, rather
than a separate function to be called afterwards. This parameter is False

by default as it requires additional work for the program.

A C G T

0100 10 11 27

11 10 01 00 228

Figure 4.12: Example of encoding and reversing a 4-mer with the encoding
A = 0, C = 1, G = 2 and T = 3.

4.6.2 Map-Based Encoding

At this stage of development, I decided to go back on my prior choice
of encoding method, instead opting for the map-based approach. While

42

the bit-operation approach was slightly faster, that performance gain is
likely not worth how fragile it is. Supporting multiple encodings will
make the module much more accessible in the long run. This was further
exemplified when KAGE changed its encoding from ACTG to ACGT
during the development of this module. The decoding process of encoded
k-mers is also simpler with maps.

The map was implemented using an array of 256 8-bit integers as a
map. This allows for bases to be encoded and decoded in constant time,
O(1). For decoding, the first four indexes of the array, 0 to 3, contain
the ASCII value of the base corresponding to that integer. Meanwhile
for encoding, both the lower-case and upper-case ASCII value of A, C,
T and G serve as indices for the values 0 to 3 (in whichever order they are
encoded). Further, any data source with unknown bases saved as N will
have these encoded as 0. No other indices of the array are used. An exact
example of a map is shown in table 4.8.

Index 0 1 2 3 A a C c G g T t N n

Value A C G T 0 0 1 1 2 2 3 3 0 0

Table 4.8: Table of map array indices and values for an encoding of
A = 0, C = 1, G = 2, T = 3.

Further, the graph structure was given two new properties. The first
was encoding, which is a permutation of the string ”ACTG” and specifies
what encoding the graph uses. The second was encoding_map which is the
256 8-bit integer array used for encoding and decoding. Having this map
be a property of the graph allows any k-mers to be encoded without the
need to initialize this map multiple times. The encoding variable is only
used to create this map, but it is also saved to files (see section 4.6.3) to
recreate the map when a file is loaded.

4.6.3 Graph Export and Import

To avoid the need of constructing the same graph every time it is used,
functions to save graphs to files and load them later would be useful.
This would need an appropriate format to be saved in, which is shown
in table 4.9 and 4.10. Other than the actual data and encoding for the

43

graph, I started the file with a format code and a format version. Instead of
implementing data validation for every step of reading a file, the format
code’s purpose is to verify that the file being read is of the expected
format immediately. While not a foolproof solution, the cases where
this validation is passed for a non-graph file would be very rare. The
format version, while not necessary during initial development, is meant
to future-proof the files. If a new version of the format added more data
or restructured it, the version number would allow the program to react
to an older format and read it correctly. This old graph would then have
any necessary new information added to it, to then be saved in the newest
format.

Bytes Name Description

10 Format Code
Fixed string of characters. Used to
confirm that a file is a graph file.

1 Format Version
Version number between 0 and 255.
Used to load old formats correctly.

4 Encoding
The encoding of the graph as a permu-
tation of ”ACTG”.

4 Node Count The number of nodes the graph has.

0+ Node Data Data for each node in order (table 4.10).

Table 4.9: The properties of saved graphs in the order in which they are saved.

Bytes Name Description

4 Length Length of the node’s sequence.

4 Sequence Length (x)
The number of 64-bit integers used to
store the encoded sequence.

8 ∗ x Sequence
All 64-bit integers that make up the
encoded sequence.

1 Edges Length (y) The number of edges the node has.

4 ∗ y Edges All node IDs the node has edges to.

1 Reference 1 for reference nodes, otherwise 0.

Table 4.10: The properties of each node in order that are saved with a graph.

44

4.6.4 Move to C++

After some deliberation, I concluded that it would be a good idea to move
from C to C++. The main motivation behind this was to make hooks to
Python more intuitive. Until now, the Python classes for the Graph and
KmerFinder stored the C structs and passed these to relevant functions.
With C++, the low-level code can also use classes, and those classes have
methods. This means the interface in C++ would be more similar to
Python than that of C. The Python classes would now only need to store a
C++ object of the relevant class and pass calls to Python class functions to
the relevant C++ class functions.

With this change, both Graph and KmerFinder were changed from
structs to classes, and the methods that previously took them as arguments
were made to be class methods instead. However, the nodes remained as
structs, as they had no need for class methods.

During the refactoring from C to C++, I also moved from the regular
integer data types to those provided by the standard library stdint. These
data types are more explicit and concise in both their signedness and size.
All the types follow the same format where they specify the number of
bits (like int8_t or int64_t) and have the u prefix if they are unsigned
(like uint32_t). Using these data types is also important for compatibility,
as the exact size of integer types like long may vary from system to system
when compiled.

4.6.5 C++ Tests

Thus far, all unit tests were still done by pytest. This meant that the C/C++
code could only be tested through the Cython bindings, which sometimes
made finding errors difficult. Therefore I decided to implement some unit
tests in C++ in addition to the previous Python tests. For this I used
doctest [8], which allows a program to have nested test cases that check
correctness for combinations of code. Here I implemented several tests,
including tests for all encoding and decoding functions, k-mer indexing
results, and more later on. These quickly proved useful as they helped
me discover a bug in the method that decoded encoded k-mers. There

45

had been no need to decode k-mers while developing algorithms, so this
method had not been properly tested yet. Valgrind [32] was also used
during these tests to ensure the program had no memory-related issues,
such as leaks. Running valgrind through the Python interface proved
cumbersome, as most reported warnings were related to Python and not
the module itself.

4.6.6 Reading GFA

To further make the C++ portion of the implementation independently
testable from Python, it would help to implement methods to read one of
the file formats for genome data. This would also help make the module
more independent from obgraphs that are primarily used by KAGE, thus
making it more compatible with other solutions.

The format I chose to first add support for was GFA (see section
3.5.3), as it directly represents the graph to be constructed. The GFA file
format supports several more complex notations for things like overlaps.
Implementing a parser in C++ that supports every possible syntax a GFA
file may contain was outside the scope of this thesis. Instead I focused on
GFA files created by vg (see section 3.3.1) from FASTA and VCF files, as
they describe a graph as my C++ implementation would.

To implement GFA support in an orderly fashion, I made a C++ class
to represent a single GFA file. This class takes the relevant file path
and encoding as parameters, and has methods to populate class variables
with data from the file. The encoding parameter is used to encode all
bases immediately as they are read, which avoids the need to store all
the characters of the file at once. Once the entire GFA file has been
read, the GFA-class stores all the relevant information in public properties.
The Graph-class can then use these values to construct a graph ready
for traversal with its FromGFAFile method. This helps separate the GFA
reading from the Graph-class and makes for more maintainable and well-
structured code.

46

4.7 Finding Variant Signatures

4.7.1 Considerations

When implementing a procedure for finding variant signatures, it was
a priority to have it reuse the previously implemented graph traversal
algorithm. As that algorithm is already tested to be working, expanding
from it would naturally be a good starting point. This approach
also avoids the unavoidable repetitive code had this been implemented
separately.

While it would be possible to use the node and k-mer output of a full
graph traversal to determine signatures, I decided against this. Firstly, the
full result is incredibly large and uses a ton of memory. Secondly, the entire
list of results would have to be searched for the node ID of the variant
node and its corresponding reference node for every variant. For these
reasons I determined that the better approach would be to handle variants
individually by performing a focused traversal around them.

4.7.2 Preparatory Implementation

As they were not needed for the graph traversal previously, nodes held no
information about their preceeding nodes. They only had a list of outgoing
edges, no ingoing ones. These would be necessary to traverse backwards
when making a focused search around a node. Luckily it was a simple
matter to add these properties to nodes and populate them during graph
construction. With this they were also added as fields to the file format,
directly following the outgoing edges.

To properly reuse the graph traversal implementation, I decided
to implement flags and filters to modify the behavior of the existing
algorithm. All these filters would be handled in a cleanly manner as not to
make the algorithm itself messy, but more versatile. This was achieved by
only having them modify how each result is handled. That way, the graph
traversal algorithm calls a function that adds k-mers to results, wherein the
flags and filters can modify them as necessary only within that function.
For the purposes of variant signature finding, I decided on one necessary

47

filter, one additional traversal method and one necessary flag.

Node ID Filter

The filter is a node ID filter. This filter makes the algorithm only save
k-mers for the specified node ID. This allows searches to be performed
around a node while avoiding any useless results, and is used to find all
k-mers a node spans.

Un-Filtered Filtered (node ID 0) Filtered (node ID 1)

0: ACT, CTG, TGA 0: ACT, CTG, TGA none
0, 1: GAG 0: GAG 1: GAG

0, 1, 2, 3: AGT 0: AGT 1: AGT
0, 1, 5: AGC 0: AGC 1: AGC
0, 4: GAA 0: GAA none

0, 4, 2, 3: AAT 0: AAT none

Table 4.11: Example of unfiltered k-mers and their filtered results for node ID
0 and 1.

Backwards Traversal

In order to find all k-mers that span a node, it would not be sufficient to
perform a search just from that node. That search would only include
k-mers starting from a base in said node, not those starting before the
node and going into it. As such, it was necessary to make a method for
traversing backwards until all k-mers spanning the start node were found.
To achieve this, I added a return value to the function for adding found
results and the graph traversal function. For the result-adding function,
this return value represented how many entries were added to the results,
which is either 0 or 1 depending on whether or not it was stopped by
the node ID filter. The graph traversal further made use of this return
value for its own, and returns the total number of results added for the
entire traversal from a node. Using this return value, I could traverse the
graph backwards and know when to stop traversal. The traversal would
stop when a search was started from a prior node without adding a single
result that included the start node.

48

Window-Style Results Flag

Finally, the flag used to find signatures is called save windows, and
drastically changes the format of the results. Instead of finding node IDs
and k-mers, the algorithm will find all windows of size k spanning a center
node. Whenever save windows is used, the node ID filter should be used
as well to specify the node to find windows for. Possible windows for a
node include all sequences of size k from k − 1 bases before the node to
k− 1 bases after the node. Two or more sequences share the same window
if they include exactly the same bases from the center node. The following
is a graph better suited for an example of this functionality.

0: CTA 1: TC

4: G

2: ACTG

5: CT

3: TGTA

Figure 4.13: Example graph for window-style results.

For this example, the node ID filter is set to node 2. As such, all
windows for node 2 will be found, and these are the results.

Window Position k-mers

-2 TCA, AGA
-1 CAC, GAC
0 ACT
1 CTG
2 TGT
3 GTG

The window position is where the sequence starts relative to the first base
of the node. Thus, the window at position 0 only has the k-mer ACT, which
is the start of the node. Before node 2 there are two possible nodes, 1 and 4.
In cases like this, multiple k-mers are saved for the window. For example,
at window position -1, CAC and GAC are saved, where they both have the
same sequence, AC, from node 2 in common. A window can have many k-
mers if there are several possible paths. For instance, if a node has 3 prior
nodes, and those nodes have another 2 prior nodes, a window spanning
them would have 2 ∗ 3 = 6 k-mers total. Note that node 5, CT, is not used
in any windows, as no k-mer that passes through it can include bases from

49

node 2.

4.7.3 Determining Signatures

Each variant has two sets of signatures. The first set has k-mers that signify
the variant being present, while the second has those that signify it is not
present (also refered to as reference signatures). Each set of signatures
correspond to the k-mers for one window saved by the save_windows flag
for either the reference node or the variant node. The two windows chosen
to represent the reference and the variant are required to be aligned. Two
windows are aligned if they include the same number of bases to the left
or the right of their respective nodes. This definition allows a reference-
variant node pair of different lengths to share aligned windows without
issues. For example, using 4-mers, the variant at node 6 in figure 4.14 and
its respective reference node, node 3, will have the window pairs shown
in table 4.12 as signature candidates. As is shown in the table, negative
numbers of bases are also considered for alignment.

1: ACT 2: G

5: A

3: CG

6: GAT

4: TGC0: TG

Figure 4.14: Example graph for variant signatures

Alignment Reference 4-mers Variant 4-mers

3-left CTGC, CTAC CTGG, CTAG
2-left TGCG, TACG TGGA, TAGA
1-left GCGT, ACGT GGAT, AGAT
0-left CGTG GATT
-1-left GTGC ATTG

-1-right CTGC, CTAC TGGA, TAGA
0-right TGCG, TACG GGAT, AGAT
1-right GCGT, ACGT GATT
2-right CGTG ATTG
3-right GTGC TTGC

Table 4.12: The signature candidates for the variant at node 6

50

From the signature candidates, the variant signature chosen is the one
with the lowest k-mer frequency. A candidate’s k-mer frequency is the
frequency sum of the highest frequency reference k-mer and variant k-
mer. For example, for the 3-left pair, if CTGC, CTAC, CTGG and CTAG
had frequencies of 2, 5, 3 and 4 respectively, that window’s overall k-mer
frequency would be 9. Essentially, the two worst k-mers from the reference
and variant k-mers are chosen, to consider the worst-case scenario. Then
the variant signature is chosen to be the window with the best worst-case.

4.8 Finalizing

4.8.1 Creating an Index

As it was now, the module could not create its own index of k-mer
frequencies. It could only output the formats shown previously, leaving
the index with k-mer keys and frequency values to another application.
To remedy this, I added the only_save_initial_nodes flag. This changes
it so that only the starting node ID is saved, as without it, a k-mer would
end up being counted once for every node it spans.

Further, a method was added to the KmerFinder-class that enables this
flag in order to return a frequency index for the whole graph.

Un-Filtered Filtered

0: ACT, CTG, TGA 0: ACT, CTG, TGA
0, 1: GAG 0: GAG

0, 1, 2, 3: AGT 0: AGT
0, 1, 5: AGC 0: AGC
1, 4: GAA 1: GAA

1, 4, 2, 3: AAT 1: AAT

Table 4.13: Example of results being filtered by the only save initial nodes
flag.

51

4.8.2 Reading FASTA and VCF

For the tool to be complete and independent, it needed to be able to read
FASTA and VCF files. Much like with the GFA support, both these files
were separated into their own classes used to retrieve data from them. To
create the graph as efficiently as possible, the program first reads the VCF
file and creates every single variant node. It then remembers a sorted list of
positions for these variants, so that it can properly cut the reference from
the FASTA file into their correct nodes while reading. While adding the
reference nodes, edges are added between the relevant nodes. All bases
are encoded as they are added to the graph, meaning very few ASCII
sequences are in memory at once, lowering the overall memory for this
process. Much like the GFA reading implementation, this functionality
does not support the full scope of FASTA and VCF files.

4.8.3 Additional Variant Signature Options

To provide further options for variant signature selection, two flags were
added to toggle two features. The first flag will cause the selection to
to minimize overlaps. A signature window for a variant node and one
for a reference node overlap if at least one of their k-mers exist among
the other’s windows. For example, if the the 5-mer ACTTA is evaluated
for being a variant’s signature, but that k-mer is also a candidate for the
reference’s signature, it will not be prioritized. When this flag is active,
the window will firstly be the one with the least overlaps, and secondly
the one with the lowest frequency. The second flag can toggle whether or
not the variant and reference signature windows must be aligned. This
was done to allow for measurements of how aligning windows affect
accuracy. As aligning windows require more work than not aligning them,
alignment is disabled by default even if it was enabled by default prior to
introducing this flag. Both of these flags were added as options to the
Python-interface through optional parameters to methods.

In addition an option was added to print all found k-mers to standard
out instead of storing them in memory. This allows results to be saved to
files through C++ rather than Python, which is easier for the user than
implementing the writing themselves and is several times faster. For

52

particularly large graphs, this can also avoid the use of multiple gigabytes
of memory by use of disk space instead.

4.8.4 Additional Python Methods

There were still many parts of the C++ implementation that were
inaccessible from Python and only used as helper methods behind the
scenes when finding k-mers or variant signatures. To improve the interface
provided, I added access to two new methods. The first was a method
to create and return a k-mer frequency index, as this was only kept
in C++ form until now. This index will then be used for any further
variant signature selection, and allows the index to be made with different
parameters than the variant selection, such as a different number of
maximum variant nodes. The second was a method to find all k-mers that
span a single specified node, which was previously only used as a helper
method when finding the relevant windows for signatures.

4.8.5 KAGE Integration

Once the module was ready to be integrated into KAGE, one of KAGE’s
developers handled this process. A parameter was added to the KAGE
indexer to have it use this module instead of its existing solution. This
also allowed the use of KAGE’s accuracy tests for both the old and
new solutions to compare them. For further tests, I added additional
parameters to KAGE’s indexer myself that allowed features such as
minimizing overlaps and aligning windows to be toggled.

53

Chapter 5

Results

5.1 The Final Module

The end product of this project was the Python module KIVS that can
construct genome graphs and efficiently retrieve k-mer information from
them. KIVS can be found and installed from its GitHub repository [19].
Specifically, graphs can be constructed from a graph provided by obgraph,
from a GFA-file, or a FASTA and a VCF file. Out of these, obgraph is
fully functional, while the others have not been implemented extensively
enough to accommodate everything they can provide. For retrieving k-
mer information, the module can quickly find all k-mers in the graph or for
specific nodes, create frequency indexes of said k-mers, and find optimal
variant signatures. All these functions have parameters to customize their
behavior, such as the max variant nodes filter and reversing encoded k-
mers for solutions that have them the other way around.

While developed to be a Python module, the C++ source files still
provide a complete interface for all the functions included in the Python
interface, except construction from obgraph. This exception is due to
obgraphs being Python objects, and no solution is implemented for
reading the NumPy archives they are saved to through C++. While the
C++ interface is not as straight forward to use as its Python alternative, it
has more fine-grained methods and makes it possible to use in other C++
solutions that do not use Python.

54

5.2 Performance

5.2.1 Accuracy

The accuracy tests were performed using KAGE’s test functionality for
both the full yeast genome and dataset 2 (see appendix 8.1.2) which
features a five million base segment of the first chromosome of humans.
To thoroughly test accuracy, all combinations of relevant options for KIVS
was tested to investigate how each of them compare. For these tests,
a KAGE index refers to a k-mer frequency index of only the reference
genome, while a KIVS index is one where k-mer frequency is counted
from the whole graph, limited by max variant nodes. However, KIVS is
also able to construct the reference genome index by having max variant
nodes set to zero. Accuracy is divided into two categories: indel accuracy
and SNP accuracy. Indels are insertions and deletions while SNPs are
substitutions of exactly one base.

As can be seen in table 5.1 and 5.2, the results from KIVS compared
to KAGE ranges from better to worse depending on the parameters.
Notably, the minimize overlap option greatly increases indel accuracy
while window alignment has no notable effect on the better results. The k-
mer frequency index also consistently performs better when only counting
the reference genome rather than parts of the full graph. Specifically for
the yeast dataset, the SNP accuracy is slightly lower for KIVS signatures.
It is difficult to pinpoint the exact cause of this, but the difference is not by
a large amount (less than 1%).

55

Frequency
Index

Signatures
Minimize
Overlap

Align
Windows

Indel
Accuracy

SNP
Accuracy

KAGE KAGE X X 84.2540% 94.6299%
KAGE KIVS X X 84.8577% 93.8504%
KAGE KIVS X 81.7147% 93.8202%
KAGE KIVS X 85.0951% 93.8392%
KAGE KIVS 82.0532% 93.8388%
KIVS KIVS X X 83.4711% 93.5844%
KIVS KIVS X 72.7848% 93.5539%
KIVS KIVS X 83.9050% 93.5789%
KIVS KIVS 79.9700% 93.5766%

Table 5.1: Accuracies for the yeast dataset with max variant nodes set to 3.

Frequency
Index

Signatures
Minimize
Overlap

Align
Windows

Indel
Accuracy

SNP
Accuracy

KAGE KAGE X X 65.5703% 94.4001%
KAGE KIVS X X 65.9178% 94.4447%
KAGE KIVS X 63.8328% 94.5145%
KAGE KIVS X 65.7678% 94.5351%
KAGE KIVS 65.2423% 94.3757%
KIVS KIVS X X 65.2509% 93.5002%
KIVS KIVS X 60.1440% 93.5014%
KIVS KIVS X 65.1007% 93.5136%
KIVS KIVS 60.3988% 93.5630%

Table 5.2: Accuracies for dataset 2 with max variant nodes set to 3.

56

5.2.2 Performance

To gauge the performance of KIVS finding all k-mers in the graph, I
compared its single-threaded runtime and memory usage against the
existing solutions provided by vg and odgi. As the main use of KIVS is
through Python, the tests were done with that interface. Compared to
both vg and odgi that are C++ programs with command-line interfaces,
KIVS’ runtime and memory usage will include Python overhead. This
includes copying C++ arrays into NumPy arrays, effectively doubling the
peak memory usage as both arrays are in memory while copying. Tests
were done for three different options for KIVS: finding all k-mers normally,
printing results to stdout rather than store results in memory, and a search
that includes results for all nodes a k-mer spans.

Implementation Time Peak Memory Results

vg 28.13s 244MB 42 491 910
odgi 13.48s 751MB 42 491 910
KIVS 1.48s 581MB 21 245 955

KIVS (stdout) 4.85s 84MB 21 245 955
KIVS (full) 2.21s 3028MB 125 649 773

Table 5.3: Runtime and peak memory of finding all 31-mers for the yeast
dataset. Median results of 7 test runs.

As shown in table 5.3, KIVS achieves a much higher speed than both
vg and odgi. Both vg and odgi print results to stdout, which makes the
KIVS test that also does so the best overall comparison. KIVS is able to
find all k-mers in the graph about 3x faster than odgi and 6x faster than vg,
even while doing a full search with significantly more results. Its memory
usage without printing to stdout is also lower than odgi, but about double
that of vg. However, this is expected as KIVS’ peak memory doubles due
to array copying. With printing to stdout, the majority of memory used is
to store the graph representation, not any results. This allows KIVS to run
on a very low amount of memory. Compared to vg and odgi, KIVS has
exactly half the number of results. This is due to vg and odgi considering
both DNA strands, meaning each k-mer’s reverse complement (see section
3.1.1) will also be added to the results, doubling the amount. These reverse
complements can easily be calculated from the original results and likely

57

do not heavily affect the runtime unless they are written to files. When
KIVS does write to file, it spends about 3 more seconds than usual. As
such, it can be assumed that the runtime would be about 8 seconds total if
reverse complements were included, which is still faster than vg and odgi.
The memory usage of KIVS would see little to no increase as results are
not stored in memory when writing to file.

Further, the performance of determining variant signatures was tested
against KAGE’s existing solution, with a few different parameters. Both
were tested single-threaded with max variant nodes set to 3 and 10, while
KAGE was also tested using 16 threads. The results in table 5.4 show that
KIVS is significantly faster than KAGE for finding signatures, even when
competing against multi-threading. Its runtime also scales much better
with higher max variant nodes, as KAGE more than triples in runtime
from 3 to 10 variant nodes, while KIVS shows less than a 20% increase.

Implementation Max Variants Threads Time

KAGE 3 16 81.24s
KAGE 3 1 347.61s
KIVS 3 1 43.96s

KAGE 10 16 569.35s
KAGE 10 1 1305.99s
KIVS 10 1 51.83s

Table 5.4: Runtime of finding all variant signatures for the yeast dataset.
Median results of 3 runs.

5.3 Usage

To provide an overview of how the module is used in practice, in both
Python and C++, this section covers how the key functionality is used.

5.3.1 Python

The Python interface is the primary interface for KIVS, and has therefore
been optimized the most for ease of use. Once KIVS is imported (see listing
5.1), graphs can be constructed from the various formats with simple

58

function calls shown in listing 5.2. Afterwards, a KmerFinder can be
initialized to use the graph traversal methods as in listing 5.3 and 5.4. The
user can then use the returned arrays for their own purposes.

Listing 5.1: Imports required to use KIVS in Python.

from kivs import Graph, KmerFinder

Listing 5.2: Creating and saving graphs with KIVS in Python.

From GFA

graph = Graph.from_gfa("file.gfa", encoding="ACGT")

From Fasta & VCF for chromosome 21

graph = Graph.from_fasta_vcf("file.fa, file.vcf", 21)

From obgraph provided by KAGE

from obgraph import Graph as OBGraph

obgraph = OBGraph.from_file("file.npz")

graph = Graph.from_obgraph(obgraph, encoding="ACGT")

Save to file and load from file

graph.to_file("file.kivs")

graph = Graph.from_file("file.kivs")

Listing 5.3: Finding and indexing k-mers with KIVS in Python.

kmer_finder = KmerFinder(graph, 31) # 31-mers

kmers, nodes = kmer_finder.find()

With optional parameters

kmer_finder.find(include_spanning_nodes=True,

max_variant_nodes=3, stdout=True)

index = kmer_finder.create_frequency_index(max_variant_nodes=5)

Listing 5.4: Finding signatures with KIVS in Python.

ref_nodes = [1, 5, ..., 503, 523]

var_nodes = [2, 6, ..., 504, 524]

ref_sig, var_sig = kmer_finder.find_variant_signatures(

ref_nodes, var_nodes)

With optional parameters

ref_sig, var_sig = kmer_finder.find_variant_signatures(

ref_nodes, var_nodes, max_variant_nodes=3,

minimize_overlaps=True, align_windows=True)

59

5.3.2 C++

The C++ interface is mainly intended for use by KIVS and not other
users, but it is still fully functional by itself, albeit a bit less intuitive.
This is especially due to the lack of the keyword parameters provided
by Python. While the C++ interface has several fine-grained operations
unavailable to the Python interface, most of these are likely not relevant
for most purposes. These include modifying graphs on a per-node basis
or manually starting traversals from specific nodes. As such, this section
will cover how to achieve approximately the same results as the Python
interface did in the previous section.

Listing 5.5: Required includes to use KIVS in C++.

#include "KmerFinder.hpp" // Includes Graph.hpp

#include "Graph.hpp" // Needed if KmerFinder.hpp is not included

Listing 5.6: Creating and saving graphs with KIVS in C++.

Graph *graph;

// From GFA

graph = Graph::FromGFAFile("file.gfa"); // Default encoding

graph = Graph::FromGFAFileEncoded("file.gfa", "ACTG");

graph->Compress(); // Optimize by merging nodes into longer nodes

// From Fasta & VCF for chromosome 21

graph = Graph::FromFastaVCF("file.fa, file.vcf", 21);

// Save to file and load from file

graph->ToFile("file.kivs");

graph = Graph::FromFile("file.kivs");

As shown in listing 5.6, graph construction is very similar to the
Python interface. The main difference being that a separate function is
used if one wants to specify an encoding. If not specified, the default
”ACGT” encoding is used.

Finding k-mers and signatures is where the two interfaces begin to
differ. To achieve something similar to Python’s keyword parameters,
these functions allow flags to be set before they are called. Results are also
stored in the KmerFinder-object itself, rather than being a returned value.
The ONLY_SAVE_INITIAL_NODES flag seen in listing 5.7 is an inversion of

60

the include_spanning_nodes parameter in Python. Finally, the method
for finding signatures only accepts one node pair at a time, returning its
signature as an object with the relevant data.

Listing 5.7: Finding and indexing k-mers with KIVS in C++.

// Max variant nodes (3) is specified during initialization

KmerFinder *kf = KmerFinder(graph, 31, 3) # 31-mers

kmers, nodes = kmer_finder->Find();

// With optional parameters

kf->SetFlag(FLAG_TO_STDOUT, true);

kf->SetFlag(FLAG_ONLY_SAVE_INITIAL_NODES, true);

kf->Find(); // Results: kf->found_kmers, kf->found_nodes

// The length of these arrays are equal to kf->found_count

std::unordered_map<uint64_t, uint32_t> index =

kf->CreateKmerFrequencyIndex();

Listing 5.8: Finding signatures with KIVS in C++.

uint32_t ref_nodes[] = {1, 5, ..., 503, 523};

uint32_t var_nodes[] = {2, 6, ..., 504, 524};

kf->SetFlag(FLAG_MINIMIZE_SIGNATURE_OVERLAP, true);

kf->SetFlag(FLAG_ALIGN_SIGNATURE_WINDOWS, true);

VariantWindow *vw;

for (int i = 0; i < ref_nodes.length; i++) {

vw = kf->FindVariantSignatures(ref_nodes[i], var_nodes[i]);

// Signatures are in vw->reference_kmers and vw->variant_kmers

// Lengths in vw->reference_kmers_len and vw->variant_kmers_len

}

61

Chapter 6

Discussion

6.1 The Effect of KIVS for Genotyping

KIVS could potentially provide great benefits for genotyping or other
parts of bioinformatics as it would help quickly handle large amounts
of genetic data. This performance increase is especially useful for
constructing indexes for more species or for specialized purposes. There
may be groups or individuals that do research on specific organisms,
but due to fewer computational resources cannot efficiently create the
necessary indexes. The availability of KIVS as a Python module combined
with performance that allows it to run on consumer hardware benefits
these groups and allows them to more easily use solutions like KAGE.

Further, ideas like 2-bit encoding the graph before traversing it proved
to greatly improve performance. This knowledge along with how buffers
were used to quickly construct k-mers can then be applied to other future
solutions to the same problems. Faster implementations open possibilities
to make processes like signature selection more thorough to find better
signatures, while still performing well. It is also possible to directly source
the graph implementation from KIVS and use this for entirely separate
algorithms outside the scope of KIVS itself.

62

6.2 Potential Improvements

There are several potential improvements that could be made to the
module, most of which were considered at the start of the project.
However, most of these were not necessary for the module to fulfill
its intended purpose. Still, they deserve mentioning, as it is likely the
solution could become yet faster or easier to use with their inclusion.

6.2.1 Returning All Signature Candidates

During the C++ process that determines and returns the optimal signa-
tures, it first finds every single signature candidate for the variant before
selecting one of them. The Python interface has no method that allows this
full list to be retrieved, only one that retrieves the final decided signature.
There could be cases where this information would be useful for a user of
the module to have. However, due to how these candidates are stored in
C++, they would require a less intuitive data structure in Python to repre-
sent them. One option would be a list of class-objects, where each class-
object represents one variant and has its own lists of variant and reference
signatures, as well as the relevant frequency information. Compared to a
NumPy array, this would be much less intuitive to work with for a user.

6.2.2 Include Reverse Complements

While calculating the reverse complements for the final results is a fairly
simple process for a user, it would benefit the module to have an option
that provides these results along with the normal results. However, this
would also double the memory used to store results.

6.2.3 Command-Line Interface

It would be beneficial for the module to also include a command-line
interface. That way, some specific methods from the module could be used
without the need to create a Python script. This would help the module
be even easier to integrate with existing solutions, especially as existing
solutions like vg and odgi both have this functionality.

63

6.2.4 Parallelization

Parallelization is usually one of the first performance improvements to
be made in terms of speed. As the algorithm runs once for every node or
once for every variant, performing the search over multiple threads would
not experience much of any race conditions or memory writing conflicts.
Thus, implementing multi-threading would actually be fairly easy.

However, while the module functions do not implement multi-
threading themselves, it is still quite easy to do so. Multiple KmerFinder

objects can share the same graph, and they only ever read from the graph,
never writing to it. In the case of finding variant signatures, this means
it would be as simple as splitting the list of variant-reference node pairs
amongst multiple KmerFinders. The main downsides I can think of for
this approach is that it could cause multiple k-mer frequency indexes to be
created, and that there is no way to count all graph k-mers in parallel with
the Python interface.

Still, the most relevant use-case is not to traverse a single massive
graph. This is mainly because the variant signature problem is not limited
to one single graph. Instead there are multiple graphs, one for each
chromosome. Therefore, the simplest way to parallelize the program is
to run one thread for each chromosome and their variants. For this case,
no further support for parallelization is required on the module’s part.

6.2.5 GPU Processing

It is possible that multi-threading with GPU processing could help
the algorithm become even faster than standard CPU parallelization.
By utilizing the many processing cores of a GPU, many nodes could
potentially be traversed from at once. I found an article about a GPU
implementation for breadth-first search (BFS) with promising results that
led me to believe it could work for this problem too [21]. However, I
did not look far into the implementation of this, as it ended up not being
necessary.

64

6.2.6 32-mer Limit

Due to the 2-bit encoded k-mers being stored in 64-bit integers, the
implementation is limited to support only up to 32-mers. While it would
be possible to support larger k-mers by representing them with more
than one 64-bit integers, this would require much restructuring of the
algorithm. It would also make the results less intuitive to work with, as the
k-mers would no longer be represented by single variables. If support for
k-mers longer than 32 bases was to be added, the solution for that would
likely be implemented as an entirely seperate algorithm. This alternative
algorithm would represent a k-mer as an array of 64-bit integers, much
like a node’s sequence, to support any value for k. However, this would
make the construction of k-mers more complicated, making the process
slower, and the results bigger. That is why I believe it would be best to
add support for this in a separate algorithm to keep the current 32-mer
one as fast and simple as possible.

65

Chapter 7

Conclusion

Various functionalities and optimizations have been explored throughout
this thesis, producing the KIVS Python module. Notable optimizations
include thorough use of 2-bit encoding and mindful memory management
in C++. Compared to existing solutions for finding k-mers, KIVS achieves
much higher performance and lower memory requirements, especially
when writing results to a file. The variant signature methods also perform
much better than their KAGE counterpart, at comparable accuracy. These
optimizations help make indexing of genomes available to more people
with fewer resources, as well as making it feasable to reconstruct indexes
more often. As such, KAGE itself is also much more accessible than before.
Thanks to the Python interface, the KIVS module is also more intuitive to
use and integrate into more solutions.

66

Chapter 8

Appendix

8.1 Benchmarking

All unit tests are in the main GitHub repository [19], while all supplemen-
tary tests such as performance tests can be found in a separate benchmark-
ing repository [18]. The README of each repository explains how to in-
stall the module and how to run each benchmarking test. The benchmark-
ing repository also includes multiple intermediate Python prototypes to
compare the performance of each. The units tests that directly compare
results against those found by graph kmer index are not functional, as the
graph kmer index module has not been maintained due to not being used,
and stopped working as expected late in KIVS’ development.

8.1.1 System Specifications

All performance results shown throughout the thesis are done on the
same machine. This machine runs on an AMD Ryzen 7 5800X (8-Core,
16-Thread, 3.8/4.7GHz), with 32GB of 3200MHz CL16 DDR4 RAM. Files
are read from a WD Black SN750 1TB M.2 SSD, with up to 3470/3000MB
read/write speed. The machine used operates as a server running
headless Arch Linux, meaning there is no graphical user interface. As
such, there are next to no processes on the machine that may significantly
impede the performance results.

67

8.1.2 Datasets

All results use on of four datasets:

• Dataset 1: The first 500 000 bases of chromosome 1 from humans
with possible variants. Mainly used during prototype development
where a larger dataset would take too long to complete.

• Dataset 2: The first 5 000 000 bases of chromosome 1 from humans
with possible variants. Mainly used for testing accuracy against
KAGE’s solution.

• Yeast dataset: The whole-genome of yeast with possible variants, in-
cluding all chromosomes. Used for both accuracy and performance
tests.

68

Bibliography

[1] 1000 Genomes Project Web Page. https://www.internationalgenome.
org/. [Accessed 2023-04-27].

[2] Boluwatife A Adewale. “Will long-read sequencing technologies
replace short-read sequencing technologies in the next 10 years?”
In: African journal of laboratory medicine (Nov. 2020). DOI: 10.4102/
ajlm.v9i1.1340. URL: https://doi.org/10.4102/ajlm.v9i1.1340.

[3] David Armstrong, Melissa Burke, Laura Emery, Jackie McArthur,
Andrew Nightingale, Emily Perry, Sangya Pundir, and Gary Saun-
ders. “Variant identification and analysis”. In: Human genetic vari-
ation An introduction (2022). DOI: 10 . 6019 / TOL . HuGenVar _ 1 - t .
2017.00001.1. URL: https://www.ebi.ac.uk/training/online/
courses / human - genetic - variation - introduction / variant -

identification-and-analysis/.

[4] Ewan Birney and Nicole Soranzo. “The end of the start for popu-
lation sequencing”. In: Nature 526.7571 (Oct. 2015), pp. 52–53. ISSN:
1476-4687. DOI: 10.1038/526052a. URL: https://doi.org/10.1038/
526052a.

[5] CookieCutter GitHub. https : / / github . com / cookiecutter /

cookiecutter. [Accessed 2023-04-21].

[6] Cython web page. https://cython.org/. [Accessed 2022-09-03].

[7] Luca Denti, Marco Previtali, Giulia Bernardini, Alexander Schönhuth,
and Paola Bonizzoni. “MALVA: Genotyping by Mapping-free AL-
lele Detection of Known VAriants”. In: iScience 18 (2019). RECOMB-
Seq 2019, pp. 20–27. ISSN: 2589-0042. DOI: https://doi.org/10.
1016/j.isci.2019.07.011. URL: https://www.sciencedirect.
com/science/article/pii/S2589004219302366.

69

https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://doi.org/10.4102/ajlm.v9i1.1340
https://doi.org/10.4102/ajlm.v9i1.1340
https://doi.org/10.4102/ajlm.v9i1.1340
https://doi.org/10.6019/TOL.HuGenVar_1-t.2017.00001.1
https://doi.org/10.6019/TOL.HuGenVar_1-t.2017.00001.1
https://www.ebi.ac.uk/training/online/courses/human-genetic-variation-introduction/variant-identification-and-analysis/
https://www.ebi.ac.uk/training/online/courses/human-genetic-variation-introduction/variant-identification-and-analysis/
https://www.ebi.ac.uk/training/online/courses/human-genetic-variation-introduction/variant-identification-and-analysis/
https://doi.org/10.1038/526052a
https://doi.org/10.1038/526052a
https://doi.org/10.1038/526052a
https://github.com/cookiecutter/cookiecutter
https://github.com/cookiecutter/cookiecutter
https://cython.org/
https://doi.org/https://doi.org/10.1016/j.isci.2019.07.011
https://doi.org/https://doi.org/10.1016/j.isci.2019.07.011
https://www.sciencedirect.com/science/article/pii/S2589004219302366
https://www.sciencedirect.com/science/article/pii/S2589004219302366

[8] doctest GitHub. https://github.com/doctest/doctest. [Accessed
2023-04-23, updated 2023-03-15].

[9] Jana Ebler, Peter Ebert, Wayne E. Clarke, Tobias Rausch, Peter
A. Audano, Torsten Houwaart, Yafei Mao, Jan O. Korbel, Evan
E. Eichler, Michael C. Zody, Alexander T. Dilthey, and Tobias
Marschall. “Pangenome-based genome inference allows efficient
and accurate genotyping across a wide spectrum of variant classes”.
In: Nature Genetics 54.4 (Apr. 2022), pp. 518–525. ISSN: 1546-1718.
DOI: 10 . 1038 / s41588 - 022 - 01043 - w. URL: https : / / doi . org /
10.1038/s41588-022-01043-w.

[10] FASTQ files explained. https : / / knowledge . illumina . com /

software / general / software - general - reference _ material -

list/000002211. [Accessed 2022-04-25, updated 2022-04-24].

[11] gatk Official Web Page. https://gatk.broadinstitute.org/hc/en-
us. [Accessed 2023-04-27].

[12] graph-kmer-index GitHub. https : / / github . com / ivargr / graph _
kmer_index. [Accessed 2023-04-27, updated 2023-03-23].

[13] Ivar Grytten, Knut Dagestad Rand, and Geir Kjetil Sandve. “KAGE:
Fast alignment-free graph-based genotyping of SNPs and short
indels”. In: Genome Biology (Oct. 2022). DOI: 10.1186/s13059-022-
02771-2. URL: https://doi.org/10.1186/s13059-022-02771-2.

[14] Human Genome Overview Information about the continuing improvement
of the human genome. https://www.ncbi.nlm.nih.gov/grc/human.
[Accessed 2023-04-01, updated 2022-02-03].

[15] Human Genome Reference Sequence. https : / / www . genome . gov /
genetics - glossary / Human - Genome - Reference - Sequence.
[Accessed 2023-04-01, updated 2023-03-24].

[16] Illumina Measuring sequencing accuracy. https : / / www . illumina .
com/science/technology/next-generation-sequencing/plan-

experiments/quality-scores.html. [Accessed 2022-04-25].

[17] Illumina What is long-read sequencing? https://www.illumina.com/

science/technology/next-generation-sequencing/long-read-

sequencing.html. [Accessed 2023-04-25].

70

https://github.com/doctest/doctest
https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1038/s41588-022-01043-w
https://knowledge.illumina.com/software/general/software-general-reference_material-list/000002211
https://knowledge.illumina.com/software/general/software-general-reference_material-list/000002211
https://knowledge.illumina.com/software/general/software-general-reference_material-list/000002211
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us
https://github.com/ivargr/graph_kmer_index
https://github.com/ivargr/graph_kmer_index
https://doi.org/10.1186/s13059-022-02771-2
https://doi.org/10.1186/s13059-022-02771-2
https://doi.org/10.1186/s13059-022-02771-2
https://www.ncbi.nlm.nih.gov/grc/human
https://www.genome.gov/genetics-glossary/Human-Genome-Reference-Sequence
https://www.genome.gov/genetics-glossary/Human-Genome-Reference-Sequence
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html
https://www.illumina.com/science/technology/next-generation-sequencing/plan-experiments/quality-scores.html
https://www.illumina.com/science/technology/next-generation-sequencing/long-read-sequencing.html
https://www.illumina.com/science/technology/next-generation-sequencing/long-read-sequencing.html
https://www.illumina.com/science/technology/next-generation-sequencing/long-read-sequencing.html

[18] kivs benchmarking GitHub. https://github.com/ZinderAsh/python-
kivs-benchmarking/.

[19] kivs GitHub. https://github.com/ZinderAsh/python-kivs.

[20] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong
Fang, Zhongbin Shi, Yingrui Li, Shengting Li, Gao Shan, Karsten
Kristiansen, Songgang Li, Huanming Yang, Jian Wang, and Jun
Wang. “De novo assembly of human genomes with massively
parallel short read sequencing”. In: Genome Research (Feb. 2010). DOI:
10.1101/gr.097261.109. URL: https://doi.org/10.1101/gr.
097261.109.

[21] Duane Merrill, Michael Garland, and Andrew Grimshaw. “High-
Performance and Scalable GPU Graph Traversal”. In: ACM Trans.
Parallel Comput. 1.2 (Feb. 2015). ISSN: 2329-4949. DOI: 10 . 1145 /

2717511. URL: https://doi.org/10.1145/2717511.

[22] NumPy web page. https://numpy.org/. [Accessed 2022-09-03].

[23] Sergey Nurk et al. “The complete sequence of a human genome”. In:
Science 376.6588 (2022), pp. 44–53. DOI: 10.1126/science.abj6987.
eprint: https://www.science.org/doi/pdf/10.1126/science.
abj6987. URL: https://www.science.org/doi/abs/10.1126/
science.abj6987.

[24] obgraph GitHub. https://github.com/ivargr/obgraph. [Accessed
2023-04-23, updated 2023-03-23].

[25] odgi GitHub. https://github.com/pangenome/odgi. [Accessed 2023-
04-27, updated 2023-04-20].

[26] Ariya Shajii, Deniz Yorukoglu, Yun William Yu, and Bonnie
Berger. “Fast genotyping of known SNPs through approximate
k-mer matching.” In: Bioinformatics (Aug. 2016). DOI: 10 . 1093 /

bioinformatics / btw460. URL: https : / / doi . org / 10 . 1093 /

bioinformatics/btw460.

[27] Gautam B. Singh. Fundamentals of bioinformatics and computational bi-
ology : methods and exercises in MATLAB. eng. Modeling and Opti-
mization in Science and Technologies, Volume 6. Cham, Switzer-
land: Springer, 2015 - 2015. ISBN: 9783319114026.

71

https://github.com/ZinderAsh/python-kivs-benchmarking/
https://github.com/ZinderAsh/python-kivs-benchmarking/
https://github.com/ZinderAsh/python-kivs
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1145/2717511
https://doi.org/10.1145/2717511
https://doi.org/10.1145/2717511
https://numpy.org/
https://doi.org/10.1126/science.abj6987
https://www.science.org/doi/pdf/10.1126/science.abj6987
https://www.science.org/doi/pdf/10.1126/science.abj6987
https://www.science.org/doi/abs/10.1126/science.abj6987
https://www.science.org/doi/abs/10.1126/science.abj6987
https://github.com/ivargr/obgraph
https://github.com/pangenome/odgi
https://doi.org/10.1093/bioinformatics/btw460
https://doi.org/10.1093/bioinformatics/btw460
https://doi.org/10.1093/bioinformatics/btw460
https://doi.org/10.1093/bioinformatics/btw460

[28] StackOverflow 2021 Developer Survey. https : / / insights .

stackoverflow.com/survey/2021#most-popular-technologies-

language-prof. [Accessed 2022-09-10].

[29] Talking Glossary of Genomic and Genetic Terms Chromosome. https :
//www.genome.gov/genetics- glossary/Chromosome. [Accessed
2023-05-12, updated 2023-05-11].

[30] The GFA Format Specification. https://github.com/GFA-spec/GFA-
spec/blob/master/GFA1.md. [Accessed 2023-04-01, updated 2022-
06-16].

[31] The Variant Call Format Specification. https://samtools.github.io/
hts-specs/VCFv4.3.pdf. [Accessed 2022-09-10, updated 2022-08-
22].

[32] Valgrind. https://valgrind.org/. [Accessed 2023-05-13, updated
2023-04-28].

[33] vg GitHub. https://github.com/vgteam/vg. [Accessed 2023-04-27,
updated 2023-04-26].

[34] What is FASTA Format? http://zhanglab.ccmb.med.umich.edu/

FASTA/. [Accessed 2022-09-10].

72

https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language-prof
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language-prof
https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language-prof
https://www.genome.gov/genetics-glossary/Chromosome
https://www.genome.gov/genetics-glossary/Chromosome
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://valgrind.org/
https://github.com/vgteam/vg
http://zhanglab.ccmb.med.umich.edu/FASTA/
http://zhanglab.ccmb.med.umich.edu/FASTA/

	Introduction
	Thesis Aims
	Background
	Biology
	DNA
	Genome
	Reference Genome
	Alleles & Variants
	DNA Sequencing

	Variant Discovery
	Variant Calling
	Genotyping
	Alignment-based methods
	Alignment-free methods

	The K-mer Indexing Problem
	Existing Solutions

	The Variant Signature Problem
	Existing Solutions

	Data Formats
	FASTA & FASTQ
	VCF (Variant Call Format)
	Genome Graphs & GFA

	Software Development
	Python
	NumPy
	C and C++
	Cython

	Methods
	Initial Considerations
	Python Tools
	Graph Representation

	First Prototype (Cython)
	Implementation
	Testing
	Lessons Learned

	Second Prototype (Python)
	Considerations
	Implementation

	Iterating on the Second Prototype
	Changing the Output Format
	2-Bit Encoding Output
	Utilizing NumPy
	Loading Larger Graphs
	Differentiate Reference Nodes from Variant Nodes
	Separate Graph Traversal to Another Class
	2-Bit Encoding the Whole Graph
	Thorough Correctness Tests
	The Final Algorithm

	Translating the Prototype to C
	Module Setup
	Considerations
	Graph Representation
	Graph Traversal
	Cython Wrapping

	Further Improvements
	Reversing Results
	Map-Based Encoding
	Graph Export and Import
	Move to C++
	C++ Tests
	Reading GFA

	Finding Variant Signatures
	Considerations
	Preparatory Implementation
	Determining Signatures

	Finalizing
	Creating an Index
	Reading FASTA and VCF
	Additional Variant Signature Options
	Additional Python Methods
	KAGE Integration

	Results
	The Final Module
	Performance
	Accuracy
	Performance

	Usage
	Python
	C++

	Discussion
	The Effect of KIVS for Genotyping
	Potential Improvements
	Returning All Signature Candidates
	Include Reverse Complements
	Command-Line Interface
	Parallelization
	GPU Processing
	32-mer Limit

	Conclusion
	Appendix
	Benchmarking
	System Specifications
	Datasets

