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ABSTRACT. We show that the cumulative distribution function correspond-
ing to a kernel density estimator with optimal bandwidth lies outside any
confidence interval, around the empirical distribution function, with proba-
bility tending to 1 as the sample size increases.
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1. Introduction and summary

Kernel density estimation is a popular method for estimating the probability
density function (pdf) of an observed data set which obviates the need for a
parametric model. Much has been written on the subject as a consequence of
the problem of selecting a bandwidth. A recent review is provided by Wand
and Jones (1995).

In this paper we highlight a property of the classically recommended ker-
nel density estimators (bandwidths of size O(n='/%), where n is the sample
size). The property is that the cumulative distribution function (cdf) corre-
sponding to the density estimator falls outside every reasonable confidence
interval or band of the empirical cdf, for every point, with probability tend-
ing to 1 as the sample size increases. A bandwidth of size O(n~'/*) corrects
this.

It could be argued that the behaviour of the cdf is of minor importance
if interest is in estimating a pdf. However, a glance at Parzen (1962), one
of the pioneering papers in the field of density estimation, will convince the
reader that kernel density estimation was motivated by attempts to obtain
gradients from the empirical cdf. If the empirical cdf were differentiable the
pdf estimator would, according to Parzen at least, be the pdf corresponding
to this empirical cdf. Consequently, the connection between a kernel density
estimator and the empirical cdf via the cdf corresponding to the density
estimator should not be ignored. Even if one’s thinking is solely on the
density estimator and optimal bandwidths, knowing that as the sample size
tends to infinity the cdf of the density estimator leaves all confidence intervals
around the empirical cdf with probability going to 1, should be a cause for
concern. The result suggests the optimal bandwidth is oversmoothing.

Let Xy,..., X, be independent with common density function f and cu-
mulative distribution function F'. The data give rise to their empirical cdf
F.(z) =n"t 30, I{X; < x}. The classic nonparametric simultaneous confi-
dence band takes the form

CI) = [Fu(x) = 0/ v/, Falx) + 0/ v/ (1.1)



where ¢, is the appropriate quantile of the distribution of \/nD,, where
D,, = max|F,(x) — F(x)|.

In the limit as n grows, ¢, becomes the quantile of the Kolmogorov—Smirnov
distribution; for example, ¢, = 1.224 for 90% confidence and ¢, = 1.358 for
95% confidence. Alternatively, a confidence interval is based on the normal
approximation to the binomial distribution,

CI) = F(a) £ do{Fu2)(1 = Fa(w))}*/v/n. (1.2)

With d, equal to 1.645 and 1.96 we have pointwise bands with approximate
confidence level 90% and 95% for each x, while choosing d, equal to 2.89
and 3.15 provides global bands with simultaneous confidence approximately
90% and 95%, valid for all  between the 0.05 and 0.95 quantiles of the
underlying F'(x) distribution. The specific confidence interval is not relevant
to our result.

For a symmetric kernel density function k(u), with associated cumulative
distribution function K(u), consider

n

F(z) =n""STK(h™ (2 — X)),

=1

This is the smoothed empirical distribution function, inextricably linked to
its more famous derivative, the kernel density estimator

o~

fulz)=n"" Zj: k(b (2 — X;)).

In Section 2 we state and prove the result.

2. The result

Among the literature one of the strongest messages is that h should tend to
zero with speed n='/5. See, for example, Silverman (1986), Wand and Jones
(1995). In this case, we prove the following:

Turorem. With probability tending to 1 as n tends to infinity, the cdf of
the optimal kernel density estimator will land outside all confidence bands
around the empirical cdf, including simultaneous and pointwise ones.

Proor. Consider the variable
Zalir) = 02 {Fo(w) — Fulw)} = 072 30 Ada), 2.1)
=1

writing A;(z) = K(h ' (x — X)) — I{X; < x}. Saying that Z,(z) is out-
side [—¢,, ¢,] is the same as stating that ﬁh(:p) lies outside the classic band
(1.1). The following calculations aim to find out what happens to Z,(x) as
n increases.



First consider the mean. With substitution and partial integration, the
mean of the first term of A;(z) can be written

/[& (x —y))fly)dy = /K(U)hf(:l; —vh)dv = /k(v)F(:L' — hv) dv.

A Taylor expansion gives F'(z) + 1kyh? f'(x) + o(h?), where ky = [u?k(u) du.
Hence

EZ,.(z) = %kznl/thf’(:L‘) + o(n'/?h?),

where the remainder term typically would be of size O(n'/?h*) (requiring
three derivatives of f to exist at x). For h = an~'/®, the recommended
choice, we have

EZ,.(z) = %kgaznl/lof’(:p) + O(n_S/lo). (2.2)

Next, we square A;(2) and work with each of the terms separately. The
first term required is

[ B @ =) f)dy = [ K@) f(e = ho)do
— Q/K(v)k(v)F(:z; — ho)dv

(using here the fact that K (v)*F(x — hv) tends to zero at both ends). The
second necessary calculation is

[ K@=y Hy < 2} ) dy = [~ K@)hf(a—hv)do
= F(2)+ [ k()P — ho)do.
This leads to
o) =2 [ K(o)k(o) F(o—hv)do=F(a)=2 [~ k(o) F(a—ho) do+ F(e),

The leading terms of the variance of 7, () are accordingly

Var Aj(z) = 2(er — di)h f(x) — (e2 — do)h* f'(2) + 5(es — da)h* ["() + O(h"),

(2.3)
where e; = [°v/k(v)dv and d; = [ v/k(v)K(v)dv. Now we can write
K(v) = 1/2 4+ vk(w) where 0 < w < v. Therefore, d; = 2 [;° v?k(u)k(w) dv
which is less than e since 2vk(w) < 1. Using the same expansion of K (v)
we can prove that e; = ds.

So, with bandwidths chosen as h = an™'/®, we have EZ,(z) = a,, with
leading term %kgazf’(x)nl/lo, and Var 7, () = 3,, with leading term 2(e; —
dl)af(x)n_1/5. Then 7, = Pr{—c< 7, < ¢} = Pr{a, —c < T, < a,, + ¢},
where T,, = o, — Z,,, so clearly m, — 0, whenever f'(z) # 0.

Rephrasing, the heart of the matter is that 7Z,(x) climbs slowly towards
plus or minus infinity, depending on the sign and size of f'(x). The calcu-
lation given shows that for each single = at which f(z) is nonzero, I (x)
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eventually lands outside all natural confidence bands of the types (1.1), (1.2)
and so on.

We ought to point out that the convergence towards 1 of not belonging
to the confidence bands is quite slow. See Section 4.

3. Some remedies and further results

3.1. An asymptotic representation

We start this section by establishing limiting normality of Z,(x), properly
normalised. This will lead to a useful asymptotic representation of 7, (z), and
also make it possible to accurately compute the probability that the kernel
cumulative estimator actually falls outside the natural bands (as opposed to
only demonstrating that the limiting probability is one).

Consider

My(2) = Zolr) = BZulo) _ T {Ailz) ~ Bdi(x)}
n - V1/2f(:1;)1/2h1/2 - V1/2f(:1;)1/2h1/2 )

where V' = 2(e; — dy). It has mean zero and variance of the form Var A;(x)
divided by V f(z)h. Via equation (2.3) it is clear that the variance tends to
one if only h — 0. Hence, by the Lindeberg and Feller theorems, M, (z) is
asymptotically a standard normal if and only if

— EA( — EA(
ZE‘V1/2JC 1/2 1/2h1/2‘ {‘V1/2f 1/2 1/2h1/2

ERRY

for each £. But since the A;(x) variables are i.i.d., this reduces to the re-
quirement

(Ai(x) — EAZ’(*’L'))Z 1/2 1/2 1/2
E VR I{|Ai(z) = BA;(2)] > eVY2f(2) 2 (nh)'?} — 0.

And since A;(x) and its mean are bounded, by 1, this Lindeberg condition
holds whenever nh — oco.

Looking back to the earlier approximation of the mean of 7,(x), let us
also represent the process in the form

Za(z) = %kznl/thf’(:L‘) + Vl/zf(:z:)l/zhl/an(x). (3.1)

Here

Na(2) = My () + ral2) [{V2 [ (2) 202,
where EZ,(z) = %kznl/thf’(:L‘) +r,(x). Hence N,(x) is a limiting standard
normal provided r,(z) = o(h'/?). When [ is smooth at x, r,(z) = O(n'/?h%),
so N,(z) in representation (3.1) is a standard normal in the limit provided
h — 0, nh — oo and nh” — 0.



Under these conditions, an approximation to the probability of belonging
to the right set, as determined by (1.1), is

—c— %sz/(:li)nlﬂhz < N(O0.1) < c— %sz/(:li)nl/zhz}

Tn N Pr{ V1/2f(:1;)1/2h1/2 = V1/2f(:1;)1/2h1/2

(3.2)

If f'(x) =0 then 7, — 1. If f/(2) # 0 then a number of possibilities arise.
For the interesting case of h = an~'/*, we instead find that

Zn(x) _ lkzazf/(l') + ‘/1/2a1/2f(x)1/2n—1/8]\/'n7

— 2

which means that in the limit, inclusion in the interval (1.1) is 1 or 0, de-
pending on whether $kza® f'(x) is within [—c, ¢] or not. If it were known that
f'(x) > 0, then for inclusion we would need

2c
fr(@)ks’

a <

In the case of an™¢, with & < {, the limiting probability of ﬁh(:p) belonging
to (1.1) is one.

3.2. New bandwidth rules that do not oversmooth

The above results suggest that the maximum rate with which A should go to
zero, or equivalently the maximum amount of smoothing allowed by a data
set of size n in the purely nonparametric setting, is given by h = an~'/*,

A practical idea for a maximum smoothing parameter is based on the
insistence that Fj must belong to confidence band (1.1) for all . This leads

to suggesting

h = sup{h > 0 Fy(z) € CIW for all 2} = sup{h > 0: max | Zn(2)] < en}
(3.3)

as the ‘maximum smoothing bandwidth’. Note that

max | Z, ()] = max {max {|Z,(X;)|, | Z.(Xi=)|}} ,

so it is easy to compute h for any given data set. A brief study is carried out
in Section 4. One might suggest selecting as final i the one minimising the
cross validation curve subject to the constraint A < ?L, for example.

To learn about the behaviour of 7,(x) and its maximum absolute value,
note from (2.1) that cov{Z,(x), Z,(y)} = cov{A;(z), Ai(y)}, and the size of
this covariance tends to zero as h — 0 for each fixed pair (x,y). This holds
generally, but let us illustrate it for the case of K supported on a bounded
—1,2]. Then A;(z) is always zero outside
x+1h, so that the covariance in question is of size —{k3h* f'(x) f'(y) whenever

interval, which we may take to be |
y is more than h away from x; in other words, the correlation between 7, ()

and Z,(y) becomes O(f'(z)f'(y)h*). Hence M,(z) and N,(x) in the above

representations of 7, (x) behave for large n as white noise with variance 1.

5



It is clear from previous results that h must tend to zero faster than
an~/%. With h = an™'* one sees from (3.1) that max|Z,(z)| goes to
1hya®|f'(x0)| when n — oo, where zg is a point at which |f/| is maximal.
A rough approximation to the parameter of maximal smoothing is therefore
an~"* where a = (2¢/k2)'?||f'|7"/% and ||f'|| = max, |f'(z)]. A normal-
based quick rule would accordingly be (2¢/ky)'/2p(1)7'/25 /n'/*, with & the
standard deviation of the data, and with ¢ from (1.1) dictated by the wished
for confidence level in the Kolmogorov—Smirnov band.

More careful approximations to max, |Z,(x)| may be put forward, in-
volving the x{ that maximises the exact absolute mean of 7,(x) rather
than its approximation, and adding a factor times the standard deviation
VU2 f(2!) 26 2n=1/3 Tt would however be besides our main point to over-
analyse the behaviour of the (3.3) quantity.

4. Tllustrations

As a start we attempt to get a rough idea of the sample size needed to ensure
normality of 7Z,(z). For illustration, we take f to be the standard normal
pdf, and use A = 1.059n='/%, the optimal bandwidth under a normal K,
which we also use. We simulated a single data set and constructed

Walx) = [Zu(x) = ko f'(x)n'2R2) V12 f () /2012

for =2 < 2 < 2 and n = 5,000. W, () is plotted in Fig. 1, alongside the
histogram of the samples, using a grid with 6,000 partitions for constructing
W, (2). The standard normal curve is added for comparison. The samples
are very close to being standard normal.
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Figure 1: W,(x) with n = 5000

If we are interested when m, < ¢ then, assuming f'(z) > 0, we are
interested when (using the asymptotic approximation (3.2))

c— %sz’(x)nlﬂhz _
V12 f(2)1/2h1)2 7

(4.1)
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where ®(v) = ¢. If we take h = an™'/", then (4.1) holds when

10

n > { e Vo4 2BV f (@) 2 ()] Sl ()]}

Experience, taking f and K to be standard normal, suggests n can be as
large as 10" and higher.

Finally, in this section, we investigate the proposed bandwidth in (3.3).
We sampled data from the standard normal density and for various sample
sizes computed h. Ranges of h versus sample size are given in the following
table:

sample size range of h

100 1.2-1.3
500 0.7-0.8
1000 0.6 —-0.7
2000 0.5—-0.6
10000 0.32 —0.34

Using these results, we can obtain that h ~ 4.5n7%28 at least for n < 10000.

5. Discussion

We have highlighted a surprising and perhaps embarrassing property of the
classically optimal kernel density estimators. Thinking nonparametrically,
the benchmark is the empirical cdf and the associated nonparametric con-
fidence intervals or bands. These are all we have, and they should be re-
spected. Density estimation is motivated by obtaining gradients from distri-
bution functions. Why are the optimal gradients coming from a cdf which,
as the size of the data grows, lies with ever increasing probability outside the
confidence interval?

One answer lies with the observation that two different loss function are
at work, respectively squared error for f and squared error for F'. As regards
squared error loss for F' the natural and hard-to-beat estimator is the em-
pirical F, (it is the uniformly minimum-variance unbiased estimator), while
the O(n='/%) bandwidth is demonstrably optimal from the points of view of
mean squared error and integrated mean squared error for f. Traditionally
these results are phrased in a framework of asymptotics but one may argue
that the n='/® result is also valid for finite n; Glad, Hjort and Ushakov (1999)
give an exact, tight upper bound for the mean integrated squared error, un-
der minimal assumptions on the density, which again leads to a bandwidth
of type an='/5.

Another answer is that two slightly different sets of assumptions are em-
ployed, perhaps implicitly. The traditional analysis of density estimator
behaviour assumes that f has two smooth derivatives, while using the F),



estimator is the minimalistic nonparametric estimator, assuming nothing ex-
cept exchangeability of the data. There could be different responses to this;
one argument would be that the kernel estimators, as fine-tuned by the the-
oretically strongest methods, often turn out to be oversmooth, seemingly
reflecting more smoothness than the data can promise. This is an argu-
ment for smoothing less, and the suggestion of (3.3) is one viable method,
well-motivated without any assumptions of density smoothness; it is truly
nonparametric and automatic.

The concern of smoothing too much has also been touched in the litera-
ture, see e.g. Scott (1992, Section 6.5) and Isaiah 40:4. The ‘oversmoothing
bandwidths’ considered there are however still too big for comfort. The one
of Scott is again of size O(n~'/), and barely larger than the normal-rule-of-
thumb proposal 1.059 ¢ /n'/; by the result above even this oversmoothing
limit causes too much smoothing, when n is very large.

In cases where the statistician really believes in smoothness of the under-
lying phenomenon, she should perhaps exploit it also when making inference
about F. 1In this light, the traditional F) estimator and its accompany-
ing bands (1.1)-(1.2) are too weak, and can be improved upon. A better
estimator would be ﬁh, for suitable small h, and confidence bands can be
constructed via proper study of the process

Un(w) = n'*{Fy, (2) = $hahi i, (x) = F(2)},

with one bandwidth Ay to control smoothing in F, and another to give a
good estimate of f’(x). It may be shown that the U, is asymptotically a
time-transformed Brownian motion, so that the band

Eyy () = ghaha® fi, (2) £ e{ By, (2)(1 = By (2)) 12 /v/n

contains the full underlying F' curve with the same limiting probability as
the classic band (1.1), with the same c.

The reason why this actually is a little bit better than (1.1), at least for
very large n, is that

E{Fu(z) = F(2)}* = o' F(2)(1 = F(2))
—Zdlhn_lf(x) + ik§h4f'(:1;)2 + O(hQn_1 + h6),
with d; a positive constant, given in Section 2. The best hy is of size O(n="/%)

and the theoretically best hy of size O(n='/7). For further discussion and
other rules of choosing hy, see also Bowman, Hall and Prvan (1998).
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