
Fast Multi-GPU communication
over PCI Express

Benchmarking PCIe transport with the
NVIDIA Collective Communications
Library (NCCL) using legacy GPUs

Audun Kühne Johansen

Thesis submitted for the degree of
Master in Programming and System Architecture -

Distributed systems and networks
60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2023

Fast Multi-GPU communication
over PCI Express

Benchmarking PCIe transport with the
NVIDIA Collective Communications
Library (NCCL) using legacy GPUs

Audun Kühne Johansen

© 2023 Audun Kühne Johansen

Fast Multi-GPU communication over PCI Express

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

GPUs and PCIe are core components in distributed ML and HPC environ-
ments, and the software and hardware development within ML and HPC
have been rapid. In this thesis, we look into how distributed communica-
tion with NCCL performs on legacy GPUs interconnected locally with QPI
and P2P and externally with gigabit Ethernet, IPoPCIe and SmartIO device
lending. We discover that many software packages lack backward compat-
ibility.

i

Acknowledgments

The research presented in this thesis has benefited from the Experimental
Infrastructure for Exploration of Exascale Computing (eX3).

A big thanks to the supervisors Håkon Kvale Stensland, Michael
Riegler, and Jonas Markussen, as well as Pål Halvorsen for their knowledge
and advice, the University of Oslo for supplying the servers and GPUs,
Morten Werner Forsbring for helping me get time off work to focus on the
thesis, and most importantly, my fiancée, who never stopped cheering me
on, despite many delays.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 3
1.1 Background & Motivation . 3
1.2 Problem Statement . 4
1.3 Scope and limitations . 5
1.4 Research Method . 6
1.5 Ethical considerations . 6
1.6 Main contributions . 6
1.7 Thesis outline . 7

2 Background 8
2.1 PCIe . 8

2.1.1 Root complex - the message bringer 9
2.1.2 PCIe layers . 10
2.1.3 Transparent Bridging vs Non-Transparent Bridging

(NTB) . 12
2.1.4 Input–Output Memory Management Unit (IOMMU) 12

2.2 Intel QuickPath Interconnect (QPI) 12
2.3 Remote Direct Memory Access (RDMA) 13

2.3.1 Dolphin Interconnect Solutions (Dolphin ICS) 13
2.4 NVIDIA Collective Communications Library (NCCL) 14

2.4.1 Message Passing Interface (MPI) 16
2.4.2 Distributed machine learning techniques in NCCL . 16

2.5 Multimachine machine learning 17
2.6 Summary . 18

3 System setup and challenges 19
3.1 Hardware . 19
3.2 Software . 23

3.2.1 Operating system . 23
3.2.2 NVIDIA drivers & tools 24
3.2.3 NCCL Tests . 26
3.2.4 Dolphin eXpressWare 29
3.2.5 IPoPCIe . 30
3.2.6 SmartIO . 30

iii

4 Experiments and results 35
4.1 Base-line reference . 35
4.2 NCCL . 36

4.2.1 Broadcast . 38
4.2.2 All-Reduce . 44
4.2.3 All-to-All . 50
4.2.4 All-Gather . 56

4.3 Discussion . 62
4.3.1 QPI vs P2P . 62
4.3.2 Gigabit Ethernet . 62
4.3.3 IPoPCIe . 62
4.3.4 SmartIO . 63
4.3.5 Closing thoughts . 64

5 Conclusions 66
5.1 Summary . 66
5.2 Main Contributions . 67
5.3 Future Work . 68

A Captains log - The adventure of setting up our system 69
A.1 Initial system . 69

A.1.1 Old setup . 69
A.1.2 Defective IOMMU . 69

A.2 Final system . 70
A.2.1 New setup . 70

A.3 Server configuration . 71
A.3.1 Firmware & BMC/IPMI 71
A.3.2 Console access . 71
A.3.3 Operating system . 72
A.3.4 Snapshot tool . 73
A.3.5 Network . 73
A.3.6 Hosts . 75
A.3.7 SSH . 75
A.3.8 NVIDIA drivers & tools 76
A.3.9 NCCL Tests . 80
A.3.10 Dolphin eXpressWare 84
A.3.11 Tensorflow . 92
A.3.12 Misc notes . 93

iv

List of Figures

2.1 Various PCI slots on a computer motherboard 8
2.2 Example of a PCIe topology 9
2.3 Illustration of bytes multiplexed across available PCIe lanes 10
2.4 Illustration of QPI interconnecting a NUMA and IO config-

uration . 12
2.5 Accessing remote resources using RDMA 14
2.6 Illustration displaying the development of NCCL workload

distribution . 14
2.7 Illustration showing the unidirectional ring data travels in . 15
2.8 Illustration detailing the unidirectional data travel from each

GPUs point of view . 15
2.9 Illustration displaying the various interfaces that NCCL can

use, both within and between systems (nodes) 16
2.10 Collective communication with multiple senders and/or

receivers with NCCL & MPI 17

3.1 Supermicro X9DRG-HF System Block Diagram 20
3.2 Inside view of the Supermicro X9DRG-HF servers 22
3.3 Outside view behind the Supermicro X9DRG-HF servers . . 23

4.1 Low-level benchmark of the PXH810, displaying how differ-
ent segment sizes affect performance. 35

4.2 Broadcast illustration . 38
4.3 Broadcast performance with GPUs over QPI (abel1), vs direct P2P

(abel2) . 38
4.4 Broadcast performance over gigabit Ethernet 39
4.5 Broadcast performance over IPoPCIe 40
4.6 Broadcast performance using SmartIO 41
4.7 Comparing multi-node interconnects 2 GPU broadcast perform-

ance, 1 in each node . 42
4.8 Comparing multi-node interconnects 4 GPU broadcast perform-

ance, 2 in each node . 43
4.9 All-Reduce illustration . 44
4.10 All-reduce performance with GPUs over QPI (abel1), vs direct

P2P (abel2) . 44
4.11 All-reduce performance over gigabit Ethernet 45
4.12 All-reduce performance over IPoPCIe 46
4.13 All-reduce performance using SmartIO 47

v

4.14 Comparing multi-node interconnects 2 GPU all-reduce perform-
ance, 1 in each node . 48

4.15 Comparing multi-node interconnects 4 GPU all-reduce perform-
ance, 2 in each node . 49

4.16 All-to-All illustration . 50
4.17 All-to-All performance with GPUs over QPI (abel1), vs direct P2P

(abel2) . 50
4.18 All-to-All performance over gigabit Ethernet 51
4.19 All-to-All performance over IPoPCIe 52
4.20 All-to-All performance using SmartIO 53
4.21 Comparing multi-node interconnects 2 GPU All-to-All perform-

ance, 1 in each node . 54
4.22 Comparing multi-node interconnects 4 GPU All-to-All perform-

ance, 2 in each node . 55
4.23 All-Gather illustration . 56
4.24 All-Gather performance with GPUs over QPI (abel1), vs direct

P2P (abel2) . 56
4.25 All-Gather performance over gigabit Ethernet 57
4.26 All-Gather performance over IPoPCIe 58
4.27 All-Gather performance using SmartIO 59
4.28 Comparing multi-node interconnects 2 GPU All-Gather perform-

ance, 1 in each node . 60
4.29 Comparing multi-node interconnects 4 GPU All-Gather perform-

ance, 2 in each node . 61
4.30 All-to-All performance running 2 GPUs locally on abel2, or

borrowed to abel1 with SmartIO 64

A.1 IPMIView on an iPad . 72

vi

List of Tables

2.1 PCI Express link performance 11

3.1 Hardware specifications . 19
3.2 Software specifications . 23

4.1 Peak base-line performance 35
4.2 Performance and price comparison of some GPUs used in

HPC environments . 65

vii

List of abbreviations

AGP Accelerated Graphics Port

API Application Programming Interface

BAR Base Address Register

BMC Baseboard Management Controller

CPU Central Processing Unit

EISA/ISA Extended ISA / Industry Standard Architecture

EMI Electromagnetic Interference

FCP Flow Control Packets

FMA Fused Multiply–Add

GART Graphics Address Remapping Table

GFLOPS Giga Floating Point Operations Per Second

GPU Graphics Processing Unit

HDD Hard Disk Drive

HPC High-Performance Computing

IOMMU Input–Output Memory Management Unit

IPMI Intelligent Platform Management Interface

IPoPCIe IP driver for PCIe

LLM Large Language Model

ML Machine Learning

MPI Message Passing Interface

NCCL NVIDIA Collective Communications Library

NTB Non-Transparent Bridging

NUMA Non-Uniform Memory Access

1

P2P Peer-To-Peer

PCIe Peripheral Component Interconnect Express

QPI Intel QuickPath Interconnect

RDMA Remote Direct Memory Access

SSD Solid State Drive

TCP/IP Transmission Control Protocol / Internet Protocol

TDP Thermal Design Power

TLP Transaction Layer Packets

VESA Video Electronics Standards Association

2

Chapter 1

Introduction

1.1 Background & Motivation

The computing demand for machine learning (ML) workloads has grown
and is expected to grow. This demand is tackled in two ways; rapid
development of specialized hardware and distribution of the workload.

The matrix-heavy nature of machine learning means the workloads
are mostly offloaded from the CPU to accelerator cards, such as NVIDIA
GPUs (graphics processing units). These GPUs contain large amounts of
CUDA cores to execute operations on the matrix in parallel. Since late
2017, NVIDIA GPUs also began to offer Tensor cores[9] that of which
each performs 64 fused multiply–add (FMA) mixed-precision operations.
Primarily for deep learning, accelerating operations that would otherwise
be performed by multiple CUDA cores. VRAM has also significantly
increased to meet the demands of ML workloads.

Yet, some workloads are still to time and compute expensive for a
single computer to finish within a reasonable time. To work around these
issues, many ML algorithms allow splitting the workload and utilizing
distributed computing. In computers or clusters with multiple NVIDIA
GPUs, ML workloads can utilize the NVIDIA Collective Communications
Library (NCCL) for a high-level distribution of the workload. By clustering
multiple compute nodes to tackle the workload, we can use horizontal
scaling to speed up training time, lowering the time-to-completion (strong
scaling). Or we can use the extra computing power to increase the training
set (weak scaling).

A downside of distributed computing is that some performance is
lost in communication overhead between each GPU and compute node.
How much of this overhead depends on the latency added, how much
data transfer is needed, and available bandwidth. The cost of overhead,
therefore, depends on the types of interconnect between the GPUs inside
each node and the interconnect between the nodes themselves.

Scaling up and out with more GPUs and nodes is also costly, both
monetary and performance-wise. Demand, availability, and thus prices for
new GPUs and servers are high, partly due to semiconductor shortage[23].
And yet, in many data centers, existing GPUs and servers are taken

3

out of service, not because they’re faulty, but because the warranty and
service agreement has run out. New replacements are often fronted
positively from an environmental perspective, as newer hardware yields
higher performance per watt. While at the same time conflicting with the
environment by generating e-waste. Still, some data centers must replace
old hardware with new to handle higher requirements, such as enough
VRAM. For example, running one of the trained models from OpenAIs
Whisper project can require a minimum of 10 GB of VRAM[15]. And
for training large language models (LLM), NVIDIA is releasing cards with
188GB of VRAM[6]. And with tensor cores, mixed precision (half and
single) performance has increased significantly.

However, not all ML models demand as much VRAM to justify
purchasing the latest and greatest. Nor does many HPC applications.
Despite lower VRAM and mixed precision performance, older cards can
offer strong double-precision performance that is on par with even the
latest GPUs. Could expanding existing clusters with older hardware be
a cost-effective alternative to replacing them with new hardware? Help
reduce pressure on semiconductor shortage and the environment. Reuse
and redistribute do come before recycling in the list of end-of-life scenarios
for electronics[16]. A look at NVIDIAs driver support of their legacy
line of GPUs shows that older models can serve far beyond the product
warranty[7]. The question remains if there is anything else in the software
stack that won’t play well with older hardware.

With this in mind, we have our hands on two 10-year-old decommis-
sioned GPU servers. We explore what it takes to get them back into pro-
duction and the hardware and software limitations. Then we benchmark
the performance of NCCL communication between GPUs across the vari-
ous interconnects within and between the two servers. Among these, we
will look at the NCCL performance when lending GPUs between the serv-
ers using SmartIO, a zero-overhead device-sharing method over PCIe Net-
work.

1.2 Problem Statement

Modern NVIDIA GPUs for use in ML and HPC are expensive and hard to
get. Availability and price have been affected by semiconductor shortages,
supply chain issues, and high demand. GPU functionality, such as mixed
precision performance, has increased over the years, but double precision
performance has yet to get any better than models ten years older. This
leads us to ask the following research question:

Do GPUs now considered legacy have a place in modern ML and HPC
environments?

The research question has been broken down into the following three ob-
jectives:

4

Objective 1
Find if there are challenges concerning software support, packages,
and drivers when using legacy GPUs.

ML frameworks have developed rapidly. Newer GPU architectures offer
higher compute capability, with features not found in legacy hardware.
Support for legacy NVIDIA GPUs depends on the backward compatibil-
ity of the operating system, GPU driver, NVIDIA CUDA Compiler, and
CUDA code.

Objective 2
Find if PCIe can be used as an efficient interconnect in an ML com-
munication framework, such as NCCL.

Efficient GPU-to-GPU communication relies on the underlying PCIe inter-
connect. PCIe topologies can get messy as we add NUMA configurations
and multimachine NTB interconnects. These can introduce barriers and
bottlenecks for efficient communication between PCIe slots.

Objective 3
Find if it is possible to use PCIe device lending on GPUs and if it
will help ML communication performance.

PCIe-based NTB interconnects offer functionality to connect multiple PCIe
topologies to lend PCIe devices from one machine to another. It adds flex-
ibility but is limited to the bandwidth of the NTB interconnecting card and
the bandwidth of the PCIe slot it is connected.

1.3 Scope and limitations

While the servers used to be part of an HPC environment, they are
from around 2013 and are no longer state-of-the-art but have PCIe Gen 3
capabilities. The NVIDIA Tesla K20X GPUs are from the Kepler generation
with PCIe Gen 2 connectors at x16 width (8GB/s). The single available
PCIe Gen 3 port for the Dolphin NTB interconnect is limited to x8 in
width (7,877GB/s). Therefore, the bandwidth between the GPUs and
the Dolphin interconnect is relatively similar. However, it becomes a
theoretical bottleneck when transferring data from more than one GPU.

We do synthetic tests of NCCL performance across two internal PCIe
interconnects, QPI and P2P, and two external interfaces, 1Gb Ethernet and
Dolphin PXH810 interconnect. We explore two protocols with the Dolphin
interconnect, TCP IP over PCIe (IPoPCIe) and device sharing with SmartIO.
NCCL also supports 10/25/50+G Ethernet and InfiniBand with GPU Direct
RDMA. However, we did not have the necessary components to test these
scenarios.

5

This thesis also does not go into ML frameworks such as TensorFlow
and PyTorch. They do, however, extensively use the NCCL API.

1.4 Research Method

Based on the paradigms for the discipline in Computing[8], our research
has been within the third major paradigm; design. Rooted in engineering.
Of the many subareas in computing, we are focusing on the architecture.
Implementing machines for various computational models such as ML and
high-performance computing (HPC). We started with a set of hardware
limitations and the goal to benchmark a functional and as up-to-date as
possible system within these limitations. We hypothesized and tested the
newest operating system, drivers, CUDA libraries, and benchmark tools
available. Then iterated multiple times on each of these as we discovered
their limitations and faults, as well as methods to circumvent or fix them,
in order to reach our goal.

1.5 Ethical considerations

Part of this thesis regards the performance of hardware and software
that have been supplied by Dolphin Interconnect Solutions AS (Dolphin).
Specifically the PXH810 cards, PCIe cable, drivers for IPoPCIe and
SmartIO, and the benchmark tool for PIO and DMA performance. One
of the two external supervisors of this thesis has employment at Dolphin.
We have considered the possibility of conflicting interests and ensured to
benchmark each interconnects with the exact same code and configuration.
No benchmark methods, poor results, or errors are emitted or modified to
favor one interconnect over the other.

The author of this thesis is independent and not affiliated with Dolphin.
The assignment is supplied by the Department of Informatics (IFI) at the
University of Oslo and Simula Research Laboratory AS (Simula). The
main supervisor has employment at IFI and Simula. The second external
supervisor has employment at Simula.

1.6 Main contributions

We found challenges concerning software support, packages, and drivers
when using legacy GPUs. We confirmed that OS and GPU drivers still
had support, but not with the newest versions. We found that the GPUs
age hindered the use of the latest compiler, breaking compatibility with the
newer CUDA code in NCCL tests.

We found that PCIe can be used efficiently in an ML communication
framework such as NCCL, and we benchmarked internal and external
PCIe interconnects. We found that with our legacy GPUs, in NUMA
setups where GPU-to-GPU communication crosses QPI, it had little to no
bottleneck in performance compared to a P2P configuration.

6

We confirmed that SmartIO increased bandwidth and lowered latency
in multi-node communication. But the more GPUs added, the lower the
average bandwidth went. We see there is potential for improvements
with RDMA support. We found that IPoPCIe did not improve NCCL
communication performance over built-in gigabit Ethernet.

We confirmed using PCIe device lending with SmartIO on legacy GPUs
is possible. It did surprisingly help ML communication performance, such
as borrowed GPUs performing better than internal GPUs. The software is,
however, bleeding edge, with a few odd behaviors and a setup process that
can easily cause the server to freeze.

With that, we answered our research question with the following:
The value of legacy GPUs in a modern ML and HPC environment is limited
as they age, mainly because of software support. However, for HPC
environments that do not mind supporting older software packages, they
offer cost-effective double-precision performance.

1.7 Thesis outline

This thesis is divided into five chapters and one Appendix.

Chapter 1 introduces what and why we find it interesting to work on
legacy GPUs and the potential of modern PCIe interconnects.

Chapter 2 gives the reader domain knowledge to help them understand
the context of the rest of the thesis.

Chapter 3 presents the main steps on how we configured our system
and explains some of the caveats that may appear for anyone deploying
something similar.

Chapter 4 presents our test data and graphs, sorted by the type of col-
lective communication.

Chapter 5 concludes the findings and discusses some of the potential.

Appendix A is an informal log of how the systems used in this thesis
were configured. It is a longer and more in-depth version of Chapter 3,
including tips and tricks, longer terminal outputs, and other things that are
hopefully helpful to anyone replicating a similar solution.

7

Chapter 2

Background

This chapter details the underlying hardware and software that lay our
benchmark’s foundation.

2.1 PCIe

Adding peripherals such as accelerators and network cards is usually done
by connecting to the "Peripheral Component Interconnect Express" (PCIe -
2003). Most modern CPUs offer point-to-point links ("bus lanes") following
the PCIe standard, allowing for expansions beyond its built-in functions.
Some of these lanes may be directly soldered to built-in peripherals such
as USB controllers on a motherboard. Manufacturers may also run lanes
to physical ports allowing us to insert our peripherals. These are the ports
we connect our accelerator cards, such as GPUs, or network cards, such as
fiber-optic Ethernet and Dolphin interconnects.

Figure 2.1: Various PCI slots on a computer
motherboard1

[27]

While the CPUs today
have a lot of built-in func-
tions, historically, everything
from disk controllers, memory
controllers, graphics, and
networking were handled
externally from the CPU
die. Preceding PCIe, there
was, for example, the "In-
dustry Standard Architec-
ture" (ISA - 1981), an exten-
ded version (EISA - 1988),
or the "VESA Local Bus"
(VLB 1992). However,
"Peripheral Component In-
terconnect" (PCI - 1992) be-
came the industry standard
of the 90s. As accelerator

1Slot type from top to bottom: PCI Express x4, PCI Express x16, PCI Express x1, PCI
Express x16, Conventional PCI

8

Figure 2.2: Example of a PCIe topology [17]

cards such as GPUs grew to be bottlenecked by the PCI standard, a superset
of the conventional PCI bus named "Accelerated Graphics Port" (AGP) ex-
isted in parallel with PCI until the express version of PCI got introduced in
2003. The use of parallel links was common at the time for PCI and AGP, as
well as the mentioned earlier standards. They send several bits as a whole
down the link at the same time using several parallel channels. Meaning
an 8-bit message demands eight dedicated channels (wires). Furthermore,
the channels must be the same length, or signals arrive offset. With the in-
troduction of PCIe, link communication is changed from parallel to serial,
sending data one bit at a time, sequentially over one or more communica-
tion channels. The more channels added to PCIe, the higher the bandwidth.
And increasing clock speed enables higher throughput. By the end of the
decade after its introduction, PCIe took over PCI and AGP as the industry
standard for adding peripherals.

2.1.1 Root complex - the message bringer

The root complex is the interchange that connects the CPU and memory
to the PCIe switch fabric. Historically this part used to be implemented
as a discrete motherboard component (north bridge chip); however, it is
now mostly integrated into the CPU die. The root complex is the unit
that generates transaction requests to the PCIe devices on behalf of the
CPU. For examples of how various devices are connected, see topology
figure 2.2. The operating system will set up the memory table for each
PCIe end-point (Type 0 Configuration Table). It will give the root complex
a master record of memory spaces accessible by each end-point (Type 1
Configuration Table).

9

Figure 2.3: Illustration of bytes multiplexed across available PCIe lanes [10]

2.1.2 PCIe layers

Three layers make up the protocol of PCIe, the Physical layer, the Data link
layer, and the Transaction layer.

Physical Layer - links and lanes

A lane consists of four physical wires to make two differential signaling
pairs. One pair for transfer and one pair for receiving means lanes can
operate at full duplex. A minimum PCIe connection needs only one lane,
commonly abbreviated to "x1". A link can be made by one or more lanes,
up to 32 at most. The link size is often marked next to the port in a
conventional computer. For example, a port to use for a GPU might be
marked "PCIe x16", meaning it contains enough channels to support 16
lanes.

Although a PCIe device might have pinouts to support 16 lanes, we
don’t have to use them all for it to be functional. A PCIe card with 16
lanes will still work when connected to a 4-lane port. Albeit with throttled
throughput. And vice versa, a card with four lanes can still be connected
to a 16-lane port. The extra lanes are then simply not used ("wasted").

If a link is made using multiple lanes, broadening the bandwidth, data
will be multiplexed by striping it across the lanes as illustrated in figure 2.3.

Initial communication consists of link training. When a link comes up,
both peers start at PCIe version 1 speed (2.5 Gbps). Each lane has its own
clock, but the two devices’ clocks may be offset. In order for any signals
to be correctly interpreted, the clock on the receiver end will synchronize
itself to the sender by sampling arrivals of rising edges (as 0 turns to 1). A
common ’Training set’ is transmitted across each lane. Both peers may then
negotiate up to the highest common speeds supported by both peers. This
enables backward support and means any PCIe devices, regardless of the
version supported, can still communicate at high speeds with each other.

10

Table 2.1: PCI Express link performance [27]

Throughput
Version

Intro-
duced

Line code
Transfer

rate per lane ×1 ×2 ×4 ×8 ×16
1.0 2003 8b/10b 2.5 GT/s 0.250 GB/s 0.500 GB/s 1.000 GB/s 2.000 GB/s 4.000 GB/s
2.0 2007 8b/10b 5.0 GT/s 0.500 GB/s 1.000 GB/s 2.000 GB/s 4.000 GB/s 8.000 GB/s
3.0 2010 128b/130b 8.0 GT/s 0.985 GB/s 1.969 GB/s 3.938 GB/s 7.877 GB/s 15.754 GB/s
4.0 2017 128b/130b 16.0 GT/s 1.969 GB/s 3.938 GB/s 7.877 GB/s 15.754 GB/s 31.508 GB/s
5.0 2019 128b/130b 32.0 GT/s 3.938 GB/s 7.877 GB/s 15.754 GB/s 31.508 GB/s 63.015 GB/s

6.0 (planned) 2021 PAM-4 + 256B FLIT + FEC 64.0 GT/s 8.000 GB/s 16.000 GB/s 32.000 GB/s 64.000 GB/s 128.000 GB/s

Link training also consists of the peers agreeing on polarity inversion,
calibrating out delays between lanes, i.e., compensating differences in lane
length and changing lane numbers if the wiring is out of order (eases
routing of the PCB layout).

Line coding is done to reduce electromagnetic interference (EMI)
during transfer. The sender and receiver contain an identical pseudo-
random data scrambler. Line encoding and decoding of the signal are
done to keep the electric disparity as close to zero as possible. Ensuring
the number of 1s and 0s is even. Without this, a series of binary 1s would
slowly charge up the DC voltage in the circuit. Then when a 0 is sent, the
high charge in the circuit could cause it to be interpreted as a 1, corrupting
the message. Or if there were a long enough stream of 0s, the receiver
won’t have any rising edges to synchronize its clock to. Line coding in
earlier PCIe versions was 8b/10b, and as of version 3.0 to 5.0, 128b/130b is
used (essentially 64b/66b with double the block size). For a complete chart
of the various versions, see table 2.1.

Data link layer - Dealing transaction layer packets

PCI Express communication is encapsulated in transaction layer packets
(TLPs) packets. The data link layer sequences the TLPs generated by the
transaction layer. In the header of outgoing TLPs, the data link layer
inserts an incremental sequence number. A redundancy check code is also
added for the receiver to check against unexpected corruptions. Similar
to network protocols like TCP, an acknowledgment protocol consisting
of ACK and NAK signaling ensures reliable delivery of TLPs between
endpoints. If a NAK signal is received, or no response is heard from the
receiver after a certain time, then something goes wrong along the way,
and the same TLP is sent again. On the receiving end of the data link layer,
after receiving a valid TLP, the packet is forwarded to the transaction layer.

Transaction layer

Buffers between PCIe devices vary, so a credit-based flow control is used
not to overflow the receiver buffer. The devices communicate their credit
(buffer size), and the transmitter only sends new TLPs if there’s credit left.
On the receiver end, it’ll process the TLPs in its buffer and, after that’s done,
respond to the sender with a special packet named Flow Control Packets

11

(FCP) to update the sender that the receiver is ready for more data (aka
return credit).

2.1.3 Transparent Bridging vs Non-Transparent Bridging (NTB)

[4] The PCIe architectural model allows only one root in the root complex.
And all connected devices ("endpoints") must share a common address
space. A transparent bridge means the root complex can see all endpoints
in the system. All allocated memory for a PCI-e device is synonymously
used by only one end-point (one PCIe device and not a switch or some
other middleman).

Non-Transparent Bridging (NTB) circumvents this limitation to con-
necting multiple root complexes together. An "end-point" and its memory
area are thus not the actual endpoint but a middleman to interconnect the
root complex onto another root complex. This means one host (CPU) or
PCIe device on one switch partition can initiate transactions with other
hosts and their devices. Software maps the "middle-mans" allocated
memory and sees beyond the NTB bridge and what devices are avail-
able outside the host’s root complex. NTB enables multi-machine inter-
connects, and in this paper, we’ll work with the interconnecting "middle-
men"-devices Dolphin Interconnect Solutions offer.

2.1.4 Input–Output Memory Management Unit (IOMMU)

IOMMU enables virtual addressing of the main memory to PCIe devices
[24]. Similar to MMU, that does virtual addressing of physical memory
addresses for the CPU. Among other things, IOMMU allows PCIe devices
to map continuous virtual memory addresses, even if the underlying
physical address space is fragmented. Graphics Address Remapping Table
(GART) is an example of IOMMU used by PCI Express GPUs to read and
write from main memory.

2.2 Intel QuickPath Interconnect (QPI)

Figure 2.4: Illustration of QPI interconnecting a
NUMA and IO configuration [1]

QPI is an Intel pro-
cessor interconnect
between CPU sock-
ets and IO hubs (root
complex) [1]. In
illustration 3.1, we
can see how a Su-
permicro X9DRG-HF
server has traces on
the motherboard to
use QPI as the inter-
connect between the
CPU sockets. QPI

12

enables non-uniform
memory access (NUMA)
architecture in such
dual-socketed configurations.

From 2017 QPI was replaced with Intel Ultra Path Interconnect (UPI)
[25].

2.3 Remote Direct Memory Access (RDMA)

RDMA allows the direct writing of one PCIe device’s memory into another
without involving the CPU. A co-processor, such as the GPU, can then
do a "zero-copy" operation, circumventing the central processor and not
performing any local memory copying between application memory and
kernel memory. Processes running on the CPU can continue to operate
in parallel while data is transferred, increasing performance and enabling
high-throughput, low-latency data transfers between devices.

Support for RDMA depends on the interconnect and topology. If one
PCIe device wants to write to another connected to a different NUMA node
over QPI or via an NTB solution like Dolphin ICS, RDMA is not supported
out of the box. A system designer must be conscious of the position of PCIe
devices in a system to utilize RDMA.

2.3.1 Dolphin Interconnect Solutions (Dolphin ICS)

Network-oriented interconnects such as Ethernet and Fibre Channel are
common for interconnecting hosts and sharing data. However, the
overhead introduced by routable protocols may be undesirable, and
a lower-level interconnect is needed. Some examples are InfiniBand,
RapidIO, or NUMAlink. However, these are different standards than PCIe,
adding a translation layer since the interconnecting hardware still operates
over PCIe on each host.

The PCIe local-bus standard by itself, however, can also be used for
interconnecting hosts and creating clusters. Dolphin’s NTB PCIe hardware
uses the existing protocol without translating and repackaging data. We
can use this to expose PCIe capabilities for multi-machine communication.
Allow direct RDMA between different hosts/root complexes, including
peer-to-peer data transfer between PCIe devices (such as GPUs) on
different fabrics without involving either CPU. With the bandwidth of PCIe
and features such as reflective memory, multicast, and PCIe peer-to-peer
communication, we can quickly move large amounts of data between hosts
at low latency. Such interconnects can help distribute large data sets for
computation. The host CPU and GPU can focus on doing calculations
while the distribution of data is offloaded and handled by the dolphin
cards.

13

Figure 2.5: Accessing remote resources using RDMA [14]

IPoPCIe

With Dolphin’s TCP IP driver for PCIe, the NTB cards can appear in the
OS as a network interface, allowing quicker transfers with lower latency
than built-in gigabit+ Ethernet [18]. It uses both SISCI PIO and RDMA
operations depending on message sizes.

SmartIO

SmartIO is a framework that enables the lending and borrowing of PCIe
Devices over a PCIe network without any software overhead [20]. Device
Lending can be used to reconfigure systems and reallocate resources.
GPUs, NVMe drives, or FPGAs can be added or removed without being
physically installed in a particular system on the network.

2.4 NVIDIA Collective Communications Library (NCCL)

[5]

Figure 2.6: Illustration displaying the development of NCCL workload
distribution [12]

14

Figure 2.7: Illustration2showing the unidirectional ring data travels in [12]

Figure 2.8: Illustration detailing the unidirectional data travel from each
GPUs point of view [12]

The NVIDIA Collective Communications Library (NCCL, pronounced
“Nickel”) is a library providing inter-GPU communication primitives
that are topology-aware and can be easily integrated into applications.
NCCL implements both collective communication and point-to-point
send/receive primitives. It is not a full-blown parallel programming frame-
work but a library focused on accelerating inter-GPU communication.
NCCL provides (among others) communication primitives such as AllRe-
duce collective, which is heavily used for neural network training. It allows
for point-to-point send/receive communication which allows for scatter,
gather, or all-to-all operations. CUDA-based collectives would tradition-
ally be realized through a combination of CUDA memory copy operations
and CUDA kernels for local reductions. NCCL, on the other hand, imple-
ments each collective in a single kernel handling both communication and
computation operations. This allows for fast synchronization and minim-
izes the resources needed to reach peak bandwidth. NCCL conveniently
removes the need for developers to optimize their applications for specific

2Network interface named "IB" would in our setup be Gigabit Ethernet or the Dolphin
card

15

machines. NCCL provides fast collectives over multiple GPUs and also
across nodes since NCCL version 2. It supports a variety of interconnect
technologies, including PCIe, NVLINK, InfiniBand Verbs, and IP sockets,
as illustrated in 2.9. NCCL uses a simple C API, which can be easily ac-
cessed from a variety of programming languages.

Figure 2.9: Illustration3displaying the various interfaces that NCCL can
use, both within and between systems (nodes) [12]

Efficient scaling of neural network training is possible with the multi-
GPU and multi-node communication provided by NCCL. And we’ll be
looking at the implementation of IP communication over PCIe using the
Dolphin interconnect solutions.

Worth noting is that NCCL closely follows the popular collective API
defined by MPI (Message Passing Interface).

[12] NCCL 1.0 introduced Multi-GPU (one node/computer with many
GPUs) NCCL 2.0 introduced Multi-node on top of Multi-GPU (Many
nodes/computers with many GPUs).

2.4.1 Message Passing Interface (MPI)

The NCCL API and usage are similar to MPI [2], but many minor
differences exist. However, NCCL can be easily used in conjunction with
MPI. NCCL collectives are similar to MPI collectives. Therefore, creating
an NCCL communicator out of an MPI communicator is straightforward.
It is, therefore, easy to use MPI for CPU-to-CPU communication and NCCL
for GPU-to-GPU communication.

2.4.2 Distributed machine learning techniques in NCCL

Data is moved across all GPUs using a ring model. Communication
collectives available as shown in figure 2.10 are: Broadcast. Scatter. Gather.
All-Gather. All-to-All. Reduce. All-reduce. For machine learning, All-
reduce, broadcast and gather are often used.

3In the list of interfaces to other systems, Dolphin interconnect can be added, with
IPoPCIe(sockets) and SmartIO. Better support for Direct RDMA might come, and currently
exist in the form of an outdated SISCI NCCL plugin [21]

16

Figure 2.10: Collective communication with multiple senders and/or
receivers with NCCL & MPI [29]

For machine learning applications, data can be passed across all GPUs,
and they’ll perform reductions as data is passed from one GPU onto the
next GPU. Machine learning tasks may be split and distributed in various
ways using NCCL. With multiple machines, each with multiple GPUs and
threads, you may distribute the workload as such: Multiple processes
per node. Each process has one GPU. Multiple processes per node, each
process with multiple threads, and each thread has one GPU. One process
per node, all of the node’s GPUs for that process.

2.5 Multimachine machine learning

A single machine has a finite amount of computational resources as it is
bound by the capabilities of its processor, memory, and accelerator cards
(such as graphics cards). Computational problems such as machine learn-
ing, however, may grow so large the amount of data and computational
demand surpasses what a single machine can perform or complete in a
reasonable time; despite multiple cores and accelerator cards. To overcome
this limit and increase the computational resource, we can add multiple
machines and connect them together, pooling the resources.

How do we utilize this computational power? It starts with splitting
the workload to utilize multiple threads on multi-threaded processors.
And further, split to use an accelerator card (such as NVIDIA GPUs
when implementing the CUDA API). We can utilize multiple GPUs using
NVIDIA Collective Communications Library (NCCL) to further distribute
the machine learning workload. At this point, we have a multi-GPU
distribution of the workload. NCCL also empowers us to further distribute
the workload outside of just one node. Pooling multiple machines, we can
do multi-GPU and multi-node distribution of the workload. Thus we have
multimachine machine learning.

17

2.6 Summary

In this chapter, we talked about how PCIe us built and how it enables
expansions for use with, e.g. accelerator cards and Network interface
controllers. Then we looked at QPI; an internal interconnects for intel
CPUs. Then how RDMA enable direct copy operations initiated by PCIe
devices instead of the CPU, with a mention of Dolphin interconnect tools
that we will use in this thesis. Then we looked at NCCL and how this helps
us distribute ML workloads across GPUs within one or more computers.
We also mention MPI, the underlying interface NCCL is based on. And
we ended talking a little about what it means to do multimachine machine
learning.

18

Chapter 3

System setup and challenges

This chapter briefly explains how we set up our pair of legacy Supermicro
GPU servers to run NCCL tests and the challenges we encounter when
modern software meets legacy GPUs. For a complete detailed version
of how we set up the cluster from scratch, including more fleshed-out
terminal outputs, see the appendix A.

3.1 Hardware

We are working with two identical 1U Supermicro x9 SuperServers,
type 1027GR-TRF, chassis Model 118-18, Motherboard X9DRG-HF with a
NUMA configuration (aka two CPU sockets). With that, we can create a
two-node cluster.

We named the nodes Abel1 and Abel2 as a homage to the decommis-
sioned Abel cluster at the University of Oslo, where they originated.

They both contain the following:

CPU 2xIntel Xeon E5-2609 @ 2.40GHz
Memory 64GB DDR3 split between the NUMA nodes
GPU 2xNVIDIA Tesla K20X, 6GB GDDR5, 16x PCIe gen2
PCIe NTB interconnect Dolphin PXH810, 8x PCIe gen3
LAN Gigabit Ethernet

Table 3.1: Hardware specifications

19

Figure 3.1: Supermicro X9DRG-HF System Block Diagram
[11]

The Tesla K20X GPUs are of the Kepler generation, released in
November 2012.

The GPUs are arranged on the Abel1 node so that each GPU is connected
to a different CPU (different NUMA node). We can benchmark GPU-to-
GPU communication performance in this configuration while crossing the
QPI interconnect.

The GPUs are arranged on the Abel2 node, so both are connected to the
same CPU (same NUMA node). Shown in the System Block Diagram 3.1
as SLOT1 and SLOT2. In this configuration, we can benchmark direct P2P
communication between the GPUs as they share the same PCIe controller
and utilize RDMA.

In both nodes, we have the Dolphin PXH810 card connected to SLOT5,
the same CPU as the two GPUs in Abel2, and one of the GPUs in Abel1. The

20

NUMA location of the PXH810 is crucial, as we later found that SmartIO
does not support device lending beyond the same NUMA node. The
PXH810 cards on each node are interconnected with a single x8 PCIe cable,
as shown in image 3.3.

21

Figure 3.2: Inside view of the Supermicro X9DRG-HF servers

22

Figure 3.3: Outside view behind the Supermicro X9DRG-HF servers

3.2 Software

The following covers the main parts of how we set up the software in our
system and what the most up-to-date software and drivers compatible with
our system were at the time of writing.

OS Ubuntu 20.04 LTS server
NVIDIA-driver-470-server

GPU NVIDIA HPC SDK 21.9
CUDA Version 11.4

PCIe NTB interconnect Dolphin eXpressWare pipeline 22529
iperf3

Benchmark tools scibench2
dma_bench
nccl-tests, commit 8274cb4 (27 May 2022)

Table 3.2: Software specifications

3.2.1 Operating system

We went for Ubuntu as the operating system by recommendation from
our main supervisor. It’s a well-supported OS for HPC environments with
good GPU support and is easy to download without registration. Another
common alternative in HPC is Red Hat Enterprise Linux (RHEL). However,
acquiring an RHEL license is a more strict process as they demand user
registration for both download and installation.

The initial trial was with Ubuntu server 22.04 LTS. It proved incom-
patible with the older NVIDIA HPC SDK we needed for our legacy GPUs

23

https://github.com/NVIDIA/nccl-tests

(more on this in A.3.8). Compiling compatible version of NVIDIAs NCCL-
test code using NVCC for CUDA 11.4 would throw the following error

"/usr/include/stdio.h(189): error: attribute __malloc__" does
not take arguments↪→

Since stdio.h is distributed as part of the OS, we installed Ubuntu 20.04 LTS
on another server to compare against 22.04 LTS. The error disappeared on
the older version, so we downgraded both servers to 20.04 LTS. That means
hardware and maintenance updates from Ubuntu are only guaranteed
until April 2025, and Extended Security Maintenance (ESM) until 2030 at
a cost [13].

IOMMU

In Ubuntu, IOMMU is not enabled by default. On our system, we enabled
it by modifying /etc/default/grub to add

GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"

then enable the change to take effect after the next reboot with

$ sudo update-grub

3.2.2 NVIDIA drivers & tools

Tesla K20X is currently on the R470 Long Term Support Branch (LTSB) for
NVIDIA drivers. That means NVIDIA has set the End of Life to July 2024,
on which they will stop supplying bug and security releases.

We installed the drivers, diagnostic tools, and other tools needed as
such

apt install nvidia-headless-470-server
apt install nvidia-utils-470-server
apt install environment-modules

We need CUDA, NVCC, NCCL, and MPI to perform our benchmarks.
NVIDIAs HPC SDK includes all this as well as environment modules that
make setting it up across nodes consistent and stable. The latest working
SDK version for our Tesla K20X GPUs is 21.9, with CUDA 11.4. Instructions
for adding and downloading their repository were found on the NVIDIA
HPC SDK 21.9 site. Installation was done as follows:

$ curl https://developer.download.nvidia.com/hpc-sdk/ubuntu/ ⌋
DEB-GPG-KEY-NVIDIA-HPC-SDK | sudo gpg --dearmor -o
/usr/share/keyrings/nvidia-hpcsdk-archive-keyring.gpg

↪→

↪→

$ echo 'deb [signed-by=/usr/share/keyrings/ ⌋
nvidia-hpcsdk-archive-keyring.gpg]
https://developer.download.nvidia.com/hpc-sdk/ubuntu/amd64
/' | sudo tee /etc/apt/sources.list.d/nvhpc.list

↪→

↪→

↪→

24

https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/nvidia-hpc-sdk-219-downloads
https://developer.nvidia.com/nvidia-hpc-sdk-219-downloads

$ sudo apt update -y
$ sudo apt install -y nvhpc-21-9

After the installation, we load in the environment module as such

$ module use /opt/nvidia/hpc_sdk/modulefiles
$ module load nvhpc/21.9

This way, the location of the various SDK libraries, such as CUDA,
NCCL, and MPI, are added to the LD_LIBRARY_PATH for all software to
find. As well as relevant programs such as NVCC and mpirun are added to
PATH, we can call and run them without prompting the executable’s path.

A downside of using NVIDIAs HPC SDK is that the CUDA, NCCL,
and MPI libraries locations are not in the default location that many
CUDA programs expect. We experienced that makefiles tend to be
configured with hard-coded CUDA paths. Even in NVIDIAs own
code, such as CUDA samples and NCCL-tests. They look for the
CUDA library in /usr/local/cuda, while the HPC SDK 21.9 puts it at
/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/. This generally means
all non-standard locations must be explicitly defined as an argument dur-
ing compilation.

As an example, we tested various CUDA capabilities using CUDA
samples, part of the CUDA toolkit. The various code samples include
makefiles for easy building and running. On our setup, we must pass
through arguments for the non-standard compiler and library locations as
well as compute architecture. Example:

$ make NVCC=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/compilers/ ⌋
bin/nvcc
CUDA_PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
SMS="35"

↪→

↪→

↪→

Complications

The K20X GPUs support most CUDA capabilities 3.5 and CUDA 11.4.
Initially, we tried to use the newest SDK, 22.7, and then later, 22.9, as it
was released. Specifically the multipack version, including CUDA 10.2,
11.0, and 11.7. However, they are missing environment module files for
anything but CUDA 11.7. So when we did

$ module load nvhpc/22.9

We’d get nvcc for CUDA 11.7
This should theoretically be fine, as we can point the compiler to the

relevant CUDA library during compilation. However, when we loaded
module nvhpc/22.9, and tried to compile NCCL-test while pointing to
CUDA 11.0 included in 22.9, we’d get pgc++ errors

25

https://github.com/NVIDIA/cuda-samples
https://github.com/NVIDIA/cuda-samples

$ make
CUDA_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/22.9/cuda/11.0/
NCCL_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/22.9/ ⌋
comm_libs/nccl
NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

↪→

↪→

↪→

↪→

...
"/opt/nvidia/hpc_sdk/Linux_x86_64/22.9/cuda/11.0//bin/../ ⌋

targets/x86_64-linux/include/crt/host_config.h", line 118:
catastrophic error: #error directive: -- unsupported pgc++
configuration! Only pgc++ 18, 19 and 20 are supported!

↪→

↪→

↪→

...

Even if we try pointing to the known working CUDA 11.4 from 21.9
while using nvcc loaded from 22.9, We’d get the following

$ make
CUDA_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
NCCL_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/ ⌋
comm_libs/nccl
NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

↪→

↪→

↪→

↪→

...
"/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4//bin/../ ⌋

targets/x86_64-linux/include/crt/host_config.h", line 118:
catastrophic error: #error directive: -- unsupported pgc++
configuration! Only pgc++ 18, 19, 20 and 21 are supported!
The nvcc flag '-allow-unsupported-compiler' can be used to
override this version check; however, using an unsupported
host compiler may cause compilation failure or incorrect
run time execution. Use at your own risk.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

...

If we use SDK 21.9, we don’t get pgc++ errors. With this, we see
newer NVIDIA C compilers have already removed compiler support for
our Tesla K20X. Nor renamed pgc++ to nvc++ despite NVIDIA rebranding
and integrating PGI compilers into the Nvidia HPC SDK [28]. The compiler
in both SDK 22.9 and 21.9 include a warning about deprecated architecture:

nvcc warning : The 'compute_35', 'compute_37', 'compute_50',
'sm_35', 'sm_37' and 'sm_50' architectures are deprecated,
and may be removed in a future release

informing that our Tesla K20X is living on borrowed time.

3.2.3 NCCL Tests

The code to benchmark NCCL performance and correctness is distributed
by NVIDIA and called NCCL Tests. In order to compile to our legacy

26

https://github.com/NVIDIA/nccl-tests

GPUs using NVCC for CUDA 11.4, we found the newest release was
incompatible.

The following is an example of errors that arrive when trying to compile
the latest NCCL test version (commit 365b92a as of writing) with NVCC
from HPC SDK 21.9 (nvcc release 11.4, V11.4.100).

$ make
CUDA_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
NCCL_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/ ⌋
comm_libs/nccl
NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

↪→

↪→

↪→

↪→

...

../verifiable/verifiable.cu(124): warning: function
"<unnamed>::castTo<Y>(float) [with Y=__nv_bfloat16]" was
declared but never referenced

↪→

↪→

../verifiable/verifiable.cu(119): warning: function
"<unnamed>::castTo<Y>(float) [with Y=half]" was declared
but never referenced

↪→

↪→

../verifiable/verifiable.cu(147): warning: function
"<unnamed>::ReduceSum::operator()(half, half) const" was
declared but never referenced

↪→

↪→

../verifiable/verifiable.cu(155): warning: function
"<unnamed>::ReduceSum::operator()(__nv_bfloat16,
__nv_bfloat16) const" was declared but never referenced

↪→

↪→

"../verifiable/verifiable.cu", line 353: error: expected a ")"
return (uint64_t)((((unsigned __int128)a) * ((unsigned

__int128)b)) >> 64);↪→

^

"../verifiable/verifiable.cu", line 353: error: expected a ")"
return (uint64_t)((((unsigned __int128)a) * ((unsigned

__int128)b)) >> 64);↪→

^

"../verifiable/verifiable.cu", line 353: warning: shift count
is too large↪→

return (uint64_t)((((unsigned __int128)a) * ((unsigned
__int128)b)) >> 64);↪→

^↪→

2 errors detected in the compilation of
"/tmp/tmpxft_00001276_00000000-6_verifiable.cudafe1.cpp".↪→

27

...

The code includes newer commands and changes that would not
compile on the slightly older NVIDIA C compiler. To circumvent the issue,
we utilized the git history. The newest verified git-release that compiled
and worked on our system was git-commit 8274cb4 (27 May 2022), so we
went ahead and used that as such:

$ git checkout 8274cb4

This means that bug fixes in the benchmark tool and testing of new
features in NCCL beyond git-commit 8274cb4 have become unavailable for
Tesla K20X users unless backward compatibility in the code is addressed in
a future commit.

We also found in the makefile that NVIDIA added a check for CUDA
capability to define NVCC_GENCODE to reduce compile time. We see in
the git history that after the release of CUDA 11, the makefile was modified
to check the CUDA version of the NVCC compiler. If it is CUDA 11, it will
only compile to GPUs with CUDA capability 6.0 and newer:

ifeq ($(shell test "0$(CUDA_MAJOR)" -ge 11; echo $$?),0)
NVCC_GENCODE ?= -gencode=arch=compute_60,code=sm_60 \

-gencode=arch=compute_61,code=sm_61 \
-gencode=arch=compute_70,code=sm_70 \
-gencode=arch=compute_80,code=sm_80 \
-gencode=arch=compute_80,code=compute_80

else
NVCC_GENCODE ?= -gencode=arch=compute_35,code=sm_35 \

-gencode=arch=compute_50,code=sm_50 \
-gencode=arch=compute_60,code=sm_60 \
-gencode=arch=compute_61,code=sm_61 \
-gencode=arch=compute_70,code=sm_70 \
-gencode=arch=compute_70,code=compute_70

endif

Our GPUs were at CUDA capability 3.5, so in order to compile the code
using CUDA 11, we could either modify the makefile or manually override
by adding the compiler argument:

NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

We chose to manually override.

Thus to compile the NCCL test with MPI for multi-node testing using
the NVIDIA HPC SDK, we ran the following

28

$ make MPI=1 MPI_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/ ⌋
comm_libs/mpi
CUDA_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
NCCL_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/ ⌋
comm_libs/nccl
NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

↪→

↪→

↪→

↪→

↪→

To speed up the compilation time, -j8 can be added to compile using all
eight threads in our system.

Compiling with MPI also means we have to run the program with
mpirun. To run two MPI processes on a single node:

$ mpirun -np 2 -host abel1:2
~/cudastuff/nccl-tests/build/all_reduce_perf -b 8 -e 128M
-f 2 -g 1

↪→

↪→

To run four MPI processes across our two nodes

$ mpirun -np 4 -host abel1:2,abel2:2 -x LD_LIBRARY_PATH
~/cudastuff/nccl-tests/build/all_reduce_perf -b 8 -e 128M
-f 2 -g 1

↪→

↪→

-np are number of MPI processes.
-x export our specified environment variables to the remote nodes before
executing the program. In this case "LD_LIBRARY_PATH". This is critical
since MPI SSH onto each node in a non-interactive way. Moreover, it means
the HPC SDK environment modules will not be loaded; thus, the program
will not find NCCL or CUDA in "LD_LIBRARY_PATH" on the remote nodes.
This method only works if the libraries are installed at identical locations
on all nodes.

Each of our nodes has only two GPUs. Therefore, each node can run
two MPI processes, each having one GPU: "-np 2 -g 1", or one MPI
process having two GPUs: "np 1 -g 2". We tested both scenarios and saw
no difference in performance in our system. In theory, the NUMA-locality
of MPI processes can be relevant for performance on systems like Abel1,
where the GPUs are connected to separate CPUs. So of the two, we chose
to stick with two MPI processes per node, each having one GPU.

3.2.4 Dolphin eXpressWare

Driver and software for the Dolphin PXH810 were supplied to us by
Dolphin in a package called eXpressWare.

We installed and enabled features like SmartIO and SuperSockets
(needed for IPoPCIe) as such:

29

$ sudo bash
Dolphin_eXpressWare-Linux-x86_64-PX-66aa356545_c0e0d090cc. ⌋
ubuntu20.04.sh --disable-gui --enable-smartio
--enable-supersockets

↪→

↪→

↪→

Explanation:
--disable-gui #Graphical interface. Disabled since

the server is headless.↪→

--enable-smartio #Enables smartIO functionality.
--enable-supersockets #Enables SuperSockets and IPoPCIe.

We noticed quickly that the Dolphin driver is closely tethered to the
kernel version in the OS and would break if the kernel were updated.
The solution we received from Dolphin was to rerun the install script and
build against the new kernel after each update—alternatively, block kernel
updates in the OS. By default, Ubuntu automatically installs available
kernel and security updates during reboot. For security reasons, we chose
not to freeze the kernel version and instead reran the install script when it
happened.

3.2.5 IPoPCIe

With Dolphin eXpressWare installed and supersockets enabled, as shown
in 3.2.4, a new network interface called dis0 will appear for the operating
system. With netplan, we assign static IP addresses for both ethernet and
dis0. Then made hostnames for a more human-readable experience instead
of using IPs. Examples are shown in A.3.6.

3.2.6 SmartIO

After installing the necessary drivers and frameworks from Dolphin
eXpressWare as shown in 3.2.4, we start by running the Dolphin tool
dis_config to find the prefetch size on the PXH810 card. The default
prefetch size is shown as 512MB. The prefetch size for the GPUs can
be found running lspci -vs [pci device ID], and we observe that one
Tesla K20X needs 256M prefetched memory space. In theory, with a 512MB
prefetch set for the PXH810 card, we will have just enough for two GPUs.
However, when we tried device lending two GPUs using SmartIO, the
second GPU failed to be lent. A look into dmesg revealed:

BAR X: no space for [mem size 0x10000000 64bit pref]
BAR X: failed to assign [mem size 0x10000000 64bit pref]

A look into the SmartIO manual informs that, quote:

The sum of PCIe BAR sizes + natural alignment for all added
devices must be smaller than the prefetch space allocated by
the Dolphin NTB board.

30

To give us some ample headroom, we increase the PX cards prefetch alloc-
ation to 4096MB. This would, for older systems, be the limit. However, our
systems could also handle more if we wanted, as it supports "Above 4G
Decoding". That enables 64-bit capable devices to be decoded in the Above
4G Address Space. An example of that is newer GPUs that support resiz-
able BAR (Base Address Register).

Now we can use SmartIO to borrow GPUs between the nodes. First, we
check with nvidia-smi that each of our two nodes contains two GPUs.
abel1:

abel1$ nvidia-smi
+---+
| NVIDIA-SMI 470.182.03 Driver Version: 470.182.03 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla K20Xm Off	00000000:05:00.0 Off	0
N/A 32C P0 55W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
1 Tesla K20Xm Off	00000000:85:00.0 Off	0
N/A 29C P0 58W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

abel2:

abel2$ nvidia-smi
+---+
| NVIDIA-SMI 470.182.03 Driver Version: 470.182.03 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla K20Xm Off	00000000:04:00.0 Off	0
N/A 26C P0 55W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
1 Tesla K20Xm Off	00000000:05:00.0 Off	0
N/A 31C P0 57W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

Then we do the following, slowly, one by one, to borrow and lend two
GPUs from abel2 to abel1.

// Lender side, if it's abel2:
// Connect to abel1
$ sudo smartio_tool connect 4
// Get PCI-addresses to the GPUs
$ lspci | grep NVIDIA
// Add them to the lender list
$ sudo smartio_tool add 04:00.0
$ sudo smartio_tool add 05:00.0
// Make them available for borrowers

31

$ sudo smartio_tool available 04:00.0
$ sudo smartio_tool available 05:00.0

// Borrower side:
// We begin by stopping the sisci service
$ sudo systemctl stop dis_sisci
// Then we list available GPUs to borrow
$ sudo smartio_tool list
// We borrow the two GPUs with their ID and the DMA window

size↪→

$ sudo smartio_tool borrow 80400 1024
$ sudo smartio_tool borrow 80500 1024
// Then we enable p2p between the remote GPUs so they locally

can talk directly with each other↪→

$ sudo smartio_tool enable-p2p 80400 80500
$ sudo smartio_tool enable-p2p 80500 80400
// Now for us to use the remote GPUs, we must reload the

NVIDIA kernel module. We must unload in the order of its
dependencies as seen by running "$ lsmod | grep nvidia"

↪→

↪→

$ sudo modprobe --remove nvidia_uvm nvidia_drm nvidia_modeset
nvidia↪→

// Then reload it back in again. Dependencies will follow
along↪→

$ sudo modprobe nvidia
// And finally, start the sisci service again
$ sudo systemctl start dis_sisci
// To confirm that the lending was sucessfull, we check that

the remote GPUs are listed↪→

$ nvidia-smi

Abel1 now displays four GPUs:

abel1:~$ nvidia-smi
+---+
| NVIDIA-SMI 470.182.03 Driver Version: 470.182.03 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla K20Xm Off	00000000:03:04.0 Off	0
N/A 28C P0 54W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
1 Tesla K20Xm Off	00000000:03:05.0 Off	0
N/A 33C P0 56W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
2 Tesla K20Xm Off	00000000:05:00.0 Off	0
N/A 32C P0 56W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
3 Tesla K20Xm Off	00000000:85:00.0 Off	0
N/A 29C P0 57W / 235W	0MiB / 5700MiB	0% Default
		N/A

32

+-------------------------------+----------------------+----------------------+

SmartIO complications

If the series of smartio_tool commands for lender and borrower are
executed too rapidly, for example, by pasting a block of them into the
terminal, lending may appear to have worked. nvidia-smi may show
external GPUs as expected. However, CUDA-programs that try to run
on them will quickly fail. p2pBandwidthLatencyTest from CUDA-samples
will return:

Cuda failure p2pBandwidthLatencyTest.cu:610: 'unknown error'

NCCL tests will report ’unknown error’ and segmentation faults:

...
abel1: Test CUDA failure common.cu:1045 'unknown error'
.. abel1 pid 3326: Test failure common.cu:1007

abel1: Test CUDA failure common.cu:1045 'unknown error'
.. abel1 pid 3325: Test failure common.cu:1007

...
[abel1:03374] *** Process received signal ***
[abel1:03374] Signal: Segmentation fault (11)
[abel1:03374] Signal code: Address not mapped (1)
[abel1:03374] Failing at address: 0x30
[abel1:03374] *** End of error message ***
/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/comm_libs/mpi/bin/ ⌋

mpirun: line 15: 3374 Segmentation fault (core
dumped) $MY_DIR/.bin/$EXE "$@"

↪→

↪→

Our "solution" was to wait for a second or two between executing each
smartio_tool command. We suspect smartio_tool is exposed to race con-
ditions.

We initially believed that the NVIDIA kernel module on the lender side
needed to be unloaded before smartio_tool took over GPUs for lending.
However, doing so would cause the server to freeze once a GPU is added
to SmartIO before making it available for borrowers.

// Freeze reproduction #1:
$ sudo modprobe --remove nvidia_uvm nvidia_drm nvidia_modeset

nvidia↪→

$ sudo smartio_tool add 05:00.0
(server freezes here)

// Freeze reproduction #2:
$ sudo smartio_tool add 05:00.0

33

$ sudo modprobe --remove nvidia_uvm nvidia_drm nvidia_modeset
nvidia↪→

$ sudo smartio_tool remove 05:00.0
$ sudo smartio_tool add 05:00.0
(server freezes here)

We circumvented the problem by not unloading the NVIDIA kernel
module on the lender side, as it appeared not to cause any issues leaving
it. We are unsure if this is expected behavior and what the connection is
between the lack of an NVIDIA kernel module and adding a GPU device
smartio_tool that causes the operating system to freeze.

34

Chapter 4

Experiments and results

4.1 Base-line reference

Table 4.1: Peak base-line performance

Interface Tool Protocol Bandwidth

Gigabit Ethernet iperf3 UDP/TCP 112 MBytes/sec
PXH810 IPoPCIe iperf3 UDP/TCP 857 MBytes/sec
PXH810 PIO scibench2 none 4134 MBytes/sec
PXH810 DMA dma_bench none 5449 MBytes/sec

With iPerf3, we ran both UDP and TCP benchmarks and received the same
result, as shown in table 4.1.

Figure 4.1: Low-level benchmark of the PXH810, displaying how different
segment sizes affect performance.

For unknown reasons scibench2 and dma_bench return different per-
formance numbers when increasing the test area of segment sizes beyond
the default. We showed this to the vendor of the software (Dolphin), but
we couldn’t quickly find the cause. Therefore, we have included all results.

The reason the graphs in 4.1 go up to at most 128MiB is because
scibench2 and dma_bench return the following error if we choose larger

35

segment sizes:

SCICreateSegment failed: Out of local resources (0x40000904)

The reason and solution can be found in the Dolphin eXpressWare
Installation and Reference Guide, quote [19]:

SCICreateSegment() will fail if the system can’t allocate a large
enough physical contiguous memory. The ability to do this
will be reduced over time as the physical memory will often
be fragmented.

To overcome the problem caused by memory fragmentation,
the eXpressWare software supports "Memory preallocation" to
allow the driver to allocate the required memory during the
initial boot and driver load.

We chose not to do memory preallocation in case it could invalidate our
existing benchmark results.

4.2 NCCL

We have chosen four collective communications to benchmark, Broadcast,
All-Reduce, All-to-All, and All-Gather.
The graphs include three data types, explained from NCCL tests docu-
mentation as such: [3]:

Algorithm bandwidth:

The most commonly used formula for bandwidth : size (S) / time (t).
It is useful to compute how much time any large operation
would take by simply dividing the size of the operation by the
algorithm bandwidth.

algbw = S/t

Bus bandwidth:

Applying a formula to the algorithm bandwidth to reflect the
speed of the inter-GPU communication. Using this bus band-
width, we can compare it with the hardware peak bandwidth,
independently of the number of ranks used.

Time:

To measure the constant overhead (or latency) associated with
operations. On large sizes, the time becomes linear with the
size (since it is roughly equal to overhead + size / bw) and is no
longer measuring the latency but also the bandwidth multiplied
by the size.

36

We ran the following default setup of NCCL-tests, with parallel init enabled
[3]:
5 warmup iterations, then 20 iterations.
Number of operations to aggregate together in each iteration is 1.
Reduce operation is sum.
Datatype is Float.
Reported performance is the average across all ranks (GPUs)

37

4.2.1 Broadcast

Figure 4.2: Broadcast illustration [29]

Broadcast is a one-to-all transfer, and it is used in, e.g. Deep Learning [29].

QPI vs P2P

Figure 4.3: Broadcast performance with GPUs over QPI (abel1), vs direct P2P
(abel2)

38

Gigabit Ethernet

Figure 4.4: Broadcast performance over gigabit Ethernet

(a) Difference running one vs two GPUs per node

(b) Difference in running two of three GPUs on local, vs remote node

(c) Time

39

IPoPCIe

Figure 4.5: Broadcast performance over IPoPCIe

(a) Difference running one vs two GPUs per node

(b) Difference in running two of three GPUs on local, vs remote node

(c) Time

40

SmartIO

Figure 4.6: Broadcast performance using SmartIO

The graph is, unfortunately, missing bus bandwidth. Bus bandwidth was,
in this case, identical to the algorithm bandwidth.

41

Stacked summary (multi-node)

Figure 4.7: Comparing multi-node interconnects
2 GPU broadcast performance, 1 in each node

42

Figure 4.8: Comparing multi-node interconnects
4 GPU broadcast performance, 2 in each node

43

4.2.2 All-Reduce

Figure 4.9: All-Reduce illustration [29]

All-Reduce is used in, e.g. Deep Learning and Molecular Dynamics [29]
and is generally the most common in ML [22].

QPI vs P2P

Figure 4.10: All-reduce performance with GPUs over QPI (abel1), vs direct P2P
(abel2)

44

Gigabit Ethernet

Figure 4.11: All-reduce performance over gigabit Ethernet

(a) Difference running one vs two GPUs per node

(b) Difference in running two of three GPUs on local, vs remote node

(c) Time

45

IPoPCIe

Figure 4.12: All-reduce performance over IPoPCIe

(a) Difference running one vs two GPUs per node

(b) Difference in running two of three GPUs on local, vs remote node

(c) Time

46

SmartIO

Figure 4.13: All-reduce performance using SmartIO

47

Stacked summary (multi-node)

Figure 4.14: Comparing multi-node interconnects
2 GPU all-reduce performance, 1 in each node

48

Figure 4.15: Comparing multi-node interconnects
4 GPU all-reduce performance, 2 in each node

49

4.2.3 All-to-All

Figure 4.16: All-to-All illustration [29]

All-to-All is the most communication-intensive operation, with data trans-
fers from every GPU to every other GPU. Use cases are, e.g. transposition
of data, Parallel Fast Fourier Transform and Graph Analytics [29].

QPI vs P2P

Figure 4.17: All-to-All performance with GPUs over QPI (abel1), vs direct P2P
(abel2)

50

Gigabit Ethernet

Figure 4.18: All-to-All performance over gigabit Ethernet

(a) Difference running one vs two GPUs per node

(b) 2 vs 4 GPU time

(c) Difference in running two of three GPUs on local, vs remote node

(d) Internal vs external GPU time

51

IPoPCIe

Figure 4.19: All-to-All performance over IPoPCIe

(a) Difference running one vs two GPUs per node

(b) 2 vs 4 GPU time

(c) Difference in running two of three GPUs on local, vs remote node

(d) Internal vs external GPU time

52

SmartIO

Figure 4.20: All-to-All performance using SmartIO

(a) Difference running one vs two GPUs per node

(b) Time of one vs two GPUs per node

(c) Difference in running two of three GPUs locally, or externally

(d) Time when two of three GPUs are local or external

53

Stacked summary (multi-node)

Figure 4.21: Comparing multi-node interconnects
2 GPU All-to-All performance, 1 in each node

54

Figure 4.22: Comparing multi-node interconnects
4 GPU All-to-All performance, 2 in each node

55

4.2.4 All-Gather

Figure 4.23: All-Gather illustration [29]

All-Gather is another communication-intensive operation, copying a sub-
section of data from each GPU onto every other GPU.

QPI vs P2P

Figure 4.24: All-Gather performance with GPUs over QPI (abel1), vs direct P2P
(abel2)

56

Gigabit Ethernet

Figure 4.25: All-Gather performance over gigabit Ethernet

(a) Difference running one vs two GPUs per node

(b) 2 vs 4 GPU time

(c) Difference in running two of three GPUs on local, vs remote node

(d) Internal vs external GPU time

57

IPoPCIe

Figure 4.26: All-Gather performance over IPoPCIe

(a) Difference running one vs two GPUs per node

(b) 2 vs 4 GPU time

(c) Difference in running two of three GPUs on local, vs remote node

(d) Internal vs external GPU time

58

SmartIO

Figure 4.27: All-Gather performance using SmartIO

(a) Difference running one vs two GPUs per node

(b) Time of one vs two GPUs per node

(c) Difference in running two of three GPUs locally, or externally

(d) Time when two of three GPUs are local or external

59

Stacked summary (multi-node)

Figure 4.28: Comparing multi-node interconnects
2 GPU All-Gather performance, 1 in each node

60

Figure 4.29: Comparing multi-node interconnects
4 GPU All-Gather performance, 2 in each node

61

4.3 Discussion

4.3.1 QPI vs P2P

With just a hair, P2P displays a slight overhead over QPI in All-to-All
4.17 and All-Gather 4.24 communication. Overall, however, they match
in performance. This can be explained with a look at the system diagram
of the server 3.1, QPI provide a point-to-point connection with a transfer
speed of up to 8.0 GT/s. Quite enough for our gen2 GPUs. There is to be
noted that our synthetic tests ran alone with little to no other software and
services. QPI performance may go down if there is more cross-traffic from
other processes. We would generally suggest connecting multiple GPUs
to the same CPU if possible. If that is not an option, our results show no
significant performance loss in splitting GPUs across NUMA nodes with
QPI interconnect.

4.3.2 Gigabit Ethernet

We were surprised by how high the bandwidth of Gigabit Ethernet is
during NCCL communication. Even sometimes beating IPoPCIe 4.22.
While bandwidth between nodes is at most 112MB per second, bandwidth
between GPUs inside each node is unhinged with high QPI and P2P
bandwidth, thus increasing the total average.

In the Broadcast benchmark 4.4 there is a sudden drop at 256 KiB.
Considering this drop is not visible in the other NCCL tests, we suspect
it may be caused by some other traffic happening at the network switch
during our testing.

In the All-Gather test 4.25, we suspect there is some optimization for
segment sizes at around 2 megabytes, as bandwidth peaks there before
slowing down and flattening. This is reflected in the IPoPCIe benchmark
4.26 as well. If we were to use NCCL in a production environment with
only Gigabit Ethernet and heavy use of All-Gather, we would suggest
choosing 2MB as the segment size.

4.3.3 IPoPCIe

To our big surprise, IPoPCIe with an 857 megabytes per second perform-
ance, lines up along the performance of gigabit Ethernet. Even going
slower at intervals in All-Reduce 4.14.

In the Broadcast test with three GPUs 4.5, we see that the performance is
lower if 2 of them are external rather than internal. The result seemed odd
since the ring topology of NCCL should mean that there is one transfer
across the link, regardless of the position of the GPUs. We expected equal
performance. The underlying cause for this may be related to how Nvidia
places GPU ranks based on PCIe bus addresses. The topology of our system
makes Nvidia consistently rank the external GPUs before the internal ones.

The All-Gather test 4.26 shows the same peak at 2 MiB as with gigabit
Ethernet. Considering that Ethernet and IPoPCIe use different drivers and

62

transfer across entirely separate interconnects, we suspect the explanation
is an optimization in NCCL.

With some code changes to use SuperSockets instead of the default
IP stack, we might have removed some overhead and made bandwidth
increase. But overall, the results show that IPoPCIe, in a configuration
like ours, is not a drop-in replacement to increase NCCL performance over
built-in gigabit Ethernet.

4.3.4 SmartIO

In Broadcast 4.6 and All-reduce 4.13, we see that SmartIO drastically
increase the NCCL bandwidth of our cluster. Moreover, the latency
difference between SmartIO, Gigabit Ethernet and IPoPCIe, visualize how
much the overhead of packaging and processing TCP packets is.

Same when our systems have a single GPU per node in All-to-All 4.20
and All-Gather 4.27 tests. But something is very off as soon as we add
two extra GPUs to the cluster, SmartIO performance flattens far below
Ethernet and IPoPCIe. The latter uses the same interconnect as SmartIO.
We come back to our question if there is some optimization helping IP-
based transfers around segment sizes of 2MiB.

In the Broadcast test 4.6 with one GPU in each node, we see the average
bandwidth is around half compared to GPUs within a single server. This
is because P2P is not supported, and RDMA is not used. Data travels
via system memory in both directions, adding copy/write steps, and
this adds an extra factor to consider when setting up a cluster. Without
RDMA, the read and write speed of the main memory will impact GPU-to-
GPU communication. When intercepting the traffic between the Dolphin
interconnects during NCCL benchmark, we noticed the average payload is
64 bytes, despite our hardware supporting 256.

IOMMU can have an effect on the performance as well [14]:

Since IOMMUs create a virtual address space, TLPs need
to be routed through the root of the PCIe tree in order
to resolve virtual IO addresses, effectively disabling peer-
to-peer transfers. Processor designs are complex and often
not well-documented, making it difficult to determine what
exactly happens with the memory operations in progress once
they leave the PCIe complex and enter the CPUs. Memory
operations may be buffered, awaiting IOMMU translations, or
the IOMMU may need to perform a multi-level table look up
for resolving addresses.

In the All-Reduce test 4.13, we see that the bandwidth curve flattens
to meet along with the other interconnects in a dual GPU setup. The
average bandwidth drops as we add GPUs, showing a bottleneck in the
interconnect. Compared to QPI and P2P results, the drop is drastic, and
we wonder if the communication consists of lots and lots of very small and
fragmented data transfers. If so, upgrading the GPU to something modern
with tensor cores optimized for All-Reduce operations might not improve

63

the communication performance across nodes. Another All-Reduce puzzle
is the difference between having two GPUs local vs external in the three-
GPU configurations. We could not find a good answer on why this
happens.

The three-GPU tests in All-to-All 4.20 and All-Gather 4.27 tests display
odd stepping pattern after 128 KiB. We are unsure of the cause, but think it
might have something to do with how SmartIO schedule DMA transfers.

Against expectations, we registered that NCCL performance is higher
when lending two external GPUs (from abel2) than using two internal
GPUs. Meaning when we ran tests on only those two GPUs alone,
enabling P2P for the whole test. To confirm the results, We ran the same
benchmarks locally on abel2, where it also uses P2P. Still, the local run
output results were worse than when abel1 borrowed the same GPUs.
Something causes the GPUs lended out with SmartIO to perform better. We
checked with p2pBandwidthLatencyTest from the CUDA-samples package
and confirmed that P2P is on and that this should not be the bottleneck. The
cause for the speedup for SmartIO is suspected in the difference in how P2P
mappings are done by SmartIO compared to the NVIDIA driver.

Figure 4.30: All-to-All performance running 2 GPUs locally on abel2, or
borrowed to abel1 with SmartIO

A deeper look into how exactly NCCL moves data between ranks could
be of interest, considering DMA write operations to remote nodes yield
significantly higher throughput than reading from remote nodes. If data
transfer in the NCCL ring formation is done by pulling data rather than
pushing, it could answer why we see lower bandwidth with SmartIO than,
e.g. QPI.

4.3.5 Closing thoughts

We wonder if older GPUs with less VRAM could be useful in HPC-
applications that does "streaming calculations", aka computation on data
that doesn’t need to stay long in VRAM. In workloads where a large
portion of the computation time is moving data, lower GPU performance
might not be as significant, however older cards might have slower

64

memory bandwidth and PCIe speeds, which negatively affects data
transfer performance.

While our NVIDIA K20X hardly competes in half and single precision
performance, the double precision performance are impressively high and
competitive with modern models as seen in table 4.2. Meaning HPC and
scientific computing that are dealing with double precision workloads can
benefit from similar performance to modern hardware at a fraction of the
cost.

A modern approach in scientific workloads is to exploit the high mixed
precision performance to generate a rough result, then target specific areas
of interest with double precision. In such scenarios, a hybrid solution
might contain both new and old GPUs in order to exploit the mixed
precision performance of newer GPUs, while saving cost by offloading
double precision calculations to older hardware. Freeing time on the
newer GPUs for more mixed-precision work. This is especially useful in
clusters that try to reduce cost by using consumer grade hardware, such as
Geforce RTX cards. The double precision performance of the most modern
consumer grade cards today, such as Geforce RTX 4090, is still beaten by a
cheap 10 year old data center GPU, as we can see in table 4.2.

Model Release date Half precision Single precision Double precision TDP Price
(GFLOPS) (GFLOPS) (GFLOPS) (watts)

K20X November 2012 N/A 3935 1312 235W 399 NOK
RTX 4090 October 2022 82600 82600 1291 450W 24 799 NOK
A40 October 2020 149680 37420 1168 300W 81 782 NOK
L40 October 2022 362066 90516 1414 300W 126 639 NOK
A100 May 14 2020 312000 19500 9700 250W 221 306 NOK
H100 March 2022 756449 51200 25600 350W 474 979 NOK

Table 4.2: Performance and price comparison1of some GPUs used in HPC
environments [26]

An issue with an age-hybrid HPC environment is that software and
code must be written with backwards compatibility. Backwards support
costs extra, and it does not help that the hardware gets marked by
manufacturers as legacy and driver support phased out. In some ways, this
is a form of planned obsolesce, not in the way of hardware going defect,
but software, caused by support-removal in drivers and compilers. An
alternative is keeping the cluster in an offline environment, where running
outdated hardware and software is safer.

1Prices are examples found on prisjakt.no and ebay.com at the time of writing

65

prisjakt.no
ebay.com

Chapter 5

Conclusions

5.1 Summary

We started with two ten-year-old servers, legacy GPUs, and a modern
Dolphin PCIe interconnect. Then asked ourselves, do these GPUs still have
value in a modern ML and HPC environment? We set the goal to get NCCL
tests running and benchmark how they perform on legacy GPUs over
various PCIe interconnects. And also using the newest OS and software
available, like a modern HPC environment would expect to be able to
run. We started by connecting the GPUs in two different configurations
in each server, one configuration for testing QPI performance, and the
other for P2P performance. Then rack-mounting the servers and updating
BIOS and various firmware. Then configured IPMI console to gain
remote access outside the server room. We installed Ubuntu 22.04 LTS,
confirmed incompatibility troubles with stdio.h and downgraded to 20.04
LTS. We configured network, hostnames and SSH, and a backup and
restore system for use during testing. Then we installed GPU drivers and
confirmed they were on the Long Term Support Branch. Then installed
CUDA, NVCC, NCCL and MPI through NVIDIA HPC SDK, discovered
GPU incompatibility with the latest version, and had to downgrade to
version CUDA 11.4. Then we downloaded and tried to compile CUDA
samples and NCCL tests, learned how to force compilations against
older architectures, and pointing NVCC to non-standard CUDA library
locations. Then discovered NCCL tests were incompatible with the
compiler for CUDA 11.4. We downgraded NCCL tests to an earlier
version to circumvent the problem. Then we found methods to get MPI-
run to work with NCCL tests over SSH, including sharing CUDA library
paths over non-interactive SSH sessions. Then we installed drivers and
software to use Dolphin PCIe NTB cards connecting the two servers
with a high-speed interconnect and test frameworks such as IPoPCIe
and SmartIO. Then we configured PCIe bar sizes and tested methods of
unloading and reloading the NVIDIA kernel module to establish a stable
method for SmartIO device lending, using our GPUs without the system
freezing. Finally, we ran NCCL test over gigabit Ethernet, IPoPCIe and
SmartIO to benchmark Broadcast, All-Reduce, All-to-All and All-Gather

66

communication.
We confirmed that OS and GPU drivers still had support, but not

with the newest versions. We found that the GPUs age hindered the
use of the latest compiler, breaking compatibility with the newest NCCL
tests version. We documented strong NCCL-communication performance
from SmartIO and that there was little difference between gigabit Ethernet
and IPoPCIe in our NCCL test case. We concluded that legacy GPUs
value in a modern ML and HPC environment is limited, mainly because
of software support. However beneficial for those seeking cost-effective
double precision performance.

5.2 Main Contributions

We found challenges concerning software support, packages and drivers
when using legacy GPUs. Ubuntu 20.04 LTS and GPU drivers branch R470
is still supported a few years more, but any new software created today
with Ubuntu 22.04 LTS and newer GPU drivers and CUDA versions in
mind will not work. The GPUs age and status as legacy within NVIDIA
cause support to be removed in today’s compilers and cause compatibility
issues with the newer CUDA code, such as the one we found in NCCL
tests.

Regarding PCIe, We found it could be used efficiently in ML commu-
nication frameworks such as NCCL, and we benchmarked internal (QPI,
P2P) and external (IPoPCIe, SmartIO) PCIe interconnects. We found that
with our legacy GPUs, in NUMA setups where GPU-to-GPU communica-
tion crosses QPI, it had little to no bottleneck in performance compared to
a P2P configuration.

We confirmed that SmartIO increased bandwidth and lowered latency
in multi-node communication, reaching bandwidth at more than 3.5
gigabytes per second in the Broadcast test. But the more GPUs added, the
lower the average bandwidth went. We see a potential for improvements
with RDMA support, with some prototypes such as a sisci-nccl plugin
[21] already existing. We also found that IPoPCIe did not improve NCCL
communication performance over built-in gigabit Ethernet in our usecase.

We confirmed using PCIe device lending with SmartIO on legacy GPUs
is possible. It did help ML communication performance, with some odd
results, such as borrowed GPUs in a P2P setup performing better than
internal GPUs in a P2P setup. The software is, however, bleeding edge,
with a few odd behaviours and a setup process that can easily cause the
server to freeze.

And with that we answer our research question with the following:
The value of legacy GPUs in a modern ML and HPC environment is limited
as they age, mainly because of software support. However, for HPC
environments that do not mind supporting older software packages, they
offer cost-effective double-precision performance.

67

5.3 Future Work

We would like to test the SISCI NCCL plugin to see GPU Direct RDMA
performance of the Dolphin cards. Eliminating copies into system memory
could elevate a significant bottleneck in the current implementation. The
same goes for P2P support between nodes in SmartIO. Furthermore, we
would like to see how that compares to the current RDMA implementation
of Infiniband.

As mentioned in the scope and limitations section, 1.3, we have
used Dolphin interconnect at gen3 x8, and with GPUs at gen2 x16, they
somewhat match bandwidth at just below 8GB/s. We would like to
test how performance differs from using interconnects and GPUs at gen4
and x16 width, considering they offer around 400% higher theoretical
bandwidth. Then compare against our existing benchmarks to confirm the
location of bottlenecks in the NCCL communication.

We would also like to test non-synthetic benchmarks. The question
remains on how much (or how little) the bandwidth limit between nodes
affects performance in real ML workloads using TensorFlow and PyTorch.

68

Appendix A

Captains log - The adventure of
setting up our system

Terminology:
Commands starting with $ are run with normal user privileges.
Commands starting with # are run with root privileges (sudo).

A.1 Initial system

Hardware:
Two desktop computers
CPU: Intel i5-4590 on MSI 297-G55 SLI
RAM: 8GB DDR3
GPU: 2xNVIDIA Quadro K2200, 4GB GDDR5.
Interconnect: Dolphin PXH812

Software:
OS: Ubuntu 22.04.1 LTS server
GPU: CUDA Version 11.7 from NVIDIA HPC SDK 22.9
NTB: Dolphin eXpressWare pipeline 20777
System snapshots: Timeshift

A.1.1 Old setup

Installed Desktop version of Ubuntu 22.04 with proprietary drivers.
NVIDIA-drivers with CUDA are included and activated in a graphical
environment as such:
Open Software & updates -> Additional Drivers -> "Using NVIDIA driver
metapackage from nvidia-driver-515 (proprietary, tested")
Installed NVIDIA HPC SDK (includes NCCL).

A.1.2 Defective IOMMU

Simple trainingjob with tensorflow ran. Latest version of NVIDIA NCCL-
tests compiled and ran successfully. A hardware or firmware fault cause

69

the nodes to crash during boot if IOMMU were enabled in the boot options
as such:

vi /etc/default/grub
GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"
update-grub

Updating BIOS to the latest version did not change behaviour.

Without IOMMU, data transfers from GPUs need to be copied into
RAM before transfer over the dolphin interconnect. For this reason we
changed nodes to ones with working IOMMU. The ones available at the
time were a set of legacy headless GPU-servers.

A.2 Final system

Hardware:
Two Supermicro x9 SuperServer 1027GR-TRF, Chassis Model: 118-18,
Motherboard X9DRG-HF with a NUMA configuration, illustrated in 3.1
CPU: 2xIntel Xeon E5-2609 @ 2.40GHz
RAM: 64GB DDR3 split between the NUMA nodes
GPU: 2xNVIDIA Tesla K20X, 6GB GDDR5.
Interconnect: Dolphin PXH810

Software
OS: Ubuntu 20.04 LTS server
GPU: NVIDIA-driver-470-server
NVIDIA driver version 470.182.03
CUDA Version 11.4
NVIDIA HPC SDK 21.9
NTB: Dolphin eXpressWare pipeline 22529
System snapshots: Timeshift

A.2.1 New setup

On the first server, named "abel1", each NUMA node (CPU socket) has one
GPU. In such a configuration, data transfer between GPUs is trough the
Intel QuickPath Interconnect (QPI) between the NUMA nodes.
On the second server, named "abel2", both GPUs are placed on the first
NUMA node. Data transfer between GPUs in such configuration are direct
(P2P).
In both servers, a Dolphin PXH810 interconnect is connected to the
available x8 gen 3 slot on the fist NUMA node, referenced as slot 5 in 3.1.

70

A.3 Server configuration

A.3.1 Firmware & BMC/IPMI

The BIOS and firmware on the BMC (Baseboard Management Controller,
also known as IPMI) and Dolphin PXH810 were outdated. We downloaded
newest BIOS and BMC version from Supermicro websites. Installed by
booting a USB-pen with freeDOS.
Dolphin PXH810 were updated by running

upgrade_eeprom.sh

included in Dolphin eXpressWare after Ubuntu was installed.
To gain access to remote server management (BMC/IPMI), network

settings were configured in the BIOS. Our setup used static IP instead of
DHCP.

Complications

BMC firmware upgrade caused IP settings to be reset to default. After
reapplying the static network configuration through BIOS, the BMC stayed
unreachable over the network. From the host OS we downloaded and ran
the IPMICFG tool from supermicro. When running

./IPMICFG-Linux.x86_64 -linkstatus

and

./IPMICFG-Linux.x86_64 -vlan

the culprit was found. VLAN was preset to 100. This was not obvious
as VLAN were not one of the configuration options for the BMC in BIOS.
Since we´re not using host-configured VLAN in our network, the problem
was solved by disabling this option:

./IPMICFG-Linux.x86_64 -vlan off

A.3.2 Console access

The BMC (Baseboard Management Controller) offers sensor data and
remote console through it’s web interface. The console requires Java Web
Start, a deprecated framework since Java 9, and removed since Java 11.
Trying to open the console returns you a JNLP file that modern browsers
does not support. Supermicro however provide an app named IPMIView,
for Windows, Linux, iPadOS and iOS. And we were working from an ARM
based Mac.
First try was the iPad app, it can technically run on the Mac as they are
binary compatible. The console returned image, but the app did not accept

71

https://www.supermicro.com/en/support/resources/downloadcenter/smsdownload?category=IPMI

any keyboard inputs.
Second we tried running the JNLP-file using OpenWebStart, an open
source re-implementation of the Java Web Start. It failed with the error
message

no iKVM64 in java.library. path

Figure A.1: IPMIView on an iPad

Third try was using IPMIView
App wrapper for MacOS. The in-
staller script failed due to a hash-
ing fault. We corrected the fault
and made the installer run to com-
pletion. But the App failed to
open, with no error message. At
this point we’d spent multiple days
troubleshooting. So we gave up
and accepted that we’d have to
walk to the server room if needed.
Later we dug out an outdated iPad
mini and ran the official IPMIView
app on it, as shown in figure A.1.
This would turn out very useful to
quickly reset the servers, as we fre-
quently experienced total system-
freezes while setting up SmartIO
later on.

A.3.3 Operating system

Initial trial was with Ubuntu server
22.04 LTS. It proved incompatible
with the older NVIDIA HPC SDK
that we needed to use for our leg-
acy GPUs (more on this in A.3.8). Compiling compatible version of
NVIDIAs NCCL-test code using NVCC for CUDA 11.4 would throw the
following error

"/usr/include/stdio.h(189): error: attribute __malloc__" does
not take arguments↪→

Since stdio.h is distributed as part
of the OS, we installed Ubuntu
20.04 LTS on another server to com-
pare against 22.04 LTS. The error
went away on the older version, so we downgraded both servers to 20.04
LTS.

Then we check IOMMU support

72

https://openwebstart.com
https://github.com/TheCase/IPMIView.app
https://github.com/TheCase/IPMIView.app/pull/18

$ sudo dmesg | grep IOMMU

If "IOMMU disabled" is listed, we add "intel_iommu=on" in /etc/default/grub
like this:

GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"

then activate the change for the next reboot with

$ sudo update-grub

A.3.4 Snapshot tool

To keep reference points of the system as we tested various drivers and
tools, we use timeshift to generate snapshots of the filesystem. Restoring
from snapshots saved us a tremendous amount of time from having to
reinstall the OS whenever things broke, and let us easily switch between
known configurations during testing. It’s installed as such:

$ sudo apt install timeshift

Some commands:

timeshift --snapshot-device /dev/sda #Configures
sda as the mount point where backups are stored. Relevant
if systemdisk (ssd) and storage disk (hdd) are different.

↪→

↪→

timeshift --create --comments "A new backup" #Create a
snapshot↪→

timeshift --list #List
snapshots↪→

timeshift --restore #Restore to a
snapshot.↪→

Restores does not include anything inside /home and /root folder. If
restore is needed, it won’t restore or change configurations in .profile or
ssh-keys.

A.3.5 Network

Network was configured by modifying a yaml config file for use with
netplan.

vi /etc/netplan/*.yaml

Static IP were configured for both ethernet (eth0, eth1) and the Dolphin
PXH810 (dis0) There were no redundancy, so only one of the two available
ethernet ports were in use. A fault in our Supermicro x9 servers would

73

cause the renaming of network interface to not stick to one port. During
boot, at random either eth0 or eth1 were renamed to eno1. Not practical
when using just one port. This was solved by disabling renaming in grub
by adding

GRUB_CMDLINE_LINUX="net.ifnames=0".

into

/etc/default/grub

If iommu is also on, it is

GRUB_CMDLINE_LINUX="net.ifnames=0 intel_iommu=on"

Then run

$ sudo update-grub

And for good measure, eth0 and eth1 were bonded in active-backup
mode. Below is an example of /etc/netplan/*.yaml with with bonding for
ethernet:

network:
bonds:

bond0:
dhcp4: false
addresses:
- 10.174.0.57/22
routes:
- to: default

via: 10.174.0.1
interfaces:
- eth0
- eth1
nameservers:

addresses:
- 172.16.16.57
- 1.1.1.1
- 8.8.8.8
search:
- simula.no

parameters:
mode: active-backup
mii-monitor-interval: 60s

ethernets:
eth0:
dhcp4: false

74

optional: true
eth1:
dhcp4: false
optional: true

version: 2

To activate a new netplan configuration, run

$ sudo netplan apply.

A.3.6 Hosts

We made hostnames for a more human readable experience instead of
using IPs. These were not configured in DNS, so we manually add the
hostnames and their IPs on both servers by modifying

/etc/hosts

For example, we added the following:

10.174.0.55 abel1.simula.no abel1 #Ethernet port
10.174.0.56 abel1-bmc.simula.no abel1-bmc #Server

management↪→

10.174.0.57 abel2.simula.no abel2 #Ethernet port
10.174.0.58 abel2-bmc.simula.no abel2-bmc #Server

management↪→

10.0.0.4 abel1-dis.cluster abel1-dis0 #Dolphin
interconnect port↪→

10.0.0.8 abel2-dis.cluster abel2-dis0 #Dolphin
interconnect port↪→

A.3.7 SSH

For easy login between the nodes, .ssh/config was configured as such:

Host abel1
User audunjoh
Hostname 10.174.0.55

Host abel2
User audunjoh
Hostname 10.174.0.57

MPI and the Dolphin driver installer need password-less SSH to be set
up between all nodes in order to work. So we generate and distribute a
public SSH key for both the user and root onto the authorized_keys file
across all nodes, including it self:

75

ssh-copy-id user@host1
ssh-copy-id user@host2
...
ssh-copy-id root@host1
ssh-copy-id root@host2
...

A.3.8 NVIDIA drivers & tools

Driver branch 470 is the latest one to still support Tesla K20X GPUs. We
install the drivers, diagnostic tools and other tools needed as such

apt install nvidia-headless-470-server
apt install nvidia-utils-470-server
apt install environment-modules

For visual monitoring of the GPU load, we used the AppImage version
of nvtop We avoided the apt version since it included a load of older
NVIDIA libraries as dependencies, cluttering any debugging later on.
To make it easy to run every time we login, we made an alias in the .profile
file pointing to the executable

Alias for nvtop AppImage
alias nvtop='~/./nvtop-2.0.4-x86_64.AppImage'

For our project we need CUDA, NVCC, NCCL and MPI. NVIDIAs HPC
SDK includes all this as well as environment modules that makes setting it
up across nodes consistent and stable. For our Tesla K20X GPUs, the latest
working SDK version is 21.9, with CUDA 11.4. Instructions for adding their
repository and downloading it can be found on the NVIDIA HPC SDK 21.9
site. Installation was done as following:

$ curl https://developer.download.nvidia.com/hpc-sdk/ubuntu/ ⌋
DEB-GPG-KEY-NVIDIA-HPC-SDK | sudo gpg --dearmor -o
/usr/share/keyrings/nvidia-hpcsdk-archive-keyring.gpg

↪→

↪→

$ echo 'deb [signed-by=/usr/share/keyrings/ ⌋
nvidia-hpcsdk-archive-keyring.gpg]
https://developer.download.nvidia.com/hpc-sdk/ubuntu/amd64
/' | sudo tee /etc/apt/sources.list.d/nvhpc.list

↪→

↪→

↪→

$ sudo apt update -y
$ sudo apt install -y nvhpc-21-9

After the install, we load in the environment module as such

$ module use /opt/nvidia/hpc_sdk/modulefiles
$ module load nvhpc/21.9

76

https://github.com/Syllo/nvtop#appimage
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/nvidia-hpc-sdk-219-downloads
https://developer.nvidia.com/nvidia-hpc-sdk-219-downloads

This way, the location of the the various SDK libraries such as CUDA,
NCCL and MPI are added to the LD_LIBRARY_PATH for all software to find.
As well as relevant programs such as NVCC and mpirun are added to
PATH, so we can call and run them without prompting the path of the
executable. To list available environment modules, we can run

$ module avail

To load the modules automatically when interactively SSHing into the
nodes, we inserted the following into the users .profile file

set module so it includes NVIDIA HPC libraries if it exists
if [-d "/opt/nvidia/hpc_sdk/"] ; then

module use /opt/nvidia/hpc_sdk/modulefiles
module load nvhpc/21.9 -v

fi

For testing various CUDA capabilities, CUDA samples provided as part
of the CUDA toolkit are good resources. The various code-samples include
makefiles for easy building and running. On our setup, we must pass
trough arguments for our non-standard compiler and library locations as
well as compute architecture. Example:

$ make NVCC=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/compilers/ ⌋
bin/nvcc
CUDA_PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
SMS="35" -j8

↪→

↪→

↪→

With SmartIO, the borrowed GPUs appear as if local. So our method to
ensure that benchmarks run on borrowed GPUs only was to deactivate the
local GPUs as such:
To deactivate a GPU on PCIe address 0000:85:00.0:

$ sudo nvidia-smi drain -p 0000:85:00.0 -m 1

To reactivate:

$ sudo nvidia-smi drain -p 0000:85:00.0 -m 0

cuDNN

To accelerate deep learning with TensorFlow on our GPUs, we install
NVIDIA cuDNN. While we didn’t get the time to properly run any training
on the final system, we installed it so it was ready.
Add repository and install:

77

https://github.com/NVIDIA/cuda-samples
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

$ sudo apt-key adv --fetch-keys
https://developer.download.nvidia.com/compute/cuda/repos/ ⌋
ubuntu2004/x86_64/3bf863cc.pub

↪→

↪→

$ sudo add-apt-repository "deb https://developer.download. ⌋
nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/
/"

↪→

↪→

$ sudo apt install libcudnn8
$ sudo apt install libcudnn8-dev

For tests, download deb-package. Extract it, then extract cudnn_samples_v8
within. To compile the tests on our setup:

$ make NVCC=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/compilers/ ⌋
bin/nvcc
CUDA_PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4

↪→

↪→

Complications

The K20X GPUs support at most CUDA capability 3.5 and CUDA 11.4.
Initially we tried to use the newest SDK. First 22.7 and later 22.9 as it was
released. Specifically the multipack version including CUDA 10.2, 11.0 and
11.7. However they are missing environment module files for anything but
CUDA 11.7. So when we do

$ module load nvhpc/22.9

We’d get nvcc for CUDA 11.7

$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Jun__8_16:49:14_PDT_2022
Cuda compilation tools, release 11.7, V11.7.99
Build cuda_11.7.r11.7/compiler.31442593_0

If we load module nvhpc/22.9, and try to compile NCCL-test while
pointing it to CUDA 11.0 included in 22.9, we’d get pgc++ errors

$ make
CUDA_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/22.9/cuda/11.0/
NCCL_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/22.9/ ⌋
comm_libs/nccl
NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

↪→

↪→

↪→

↪→

make -C src build
make[1]: Entering directory

'/home/audunjoh/cudastuff/nccl-tests/src'↪→

Compiling all_reduce.cu >
../build/all_reduce.o↪→

78

https://developer.nvidia.com/rdp/cudnn-download

nvcc warning : The 'compute_35', 'compute_37', 'compute_50',
'sm_35', 'sm_37' and 'sm_50' architectures are deprecated,
and may be removed in a future release (Use
-Wno-deprecated-gpu-targets to suppress warning).

↪→

↪→

↪→

nvc++-Warning-CUDA_HOME has been deprecated. Please, use
NVHPC_CUDA_HOME instead.↪→

nvc++-Warning-CUDA_HOME has been deprecated. Please, use
NVHPC_CUDA_HOME instead.↪→

"/opt/nvidia/hpc_sdk/Linux_x86_64/22.9/cuda/11.0//bin/../ ⌋
targets/x86_64-linux/include/crt/host_config.h", line 118:
catastrophic error: #error directive: -- unsupported pgc++
configuration! Only pgc++ 18, 19 and 20 are supported!

↪→

↪→

↪→

#error -- unsupported pgc++ configuration! Only pgc++ 18, 19
and 20 are supported!↪→

^

1 catastrophic error detected in the compilation of
"all_reduce.cu".↪→

Compilation terminated.

Even if we try pointing to the known working CUDA 11.4 from 21.9
while using nvcc loaded from 22.9, We’d get the following

$ make
CUDA_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
NCCL_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/ ⌋
comm_libs/nccl
NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

↪→

↪→

↪→

↪→

make -C src build
make[1]: Entering directory

'/home/audunjoh/cudastuff/nccl-tests/src'↪→

Compiling all_reduce.cu >
../build/all_reduce.o↪→

nvcc warning : The 'compute_35', 'compute_37', 'compute_50',
'sm_35', 'sm_37' and 'sm_50' architectures are deprecated,
and may be removed in a future release (Use
-Wno-deprecated-gpu-targets to suppress warning).

↪→

↪→

↪→

nvc++-Warning-CUDA_HOME has been deprecated. Please, use
NVHPC_CUDA_HOME instead.↪→

nvc++-Warning-CUDA_HOME has been deprecated. Please, use
NVHPC_CUDA_HOME instead.↪→

"/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4//bin/../ ⌋
targets/x86_64-linux/include/crt/host_config.h", line 118:
catastrophic error: #error directive: -- unsupported pgc++
configuration! Only pgc++ 18, 19, 20 and 21 are supported!
The nvcc flag '-allow-unsupported-compiler' can be used to
override this version check; however, using an unsupported
host compiler may cause compilation failure or incorrect
run time execution. Use at your own risk.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

79

#error -- unsupported pgc++ configuration! Only pgc++ 18,
19, 20 and 21 are supported! The nvcc flag
'-allow-unsupported-compiler' can be used to override this
version check; however, using an unsupported host compiler
may cause compilation failure or incorrect run time
execution. Use at your own risk.

↪→

↪→

↪→

↪→

↪→

^

1 catastrophic error detected in the compilation of
"all_reduce.cu".↪→

Compilation terminated.

If we use SDK 21.9, we don’t get pgc++ errors.

Originally the .deb instructions for 21.9 release had an outdated gpg-
signature. We solved it by adding the newest gpg-signature from the latest
SDK release, then installing the old version. After an email exchange with
NVIDIA, they updated the instructions and signatures on their sites.

At one point we discovered that the benchmark results was off
compared to earlier runs. We found that the GPU on Address: 0000:05:00.0
in abel2 reported x4 width, instead of x16. We extracted this info by reading
the ports PCIe generation and width by running

$ sudo dmidecode --type 9"

One of the ports with GPU plugged in reported "PCI-E 3.0 X4 (IN X8
SLOT)", despite being an x16 port. Similar info from nvidia-smi with

$ nvidia-smi
--query-gpu=pcie.link.width.max,pcie.link.width.current
--format=csv

↪→

↪→

Solution to get it back to x16 width was to physically reseat the GPU.

A.3.9 NCCL Tests

The code to benchmark NCCL performance and correctness is distributed
by NVIDIA and called nccl-tests. In order to compile to our legacy GPUs
using NVCC for CUDA 11.4, the newest release was incompatible. It
includes newer commands that would not compile on the slightly older
NVIDIA C compiler. The newest verified git-release that compiled and
worked on our system was git-commit 8274cb4 (27 May 2022), so we went
ahead and used that as such:

$ git checkout 8274cb4

80

https://github.com/NVIDIA/nccl-tests

In the makefile nccl-tests/src/Makefile NVIDIA has added a check for
CUDA capability to define NVCC_GENCODE in order to reduce compile
time. After the release of CUDA 11, we see that the makefile was modified
to check the CUDA version of the NVCC-compiler. If it’s CUDA 11, it will
only compile to GPUs with CUDA capability 6.0 and newer. Our GPUs
were at CUDA capability 3.5, so in order to compile the code using CUDA
11 we could either modify the makefile, or manually override by adding

NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

as a compiler argument. We chose to manually override.

When using NVIDIAs HPC SDK, the locations for CUDA, NCCL and
MPI libraries are not in the default location. As an example, NCCL test
only look for the CUDA library in /usr/local/cuda, while the HPC SDK
puts it at /opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/. This means
all non-standard locations must be explicitly defined as an argument when
compiling. Example compiling nccl-tests without MPI:

$ make
CUDA_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
NCCL_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/ ⌋
comm_libs/nccl
NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35 -j8"

↪→

↪→

↪→

↪→

Example run of all_reduce_perf without MPI (local only):

$ ~/cudastuff/nccl-tests/build/all_reduce_perf -b 8 -e 128M -f
2 -g 2↪→

-g are number of GPUs.

Thus to compile NCCL test with MPI for multi node testing using the
NVIDIA HPC SDK, we ran the following

$ make MPI=1 MPI_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/ ⌋
comm_libs/mpi
CUDA_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
NCCL_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/ ⌋
comm_libs/nccl
NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

↪→

↪→

↪→

↪→

↪→

To speed up the compilation time, -j8 can be added to compile using all 8
threads in our system.

Compiling with MPI also means we have to run the program with
mpirun. To run two MPI processes on a single node:

81

$ mpirun -np 2 -host abel1:2
~/cudastuff/nccl-tests/build/all_reduce_perf -b 8 -e 128M
-f 2 -g 1

↪→

↪→

To run four MPI processes across our two nodes

$ mpirun -np 4 -host abel1:2,abel2:2 -x LD_LIBRARY_PATH
~/cudastuff/nccl-tests/build/all_reduce_perf -b 8 -e 128M
-f 2 -g 1

↪→

↪→

MPI args:
-np are number of MPI processes.
-x export our specified environment variables to the remote nodes before
executing the program. In this case: "LD_LIBRARY_PATH". This is critical
since MPI SSH onto each node in an non-interactive way. This means the
.profile won’t run, thus the environment modules won’t be loaded, thus the
program wont find NCCL or CUDA in "LD_LIBRARY_PATH" on the remote
nodes.
"PATH" may also be added if we want to access executable programs that
are loaded from the environment modules. To test this, here is an example
that returns the location of nvcc:

$ mpirun -np 4 -host abel1:2,abel2:2 -x PATH -x
LD_LIBRARY_PATH which nvcc↪→

Note that this method only works if the libraries and programs
are installed at identical locations on all nodes. I learned this on
hpc.uni.lu/old/users/howtos/UsingMPIstacksWithModules.html.
Each of our nodes has only two GPUs. Therefore, each node can either
run two processes with one GPU: "-np 2 -g 1", or one process with two
GPUs: "np 1 -g 2".

Complications

It was time-consuming to find the source of faults causing NCCL test to not
compile. After some time researching and trying to debug the source of the
various compiler errors, we just began exploiting the repository version
history in git. We tested an earlier commit from around the same time
as the release of the SDK we used. They compiled without a hitch and
confirmed that the compilation errors were caused by changes in the code
rather than a fault in our setup. After that, we started from the head and
went backwards until we found the newest verified commit that would
compile. However, as we got compiler errors out of the way, the executable
returned a runtime error

Test CUDA failure common.cu:381 'no kernel image is available
for execution on the device'↪→

82

https://hpc.uni.lu/old/users/howtos/UsingMPIstacksWithModules.html

Turns out the makefile is set up to not compile to our GPUs gencode 35
if compiler happens to be for CUDA 11. After searching trough the issue-
pages of the NCCL test github repository , we found a single post with with
the same error message. The solution given was to explicitly define our old
NVCC_GENCODE during compilation. Thus, by using an older version of
the code while overriding the NVCC_GENCODE, we’re finally able to use
the official NCCL synthetic benchmarking tool.

The following is an example of what errors arrive when trying to com-
pile the latest NCCL test version (commit 365b92a as of writing) with
nvcc release 11.4, V11.4.100, Build cuda_11.4.r11.4/compiler.30188945_0.

$ make
CUDA_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
NCCL_HOME=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/ ⌋
comm_libs/nccl
NVCC_GENCODE="-gencode=arch=compute_35,code=sm_35"

↪→

↪→

↪→

↪→

make -C src build
BUILDDIR=/home/audunjoh/cudastuff/nccl-tests/build↪→

make[1]: Entering directory
'/home/audunjoh/cudastuff/nccl-tests/src'↪→

Compiling timer.cc >
/home/audunjoh/cudastuff/nccl-tests/build/timer.o↪→

Compiling /home/audunjoh/cudastuff/nccl-tests/build/ ⌋
verifiable/verifiable.o↪→

nvcc warning : The 'compute_35', 'compute_37', 'compute_50',
'sm_35', 'sm_37' and 'sm_50' architectures are deprecated,
and may be removed in a future release (Use
-Wno-deprecated-gpu-targets to suppress warning).

↪→

↪→

↪→

../verifiable/verifiable.cu(124): warning: function
"<unnamed>::castTo<Y>(float) [with Y=__nv_bfloat16]" was
declared but never referenced

↪→

↪→

../verifiable/verifiable.cu(119): warning: function
"<unnamed>::castTo<Y>(float) [with Y=half]" was declared
but never referenced

↪→

↪→

../verifiable/verifiable.cu(147): warning: function
"<unnamed>::ReduceSum::operator()(half, half) const" was
declared but never referenced

↪→

↪→

../verifiable/verifiable.cu(155): warning: function
"<unnamed>::ReduceSum::operator()(__nv_bfloat16,
__nv_bfloat16) const" was declared but never referenced

↪→

↪→

"../verifiable/verifiable.cu", line 353: error: expected a ")"
return (uint64_t)((((unsigned __int128)a) * ((unsigned

__int128)b)) >> 64);↪→

83

https://github.com/NVIDIA/nccl-tests/issues/79

^

"../verifiable/verifiable.cu", line 353: error: expected a ")"
return (uint64_t)((((unsigned __int128)a) * ((unsigned

__int128)b)) >> 64);↪→

^

"../verifiable/verifiable.cu", line 353: warning: shift count
is too large↪→

return (uint64_t)((((unsigned __int128)a) * ((unsigned
__int128)b)) >> 64);↪→

^↪→

2 errors detected in the compilation of
"/tmp/tmpxft_00001276_00000000-6_verifiable.cudafe1.cpp".↪→

make[1]: *** [../verifiable/verifiable.mk:11: /home/audunjoh/ ⌋
cudastuff/nccl-tests/build/verifiable/verifiable.o] Error
2

↪→

↪→

make[1]: Leaving directory
'/home/audunjoh/cudastuff/nccl-tests/src'↪→

make: *** [Makefile:20: src.build] Error 2

A.3.10 Dolphin eXpressWare

Dolphin install notes:

$ sudo bash
Dolphin_eXpressWare-Linux-x86_64-PX-66aa356545_c0e0d090cc. ⌋
ubuntu20.04.sh --disable-gui --enable-smartio
--enable-supersockets

↪→

↪→

↪→

Explanation:
--disable-gui #Graphical interface. Disabled since

the server is headless.↪→

--enable-smartio #Enables smartIO functionality.
--enable-supersockets #Enables SuperSockets

Beware: if the kernel is updated after the Dolphin driver is installed,
it will break. Solution is to run the install script again to build against the
new kernel.

To automatically load the various Dolphin tools into PATHs when
interactively logging in with SSH, we inserted the following into the users
.profile file

84

set PATH so it includes DIS sbin if it exists
if [-d "/opt/DIS/sbin"] ; then

PATH="/opt/DIS/sbin:$PATH"
fi

For status:

$ dis_services status -l

SmartIO

Prefetch: Default prefetch size on the PX card is 512MB. This can be seen
by running dis_config. The prefetch size for the GPUs can be found
running lspci -vs [pci device ID]. In our setup, we observer that one
Tesla K20X need 256M prefetched memory space. In theory, with 512MB
prefetch for the PX card, we have just enough for two GPUs. However if
we try to borrow two GPUs using smartIO, the second will fail. A look into
dmesg reveal

BAR X: no space for [mem size 0x10000000 64bit pref]
BAR X: failed to assign [mem size 0x10000000 64bit pref]

A look into the SmartIO manual informs that "The sum of PCIe BAR
sizes + natural alignment for all added devices must be smaller than the
prefetch space allocated by the Dolphin NTB board."

To give us some ample headroom, we increase the the PX cards prefetch
allocation to 4096MB. This would for older systems be the limit, however
if we wanted our systems could also handle more, as it supports "Above
4G Decoding". It enables 64bit capable Devices to be Decoded in Above 4G
Address Space. This is needed for newer GPUs that support Resizable BAR
(Base Address Register).

For debugging SmartIO, we run

$ dmesg

This is how we used SmartIO to borrow GPUs between the nodes.
Based on documentation from dolphinics.no.

We can check with nvidia-smi that each of our two nodes contain two
GPUs.
abel1:

abel1$ nvidia-smi
+---+
| NVIDIA-SMI 470.182.03 Driver Version: 470.182.03 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.

85

http://ww.dolphinics.no/download/PX_5_X_X_LIN_DOC/ch13.html

|===============================+======================+======================|
0 Tesla K20Xm Off	00000000:05:00.0 Off	0
N/A 32C P0 55W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
1 Tesla K20Xm Off	00000000:85:00.0 Off	0
N/A 29C P0 58W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

abel2:

abel2$ nvidia-smi
+---+
| NVIDIA-SMI 470.182.03 Driver Version: 470.182.03 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla K20Xm Off	00000000:04:00.0 Off	0
N/A 26C P0 55W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
1 Tesla K20Xm Off	00000000:05:00.0 Off	0
N/A 31C P0 57W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

Then we do the following, slowly one by one, to borrow and lend two
GPUs from one of the nodes.

// Lender side, if it's abel2:
// Connect to abel1
$ sudo /opt/DIS/sbin/smartio_tool connect 4
// Get PCI-addresses to the GPUs
$ lspci | grep NVIDIA
// Add them to the lender list
$ sudo /opt/DIS/sbin/smartio_tool add 04:00.0
$ sudo /opt/DIS/sbin/smartio_tool add 05:00.0
// Make them available for borrowers
$ sudo /opt/DIS/sbin/smartio_tool available 04:00.0
$ sudo /opt/DIS/sbin/smartio_tool available 05:00.0

// Borrower side:
// We begin by stopping the sisci service
$ sudo systemctl stop dis_sisci
// Then we list available GPUs to borrow
$ sudo /opt/DIS/sbin/smartio_tool list
// We borrow the two GPUs with their ID and the DMA window

size↪→

$ sudo /opt/DIS/sbin/smartio_tool borrow 80400 1024
$ sudo /opt/DIS/sbin/smartio_tool borrow 80500 1024
// Then we enable p2p between the remote GPUs so they locally

can talk directly with each other↪→

$ sudo /opt/DIS/sbin/smartio_tool enable-p2p 80400 80500

86

$ sudo /opt/DIS/sbin/smartio_tool enable-p2p 80500 80400
// Now for us to use the remote GPUs, we must reload the

NVIDIA kernel module. We must unload in the order of its
dependencies as seen by running "$ lsmod | grep nvidia"

↪→

↪→

$ sudo modprobe --remove nvidia_uvm nvidia_drm nvidia_modeset
nvidia↪→

// Then reload it back in again. Dependencies will follow
along↪→

$ sudo modprobe nvidia
// And finally, start the sisci service again
$ sudo systemctl start dis_sisci
// To confirm that the lending was sucessfull, we check that

the remote GPUs are listed↪→

$ nvidia-smi

The borrower node now display four GPUs:

abel1:~$ nvidia-smi
+---+
| NVIDIA-SMI 470.182.03 Driver Version: 470.182.03 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 Tesla K20Xm Off	00000000:03:04.0 Off	0
N/A 28C P0 54W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
1 Tesla K20Xm Off	00000000:03:05.0 Off	0
N/A 33C P0 56W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
2 Tesla K20Xm Off	00000000:05:00.0 Off	0
N/A 32C P0 56W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+		
3 Tesla K20Xm Off	00000000:85:00.0 Off	0
N/A 29C P0 57W / 235W	0MiB / 5700MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

SmartIO complications

If the series of smartio_tool commands for lender and borrower are input
and executed too quickly after each other, for example by pasting a block
of them into the terminal, it may appear to have worked. nvidia-smi may
show external GPUs as expected. However CUDA-programs that try to run
on them will fail quickly. p2pBandwidthLatencyTest from CUDA-samples
will return:

Cuda failure p2pBandwidthLatencyTest.cu:610: 'unknown error'

NCCL-benchmarks will also report ’unknown error’, state it exited with
non-zero status and segmentation fault:

87

$ bash ~/sisci-nccl-benchmark/nccl-tests-benchmark/ ⌋
Benchmarking-scripts/ ⌋
SmartIO_2external0internalGPU_NCCLtests2CSV.sh

↪→

↪→

Running abel1_2xMPI_0local2externalGPU-broadcast_perf
nThread 1 nGpus 1 minBytes 8 maxBytes 1073741824 step:

2(factor) warmup iters: 5 iters: 20 validation: 1↪→

Parallel Init Enabled: threads call into NcclInitRank
concurrently↪→

#
Using devices
abel1: Test CUDA failure common.cu:1045 'unknown error'
.. abel1 pid 3326: Test failure common.cu:1007

abel1: Test CUDA failure common.cu:1045 'unknown error'
.. abel1 pid 3325: Test failure common.cu:1007

--
Primary job terminated normally, but 1 process returned
a non-zero exit code. Per user-direction, the job has been

aborted.↪→

--
--
mpirun detected that one or more processes exited with

non-zero status, thus causing↪→

the job to be terminated. The first process to do so was:

Process name: [[39348,1],0]
Exit code: 2

--
Running abel1_2xMPI_0local2externalGPU-all_reduce_perf
nThread 1 nGpus 1 minBytes 8 maxBytes 1073741824 step:

2(factor) warmup iters: 5 iters: 20 validation: 1↪→

Parallel Init Enabled: threads call into NcclInitRank
concurrently↪→

#
Using devices
abel1: Test CUDA failure common.cu:1045 'unknown error'
.. abel1 pid 3352: Test failure common.cu:1007

abel1: Test CUDA failure common.cu:1045 'unknown error'
.. abel1 pid 3351: Test failure common.cu:1007

--
Primary job terminated normally, but 1 process returned
a non-zero exit code. Per user-direction, the job has been

aborted.↪→

--
--
mpirun detected that one or more processes exited with

non-zero status, thus causing↪→

the job to be terminated. The first process to do so was:

88

Process name: [[39007,1],0]
Exit code: 2

--
Running abel1_2xMPI_0local2externalGPU-all_gather_perf
nThread 1 nGpus 1 minBytes 8 maxBytes 1073741824 step:

2(factor) warmup iters: 5 iters: 20 validation: 1↪→

Parallel Init Enabled: threads call into NcclInitRank
concurrently↪→

#
Using devices
abel1: Test CUDA failure common.cu:1045 'unknown error'
.. abel1 pid 3379: Test failure common.cu:1007

abel1: Test CUDA failure common.cu:1045 'unknown error'
.. abel1 pid 3378: Test failure common.cu:1007

--
Primary job terminated normally, but 1 process returned
a non-zero exit code. Per user-direction, the job has been

aborted.↪→

--
^Cmpirun: abort is already in progress...hit ctrl-c again to

forcibly terminate↪→

[abel1:03374] *** Process received signal ***
[abel1:03374] Signal: Segmentation fault (11)
[abel1:03374] Signal code: Address not mapped (1)
[abel1:03374] Failing at address: 0x30
[abel1:03374] *** End of error message ***
/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/comm_libs/mpi/bin/ ⌋

mpirun: line 15: 3374 Segmentation fault (core
dumped) $MY_DIR/.bin/$EXE "$@"

↪→

↪→

The "solution" is to wait a second or two between executing each
smartio_tool command. We suspect smartio_tool is exposed to race con-
ditions.

Unloading the NVIDIA kernel module on the lender side will cause the
server to freeze as soon as a GPU is added to the SmartIO list:

// Freeze reproduction #1:
$ sudo modprobe --remove nvidia_uvm nvidia_drm nvidia_modeset

nvidia↪→

$ sudo /opt/DIS/sbin/smartio_tool add 05:00.0
(server freezes here)

// Freeze reproduction #2:
$ sudo /opt/DIS/sbin/smartio_tool add 05:00.0

89

$ sudo modprobe --remove nvidia_uvm nvidia_drm nvidia_modeset
nvidia↪→

$ sudo /opt/DIS/sbin/smartio_tool remove 05:00.0
$ sudo /opt/DIS/sbin/smartio_tool add 05:00.0
(server freezes here)

Solution was to not bother with unloading the NVIDIA kernel module on
the lender side.

CUDA and Dolphin complications

CUDA is an option in the eXpressWare installation. We initially thought
this was necessary to set up for our benchmarks to run over the PXH810,
but it turned out not to be relevant unless we modified NCCL test code
to add SISCI API calls. GPUDirect over Dolphin ICS SISCI might have in-
creased the bandwidth and lowered latency; alas we did not have time to
explore this. The following is the tale of us trying to get CUDA setup dur-
ing the eXpressWare installation:

The install script for Dolphin eXpressWare expects very specific paths
and preconditions. This caused some issues when trying to enable CUDA
on our setup.

#1. The script appear not to be made with server(headless)-versions of
the GPU driver in mind:

ERROR: Couldn't find
'.*/((nvidia-([0-9]+\.?)+(/nvidia)?)|nvgpu/.*)/nv-p2p.h$'
in '/usr/src/'

↪→

↪→

Cause:
Script is unable to locate /usr/src/nvidia-srv-470.141.03, because of
"-srv" in the folder name.
Solution:
Copy and rename /usr/src/nvidia-srv-470.141.03 to /usr/src/nvidia-470.141.10.
Or specify correct path to the configuration as shown in solution for error
#3.

#2. The script doesn’t compile any 3.party tools it needs from the GPU
driver. The user must do this manually.

ERROR: Couldn't find '.*/Module.symvers$' in
'/usr/src/nvidia-470.141.03'↪→

Cause:
Source code in /usr/src/nvidia-470.141.10 are not compiled.
Solution:
Go in /usr/src/nvidia-srv-470.141.10, run make to compile headers and

90

modules so 3.party drivers, such as eXpressWare, can access GPU func-
tionality. peermem and uvm are of interest for our dolphin setup.

#3. The script check for CUDA in a specific path, without an option to
pass trough alternative locations as an argument.

ERROR: Couldn't find '.*/cuda-[0-9.]+$' in '/usr/local'

Cause:
CUDA is located elsewhere when using NVIDIAs HPC SDK. Location on
our setup is /opt/nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
Solution:
The script needs to be dismantled and content within modified and
manually installed. It starts by extracting the source of the eXpressWare
install script by running

$ bash
Dolphin_eXpressWare-Linux-x86_64-PX-66aa356545_c0e0d090cc. ⌋
ubuntu20.04.sh
--get-source

↪→

↪→

↪→

Then in the DIS folder

$ sudo ./configure --with-adapter=PX --with-cuda-api=/opt/ ⌋
nvidia/hpc_sdk/Linux_x86_64/21.9/cuda/11.4/
--with-cuda-drv=/usr/src/nvidia-srv-470.161.03
--disable-gui --enable-sisci-development --enable-smartio
--enable-supersockets --enable-cuda-support

↪→

↪→

↪→

↪→

Explanation:
--with-adapter=PX #The card in use is a PXH810
--with-cuda-api #CUDA location
--with-cuda-drv #3.party GPU tools location
--disable-gui #Graphical interface. Disabled since

the server is headless.↪→

--enable-smartio #Enables smartIO functionality.
--enable-supersockets #Enables SuperSockets and IPoPCIe.

Then

$ sudo make -j8 && sudo make install -j8

Explanation:
make -j8 #Run make using 8 CPU threads.

Then

91

$ cd /opt/DIS/sbin && sudo su

On the head-node run all the *-setup files with

$ for i in *-setup; do ./$i -i; done

On the other nodes, run all the *-setup, except networkmgr-setup. This is
because only one node in the cluster may run dis_networkmgr. Then run

$ dis_config

to change prefetch size. Then

$ sudo /opt/DIS/sbin/dis_mkconf -fabrics 2 -stt 2 -nodes abel1
abel2↪→

to generate cluster configuration. Then try

$ sudo /opt/DIS/sbin/dis_services restart

Run

$ dis_services status -l

for status. If there are errors in the status, try a reboot.

A.3.11 Tensorflow

We explored how to get TensorFlow up and running on the original
desktop setup. These are the notes on how we did that:
To install and use Tensorflow in virtual python environment:
Setup virtual environment

$ sudo apt install python3.8-venv
$ mkdir tf-demo
$ cd tf-demo
$ python3 -m venv tensorflow-dev

To enter virtual environment:

$ source tensorflow-dev/bin/activate

To exit virtual environment:

$ deactivate

Now install tensorflow

92

$ pip install tensorflow

Test that GPUs are seen by tensorflow by running the following python
code:

import tensorflow as tf
print("TensorFlow version: ", tf.__version__)
tf.test.gpu_device_name()

A.3.12 Misc notes

For hardware localisation, such as PCI-e devices per NUMA node:

$ sudo apt install hwloc
$ lstopo-no-graphics -.ascii

Driver support compared to CUDA version can be found at docs.nvidia.com/cuda/cuda-
toolkit-release-notes.
Good info on compiling for correct gencode and architecture can
be found at: arnon.dk/matching-sm-architectures-arch-and-gencode-for-
various-nvidia-cards.

IPoPCIe setup: TCP/IP over PCIe is included when installing Super-
Sockets. Network interface dis0 should then be discoverable. Setup IP on
the iterface with i.e netplan or network-manager.

To get a live feed of what PCIe-gen is running on the GPUs, run:

$ nvidia-smi --query-gpu=timestamp,name,pci.bus_id,pstate, ⌋
pcie.link.gen.max,pcie.link.gen.current,pcie.link.width. ⌋
max,pcie.link.width.current --format=csv -l
5

↪→

↪→

↪→

Example to extract illustrations from PDF to transparent PNG:

$ pdftocairo X9DRG-HF-diagram.pdf X9DRG-HF-diagram -png -r 600
-transp↪→

Explanation:
-png to get png file
-r to set PPI (default is 150)
-transp to get transparent background instead of white

To confirm P2P is enabled, p2pBandwidthLatencyTest from NVIDIA
CUDA-samples can be used. Example from abel2:

93

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
https://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
http://ww.dolphinics.no/download/PX_5_X_X_LIN_DOC/ch11s01.html

./p2pBandwidthLatencyTest
[P2P (Peer-to-Peer) GPU Bandwidth Latency Test]
Device: 0, Tesla K20Xm, pciBusID: 4, pciDeviceID: 0,

pciDomainID:0↪→

Device: 1, Tesla K20Xm, pciBusID: 5, pciDeviceID: 0,
pciDomainID:0↪→

Device=0 CAN Access Peer Device=1
Device=1 CAN Access Peer Device=0

***NOTE: In case a device doesn't have P2P access to other
one, it falls back to normal memcopy procedure.↪→

So you can see lesser Bandwidth (GB/s) and unstable Latency
(us) in those cases.↪→

P2P Connectivity Matrix
D\D 0 1
0 1 1
1 1 1

Unidirectional P2P=Disabled Bandwidth Matrix (GB/s)
D\D 0 1

0 179.09 5.97
1 6.08 179.21

Unidirectional P2P=Enabled Bandwidth (P2P Writes) Matrix
(GB/s)↪→

D\D 0 1
0 178.88 5.31
1 5.31 178.56

Bidirectional P2P=Disabled Bandwidth Matrix (GB/s)
D\D 0 1

0 179.27 7.56
1 7.59 179.40

Bidirectional P2P=Enabled Bandwidth Matrix (GB/s)
D\D 0 1

0 179.33 10.05
1 10.02 179.90

P2P=Disabled Latency Matrix (us)
GPU 0 1

0 4.75 19.67
1 18.61 4.72

CPU 0 1
0 4.46 9.85
1 9.81 4.44

P2P=Enabled Latency (P2P Writes) Matrix (us)
GPU 0 1

0 4.77 1.60
1 1.66 4.79

94

CPU 0 1
0 4.56 3.01
1 2.99 4.50

NOTE: The CUDA Samples are not meant for performance
measurements. Results may vary when GPU Boost is enabled.↪→

95

Bibliography

[1] Intel Corporation. An Introduction to the Intel® QuickPath Interconnect.
Tech. rep. 320412-001US. 2009. URL: https://www.intel.com/content/
dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf.

[2] NVIDIA Corporation. NCCL and MPI. 2020. URL: https : / / docs .
nvidia .com/deeplearning/nccl/user- guide/docs/mpi .html (visited on
10/12/2021).

[3] NVIDIA Corporation. NCCL Tests. URL: https://github.com/NVIDIA/
nccl-tests (visited on 09/05/2023).

[4] NVIDIA Corporation. Non-Transparent Bridging and PCIe Interface
Communication. 2019. URL: https://docs.nvidia.com/drive/drive_os_
5.1.6.1L/nvvib_docs/index.html#page/DRIVE_OS_Linux_SDK_
Development_Guide/System%20Programming/sys_components_non_
transparent_bridging.html (visited on 06/12/2021).

[5] NVIDIA Corporation. NVIDIA Deep Learning NCCL Documentation.
2021. URL: https : / / docs . nvidia . com/deeplearning /nccl/ (visited on
05/12/2021).

[6] NVIDIA Corporation. NVIDIA H100 Tensor Core GPU. 2023. URL:
https : / / www . nvidia . com / en - us / data - center / h100/ (visited on
03/05/2023).

[7] NVIDIA Corporation. What’s a legacy driver? URL: https://www.nvidia.
com/en-us/drivers/unix/legacy-gpu/ (visited on 23/04/2023).

[8] P.J. Denning et al. ‘Computing as a discipline’. eng. In: Computer (Long
Beach, Calif.) 22.2 (1989), pp. 63–70. ISSN: 0018-9162.

[9] Luke Durant et al. Inside Volta: The World’s Most Advanced Data Center
GPU. URL: https://developer.nvidia.com/blog/inside-volta/ (visited on
10/05/2023).

[10] John Gulbrandsen. PCI Express Physical Layer. 2016. URL: https : / /
youtu.be/EHkuzkNWXFk (visited on 21/11/2021).

[11] Super Micro Computer Inc. X9DRG-HF X9DRG-HTF user’s manual.
1.0c. 15th Nov. 2013.

[12] Sylvain Jeaugey. NCCL 2.0. 2017. URL: https : / / on - demand .
gputechconf . com / gtc / 2017 / presentation / s7155 - jeaugey - nccl . pdf
(visited on 10/12/2021).

96

https://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/mpi.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/mpi.html
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl-tests
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html#page/DRIVE_OS_Linux_SDK_Development_Guide/System%20Programming/sys_components_non_transparent_bridging.html
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html#page/DRIVE_OS_Linux_SDK_Development_Guide/System%20Programming/sys_components_non_transparent_bridging.html
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html#page/DRIVE_OS_Linux_SDK_Development_Guide/System%20Programming/sys_components_non_transparent_bridging.html
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html#page/DRIVE_OS_Linux_SDK_Development_Guide/System%20Programming/sys_components_non_transparent_bridging.html
https://docs.nvidia.com/deeplearning/nccl/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/drivers/unix/legacy-gpu/
https://www.nvidia.com/en-us/drivers/unix/legacy-gpu/
https://developer.nvidia.com/blog/inside-volta/
https://youtu.be/EHkuzkNWXFk
https://youtu.be/EHkuzkNWXFk
https://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf
https://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf

[13] Canonical Ltd. The Ubuntu lifecycle and release cadence. URL: https://
ubuntu.com/about/release-cycle (visited on 13/05/2023).

[14] Jonas Sæther Markussen. ‘SmartIO : device sharing and memory
disaggregation in PCIe clusters using non-transparent bridging’.
PhD thesis. 2022.

[15] Alec Radford et al. Robust Speech Recognition via Large-Scale Weak
Supervision. 2023. URL: https ://github .com/openai/whisper (visited
on 23/04/2023).

[16] Clara Santato and Pierre-Jean Alarco. ‘The Global Challenge of
Electronics: Managing the Present and Preparing the Future’. eng.
In: Advanced materials technologies 7.2 (2022), 2101265–n/a. ISSN: 2365-
709X.

[17] Richard Solomon. PCI Express® Basics & Background. 2021. URL: https:
/ / pcisig . com / sites / default / files / files / PCI _ Express _ Basics _
Background.pdf#page=26 (visited on 09/12/2021).

[18] Dolphin Interconnect Solutions. Accelerated PCI Express Network
Performance. Optimized TCP IP Network driver. URL: https : / / www .
dolphinics . no/products/ fast_TCP_UDP_IP_network_driver . html
(visited on 09/05/2023).

[19] Dolphin Interconnect Solutions. Dolphin eXpressWare Installation and
Reference Guide. 2022. URL: http://ww.dolphinics.no/download/PX_5_
X_X_LIN_DOC/ (visited on 07/05/2023).

[20] Dolphin Interconnect Solutions. Dolphin PCIe SmartIO technology.
URL: https://www.dolphinics.no/solutions/pcie_smart_io.html (visited
on 09/05/2023).

[21] Dolphin Interconnect Solutions. SISCI NCCL plugin. URL: https : / /
github.com/Dolphinics/sisci-nccl/ (visited on 08/05/2023).

[22] Joost Verbraeken et al. ‘A Survey on Distributed Machine Learning’.
In: ACM Comput. Surv. 53.2 (Mar. 2020). ISSN: 0360-0300. DOI: 10 .
1145/3377454. URL: https://doi.org/10.1145/3377454.

[23] Jeffrey Voas, Nir Kshetri and Joanna F. DeFranco. ‘Scarcity and Global
Insecurity: The Semiconductor Shortage’. eng. In: IT professional 23.5
(2021), pp. 78–82. ISSN: 1520-9202.

[24] Wikipedia. Input–output memory management unit. URL: https : //en .
wikipedia.org/wiki/Input-output_memory_management_unit (visited
on 13/05/2023).

[25] Wikipedia. Intel Ultra Path Interconnect. URL: https://en.wikipedia.org/
wiki/Intel_Ultra_Path_Interconnect (visited on 13/05/2023).

[26] Wikipedia. List of Nvidia graphics processing units. URL: https : / / en .
wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Data_
Center_GPUs (visited on 07/05/2023).

[27] Wikipedia. PCI Express. URL: https : / / en .wikipedia . org /wiki /PCI_
Express (visited on 05/12/2021).

97

https://ubuntu.com/about/release-cycle
https://ubuntu.com/about/release-cycle
https://github.com/openai/whisper
https://pcisig.com/sites/default/files/files/PCI_Express_Basics_Background.pdf#page=26
https://pcisig.com/sites/default/files/files/PCI_Express_Basics_Background.pdf#page=26
https://pcisig.com/sites/default/files/files/PCI_Express_Basics_Background.pdf#page=26
https://www.dolphinics.no/products/fast_TCP_UDP_IP_network_driver.html
https://www.dolphinics.no/products/fast_TCP_UDP_IP_network_driver.html
http://ww.dolphinics.no/download/PX_5_X_X_LIN_DOC/
http://ww.dolphinics.no/download/PX_5_X_X_LIN_DOC/
https://www.dolphinics.no/solutions/pcie_smart_io.html
https://github.com/Dolphinics/sisci-nccl/
https://github.com/Dolphinics/sisci-nccl/
https://doi.org/10.1145/3377454
https://doi.org/10.1145/3377454
https://doi.org/10.1145/3377454
https://en.wikipedia.org/wiki/Input-output_memory_management_unit
https://en.wikipedia.org/wiki/Input-output_memory_management_unit
https://en.wikipedia.org/wiki/Intel_Ultra_Path_Interconnect
https://en.wikipedia.org/wiki/Intel_Ultra_Path_Interconnect
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Data_Center_GPUs
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Data_Center_GPUs
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units#Data_Center_GPUs
https://en.wikipedia.org/wiki/PCI_Express
https://en.wikipedia.org/wiki/PCI_Express

[28] Wikipedia. The Portland Group Compilers. URL: https://en.wikipedia.
org/wiki/The_Portland_Group#Compilers (visited on 07/05/2023).

[29] Cliff Woolley. NCCL: Accelerated multi-gpu collective communications.
2015. URL: https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.
pdf (visited on 10/12/2021).

98

https://en.wikipedia.org/wiki/The_Portland_Group#Compilers
https://en.wikipedia.org/wiki/The_Portland_Group#Compilers
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf

	Abstract
	Acknowledgments
	Introduction
	Background & Motivation
	Problem Statement
	Scope and limitations
	Research Method
	Ethical considerations
	Main contributions
	Thesis outline

	Background
	PCIe
	Root complex - the message bringer
	PCIe layers
	Transparent Bridging vs Non-Transparent Bridging (NTB)
	Input–Output Memory Management Unit (IOMMU)

	Intel QuickPath Interconnect (QPI)
	Remote Direct Memory Access (RDMA)
	Dolphin Interconnect Solutions (Dolphin ICS)

	NVIDIA Collective Communications Library (NCCL)
	Message Passing Interface (MPI)
	Distributed machine learning techniques in NCCL

	Multimachine machine learning
	Summary

	System setup and challenges
	Hardware
	Software
	Operating system
	NVIDIA drivers & tools
	NCCL Tests
	Dolphin eXpressWare
	IPoPCIe
	SmartIO

	Experiments and results
	Base-line reference
	NCCL
	Broadcast
	All-Reduce
	All-to-All
	All-Gather

	Discussion
	QPI vs P2P
	Gigabit Ethernet
	IPoPCIe
	SmartIO
	Closing thoughts

	Conclusions
	Summary
	Main Contributions
	Future Work

	Captains log - The adventure of setting up our system
	Initial system
	Old setup
	Defective IOMMU

	Final system
	New setup

	Server configuration
	Firmware & BMC/IPMI
	Console access
	Operating system
	Snapshot tool
	Network
	Hosts
	SSH
	NVIDIA drivers & tools
	NCCL Tests
	Dolphin eXpressWare
	Tensorflow
	Misc notes

