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ABSTRACT. It is proved that a general Markov chain converges in the rel-
ative supremum norm if and only if the Doeblin property (i.e., r*(y|z) >
as7(y) for all z,y in the state space) is satisfied, where r°(y|z) is the
s-step transition probability density. The convergence is geometric with
ratio (1 —as)l/s. This result is used to prove convergence in other norms
under weaker assumptions. The state space may be either continuous or
discrete. The results in the paper also give a qualitative understanding
of the convergence.

1. INTRODUCTION

Markov chains are widely used as models and computational devices in
areas ranging from statistics to physics. A chain starts in an initial state z
and at each iteration it moves to another state y according to the transition
function r(y|z). Under mild conditions the probability distribution after 4
iterations, p’(z), approaches a limiting function 7(z).

This paper shows that the Doeblin property for one value of s, i.e.,
r*(ylz) > asm(y) for all z,y in the state space, is a necessary and suffi-
cient criterion for the convergence of the chain in the relative supremum
norm. The function r*(y|z) is the s-step transition function.

We also show that this norm is a natural norm for proving convergence.
Convergence in the relative supremum norm is always geometric, and it may
be used to prove geometric convergence in other norms also. Other norms
may, however, converge when the relative supremum norm does not. The
relative supremum norm emphasizes the areas where 7(z) is small. If the
tails of the distribution are not important, other norms may be better.

This paper is a generalization of the results in Holden (1996) which
proves similar theorems for the Metropolis—Hastings simulation algorithm.
Mengersen and Tweedie (1996) give another proof for geometric convergence
of this algorithm.

The theory and applications of Markov chains are very active fields of
research: see, for example, Meyn and Tweedie (1993) and Geyer (1992).

2. A GENERAL MARKOV CHAIN

Let © C R™ be a Borel measurable state space and 7(x) a probability
density such that [, m(z)dz =1 or, alternatively, let Q be a discrete state
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space and 7(z) probabilities on this state space. All the results and proofs
are valid both for absolute continuous densities and for probabilities on a
discrete state space. The continuous state space terminology will be used
in this paper. If the state space is discrete, the integral signs should be
replaced by summation signs. The initial probability densities p°(z) and
the transition function r(x|y), =,y € {2 are positive in {2 or in a subset of Q.
The integrals of these densities over {2 or subspace of {2 are assumed equal
to 1. All the densities are assumed to be absolutely continuous or to be
probabilities on a discrete state space. A Markov chain is defined as follows.

MARKOV CHAIN. To generate a sample from the probability density 7(x):

1. Generate an initial state z° € Q from the density p°(z).
2. Fori=1,...,n: . _ .
(a) Generate a new state 2'*! from the density r(z'"!|z?).

Let us define the s-step transition function by
(1) P = [l (@) da.

The 1-step transition function is the ordinary transition function r!(y|z) =
r(y|z). In this paper it is assumed that there exists a density 7(z) which
satisfies

2) n(y) = /Q vyl () de

for all integers s > 0. This is satisfied if the chain is recurrent; see Meyn
and Tweedie (1993). Since our estimate is based on the relative supremum
norm it is necessary to assume that w(z) > 0 for z € Q.

The Doeblin property requires there exist an integer s > 0 and a constant
as € [0, 1], such that

(3) r'(ylz) > asm(y)  forallz,y € Q.

This condition is central for the present paper. See Doob (1953), p. 197, for
references.

It is convenient to define the pointwise relative error R'(z) = (p'(x) —
m(z))/m(z) = p'(z)/m(x) — 1 and the relative supremum norm L, i.e.,

W = SUDgcq ‘R’(m)‘ . The following proposition is used in several of the
proofs.

PROPOSITION. The pointwise relative error satisfies

S
Rits(y) = / "W pi oy () da.
o 7(y)

The Proposition states that the relative error at step ¢ + s is the average
of the relative error at step 7 weighted by = (z)r*(y|z)/7(y). In many appli-
cations r°(y|z) is a smooth function which is large only for |z — y| small.
This Proposition may then be used to prove that high-frequency error in
R!(z) decreases much faster than low-frequency errors. The proof of the
Proposition is short.
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Proof. Combining (1) and (2) gives

i+s -7 = rS(ylz) (p'(z) — 7(z)) dz
P (y) — n(y) /Q<y| (' () — () d

which implies

a0 R A1) VR
L Ry e e

which proves the Proposition. O

3. POSITIVE GENERATION FUNCTION

In order to ensure convergence we must formulate the theorem for suffi-
ciently large number of steps that the transition function is always positive.
The convergence result is then as follows.

THEOREM 1. Assume the Doeblin property (3) is satisfied and that w(z) >
0 for x € Q. Then the probability density of the Markov chain satisfies for

y €

i+s i

(4) P () p'(z) _1‘}'
(y) m(x)

If there do not exist an integer s > 0 and a constant as € (0,1] such that

the Doeblin property (3) is satisfied for z,y € Q, then there exists € > 0 and
p°(x) such that

—1‘ < (1—as)sup{
€N

Py

(5) Sup |

TN

for all 7 > 0.

The theorem states that R'(y) = |(p’(y)/7(y)) — 1| does not increase and
that the Markov chain converges geometrically if a; > 0. The convergence is
fast if r*(y|z) =~ m(y) and immediate if *(y|z) = 7(y). The Doeblin property
(3) with as > 0 is a necessary and sufficient condition for convergence in the
relative supremum norm.

This theorem may be used for comparison between different generation
functions. This is also possible if these generation functions have differ-
ent computational cost, such that the number of iterations differs in the
computation.

Very often r(y|z) = 0 for a particular state z and for y in a large set.
Then it is necessary to use several steps (i.e., s > 1) such that the Doeblin
property (3) is satisfied with as > 0. As stated in Theorem 1, the existence
of s and as > 0 is a necessary condition for convergence. A method for
finding a5 and s is shown in Holden (1996). In that method it is necessary
to specify a possible chain between any two states. The size of a5 depends
on how probable this chain is. The decrease in the relative supremum norm
per iteration is (1—a,)'/*. If s is increased, it is often possible to increase a,.
In some cases this increase is sufficiently large that this also gives a better
estimate for the convergence even if a; > 0 for the lower value of s. This is
illustrated in Example 1.

In Doob (1953) it is proved that the Doeblin property implies convergence
in the total variation norm, i.e., sup,-q UA p'(z) — m(z) d:r‘ where p°(z) is



4 LARS HOLDEN

assumed to be a §(z) function. A d(x) function cannot be handled in the
relative supremum norm. One way to get around this problem is to go
through a few iterations before applying the theorem.

In Section 5 it is shown how this result may be used for proving geometric
convergence in other norms too. Convergence in the relative supremum norm
implies convergence in most other norms.

In Diaconis (1996), cutoff phenomena for finite Markov chains are studied.
It is assumed that the Markov chain starts in one state, i.e., p’(z) is a §
function. In the observed chains the total variation norm stays close to 1
for a certain number of iterations, then suddenly drops and then tends to
zero exponentially fast. This phenomena may be explained using the above
theorem. Naturally there is no reduction in the relative supremum norm and
only a small reduction in the total variation norm before a sufficient number
of iterations have been performed that it is possible to reach a significant
amount of the state space. Then the Doeblin property (3) is satisfied with
as > 0 and we get geometric convergence in the relative supremum norm.
This implies that there is also geometric convergence in the total variation
norm, according to Corollary 1 in Section 5.

Proof. The Proposition gives

ivsoy _ [ T (ylw) (Ve () da
R() = [ DU R @)r(a)d

_ pi wa T — rlz) g Y(z))m(z) dz
= Ry [ D@y do — [ DU (R — Ri(@)re(z) d

SR&—%4<@—R%mmmm

= Ri,(1 — ay) +/ R'(z)m(z) dz
_ Q
= Ry (1 — as).
Define p(z) such that the corresponding R(z) = —R'(z). Note that p'(z)

may be negative and thus not a density. Perform the same calculation as
above with R(x) replacing R(x). This gives

R (y) < Rar(1 — as)
which is equivalent to
P (y)
m(y)

This proves that (3) implies (4). It remains to prove the implication in the
other direction.

Choose y € 2, a € (0,1) and s > 0. Define 4" = {z € Q;rs(z|y) >
am(z)}. Assume fA;,s m(z)dz > 0. If this is not the case, it is trivial to show

that the theorem is satisfied. Let A, = sup, ; A;"* and

0(p) — (1+e)m(z) forzeQ)\A,,
s {(1—56)71’@) else,

— 1‘ < (1 —as)sup
€N

p'(x) _1‘.

m(x)

where €, 3 > 0 are determined such that [, p’(z)dz =1 and 1 — Be > 0.
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Assume first A, # Q. A chain with 2° € 4, does not join Q\ A, for any
s. Then p/(z) = (1 +¢€) n(z) for z € O\ A, and all j > 0, which implies (4).

Assume then A, = Q. Choose a > b >0, s >0 and v € Q\ A7%. Then
for sufficiently small a

br(v) > 12 (oly) = /Q v (o] (aly) da
y ¥ (v|x)r®(z|y) dz
Ay’

>a r¥(v|x)m(x) dx.
T

AV

It is possible to bound the same integrand in the domain \ Ay using the
calculation

r(v) = /Q ¥ (o)) () da
_ /A 7R ey /Q g @) do

b S(v|z)w(z) dx
(R AAUELEE

< —
T a

which implies that

(v) (1 - 2) < /Q\AZ,S r* (v|z)7(z) da.

The definition of p°(x) gives
P*(v) — m(v) = / v (u]) (0° () — () dt
)0 (@) — 7(2)) de

s 0 —7m(z))dz
+/Q\A (o] (0" () — () d

_ —ﬁe/ v (vlo)m(z) do + € r* (v]e)r(z) da

b
> —ﬂ—ew(v) + em(v) (1 - =
a
:W(U)(E(l—@—é).
a a
Since we may chose b arbitrarily small, this implies

p*(v)
vetr T(0)

>1l+e

Using the first part of the theorem with a = 0 gives
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4. VANISHING GENERATION FUNCTION

In the previous section it was proved that if the Doeblin property is sat-
isfied with a > 0, then the Markov chain converges geometrically in the
relative supremum norm. In this section the relative error is bounded when
the Doeblin property is satisfied in only part of 2.

THEOREM 2. Let z € R, z > 0 and define B, C Q as B, = {z € Q;|z| <
z}. Assume that for all z >0

r(z|y) > a,m(x) forall z,y € B, with a, >0,

/ w(z)dr > b, >0
B

z

and
P°(2)
m(x)

—I‘SR%/[ for all z € Q.

Then the probability density of the Markov chain satisfies for y € B,

-1/ <R 1—a,b 2
o < e (0 earaaty

where 0 < 1 —ayb, < 1.

ns(

This theorem proves that if the Doeblin property is satisfied in a subspace
B, C (), then the error in the relative supremum norm at least decreases
geometrically to (1—b,)/b, < —1+1/ [5 m(z)dz in B, relative to the initial
error.

Proof. Define Ri’M(x) = sup,¢p, |R'(z)] and B, C C,, where
Cry = {2 € L1 (zly) = a.m(x)}.

It follows from the previous theorem that |Ri(z)| < RY, for all i > 0 and
xz € Q. Further calculation using the Proposition gives

Ri+s(y) — / Ts(y|$) RZ(ZE)W((II) dr
o [ )
=Ry [ %T;d | S Ry~ R @)e(a) d
_ pi Y|z i RV () da
=y [ - B d

- [ @y - Rt de
ONC: y

(y)
<R —a, / (RY; — R'(z))n(x) dz + RS,a, / m(x) dr
zY Q\Czay
= Ry (1 - az/ m(z) dz) — aZ/ R ()7 (z) dz
Cz,y Q\Cz,y
+ RY,a, m(x) dx
O\Czy
< RZM(l — az/ 7(x) dx) + QR?V[aZ/ m(x) dx
B. O\B.

= Ri;(1 —a.b,) +2R%a,(1 —b,).
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Define p*(x) such that the corresponding R(z) = —R'(x). Note that p'(z)
may be negative and thus not a density. Perform the same calculation as
above with R'(z) replacing R*(x). This gives

R™5(y) < Ri,(1 — a.b,) + 2R%,a,(1 — b,)
which implies
|Ri+s(y)| S Rﬁw(l - azbz) + 2R(])\4az(1 - bz)

Induction gives

n—1
|R™ (y)| < R (1 — azb:)" + 2R%a.(1 = b,) Y (1 — azb.)’
=0
n 1—(1—a.b,)"
= Ry (1 — ab.)" + 2R}, (1 — bz)m

1—b,
= R%,(1 — a,b,)" + 2RY,

(1= (1 —azb,)")

1—b,
<R%/,<(1—azbz)”+2 ; )

z

5. OTHER NORMS

The theorem may be generalized to a convergence result in other norms
also. So far we have used the relative supremum norm, L :

f(z) ‘
moo — SUP [———|.
£l = s0p | 2
Define the following L,, ¢ € (0, 00) norm for

= ([ fff(x)dac)l/q.

The supremum norm, p = oco, is expressed as

[/ lloo = sup | f(z)].
€

The total variation norm is defined as
/ f(z)dzx
c

We can now formulate the following corollary to the first theorem.

|fllTv = sup
ccQ

COROLLARY 1. Assume that w(xz) > 0 is satisfied for z € Q. Then the
Doeblin property (3) is a necessary and sufficient condition for convergence
in the relative supremum norm. The convergence is geometric with ratio
(1 — a,)'/s.

The Doeblin property (3) and the boundedness of [, 79(x)dx imply geo-
metric convergence in Ly norm, q € (0,00) with ratio (1 — as)'/*.

The Doeblin property (3) and the boundedness of w(z) for © € Q imply
geometric convergence in Log norm with ratio (1 — as)'/*.

The Doeblin property (3) implies geometric convergence in total variation
norm, for any p°(z) with ratio (1 — as)'/*.
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Proof. The theorem implies that Ryt < (1 — as)RY,, which gives
R?M < (1 - as)(iferl)/sR(])w

for 7 > s.
Convergence in Ly norm is proved by

[ @) ~et)ras = [

Combined with the previous equation this gives

1o = wlly < (1 — ag) =D/ RY, ( / w9 (z) de) /1.
Q

p'(z) —n(2)[*

m(x)

ml(x)dr < (Ré\/[)q/ﬂﬂq((ﬂ) dx.

Convergence in Ly is handled by

Ip" = 7o < (1 = as)*+D/* RY sup{m(a)}.

€
/Cﬂ(x) dzx

<Ry < (1 —ay)=st/sRY, .

Convergence in total variation norm is proved by

/Cpi(ac)—ﬂ(x)dac - /CMW(.@W‘ <RI,

— < 7
(@) <

which implies

/C pi(z) — 7(z) dz

Ip* = 7|lrv = sup
cca

O

Athreya, Doss and Sethuraman (1996) give an example where there is not
geometric convergence in the total variation norm. According to the above
theorem there is either geometric convergence or no convergence in relative
supremum norm. Since the total variation norm is less than the relative
supremum norm, there is not convergence in the relative supremum norm
in their example.

There is also a similar corollary to Theorem 2.

COROLLARY 2. Make the same assumptions as in Theorem 2.

The Markov chain converges in Ly norm if [ n9(z)dx is bounded.

The Markov chain converges in Lo, norm if w(x) is bounded in Q and
SUpco\ g, {m(z)} = 0 when 2z — oo.

The Markov chain converges in total variation norm.

Proof. Convergence in L, norm is proved by

I =l = [ () = m(@)tda = [ |B(@)f17(0) da

q n 1— bZ
< (RY) ((1 —ab,)" +2 . /Z m(z) dx + /Q\Bz w(x) dac)

which may be made arbitrarily small by choosing z and n large.
The Ly norm is expressed as
1p"* = 7llso = sup{R™(z)m ()}
€

The Markov chain convergences in L, since inside any B,, R"(z) ap-
proaches zero uniformly and 7(z) is uniformly bounded. In Q\B,, R"*(z) is
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bounded and w(z) approaches zero as z increases by the assumption in the
corollary.
The total variation norm may be expressed as

I — v = sup / R™ (o) (z) da
ccJo

~ sup { /C R o+ /C oy @ dm}

The Markov chain convergences in total variation by the same argument as
for the Lo, norm given above. O

6. EIGENVECTORS

It is also possible to express the convergence in the form of eigenvalues
of the operator @@ defined by one step of the Markov chain with r(y|z) as
the transition probability. Since the algorithm converges the absolute value
of all eigenvalues except for the eigenvalue which correspond to the limiting
distribution 7(z) is less than 1. The eigenvalue with the next largest absolute
value determines the convergence rate. The following corollaries are proved.

COROLLARY 3. If the Doeblin property (3) is satisfied for all z,y € Q,
the next largest eigenvalue in absolute value of the operator Q) is less than
or equal to (1 — as)/5.

Proof. Let us first prove that any other eigenvector v with eigenvalue A of
@ must satisfy [, v(z)dz =0 since

Ao(y) = /Q r(yle)o() do
and hence

)\/Qv(y)dy:/ﬂ(/ﬂr(ypc)dy) v(m)dmz/ﬂv(x)dw.

This implies that we must have either v(z) = 7(z) and A = 1 or [, v(z) dz =
0.
Assume p(z) = w(z) + v(z) for an eigenvector v(z). Then we get from
the Theorem 1 that for all y € 2
v(y) ‘
(y)
Hence \ < (1 — ay)'/5. O

v(x)

T

S

< (1 —as)sup
HASY)

Example 4 shows that this is not necessarily an optimal bound of .

COROLLARY 4. If there do not exist s and as > 0 such that the Doeblin
property (3) is satisfied for all x,y € Q and all probability densities in a
space H () may be written in the form

pla) = m(x) + Y cio)

where v; are eigenvectors of Q, and scaled such that sup,cq |vi(z)/m(z)| =1
and ), ¢; bounded, then there are eigenvalues of Q arbitrarily close to 1 in
absolute value.
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Proof. Let
x) + Z civi(x)
i

and assume |A;| < b < 1. Then

Z )\JUZ <b7201

which may be made arbltrarlly small by choosmg j sufficient large.
According to Theorem 1 there exists a p°(z) such that sup,cq [p//7(z) —

1] = € for all j. Hence the assumption that |A;] < b < 1 cannot be correct,

which proves the corollary. O

P(z)
m(x)

sup
zeQ

— 1‘ sup
zeQ

Z ¢ )\‘7

IEQ

7. SOME EXAMPLES

EXAMPLE 1. Let © = (0,¢), n(z) = 1/c where ¢ > 0 and

_fa-aje iyl <e/2,
7d(y|$)_{d/(c—e) else,

where 0 < d < 1, e < ¢ and |z|, = min;ey{|z + ic|}. For d > 0, the Doeblin
property is satisfied with s = 1 and a = de¢/(c — e). If d is small, this gives
very slow convergence. For d = 0 or d small it may be better to choose
s> 1.

In order to find a,s for s > 1 it is natural to use the approach in Holden
(1996). That is, for given z,y € €, define possible sequences for jumping
from z to y. Define the sequence {D};_, such that Dy = {z} D, = {y} and
for any u € D; v € D41, |u—v|. < 1/(2e). This gives for s > c/e that

= ((1 —d)/e)((1 —d)(es — c)/(2ces))* 1. This is not the optimal choice
for all values of s, but it combines a reasonably good choice with simplicity
of calculation.

< M for all z € Q) and
Loif|lz—y <1,
r(ylz) = {3

Using Example 1 we get 7°(y|z) > asn(y) for y < z, s > 2z and a5 =
1/(82M)((s — 22)/82s)* 1. Theorem 2 gives for y < z

EXAMPLE 2. Let @ = R, n(z)

pns (y) 0 - bz
— 1| <Ry (1 —ayb,)" +2 .
W(y) = M( Z Z) + .
Hence this error may be made arbitrarily small. In this example we do
not get convergence in Lr norm since r*(y|z) = 0 when |y — z| > s.

We do, however, get convergence in Ly, Ly, and total variation norm from
Corollary 2.

ExaMPLE 3. The Metropolis—Hastings algorithm is as follows.
METROPOLIS-HASTINGS. To generate a sample from the probability den-
sity m(z):

1. Generate an initial state 70 € Q from the density p°(x).
2. Fori=1,...,n
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(a) Generate an alternative state y from the density g(y|z?).
(b) Calculate

) — e {1, T
oy @) = {1’ (gl }

i1 y  with probability a(y, z¢)
= .
with probability 1 — a(y, z").

The Metropolis-Hastings algorithm satisfies the Doeblin property (3) with
s=1if

(6) q(ylx) > an(y) for all z,y € Q
r(ylz) > aly,x)a(ylz) = min {q<y|x>, %qmw)} > an(y).

Hence (6) implies the Doeblin property. It is also possible to use weaker
assumptions. Given z,y € €1, define possible sequences for jumping from z
to y by defining the sequence {D}{ , such that Dy = {z}, Dy = {y} and
for any u € D; v € Dj41, q(v|u) > a;w(v) and gq(ulv) > a;m(u). This gives
S
ko) 2w [T (o [ n(o)a)
i=1 Di

which satisfies the Doeblin property for sufficient large values of s. This was
discussed in more detail in Holden (1996).

EXAMPLE 4. In this example we want to show that the bound in the
eigenvalue is not necessarily an upper bound. Assume the state space con-
sists of n points with limiting distribution (7, 7o, ..., 7, ) and with transition
matrix

7T1+(1—(Z)7T2 7r1—(1—a)7r1 T ... T
7T2—(1—(Z)7T2 7T2+(1—(Z)7T1 T ... T9
Q= T3 T3 T3 ... T3

This transition matrix satisfies the Doeblin property Q;; = r(i[j) > am;
and has eigenvectors (my, 9, ..., 7, ) and (1, —1,0,0,...,0) with eigenvalues 1
and (1 — a)(m + m2) respectively and n — 2 eigenvectors with eigenvalue 0.
This example shows that the upper bound given in Corollary 3 is optimal
for n = 2 but not optimal for n > 2.

8. CLOSING REMARKS

This paper discussed the convergence of a general Markov chain. It shows
that the Doeblin property is critical for convergence. The Doeblin property
is satisfied with as > 0 if it is possible to jump between any two states
in the state space in s jumps with a positive density. If Doeblin property
is satisfied, we will get geometric convergence in the most generally used
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norms. The geometric convergence ratio is (1 — ay)'/*. Hence it is critical
that as is as large as possible and s as small as possible.

If an arbitrarily large number of jumps is necessary in order to reach the
tail of the limiting distribution, then the Doeblin property is not satisfied
and there is no convergence in the relative supremum norm. Under some
additional weak assumptions, the chain converges in most other norms.

The results in the paper also gives a good qualitative understanding of the
convergence. In particular, the Proposition shows that the high-frequency
error is reduced faster than the low-frequency errors.
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