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Abstract

This thesis investigates gender and sentiment in Norwegian book reviews
and their impact on machine learning models trained on the book review
data. Our analysis reveals that female critics and authors give and receive
significantly lower ratings than males. Using methods from interpretable
machine learning, we go on to show that these statistical differences make
models trained on the data associate features related to female gender with
a lower sentiment than features related to male gender. We also explore the
effects of gender normalization on the models’ predictions and the impact
of supplying models with gender knowledge during training. Our findings
demonstrate the potential of interpretation methods for transformer models
on Norwegian text and highlight the strengths and weaknesses of different
methods for interpreting machine learning models.

i



ii



Acknowledgements

I would like to express my sincere gratitude to my supervisors, Erik Velldal
and Samia Touileb, whose input and guidance has been highly appreciated
and helped completing this thesis.

All the experiments using transformer models have been run on the Machine
learning infrastructure (ML Nodes) of the University Centre for Information
Technology at the University of Oslo.

iii



iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Sentiment analysis . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Previous work and state of the art . . . . . . . . . . . 6
2.1.2 Using ratings as labels . . . . . . . . . . . . . . . . . . 7
2.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Resources for Norwegian sentiment analysis . . . . . . . . . 9
2.2.1 NoReC . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 NoReCgender . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Classification of long documents . . . . . . . . . . . . . . . . 10
2.5 Other resources for Norwegian NLP . . . . . . . . . . . . . . 12

2.5.1 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 XLM-Roberta . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Other resources . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Gender bias . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Data 19
3.1 Data distribution . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Gender . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Distributions grouped by gender . . . . . . . . . . . . . . . . 22

3.2.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 T-tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Rating comparison of the three most prolific critics . 28
3.3.2 T-tests without Hovdenakk . . . . . . . . . . . . . . . 29

3.4 Reviews of the same book by critics of different gender . . . 31
3.4.1 T-tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Models and experiments 35
4.1 Computational environment . . . . . . . . . . . . . . . . . . . 35
4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . 36

v



4.2.1 Class-balanced loss . . . . . . . . . . . . . . . . . . . . 36
4.2.2 BoW models . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Transformer models . . . . . . . . . . . . . . . . . . . 37

4.3 Model performance . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 NorBERT2 and XLM-Roberta . . . . . . . . . . . . . . 41
4.3.3 Comparison to previous work on NoReCgender . . . . 42

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Effect of text truncation . . . . . . . . . . . . . . . . . 44
4.4.2 Normalization impact . . . . . . . . . . . . . . . . . . 46
4.4.3 Additional impact of adding gender metadata . . . . 47

5 Interpretability 53
5.1 Feature importance for linear models . . . . . . . . . . . . . . 54

5.1.1 Author gender . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Critic gender . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.3 Sentiment analysis . . . . . . . . . . . . . . . . . . . . 62

5.2 Counterfactual analysis . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 Counterfactual generators . . . . . . . . . . . . . . . . 66
5.2.2 Switching gender . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Feature Attribution . . . . . . . . . . . . . . . . . . . . 74
5.2.4 Counterfactual explanations . . . . . . . . . . . . . . 77
5.2.5 Interpreting gradients . . . . . . . . . . . . . . . . . . 78

6 Conclusion 89
6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vi



List of Figures

3.1 Number of reviews per year. . . . . . . . . . . . . . . . . . . . 20
3.2 Scatter plot showing review length by rating. . . . . . . . . . 21
3.3 Bar plot of the normalized ratings for each group. . . . . . . 24
3.4 Line plot showing mean ratings grouped by source and

genders. The numbers in the plot is the support for each
data point, i.e. the number of ratings from which the mean is
calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Line plot showing mean review length grouped by source
and genders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Histogram showing how many books each critic has reviewed. 27
3.7 Box plot showing the mean ratings for the 25 most prolific

critics by author gender. . . . . . . . . . . . . . . . . . . . . . 28
3.8 Line plot showing normalized ratings for the three most

prolific critics grouped by author gender. . . . . . . . . . . . 29

4.1 Accuracy on the development set for the BoW models and
NorBERT2 for different text lengths. The lines that stop
at 512 tokens show the NorBERT2 performance, whereas
the other lines are for the BoW models. The horizontal
lines at the bottom show the majority class baseline for each
classification task, using the same color as the BoW line for
that task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Accuracy for the three different tasks when given differently
normalized inputs. The x-axis goes from no normalization
on the left, to most normalization on the right, where both
gendered pronouns and person names are removed. . . . . . 47

4.3 Three subplots showing mean accuracy for the three different
tasks when given differently normalized inputs and added
metadata using BoW SVC, SVR and linear regression models.
Each subplot has its own y-axis at different scales. The x-axis
is shared between the subplots goes from no normalization
on the left to most normalization on the right, where even
pseudo-informative features are removed. . . . . . . . . . . . 48

4.4 Macro average f1-score for the three different tasks when
given differently normalized inputs and metadata using
NorBERT2. The x-axis goes from no normalization on the
left to most normalization on the right, where both person
names and gendered pronouns are replaced by dummy tokens. 50

vii



5.1 A horizontal box plot showing the effects of the 20 most
impactful features for author gender classification for each
gender, with effect toward female authors on the left side
and toward male authors on the right side. The features are
sorted by maximum impact across the validation set. The
mean impact is marked with a red line for each feature . . . 56

5.2 A horizontal box plot showing the effects of the 20 most
impactful features for critic gender classification for each
gender, with effect toward female critics on the left side and
toward male critics on the right side. The features are sorted
by maximum impact across the validation set. The mean
impact is marked with a red line for each feature . . . . . . . 59

5.3 A horizontal bar plot plot showing the 25 highest coefficients
of critic gender classification for each gender, with effect
toward female critics on the left side and toward male critics
on the right side. . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Histogram of the predicted regression scores for rating
classification overlayed by the true ratings. . . . . . . . . . . 63

5.5 A horizontal box plot showing the effects of the 20 most im-
pactful features for sentiment classification for each gender,
with effect toward negative sentiment on the left side and
toward positive sentiment on the right side. The features are
sorted by maximum impact across the validation set. The
mean impact is marked with a red line for each feature. . . . 65

5.6 Aaccuracy of a Ridge regression BoW model and a NorBERT2
regression model for author and critic gender classification.
The models were first trained on the original data, shown
on the first tick on the x-axis, and then tested on inputs with
varying degrees of gender changes without retraining the
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 PCA of the CLS token embeddings for author gender
classification on the original data of the development set,
explaining 86.5% of the total variance, with true labels
marked by colors. . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.8 PCA of the CLS token embeddings for author gender clas-
sification on the gender-switched data of the development
set, explaining 78.0% of the total variance, with true labels
marked by colors. . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.9 Two-dimensional PCA projection of the CLS token embed-
dings for critic gender classification on the original data of
the development set, explaining 51.5% of the total variance,
with true labels marked by colors. . . . . . . . . . . . . . . . 71

5.10 Accuracy of a Ridge regression BoW model, a NorBERT2
(ordinal) regression model and a NorBERT2 multiclass model
for sentiment classification. The models were first trained on
the original text, shown on the first tick on the x-axis, and
then tested on inputs with varying degrees of gender changes,
without retraining the model. . . . . . . . . . . . . . . . . . . 72

viii



5.11 Two-dimensional PCA projection of the CLS token embed-
dings for sentiment using ordinal regression on the original
text of the development set, explaining 65.3% of the total vari-
ance, with true ratings marked by colors. . . . . . . . . . . . 74

5.12 This plot shows the median gradient norm across the
development data set for each 510 token position (CLS
and SEP tokens were excluded) and grouped by the three
classification tasks. The subplots share x-axis and the scale of
the y-axis is the same for all of them. . . . . . . . . . . . . . . 80

5.13 Histogram of in total 614095 Integrated Gradient attribution
scores for the predicted class across the three classification
tasks using the development set. . . . . . . . . . . . . . . . . 81

5.14 The color gradient used to show a token’s attribution to the
prediction of a given class. . . . . . . . . . . . . . . . . . . . . 82

5.15 Histogram of the difference in regression score between the
regression scores when using the gender-switched data as
input abd the original regression scores for the ratings, i.e.
new scores minus old scores. . . . . . . . . . . . . . . . . . . 85

5.16 Scatter plot of the attribution scores for the negative class. . 86
5.17 Scatter plot of the attribution scores for the negative class for

the document containing attribution Example 5.12 . . . . . . 87

ix



x



List of Tables

3.1 Summary of the different sources with their rating and review
length distribution. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Overall distribution of ratings and review lengths across the
corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Total number of reviews grouped by gender of critic and author. 22
3.4 Summary of ratings and review length grouped by critic

gender. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Summary of ratings and review length grouped by author

gender. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Summary of ratings and review length grouped by critic

gender and author gender. . . . . . . . . . . . . . . . . . . . . 23
3.7 Results of Welch t-tests on the six combinations of gender

groups. The first letter of the two-letter combination is the
critic gender and the second is the author gender. Thus FM
< MM is the hypothesis that female critics give male authors
lower ratings than male critics give male authors. . . . . . . 26

3.8 Statistical summary of how many books each critic in the data
set has reviewed. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 Statistic summary of ratings grouped by critic gender with
change of mean without reviews by Sindre Hovdenakk. . . . 29

3.10 Statistic summary of ratings grouped by author gender with
change of mean without reviews by Sindre Hovdenakk. . . . 30

3.11 Statistic summary of ratings grouped by critic gender and
author gender with change of mean without reviews by
Sindre Hovdenakk. . . . . . . . . . . . . . . . . . . . . . . . . 30

3.12 Results of t-tests without Hovdenakk’s reviews. . . . . . . . 30
3.13 Rating summary grouped by critic gender. . . . . . . . . . . 32
3.14 Rating summary grouped by author gender. . . . . . . . . . 32
3.15 Rating summary grouped by critic gender and author gender. 32
3.16 Welch t-tests for the data isolated on books reviewed by

critics of both genders. . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Performance on gender classification for the three used BoW
models, support vector classifier, support vector regressor
and Ridge regressor, with the best scores for each split and
task highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . 41

xi



4.2 Performance for the three used BoW models, support vector
classifier, support vector regressor and Ridge regression for
sentiment classification, with the best scores for each split
and task highlighted. . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Performance for gender classification between NorBERT2
and Roberta XLM. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Performance for sentiment classification between NorBERT2
and Roberta XLM, and using either a classification or
regression head. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Classification report for author gender classification using
Support Vector Regression . . . . . . . . . . . . . . . . . . . . 55

5.2 Average number of times each word has been used per
document in the training set, grouped by author gender . . . 57

5.3 Classification report for critic gender classification using
ordinal support vector regression with a threshold of 0.5 on
the development set . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Average number of times each word has been used per
document in the training set, grouped by critic gender . . . . 61

5.5 Classification report for rating classification using ordinal
linear regression, rounding the regression scores to the
closest integer to get the predicted class. . . . . . . . . . . . . 62

5.6 Statistical summary of the predicted regression scores for
rating classification using Ridge regression. . . . . . . . . . . 63

5.7 Classification report for ternary sentiment classification using
ordinal Ridge regression, with regression score thresholds of
3.5 and 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.8 Statistical summary of the predicted logits for author gender
classification using NorBERT2 . . . . . . . . . . . . . . . . . . 70

5.9 Statistical summary of the absolute values of the predicted
logits for author gender classification using NorBERT2 . . . 71

5.10 Statistical summary of the predicted regression scores for
rating classification using a NorBERT 2 regression model. . . 73

5.11 Statistical summary of the 614095 attribution scores for
the tokens in the development set and across all three
classification tasks . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.12 Summary of the difference in attribution scores between the
gender-switched and original review, i.e. new scores minus
original scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.13 Statistical summary of the changes in regression score
between original and gender-switched input, i.e. new scores
minus old scores. . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



Chapter 1

Introduction

There is bias everywhere, and likely even more so with the increasingly
high rate new content is created on the internet. In a general sense,
bias simply means ‘inclination’, and can be perfectly neutral (Friedman &
Nissenbaum, 1996). A grocery shopper buying apples rather than oranges
displays a bias. However, the term bias can also carry moral meaning. We
will use Friedman and Nissenbaum (1996)’s definition of bias as systems
that systematically and unfairly discriminate against certain individuals or
groups of individuals in favor of others. Further on, gender bias can then
be defined as systematic unequal treatment based on one’s gender.

In this thesis, we perform an exploratory analysis of gender in
Norwegian book reviews, with a particular emphasis on its relation to
sentiment. We further investigate how this relation affects machine learning
models trained on the data. The thesis builds on previous work on
sentiment analysis, bias in machine learning and also more specifically on
gender bias.

This thesis focuses on NoReCgender, a data set of Norwegian book
reviews that includes information about the gender of the authors and
critics (Touileb et al., 2020). The Norwegian Review Corpus (NoReC) is a
sentiment data set (Velldal et al., 2018), of which NoReCgender is a subset.
This means that we mostly examine gender effects in sentiment analysis, but
we also train machine learning models to predict the gender of the critics
and authors of the reviewed books. We do this in order to see how different
aspects of gender interact, and we examine the most informative features
for all three classification tasks.

1.1 Motivation

As machine learning models have increasingly higher impacts on people’s
lives, it also gets more important to be aware of the adverse consequences
such models can have when they contain bias. This thesis is motivated by
addressing the problem of bias in machine learning. By investigating the
relation between gender and sentiment in Norwegian book reviews, we can
shed light on how using machine learning models might lead to unintended
and unfair consequences when the training data is not distributed equally
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across genders. The machine learning algorithms may contain no bias
against specific groups by themselves, but they can perpetuate bias present
in the data they are trained on. Another motivating factor is to work on
interpretation methods for machine learning. With the current proliferation
of machine learning, it is also important to understand the models to some
degree, and not treat them as unknowable black boxes.

1.2 Research questions

We are interested in investigating how gender affects sentiment in NoReC.
In order to do this, we hypothesize that normalizing the gender within a text
can affect model predictions. By normalizing gender we mean to somehow
remove the gender information contained in the text, e.g. by masking
gendered pronouns like ‘she’. Investigating how the model predictions are
affected by the normalization can give insight into the relation between
gender and sentiment in NoReCgender. Conversely, we also hypothesize
that adding gender as metadata to the model might affect its predictions.
Finally, we want to understand why the models are affected the way they
are, and consequently we propose the following research questions:

RQ1 Can a model still predict the gender categories and sentiment if we
first normalize gendered words in the texts?

a How could such gender normalizing pre-processing best be
carried out?

c Does gender normalization affect prediction of author gender?

c Does gender normalization affect prediction of critic gender?

d Does gender normalization affect prediction of sentiment?

RQ2 What is the effect of supplying knowledge of the gender during
training of the models?

a What is the effect of supplying knowledge of the author as a
variable when attempting to predict the gender of the critic, and
vice versa?

b What is the effect of supplying knowledge of the author and/or
critic as a variable when attempting to predict the sentiment?

RQ3 Is it possible to use methodology from interpretable machine learning
to shed more light on what information is used by the models when
predicting gender and/or sentiment?

a To what extent does using linear interpretable models satisfy
both predictive performance and explainability of the models?

b To what extent do methods for interpreting deep neural networks
give insight into why the models make certain predictions?

2



To answer these research questions, we first investigate whether there
actually is gender bias in NoReCgender. Then we use different combinations
of gender normalization and supplying metadata on a variety of models,
in order to examine and compare their effects. Finally, we explore several
methods to interpret the models. The next section shows an outline of
how the remaining chapters, where we describe these experiments, are
structured.

1.3 Thesis overview

Chapter 2 - Background introduces key definitions and resources that this
thesis builds upon.

Chapter 3 - Data presents the Norwegian Review Corpus (NoReC), whose
subset NoReCgender is the data set used for the experimentation in this
thesis.

Chapter 4 - Models and experiments provides an overview of the mod-
els that were used for the experiments, the computational environment and
how the models were trained. Furthermore, it contains evaluations of the
models given different constraints on the data.

Chapter 5 - Interpretability first introduces explainable artificial intelli-
gence in general and some of its methods, before using those methods to
interpret first the bag-of-words models and then the transformer models.

Finally, Chapter 6 - Conclusion concludes the thesis, providing a summary
of our work and possible future work.

3



4



Chapter 2

Background

In this chapter we introduce key concepts necessary for this thesis. There
has been done much research in sentiment analysis, bias in NLP and
classification of long documents, some of which will be mentioned in this
chapter. The most relevant resources that can be used for this research are
also introduced.

2.1 Sentiment analysis

Sentiment can be characterized as a positive or negative evaluation
expressed through language. Sentiment analysis is a field that attempts
to automatically determine the sentiment of a text, and is for example often
used to determine whether a review is positive or negative towards the item
being reviewed. There exist two main approaches to the problem, machine
learning and lexicon based (Taboada, 2016). In later years, deep machine
learning models have become most popular (Yadav & Vishwakarma, 2020).

In lexicon-based sentiment analysis, sentiment values of a text are
derived from the sentiment orientation of the individual words in the text,
using an existing dictionary that contains words and their polarity, and then
aggregating their values using an appropriate algorithm. (Taboada, 2016).
The algorithms used need to be more complex than a simple sum of all
the sentiment values, in order to deal with negation and other sentiment
modifiers.

In practice, this thesis will only consider machine learning based
sentiment analysis. The reason for that is that a lot of words do not have
only one polarity but may be either positive or negative depending on
the context in which they appear. These effects may be either contextual,
such as ambiguous words getting their concrete meaning from the context,
or compositional, like negation. Lexicon-based approaches need to use
somewhat naive heuristics to handle these effects. The advantage to using
lexical approaches is that it leads to more transparent models, which makes
it simple to see why the model ended up with a specific output for a given
input. Neither do the lexicon approaches need to be trained using an
annotated data set, like machine learning approaches do, but they would
still need annotated data for evaluation.
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Sentiment analysis can be used at the document level, sentence level,
and token level. Sentiment analysis at the document level takes in a
document as input and in some way aggregates the whole document,
before returning a sentiment score for the document. At the sentence
level, sentiment analysis models would do this for each sentence in a text.
Simple document level sentiment analysis models could simply use a sum
of the sentence or token level sentiment as the aggregated sentiment for
the whole document. In practice, more advanced methods are usually
used at the document level, like transformer models, e.g. Bidirectional
Encoder Representations from Transformers (BERT), introduced by (Devlin
et al., 2019), or Recurrent Neural Networks (RNNs). A disadvantage of
document level sentiment analysis is that it is hard to extract sentiment
about distinct entities contained in the text separately. Sentence level
classification makes it easier to distinguish sentiment towards different
entities (Yadav & Vishwakarma, 2020).

In addition to these two levels, which are simply text classification for
some unit of text, there is fine-grained sentiment analysis, which classifies
on a token level what is the polar expression, who the holder of the
sentiment is, and what is the target of the sentiment. In this way, it can
be seen as a kind of entity recognition, where the entities are holder, polar
expression, and target of the sentiment. Feldman (2013) and Yadav and
Vishwakarma (2020) also mention aspect-based sentiment analysis, which
is an extension to fine-grained sentiment analysis where aspect is added
as a conceptual category on top of the target. Its task is to decompose the
sentiment for each aspect of an item being reviewed. An example could
be ‘The main dish was great, but it took a long time coming’. In this
case, both ‘main dish’ and ‘it’ (referencing the ‘main dish’) are targets of
sentiment, but here they also represent two aspects of the restaurant being
reviewed; the food, or taste, and the service. These aspects are quite domain
specific – while they may for example be service, price, location and taste for
restaurants, they may be something totally different for other domains, like
literature or video games. For a review which includes several evaluations
of different aspects, such as the example sentence above, Feldman (2013)
argues that just classifying the whole as either positive or negative would
miss valuable information about different aspects.

Sentiment analysis at document and sentence level is a subset of the
more general text classification, which is the process of categorizing texts
into organized groups (Minaee et al., 2021). Apart from sentiment analysis,
other text classification tasks are news categorization and topic analysis.
With deep learning-based classifiers, extractive question answering and
natural language inference may also be cast as text classification problems
(Minaee et al., 2021).

2.1.1 Previous work and state of the art

This machine learning performed in this thesis is document-level text
classification, and thus the previous work discussed will also mainly be
document-level text classification.
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Since 2018, transformer-based pretrained language models, like BERT,
have created a new state of the art in many NLP tasks, like text classification,
and using these pretrained models lead to significant improvements across
all popular text classification tasks (Minaee et al., 2021). While using these
models by themselves often lead to better results than simpler models, Lyu
et al. (2020) improve the sentiment analysis performance on the IMDB,
Yelp-13, and Yelp-14 data sets by incorporating text from all the reviews
belonging to a single user or product in the inputs to their model. This
is to alleviate the challenge of different critics meaning different things by
the words they use, and different products being evaluated using different
words. Noting that computing representations of all reviews of a user for
each training sample would be too expensive, they propose an incremental
approach where they first obtain the review text representation and then
use the current user and product vectors to compute biased document
representations which are then used to get the sentiment. Then, they update
the user and product vectors with the biased document representations. The
IMDB, Yelp-13, and Yelp-14 data sets that Lyu et al. (2020) used, contain
ratings made by users, and so does NoReCgender, the data set used for this
thesis, which will be introduced in Section 2.3. Using such user ratings
as labels, instead of manually annotating the data, has some implications,
which will be discussed in the next section.

2.1.2 Using ratings as labels

Traditionally, labels for text classification are manually annotated by
specifically appointed annotators. However, for sentiment analysis, a
common approach has been to use ratings made by users or professional
critics that are already present in the data set, which alleviates some of the
cumbersome manual annotation process. Nonetheless, using such ratings
means that the researchers have less control over the labeling process, and
the rating scale can be used inconsistently between different critics. Another
challenge is that such user ratings are seldom a binary negative or positive
evaluation, but often on a scale from e.g. 1 to 5. Sentiment analysis can be
made to handle such scaled label input, but as soon as the task goes from
binary to multiclass classification, the complexity of the task goes up and
consequently the performance suffers.

Instead of using a numeric scale, another usual method when labelling
sentiment data is to include a third, neutral category in addition to the
positive and negative categories (Taboada, 2016). This could be useful if
the model is used to classify texts that may not contain a specific sentiment,
as opposed to classifying reviews, which one can expect to always contain
some kind of sentiment.

Scaled sentiment output can carry a lot more information than just
a binary positive/negative, but it also brings some new challenges, like
different reviewers using the scale differently, and also that a given review
score can mean different things for different items (Pang & Lee, 2005).
Furthermore, if the model predicts 4 when the real score was 5, it is more
correct than a prediction of 2, even if it is technically incorrect. If one
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wants to take this difference into account, one would thus need a way to
weight these two errors differently when training the model, e.g. by using
regression instead of discrete classification (Feldman, 2013). If one treats
the task as a standard multi-class problem, these class similarities will not
be taken into account. However, the standard approach is to use multi-
class evaluation, which in practice gives good results; Bergem (2018) did
not get increased score when using a similarity-aware model compared to
logistic regression on the NoReC data set, which is the same data set we will
use for this thesis, except that we will only look at a small part of it, called
NoReCgender.

Previous work

When it comes to previous work for this problem, Pang and Lee (2005)
have done research on different ways to model the problem of rating scales,
and found that utilizing the similarity between texts with the same label
improved the results of the models, often to a significant degree, compared
to multi-class approaches that do not use any such similarity information.
They collected internet movie reviews from four authors, which they used
as their data set, and noticed that these four authors diverged significantly
when it comes to what they mean by a given rating, and also by how the
text relates to the rating. Because of that, they made a separate data set for
each author, facilitating analysis of the results by not having to calibrate the
authors’ scales (Pang & Lee, 2005).

Mukherjee et al. (2019) have done similar research on the Amazon
Reviews Dataset, which also contains ratings on a scale from 1 to 5. They
found that due to the label imbalance, with high ratings comprising most
of the reviews, oversampling the smaller classes during training leads
to improved accuracy. Pang and Lee (2005) also had to handle label
imbalance, but instead of oversampling the minority class, they folded it
into the adjacent class, arriving at a four-class problem with more equal
label distribution.

2.1.3 Evaluation

As mentioned above, to evaluate performance of models trained on scaled
data, whose labels are not independent of each other, one need a metric that
takes similarity between labels into account. Since the label distribution
in these data sets is often skewed, one also needs to consider the label
distribution by e.g. using a macro-averaged score. Bergem (2018) discusses
these challenges in his Master’s thesis and decided to go with macro-
average mean absolute error (MAEM), which is also used in Task 4 of
SemEval-2017 for Subtask C: Topic-based Classification on a 5-point Scale
(Rosenthal et al., 2017). While standard mean absolute error is enough to
take the order of the classes into account, MAEM has the advantage of also
being robust to class imbalance. MAEM is an error measure, and therefore
lower values are better, while the standard multi-class metrics give scores
in the range [0, 1], where higher is better.
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The previous work that this thesis builds on converted the ratings to
binary positive/negative sentiment, removing the reviews that did not fit
in either category in the process (Touileb et al., 2020). In this thesis we will
do something similar, but keeping the class that they removed as a third
class between positive and negative. This third class should not be seen as
a neutral class, since there is no such thing as a neutral review, but rather
as fair. Using three sentiment classes means to go from binary to multiclass
classification, and will from here on be called ternary sentiment analysis.
Instead of just training the models using ternary sentiment as labels, one
could also train on the original ratings from 1–6 and map those predictions
back to ternary sentiment. In this way the model could learn the difference
between ratings that are merged together into one ternary sentiment class.

The corpus we will use for this thesis is The Norwegian Review Corpus
(NoReC), and more specifically its subset, NoReCgender, both of which
will be presented in more detail in Section 2.2.1 below. Like the research
discussed in this subsection, the data set used in this thesis, NoReCgender,
contains ratings that will be used as a weak label. Since the ratings are
already there, we do not need to annotate the data manually. Unlike
Amazon Reviews, NoReCgender does not include reviews from users, but
only from professional reviewers.

2.2 Resources for Norwegian sentiment analysis

Most resources for sentiment analysis are available for English, and not
as many exist for lower-resourced languages like Norwegian. Earlier,
machine translation to English and then performing sentiment analysis on
the translation has been done (Feldman, 2013; Taboada, 2016). This thesis
will use new resources for sentiment analysis in Norwegian, described in
detail in this section.

2.2.1 NoReC

The Norwegian Review Corpus (NoReC) is a corpus of Norwegian product
reviews across a range of categories, e.g. music, restaurants and games
(Velldal et al., 2018). This work uses resources that are part of the SANT
project (Sentiment Analysis for Norwegian Text), aiming to provide training
and evaluation data for the task of sentiment analysis for Norwegian, which
was not available before this corpus was published. The corpus comprises
more than 43 000 reviews collected from several Norwegian news sources,
each of them with a score on a scale from 1–6, mainly intended to be used
for evaluating models for document-level sentiment analysis. These scores,
as mentioned above, are not manually annotated, but rather ratings given
by professional reviewers (Velldal et al., 2018).
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2.3 NoReCgender

This thesis will focus on a gender-annotated subset of NoReC, only dealing
with 4 313 book reviews of the original 43 000 total reviews in NoReC from
diverse categories. The names of the critics and authors were already
provided in the NoReC corpus, and Touileb et al. (2020) used a semi-
automated approach followed by a manual correction as well as a fully
manual approach to annotate the gender of the critics and authors. Their
semi-automated approach uses a list of male and female names, matching
them with the title and the excerpt for each review. Where the author’s
name is only in the main text of the review, not in the title or excerpt, the
fully manual approach was used.

NoReC, and therefore NoReCgender as well, contains sentiment annota-
tions on a scale from 1 to 6, representing the dots of a die (Velldal et al.,
2018). However, Touileb et al. (2020) converts this classification problem to
a binary one by selecting reviews with ratings 1, 2 and 3 as negative and
rating 6 as positive, randomly sampling in ratings of 5 as positive to balance
the distribution of sentiment. This is a similar approach to Pang and Lee
(2005), except that Pang and Lee made four classes out of five, instead of
two classes out of six.

’s ()touilebGenderSentimentCritics2020’s paper introducing NoReCgender
is part of the research on bias in textual content, specifically gender bias.
Noting that gender bias has been widely studied in NLP, they studied a
combination of two aspects which had mostly been studied in isolation;
how female and male reviewers express themselves and how works of fe-
male and male authors are described. They conclude that there are differ-
ences in how female and male book authors are positively or negatively de-
scribed, and that the gender of the critics influences the differences (Touileb
et al., 2020). Their further work on the NoReCgender data set has shown
that gender-informed models obtain higher accuracy than models without
gender information (Touileb et al., 2021).

A limitation that Touileb et al. (2020) note about their research is that
document-level sentiment analysis, as we have described above, fails to
take into account the different aspects of the review, but returns only a
thresholded aggregate. The reviewer could praise some specific aspects of
the book while giving a tepid review overall, or they could write about
characters in the book, not the book itself. These aspects can not be
distinguished when classifying sentiment at the document level.

Identifying what the gender bias in NoReCgender consists of and how it
is expressed in the texts will be a goal of this thesis. In the next section we
will describe bias in general and gender bias specifically, as well as what
implications bias has for NLP.

2.4 Classification of long documents

Document-level sentiment analysis can be seen as a subset of the more
general text classification, and thus this section will deal with some general
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aspects of text classification that are relevant for the thesis. The average
length of documents in NoReC is 463 tokens (Barnes et al., 2020), which
means that quite a few documents will be longer than BERT’s limit of 512
tokens. As a consequence of this, some care will have to be taken when
dealing with those long texts. In this section a few of the possible directions
will be outlined.

Barnes et al. (2020) present two promising complementary directions
for document-classification: transfer learning and hierarchical modeling.
Transfer learning is transformer models like BERT which creates contextual-
ized representations of text using large amounts of unlabeled text, whereas
hierarchical models uses the document structure by first building sentence
representations, before aggregating them into document representations
(Barnes et al., 2020).

Using hierarchical models is one way of dealing with long documents,
and Barnes et al. (2020) also found that hierarchical models outperformed
those that did not incorporate the document structure, with best results from
a hierarchical attention network (HAN). In addition, their results show
that while the transfer learning model mBERT performs better on short
documents, HAN performs better on longer documents, an improvement
over mBERT that seems to increase with the document length.

At a lower level, the way text classification is traditionally done with
BERT is using the CLS-token, which is the first token of every sequence
when using the BERT architecture (Devlin et al., 2019). This token is a
special classification token whose final hidden state can be used as the
aggregate sequence representation for classification tasks (Devlin et al.,
2019). Another way to do text classification is to start from the token
embeddings and aggregate them to a document representation that is the
input to a final classification layer, as done in the HAN mentioned by Barnes
et al. (2020) and presented by Yang et al. (2016). This second approach can
also be used with transformer models, but the most common way to do
text classification with transformer models is to use the embeddings of the
CLS-token.

There are ways to make transformer models more robust to long
documents as well, with research being done both into making transformers
more efficient and dealing with document length (Beltagy et al., 2020; Kitaev
et al., 2020; Zaheer et al., 2020; Park et al., 2022). The main issue with ‘vanilla
transformers’, which is mentioned in all of the articles above, is that the
quadratic complexity of the transformer self-attention does not scale to long
sequence lengths. Park et al. (2022) identify four standard approaches to
long document classification: truncating long documents, using an efficient
(linear attention) transformer model, chunking documents and selecting
key sentences most central to the classification.

Tay et al. (2021) propose a benchmark for evaluating models in long-
context scenarios and test 10 proposed models against a vanilla transformer
and local attention baseline. They find that the tested models are trained
faster and with lower memory usage than the vanilla transformer, while
getting mostly equal or better results. For text classification, Performers
(Choromanski et al., 2020) and Linear Transformers (Katharopoulos et al.,
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2020) performed best (Tay et al., 2021). Both of those models use a kernel-
based attention mechanism that scales linearly with the sequence length.
On the other hand, Park et al. (2022) found that models made specifically
for long documents require more time, do not perform consistently across
data sets and are often outperformed by the BERT baseline. It should be
noted however, that they did not test all the same models as (Tay et al., 2021),
only the Longformer model was used in both articles.

In practice, if one does not do anything to address the problem of
documents being longer than 512 tokens, the BERT tokenizer will simply
truncate the input at 512 tokens. This might give sufficient results for one’s
needs. Sun et al. (2019) find that keeping the first and last part of the text,
ignoring the middle, achieves better results than keeping only the first part
for texts longer than 510 tokens. They call this the head+tail truncation
method, which uses the first 128 and last 382 tokens of the text, in addition
to the [CLS] token that begins the text and the [SEP] token that ends it. Sun
et al.’s (2019) results also shows that the results for the head+tail are better
than the results for hierarchical methods.

2.5 Other resources for Norwegian NLP

In order to do the research for this thesis, several resources will be used.
In an NLP context, Norwegian is not a high-resource language, but
nonetheless several important resources for Norwegian NLP exist, some
of which will be outlined below.

2.5.1 BERT

In the earlier research on NoReCgender, Touileb et al. (2021) used the
NorBERT model (Kutuzov et al., 2021). At the time of writing, the
NorBERT2 model1 has been released, which is reported to have better
scores on binary sentiment analysis than the earlier NorBERT. NorBERT
is trained for Norwegian from scratch on Norsk Aviskorpus, a collection
of Norwegian news texts2 with 1.7 billion words, as well as Norwegian
Wikipedia dumps in ‘bokmål’ and ‘nynorsk’ with respectively 160 million
words and 40 million words (Kutuzov et al., 2021). NorBERT2 is also trained
from scratch for Norwegian, but on a bigger corpus: the Norwegian part of
the C4 web-crawled corpus, containing 9.5 billion words (Xue et al., 2021),
as well as the non-copyrighted part of the Norwegian Colossal Corpus
(NCC), containing 5 billion words. The NCC contains scanned books,
newspapers and reports from 1814 and onward, as well as the Wikipedia
dumps and Norsk Aviskorpus that was also used for training of NorBERT.

There are other relevant models for Norwegian using the BERT
architecture: NB-BERT (Kummervold et al., 2021), m-BERT, released by
Devlin et al. (2019) and XLM-Roberta, presented by Conneau and Lample
(2019). m-BERT is multilingual BERT, trained on 104 different languages,

1https://huggingface.co/ltgoslo/norbert2
2https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-4/
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including Norwegian, and found to create multilingual representations that
work well for cross-lingual model transfer (Pires et al., 2019). NB-BERT,
like the standard BERT, has both a base and large version available, and
improved evaluation results for several Norwegian NLP tasks compared
to NorBERT when it was released (Kummervold et al., 2021). NB-BERT
was initiated using the weights and tokenizer from the pretrained m-BERT,
which means that it has a vocabulary of around 120 000 words, four times
larger than the vocabulary of 30 000 for NorBERT, while NorBERT2 has a
vocabulary of 50 000. NB-BERT was trained on the complete NCC corpus
mentioned in Section 2.5.1, i.e. also the copyrighted parts that are not
used for pre-training of NorBERT2, in total 18.4 billion words. (Kutuzov
et al., 2021). After further pre-training on Norwegian, NB-BERT was
shown to be better than m-BERT for named entity recognition (NER) in
Norwegian, Danish, Swedish and English, using micro F1 score, while
regressing compared to m-BERT for the more dissimilar languages Spanish
and Finnish (Kummervold et al., 2021).

Kummervold et al. (2021) do not conclude whether the improved
results for Swedish and Danish comes from close linguistic similarities
to Norwegian or the possibility that some Swedish or Danish texts were
present in the corpus. However it is not a far stretch to believe that the
effect is caused by the language similarities. The improvement was also
notably higher for Danish than for Swedish (1.7 pp against 0.6 pp), which
could be caused by the fact that written Norwegian is closer to Danish than
to Swedish, and that the written language in Norway was Danish until
the beginning of the 20th century (Papazian, 2012). Some books and other
documents in the corpus are from as far back as 1814. Kummervold et
al. (2021) themselves assess that up to 1% of the corpus are texts written in
Sami, Danish, Swedish and traces from other languages, while around 4% is
written in English. Thus it is even harder to know whether the improvement
over mBERT for English comes from training on some more English data or
the linguistic similarities between Norwegian and English.

2.5.2 XLM-Roberta

XLM is an acronym for cross lingual language model (Conneau & Lample,
2019). XLM-Roberta (XLM-R), presented in 2019 by Conneau et al., was
shown to outperform m-BERT on cross-lingual classification, especially
for low-resource languages. Conneau et al. (2020) also show that XLM-
R performs on par with monolingual models for several tasks.

All of the mentioned models have some inherent bias, so it should be
interesting to investigate how they compare to each other in that regard.

2.5.3 Other resources

NorSENTLEX is a sentiment lexicon for Norwegian that was presented by
Barnes et al. (2019) where they also show that incorporating information
from sentiment lexicons using multi-task learning can improve model
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performance. The sentiment lexicon was created by machine-translating
an English lexicon and curating the results.

Another sentiment analysis resource for Norwegian based on NoReC
is NoReCfine, which is annotated with respect to polar expressions, targets
and holders of opinion (Øvrelid et al., 2020). Like NoReCgender, it is a subset
of NoReC, but NoReCfine is annotated on entity-level, not document-level.

In addition to the NoReCgender data set, there is the Talk of Norway (ToN)
data set, which also includes gender as a variable (Lapponi et al., 2018).
ToN is a collection of Norwegian Parliament speeches from 1998 to 2016,
annotated with metadata and augmented with several feature annotations.
The thesis will mainly use the NoReCgender data set, but it may be of value
to investigate if similar result may be achieved on different data sets as well.

2.6 Bias

Bias will be an integral focus of this thesis, since it undertakes to understand
the gender bias present in NoReCgender. This section will start by defining
bias in general and the several different meanings and interpretations of
bias, before gender bias in particular will be discussed.

Merriam-Webster (n.d.) gives several definitions of bias:

a: an inclination of temperament or outlook especially : a personal and
sometimes unreasoned judgment : prejudice

b: an instance of such prejudice

c: bent, tendency

d (1): deviation of the expected value of a statistical estimate from the
quantity it estimates

(2): systematic error introduced into sampling or testing by selecting
or encouraging one outcome or answer over others

Among these definitions, the first, second and third are probably the
ones meant in colloquial use of the word, whereas for statistics and machine
learning, the last two definitions are most relevant. For machine learning,
predictive bias is a relevant subset of bias, which Shah et al. (2020) define
as occurring when the label distribution of a predictive model reflects a
human attribute in a way that diverges from a theoretically defined “ideal
distribution.”, a definition similar to d(1) above. It is important to note the
different possible meanings of bias, but as mentioned in the introduction, in
this thesis we use Friedman and Nissenbaum’s (1996) definition of bias
as systems that systematically and unfairly discriminate against certain
individuals or groups of individuals in favor of others.

Even in machine learning, bias can have several different meanings. One
much used phrase is the bias-variance trade-off for supervised learning or
the bias-variance dilemma (Luxburg & Schölkopf, 2011). If we only use
linear models, every functional dependency one could discover would be
linear, they illustrate. This would, however, not result from the data, but
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would be a bias imposed by us. On the other hand, an extremely close fit
to the data tends to generalize poorly to future data, because such a fit
entails fitting random aspects of the sample in addition to the replicable
trends (Briscoe & Feldman, 2011), making it suffer from large variance. Too
much bias can lead to underfitting, whereas too much variance can lead to
overfitting.

A standard visualization of this problem is to have a data set with a
curved decision boundary, where a linear classifier will not fit the data well.
Such a classifier would have high bias, because it makes the assumption that
the data is linearly separable. This kind of bias is also called inductive bias.
On the other hand, one could imagine a classifier with a winding decision
boundary that curves around every data point, which would be a classifier
with high variance.

Apart from bias in the algorithms, there can also be bias in the data.
Some models are pretrained on very large data sets, many of them coming
from the internet without any manual corrections. That means that any bias
present in text that people write on the internet would also be present in
these large models that are trained on all of that data.

What this shows, is that bias is an inherent property of any NLP system,
both when it comes to the models used and the data it is trained on. This
bias is not a problem per se, but it could be, depending on the application.
On one side, bias can be used to explain the world around us, and in
a Bayesian framework the prior probability distribution serves as a bias
(Hovy & Prabhumoye, 2021). There can be a lot of bias in a model without
any problem, as long as the researcher is aware of it. Bias first becomes a
problem when it is used in a non-intended way with an adverse outcome,
by e.g. making a group of people systematically treated differently, like
when a machine learning algorithm prioritizes men over women.

An issue with the word bias is that it has negative connotations, like
its connection to the word ‘prejudice’, defined as a synonym of bias by
Merriam-Webster (n.d.), so bias is almost negative per definition. In reality
bias is neutral, and all models have some kind of bias. Bias might carry
useful information, so it may not be a good idea to remove the bias of a
model, even if possible (Hovy & Prabhumoye, 2021). Bias is also intrinsic
to human language. As a car with many breakdowns is more prone to
accidents, a patient with a chronic disease could have higher probability of
worsening (Garrido-Muñoz et al., 2021).

With that in mind, it is clear that NLP can have negative consequences.
Hovy and Prabhumoye (2021) list several of these, such as unequal
performance for different user groups and the proliferation of harmful
stereotypes, and they stress that NLP has a real impact on people’s lives.
Since the focus has moved from using models as a tool for understanding to
be used as predictive models, they have become hard to analyse. While
they solve their intended task, they also pick up secondary aspects of
language that may be exploited to fulfill their function, and these aspects of
language may carry a lot of subtle information about the speaker (Hovy &
Prabhumoye, 2021). With the new large neural networks, one cannot simply
look at a model weight and say how it impacts the result, and for the large
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pretrained models one cannot even control the data that has been used for
pretraining.

2.6.1 Gender bias

This thesis will not focus on applications, but rather seek to understand
a predictive model. Hopefully it will manage to discern some of the
‘secondary aspects of language’ that the model uses to make its predictions.
In the NoReCgender data set, we know that there is bias, and the goal of this
thesis is to investigate where the bias is. While there could be a lot more to
write about bias in general, the focus from here on will be gender bias, since
that is important to the investigations of this thesis.

Stanczak and Augenstein (2021) define gender bias as ‘the systematic,
unequal treatment based on one’s gender’. This means that they define
gender bias in another way than Touileb et al. (2021), who define it as: ‘the
differences in language use between persons, on the unique basis of their
genders’. Where Touileb et al. (2021) define it as the differences in the
way people of different genders act, Stanczak and Augenstein (2021) define
it as the differences in the way they are treated. In this thesis both these
aspects of gender bias will be relevant, given that male authors and critics
express themselves differently than female authors and critics (how they act),
but male and female authors are also portrayed differently by others (how
they are treated). In an earlier article on the same topic, Touileb et al. (2020)
explicitly state that combination of these two aspects is their focus of study.

Stanczak and Augenstein (2021) also provide a definition of causal
(gender) bias as ‘the disparity in the output when model is feeded with
different genders’. Using this way of measuring bias, there is clearly bias in
the NoReC data set as found by Touileb et al. (Touileb et al., 2021).

According to Hovy and Prabhumoye (2021), the five sources where bias
can occur in NLP systems are: ‘(1) the data, (2) the annotation process, (3)
the input representations, (4) the models, and finally (5) the research design
(or how we conceptualize our research)’. This thesis will mostly consider
bias in the textual data and try to find out what the difference between the
genders consists of. However, it must be kept in mind that there may be
considerable bias from the input representations and the models as well.
The difference could also come from some statistical bias in the data, rather
than from the textual content. Models might use spurious correlations and
statistical irregularities to increase it accuracy, and may thus give correct
answers for the wrong reasons (Hovy & Prabhumoye, 2021).

In this particular case, binary gender annotation is a part of the research
design that could be critiqued, because they base it on binary gender
categories annotated by the researchers, and not by the people involved
themselves. However, it is hard to do much about it from a researcher’s
point of view, given that it is how the data has been collected. You could
also ask whether the annotation itself is part of the second source of bias or
the first, since the gender was annotated by the researchers from the data
(Touileb et al., 2020) without the possibility for asking the authors and critics
about self-identified gender.
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It is also important to note that Hovy and Prabhumoye’s categories are
not normative, but a framework to describe different kinds of sources for
bias. It is not that important whether one specific source of bias is from one
category or another, but to be aware that bias can be introduced in every
step of the research process, from the data to the research design.

For example, we know that there is gender bias in the society at large,
and this will be reflected in the data we use for NLP (Natural language
processing) tasks. Several articles suggest that women use a less vague tone
when they describe sentiment (De Amicis et al., 2021; Thelwall, 2018), but
they also emphasize that this difference does not necessarily reflect actual
difference of content, but simply a difference of style. Nonetheless, this
might be a feature that distinguishes female sentiment from male sentiment,
and may make a model fit easier on female sentiment (Thelwall, 2018).

On the other hand, these results are only valid in the context in which
they were observed, and may not generalize to other contexts. In the first
of these articles, De Amicis et al. (2021) analyse the gender difference of
gender sentiment in earning conference calls and found a difference both
between how women and men convey sentiment, and how they in turn are
portrayed by others. As mentioned above, women use a less vague tone
than men, but the financial analysts in this case were less positive when
portraying a woman than a man (De Amicis et al., 2021).

Stanczak and Augenstein (2021) describe two of the core limitations of
research on gender bias as treating gender as a binary value, neglecting it
fluidity, and that most of the work is done on high-resource languages like
English. This thesis will not do anything to counteract the first issue, given
that the data set we use treats gender as a binary variable. On the other
hand, it will deal with gender bias in Norwegian, which is not one of the
highest-resource languages.

According to Stanczak and Augenstein (2021), gender bias has been
confirmed to be prevalent in literature, news, and media, and in commu-
nication about and directed towards people of different genders. All these
sources of gender bias are relevant to this thesis, especially the part about
‘communication directed towards people of different genders’.

Language can be used as a substantial means of expressing gender
bias (Stanczak & Augenstein, 2021). These biases present in the language
data will then be transported and possibly augmented by machine learning
algorithms, which, as mentioned above, will use any correlations they can
find to achieve their objective. This means that detecting, analysing and
mitigating bias is a pressing topic for NLP (Stanczak & Augenstein, 2021).
On the other hand Garrido-Muñoz et al. (2021) asks whether the main task
to be solved by the NLP systems could be damaged by the intervention
to mitigate bias. There is probably a balance to be found here; trying to
remove all bias could remove a lot of valuable information and significantly
damage the performance, whereas not doing anything to address the bias
could lead to highly unfair predictive systems.
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Chapter 3

Data

The focus of this chapter will be a deeper analysis and exploration of
the data that will be used in this thesis, i.e. the NoReCgender corpus.
The data in this corpus are book reviews published between 2002 and
2019 in 6 Norwegian newspapers: Aftenposten, Bergens Tidende, Dagbladet,
Fædrelandsvennen, Stavanger Aftenblad, and Verdens Gang. Figure 3.1 shows
how many reviews in the data set were published during each year between
2002 and 2019, and Table 3.1 shows which sources the reviews come from.

As mentioned in Section 2.1.2 on using ratings as labels, interpreting
ratings can be a challenge since different critics may not use the scale in the
same way, and the scale may also mean something different for ratings of
books by well-established authors vs. debut authors. The rating 4 out of 6
for example, may mean ‘mediocre’ when a specific critic reviews a book by
some author, but it can also mean ‘pretty good’ when another critic reviews
a book by another author, or even when reviewing the same book. With this
rating challenge mentioned, it is however believed that the different usages
of the rating scale averages out across the groups we are interested in, and
that the general trends in the corpus are still valid. In this thesis we will
interpret the rating 4 as fair and use it as a third sentiment class separate
from the positive and negative class.

rating length

source count mean std mean std

ap 13 4.31 0.86 59.69 16.72
bt 186 4.41 0.90 578.11 142.16
dagbladet 1040 4.45 0.92 508.33 197.16
fvn 563 4.56 0.99 347.54 97.71
sa 454 4.40 0.99 414.91 143.12
vg 1822 4.35 1.03 334.01 127.53

Table 3.1: Summary of the different sources with their rating and review
length distribution.
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Figure 3.1: Number of reviews per year.

3.1 Data distribution

As mentioned in the earlier Chapter 2, NoReCgender comprises 4 313 book
reviews. Among these there are in total 212 critics reviewing 2 320 authors.
The overall rating distribution is shown below in Table 3.2. NoReCgender is
split into a train, dev and test set (Touileb et al., 2021), but for the statistical
analysis in this chapter the data from all three splits is included. The split
follows a standard 80-10-10 ratio and is sorted by date, in such a way that
the training data is older than the dev and test data. Velldal et al. (2018)
write that this split by time reduces the risk of having the same item in
different splits, and presents a more realistic test scenario where models
trained on existing data are applied to

mean std min 25% 50% 75% max

rating 4.40 1.00 1 4 5 5 6
word count 395.40 172.46 18 287 360 481 1525

Table 3.2: Overall distribution of ratings and review lengths across the
corpus.

We can see in Table 3.2 that the mean is 4.4 and that at least 75% of
the reviews have a rating of 4 or higher, and at least 50% of them have a
rating of 5 or higher. The number of words used in each review is also
shown here. The numbers of words correlates positively to some extent
with the rating, with a Pearson correlation coefficient of 0.15 and p-value
2.8e-22. This correlation is also shown in a scatter plot with color-graded
density in Figure 3.2. The blue line for median review length and red
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Figure 3.2: Scatter plot showing review length by rating.

line for mean length show that rating 3 receives the shortest reviews and
rating 6 receives the longest ones. We can also see from the colored density
gradient in Figure 3.2 that the most common review has rating 5 and is
fairly short, i.e. containing 350 words or less, followed by reviews with
rating 4 and approximately the same length. There seems to be a general
trend that reviews with higher ratings use more words, as indicated by the
positive correlation. Another possible complementary interpretation could
be that ratings at the ends of the scale, i.e. 1 and 6, require more justification
than the ratings in the middle, causing those reviews to be longer. These
two explanations together could explain why reviews with the rating 1 are
longer than reviews with the rating 2 and 3, but still shorter than reviews
with rating 4, 5 and 6 on average.

If the ratings were normally distributed between the 6 different ratings,
one would expect a mean of 3.5, with as many 3s as 4s, as many 2s as 5s and
as many 1s as 6s. In reality the mean is 4.4 and the median is 5, showing a
skewed distribution with a tendency of high ratings. This is another one of
the challenges with using ratings as labels: critics are more likely to choose
books they actually want to read, meaning that reviews also can be seen
as recommendations by the critics, not only unbiased reviews. Another
part of this selection bias could be that books that publishers believe would
receive very low ratings may not be published at all, and books that are not
published will not be reviewed, a kind of survivorship bias.
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3.1.1 Gender

This thesis will deal with gender, and thus it is important that the gender
of critics and authors is correct. Some of the books that are reviewed has
more than one author, and some reviews are written by several critics. Any
review where either the authors or the critics are of both genders will be
discarded, in accordance with the approach used by Touileb et al. (2020).
The overall analyses above used all the data, but from here on only the 4 078
reviews of the original 4 313 reviews with well defined genders will be used.
Among these data there are in total 198 critics reviewing 2 208 authors. By
gender they are 124 male critics (63%), 74 female critics (37%), 1 359 male
authors (62%) and 849 female authors (38%).

When it comes to the distribution of gender of critics and authors for
each review in the data set, there are somewhat more men in both categories.
There are 2 366 reviews (58%) by male critics and 1 712 reviews (42%) by
female critics. When it comes to the authors the gender discrepancy is a bit
larger, 2 570 (63%) of the reviews were about books written by male authors,
while 1 508 (37%) of them review books written by female authors. This is
the same as the ratio of female authors to male authors reviewed, which
indicates that each female author in the data set on average gets as many
reviews as each male author, but more male authors are reviewed.

gender

critic author count ratio (%)

F
F 887 22
M 825 20

M
F 621 15
M 1745 43

Table 3.3: Total number of reviews grouped by gender of critic and author.

The review counts grouped by both critic gender and author gender is
shown in Table 3.3. This table shows that female critics review more or less
the same amount of books by male and female authors, just around 10%
more for female authors. On the other hand, male critics review almost
three books by male authors for each book by a female author they review
and 43% of the data consists of men reviewing men. Male critics’ preference
to review male authors will later be shown to have some impact on whose
gender, i.e. the critic’s or the author’s, is the most important factor for
predicting the rating.

3.2 Distributions grouped by gender

This section will investigate how different aspects of the data are distributed
across the genders. In some of the figures and tables, we will use a
shorthand notation with F for the women and M for the men, placing the
gender of the critic in front of the author gender. FM would thus mean the
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group of female critics reviewing male authors, and MF would conversely
mean the group of male critics reviewing female authors.

In Table 3.4 and 3.5 we can see that male critics on average give 0.08
higher ratings and male authors receive on average 0.11 higher ratings than
their female counterparts. This may suggest that the gender of the author is
more important for the rating than the gender of the critic. The five number
summary shows the same tendency for both groups, mostly equal except
that female critics and authors have a rating median of 4, not 5, like the
male groups have. Otherwise the five number summary is the same as
in Table 3.2 for all groups. Table 3.4 also shows that female critics write
somewhat longer reviews, 10 words longer by average.

gender rating word count

critic count mean std median mean std

F 1712 4.36 0.99 4 405.29 167.05
M 2366 4.44 0.99 5 395.49 171.73

Table 3.4: Summary of ratings and review length grouped by critic gender.

gender rating word count

author count mean std median mean std

F 1508 4.34 1.00 4 400.69 165.98
M 2570 4.45 0.98 5 398.96 172.08

Table 3.5: Summary of ratings and review length grouped by author gender.

gender rating num words

critic author count mean std median mean std

F
F 887 4.31 1.00 4 404.66 162.71
M 825 4.42 0.99 5 405.96 171.70

M
F 621 4.38 1.01 5 395.02 170.51
M 1745 4.47 0.98 5 395.66 172.20

Table 3.6: Summary of ratings and review length grouped by critic gender
and author gender.

In Table 3.6, the results are grouped by both critic gender and author
gender. The same tendency can be seen here; the female gender is associated
with lower ratings, no matter if it is the critic or author that is female, i.e.
that women both give and receive lower ratings than men. The group with
lowest ratings is female critics reviewing female authors, with a mean rating
of 4.31. On the other hand, male critics reviewing male authors give the
highest ratings, 4.47, 0.16 higher than women reviewing women.
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Figure 3.3: Bar plot of the normalized ratings for each group.

The standard deviation is more or less the same for all 4 groups, and so
is the five number summary, not shown in this table but equal to the one in
Table 3.2 except for the women reviewing women group, which again has a
lower median rating of 4 as opposed to 5 for the other three groups.

In Figure 3.3 one can clearly see that the FF group, representing women
reviewing women, has fewer of the high ratings 5 and 6, more of the low
ratings 1, 2 and 3, and especially more of the fair rating 4.

3.2.1 Sources

The ratings by gender also vary among the different sources of the data
set. Since AP only has 13 reviews with well defined gender, as shown in
Table 3.1, it is excluded from the analysis grouped by the sources.

In Figure 3.4 and 3.5, we can see that mean rating by gender differs
across the gender combinations, especially for Fædrelandsvennen (fvn) where
the mean rating for MM is 0.64 higher than for FF. The review lengths, on the
other hand, seem to differ more by source than by the gender combination.

3.2.2 T-tests

In previous work on gender bias, Lassen et al. (2022) have used literary
reviews ‘to identify systematic components that can be attributed to bias’.
Their work is relevant for this thesis since they use use book reviews from
Denmark, which is another Scandinavian country that is similar to Norway.
Lassen et al. (2022) did not have access to the text of the reviews, but
their analysis of the metadata shows the same tendencies as the work of
Touileb et al. (2020) on NoReCgender. Lassen et al. (2022) used t-tests to
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Figure 3.4: Line plot showing mean ratings grouped by source and genders.
The numbers in the plot is the support for each data point, i.e. the number
of ratings from which the mean is calculated.

Figure 3.5: Line plot showing mean review length grouped by source and
genders.
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investigate whether there are statistically significant differences between
the four gender combinations. Like they found in their data set, the t-
tests performed in this section shows some significant differences in ratings
given and received between the genders at a significance level of 0.05. In
order not to make too many assumptions about the distributions, a Welch
t-test was used, which does not assume the standard deviation is equal for
the different distributions. The tests were chosen to be one-sided, testing
whether female critics and authors are associated with lower ratings than
male critics and authors, not only whether their ratings are different.

The t-tests on the ratings grouped by critics and the one grouped by
authors had p-values of 5.3e-3 and 2.4e-4 respectively, clearly significant
results at a significance level of 0.05 and thus the zero hypothesis of equal
means for both groups was rejected. We conclude that there is sufficient
evidence to say that female critics give lower ratings than male critics and
that female authors receive lower ratings than male authors. For the ratings
grouped by both critic and author gender at once, there were 6 different
tests, the results of which are shown in Table 3.7.

alternative hypothesis p-value

FM < MM 0.14
MF < FM 0.22
MF < MM 0.032
FF < MM 6.9e-5
FF < FM 0.011
FF < MF 0.091

Table 3.7: Results of Welch t-tests on the six combinations of gender groups.
The first letter of the two-letter combination is the critic gender and the
second is the author gender. Thus FM < MM is the hypothesis that female
critics give male authors lower ratings than male critics give male authors.

While both the t-tests when just grouping by one gender variable at a
time were significant, when grouping on both gender variables, Table 3.7
shows that when keeping the author gender the same and just changing the
gender of the critic, the t-tests do not give significant results and the null
hypothesis cannot be discarded. This means that female critics reviewing
male authors do not give statistically significantly lower ratings than male
critics reviewing male authors do (p-value 0.14), nor do female critics
reviewing female authors give statistically significantly lower ratings than
male critics reviewing female authors do (p-value 0.091). However, all
the tests where the critic gender is held the same and the author gender is
changed show significant results, as can be read from Table 3.7.

3.3 Outliers

The number of ratings for each critic is a long-tailed distribution. While
most critics have reviewed quite few of the books in the corpus, some critics
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Figure 3.6: Histogram showing how many books each critic has reviewed.

have written a lot of reviews, as shown in Figure 3.6 and Table 3.8.

count mean std min 25% 50% 75% max

198 20.61 45.21 1 1 3 20 362

Table 3.8: Statistical summary of how many books each critic in the data set
has reviewed.

The patterns that are of interest to the research of this thesis are general
and systematic differences at group level, and not individual differences
between the critics. If some of the critics who write lots of reviews are
biased, that could impact the data a lot, giving an illusion of general validity
for some trends, even though they may only describe how one critic writes
reviews and give little insight into literary reviews in general. For this
reason we did some additional analysis of the critics with at least 50 reviews.
They are 25 people, 16 male and 9 female critics who account for 2743
reviews, i.e. 67% of the total number of reviews. 1075 of them are written
by the 9 female critics and 1668 of them by the 16 male critics.

Sindre Hovdenakk, who has written 362 reviews for VG with a mean
rating for female authors of 3.64 is close to being an outlier, as indicated by
the box plot in Figure 3.7. He is also the critic with most total reviews and
the male critic with most reviews of female authors, even at only 56 such
reviews versus 306 reviews of male authors. The reviews he has written
comprise more than 8% of NoReCgender. His mean rating of male authors
is 4.36, 0.72 higher than for female authors, but still lower than the overall
average rating of 4.41. Among these 25 critics Hovdenakk is also the one
who gives female authors the lowest ratings. Morten Abrahamsen is also
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Figure 3.7: Box plot showing the mean ratings for the 25 most prolific critics
by author gender.

almost such an outlier, with a mean rating of 3.69 for female authors, against
4.12 for male authors. However, he has only reviewed female authors 13
times, and male authors 59 times.

To better understand the possible impact of the most prolific critics, the
next section compares the three critics with most reviews.

3.3.1 Rating comparison of the three most prolific critics

In order to see the difference between the three critics with most reviews
visually, the normalized rating distribution is put into a line plot in
Figure 3.8.

We can see in Figure 3.8 that Fredrik Wandrup, in blue and orange,
gives comparatively high ratings, where e.g. almost 70% of the books of
male authors that he reviews receive a 5 and the same goes for more than
half of his reviews of books by women. Marie L. Kleve, in green and red,
gives almost the same ratings to both male and female authors, whereas
Hovdenakk’s ratings of female authors in violet are clearly to the left of
the other two critics. When it comes to the rating 6, Hovdenakk has the
highest ratio of the three for male authors, and the lowest ratio for female
authors. While Hovdenakk gives rating 4 at more or less an equal rate to
both genders, Figure 3.8 shows that Hovdenakk gives male authors rating
5 at almost double frequency than for female authors, and male authors
receive the highest rating 6 several times more often from him than female
authors do. Of course the picture is the opposite for the lower ratings.
Considering how Hovdenakk has written such a large part of the reviews in
the corpus and with such a large difference for male and female authors, we
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Figure 3.8: Line plot showing normalized ratings for the three most prolific
critics grouped by author gender.

do some analysis of the data where we exclude his reviews in Section 3.3.2
below.

3.3.2 T-tests without Hovdenakk

In order not to allow one person to skew the whole corpus, the same
analyses have been done on the data excluding reviews made by
Hovdenakk. The results grouped by critic gender and author gender
independently are shown in Table 3.9 and 3.10. The t-tests still show
significant differences for these groups, with p-values of 4.6e-4 and 1.4e-
4, respectively.

critic count mean change std median

F 1784 4.36 0.0 0.99 4
M 2102 4.48 0.035 0.97 5

Table 3.9: Statistic summary of ratings grouped by critic gender with change
of mean without reviews by Sindre Hovdenakk.

For all the four groups, however, shown in Table 3.11, there are
some changes, indicating that removing Sindre Hovdenakk changes which
groups have significant t-tests. After removing Hovdenakk’s reviews from
the data, the alternative hypothesis MF < MM, i.e. the hypothesis that
male critics give female authors lower ratings than they give to male authors
is no longer significant at significance level 0.05, with a p-value of 0.23,
shown in Table 3.12.
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author count mean change std median

F 1554 4.37 0.027 0.99 4
M 2291 4.46 0.012 0.97 5

Table 3.10: Statistic summary of ratings grouped by author gender with
change of mean without reviews by Sindre Hovdenakk.

gender rating

critic author count mean change std median

F
F 887 4.31 0.0 1.00 4
M 825 4.42 0.0 0.99 5

M
F 565 4.45 0.073 0.99 5
M 1439 4.49 0.022 0.96 5

Table 3.11: Statistic summary of ratings grouped by critic gender and author
gender with change of mean without reviews by Sindre Hovdenakk.

alternative hypothesis p-value

FF < MM 1.17e-5
FF < FM 0.0107
FF < MF 3.40e-3
FM < MM 0.0559
FM < MF 0.271
MF < MM 0.230

Table 3.12: Results of t-tests without Hovdenakk’s reviews.
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The hypothesis FF < MF, that female critics give female authors lower
ratings than male critics do, is now statistically significant, with a p-value of
3.40e-3. This means that while the overall gender effects where female critics
and authors correlate to lower ratings are still the same, after removing
Hovdenakk the gender of the critic seem to have relatively more importance
than the gender of the author. On the other hand, the hypothesis FM <
MM, that female critics give male authors lower ratings than male critics
do, is still not significant, with a p-value of 0.056. What this means is that,
were Hovdenakk not part of the data set, male critics would not statistically
significantly discriminate against female authors, whereas on the other
hand, female critics would give female authors statistically significantly
lower ratings than male critics do. These new results show how large
impact one person can have on the corpus, and might put to doubt any
generalizations of the effects we see here. But despite Hovdenakk giving
female authors lower ratings on average, his reviews are still part of the
corpus, and excluding them because he is an outlier in this regard might be
seen as cherry-picking the data to get the results we want. For this reason,
none of his reviews will be excluded in the further analysis, and this section
may simply be regarded as a warning of the impact one outlier can have on
the overall data statistics in a small data set like NoReCgender.

3.4 Reviews of the same book by critics of different
gender

An issue with the previous analyses in Section 3.1.1 and Section 3.3 is that
the critics could be reviewing only different books altogether, and that could
in large part be why the ratings are different for each gender. By assuming
that reviews of a given author within the same year regard the same book,
one can find multiple reviews of a single book by several critics and compare
the results by gender. We also set the constraint that the books chosen for
this must be reviewed by critics of both gender. Using this method, 836
reviews of 307 books have been found. Of the reviews, 403 were made by
female critics and 433 by male critics, whereas 108 of the books were written
by female authors and 199 by male authors, nearly the double, and male
authors also get almost the double amount of total reviews in this case; 550
for them vs. just 286 for the female authors.

3.4.1 T-tests

As in earlier cases in Section 3.2.2 and Section 3.3.2, Welch t-tests were
performed on the groups. For the critic gender and author gender groups
by themselves, the p-values for alternative hypothesis F < M, i.e. that
women give and receive lower ratings, are 6.0e-4 and 3.5e-2 respectively,
both significant at significance level 0.05. Table 3.13 and Table 3.14 show
that the means for the critic gender groups are 0.20 lower for female critics
and 0.13 lower for female authors, so that unlike earlier, the gender of the
critic seems to have the larger impact on the rating.

31



rating

critic count mean std min 25% 50% 75% max

F 407 4.41 0.87 2 4 4.5 5 6
M 438 4.61 0.94 1 4 5 5 6

Table 3.13: Rating summary grouped by critic gender.

rating

author count mean std min 25% 50% 75% max

F 286 4.43 0.92 2 4 4.5 5 6
M 550 4.56 0.91 1 4 5 5 6

Table 3.14: Rating summary grouped by author gender.

gender rating

critic author count mean std min 25% 50% 75% max

F
F 146 4.32 0.87 2 4 4 5 6
M 257 4.47 0.88 2 4 5 5 6

M
F 140 4.56 0.96 2 4 5 5 6
M 293 4.63 0.93 1 4 5 5 6

Table 3.15: Rating summary grouped by critic gender and author gender.

test p-value

FF < MF 0.013
FF < FM 0.047
FF < MM 2.5e-4
MF < MM 0.22
FM < MM 0.016

Table 3.16: Welch t-tests for the data isolated on books reviewed by critics
of both genders.
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The statistical summary for all the 4 groups are shown in Table 3.15 and
the results of the t-tests on the same data in Table 3.16. Unlike for the other
t-tests in Section 3.2.2 and 3.3.2, here all tests are significant except one, the
MF < MM test, on the hypothesis that male critics rate books by female
authors lower than books by male authors. This result is interesting, because
having isolated only reviews of books which has at least one review by a
critic of another gender, we can be quite sure that the difference in ratings
between genders does not only occur since male and female critics review
different books, but are actually giving the same books different ratings.
This isolated analysis also differs from the other analysis by the fact that
the gender of the critic has a much larger impact here on the rating than
the gender of the author. Female critics give 0.195 lower ratings than male
critics, while female authors receive 0.12 lower ratings than male authors.
Looking at all the data together in Table 3.4 and 3.5, the numbers were
4.36 and 4.44 for different critic genders, just 0.08 difference, while they
were 4.34 and 4.45 for different author genders, a difference of 0.11. it is
not immediately clear why there is such a difference between what gender
has more impact for the data subsets. It could be that books have to be
deemed of at least a certain quality in order to be reviewed by several critics,
thus possibly lending the gender of the author smaller impact after this
‘screening’ has already been passed.

3.5 Discussion

Our results of the data analysis in this chapter clearly show that female
gender is associated with lower ratings, both for female critics and female
authors. Despite being statistically significant differences, they are still only
correlations, and we cannot conclude that there are causal relations between
the gender of either critic or author and the ratings they give or receive. This
means that we cannot say for certain if there is gender bias in NoReCgender.
Saying there is gender bias would be to argue that, were the genders of the
authors switched and the text of the books the same, the critics would on
average still give higher ratings to the ‘male’ authors, which would have
indicated that gender itself matters for the judgement of ratings. Lassen
et al. (2022), having found the same correlations in their data, add the
same caveats, writing that it could be that the perceived gender bias is
confounded with expertise bias, i.e. that specific literary language leads to
higher appreciation among the critics. So if women in general write more
genre literature, then the observed difference may stem from a difference in
complexity of linguistic features (Lassen et al., 2022). On the other hand, one
could argue that this by itself also would constitute a bias against women, if
genres that are predominantly written by women are associated with lower
literary value or lower linguistic complexity.

When it comes to the female critics giving lower rating than men, one
could also ask if they simply review other books than the male critics do,
books that the men also would have given the same, lower rating on average.
This is an explanation that differs from the gender bias explanation, where
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female critics would give lower ratings than men simply because they
are women. We tried to control for this aspect in the previous section,
Section 3.4, making sure we only analysed books reviewed by at least one
male and one female critic, but any of those books could still be reviewed
by ten men and one woman. NoReCgenderis also not a large corpus, and
we cannot be sure if the book reviews it contains are representative of
Norwegian book reviews in general. Nevertheless, gender bias could
perfectly well be the explanation for some of the observed differences, we
just cannot know for certain.

34



Chapter 4

Models and experiments

In addition to statistics on the data, we want to do machine learning
experiments to investigate gender and sentiment further. In order to do
that, we require some appropriate models. In Chapter 2, we introduced
NorBERT and NorBERT2, as well as XLM-Roberta. NorBERT2 will be the
main transformer model used withing the thesis, but we also include results
from XLM-RobertaLarge for comparison. Despite XLM-Roberta showing
good results, it is a much larger model with a vocabulary of 250 000 words
(Conneau et al., 2020), compared to 50 000 words in NorBERT2, and it also
has a large number of weights. This makes XLM-Roberta less viable for
some of the experiments where models are trained several times in a row
and for interpretability methods.

We also establish baselines for our classification tasks: author gender
classification, critic gender classification, and sentiment classification by
using three different linear BoW models. These are two support vector
machines: a support vector classifier (SVC) and a support vector regressor
(SVR), and lastly a Ridge regressor. Support vector machines have been
shown to give consistently good results on text classification (Barry, 2017),
and are therefore included as a baseline. Ridge regression is included
since it is similar to standard linear regression, but uses the l2-norm as
a regularization penalty. This penalty makes the model’s coefficients more
robust to collinearity (McDonald, 2009), which is important since the TF-
IDF features from the review texts used as input to the models are not
independent, as they represent the words used in the texts.

This chapter will begin with describing the computational environment,
the implementation details and the performance of the models, before doing
some experiments on training models with different variations of the input
data.

4.1 Computational environment

Training of deep neural networks is not possible without the appropriate
hardware. In particular one needs accelerators like GPUs to make training
of transformer models tractable. We used University of Oslo’s Machine
Learning Infrastructure (ML Nodes), provided by University Centre for
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Information Technology (n.d.). These ML nodes are part of University of
Oslo’s (2020) AI hub-node project, which aims at building up IT resources and
competence in using these to support machine learning, deep learning and
data science in research and education at the University of Oslo. There
are eight available ML nodes with slightly different specifications. For
the training of our transformer models we have used the seventh node1,
which contains 32 AMD EPYC 7282 16-Core Processors, 128 GiB RAM and
8 NVIDIA GeForce RTX 2080 Ti GPUs (University of Oslo, 2023), each with
11 GiB of memory. We have been able to restrict our resource usage to one
of the available eight GPUs and we trained our BoW models on a personal
computer with an Intel Core i5-8250U processor and 8 GB RAM.

4.2 Implementation details

We trained the baseline models using Scikit-learn (Pedregosa et al., 2011),
and the transformer models using PyTorch, introduced by Paszke et al.
(2019). Before going into details on each specific model, we describe
implementation details and some factors that are shared between the
baseline and transformer models.

The first of these factors is the pre-defined train/dev/test split. Even
though it could be useful to do cross-validation on the BoW models in
particular, to ensure soundness of the results, we chose to strictly follow
the pre-defined splits. The data was originally split in this way to ensure
replicability, and as we write in Section 3.1, citing Velldal et al. (2018),
having the data split by timeline makes for a more realistic test scenario. The
second shared factor also relates to the data, but now more specifically to
its imbalanced nature, which compels us to use class-balanced loss, described
in Section 4.2.1 below.

4.2.1 Class-balanced loss

As we show in Chapter 3, the data for all three classification tasks is
imbalanced, especially the ratings on the scale from 1 to 6. In order not to
lose a lot of performance due to this, one needs to find a way to balance the
classes during training. Possible directions for this are downsampling the
large classes, upsampling the small ones or weighting the classes differently,
using e.g. the inverse class frequencies as weights. Cui et al. (2019),
however, argue that such re-samplng or inverse weighting gives poor
results and formulate the Class-Balanced Loss to address these problems.
They introduce a weighting factor inversely proportional to what they call
the effective number of samples. The idea of the effective number of samples
is to capture the diminishing marginal benefits of using more data points
in a class, since as the number of samples grow, it gets more likely that
newly added samples are near-duplicates of existing samples (Cui et al.,
2019). This means that their loss weighting would penalize large classes

1ml7.hpc.uio.no
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less heavily than weighting by inverse class frequency does. In practice,
Cui et al. (2019) write the class balance as:

CB(p, y) =
1 − β

1 − βny
L(p, y),

where ny is the number of samples in the ground-truth class y, p is
the predictions for class y, y is the true labels for class y, and β is
a hyperparameter. Since the class-balanced loss simply consists of a
weighting factor for the original loss L, it is model independent. Setting
β = 0 is the same as using no re-weighting and as β approaches 1, the
re-weighting approaches re-weighting by inverse class frequency. Cui et al.
(2019) find that β = 0.999 and β = 0.9999 are reasonable values for β.

We use mostly β = 0.9999 when re-weighting the imbalanced classes.
Using class weighting like this is of course only possible for the classification
models, and not for the regression models.

4.2.2 BoW models

The BoW models we used were, as listed in the introduction to this chapter:
two support vector machines, i.e. an SVC and an SVR, and a Ridge regressor
from Scikit-learn (Pedregosa et al., 2011). To get the results we show
below in Section 4.3, we chose to use linear kernels in both of the support
vector machines. Using linear kernels ensures interpretability and efficient
training. For the SVR, all the other parameters were set to the Scikit-learn
default. Apart from the linear kernel, the SVC parameters were also set to
the default, except for using the class-balanced loss described in Section 4.2.1
as class weights. For gender classification, we set β = 0.9999, for ternary
sentiment classification, β = 0.9993, and for classification of the rating from
1 to 6, we set β = 0.9. The ratings are so imbalanced and the number of
training samples so few, that setting β > 0.9 did not lead to good results.
For the Ridge regressor we set the regularization parameter α = 0.1 instead
of the default α = 1 and otherwise left the default parameters unchanged.

To create the BoW representations of the reviews, we use a TF-IDF
vectorizer from Scikit-learn, to which we pass an argument to remove
accents and perform character normalization, and we convert all the input to
lowercase. For author gender classification, we use only unigrams, while we
use both unigrams and bigrams for critic gender classification and sentiment
analysis. When adding bigrams as well, we set the minimum document
frequency to three, in order not to fill the BoW representation with bigrams
that only occur once or twice in the training data.

4.2.3 Transformer models

The current BERT models are limited to 512 input tokens, as we describe in
Chapter 2. In order to address this problem, we have chosen two different
truncation methods, forgoing more complex hierarchical methods. We use
either head-only tokenization, keeping the first 510 tokens or head+tail
tokenization, keeping the first 128 and the last 382 tokens, depending on
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the classification task. For author gender classification, we use head-only
tokenization, while we use head+tail tokenization for the other tasks. The
reason for difference will me made more apparent in Section 4.4.1 and
Section 5.2.5.

We also use several methods that reduce the memory footprint of the
training of the transformer models and increase training speed, in order
to fit all the experiments on one GPU. The techniques used were gradient
accumulation, gradient checkpointing, mixed precision training, and using
an 8-bit Adam optimizer, introduced by Dettmers et al. (2022), insread of
the standard 32-bit AdamW optimizer. These techniques were used for all
the experiments we performed using transformer models.

Gradient accumulation

Gradient accumulation means to sequentially send smaller subsets of each
minibatch (called microbatches) through the network, accumulating the
gradients until the whole minibatch has been processed. This reduces the
memory used during training, allowing us to increase the overall batch size
to numbers that would not fit into memory, while increasing the training
time slightly (Sohoni et al., 2022).

Gradient checkpointing

Gradient checkpointing also reduces the amount of activation memory,
by only storing a subset of the network activations instead of all of the
intermediate outputs. This saves memory, but also increases computation,
since the activations that are not stored must be computed during the
backward pass, write Sohoni et al. (2022). Using this technique, they
managed to reduce the memory required for the activations by a factor
of 5.8, while increasing the computation required by 30%.

Mixed precision training

Using mixed precision training is primarily to increase the speed of the
training, but it can also reduce memory requirements (Micikevicius et al.,
2018). The weights of a model are usually stored as 32-bit floating point
numbers (fp32). Mixed precision training requires an additional copy of
the weights as 16-bit floating point numbers (fp16), increasing the memory
requirements for the weights themselves. This increase notwithstanding,
Micikevicius et al. (2018) argue that the memory consumption during
training is dominated by the activations of each layer, not the model weights,
and demonstrate that overall memory consumption using mixed precision
training is roughly halved.

In our case, the NorBERT2 weights takes up just below 500 MiB of
memory. During training the memory consumption can easily exceed
10 GiB of the 11 GiB available on the GPU, showing that the weights
themselves do not consume the most memory.
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8-bit Adam optimizer

Stateful optimizers, like Adam, can accelerate optimization compared to
plain stochastic gradient descent, but use more memory, which could
otherwise be used for model parameters, write Dettmers et al. (2022).
They introduce optimizers that use 8-bit statistics while still maintaining
the performance of using 32-bit optimizers without requiring any change
in hyperparameters. Dettmers et al. (2022) note that 8-bit optimizers
only reduce the memory consumption compared to other optimizers,
proportional to the number of model parameters. This means that the 8-bit
optimizer we use will have a larger effect on XLM-RobertaLarge, containing
around 2.1 GiB of model parameters, than it does on NorBERT2, with 500
MiB of parameters.

Hyperparameters

Since NorBERT2 and XLM-Roberta are different models and gender
classification and sentiment classification are different tasks, we used
different hyperparameters. In general, for NorBERT2 we used a batch size
of 16 and 8 gradient accumulation steps for an effective batch size of 128.
For XLM-Roberta, we used batch size 4 and 8 gradient accumulation steps,
for an effective batch size of 32. We used a weight decay of 0.003, learning
rate 2e-5 and a cosine learning rate scheduler with a warm-up ratio of 0.3
for all experiments. For our gender classification tasks, we used binary
classification with binary cross-entropy loss, allowing us to set the weight
of one class. Using the class-balanced loss described in Section 4.2.1, we set
β = 0.9999 to re-weight the male class in the loss function.

For sentiment analysis we used NorBERT2 to train models with both
classification and regression heads, while we used only regression for
XLM-Roberta. In order to re-weight the classes for ternary sentiment
classification we set β = 0.999, and we did not re-weight the classes for
rating classification. For the regression models, re-weighting can not be
done in this manner.

4.3 Model performance

In large, the prediction tasks that we perform in this thesis are binary
gender classification and multiclass sentiment classification. The gender
classification is separated into author gender classification and critic gender
classification, while for sentiment we predict the ternary sentiment that we
introduce in Section 2.1.3. From the original ratings of 1–6, we categorize
ratings 1–3 as negative, rating 4 as fair and rating 5–6 as positive.. Despite
the negative class comprising the largest range, it contains the least amount
of reviews, only 17% of the total, followed by the fair class at 31% and
the positive class, which contains 52% of the reviews. For sentiment
classification, we also show results for the classification of the rating, to
demonstrate the impact of changing back from 3 to 6 ordinal classes. Finally
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we include converted sentiment, which is the predictions for ratings converted
to ternary sentiment predictions.

Getting the highest predictive performance was not the focus of this
thesis, but rather interpreting the models, so we did not do any rigid
hyperparameter optimization like grid search or more advanced methods
for transformer models. However, we did use our knowledge of text
classification to set reasonable hyperparameters that have given decent
results. In order to interpret the models, it is also necessary to have a certain
performance above random chance, otherwise there is no signal on which
to explain the predictions.

We first describe the performance results for the BoW baselines and then
the results for the transformer models. We show both accuracy and macro f1-
score as our performance measures. Since the gender classification is binary
and those classes are not extremely imbalanced, these two performance
measures show more or less the same, with the f1-score being slightly lower.
However, since the sentiment classification is both multiclass and more
class-imbalanced, it is useful to have the macro f1-score to show how well
the models predict across all classes, not only the largest ones. Since the
positive class is the largest, a ternary sentiment classifier could achieve 53%
accuracy on the development set simply by predicting the majority class,
positive, for all samples. That would only give a macro f1-score of 33%,
though. Similarly, for rating classification, one could achieve 43% accuracy
on the development set by predicting rating 5 for all samples, but the macro
f1-score would then be only 17%. Touileb et al. (2021) also used f1-score
in their results of sentiment and gender classification on NoReCgenderwhich
eases the comparison between our work and theirs.

4.3.1 Baseline

Table 4.1 shows the performance of the baseline models for classification
of author and critic gender. The difference between models here is very
small, less than 1.5 pp for any task and split. On the development set, the
SVC performs best on author gender classification and the SVR performs
best for critic gender classification. It is interesting to note that on the test
set, Ridge regression performs best fora all both tasks and performance
measures. The most striking feature to notice from Table 4.1, however, is
that the performance on critic gender classification increases by around 8 pp
from the development set to the test set. The cause of this is not clear, but it
could be because the distribution of critic gender for the development set is
different from the distribution in the training set, and that the distribution
in the test set might be more similar to the training set distribution. In the
training set 60% of the reviews are written by male critics, whereas 48% are
written by male critics in the development set.

In a similar manner Table 4.2 shows the performance for sentiment
classification across the three tasks listed above in Section 4.3. We can see
that for ternary sentiment classification, the classifier SVC does better than
the regression models by a fair margin. For classification of the rating on
the ordinal 1–6 scale, the regression models are better, especially for macro
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dev test

gender metric SVC SVR Ridge SVC SVR Ridge

author
accuracy 90.6 90.1 90.1 88.8 89.8 90.0
f1-score 90.3 89.7 89.7 88.4 89.4 89.6

critic
accuracy 75.7 75.9 75.4 83.3 83.0 83.5
f1-score 75.6 75.9 75.4 82.8 82.4 82.8

Table 4.1: Performance on gender classification for the three used BoW
models, support vector classifier, support vector regressor and Ridge
regressor, with the best scores for each split and task highlighted.

f1-score where Ridge regression outperforms the SVC by 11.7 pp on the
development set and by 8.2 pp on the test set. Ridge regression also has
best results for converted sentiment, i.e. the rating predictions transformed
back to ternary sentiment predictions, but still not quite as good as the
original results of the SVC for the ternary sentiment. It seems that if one
wants to classify ternary sentiment, it is best to use a classifier, but for six
ordinal classes it is better to use regression.

dev test

sentiment metric SVC SVR Ridge SVC SVR Ridge

ternary
accuracy 66,7 60.5 61.2 68.2 63.8 64.1
f1-score 61.2 49.7 53.0 60.7 52.7 54.4

rating
accuracy 51.5 54.7 54.2 55.3 57.3 59.0
f1-score 26.5 30.2 37.2 34.6 27.2 42.8

converted
accuracy 60.5 64.3 65.3 64.6 66.7 67.2
f1-score 42.9 54.4 60.5 47.4 54.8 59.2

Table 4.2: Performance for the three used BoW models, support vector
classifier, support vector regressor and Ridge regression for sentiment
classification, with the best scores for each split and task highlighted.

4.3.2 NorBERT2 and XLM-Roberta

When it comes to the transformer models, the results shown here will be for
NorBERT2 and XLM-Roberta. Using these two models can give indications
of the power of a large cross-language model compared to a model trained
from scratch on Norwegian text, and NorBERT2 is the model we use for
further experimentation and interpretation.

Gender classification

Table 4.3 shows that NorBERT2 does better than XLM-Roberta on the
development set for both gender classification tasks, but XLM-Roberta does
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better on the test set. Like the BoW models, there is a large increase in
performance for critic gender classification between the development and
test set, especially for XLM-Roberta, with performance increasing by more
than 11 pp. It is also interesting to see that while NorBERT2 does better than
the BoW models for critic gender classification on the development set and
XLM-Roberta does better on the test set, all the BoW models achieve higher
performance than NorBERT2 for critic gender classification on the test set.
This can be useful, since the BoW models are orders of magnitude smaller
than the transformer models and consequently require orders of magnitude
less time to train.

NorBERT2 XLM-R

gender metric dev test dev test

author
accuracy 97.6 95.6 96.6 96.6
f1-score 97.5 95.5 96.5 96.5

critic
accuracy 79.3 82.3 73.3 84.7
f1-score 79.2 82.2 73.1 84.2

Table 4.3: Performance for gender classification between NorBERT2 and
Roberta XLM.

Sentiment classification

For sentiment classification using transformer models, we use the same
three tasks as for Table 4.2, i.e. ternary sentiment, rating and converted
sentiment, but we do not train regression models on ternary sentiment
directly. Table 4.4 shows these results. We can see that XLM-R does best for
most of the tasks, except that it has quite a bit lower macro f1-score for the
rating classification, where it is around 15 pp behind NorBERT2. And while
NorBERT2 regression achieves better result for rating classification on the
development set, NorBERT2 classification performs better on the test set.
Nevertheless, NorBERT2 regression outperforms NorBERT2 classification
on converted sentiment, and its converted sentiment results are also better
than the results of the classification model trained directly on ternary
sentiment across the splits and performance measures. XLM-R does better
than both NorBERT2 models on converted sentiment, but it seems it has
exchanged some of that performance for a low macro f1-score on the rating
classification.

4.3.3 Comparison to previous work on NoReCgender

Touileb et al. (2021) also trained transformer models on NoReCgender, but
they used NorBERT, since NorBERT2 was not released yet at the time.
Since they used binary sentiment, not ternary sentiment, the sentiment
classification will be hard to compare, but the gender classification
performance can be compared easily. Their standard NorBERT baseline
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NorBERT2 XLM-R

classification regression regression

sentiment metric dev test dev test dev test

ternary
accuracy 74.0 72.1
f1-score 70.1 68.0

rating
accuracy 62.7 64.1 63.9 64.3 65.1 65.5
f1-score 45.3 49.3 57.8 47.3 41.3 34.5

converted
accuracy 74.7 72.3 74.5 74.5 77.3 76.9
f1-score 65.9 66.7 72.0 72.5 73.8 73.7

Table 4.4: Performance for sentiment classification between NorBERT2 and
Roberta XLM, and using either a classification or regression head.

achieved 89.6% f1-score for author gender classification on the development
set and 90.1% on the test set. This is close to our results using BoW models,
shown in Table 4.1, and our transformer models achieve 5 pp or more higher
performance across dev and test.

Touileb et al.’s (2021) results for critic gender classification were 70.4%
and 63.8% on the dev and test set, respectively. This is where the differences
between the performance of our models and theirs are biggest, especially
on the test set, where our Ridge model achieves 82.8% macro f1-score and
XLM-Roberta 84.2% macro f1-score.

As mentioned, ternary sentiment scores cannot be compared to binary
scores easily, but if one removed the fair class from the picture and
computed the macro f1-score of only the negative and positive class, XLM-
Roberta would have a macro f1-score of respectively 77.5% and 79.6% for
the dev and test set. This is close to, but not quite reaching the results of
Touileb et al. (2021) at 82.5% and 80.7% mean f1-score for binary sentiment
classification using their NorBERT baseline model.

Given these differences in results it seems likely that NorBERT2 is a
more powerful model than its predecessor, NorBERT. In the following
section, we describe some experiments which regard BERT’s document
length limitation and the effect of gender on model predictions.

4.4 Experiments

Since BERT is capped at 512 tokens, some analysis was done to investigate
the impact of truncating the input texts to different lengths before passing
them to the model. This was done both with NorBERT2 and with simple
BoW models in order to compare performance and to see how much the
BoW models gain when going from a cap of 512 tokens to using all of them.
This section contains the result of these analyses.

This section also includes investigations into two of the key questions
of the thesis; what is the impact of gender normalization and what is the
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impact of adding gender metadata.

4.4.1 Effect of text truncation

The text lengths for truncation that were chosen were the powers of two
from 8 to 512 inclusive for NorBERT2. In addition to the mentioned
truncation lengths, the BoW models were also at the end trained using the
whole texts, to see if there was a big difference between using only 512 and
all the tokens. This is why Figure 4.1 has one more data point for the BoW
models than for NorBERT2 at the right. Figure 4.1 shows how much the
truncation impacts the performance at different text lengths. We can see that
NorBERT2 mostly achieves better accuracy than the BoW SVC, even at low
truncation thresholds. This is the case for sentiment analysis and for author
gender classification, but for critic gender classification the BoW model is
performing on par with the BERT model, except at 128 tokens. For the BoW
models, increasing from 256 to 512 tokens gives better performance gains
than going from 512 tokens to the whole text, suggesting that the 512 token
limit of BERT does not significantly affect its performance. However, the
reason for the low increase from 512 tokens to the whole text could also be
that just around 20% of the texts are actually longer than 512 words. On the
other hand, since NorBERT2 uses a subword tokenizer the number of BERT
tokens will be larger or equal to the number of words. Because of this, 45%
of the reviews contain 512 or more BERT tokens. Furthermore, even though
XLM-Roberta is not used for any more experiments in this thesis, it can be
of interest to note that since it uses a multilingual subword tokenizer, 60%
of the reviews contain 512 or more XLM-Roberta tokens.

One can see in Figure 4.1 that for BERT, the critic gender classification
performance is actually hurt when going from 128 to 256 tokens. This
is actually a significant performance drop of 5%. Interestingly, the critic
gender classification also shows a performance dip when going from 32 to
64 tokens both for BERT and BoW, and having just the 128 first tokens is
better for BERT’s performance than having all the first 512 token, suggesting
that the text contains little signal for this specific class. Critic gender is,
however, BERT’s best performing classification task when having just the
first 8 tokens.

Another feature to note from Figure 4.1 is that while author gender
classification seems to have decreasing marginal benefit each time the
truncation length is doubled, both models’ sentiment classification get their
largest absolute performance increase of 6% when going from 256 to 512
tokens. This could suggest that the critics mostly use the first and middle
part of the text to describe the authors, whereas they place most of the
sentiment bearing parts of their reviews at the very beginning or towards
the end of the text. We can also see that the NorBERT2’s critic gender
classification performance increases when going from 256 to 512 tokens.
These performance increases towards the end of the texts for sentiment
classification and critic gender classification are the reasons why we chose
to use the head+tail tokenization method for these two tasks, and head-only
for author gender classification.
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Figure 4.1: Accuracy on the development set for the BoW models and
NorBERT2 for different text lengths. The lines that stop at 512 tokens show
the NorBERT2 performance, whereas the other lines are for the BoW models.
The horizontal lines at the bottom show the majority class baseline for each
classification task, using the same color as the BoW line for that task.

The sentiment classification is also the only task that needs more than 8
tokens to pass its majority baseline of 53%, which it does between 16 and
32 tokens. The baseline for critic gender classification accuracy is actually
below 50%, which can seem peculiar since it is worse than random chance
for a binary task. The reason for this is simply that the majority class for
critic gender is different from the training set to the development set.

It is also interesting to see the strange NorBERT2 curve for critic gender
classification, stepping up to 75% accuracy on 128 tokens in two large
bounds, then falling deep on 256 tokens before ending at 74% at 512
tokens. This performance is worse than the best BoW model for critic gender
classification, which is an SVR model achieving 76% accuracy when using
the whole input text. It is not clear why simpler BoW models perform on par
or even better than NorBERT2 for this task, but it could be that transformers
do better when the ratio of signal to noise is higher. Considering that
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predicting the gender of a critic just from reviews written by them would be
a hard task for humans as well, achieving 75% accuracy is quite impressive.
The question, which will be asked again below in Section 4.4.2, is simply
why BoW models can perform as well or better than a transformer model
for some tasks and inputs.

It is also possible that this task requires separate hyperparameter
optimization, which was not done for this truncation impact analysis.

4.4.2 Normalization impact

In order to asses the impact of normalizing away gender information,
the models were also tested with input text normalized in different ways.
Figure 4.2 shows normalization impact on model performance at 512 tokens.
As we have seen before, the ternary sentiment is least affected by the
normalization, showing two mostly straight lines with NorBERT2 clearly
better than the SVC. For critic gender classification the models perform
similarly and not very affected by the normalization, except for BERT when
it gets neither names nor pronouns, showing a 4.8 pp decrease in accuracy.

The performance on author gender classification shows both the highest
normalization effect and difference between the model types. With no
normalization NorBERT2 outperforms the SVC, achieving 98% against
91% accuracy, whereas with full normalization, the SVC gets 0.5 pp higher
accuracy than NorBERT2. Another interesting difference is that NorBERT2
performs better with names and no pronouns than the reverse, whereas
the SVC is better with pronouns and no names, as can be seen by the
divergence between the second and third data point for the upper two lines
in blue and orange in Figure 4.2. It also seems like the NorBERT2 model is
better than the SVC at using either gendered pronouns or names to replace
the loss of the other, while losing both apparently gives the model little to
work with, considering NorBERT2’s larger relative decrease in performance
between half normalization in the middle two columns of Figure 4.2 and full
normalization on the right. This could suggest that BERT uses meaningful
information better than the BoW models, but when the data contains less
signal for the task at hand, the simple models can be sufficient. Since the
accuracy is still around 80% for both models, there clearly must still be
something to fit the data on. In that manner it is strange that an SVC based
on BoW can perform better than NorBERT2. One explanation could be
that replacing gendered pronouns with <PRON> and person names with
<NAME> in the input text somehow impedes NorBERT2’s ability to use
the interaction between the tokens in its contextual embeddings to good
effect. For a BoW representation, the interaction between the input tokens
is not taken into account, or only to a slight degree between neighbouring
words when using n-grams for n > 1. Thus having dummy tokens does
not affect the impact of other tokens for BoW models as much as it can
for transformer models, which uses full self-attention. Still, for ternary
sentiment classification, the NorBERT2 performance is barely harmed by
the normalization, so it cannot be that the normalization interferes with
NorBERT2 in general. We expect gender to carry little signal for sentiment
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Figure 4.2: Accuracy for the three different tasks when given differently
normalized inputs. The x-axis goes from no normalization on the left, to
most normalization on the right, where both gendered pronouns and person
names are removed.

analysis, and that may be why the sentiment classification performance is
hardly impacted by the normalization at all, with NorBERT2 simply being
better than the SVC by a fair margin. Normalizing the names seems to
have bigger impact on the ternary sentiment accuracy for NorBERT2 than
normalizing the pronouns, noting the slightly lower performance in the
second and last column of Figure 4.2.

4.4.3 Additional impact of adding gender metadata

Until now we have normalized away the gender information passed to
the models to see how much they are affected by gender. Another way
of testing how much gender matters to the model predictions is to supply
the models with knowledge of gender directly, and see how that affects the
performance. Adding gender metadata in this context means to concatenate
one-hot representations of author and/or critic gender to the inputs to the
classifiers. Using BoW representations of data, we simply concatenate the
BoW document vectors and the gender vectors. Using NorBERT2 we first
get the pooled output of the hidden layers, and then concatenate the pooled
output and the gender vectors before passing it to the output layer.
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Figure 4.3: Three subplots showing mean accuracy for the three different
tasks when given differently normalized inputs and added metadata using
BoW SVC, SVR and linear regression models. Each subplot has its own
y-axis at different scales. The x-axis is shared between the subplots goes
from no normalization on the left to most normalization on the right, where
even pseudo-informative features are removed.

Figure 4.3 has three subplots, one for each classification task, and shows
mean results across three different linear BoW models; SVC, SVR and
linear regression. The five different points on the x-axis represent the
degree of gender normalization, from no normalization to the left, to most
normalization at the right. For author gender classification, the results are
easy to interpret; normalizing gender decreases model performance while
increasing the positive effect of adding gender metadata. When removing
both names and gendered pronouns, the effect of adding metadata is more
than 2 pp, whereas adding no metadata is actually slightly better on the
original data.

For critic gender classification and sentiment analysis, the results are
less conclusive. Firstly, it should be noted that the scale of the y-axis is
a lot smaller for these two subplots at the bottom of Figure 4.3, just a bit
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more than 1 pp absolute difference between the lowest and highest value,
which was more than 15 pp for author gender classification. Adding author
gender metadata seems to harm critic gender classification performance and
critic gender classification seems not to have a linear negative relationship
between degree of gender normalization and performance. For sentiment
analysis, there seems to be a slight negative relationship between accuracy
and normalization until one reaches the highest degree of normalization at
the right side, where performance increases again. One possibly interesting
part to notice is that adding just the critic gender always gives better or equal
performance for sentiment analysis than adding just the author gender,
although adding both genders is mostly better again.

We also added gender metadata to NorBERT2, the results of which can
be seen in Figure 4.4. The model used here for gender classification is a
binary classification model. For ternary sentiment, a regression head was
trained on top of NorBERT2 using the ratings from 1 to 6. The outputs
of that regression model are then thresholded to classify ternary sentiment.
The performance of these models is slightly lower than the best performance
achieved on each task in Section 4.3. This is because for this experiment
the models were trained in total 32 times, so we used a higher effective
batch size to expedite the training. We deemed the important factor here to
be the relative differences between each normalization scheme and added
metadata, not the absolute performance in itself. Since we are going to
compare these results with the experiments of Touileb et al. (2021), we
also chose to use macro f1-score instead of accuracy as the performance
measure in Figure 4.4, as they used f1-score as their measure. For the
binary gender classification tasks, the f1-score will not be far away from the
accuracy, but the macro f1-score will be lower than the accuracy of ternary
sentiment classification due to the label imbalance. Another difference
between Figure 4.4 and Figure 4.3 apart from the performance measure is
that the latter has one extra column on the x-axis, where pseudo-informative
features are removed. These features were only removed for BoW, since we
could simply pass them as stop-words to the vectorizer. Removing them
could cause trouble for the NorBERT2 models, since the resulting text would
not be grammatically correct, and was therefore not done in the NorBERT2
experiment.

In order to add metadata to a classifier based on NorBERT2, we
concatenated the pooled output of NorBERT2’s hidden layers with one hot
representations of the metadata, before passing them to a linear output
layer. In other words, the exact same procedure as for the other NorBERT2
experiments in this section, except for the concatenation with the gender
vector. This is similar to how Touileb et al. (2021) added the metadata,
except that they used a two-layer multilayer perceptron (MLP) instead of
just one linear layer after the concatenation.

The results for NorBERT2 in Figure 4.4 are similar to the results for the
BoW models in Figure 4.3, but with some differences. For the BoW models,
adding metadata improves author gender classification performance when
there is gender normalization but not on the original text. The results
for NorBERT2 in Figure 4.4 shows that adding metadata only improves
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Figure 4.4: Macro average f1-score for the three different tasks when given
differently normalized inputs and metadata using NorBERT2. The x-axis
goes from no normalization on the left to most normalization on the right,
where both person names and gendered pronouns are replaced by dummy
tokens.

author gender classification performance on the original text, not when any
normalization is done on the input data. Note however that the difference
in author gender classification performance between adding critic gender
as metadata and not adding metadata is less than 0.5 pp for NorBERT2
in all cases. The critic gender classification performance, indicated by a
green and a red line in Figure 4.4, shows by far the highest difference
when adding metadata: adding the author gender as metadata decreases
accuracy by 3.5 pp on the original text and by more than 7 pp with full
normalization. When it comes to sentiment analysis, we could add either
gender or both, so more tests were done. Still, Figure 4.4 indicates that not
adding any metadata gives best sentiment classification performance on
the original text. When gender data is normalized, adding both author and
critic gender as metadata gives best performance. The experimental results
for metadata impact on ternary sentiment analysis using NorBERT2 are a
lot more conclusive than for the BoW models in Figure 4.3, and the only
feature shared by the two is that adding critic gender as metadata seems to
always be better or as good as adding author gender.
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Comparison to earlier work

As mentioned earlier, Touileb et al. (2021) also experimented on adding
metadata to the models. The main differences between what they did and
what we did here is that we added only gender as metadata, not polarity,
and we tested on different normalization schemes, while they only tested
on the original text. When we add gender as metadata to predict gender,
we only add the other gender, i.e. adding critic gender as metadata when
predicting author gender and vice versa. Touileb et al. (2021) instead added
the polarity as metadata when predicting gender. There are differences
between our results and theirs; most notably their results show increased
performance on binary sentiment classification when adding either or both
genders as metadata, whereas our results indicate that adding metadata
is detrimental to ternary sentiment classification. Of course binary and
ternary sentiment are two quite different tasks, and so is using cross-entropy
as the loss function compared to mean square error. However, adding
metadata for gender classification shows effects in the same direction
in both Touileb et al.’s (2021) and our experiments, despite the fact that
they added polarity while we added the other gender as metadata. Their
experiments shows much higher effect of adding metadata, though, with
author gender classification performance increasing by an average of
approximately 5 pp between dev and test, and critic gender classification
performance dropping by almost 6 pp on average when adding polarity as
metadata. In comparison, our experiments showed only an improvement
of 0.5 pp for author gender classification performance when adding critic
gender as metadata and a decrease of 3.5 pp for critic gender classification
performance when adding author gender. The interesting part is that
adding metadata increased author gender classification performance while
decreasing critic gender classification performance substantially in both
cases.

The reason why author gender classification performance increased
more for Touileb et al. (2021), could be that the polarity carries more
information relevant to the author gender than the critic gender does.
Another possible explanation is that the author gender classification model
trained by Touileb et al. (2021) had more room for improvement, since
its performance went from an average across dev and test of 89.8% to
94.8% when adding polarity, while our model’s performance was already
96.3% without adding metadata, increasing to 96.8 when adding critic
gender. There are also differences in model implementation: Touileb et
al. (2021) write that they use the softmax function as their output layer,
suggesting that they use two output labels with cross-entropy loss as their
criterion. On the other hand, we classify a single label using the sigmoid
function as the output layer and binary cross-entropy loss. As described
in Section 4.2, we also try to balance the imbalanced author gender classes
by lowering the weight of the male class from 1 to 0.73 in the loss function.
No matter the reason for these differences, it is clear that there is more
work to be done in order to understand the effects of adding demographic
factors to transformer models. Hung et al. (2023) have recently published
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work on this topic, and found that while adding demographic factors to
a multilingual model is useful, the performance gains are likely due to
confounding factors, and not the demographic knowledge itself.
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Chapter 5

Interpretability

One of the research questions for this thesis is whether it is possible to use
methodology from Explainable Artificial Intelligence to shed more light
on what information is used by the models when predicting gender and
polarity. In this chapter we explore different methods to investigate this
question.

In large, this chapter will be split in two; interpretation of the
interpretable BoW models and then the harder task of interpreting the
transformer model NorBERT2, which is not interpretable by itself. In
this second part, the Learning Interpretability Tool (LIT), introduced as the
Language Interpretability Tool by Google Research (Tenney et al., 2020),
was used to compute the feature attribution scores. LIT is an open-source
platform for visualization and understanding of NLP models.

The reason to interpret machine learning models is to be able to tell
why they arrived at their predictions. This can help debug and improve the
model, build trust in the model, justify model predictions and gain insights,
argues Molnar (2022). He includes two definitions of interpretability in his
book: Interpretability is the degree to which a human can understand the cause
of a decision, from Miller (2019), and: Interpretability is the degree to which a
human can consistently predict the model’s result, from Kim et al. (2016).

Notably, both the definitions focus on a human’s understanding of the
model, and that is the scale on which the interpretability is measured. This
also means that there is no objective measure, like multiclass accuracy
or mean squared error, to consistently measure the interpretability of a
model. The subjectivity of interpretability has also lead to weak theoretical
foundations for interpretable machine learning, according to Watson et al.
(2021).

In order for humans to interpret a model, one needs a way to get
explanations for its predictions, like why the model predicted a positive
sentiment for a given input text. An explanation is the answer to a "Why?"
question (Miller, 2019), and Pearl and Mackenzie (2018) argue that such
questions are actually counterfactual questions in disguise. Since such
questions are about causes and their effects, human intuition infers that
were it not for the cause, one would not see the effect, otherwise the
explanation would not be sufficient. Pearl and Mackenzie (2018) further
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argue that this ability is what distinguishes human from animal intelligence
and from machine learning. Because of the importance of counterfactuals,
a large part of the interpretation of the NorBERT2 models will take place in
Section 5.2, dealing with counterfactual analysis. First comes Section 5.1 in
which we analyze the most important features for linear models based on a
BoW representation of the documents.

Another difference between these two sections, is that interpreting the
feature coefficients of linear models is trying to explain the entire model
behaviour, at least at a modular level, and not individual predictions. Given
an input vector, the coefficients of the model are a complete explanation
of its prediction, since the prediction is the dot product of the input and
coefficients. However, that is not a useful explanation, since it includes too
much information to be interpreted by humans. In a similar vein, we cannot
show coefficients for all the features in Section 5.1 below, but only the most
salient ones. In the second part of the chapter, Section 5.2, we use methods
to explain both global and local behaviour.

5.1 Feature importance for linear models

In this section we will analyze some of the weights for the bag-of-words
models, to see what these models use as an indicator for each gender
and for sentiment. In his book Interpretable Machine Learning, Molnar
(2022, Chapter 4) mentions feature effect plots as a way to analyze linear
models, arguing that the weights of the linear regression model can be
more meaningfully analyzed when they are multiplied by the actual feature
values. Instead of just showing the model coefficients, these effect plots
also show how much effect each feature has had across all the predictions.
This can be especially helpful for these BoW models, since they use TF-IDF
weighting. The feature effect plots for gender classification in this section,
Figure 5.1 and Figure 5.2, are plotted from the coefficients of models trained
on fully gender normalized data, i.e. with person names and gendered
pronouns replaced by dummy tokens and pseudo-informative features for
the given class removed. The reason for this is that person names and
pronouns are very useful for the model and get weighted highly during
training. However, it gives no value to look at the most salient features for
a model and see only names, which is why they are normalized away for
the interpretability experiments.

29224 gendered pronouns were replaced with <PRON>, and 61456
person names were replaced with the placeholder <name>. The gendered
pronouns replaced were he, him, his, she, her (‘han’, ‘ham’, ‘hans’, ‘hun’,
‘henne’, ‘hennes’ in Norwegian). For finding the person names, named
entity recognition (NER) was performed with spacy1 (Honnibal, Matthew
et al., 2020). There will of course still be words in the text that can reveal
gender after normalization, but that is an open list of words that are hard
to define in a principled manner, unlike the gendered pronouns and using

1spacy version 3.4.2 and the nb_core_news_sm model version 3.4.0
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precision recall f1-score

female 0.752 0.592 0.662
male 0.745 0.859 0.798
accuracy 0.747
macro avg 0.748 0.725 0.730
weighted avg 0.748 0.747 0.741

Table 5.1: Classification report for author gender classification using
Support Vector Regression

NER. For these analyses 53909 pseudo-informative words were removed
for critic gender classification and 54776 for author gender classification.

The next subsections will start with looking at feature effect plots
for author and critic gender classification, before doing the same for the
sentiment classification.

5.1.1 Author gender

When trying to interpret a model, it is important to know its performance.
If the performance of a binary classifier like this is 50% or lower, explaining
the predictions wouldn’t really make sense, since they would be worse than
random chance. That is why this subsection starts with the classification
report for author gender classification in Table 5.1. This table shows that
the accuracy is 74.7%, lower than the SVC accuracy of 91% when training
on the original data, but still better than 50%.

Table 5.1 also shows that the model is skewed towards predicting male
gender, with a recall for male author gender of 86% against just 59% recall for
female author gender. This discrepancy is likely due to the data imbalance,
with 63% of the reviews being about books written by male authors. This
also results in a model intercept of 0.57. Since the decision threshold is 0.5,
any input text without features highly weighted towards female gender
would be predicted as male by default. Weighting the female class higher
during the model training increases its recall by a small margin, but not
enough to upset the resulting loss in accuracy and macro average f1-score.

When ordered by the maximum effect of each feature, we can see in
Figure 5.1 that ‘ein’ - a/an/one and ‘en’ - a/an/one has the highest and third
highest effect towards male author genders on the development data. The
normalized person name, name, has the sixth highest effect, with name name
a bit further down. Many of the words with high male author effect are
quite generic, normal words that occur in most of the texts. Not a single one
of them specifically relates to male gender.

For the features that have highest effect towards female author gender,
there are a lot more words that are related to the female gender and family,
like ‘kvinner’ - women, ‘barn’ - children, ‘kvinne’ - woman and ‘moren’ - the
mother. Words like this could also have been removed in the normalization
step, but as argued in the start of this section, such gendered words are an
open list of words which can not be defined in a principled way. Still, there
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Figure 5.1: A horizontal box plot showing the effects of the 20 most
impactful features for author gender classification for each gender, with
effect toward female authors on the left side and toward male authors on the
right side. The features are sorted by maximum impact across the validation
set. The mean impact is marked with a red line for each feature

are quite a few gender-neutral, generic words on the left side as well, like
PRON, ‘det’ - that/it and ‘alle’ - all. While these generic words do not have
the highest maximum effect for a single document, the boxes in Figure 5.1
show that these words have a higher effect on the data set in total. It
is also interesting to see PRON, which is the normalized substitute of a
gendered pronoun, on the left side here, since it replaces both male and
female pronouns. Both name and name name seem to predict male author
gender, and PRON has a high effect towards female gender, suggesting that
male authors may be mentioned more often by name compared to female
authors. PRON is actually the feature with highest mean effect towards
female author gender, followed by ‘det’ - that/it, ‘er’ - is, ‘boka’ - the book
and ‘ikke’ - not. On the male side there are also some adjectives: ‘politiske’
- political, ‘beste’ - best, and the noun ‘forfatterne’ - the authors. All of this
suggests that the male gender is assumed as the default unless anything
else is explicitly specified. This ‘male default’ has also been described in
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literature. Perez (2021) writes that men has been seen as the human default
for as long as we have data—or rather the absence of data for women. From
Aristoteles to Simone de Beauvoir, the woman is defined as ‘the other’ or as
a departure from the default (Perez, 2021, Introduction).

Figure 5.1 is sorted by maximum effect and not mean effect since the
maximum effect gives more information about the model’s coefficients
while still keeping information about each feature’s aggregated effect on
the whole data set. Sorting by mean would show more words that are used
in many of the documents. Those are words like ‘en’ - a/an/one, ‘som’ -
which and ‘er’ - is, which come from closed word classes and carry little
information. In theory the TF-IDF weighting should make sure that these
features, like ‘det’ - that/it, which occur in every document, should not be
weighted so highly, but it seems that the smoothing that was used for the
TF-IDF vectorization, adding one to every document frequency, might have
been too high.

In Figure 5.1 it is simple to spot the features that are used in many
documents, since the boxes go from the first to the third quartile, and it
is also clear that most of the features present have a median and even 75th
percentile of zero. This means that while these features are used in only a
small fraction of the reviews, they have a high impact on the classification
when they actually are used.

Figure 5.1 also shows that a few names escaped the normalization,
giving a high weight to the names ‘Andreas’, ‘Potter’ and ‘Hjorth’. Exactly
why these names were not normalized is not certain.

gender average word counts

author er en name oss PRON som av alle det

F 10 7.22 13.64 0.32 7.31 7.79 5.63 0.66 5.70
M 9.20 7.35 14.90 0.39 6.40 7.87 6.03 0.55 5.52

Table 5.2: Average number of times each word has been used per document
in the training set, grouped by author gender

As a quick sanity check, Table 5.2 shows how much some of the words
high up on the feature effect plot, Figure 5.1, has been used on average when
reviewing female or male authors. The word ‘er’ - is/are is not actually in the
plot, but has a high mean effect towards female gender. Table 5.2 shows that
the words that have an effect toward female author gender are used more in
reviews describing women, especially PRON, but also ‘er’ - is/are and ‘alle’
- all, whereas the words that have an effect towards male author gender
are only used slightly more when male authors are reviewed, like ‘en’ -
a/an/one. Even though these are small differences in usage ratio between
the genders, they are given a high weight during the training of the models.
This shows that the imbalanced nature of the data set, with almost double
the amount of reviews of books written by males than books written by
females in the training set, means that gender-neutral words that are used
as much when describing each gender, will probably be weighted toward

57



the male gender. Because of this, as well as the mentioned model intercept
of 0.57, a gender-neutral text would also probably be assigned male gender.
This interpretation is further supported by the model’s classification report,
shown in Table 5.1, where the recall for female author gender is just below
60% versus a recall of around 86% for male author gender as well as the
model’s intercept of 0.57.

5.1.2 Critic gender

The classification report for critic gender classification in Table 5.3 shows
that the data in this case is a lot more balanced than for the author gender
classification and thus the recall discrepancy is a lot smaller here than in
Table 5.1. Nevertheless, the model’s intercept is 0.56, just 0.01 less than the
intercept for the author gender classification model was. From Section 4.3
we know that critic gender classification, i.e. classifying the gender of
the writer of the input review, is harder than author gender classification,
which in this case is classifying the gender of the person being reviewed.
However, after removing features that explicitly reveal gender, critic gender
classification actually achieves slightly better performance than author
gender classification.

precision recall f1-score

female 0.800 0.704 0.749
male 0.716 0.809 0.759
accuracy 0.754
macro avg 0.758 0.756 0.754
weighted avg 0.760 0.754 0.754

Table 5.3: Classification report for critic gender classification using ordinal
support vector regression with a threshold of 0.5 on the development set

Like for the author gender classification, Figure 5.2 shows that most of
the features with high impact are common words that occur in a most the
reviews, like ‘er’ - is/are and ‘det’ - that/it, which occur in all of them. It
also seems that while both name name and name were used mostly for male
authors, here something is different: name name as well as PRON have high
effect for male critics whereas name has an impact toward female critics.
There are very few explicitly gendered features here, only ‘kvinner’ - woman
and ‘moren’ - the mother but these are still only on the left side, i.e. features
weighted toward female critic gender.

For the case of critic gender classification, it can be interesting to see
the results without normalizing gendered pronouns as well, since these
pronouns do not directly give away the gender of the critic as they do for
the authors to a much larger extent. Figure 5.3 shows the largest coefficients
for each gender when keeping the gendered pronouns unchanged. The
figure shows e.g. the probable reason why PRON had an effect toward male
gender in the Figure 5.2, since ‘han’ - he has the third highest weight for male
critics and ‘hun’ - she is not one of the features with the highest weight for
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Figure 5.2: A horizontal box plot showing the effects of the 20 most
impactful features for critic gender classification for each gender, with effect
toward female critics on the left side and toward male critics on the right
side. The features are sorted by maximum impact across the validation set.
The mean impact is marked with a red line for each feature

female critics. This is probably because male critics mainly review male
authors, ‘han’ - he being the word with the highest weight for male authors
when it is not normalized away, while female critics review more or less an
equal amount of books written by female and male authors.

With regards to the coefficients it is also interesting to see the words that
have the highest weights for female critics: ‘romanen’ - the novel, ‘boka’ -
the book and ‘hovedpersonen’ - the main character in second place. It is quite
striking that the model weights these neutral nouns used to describe books
so highly towards the female critic gender. On the male side there are words
like that; ‘dikt’ - poem, and ‘sider’ - pages/sides, but ‘sider’ is mostly used
in the text as metadata to tell how many pages the reviewed book consists
of. ‘Leseren’ - the reader and ‘vi følger’ - we follow are also both on the left
side, while ‘meg’ - me is on the right side. The question here is whether
female critics in general use this kind of language more than their male
counterparts, or if it is just an artifact of the training data.
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Figure 5.3: A horizontal bar plot plot showing the 25 highest coefficients of
critic gender classification for each gender, with effect toward female critics
on the left side and toward male critics on the right side.

The common words ‘er’ - is/are and ‘her’ - here are also weighted toward
female critics, whereas ‘vel’ - well and ‘av’ - of/off are weighted toward male
critics. It is hard to interpret these differences, and they could very well just
be spurious correlations in the training data.

The word ‘minst’ - least, most often used in the phrase ‘ikke minst’ - not
least (410 of 723 occurrences), has the eighth highest weight for male critic
and also high sentiment weight. The same goes for ‘meget’ - very (much),
which is also both an indicator for male critic gender and high sentiment. It
is not strange that ‘meget’ has a high sentiment score, since ‘meget’ is more
often used to modify a positive adjective than a negative one. Coming up
with a reason why male critics use this word more than the women would
be mostly speculation, but it could be that ‘meget’, and to a lesser extent
its synonym ‘svært’, belong to a different register than their more general
synonym ‘veldig’, sounding somewhat more old fashioned and pompous
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and possibly used more by male critics. According to The Norwegian
Academy (n.d.), the use of ‘meget’ as a degree adverb is ‘literary’. The
hypothesis of different registers based on critic gender is also somewhat
supported by the male critics’ use of ‘denne boken’ - this book, shown in
Figure 5.3 and ‘bokens’ - the book’s, shown in Figure 5.2, with the more
formal ‘en’ suffix as opposed to female critics’ use of the more colloquial
‘boka’ - the book, with an ‘a’ suffix, shown on the left side in both Figure 5.2
and Figure 5.3.

Another difference between the genders is that on the left side of both
Figure 5.2 and 5.3 there are expressions like ‘leseren’ - the reader and ‘vi
følger’ - we follow whereas on the right side is ‘meg’ - me. This could indicate
that the female critics use a more general language describing how the reader
or an inclusive we might experience the book, while male critics might more
directly describe how they experienced the book. In all fairness, they are
describing the same thing, since it is unlikely that the female critics have
done surveys asking several other people about their impression—it is still
their own impression of the book they are describing. However, the intent
here is not first and foremost to isolate different semantic content, but to
identify the different ways and forms by which that content is conveyed.

Table 5.4 shows the sanity check for the critic gender weights. Both ‘er’ -
is/are and ‘romanen’ - the novel are used significantly more by female authors.
However, it is interesting to see the frequencies of name and name name. Both
name name and name are used quite a bit more by male critics than female
critics. However, female critics use name alone more often than male critics
do. This explains why name name is weighted toward male gender, shown
on the top right in both Figure 5.2 and Figure 5.3, whereas name is the fourth
feature on the left side in 5.2.

er name/ name vel av det meget romanen
critic alone name

F 10.25 13.82/5.45 3.87 0.12 5.53 5.53 0.03 0.50
M 8.97 14.87/4.61 4.74 0.20 6.12 5.63 0.07 0.28

Table 5.4: Average number of times each word has been used per document
in the training set, grouped by critic gender

Table 5.4, along with the Figure 5.2 and Figure 5.3, can give some insight
into the difference between the feature weights and their effects. We can
e.g. see in the weight plot, Figure 5.3, that ‘meget’ - very (much) has a pretty
high weight, but Table 5.4 shows that it is not used often, and neither is it on
the effect plot, Figure 5.2. This means that a document containing ‘meget’
- very (much) could push the model towards predicting male critic gender,
but assuming that the use of ‘meget’ - very (much) will be somewhat similar
in the future, this feature is unlikely to have a large aggregate effect on the
model predictions.

The feature effect plots for gender classification Figure 5.1 and Figure 5.2
also show some genre differences between genres. Apparently, male

61



authors write thrillers, whereas female authors are not associated with a
genre in Figure 5.1. Female critics are higly associated with novels, with
‘romanen’ - the novel at the top left of Figure 5.2, while male critics have
high weight for poems. We discuss in Section 3.5 whether the reason for
the different ratings across genders can be that female and male authors
write different genres. However, the feature effect plots do not show
enough genres to speculate further on that, especially for author gender
classification, since female authors were not associated with a specific genre
in Figure 5.1. When it comes to the critics, it could be that novels on average
receive lower ratings than poems, but NoReCgender does not contain genre
information and we can see in Figure 5.1 that ‘dikt’ - poem is not used in
many of the reviews.

5.1.3 Sentiment analysis

For sentiment analysis, there will be two classification reports, one for the
classification of the rating on the original scale of 1 to 6, shown in Table 5.5,
and one for the constructed ternary sentiment classes in Table 5.7

precision recall f1-score

2 1 0.08 0.15
3 0.55 0.34 0.42
4 0.49 0.69 0.57
5 0.60 0.61 0.61
6 0.50 0.12 0.19
accuracy 0.54
macro avg 0.63 0.37 0.39
weighted avg 0.56 0.54 0.52

Table 5.5: Classification report for rating classification using ordinal linear
regression, rounding the regression scores to the closest integer to get the
predicted class.

The accuracy of 0.54, shown in Table 5.5 indicates that predicting on a
scale with six different possibilities is a harder task than binary classification.
Table 5.5 only includes five of the six possible ratings since there is no review
of rating 1 in the development set and neither were any predictions of rating
1 made. The table shows that the classes on the end of the scale, 2 and 6
have very low recall, compared to the classes in the middle. Rating 4 is
regarded as the fair class for ternary sentiment, and this is also somewhat
reflected in the model’s intercept of 3.91, which by itself would be put in the
fair class, like anything else in the interval [3.5, 4.5). As shown in Figure 5.4
the predicted ratings are clumped together in the middle, especially having
too many predictions for the fair class, i.e. from 3.5 to 4.5 in the histogram.
This class has both highest recall and lowest precision. The model is a bit
too conservative and has fewer predictions than the true ratings show for
the classes 2 and 6.
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Figure 5.4: Histogram of the predicted regression scores for rating
classification overlayed by the true ratings.

This can also be seen in the statistical summary of the predicted
regression scores, shown in Table 5.6. The mean of 4.42 is just 0.03 off
the true mean of 4.45, but the standard deviation of the true ratings are 0.92,
quite far above the standard deviation for the predicted regression scores of
0.59.

count mean std min 25% 50% 75% max

415 4.42 0.59 2.14 4.07 4.43 4.82 5.80

Table 5.6: Statistical summary of the predicted regression scores for rating
classification using Ridge regression.

When one changes the thresholds to get ternary sentiment classification
results from the earlier rating predictions, the results look better, as shown
in Table 5.7. The score for the fair class obviously stays the same, since
that class does not change, but the scores for the positive and negative class
increase, resulting in an accuracy of 64%. For a multiclass problem that is
good enough to use the weights for interpretation. As the results before
thresholding, the fair class has both highest recall and lowest precision.

Figure 5.5 shows the feature effect plot for the rating classification model.
The left side, containing features with effects toward negative sentiment is
mostly as expected, with words like ‘dessverre’ - sadly, ‘lite’ - little and
‘dårlig’ - bad at the top. The word ‘interessant’ - interesting is also on the left
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precision recall f1-score

negative 0.70 0.36 0.47
fair 0.49 0.69 0.57
positive 0.79 0.68 0.73
accuracy 0.64
macro avg 0.66 0.58 0.59
weighted avg 0.68 0.64 0.64

Table 5.7: Classification report for ternary sentiment classification using
ordinal Ridge regression, with regression score thresholds of 3.5 and 4.5.

side, which does not intuitively make sense, but that is the only word there
that stands out from the rest.

On the right side of Figure 5.5, the issue is the same as in Figure 5.1
and 5.2, where common words with no direct relation to the aspect being
classified. In this case ‘ein’ - a/an/one, ‘dei’ - they and ‘ein’ - a/an/one. The
first and third word above have the same English translation because they
are the same word, but come from each of the two written languages in
Norway, nynorsk and bokmål. The reason the two first words are nynorsk is
likely because there are just a few critics writing in nynorsk and they give
higher ratings than the rest of the critics on average.

However, ‘en’ - a/an/one is also there and is the word with the highest
mean effect towards positive sentiment. Some of the reason for its high
effect might be very simple, the correlation between the rating and the
number of times ‘en’ - a/an/one occurs in a text is 0.14, which is just slightly
less than the correlation between the rating and the number of words in a
text, which is 0.15. It is likely that the word ‘en’ - a/an/one gets some of its
high effect simply due to the fact that longer reviews have slightly higher
ratings on average. For the sake of completeness, the correlation between
the length of a text and the number of times ‘en’ - a/an/one is used is 0.62.

As we know, the TF-IDF vectorizer simply takes the term frequency and
multiplies it with the inverse document frequency, meaning that the TF-IDF
value for a given word in a document is not relative to the total number
of words in the document, but based on the absolute count. Since ‘en’ -
a/an/one is such a common word, it would be expected to be used at around
the same rate in any document. Thus it is used more times in the longer
documents, and since the length of the reviews correlate positively with
higher ratings, so does ‘en’ - a/an/one, giving it a high model weight. On the
other hand, there are words used almost as much as ‘en’ - a/an/one, like ‘det’
- that/it, which correlates even higher with the length of the document, but
has neither a positive correlation with the rating nor a high positive effect
on the sentiment. There must also be something else about ‘en’ - a/an/one
that gives it the high effect on sentiment, but it is not clear what it is.

Continuing, ‘han’ - he is also placed on the right side of Figure 5.5, just
below the middle. It also has the fifth largest mean effect toward positive
sentiment. Its coefficient in the model is 0.975, while ‘hun’ - she, which does
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Figure 5.5: A horizontal box plot showing the effects of the 20 most
impactful features for sentiment classification for each gender, with effect
toward negative sentiment on the left side and toward positive sentiment
on the right side. The features are sorted by maximum impact across the
validation set. The mean impact is marked with a red line for each feature.

not show up in Figure 5.5, has a coefficient of -0.197. This discrepancy
clearly shows the consequences of the fact that male authors are given
higher ratings by the critics, which is picked up by the model.

5.2 Counterfactual analysis

As mentioned in the introduction to this chapter 5 and reiterated by several
authors (Sundararajan et al., 2017; Pearl & Mackenzie, 2018; Molnar, 2022),
one can view any attempt at interpretation as a counterfactual exercise,
where humans compare a given cause and effect with the absence of that
cause. However, this section is not only implicitly about counterfactual
analysis: In Section 5.2.2 we analyze how using counterfactual examples
generated by switching the gender of the gendered pronouns impact
the model performance. Later, in Section 5.2.5, instances where these
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counterfactual examples resulted in another class predictions than the
original examples will be analyzed on the token-level.

In Section 4.4.2, similar analyses were made by normalizing the gender
information of the input text. However, there are two important differences
between what was done there and in this section. Firstly, in Section 4.4.2,
the models were re-trained on the normalized text in order to see how
much information was left for the models to fit on after normalization.
In this section, the models are just trained once on the original text and
then tested on the new, normalized text without re-training, in order to
see how important the normalized or changed features were to the model
predictions. The second difference is that while the gendered pronouns
were either kept unchanged or normalized in Section 4.4.2, here they are
also switched to the opposite gender. Switching the gender of the pronouns
would not make that much sense when re-training the models on the new
text, but when using the original model, these gender-switched examples
can give insight into how important those pronouns are to the model by
seeing how many of the new predictions are different from the original
predictions.

5.2.1 Counterfactual generators

Another way to generate new examples with different predictions is
to use counterfactual generators. A counterfactual generator creates
counterfactual examples for data points by changing them in some way
and testing if that changes the prediction of the model (Tenney et al., 2020).
HotFlip, proposed by Ebrahimi et al. (2018) is one of the counterfactual
generators included in LIT. HotFlip is a white-box adversarial generator
that swaps tokens for another based on the gradients of the input
embeddings. Originally meant to trick a character-level classifier, it can also
be extended to attack word-level classifiers (Ebrahimi et al., 2018), which
was done for LIT.

Another counterfactual generator present in LIT is the Ablation Flip,
building on ideas from Watson et al. (2021). It generates counterfactuals
examples by ablating (removing) one or more tokens and returning the
minimal examples that changes the prediction. A generated example
is considered minimal if no strict subset of the applied token ablations
succeeds in flipping the prediction (‘Learning Interpretability Tool (LIT)’,
2023).

HotFlip was used more than Ablation Flip, since HotFlip changes the
input tokens instead of removing them, thus increasing the chance that the
resulting examples are grammatically correct. On the other hand, HotFlip
introduces a new factor with the changed tokens, whereas Ablation Flip
ensures that any change in the output is just caused by removing some of the
input. The following section analyses counterfactual examples generated
by switching the gendered pronouns in the input to the other gender
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5.2.2 Switching gender

Figure 5.6 shows the effect of switching the gendered pronouns in the input
to the model to the opposite gender, without retraining the model on the
new input, as was done in Figure 4.2. As in Figures 4.2 and 4.3, the x-axis
goes from no gender normalization to maximum gender normalization, but
one difference here is that instead of removing pseudo-normal features, the
gendered pronouns are switched to the other gender, which to a bigger
extent shows the gender’s effect on the prediction than only removing the
gendered pronouns. Figure 5.6 shows the effect for gender classification,
whereas Figure 5.10 shows the effect on the sentiment classification, both
using all of the six different ratings as the label and the constructed ternary
sentiment classes, with rating 4 as the fair class, rating 5 and 6 as positive
and rating 1, 2 and 3 as negative. This division is more or less how these
ratings are viewed, with some caveats, as noted earlier, in Section 2.1.2.
The BERT model used for this experiment was NorBERT2, upon which a
classifier was trained both using multiclass targets and regression targets.
For regression targets the class predictions were obtained by rounding the
regression scores to the closest integer.

The chosen BoW model for these experiments was Ridge Regression
from the scikit-learn library (Pedregosa et al., 2011), which is a regression
model whose loss function is the linear least squares function and which
uses the l2-norm as regularization. This type of model was chosen for its
efficiency and good experimental results on the three classification tasks,
especially outperforming multiclass classification models on the rating
classification task with all six labels, as we demonstrated in Section 4.3.

Gender classification

For the gender classification tasks one can see two pairs of lines in Figure 5.6;
blue and orange for author gender classification and green and red for
critic gender classification. The first thing to notice is that critic gender
classification is clearly less impacted than author gender classification by
the changes in gender information. The green line for NorBERT2 critic
gender classification stays more or less straight with some small bumps,
whereas the Ridge regression loses up to 10 pp accuracy when both names
are normalized and genders switched. For both model types, normalizing
names have higher impact than changing the pronouns, 2 pp for NorBERT2
and 8 pp for Ridge. Not surprisingly, the author gender classification
exhibits higher impact of changing the gender. Removing the pronouns has
some effect, 4 pp down for NorBERT2 and 14 pp down for Ridge, shown
between the first and second point on the x-axis in Figure 5.6. The effect
is even higher when the names are also removed, where the accuracy for
both models drop by 18 pp, shown between the fourth and fifth point on
the x-axis. However, the largest impact comes from switching the gender
of the pronouns, further dropping the accuracy by approximately 40 pp for
Ridge and 24 pp for NorBERT2.

With swapped gender pronouns, the Ridge model’s performance is
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Figure 5.6: Aaccuracy of a Ridge regression BoW model and a NorBERT2
regression model for author and critic gender classification. The models
were first trained on the original data, shown on the first tick on the x-axis,
and then tested on inputs with varying degrees of gender changes without
retraining the model.

below 40%, lower than what a random model would achieve. While
NorBERT2 stays above random chance at 74% when names are kept, it
drops even further down to 33% when the names are removed. This drop
in accuracy is of course expected when one removes or inverts the features
that are likely the most important to the model predictions, but the resulting
performance is still better than the inverse of the original performance,
which means that both of these models must also use some other features
than names and pronouns to successfully predict the author gender.

To shed some more light on the accuracy drop, one can look at the
Primary Component Analysis (PCA) projections down to two dimensions
of the embeddings of the CLS token for the original texts and for the text
with switched gender in Figure 5.7 and 5.8. Figure 5.7 shows that the two
classes are pushed away from each other—even though the model is not
always right, it is certain in its predictions. Furthermore, even at just two
dimensions, the PCA explains 86.5% of the total variance, and 84.0% of the
total variance is explained by the first component alone. This indicates that
the model’s representation of author gender to a large degree can be put on
a single axis.

Looking at Figure 5.8, one can see that the classes are not pushed apart
anymore, here there is a lot more overlap and there is no longer a region in
the middle with no predictions. It also looks like the plot flipped along the
y = x diagonal, compared to Figure 5.7, since the two classes changed place
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Figure 5.7: PCA of the CLS token embeddings for author gender classific-
ation on the original data of the development set, explaining 86.5% of the
total variance, with true labels marked by colors.

in the plot, so it could be that what was Primary Component 1 (PC 1) in
Figure 5.7 is PC 2 in Figure 5.8 and vice versa. Despite the overlap, each class
still has the clear majority on one side, which, along with the model accuracy
staying above 50%, means that NorBERT2 also uses some information other
than the pronouns to predict gender. The PCA in Figure 5.8 still explains as
much as 78.0% of the variance, but the second component explains 5.5% of
the variance, compared to just 2.5% for the second component of the PCA
of Figure 5.7.

Table 5.8 shows a statistical summary of the logits predicted by the
model. The first and third quartile show that most of the logits are pushed
far away from the decision boundary of 0. The mean of 0.72 and the
median of 3.99 reflect that most of the authors reviewed are male. When
the gendered pronouns are switched, however, the mean is -0.43 and the
median -1.85, which indicates that switching gender also moves the majority
of the predictions to the female author gender. Table 5.9 summarizes the
same data, but using absolute values of the logits. The minimum of 0.59 for
the original data means that all the data points are at least 0.59 away from
the decision boundary of 0. This distance from 0 to the predictions likely
corresponds to the central gap in the class embeddings seen in Figure 5.7.
When the gendered pronouns are switched, the model is not as sure about
the predictions, having absolute logits closer to 0 with higher standard
deviation, as shown in the second row of Table 5.9.

Lastly, one interesting part to notice in Figure 5.6 is that for the
Ridge model, removing names while keeping pronouns reduces the critic
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Figure 5.8: PCA of the CLS token embeddings for author gender classifica-
tion on the gender-switched data of the development set, explaining 78.0%
of the total variance, with true labels marked by colors.

normalization mean std min 25% 50% 75% max

pronouns unchanged 0.72 4.36 -4.77 -4.49 3.99 4.65 4.92
switch gender -0.43 3.76 -4.71 -4.10 -1.85 4.00 4.87

Table 5.8: Statistical summary of the predicted logits for author gender
classification using NorBERT2

gender classification performance by 8 pp but author gender classification
performance by less than 1 pp. For NorBERT2 the inverse is the case, with
the accuracy dropping by 2 pp for author gender classification and 5 pp
for critic gender classification. Since the development set has 415 samples,
a change of 1 pp signifies a difference of 4 reviews. It seems strange that
there is this difference in the utility of names for the different model types
and classification tasks, but it might be due to the way names are tokenized
by BERT compared to simple TF-IDF document vectors, as will be further
discussed for Figure 5.10, regarding the sentiment classification.

Figure 5.9 shows the two-dimensional PCA projection for the critic
gender classification model. Compared to the PCA for author gender
classification in Figure 5.7, the data points are much more spread out,
meaning that it is harder to place the class embedding for critic gender
classification on a single axis. The PCA for critic gender classification
explains only 51.5% of the total variance as well, 46.1% by the first
component and 5.4% by the second component. This indicates that the
class embeddings for critic gender classification are harder to place on one
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normalization mean std min 25% 50% 75% max

pronouns unchanged 4.37 0.65 0.59 4.35 4.58 4.70 4.92
switch gender 3.58 1.22 0.07 3.12 4.07 4.44 4.87

Table 5.9: Statistical summary of the absolute values of the predicted logits
for author gender classification using NorBERT2

Figure 5.9: Two-dimensional PCA projection of the CLS token embeddings
for critic gender classification on the original data of the development set,
explaining 51.5% of the total variance, with true labels marked by colors.

axis, which makes sense, since there are no clear-cut features to predict the
gender of the critic.

Sentiment classification

Then we continue with the sentiment classification, which in earlier
experiments in Section 4.4 have not been much affected by gender
normalization. The sentiment plot of Figure 5.10 can be divided into three
pairs of lines. In brown and green lines, seen together in the bottom
right part of the figure, is the accuracy for ternary sentiment and rating
classification for the Ridge regression model. The rating classification
accuracy for NorBERT2 regression and multiclass classification are the
orange and blue lines in the middle and subplot, and on the top are the
ternary sentiment score for those two NorBERT2 models. The accuracy for
ternary sentiment will always be as good or better than the accuracy for
the rating, since they are computed from the same predictions. The ternary
sentiment metrics are computed simply by mapping the predicted and true
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Figure 5.10: Accuracy of a Ridge regression BoW model, a NorBERT2
(ordinal) regression model and a NorBERT2 multiclass model for sentiment
classification. The models were first trained on the original text, shown on
the first tick on the x-axis, and then tested on inputs with varying degrees
of gender changes, without retraining the model.

ratings from the original six classes into three classes as described in the
first paragraph of Section 5.2.2.

The first thing to take away from Figure 5.10 is that the NorBERT2
models are mostly unaffected by changes in gender information passed
to them as input, whereas the Ridge model loses 15 pp accuracy for rating
classification and 20 pp for ternary sentiment classification when names
are removed. Comparatively, changing the gendered pronouns has little
effect, with less than 2 pp decrease in accuracy for Ridge regression. The
NorBERT2 multiclass model also slightly more affected by removing names
than changing gender, with a decrease in accuracy of 2.5 pp for removing
names against 1.5 pp for removing pronouns. However, switching the
gender of the pronouns actually leads to better performance than removing
them for the NorBERT2 models.

The reason why the Ridge regression does so much worse when names
are removed may be twofold: Firstly, the names of authors are likely a good
predictor for the rating, since different critics likely assign, if not equal, then
at least similar ratings to the same book, and also to some extent to different
books by the same author. This means that some authors should have
higher average ratings for their reviewed books than others, and removing
the names denies the model information it had been using to better predict
the sentiment. However, in that case why are the BoW models impacted so
much harder than the NorBERT2 models? This question leads to the second
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argument: for BoW models, each name is a separate feature, whereas most
of the names are unlikely to be part of the NorBERT2 vocabulary as whole
units, but rather that parts of the names are tokenized as subtokens by
NorBERT2’s subword tokenizer. This means that the embeddings for the
names will be shared by whichever subtokens they consist of, which is likely
to have a regularizing effect on the BERT models’ weights for those names.

Comparing the two NorBERT2 models, the multiclass classifier is
slightly more affected by the gender changes than the regression classifier,
especially for the ternary sentiment. On the ternary sentiment task, the
NorBERT2 regression model performance decreases by less than 0.25 pp
when both names are removed and pronouns removed or switched. The
multiclass model performance on ternary sentiment, on the other hand, is
more impacted by the gender normalization, falling by 4 pp when both
names and pronouns are removed. This could indicate that the multiclass
model is slightly less robust to changes in the input than the regression
model. Another factor to this is that for rating classification, the difference
between the two NorBERT2 models fluctuates less, staying between 1 and
3 pp versus the difference between 0 and 4 pp for ternary sentiment. What
this could tell us is that when the regression model gets different input and
makes mistakes, it is more likely than the multiclass model to change the
prediction by just a little and stay within the same ternary sentiment class,
since the ordinal regression model can benefit from the ordered nature of
the ratings (Gutiérrez et al., 2016).

Figure 5.11 shows the PCA of the class embeddings for the ordinal
regression model for sentiment classification. Here we can see that the
model manages to put the reviews from the development set on a scale
from 2 to 6, though with quite a bit of overlap between the classes. Despite
the overlap, Figure 5.11 might give some insight into why using regression
for ordinal classification can be helpful, since it shows how the regression
model can use the ordered nature of the ratings.

Table 5.10 shows the predicted regression scores of the NorBERT2
regression model for rating classification. Compared to the predicted
regression scores for the Ridge model, shown in Table 5.6 in Section 5.1.3,
the NorBERT2 model manages to push the ratings further out from the
mean, having a standard deviation of 0.83, which gets close to the true
standard deviation of 0.92. The minimum and maximum regression scores
of 1.67 and 6.08 are outside the range of the true values of the rating, which
lie between 2 and 6 inclusive in the development set.

count mean std min 25% 50% 75% max

415 4.37 0.83 1.67 3.84 4.44 4.98 6.08

Table 5.10: Statistical summary of the predicted regression scores for rating
classification using a NorBERT 2 regression model.

After looking at aggregate effects on model performance by counter-
factual examples made by switching gender in this section, the following
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Figure 5.11: Two-dimensional PCA projection of the CLS token embeddings
for sentiment using ordinal regression on the original text of the develop-
ment set, explaining 65.3% of the total variance, with true ratings marked
by colors.

section will deal with how the different input features impact the prediction
of the model.

5.2.3 Feature Attribution

Feature attribution is to explain individual predictions by attributing each
input feature according to how much it changed the prediction (Molnar,
2022). In some articles it is also called input saliency (Bastings & Filippova,
2020) or salience maps (Tenney et al., 2020). LIT contains four different
feature attribution methods: gradient norm, Gradient-dot-input, Integrated
Gradients and Local interpretable model-agnostic explanations (LIME).
Using Molnar’s taxonomy (2022, Chapter 9), the three first of these methods
are gradient-based, while LIME is perturbation-based. Perturbation-based
methods are model-agnostic, and work by changing parts of the input
to generate explanations. LIME, proposed in 2016 by Ribeiro et al., uses
these variations on the data to train an interpretable model which should
be a good approximation to the original model locally, but not necessarily
globally. Then, the predictions of the original model can be explained by
interpreting the local model.

Gradient-based attribution methods

The gradient-based methods compute the gradient of the prediction with
respect to the input features (Molnar, 2022, Chapter 9). This means that
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the attributions from these methods will always be relative to the model
prediction of a single class, unlike the analysis of BoW model weights in
Section 5.1, where the weights are the same regardless of what the model
output is for a given input. Gradient-based methods are further divided into
gradient-only methods and path-attribution methods. Gradient norm and
Gradient-dot-input are gradient only methods. Their interpretation means
that if one increases the value of the input feature, the class probability
would go up for a positive gradient and down for a negative gradient. For
images, whose features are pixels, that would mean increasing or decreasing
the color values values of a pixel (Molnar, 2022, Chapter 9). For NLP, it is
hard to say what increasing an input feature would mean. However, for a
given input token, a positive attribution means that removing that token
from the input would likely reduce the model confidence for its current
output. Reversely, when the attribution is negative, removing the token
would likely increase the model confidence (Tenney et al., 2020).

Integrated Gradients

Integrated Gradients is a path-attribution method, proposed by Sundarara-
jan et al. (2017). Path-attribution methods compare the current input to a
baseline input, which can be a black or grey image for object detection and
a zero vector embedding for NLP (Sundararajan et al., 2017). The interpret-
ation of path-attribution networks is always with respect to this baseline,
using the difference between the classification scores of the actual input and
the baseline as the attribution (Molnar, 2022). Sundararajan et al. (2017)
make a remark of this baseline as a way for humans to interpret cause and
effect by counterfactual intuition: ‘When we assign blame to a certain cause
we implicitly consider the absence of the cause as a baseline for comparing
outcomes’.

Sundararajan et al. (2017) write that a challenge for designing attribution
methods is that they are hard to evaluate empirically, since it is hard to
distinguish errors stemming from model misbehaviour from misbehaviour
of the attribution method. Their Integrated Gradients method was designed
using what they call ‘an axiomatic approach’ in order to compensate for
that shortcoming. What they mean by an axiomatic approach is that they
first define two axioms, or desirable characteristics an attribution methods
should satisfy. Further, they let those axioms guide the design of their
method, in such a manner that they can prove mathematically that their
method satisfies the axioms they defined. Sundararajan et al. (2017) finally
argue that this approach ensures there are no artifacts of their method
which affect the attribution. Nevertheless, they acknowledge that their
method does not address interaction between the input features or the logic
employed by the neural network.

Sundararajan et al. (2017) identified Sensitivity and Implementation
Invariance as the axioms an attribution method should satisfy, and found
that most methods did not satisfy them. In order to satisfy Sensitivity,
for input and baselines that differ in one feature and result in different
predictions, that feature must have a non-zero attribution. To satisfy
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Implementation Invariance, the attribution for networks that give equal
output for all inputs must also be equal. Sundararajan et al. (2017) show
that since gradients are invariant to the implementation, Integrated Gradients
are also implementation invariant.

Alternatives to Integrated Gradients

Despite Integrated Gradient’s desirable characteristics, it has both been
criticized for not being worth its increased complexity compared to other
gradient methods, and it has also been extended to improve its performance.
Madsen et al. (2022) argue that attention gives sparser explanations
than gradient methods, and are easier to understand. Their results also
indicate that using Integrated Gradients, being approximately 50 times
more expensive than the gradient method, is rarely a worthwhile trade-off.

Other articles again discuss whether attention can really be seen as
an explanation of model predictions, arguing that it is unclear toward
what attention is used as explanation, and finding input saliency methods
more suited (Bastings & Filippova, 2020). Nevertheless, they describe
some fundamental limitation of input saliency methods, which is that the
flat representations of per-token saliency weights can only be called an
explanation in a narrow sense, and it is impossible to fully explain the
predictions of a deep non-linear model by only looking at the input tokens.
Despite this limitation, Bastings and Filippova (2020) still argue that saliency
methods are useful, and they do not find that there are many other possible
alternatives at the point of writing. One of the alternatives they mention is
counterfactual analysis, and we will explore further down in Section 5.2.5
some of the limitations of the saliency method Integrated Gradients and
how counterfactual analysis can help with the interpretation.

Sanyal and Ren (2021) propose an extension to Integrated Gradients,
called Discretized Integrated Gradients, due to what they argue is a core
limitation of the Integrated Gradients method. Being a path-attribution
method, Integrated Gradients uses a straight line interpolation between the
zero-vector baseline and the word embedding. However, since the word
embedding space is a discrete space, these interpolation points are unlikely
to be close to actual word embeddings and may not be representative of
the word embedding distribution, putting the faithfulness of the gradients
computed from these interpolation points to the question. Discretized
Integrated Gradients mitigate this limitation by avoiding the straight line
interpolations, instead using a non-linear path with monotonically situated
interpolation points between the baseline and input word embedding that
are close to real word embeddings (Sanyal & Ren, 2021).

The baseline used by the Integrated Gradients implementation of LIT
is the zero embedding vector, which is suggested as a good baseline by
Sundararajan et al. (2017) in their original paper, even though it does not
correspond to a valid input. In the following section we will analyze the
feature attributions on the three tasks author gender classification, critic
gender classification and sentiment classification, both in the aggregate and
on individual data points, i.e. reviews. Since the reviews are long, it would
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not make sense to show attributions for all 512 tokens, so some of the most
salient sentences have been manually chosen for analysis and discussion.
To choose the sentences for analysis, the most interesting reviews were first
selected based on counterfactual analysis: did the counterfactual examples
lead to a change in model prediction? Secondly the parts of the text with the
highest attribution score or containing the counterfactual change are used
as examples below, like Example 5.2, Example 5.9 and Example 5.11.

5.2.4 Counterfactual explanations

One of the problems with feature attribution methods, as mentioned by
Bastings and Filippova (2020), is that it is a flat representation of attribution
scores, trying to give a complete explanation for the predicted class. Not
complete in the sense of explaining every factor and interaction that led to
the prediction, but in the sense that it gives a score to every input token.
However, as Molnar (2022, Chapter 2) mentions, good explanations are
contrastive. Humans seldom want to know all the reasons for a predictions,
but just why that prediction was made instead of another prediction. Since
feature attributions scores always are in relation to a single class, they
cannot be contrastive in that sense.

Necessary and sufficient causes

This also leads to the concepts of necessity and sufficiency, which Watson
et al. (2021) argue are the building blocks of all successful explanations. In
propositional logic, x is a sufficient condition for y iff x → y, and x is a
necessary condition for y iff y → x (Watson et al., 2021). The distinction
between necessary and sufficient causes has important implications in AI,
claims Pearl (1999), where necessary causation is a concept tailored to a
specific event under consideration, while sufficient causation is based on the
general tendency of certain event types to produce other event types. Pearl
(1999) also shows that necessity and sufficiency are independent aspects of
causation, both of which should be used when making causal explanations.

In The Book of Why, Pearl and Mackenzie (2018, Chapter 1) use a firing
squad of two soldiers as an example of a sufficient cause. Either of the two
soldier firing at the prisoner is sufficient to cause their death, but neither is
necessary, since there are two soldiers. Later, Pearl and Mackenzie (2018,
Chapter 8) demonstrate necessary causes by using the example of a fire
breaking out after someone struck a match. ‘What caused the fire, striking
the match or the presence of oxygen in the room?’ Both are necessary causes
for the fire, since if either of them were not present, the fire would not have
happened. Despite that, a human is more likely to explain the fire by the
match, since that is the factor that changed in that moment and is not ever-
present. This shows how background factors that are normally present in
the world, like oxygen, can qualify as explanations if those explanations are
based solely on necessary causation.

77



Feature attribution methods versus counterfactual analysis

The feature attribution methods introduced in Section 5.2.3 give neither
sufficient nor necessary causes. A feature can have a very high attribution
score, but one still cannot be sure if it is either sufficient or necessary for
the prediction. One cannot say, "if feature x is present, the prediction
will be y", nor "if feature x is not present, the prediction will not be y",
examples of sufficient and necessary causation, respectively, no matter what
x’s attribution score is. The feature attribution methods are still not useless,
though, since they can give insights into the relative importance of different
features. Counterfactual examples, on the other hand, can help identify
causes. Pearl (2000, Chapter 7) writes "Event X = x may have caused
Y = y” if:

(i) X = x and Y = y are true; and

(ii) there exists a value u of U such that X(u) = x, Y(u) = y, and
Yx′(u) ̸= y for some x′ ̸= x,

where U is a set of background variables. Thus in a counterfactual example,
if changing feature X from x to x’ causes a change in prediction Y from y to
y’, everything else being the same, then x may have caused y. One can still
only talk in probabilities, and Tian and Pearl (2000) define three probabilities
that are relevant: Probability of necessity (PN), probability of sufficiency
(PS) and Probability of necessity and sufficiency (PNS). PN stands for the
probability that event y would not have occurred in the absence of event x,
given that x and y did in fact occur. PS stands for the probability that event
y would occur if x would have occurred, given that x and y did not in fact
occur. PNS stands for the probability that y would respond to x both ways,
and therefore measures both the sufficiency and necessity of x to produce y.

The counterfactual examples can also be seen as a way to test the
faithfulness of the gradient methods. Knowing that two inputs give
different results, the differing input features should have different non-zero
attributions for both the class predicted originally and the class predicted
for the counterfactual example. This also more or less corresponds to the
sensitivity axiom that Sundararajan et al. (2017) define.

5.2.5 Interpreting gradients

Since BERT is a deep neural network with distributed representations, it
can be seen as a black box, hiding its reasons for why it outputs what
it does, unlike the linear models analysed in Section 5.1. One way to
interpret BERT’s decision is to use gradients, as described in the previous
section. This section covers some analyses made of feature attribution using
gradients, first on an aggregate level across the whole development set and
then using the manually chosen sentences from the development set.
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Gradient Norm

Firstly, Figure 5.12 shows how salient the tokens in each position is across
the development data set. This is a way to investigate on aggregate
what parts of the texts are most important for the output. We can see
that for author gender classification, the salience scales inversely with the
token position, meaning that the start is most important for the prediction,
gradually decreasing until the end. The critic gender classification salience
is also high at the beginning of the texts, dropping quickly to its lowest
point at around token 60, before slowly increasing towards the end. At the
very end there is a steep increase for critic gender classification salience,
likely because some reviewers cite their reviews. The line plot for sentiment
classification is similar to the critic gender classification plot, except that the
sentiment classification salience increases even slower towards position 500,
before a sharp increase at the very end.

Interestingly, but maybe not surprisingly, this corresponds to the
discoveries made in Figure 4.1, analysing the impact of truncation of
the input text at different truncation lengths (powers of 2 from 8 to 512).
Figure 4.1 shows that the author gender classification performance increases
sharply to around 0.93 at 64 tokens, before increasing more slowly to 0.97 at
512 tokens. Both critic gender classification and sentiment classification,
on the other hand, also gain good parts of their performance with low
truncation lengths before stagnating until 256 tokens and finally gaining big
performance increases going from truncation length 256 to 512. Figure 4.1
is thus in accordance with the aggregated salience shown in Figure 5.12.

Integrated Gradients

The gradient norm is fast to compute, and suffices for the aggregated
analysis above, but since it is a norm, it is always positive and can not
include the direction of the gradient, only its size. That is why, for
the following analysis on the sentence level, Integrated Gradients is the
method used. The examples shown in these sections will be tokens
from the NorBERT2 tokenizer, colored by their attribution to the class
selected for attribution and numbered for easy reference. If tokens start
with ‘##’, it means that they are subtokens that are part of the same word
as the previous token. The color gradient used for these examples are
shown in Figure 5.14. Since there is seldom a good direct word-for-word
translation from Norwegian to English, the examples with colored tokens
are not translated, but only shown in Norwegian. Still, the tokens whose
attributions are discussed will be translated to English.

In order for the attribution scores shown in this section to make any
sense, Figure 5.13 shows parts of the distribution of the attribution score
for the tokens in the development set. The reason it only shows parts of
the distribution is that any bar outside the range shown in the plot is not
possible to discern at this scale. Nevertheless, Table 5.11 also shows the
minimum and maximum attribution scores of -0.105 and 0.152. What Table
5.11 and Figure 5.13 shows us is that most attribution scores are very close
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Figure 5.12: This plot shows the median gradient norm across the
development data set for each 510 token position (CLS and SEP tokens
were excluded) and grouped by the three classification tasks. The subplots
share x-axis and the scale of the y-axis is the same for all of them.

to zero, so the few scores that get above an absolute score of just 0.01 can
be assumed to have a substantial impact on the prediction. This is in line
with human intuition, in that most words in a review are not directly related
to the sentiment and especially not to the gender of the critic writing the
review nor to the gender of the author being reviewed. Using the definition
of statistical outliers as those data points further away from the quartiles
than 1.5 times the interquartile range, attribution scores below -3.65e-3 or
above 5.32e-3 are outliers. Since the attribution scores are computed with
respect to the predicted class, it is natural that the mean of 7.48e-04 is above
zero.

Author gender classification

Looking at some generic examples for author gender classification, we have
e.g. Example 5.1, which was correctly classified as male author. We can see
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mean std min 25% 50% 75% max

7.48e-04 3.32e-03 -1.05e-01 -2.82e-04 9.40e-04 1.96e-03 1.52e-01

Table 5.11: Statistical summary of the 614095 attribution scores for the
tokens in the development set and across all three classification tasks

Figure 5.13: Histogram of in total 614095 Integrated Gradient attribution
scores for the predicted class across the three classification tasks using the
development set.

that ‘han’ - he has a positive attribution towards that prediction.

(5.1) Fu ##mi ##o Sa ##sak ##i har åpenbart rett , men han

greier ikke overbevise deg om det .

However, the Integrated Gradients method is not always correct, and there
is also Example 5.2, where ‘han’ - he has a negative attribution towards the
predicted male author gender class. It is, however, clear that ‘han’ - he in
this sentence should have a positive attribution for the male author gender
prediction, especially since the word that comes after it: ‘utgitt’ means
published.

(5.2) Denne gangen har han utgitt en drøy bok ...

Furthermore, the adversarial counterfactual generator HotFlip, which
we introduced in Section 5.2.1, found that the way to turn the model
prediction for this example from male to female, changing only one token,
was to substitute ‘han’ - he for ‘hun’ - she. Even so, after running Integrated
Gradients on the substituted text, the attributions for male author gender
are still the opposite of what they should be in Example 5.3 below:
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Figure 5.14: The color gradient used to show a token’s attribution to the
prediction of a given class.

(5.3) Denne gangen har hun utgitt en drøy bok ...

This substitution changed the model’s logits from 4.53 to -4.33, which means
that the model is quite certain in its predictions in both cases. The gender
classification models compute class probabilities with the sigmoid function,
so to get the class predictions one can simply take the sign of the logits as
the predicted class, negative sign for female gender and positive for male
gender.

Looking at the counterfactual examples made by switching the gendered
pronouns, there were 110 out of 415 examples where the predicted class was
changed. The original predicted class for Example 5.4 was correctly female
author gender, but this example, as well as Example 5.5, show attribution
scores for the male class for comparison. The original logits was -4.62 and
the one for the gender-switched example is 3.73.

(5.4) Her beskrev hun ... 20 år etter hans død

(5.5) Her beskrev han ... 20 år etter hennes død

Like Example 5.2, Example 5.4 shows high attribution scores for male
author gender, even though the noun, which in this case actually refers to
the author, is ‘hun’ - she. In the counterfactual Example 5.5, where the noun
has been changed to ‘han’ - he, the attribution scores are a lot lower, even
though the author of this counterfactual example was predicted to be male.
In the second part of the examples, we see that ‘hans’ - his in the Example
5.4 has a low score, while its substitution ‘hennes’ - her in Example 5.5 gets
the highest score of the counterfactual document. The scores for both of
these substitutions show that switching gender does not only change the
polarity of the scores, but also their absolute value.

Critic gender classification

It is somewhat harder to interpret the model for critic gender classification
since that is a task humans would also have a hard time performing. Given
just the text of a review, not knowing which newspaper it comes from nor
the name of the critic, a human would be hard-pressed to predict the gender
of the critic with any degree of certainty. However, both the BoW models
and NorBERT2 achieve around 75% accuracy on this task, which begs the
question of what information these models use to perform that well. Given
that the interpretability of a machine learning model relates to how well a
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human can understand the causes of its prediction or consistently predict
the model’s result, as defined by Molnar (2022), it will be harder to interpret
a model for a task that humans could not do as well themselves. Even so,
the following examples might shed some light on the models’ predictions.

There were seven reviews among the 415 documents in the development
set where switching the gendered pronouns changed the prediction of the
critic gender model. In one of them, the logits went from 0.65, predicting
the correct male critic gender, to -0.92, predicting female critic gender. This
is a large difference, so the change in prediction can not only be attributed
to the logits already being close to the decision boundary of 0. Nevertheless,
the statistical summary of the changes in attribution score between the
two examples, Table 5.12, shows small attribution changes for the female
class. Interestingly, even though the gender-switched input changed the
prediction to the female class, its mean attribution score to the female
class actually decreased compared to the original input. This does not
intuitively make sense, but it goes to show that there are factors impacting
the prediction of the model that the Integrated Gradient method does not
take into account.

mean std min 25% 50% 75% max

-1.7e-5 4.1e-4 -2.4e-3 -1.7e-4 -3.4e-5 1.3e-4 3.2e-3

Table 5.12: Summary of the difference in attribution scores between the
gender-switched and original review, i.e. new scores minus original scores

Example 5.6 and Example 5.7, shown below, contain the largest and the
fourth largest change in attribution for the female critic class. The largest
one is changing ‘han’ - he in Example 5.6 to ‘hun’ - she in Example 5.7,with
the attribution score going from -0.0012 to 0.002, just above the third quartile
of attribution scores. The fourth largest change is for the token Arch, whose
attribution goes from -0.0005 to 0.0008, both very small values. It is still
notable that this change occurred for a token that was not changed itself,
but it could e.g. be due to attention from Arch to ‘han’ - he or ‘hun’ - she,
if the model has understood that they are coreferences. Still, the absolute
values of the attribution scores in these examples are so low tha one can just
barely see the differences in color.

(5.6) Arch ##ers liv er mer interessant enn bøkene han skriver
.

(5.7) Arch ##ers liv er mer interessant enn bøkene hun skriver
.

It is not surprising that the highest change in attribution score occurred
for a token which was actually changed. On the other hand it means
that the gendered pronouns are also an important feature for the critic
gender classification, not only for author gender classification. This is not
something that would necessarily be expected, since the gendered pronouns
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are used to describe someone other than the critic themselves. The reason
behind this is probably the class imbalance, as shown in Section 3.2. While
female critics review around the same amount of male and female critics,
male critics review almost three times more male authors than female
authors. Consequently, features that indicate the gender of the author might
also to some degree indicate the gender of the critic, since the model can
pick up on the statistical imbalance of the data. This also corresponds to
‘han’ - he’s high coefficient in the BoW critic gender classification model,
shown in Figure 5.3.

Sentiment classification

When it comes to generating counterfactual examples for the sentiment
classification, HotFlip changes appropriate adjectives to one that is
associated with stronger sentiment, likely an adjective that HotFLip has
identified as most positive or negative. In this case HotFlip changed ‘enkel’
- simple in Example 5.8 to ‘glimrende’ - brilliant in Example 5.9 to go from
fair to positive ternary sentiment, resulting in the following difference in
attributions:

(5.8) Rent tekst ##messig er denne boka svært enkel ...

(5.9) Rent tekst ##messig er denne boka svært glimrende ...

In the artificial review containing Example 5.9, ‘glimrende’ - brilliant has
the highest attribution score by a factor of two. However, the attribution
of ‘svært’ - very changes from a small positive attribution in the original
Example 5.8 to a negative attribution of around the same absolute value.
Since ‘svært’ - very is an adverb that intensifies the adjective it is used with,
one would expect its attribution to be of the same polarity as the adjective.
One can only speculate as to why this is not the case here. It could be
because the impact of the full self-attention is hard to interpret for such long
texts as this, or simply that the Integrated Gradients method is not perfect.
For both of the above examples the gradient was computed with respect to
the positive class, even though the original example was classified as fair,
in order to have better grounds for comparison.

The counterfactual examples generated by switching the gendered
pronouns changed the ternary sentiment prediction in just two cases
of the 415 reviews in the development set. As shown previously in
Figure 5.10, switching gender of the pronouns has a small effect on
sentiment classification, slightly improving performance. Figure 5.15 show
a histogram of how much the regression score changes when comparing the
original input to the gender-switched input. One can see that it is close to a
narrow normal distribution, with a slightly longer tail on the left side. Table
5.13 shows that the mean is just below zero, at -0.002, while the median is a
straight zero, which means that the new regression scores are slightly lower
on average. The largest difference seen is -0.093 which is still less than a
tenth of a rating.
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count mean std min 25% 50% 75% max

415 -0.002 0.022 -0.093 -0.013 0.0 0.009 0.068

Table 5.13: Statistical summary of the changes in regression score between
original and gender-switched input, i.e. new scores minus old scores.

Figure 5.15: Histogram of the difference in regression score between the
regression scores when using the gender-switched data as input abd the
original regression scores for the ratings, i.e. new scores minus old scores.

In the first of those cases, gendered pronouns are not used a lot, but
there is one sentence where using ‘hun’ - she instead of the original ‘han’ - he
gives a higher attribution for the negative class. The original and artificial
examples are shown below in Example 5.10 and Example 5.11, with the
original example first:

(5.10) Nygård ##shaug er ujevn . Han har skrevet ...

(5.11) Nygård ##shaug er ujevn . Hun har skrevet ...

In the above examples, we can see that ‘ujevn’ - uneven has the highest
attribution score. Its attribution score of 0.042 for the negative class is
actually the highest of that document and in the 99.98th percentile of
attribution scores. Figure 5.16 shows the attribution score for the negative
class for each token in the original document. The majority of the tokens
have an attribution score very close to zero, with just a few tokens standing
out, like ‘ujevn’ - uneven with its score of 0.042 around position 280 on the
x-axis. This makes the colors of the plot quite bland and hard to distinguish,
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Figure 5.16: Scatter plot of the attribution scores for the negative class.

but that is a deliberate choice in order to use the same color scheme and
scale for all the examples.

‘Han’ - He in the Example 5.10 above has a small attribution of 0.0058,
while ‘hun’ - she in Example 5.11 has an attribution to the negative class
of 0.011, which almost doubles that. This change in attribution score from
0.0058 to 0.011 was the largest change between the original to the gender-
switched input text. On the other hand, even though this is the largest
change of attribution scores, it still does not have a very high impact on the
model prediction. The original regression score was 3.54, on a scale from 1
to 6, and the score with the gender-switched data was 3.49. The new score
barely crossed the threshold of 3.5, which means that the real reason for the
change in prediction was not an exceedingly high impact of changing the
gendered pronouns, but that the regression score already was very close to
the decision boundary. Still, a reduction in regression score of 0.05 on the
gender-switched input is one of the largest changes, as shown in Figure 5.15
and Table 5.13, four times the first quartile of -0.013. It should also be noted
that 3 is the correct rating for this example, corresponding to the negative
ternary sentiment class.

The second of the two cases where the prediction was changed is similar
to the first one in that the original regression score was 3.56, changing to 3.48
and the correct rating of 3 with the gender-switched input. The attribution
score of the gendered pronouns for the negative class also changes similarly
to the first example where ‘han’ - he in Example 5.12 is changed to ‘hun’ -
she in Example 5.13, both shown below:

(5.12) I etter ##ordet skylder han å gjøre leseren oppmerksom

på at ... Og i note ##apparatet burde han ha opplyst om
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Figure 5.17: Scatter plot of the attribution scores for the negative class for
the document containing attribution Example 5.12

hvor han siterer ...

(5.13) I etter ##ordet skylder hun å gjøre leseren oppmerksom

på at ... Og i note ##apparatet burde hun ha opplyst om

hvor hun siterer ...

While each instance of ‘hun’ - she has around double the attribution
score of the replaced ‘han’ - he, except for the last replacement where ‘hun’
- she has six times higher attribution, the absolute difference in attribution
is quite small. The attribution score of the pronouns in these examples is
also small compared to other words like ‘oppmerksom’ - attentive, with the
highest attribution score of the document, and ‘burde’ - should. However,
an interesting factor to note here is how the pronouns interact with the
other words: In the original text, Example 5.12, the two subsequent tokens
‘skylder han’ - he owes, together has a substantial negative attribution to
the negative class, whereas ‘skylder hun’ - she owes in the switched text,
Example 5.13, has a small positive attribution to the negative class. So
even though the gendered pronouns themselves might not get the highest
attribution scores, they affect the attribution of other tokens, likely through
the attention mechanism of BERT.

Like Figure 5.16 and earlier in the attribution distribution of Figure 5.13,
Figure 5.17 shows that the majority of tokens have an attribution score very
close to zero, but a few distinguish themselves from the rest, and these are
likely the only ones with substantial impacts on the predictions.
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Chapter 6

Conclusion

In this thesis we have investigated the relations between gender and
sentiment in Norwegian book reviews. Our data analysis shows that female
critics and authors give and receive statistically significantly lower ratings
than their male counterparts. This difference in ratings is shown to have
effects on the models trained on the data, both the bag-of-word models
and the NorBERT2 models. The analysis of the models was done using
methods from interpretable machine learning. We have demonstrated that
both using interpretable linear models and more advanced methods for
interpreting black-box models can give insight into why the models make
certain predictions.

6.1 Contributions

The main contribution of this thesis is extensive analysis of the effect of
gender on document-level text classification for Norwegian text. Further-
more, our work shows that there are several complementary ways to ana-
lyse such gender effects, ranging from simple statistical analysis of the
metadata to methods created for interpretation of deep neural networks.
Several of these methods can also be used for interpretation of the models
and their predictions in general. Our work also demonstrates how one can
use interpretation methods for transformer models on Norwegian text.

6.2 Research questions

The research questions we investigated in this thesis were the following:

RQ1 Can a model still predict the gender categories and sentiment if we
first normalize gendered words in the texts?

a How could such gender normalizing pre-processing best be
carried out?

c Does gender normalization affect prediction of author gender?

c Does gender normalization affect prediction of critic gender?

d Does gender normalization affect prediction of sentiment?
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RQ2 What is the effect of supplying knowledge of the gender during
training of the models?

a What is the effect of supplying knowledge of the author as a
variable when attempting to predict the gender of the critic, and
vice versa?

b What is the effect of supplying knowledge of the author and/or
critic as a variable when attempting to predict the sentiment?

RQ3 Is it possible to use methodology from interpretable machine learning
to shed more light on what information is used by the models when
predicting gender and/or sentiment?

a To what extent does using linear interpretable models satisfy
both predictive performance and explainability of the models?

b To what extent do methods for interpreting deep neural networks
give insight into why the models make certain predictions?

Looking back at those research questions, it is definitely clear that the
models still can predict the gender of authors when the texts are gender
normalized, although with substantially lower accuracy. When the models
are re-trained on the fully normalized data, both the BoW SVC and the
NorBERT2 model retain around 78% accuracy of the original 91% for the
SVC and 98% for NorBERT2. Even when testing the models trained on the
original data using the gender normalized data, the BoW model has 69%
accuracy, and NorBERT2 has 75% accuracy. For critic gender classification
and sentiment classification, gender normalization has just a slight effect,
but there is an effect.

The gender normalization used for the experimentation replaces
gendered pronouns and person names with dummy tokens. With a dif-
ferent normalization method one could of course expect other results, but
this method was chosen due to its simplicity and since it is possible to im-
plement it in a principled manner. One could of course also have removed
gendered words like woman, man, mother and father, but it would be hard to
define in a principled manner which words should be removed and which
should not, so further gender normalization was not done.

The replaced names carry more information than just gender, since
they refer to people, but without normalizing the names much gender
information would be left in the texts. Since we wanted to control for the
effect of such information, we chose to normalize the names. As has been
argued as well, letting the models use the names of the authors as features
is not very interesting for interpretation either, since the models could then
just weight the names of authors with high or low ratings highly, instead
of using the content of the reviews. We saw that the BoW models likely
used the names in such a way for sentiment analysis, since the performance
of the Ridge model trained with person names dropped quite a bit when
it was given input where the names were normalized. Nonetheless, the
gender normalization did not affect critic gender classification or sentiment
classification nearly at all, especially when re-training the models on
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the normalized data. Only the aforementioned Ridge regression model
for sentiment classification, trained on the original data, lost a lot of its
performance when given input with normalized names. This is likely not
due to the loss of the gender information contained in the names, but the
fact that different authors get different average ratings, and the models can
no longer use this correlation when the names are normalized.

We also demonstrate in Section 4.4.3 that supplying the models with
gender metadata has some effects of performance, but not as much as
what Touileb et al. (2021) found and not always in the same direction
as their results. Their results indicate that adding either or both genders
when predicting sentiment increased the performance, while we found
that it decreased the sentiment classification performance. It should
be noted that the model architectures were not the same and neither
were the classification heads, since they performed binary classification
and we performed ternary sentiment classification. With normalized
gender, adding metadata to NorBERT2 improved performance of sentiment
classification but not for author gender classification or critic gender
classification. This was the opposite as the author gender classification
results for the BoW models, where adding metadata improved the
performance substantially when the gender was normalized.

Chapter 5 demonstrates that there are several methods from inter-
pretable machine learning that can be used to shed light on what inform-
ation the models use. The methods explored can roughly be divided into
three: using interpretable models, gradient-based methods for neural net-
works, and counterfactual analysis. These methods have different strengths
and weaknesses and can complement each other. For example, having ac-
cess to the gradients of a neural network means having access to more
information about the model’s prediction. However, as the examples for in-
terpreting author gender in Section 5.2.5 show, the gradient-based methods
can at times give strange results, where methods without access to model
internals would be more conservative. This means that one should not al-
ways take any explanation from an interpretation method at face value, but
corroborate the results using other methods as well.

NorBERT2 has almost 10 pp higher performance than the BoW models
for author gender classification and ternary sentiment analysis, but for critic
gender classification their performance is about equal. This means that
there are some tasks where using interpretable, linear BoW models can be
beneficial compared to the much larger transformer models. We conclude
that linear models satisfy both predictive performance and explainability for
the critic gender classification task on the NoReCgender data set. However,
we cannot conclude that this is the case for predicting the gender of the
writer of the text one passes to the model in general.

We discuss the possible gender bias of NoReCgender in Section 3.5
and determine that we cannot actually conclude whether the differences
between ratings for men and women are caused by gender bias. There
could also be other reasons for the differences, like female critics choosing
to review other books than male critics, or that female authors write books
in different genres than male authors. Nevertheless, in one way it does not
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matter if these differences stem from bias or not. No matter the reason for
the differences, any machine learning model trained on the sentiment data
of NoReCgender without precaution, would be biased against female authors.
To these models, a correlation is a correlation, and they cannot even know
what causation is, since they have no notion of counterfactual queries and
answers (Pearl & Mackenzie, 2018).

6.3 Limitations

This thesis has only used a very small fraction of the interpretation methods
that have been developed to date. Since research in interpretable machine
learning has boomed in the latest years, new methods are being developed
at a rapid pace (Molnar et al., 2020). The gradient-based methods used
in this thesis were originally made for interpretation of image models,
before being adapted to work in NLP. It could be that methods developed
specifically with NLP in mind would make interpretation easier or more
powerful.

In this thesis counterfactual analysis has been used for interpretation
of the models. When changing a word in the input text also changes the
prediction of the model, it is intuitively apparent that the word is important
for the prediction. However, we lack robust theoretical grounds to quantify
the counterfactual importance of such a word.

While this thesis may add some insight into the effects of gender in
Norwegian book reviews, it does so only for a binary understanding of
gender. We recognize that this is not sufficient to reflect all variations of
gender, but given the data available and the scope of this thesis, that was
the extent of what was possible. The previous work on gender bias that this
thesis use as a foundation has also been based on binary gender settings.

We did not do any work on how one could prevent gender bias from
having an impact on models used for prediction. Of course, normalizing
gender may have an effect, but in theory, removing a sensitive variable
like gender may not make the model more fair, since other variables can
correlate to the sensitive variable. We could afford to neglect this since
none of the models trained during the experimentation for this thesis will
be used in the future for predicting anything with an effect on other people.
However, what our analysis indicates is that if no measures are taken to
prevent or alleviate bias, the bias present in the training data will have
impacts on the model predictions. That may be self-evident given that
machine learning models use any correlations they find, be they spurious
or discriminating, to better fit to the data. This notwithstanding, bias is
something machine learning practitioners should keep in mind when they
train models to be used for prediction.

6.4 Future Work

As mentioned above, this thesis only touches the surface of the interpreta-
tion methods that exist. It would certainly be interesting to see what kind
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of results one could get with different and more advanced interpretation
methods, which were outside the scope of this thesis.

Another direction to take the research in further work could be to
compare the gender bias inherent in different pretrained models and model
architectures, for example comparing NorBERT2 to cross-lingual models
like XLM-Roberta with respect to gender. Furthermore, it could be valuable
to use models that can inherently deal with texts longer than 512 tokens. The
approach for document-level classification used in this thesis was to use the
first 128 and the last 382 tokens, but this approach clearly loses information
that could have value for the models. In a similar manner, it could be
beneficial to investigate in what situations interpretable BoW models can
perform on par with more expensive and not inherently interpretable deep
neural networks, like we saw for critic gender classification in this thesis.
Such models also do not have BERT’s current limitation of maximum 512
tokens. NoReCgender is also a quite small data set in the grand scheme of
things, so it would be of interest to investigate whether the results achieved
on NoReCgender can be reproduced for other data sets, or if there are large
differences.

Further research using counterfactual analysis for NLP should find ways
to more robustly quantify the changed word’s impact, by using e.g. the
probability of necessity and probability of sufficiency, in the vein of Watson
et al. (2021) and Pearl and Mackenzie’s (2018) work on counterfactuals.
Molnar et al. (2020) note that causal interpretation of machine learning
models is a challenging task, and that making a model work well for causal
interpretation can conflict with predictive performance. Keeping this in
mind, it would be valuable to learn how much performance one would
need to sacrifice in order to make models more explainable, and strike a
balance between performance and interpretability.

In order to rectify this thesis’ and most previous work’s limitation of
only using binary gender, a possible research direction could be to include
more gender categories. Such an approach should also use self-reported
gender instead of having the researchers annotate gender based on names.
To some extent, previous work by Lassen et al. (2022) shows that what
matters when evaluating the work of a person is actually not their actual
gender, but what the audience perceives their gender to be. Nevertheless, not
letting people define their gender themselves can be seen as an infringement
of their rights and should be avoided, if possible.
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