
.

Master’s thesis

MEAT: Morphological Evolution

of Augmenting Topologies

Tobias Remman Paulsen

Informatics: Robotics and Intelligent Systems

60 ECTS study points

Department of Informatics

Faculty of Mathematics and Natural Sciences

Spring 2023

Tobias Remman Paulsen

MEAT: Morphological Evolution of

Augmenting Topologies

Supervisors:

Frank Veenstra

Kyrre Glette

Abstract
Evolutionary Algorithms (EAs) are effective tools for solving
various optimization problems. One of these problems is the
co-optimization of robot morphology and control. In modular
robotics, this challenge lies in the reconfiguration of the shape
of a robot composed of various modular components. With
EAs, these configurations can be evolved to create robots able
to accomplish a task. Because of the wide range of different
configurations, finding the optimal arrangement simultaneously
with the control parameters can be very challenging. Even though
contemporary approaches are promising, evolutionary runs often
lead to premature convergence to suboptimal configurations.

To investigate the challenge of premature convergence, this
thesis evaluates the performance of evolving modular robots
through three different experiments. Experiment 1 investigates
how a simple initialization approach compares to a random one,
looking at the effects on performance, morphological convergence,
morphology, complexity, and diversity. Experiment 2 analyzes the
effects of morphological protection, thereby also the performance
of combining the simple initialization with protection to create
Morphological Evolution of Augmenting Topologies (MEAT). Lastly,
Experiment 3 examines how evolving in a challenging environment
impacts evolution.

The results demonstrate that starting with an initial population
without diversity quickly improves and matches methods with
higher initial diversity. MEAT performs significantly better in
both environments while leading to less complex morphologies.
Despite this lower complexity, there are no indications of less
exploration of the search space. Maintaining the morphological
diversity in the population through morphological protection
enables more exploration, and is thereby an effective tool in delaying
morphological convergence. These results highlight the potential of
MEAT, as augmenting morphological topologies is beneficial when
co-optimizing the morphology and control of robots.

i

Abstract

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 4
1.3 Contributions . 4
1.4 Thesis Outline . 5

2 Background 7
2.1 Evolutionary Algorithms . 7

2.1.1 Exploration and Exploitation 12
2.1.2 Effect of Initial Population 13
2.1.3 Neuroevolution . 14

2.2 Modular Robotics . 15
2.2.1 Control . 16

2.3 Evolutionary Robotics . 18
2.3.1 Co-Optimization of Morphology and Control 18
2.3.2 Protection . 19
2.3.3 Diversity . 20
2.3.4 Impact of Environment 22
2.3.5 Encodings . 22

3 Implementation 25
3.1 Tools and System Overview . 25
3.2 Modules . 27
3.3 Controller . 28

3.3.1 Mutation . 30
3.4 Robot . 31

3.4.1 Rules . 31
3.4.2 Initialization . 32
3.4.3 Mutation . 34

iii

Contents

3.5 MEAT . 36
3.5.1 Morphological Protection 36

3.6 Evolution . 38
3.6.1 Simulation . 38
3.6.2 Evolutionary Algorithms 39
3.6.3 Genome Cleanup . 41

3.7 Analysis Methods . 42
3.7.1 Morphological Features 42
3.7.2 Diversity . 42

3.8 Experiment Setup . 43

4 Experiment 1: Initialization 45
4.1 Setup . 45
4.2 Results . 46

4.2.1 Fitness . 46
4.2.2 Morphology . 47
4.2.3 Diversity . 51
4.2.4 Qualitative Results . 52

4.3 Analysis . 55

5 Experiment 2: Protection 59
5.1 Setup . 59
5.2 Results . 60

5.2.1 Fitness . 60
5.2.2 Age . 61
5.2.3 Morphology . 62
5.2.4 Diversity . 66

5.3 Analysis . 66

6 Experiment 3: Environment 71
6.1 Setup . 71
6.2 Results . 72

6.2.1 Fitness . 72
6.2.2 Morphology . 72
6.2.3 Diversity . 76
6.2.4 Qualitative Results . 77

6.3 Analysis . 79

7 Discussion 83
7.1 Elites and Strategies . 84

iv

Contents

7.2 Methods Used . 86
7.3 Future Work . 87

7.3.1 Further Investigations . 87
7.3.2 Possible Improvements 89
7.3.3 Potential . 91

8 Conclusion 93

v

Contents

vi

List of Figures

2.1 Basic scheme of EAs . 8

3.1 Connection sites and rotations of the different modules 27
3.2 Controller outputs . 30
3.3 Robot genotype and phenotype 32
3.4 Simple initialized robots . 33
3.5 Randomly initialized robots . 35
3.6 Stairs . 39
3.7 Comparison diversity distance measures 43

4.1 Experiment 1: Fitness comparison 46
4.2 Experiment 1: Fitness box plots 47
4.3 Experiment 1: Morphology convergence 48
4.4 Experiment 1: Comparison of the number of modules 48
4.5 Experiment 1: Number of modules/fitness scatter plots 49
4.6 Experiment 1: Morphological features elites 50
4.7 Experiment 1: Morphological features explored 51
4.8 Experiment 1: Diversity . 52
4.9 Experiment 1: Ancestry of elites 53
4.10 Experiment 1: Elites . 55

5.1 Experiment 2: Fitness comparison 60
5.2 Experiment 2: Fitness box plot 61
5.3 Experiment 2: Average age top 20 individuals 62
5.4 Experiment 2: Morphology convergence 63
5.5 Experiment 2: Elites’ morphological change 64
5.6 Experiment 2: Comparison of the number of modules 65
5.7 Experiment 2: Number of modules/fitness scatter plots 65
5.8 Experiment 2: Diversity . 66

6.1 Experiment 3: Fitness comparison 72

vii

List of Figures

6.2 Experiment 3: Fitness box plot 73
6.3 Experiment 3: Morphology convergence 74
6.4 Experiment 3: Comparison of the number of modules 75
6.5 Experiment 3: Elites’ features . 76
6.6 Experiment 3: Number of modules/fitness scatter plots 77
6.7 Experiment 3: Diversity . 78
6.8 Experiment 3: Top 3 elites of each method, stairs 80
6.9 Experiment 3: Top 3 elites of each method, flat 81

7.1 Discussion: Fitness comparison 87

viii

List of Tables

3.1 Software versions used . 27
3.2 Allowable parameters for the controller 30
3.3 Experiment parameters . 43

4.1 Experiment 1: Mann-Whitney U p-values for fitness 47
4.2 Experiment 1: Properties of elites 49

5.1 Experiment 2: Mann-Whitney U p-values for fitness 61
5.2 Experiment 2: Mann-Whitney U p-values for morphological

convergence . 63
5.3 Experiment 2: Properties of elites 64

6.1 Experiment 3: Properties of elites 75

ix

List of Tables

x

Acronyms

AFPO Age-Fitness Pareto Optimization. 20, 36, 37, 91

ALPS Age-Layered Population Structure. 20, 37, 91

ANN Artificial Neural Network. 14

CO Coupled Oscillator. 28–30, 67, 83, 89

CPG Central Pattern Generator. 17, 29

CTRNN Continuous-Time Recurrent Neural Network. 17

EA Evolutionary Algorithm. 1, 3, 4, 7–14, 16, 18, 20–22, 25, 26, 39, 40, 43, 56,
82, 86, 87

EC Evolutionary Computation. 7

GED Graph Edit Distance. 42

GHS Graph Heurisic Search. 16, 22

MEAT Morphological Evolution of Augmenting Topologies. 3–5, 25, 36, 37, 39,
45, 46, 59–64, 66–69, 71–73, 75, 76, 79–84, 86–88, 90, 91, 93, 94

MPC Model Predictive Control. 16, 22

NEAT NeuroEvolution of Augmented Topologies. 3, 14, 20, 36, 37, 91

RNP Random Initialization No Protection. 39, 40, 45, 46, 48–51, 53–56, 60–64,
67, 68, 72, 73, 75, 76, 80, 81

RP Random Initialization Protection. 40, 60–64, 67, 68, 72, 73, 75, 76, 80, 81

xi

Acronyms

SNP Simple Initialization No Protection. 39, 40, 45–50, 52–56, 60–64, 67, 68,
71–73, 75, 76, 80, 81, 86, 87, 93

xii

Acknowledgements

I would like to thank my supervisor, Frank Veenstra, for his invaluable guidance
and encouragement. This thesis would have been possible without inspiring
discussions and feedback.

Additionally, I would like to thank my friends and co-students for motivating
and supporting me.

The work for this thesis was performed on the Fox high-performance computing
cluster, owned by the University of Oslo Center for Information Technology.

xiii

Acknowledgements

xiv

Chapter 1

Introduction

1.1 Motivation

All living organisms have gradually evolved throughout millions of years
to thrive in their respective environments. Despite the vast diversity of
animals that can be found in nature today, they have all evolved from one
simple common ancestor that lived a few billion years ago. Charles Darwin’s
theory of evolution introduced the concept survival of the fittest [1]. Natural
selection favors individuals that are best adapted to their environment and
can outcompete others for limited resources. Thus, these individuals will
have a greater chance of survival and reproduction. New species emerge
through the interplay of random genetic variations caused by mutations and the
process of natural selection. Over many generations, these small mutations can
accumulate, leading to significant differences between descendants and their
ancestors. At a certain point, the individuals have diverged so much that
they are categorized as a new species. Distance and isolation is furthermore a
catalyst for speciation, where populations adapt to their environments through
millions of years of evolution.

Evolutionary Robotics takes inspiration from the natural evolutionary process
and tries replicating it to create well-performing robots for various tasks. Both
the control systems and the body plans of robots can be optimized with the help
of Evolutionary Algorithms (EAs), but evolving them both simultaneously is a
complex task. Instead of manually designing the robot and tuning the controls
to a specific need, this process is accomplished through simulated evolution.
By modeling a real-life environment accurately, robots can be designed and

1

Chapter 1. Introduction

optimized automatically through simulations for work in the real world as well.
This ambitious goal can lower the cost of designing and producing working
robots, as there is no need for human interaction. The solutions found can
be very different from the human-made designs but might end up performing
better by using unconventional designs. Instead of trying to model robots after
animals, evolutionary robots are designed through random mutations.

In 1994, Karl Sims evolved virtual creatures in an artificial world with
simulated physics [2]. Both the body plans and the behavior of these creatures
were optimized simultaneously. His work demonstrated that these creatures
managed to complete various tasks such as swimming, walking, jumping, and
following a light source. Sims’ research has inspired many researchers since
its publication, including [3–9]. As a result, the field of co-optimization of
morphology and control has emerged.

A few years prior to Sims’ groundbreaking paper, the work on modular robots
had already started [10]. These robots consist of separable modules or units
that isolate a specific function of the robotic system. Using a finite set of
modules, a large diversity of robots can be created by connecting the modules in
various ways. Identifying optimal control parameters for a particular modular
robot can be a challenging task in itself. By searching for good combinations
of both morphology and control, the search space will be orders of magnitudes
larger. As a result, finding the best solutions within such a vast search space
is a very challenging task. The simultaneous evolution of robot morphologies
and control can be achieved through the incorporation of modules as building
blocks.

Although a lot of work has been done with co-optimizing morphology and
control, understanding how to improve it takes much time and research. Despite
the increased computational power since Sims’ work with virtual creatures,
there has been stagnation in the field with less progress than many had hoped
for. One of the main challenges with co-optimization is that the body plans in
a population of evolving robots converge earlier than the control systems. This
leads to the fact that in the later generations of evolution, only the controls
are optimized. Cheney et al. [11] theorized that the reason for this is rooted in
embodied cognition. When a robot’s morphology is changed, there is an added
effect that the controller becomes “scrambled” since the commands sent by that
controller will be interpreted differently. The controller then has to re-adapt to
this new body to be as effective as it was before.

2

1.1. Motivation

Several approaches have been presented to avoid or reduce the problem of
embodied cognition. One is the morphological protection technique presented
by Cheney et al. [7], where novel morphologies introduced in the population are
protected. This has the effect of protecting newly mutated individuals, allowing
them time to adapt their control system to their new body. Additionally, this
helps to keep the population morphologically diverse. Other approaches to
avoid premature morphological convergence also preserve the diversity in the
population through speciation [12], evolving for novelty [4], MAP-Elites [13],
and evolution in changing environments [14].

There has not been much research on the effect of the initial population in
Evolutionary Robotics, and most of the studies in this field rely on some
sort of randomly initialized population. For EAs in general, research has
shown varying importance of a diverse initial population [15–18]. Stanley
and Miikkulainen introduced the algorithm NeuroEvolution of Augmented
Topologies (NEAT) [19], showing that starting with minimal solutions and
gradually growing them is desirable when doing Neuroevolution, as there are
fewer parameters to be searched initially. When using a random population,
the networks start off with many unnecessary nodes and connections already
present, and this can make them more complex than necessary.

This thesis will explore a novel approach to co-optimize modular robots’
morphology and control, called Morphological Evolution of Augmenting
Topologies (MEAT). Inspired by the fact that all living organisms have evolved
from a simple ancestor, MEAT employs a minimal initialization method and
gradually augments the morphology of the individuals. The evolved robots
are also inspired by biology and will exhibit bilateral symmetry, which is
found in the vast majority of animals. This trait is very useful for targeted
locomotion, as it offers the ability to move in all directions and the ability
to turn efficiently. The aim of the experiments is to explore whether starting
the evolution with only very minimal body plans can result in diverse and
high-performing individuals or if a starting population with higher diversity
is necessary. NEAT is another source of inspiration, raising the question
of whether the advantages demonstrated here will transfer to the field of
Evolutionary Robotics. Specifically, this thesis focuses on whether this can help
create high-performing yet less complex morphologies compared to a randomly
initialized population. To reduce the problem of premature morphological
convergence, MEAT will use a morphological protection method based on age,

3

Chapter 1. Introduction

inspired by Cheney et al. [7].

1.2 Research Questions

Co-optimization of robot morphology and control tends to result in the
morphology converging prematurely. When starting with a population of only
minimal robots, the hypothesis is that the morphology will converge even earlier
than a random initialization approach. By using morphological protection, the
hypothesis is that this early convergence will be avoided, and thus the fitness
will increase. Therefore, it is believed that MEAT will perform better or equal
to the random initialization while also reducing the complexity of the solutions
found.

From these hypotheses, the main research question is created:

• What are the effects of gradually augmenting morphologies from a
minimal body plan?

Interesting avenues are initialization, morphological protection, and the
environment. The thesis contains three main experiments, each focusing on
one avenue and one research sub-question. The three sub-questions are derived
as a way to help answer the main question in different contexts:

1. How does the initial population affect the search process?

2. What are the effects of using morphological protection based on age?

3. How does the environment impact the evolution of modular robots?

1.3 Contributions

The main contribution of this thesis is to shed light on how minimal
initialization, morphological protection, and environment affect the evolution
of tree-based modular robots.

Another contribution is in giving insights into the effects of a multi-objective
selection operator on fitness and morphological age. This selection operator
maintains higher population diversity, enabling more exploration and a later
convergence compared to single objective EA measuring only fitness.

The results show that MEAT leads to better performance for both environments

4

1.4. Thesis Outline

used in the experiments, at the same time as it leads to less complex
morphologies. Thus, MEAT is a promising new method for co-optimizing
modular robots.

1.4 Thesis Outline

This thesis is structured into eight chapters: Introduction, Background,
Implementation, Experiment 1, Experiment 2, Experiment 3, Discussion, and
Conclusion.

Chapter 2 gives an overview of background theory and previous work done that
is relevant to this thesis. The topics focused on are Evolutionary Algorithms,
Modular Robotics, and Evolutionary Robotics. The following chapter, Chapter
3: Implementation, provides an overview of the methods used and presents the
experiment setup. The implementation and design of the modules are discussed,
and how the controller and algorithms work are described.

The three experiment chapters each focus on one of the sub-questions as well as
the main research question. Experiment 1 focuses on initialization, Experiment
2 on morphological protection, and Experiment 3 looks into the impact of the
environment. Each of these chapters includes an analysis of the respective
results before a more general discussion of the results and work is provided in
Chapter 7: Discussion. Here the limitations and future work are also presented.

Lastly, Chapter 8: Conclusion highlights the main findings and their
significance.

5

Chapter 1. Introduction

6

Chapter 2

Background

This chapter contains an overview of background theory and related work
relevant to this thesis. First, Evolutionary Algorithms (EAs) will be introduced,
including a basic overview of how they function. This is followed up by an
introduction to Modular Robotics, focusing on the benefit of using these robots
and how they can be controlled. The final section of this chapter is about
Evolutionary Robotics, with a primary focus on how EAs are used to develop
virtual creatures and modular robots.

2.1 Evolutionary Algorithms

EAs are metaheuristic optimization algorithms and are a subset of Evolutionary
Computation (EC) [20]. EAs leverage the principles of evolution to perform
optimization or learning tasks. Due to their ability to efficiently explore vast
and complex search spaces, EAs are particularly useful for solving problems
that are difficult or even impossible to solve in polynomial time using traditional
algorithms. Examples of these problems are NP-Hard problems and problems
with multiple objectives [21]. By introducing variation from random mutation,
EAs do not require a gradient in the search space as supervised approaches do.
This also makes the algorithms useful in deceptive and discrete search spaces
where no gradients can be calculated.

EAs take inspiration from natural evolution and use the concept of natural
selection to find the best solutions [22]. Successful or fit solutions will
have a greater chance of survival and therefore are more likely to reproduce.
Introducing variation to the offspring is crucial to improve the average fitness

7

Chapter 2. Background

of the whole population over time. Both in nature and EAs, this variation is
produced by random mutations and recombination of parents. While there is
no guarantee that an EA will find a globally optimal solution, the stochastic
nature of the evolutionary process enables the algorithm to move against a
gradient or move when there is no gradient. This randomness can lead to a lot
of variation in results.

The basic premise of an EA (Figure 2.1) is to begin by initializing a population
of individuals. Each of these is then evaluated and assigned a fitness value.
Based on their fitness, a selection of individuals are chosen that are allowed to
reproduce. These selected parents are recombined to form new individuals. The
offspring are then mutated to introduce variation. After this, the individuals
allowed to survive to the next generation are selected. The process of
parent selection, recombination, mutation, evaluation, and survivor selection
is repeated until a termination condition is satisfied [22].

Initialization

Selection

Termination

Recombination

Mutation

Figure 2.1: Basic scheme of EAs.

In nature, all living organisms carry a set of genes known as their genotype,
and the set of physical and observable traits are referred to as their phenotype.
In EAs, these same terms are used to represent the solutions. Each solution is
encoded as a set of parameters, the genotype, and the actual solution is referred
to as the phenotype. The phenotype is what is evaluated during the evolution
process. Therefore, the genotype of an individual has to be mapped to the
corresponding phenotype to evaluate the solution. Choosing a fitting way to

8

2.1. Evolutionary Algorithms

represent and map a solution is one of the challenges when using EAs [23].

Initialization

Usually, the first generation of individuals is generated randomly. However,
problem-specific heuristics can also be utilized during this stage to increase
the initial fitness values of the individuals [23]. Starting with poor-quality
individuals can increase the time it takes to find good-quality solutions or
possibly lead to premature convergence. Therefore techniques to increase the
diversity of the initialized population exist [17, 24].

Fitness Function

The fitness function assigns each individual a fitness value based on how good
the solution is or how well it performs. This function has to be designed or
adjusted for the specific problem being solved. The measured fitness allows for
easy comparisons of the different solutions. This value is traditionally the basis
for selection. Therefore, designing a suitable fitness function representing the
whole problem is essential. Choosing different fitness functions can yield very
diverse solutions.

If the goal of the EA is to optimize for one objective, e.g. maximizing structural
strength or minimizing costs, it is very straightforward to choose the fitness
function. Here the desired property is what determines the fitness, and the EA
will optimize for this value directly. The same can be done when optimizing
for robot locomotion, where a simple fitness function measures the distance a
robot moves in a particular direction. Often, a single objective is insufficient to
describe the whole problem, and several objectives must be included. This is
called Multi-Objective Optimization. In the context of robot locomotion, this
can entail optimizing for both stability and distance traveled. To address the
multiple objectives, one approach is to have all objectives in a vector and use
the concept of Pareto optimality to make the selection [25]. If one solution is to
dominate another, it has to have a higher or equal value at all the objectives.
Scalarization [26] is another strategy where a weighted sum of the desired
objectives is calculated and used as fitness:

fitness(x) = w1 · f1(x) + w2 · f2(x) + ... + wk · fk(x)

where x is the individual, wn is the weight of a certain objective, and fn is the

9

Chapter 2. Background

objective. One issue here is that the weights have to be set and tuned manually
based on how important the different objectives are.

The fitness landscape can often be quite deceptive, so going in a direction
with gradual improvement of fitness is not necessarily in the direction of the
global optima [27]. Another related problem is the rugged fitness landscape,
with many peaks and valleys. This is a problem because it is very easy to be
trapped in local optima with suboptimal solutions. Although Multi-Objective
EAs can be useful in tackling these problems, other solutions to these problems
are often based on preserving the diversity in the population and are called
Quality Diversity methods [28]. Examples are to optimize for novelty alone [27]
and MAP-Elites [29].

Selection Operators

The selection operators of EAs are parent selection and survivor selection.
These operators work on the population level and are responsible for the
selection pressure in the algorithm.

The parent selection is done after each individual has been evaluated and
assigned a fitness value. This selection is the basis for which individuals are
allowed to reproduce. There are several ways to do the parent selection,
but normally it is done randomly with either uniform probabilities or
fitness-proportionate probabilities. Probabilistic parent selection (fitness-
proportionate selection) means that high-fitness individuals have a greater
chance of reproduction than low-fitness individuals. The low-quality individuals
are often given a small chance as well, and this randomness is introduced to
reduce the selection pressure and introduce some noise. This can help combat
premature convergence because it preserves more diversity. If only the high-
quality individuals were able to reproduce, the search algorithm would be too
greedy, and the chances of getting stuck in local optima would be higher.
Tournament selection [30] is a different approach and works by randomly
selecting (uniformly) k individuals for a tournament, where the individual with
the highest fitness is chosen to reproduce.

Survivor selection chooses which of the individuals within a population survives
to the next generation. This selection is done following the variation operators
and is the last stage before the next generation. Like parent selection,
the individuals are chosen based on their fitness value, and higher quality

10

2.1. Evolutionary Algorithms

individuals will have a better chance of survival. While parent selection
normally has some randomness, survivor selection is often deterministic [23].
Ways of choosing survivors can be, for example, only the fittest individuals
(elitism), only the offspring (generational replacement), or a combination of
the two.

Variation Operators

Recombination and mutation are the two operators used to induce variation
in the algorithm. These variation operators work on the individual level, and
their role is to create new individuals with new features or new combinations
of features.

Recombination is the process of creating offspring by combining the selected
parents. The primary objective is to create offspring that inherit different
desirable traits of both parents. There are different recombination operations
based on how the individuals are represented. Normally the recombination is
stochastic, where the parts of each parent are chosen and combined randomly
[23]. After the parents are recombined into offspring, the children are modified
through mutation. This facilitates the creation of new values and features that
did not exist within the parents. Examples of mutations can be changing or
swapping random values in the genome.

Termination Condition

The termination condition determines when the algorithm stops looking for new
solutions. This can be when individuals with a desired fitness level have been
found, a maximum allowed generations/time has been reached, the population
fitness has stagnated, or the population diversity fell under a certain threshold
[23].

If the global maximum is known, it might be desired to run the algorithm until
a solution close enough to the global optima is found. Because of the stochastic
nature of EAs, there is no guarantee that these solutions will be found, so other
termination conditions should be used simultaneously to prevent the algorithm
from running forever.

11

Chapter 2. Background

2.1.1 Exploration and Exploitation

Exploration and exploitation are two very important concepts of any search
algorithm, including EAs. A balance between them is crucial for achieving
great results [31]. Too much exploration of the search space will lead to slow
or no convergence, and much time and computational power will be wasted on
low-potential solutions. However, if the algorithm is too exploitative, the search
will quickly lead to a local optimum and premature convergence. Especially
if the search landscape is complex, the population will be very concentrated
around this local optimum, and there will be only a tiny chance of escaping
to better areas. Therefore, it is important to have an algorithm with a good
enough balance between exploration and exploitation to avoid low-fitness local
optima and to have enough exploitation to actually improve the population
and find the peaks in the search space. There are a lot of variables that will
impact the exploration-exploitation balance. Thus, finding the right balance
can be difficult yet important.

Exploitation is typically done by the selection, while the search space is explored
using variation operators like mutation and recombination [32]. An elitist
selection and low mutation rate will give a lot of exploitation. In contrast, a
high mutation rate and generational replacement (choosing only the offspring
to survive) will lead to more exploration. The choices of selection operators and
types of mutations will have a big impact. A larger mutation spread will cause
bigger steps in the search space, thereby exploring more of the search space.
The larger the steps, the more difficult it is for an EA to get stuck in a small
area of the search space. The tradeoff here is that if the steps are too large,
the algorithm might be unable to exploit the solutions found to find the higher
peaks in the search space. A small mutation spread will be more exploitative,
but the probability of getting stuck in local optima is greater.

When tournament selection is chosen, the tournament size is also important. A
small tournament size gives low-quality individuals a greater chance of selection,
while a very large tournament size has an incredibly low probability of selecting
low-quality solutions. A very large tournament size will therefore be more
exploitative, and the best individuals will be chosen repeatedly.

Other techniques for increasing the exploration of the search space have
also been researched. These approaches are often based on maintaining the
populations’ diversity to avoid the whole population converging towards one

12

2.1. Evolutionary Algorithms

local optimum. Hutter [33] proposed a new selection scheme to increase
diversity, “fitness uniform selection”. The background for this was that standard
selection schemes aim to increase the average fitness of a population. If the
selection pressure then is too high, the EA can easily get stuck in local optima
since diversity decreases too rapidly. Fitness uniform selection has the objective
of finding a single individual of maximum fitness, and it is not primarily
interested in converging the population to maximum fitness. It was shown that
this selection scheme creates suitable selection pressure and preserves genetic
diversity better than standard selection schemes.

Several other studies have also explored how diversity preservation can be used
to combat premature convergence. Some of these include crowding [34], fitness
sharing [35], and local mating [36], all of which are based on the concept of
niching found in nature. Niching involves dividing the population into species
based on different traits or properties. Age has also been used for grouping the
individuals [7, 37, 38]. Methods using some sort of niching or grouping enables
the individuals within the same species or group to compete primarily among
themselves. This creates local competition between “similar” individuals and
reduces the selection pressure between very different solutions. By doing this, a
wider range of solutions is preserved, thus increasing the population diversity.

2.1.2 Effect of Initial Population

There have been some studies on the effect of the initial population in EAs, but
not a lot. Normally, the initial population of an EA is composed of individuals
with a genome containing a set of random values. If there is some prior
information, the population can be seeded with more promising individuals
[39]. This has been shown to lower the time it takes to find high-performing
individuals.

Maaranen et al. [15] showed that it can be more important to start off
with individuals evenly distributed throughout the search space instead of
completely random ones. To do this, they used quasi-random sequences.
Maaranen et al. later did more research into the effect of the initial population
on single objective EAs [16]. In this study, they looked at different ways to
initialize the population and compared methods that gave a more uniformly
distributed initial population with random initialization. The results showed
that the random initialization performed as well as the more uniform ones.

13

Chapter 2. Background

Some more promising results were shown by Rahnamayan et al. [40]. They
introduced a way to initialize the population using opposition-based learning
and thereby starting the evolution with a fitter population. They showed that
by starting with a fitter population, high-performing solutions were found 10%
quicker.

2.1.3 Neuroevolution

One application of EAs is neuroevolution, where EAs are used to construct and
optimize Artificial Neural Networks (ANNs). Traditionally ANNs are trained
using backpropagation. This requires gradients to be calculated based on target
values from a dataset, the gradients are then used to minimize the error by
adjusting the weights of the ANN. Neuroevolution does not rely on a dataset,
making it an attractive option where labeled data is impossible, like robot
control. Neuroevolution works well for these cases, and because it does not
require a dataset, it is much more general than backpropagation. The weights
are instead optimized by using random mutations, allowing movement against
the gradient as well. This will allow the search to escape local minima more
easily than backpropagation.

Early work on neuroevolution only searched for the weights, while the network’s
topology was fixed [41], but neuroevolution can also be used to find the topology
automatically. The creation of the network topology is a discrete optimization
task, and this is, as previously stated, something EAs performs well at. This
approach has shown a lot of promise in complex reinforcement learning tasks
[42].

One method within neuroevolution is NeuroEvolution of Augmented Topologies
(NEAT) [19]. Mutations can here change both the weights of the connections
and the network structure itself. The population initially starts with very
minimal networks, but over time the networks in the population get more
and more complex. In the original NEAT algorithm, both connections and
nodes could be added but not removed. In later implementations, deleting
nodes and connections has also been made possible [43]. The smaller the
network structure is, the faster it optimizes. Because of this, there is usually a
decrease in fitness when adding nodes and connections. This leads to mutated
individuals having a low chance of surviving to be further optimized. The
solution to this problem was to protect innovation. This was done by dividing
the population into species and allowing the individuals to compete within

14

2.2. Modular Robotics

their own niche. The speciation preserves diversity by creating small sub-
populations and gives mutated individuals more time to optimize their structure
through competition within their niche. The reason behind starting with simple
structures was that starting with random, more complex topologies does not
lead to minimal solutions. The individuals then start off with unnecessary
nodes and connections already present. The excessive nodes and connections,
therefore, need to be removed to reach more minimal solutions. The result
of the study showed that evolving minimal solutions are desirable because it
initially reduces the number of parameters that have to be searched.

2.2 Modular Robotics

Modular robots [44] are robots built of several units/modules. A module
is a physical component that isolates a specific function of the entire
robot. Each module can contain sensors, actuators, and computational- and
communicational capabilities. The goal of modular robotics is to connect these
modules effectively to create a robot capable of accomplishing some task.

A wide range of different modules are used in the research on modular robots.
The modules used can be either all the same (homogeneous) or different
(heterogeneous). Homogeneous modules are the most common and have quite
a lot of redundancy. This is because all of the modules need to have the same
components, like sensors, batteries, and actuators. The heterogeneous modules
have the advantage of being more versatile as the modules can be specialized
for specific tasks.

Modular robots offer several benefits, especially when it comes to the evaluation
of the robotic system in the real world [45]. Using modules that have
physical prototypes in the real world allows for easy and quick assessments
of the system’s performance. Additionally, modular robots are highly versatile
because the modules can be connected in many different ways, resulting in the
creation of robots with a wide range of different properties. This versatility
enables rapid exploration of different morphologies and quick configuration of
the robots to adapt to changing needs.

Another quality of modular robots is robustness. If one of the modules fails,
the broken module can easily be replaced to keep the system working. Because
all modules in a robot are the same or at least one of a limited selection of

15

Chapter 2. Background

modules, modular robots can also be produced at a low cost. This is because
of reduced production costs through batch fabrication.

The majority of work within modular robotics is done through simulation,
even when there exist physical prototypes. Performing evolution with physical
hardware has a higher cost because of power, communication, and other reality
constraints [46]. When doing a lot of the work through simulation first, there
will be some differences in the following physical experiments of the robot. This
difference is called the reality gap, and it can be challenging to minimize this
gap between simulation and physical performance.

Because there are so many possible configurations of the modules, evolutionary
approaches are well-fitting methods to design modular robots (Section 2.3).
EAs can also be a good tool to optimize both the morphology and control of
modular robots simultaneously (Section 2.3.1).

An alternative way to optimize modular robots was done in “RoboGrammar:
Graph Grammar for Terrain-Optimized Robot Design” [9]. Here Zhao et
al. represented a robot’s design as a graph and used a graph grammar to
constrain the configuration possibilities. The grammar employed used simple
and intuitive rules, allowing for the efficient creation of robots. These rules
restricted the design space, ensuring that only robot designs feasible with
the available components were possible. Using a set of input components,
simulated robots were generated based on these robot graphs. The control
input for each design was optimized using Model Predictive Control (MPC).
These grammar-generated robots were then optimized with Graph Heurisic
Search (GHS). GHS learns a function that maps incomplete designs to the best
performance values that can be reached by expanding the incomplete designs.
This is done simultaneously as it explores the design space and allows the
exploration of the most promising branches of the space. Zhao et al. used this
approach to optimize robots in different terrains and compared the results to
a Monte Carlo tree search and a random search. The results showed that GHS
performed quite a bit better in all the terrains and that it created fabricable
designs.

2.2.1 Control

In order to control modular robots, a fitting control system has to be selected.
One challenge with the control of modular robots is that the number of modules

16

2.2. Modular Robotics

in the robots can differ vastly. As the robot body is developed, modules
are added and removed to optimize the morphology. Consequently, it can be
difficult to optimize a controller for a robot with a changing number of inputs
and outputs.

A centralized control system for modular robots needs to be able to deal with
the varying number of actuators. One solution is to use a central control system
that outputs a higher number of outputs than what is needed by the robot.
Some of the outputs, therefore, will be unused unless another module is added.

An option not needing to deal with this issue is decentralized/distributed
control systems. Here every module will have its own control system, but
synchronization between modules will have to be dealt with. There are several
ways to build both centralized and decentralized control systems. Centralized
control for modular robots is rarely used, but its normally solved by using neural
networks [47, 48], here every joint in the robot has a corresponding oscillator
in the network. For decentralized control, Central Pattern Generators (CPGs)
[49], open-loop wave generators [50, 51], and neural networks [52–54] all have
been used.

Kvalsund et al. [54] compared the performance and morphologies of
evolved modular robots with centralized and decentralized control. Both
the centralized and decentralized controllers used Continuous-Time Recurrent
Neural Networks (CTRNNs). The centralized approach worked by having
one big CTRNN with a fixed number of inputs controlling all the modules.
Because of the varying number of modules, parts of the inputs and outputs were
unused. Another decentralized controller used in the study was called “the copy
controller”. This controller functioned by having a list of two CTRNNs for one
robot. The modules used one of these two networks as control, and mutations
could make a module switch which of them is used. The results showed that
the copy controller achieved the best overall fitness. This controller also worked
well for a variety of morphology sizes. The centralized controller struggled the
most with early convergence.

17

Chapter 2. Background

2.3 Evolutionary Robotics

Evolutionary robotics [55] is a biologically inspired approach to designing
adaptive, autonomous robots. Evolutionary approaches, such as EAs, allow for
the automatic optimization of both the parameters and architecture of robots’
control systems without the need for human interaction. A population of robots
is evolved in a simulated environment, and if the environment accurately models
real-world conditions, robots can be optimized to work in the real world as
well. EAs can also optimize the body plan of the robots by either optimizing
an existing design or creating new designs from scratch. Optimization of robot
morphologies can work by changing the properties of an existing robot, like the
length of different body parts, or by adding/removing parts, as can be the case
in modular robotics (Section 2.2).

By utilizing evolutionary robotics, non-traditional robot solutions or solutions
that are not intuitive for humans might emerge. Instead of trying to mimic
animals, the evolutionary robots are designed through trial and error. These
solutions might be even better suited for the task at hand than what humans
would design [56].

2.3.1 Co-Optimization of Morphology and Control

Since Karl Sims published the study “Evolving Virtual Creatures” in 1994 [2],
many researchers have been inspired to simultaneously evolve both the body
(morphology) and the brain (control) of virtual creatures. This has also led
to the usage of virtual creatures within the field of evolutionary robotics to
simulate and optimize the morphology and control of robots. Despite the huge
increase in computational power since 1994, there has been less progress in the
field than expected [57].

Evolving the morphology and the control simultaneously has been a large
challenge within the field of evolutionary robotics [11]. The search space is often
very large and complex, and much exploration is required to find good solutions.
The body and brain of a robot also create a co-dependent system, where changes
to the body plan often require a corresponding change in the control system
to be able to utilize the modified body. E.g. if a limb grows, the old control
system will likely be sub-optimal, and the individual’s fitness will decrease
with the mutation. Because of this, the morphology tends to converge early to

18

2.3. Evolutionary Robotics

local optima in the search space. These designs can be suboptimal, but new
morphological mutations are detrimental because the control already has had
time to adapt to the body. This leads to the removal of newly morphologically
mutated individuals from the population, even though they might have a lot
more potential.

Much research has been done into how to avoid the premature morphological
convergence, including protection (Section 2.3.2) and diversity preservation
(Section 2.3.3). Another strategy that is shown to improve is a two-
stage approach [58]. This approach involves co-optimizing morphologies and
controllers in the first phase before locking the morphologies in the second
phase to re-evolve the controllers. The results showed a 10 – 15% improvement
by re-evolving the controllers after convergence. This simulates the kind of
lifetime learning we have in nature, and the individuals had a better chance of
learning a good gait for their evolved body plan.

An alternative to using evolution to co-optimize morphology and control is
reinforcement learning, as used by Schaff et al. [59] and David Ha [8]. In [59],
they optimized the control through reinforcement learning to maximize the
expected reward over the design distribution. During the training, they shifted
the design distribution towards better-performing designs. Ha [8] showed that
optimizing the agent’s design at the same time as the control policy leads to
solutions better suited for the task compared to optimizing only the control.
The solutions found reached both a higher cumulative reward and also improved
a lot faster than the sole control optimization.

2.3.2 Protection

Cheney et al. [7] introduced a technique for protecting morphological
innovation when evolving voxel bots. The purpose of this morphological
protection was to give the control system time to adapt to newly mutated
morphologies. This means that after a mutation, the mutated lineage is
protected, allowing the control system to undergo several generations of
evolutionary change. They did this by tracking the time elapsed since the
last morphological mutation for each individual, and used these times to
compare them during the selection process. The selection was based on Pareto-
optimality of age and fitness, leading to a multi-objective optimization of low
age and high fitness. The results were very promising and showed a significant
later convergence in morphology and fitness.

19

Chapter 2. Background

Age has also been used as an optimization parameter in research outside of
robotics to avoid premature convergence. E.g. the Age-Layered Population
Structure (ALPS) algorithm [37], where individuals are segregated into different
layers based on their age. ALPS increases the age for all individuals every
generation but also inserts new randomly generated individuals to avoid
convergence. The results showed that ALPS helped avoid convergence to
mediocre local optima, and thereby ended up with fitness values twice as
good as their baseline EAs. ALPS inspired Schmidt and Lipson [38] to
create a different approach, Age-Fitness Pareto Optimization (AFPO). Instead
of dividing the population into layers of ages, they used a multi-objective
optimization for both fitness and age. Similarly to ALPS, AFPO increases
the age of all individuals and inserts randomly generated individuals every
generation. AFPO performed even better than ALPS, resulting in both higher
fitness and less computational effort.

A different protection method was introduced by De Carlo et al. [12]. Their
method was inspired by the speciation from NEAT and used to evolve modular
robots. The individuals in the population were divided into species based on
how similar their morphologies were, and individuals only competed against
other individuals in the same species. The similarities of individuals were
measured by a weighted difference between a set of traits. If an individual was
different enough from the other individuals, it was placed in its own species
and protected for a few generations by artificially increasing the members of
that species. Their results showed that speciation prevented loss of diversity
compared to a standard EA and thereby avoided convergence towards one
dominating morphology. The speciation led to a lot more exploration, and the
solutions found were more interesting and different. The increase in exploration,
in turn, led to a decrease in exploitation, but the maximum fitnesses were
similar for both with and without speciation.

2.3.3 Diversity

Another way of dealing with the problem of premature morphological
convergence can be to keep a higher diversity of individuals within the
population (Section 2.1.1). This can give different solutions more time to
adapt and improve before being completely removed from the population. The
speciation method described in the previous section by De Carlo et al. [12] is
one method that is shown to work well for modular robots.

20

2.3. Evolutionary Robotics

It is a challenge to discover a wide diversity of high-fitness individuals within
one single evolutionary run when the morphology tends to converge early. Too
much exploration also leads to little exploitation, and the population will end
up with a diverse group of low-fitness individuals. Lehman and Stanley [4]
provided the evolution of virtual creatures with a multi-objective approach
measuring both novelty and performance. They compared optimizing for fitness
alone, novelty alone, both fitness and novelty with global competition, and
both fitness and novelty with local competition. The results showed that the
local competition discovered more diverse creatures in a single run than the
global competition, while the global competition achieved higher fitness values.
Novelty alone achieved the highest diversity of all but also the lowest fitness,
while fitness alone achieved the second highest fitness and the lowest diversity.

Research in how different encodings (Section 2.3.5) affect the diversity when
co-optimizing morphology and control has also been conducted [60]. Here
they compared Direct Encoding, L-System, CPPN, and Cellular Encoding
when evolving virtual creatures. They found that diversification varied across
evolutionary runs for all of the encodings used. Direct Encoding tended to
explore more local areas in the search space, while the indirect approaches
made bigger jumps. The results also showed that the L-System and the direct
encoding performed the best.

A different approach that is shown to preserve the diversity of morphology
in modular robotics is MAP-Elites [13]. The MAP-Elites algorithm keeps
an archive of solutions and is structured with cells representing specific
combinations of feature descriptors. The algorithm does not have multiple
objectives, but diversity is ensured through the archive. The results of [13]
showed that MAP-Elites produced more morphologically diverse robots with
higher performance than the two approaches they compared with. These
approaches were based on objective-only EA and diversity-augmented multi-
objective EA.

Co-optimizing robots’ morphology and control in changing environments has
also been shown to preserve diversity [61]. The study showed that when
evolving a population of robots, higher diversity can be seen in populations
that evolved in a scenario where a population of environments also evolved.

21

Chapter 2. Background

2.3.4 Impact of Environment

The environments in which robots evolve have a significant impact on both
their control and morphology [48]. This is because the population gradually
adapts to the environment throughout the course of evolution. Auerbach
and Bongard [6] demonstrated that virtual creatures that evolved in more
complex environments exhibited higher complexity than those that evolved
in less complex environments.

Gradually changing an environment during the environmental run is also shown
to lead to very different evolved robots compared to those evolved in just
one of these environments [14]. This is referred to as a “genetic memory”
of properties that evolved in the early stages. In the same study, Miras and
Eiben demonstrated that gradually increasing the difficulty of the environment
yielded better performance in the difficult environment compared to directly
evolving with a static, difficult environment. In a later paper, Miras and Eiben
[62] showed that starting in a difficult environment and gradually decreasing
the difficulty also had a long-lasting effect on the evolved robots. Traits found
in the population that evolved in just the target environment were missing from
the population that evolved in decreasing difficult environments.

RoboGrammar [9] optimized robots in different terrains and clearly showed the
differences in both morphology and movement strategies. They showed that
their GHS together with MPC resulted in individuals well-adapted to their
respective environments. A wide range of different robot designs were also
found for each environment.

2.3.5 Encodings

When the morphology of a robot is to be changed through evolution, a
representation of the body plan has to be made, the genotype. The choice of
genotype representation is an essential part of any EA and varies vastly from
problem to problem. Before an individual is evaluated, the information encoded
within the genotype has to be mapped to a phenotype. This information can
be encoded in different ways, and the two main approaches are direct and
generative (indirect) encodings.

Direct encoding means having a complete one-to-one mapping of the features
in the genotype. Every gene will therefore have a corresponding feature in

22

2.3. Evolutionary Robotics

the phenotype. For modular robotics, every module in the robotic body is
therefore expressed in the genotype and is used in research like [13, 51, 63].
Implementing direct encodings is very simple, and it is less computationally
intensive compared to an indirect approach, as there is no need for complex
developmental or generative processes.

Generative encodings offer advantages over direct encodings, like a smaller,
less complex genome. This is because not every part of the phenotype has to
be represented in the genotype. Parts of the genes will be reused, allowing
for quicker evolution of decent morphology and control. Another advantage is
that the generative nature allows for recursive structures, which are unlikely to
occur with direct encodings. Examples of generative encodings that are used
for virtual creatures / modular robots are rewriting systems like L-systems [3,
12, 14] and generative neural networks like CPPN [5].

23

Chapter 2. Background

24

Chapter 3

Implementation

This chapter provides an overview of the methods used and how they are
implemented. The opening section, Section 3.1, details the tools utilized
and how these tools are used in developing the system for the experiments.
Section 3.2 focuses on the design and workings of the modules before Section
3.3 describes the control system.

Next, Section 3.4, describes how the modules are connected to form robots
and how these robots are represented as genotypes. Section 3.5 then explains
how the Morphological Evolution of Augmenting Topologies (MEAT) algorithm
works before Section 3.6 explains the evolution process and the EAs used for
the experiments.

Finally, Section 3.7 explains the methods used for analyzing the results before
the chapter wraps up with Section 3.8 describing the experiment setup and the
parameters used.

3.1 Tools and System Overview

The code used can be found on GitHub1. For this project, all of the simulations
and evaluations are performed with the Unity game engine. The physics engine
within Unity is Nvidia PhysX, which is also designed to be used for games. In
order to use Unity for simulation and machine learning, the Unity Machine
Learning Agents Toolkit (ML-Agents) [64] is used. ML-Agents is an open-
source project for training intelligent agents for use in games and AI research.

1https://github.com/tobiaspaulsen/modular-robots

25

https://github.com/tobiaspaulsen/modular-robots

Chapter 3. Implementation

It provides a lot of implemented state-of-the-art algorithms, but agents can
also be trained using custom ones. The toolkit also provides a Python API
to train and control the agents, which is used for this thesis. The Python
package mlagents allows Python to interact directly with the Unity environment
in either an executable or the Unity editor. This is done by controlling the
simulation loop and sending actions and observations back and forth between
the Unity executable and the Python script. The EAs are implemented using
the Distributed Evolutionary Algorithms in Python (DEAP) framework [65],
and the software versions used in all experiments are listed in Table 3.1.

The training environment created in Unity is configured to have a fixed delta
time of 0.01 second. This delta time is the interval between physics updates.
By having a very low delta time, the physics is more accurate, but simulations
also take longer to complete. The decision period for the agents is set to five,
so for every fifth physics update, the agents will ask for a new action. This
equates to 20 actions per second.

Python connects to the Unity executable or editor by creating an instance of
the class UnityEnvironment from the mlagents package. Through this class,
the simulation can be controlled, but it is not possible to send info for the
creation of robots. To do this, a side channel has to be used. By using the
provided SideChannel-class, messages can be sent between Python and Unity
before the simulation begins. When an individual is to be evaluated, a JSON
representation is sent from Python to Unity through this side channel. This file
contains information about every module, the type, angle, parent, connection
site, and GUID. This file is then decoded by doing a Breadth-First Search on
the received graph. The described modules are then created and connected
together as an agent in the environment. If there are any collisions between
modules during the creation, the colliding modules are removed. After the
robot is created, a message is sent back through the side channel to the python-
side with the GUIDs of the successfully built modules. When this message is
received, the simulation loop can begin.

Within the simulation loop, actions are calculated based on the delta time and
the controller. One action per module is sent every 0.05 seconds of simulation
time. During the simulation, the robot’s position is sent back to Python, where
it is used to track the movement and calculate the fitness value. After the chosen
length of simulation time, the individual object in Python is assigned a fitness
value, and the environment is reset to prepare for the subsequent evaluation.

26

3.2. Modules

Name Version
Unity 2020.3.26f1

Unity ML-Agents 2.0.1
Python mlagents 0.27.0

DEAP 1.3.3

Table 3.1: Software versions used.

3.2 Modules

The modules designed for this thesis are heterogeneous, and the collection of
modules consists of one root, four body modules, and four limb modules. The
designs of the modules are inspired by the parts used in RoboGrammar [9].
However, there are some significant differences. In RoboGrammar, the links,
connectors, joints, and wheels all are separate parts that are assembled together
to form the robot. For this thesis, every module, except the root, consists of
both a link and a joint, thus simplifying and limiting the different ways things
can be connected. The comparison of the different modules can be seen in
Figure 3.1. There are four different types, x-rotating (blue), y-rotating (red),
z-rotating (green), and static (yellow).

θθ θ

CS3

CS1 CS1 CS1 CS1 CS1 CS2 CS2 CS2 CS2 CS2

CSP CSP CSP CSP

θ θ

CS1 CS1 CS1 CS1

θ

CS3 CS3 CS3 CS3

CS3 CS3 CS3 CS3

CS2 CS2 CS2 CS2

CS4

CSP CSP CSP CSP

Figure 3.1: Connection sites and rotations of the different modules. The body
modules are in the top row, with the root furthest to the right. In the bottom
row, the limb modules are displayed. The parent connection site (CSP) is located at
the bottom of all modules except the root, while the other connection sites (CS1 -
CS4) are for children.

27

Chapter 3. Implementation

The modules take an input between −1 and 1, where −1 gives a target angle
of −90° and 1 gives 90°. For the modules with static joints, the input has no
effect.

All body modules have the same size. The length from the joint’s center to the
module’s tip after scaling is 1 meter. These modules are always connected to
either the root module or a different body joint. When connected, the lower
part of the module will overlap with the parent to make the length between
the joints 1 m. The widths of the modules are 0.5 m, but all modules are a
bit wider where the actual joint is. For the limb modules, the length from the
center of the joint to the tip is 0.65 m, and the width is 0.25 m.

To make the motors easier to tune, the masses and torques of both the body-
and limb modules are set to the same values. The link part has a mass of 0.5
kg, and the joint part (the colored part) has a mass of 0.1 kg. The overlapping
connection part has no mass, as it is there for aesthetic purposes. The joints
have allowed angles between −90° and 90° and are driven by a Unity Angular
Drive. The specs of the Angular Drive were set to a spring value of 120, a
damper equal to 25, and a maximum force of 40 N. These values were all tuned
manually, with the goal of finding values that yield realistic physics. If the force
and spring values are set too high, the system is prone to physics bugs and does
not look realistic. However, if the values are too low, the robots cannot lift their
own weight.

Every module, including the root, has four connection sites, as shown in Figure
3.1. The root has four children connection sites, while the other modules have
three children- and one parent connection site. A child module is connected
to its parent by connecting its parent site with one of the parent’s child sites.
For the body modules and the root, two of the child connection sites are on
opposite sides in the middle between the tip and joint. For the limb modules,
these two connection sites are almost at the tip. This is because when another
limb module is connected to one of those two sites, there will be a smooth 90°
between the modules.

3.3 Controller

The robots are controlled by a decentralized system consisting of several
Coupled Oscillators (COs). Each module contains its own oscillator, and

28

3.3. Controller

the phases are coupled with an offset to its parent. This control system
is inspired by the one used in Crespi and Ijspeert’s paper [66]. The snake
robot in this paper was controlled by a CPG modeled as a chain of coupled
nonlinear oscillators. The CPG was designed to produce waves traveling
through the body. As the robots in this thesis also can have limbs, the waves
will travel through both the main body and the limbs. These traveling waves are
also inspired by the metachronal rhythm exhibited in all legged invertebrates
[67]. These rhythms resemble traveling waves easily observed in many-legged
myriapods such as centipedes and millipedes, where the wave travels through
the body and legs from the rear to the front.

The CO is very simple and takes no inputs, so the oscillations will be
consistent no matter what. Therefore, it has no way of adjusting to a changing
environment. The focus of all the experiments is the evolution itself, so the
controller is kept very simple.

The phases of the COs are coupled with their parents’ oscillators to help
synchronization between the different joints. This coupling gives an advantage
over a non-coupled oscillator because the children will still have the same
offset if the parent oscillator’s offset is mutated. Without this coupling,
the synchronization between the parent and its children will have changed.
This makes the control system more robust compared to a simple sine wave
controller.

The output of one oscillator is given as follows:

y(t) = A · sin(ω · t + φ) + D (3.1)

φ = φparent + φoffset (3.2)

where A is the amplitude, ω is the angular frequency, φ is the phase, and D

is the joint angle offset. In Equation 3.2, the phase is calculated based on the
parent’s phase and the phase offset. If a module doesn’t have a parent, the
phase is equal to the phase offset.

Table 3.2 lists the allowed values for the different variables. The frequency
is fixed to 4 radians per second (rad/s), which equates to 0.637 Hz. This is
done to enable easier synchronization between the different modules. A higher
frequency also correlates with faster movement, so with a fixed frequency, other
strategies have to be used to speed up the locomotion. The fixed frequency

29

Chapter 3. Implementation

will also limit the search space and make finding optima easier. Another thing
worth noting with the allowable parameters is that the amplitude is allowed
to be zero, meaning that the joint will behave like the static joint even if the
type is different. When a robot is initialized, the amplitude is set to at least
0.5 to always start off with some movement. When a new module is added to
a robot through mutation, the control parameters of the parent are inherited
by the new controller.

Variable Allowed values
A 0.0→ 2.0
ω 4 rad/s

φoffset −π → π

D −1.0→ 1.0

Table 3.2: Allowable parameters for the controller (Equation 3.1 and 3.2)

The modules’ joint values are clamped between −1 and 1, and this translates
to target angles between −90° and 90°, so the oscillators’ outputs have to
match this. An amplitude bigger than 1 will lead to a clipped output, while a
smaller than 1 amplitude reduces the angle span. The offset will also impact
the clipping of the sinusoid, and together with the amplitude, it helps decide
which angles a joint will utilize. In Figure 3.2, a few randomly generated COs’s
outputs are displayed to show how the module angles change over time.

0 1 2 3 4 5
90
60
30

0
30
60
90

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Seconds

An
gl

e

Figure 3.2: Controllers with random valid parameters and scaled outputs to show
which angles will be utilized.

3.3.1 Mutation

Because the frequency of the controllers is fixed, only the amplitude, phase
offset, and joint angle offset are mutated. For every module in the robot, there

30

3.4. Robot

is a pc chance of mutation for every one of the parameters. These mutations
are done using a Gaussian distribution random number generator and require
a σc for the spread of the Gaussian curve. The size of σc will decide the size of
the mutation; a small σc will give more gradual changes, and a large one will
lead to more random values.

The spans of allowed values differ for the different parameters, so every
mutation is normalized between −1 and 1. This is done to keep similar-sized
mutations for all parameters. For amplitude and joint angle, the value after
the mutation is clipped to be within the allowable spans. The sine wave is
periodic, and therefore the phase offset is normalized between −π and π.

3.4 Robot

A big source of inspiration for the robots is animals, not only in the designs of
the control system and modules but also in how the modules are connected
to form robots. The aim is to create robots exhibiting similar properties
as living organisms. One of these properties is bilateral symmetry, which is
explicitly enforced for the robots. The reason is that bilateral symmetry is a
trait present in more than 99% of animals [68] and desirable for robots with
targeted locomotion. A point of interest is to see whether the robots utilize the
advantage of bilateral symmetry and learn to walk using the limbs, similar to
animals, or if a more unnatural gait is found.

A robot consists of between one and thirty modules that are connected to each
other at their connection sites, as described in Section 3.2. The genotype of
the robots is a directed tree with direct encoding, so every node in the tree has
a corresponding module. In Figure 3.3, a comparison between the genotype
and phenotype can be seen. Every limb module also has a reference to the
corresponding limb module on the opposite side of the body. This is because
every change to the robot’s morphology has to be mirrored on both sides to
keep the body bilaterally symmetrical.

3.4.1 Rules

To limit the morphological search space and to ensure that the robots exhibit
bilateral symmetry, a set of rules is used during initialization and mutation.
The robots created will have a central body composed of body modules, and

31

Chapter 3. Implementation

Limb
module 1

Body
module 2Root

Limb
module 3

Limb
module 3

Limb
module 1

Figure 3.3: Robot genotype to the left and phenotype to the right.

the number of limbs will be either zero or an even number. These limbs are
made up of limb modules, and branching in the limbs is not allowed. This
is primarily to stay true to the concept of animal-inspired robots but also to
reduce the likelihood of colliding modules.

The rules used are:

• Body modules can only have a parent that is the root or another body
module. They can connect to connection site 3 of the body modules and
site 3 or 4 of the root.

• Limb modules can be connected to body modules or the root at
connection sites 1 and 2, and to all of the connection sites of other limb
modules.

• Root modules can have min 0 and max 4 children.

• Body modules can have min 0 and max 3 children.

• Limb modules can have max 1 child.

• Only the limb modules can be connected at several different angles. The
allowed angles are 0°, 90°, 180°, 270°.

3.4.2 Initialization

In this work, two initialization techniques were explored; simple and random.
When a module is created, all the parameters of the controller are chosen

32

3.4. Robot

randomly from the allowed ranges (Table 3.2), except the amplitude that is
chosen between 0.5 and 2.0.

Simple Initialization

The simple initialization creates minimal individuals consisting of the root, one
body module, and no limbs. The type of body module is selected randomly, so
there are four possible configurations in total. These configurations are pictured
in Figure 3.4.

Figure 3.4: All possible simple initialized robots.

Random Initialization

The random initialization creates individuals with a varying number of
modules. First, the number of modules, n, is chosen as a uniform random
number between four and the maximum allowed number of modules. For all
the experiments, the max was set to 30. The root is then created, and the
remaining n−1 modules are added in accordance with the rules (Section 3.4.1).
The probability of adding a body/limb module is normalized to the proportion
of connections that allow for a connecting module of that type. This means
that if there are more connection sites for body modules available than there
are for limb modules, it is more likely to add a body module. This approach
makes it less likely to get extremely long individuals and makes it more likely for
existing limbs to grow than to add an entirely new set of limbs. Since the robot
must be symmetrical, two limb modules are always added each time, counting
as 2 of the remaining n− 1 modules. This is balanced by only considering the
connections on one side of the body when normalizing.

As shown in Figure 3.5, the complexity of the randomly generated robots varies
a lot. Many of them also have parts that will be challenging to utilize when
moving, like having limbs pointing straight up.

The advantage of random initialization is that there is a lot of diversity
within the initial population (see Experiment 1, Chapter 4). The more of

33

Chapter 3. Implementation

the search space represented in the initial population, the better. Having a
lot of different morphologies present early in the search will help avoid low-
quality local optima and instead focus on the more high potential parts of the
search space. Spending time adding several modules to make an individual
capable of movement is also time-consuming, as is necessary for the simple
initialization. There might therefore be a trade-off between both approaches
either in removing excessive modules vs adding new modules. If the time spent
removing modules is too large, it might be better to slowly complexify like
simple initialization.

3.4.3 Mutation

For this thesis, crossover is not used, only mutation. There are three different
types of morphological mutations, add, remove, and swap. There is a combined
morphological mutation rate, pm, and when a morphological mutation occurs,
one of the three mutation types is selected randomly. If one of these mutations
fails (e.g. if add is chosen and the maximum number of modules is reached),
one of the two remaining mutations is chosen instead. One of the three will
always succeed. This means that for every morphological mutation, a module
is either added, removed, or swapped. For all three mutations, when selecting
a module, only the body modules and the limbs on one side are considered.
Every mutation, be it add, remove, or swap, is mirrored on both sides to keep
with the rules described in Section 3.4.1.

The add-mutation works the same way as adding modules in the random
initialization. The chance of adding a body- or limb module is also normalized
in the same way as described earlier. The parent, connection site, and module
type are all selected randomly. For the limb modules, the angle is also selected
randomly. To facilitate a larger mutation, there is a chance of calling another
add-mutation when a module is added. This is also done to balance the size
of the remove-mutation. A theory is that the larger mutation might help to
escape local optima. For all experiments, this probability is set to 0.5, and the
maximum number of added modules per add-mutation is set to six. When a
module is added, it inherits the parent’s controller. The thought behind this
is that the parent’s controller already has evolved some useful properties and
that this will be better than starting off with a completely random controller.

The remove-mutation works by selecting one module randomly and removing
that module, thereby removing all the descendant modules connected to it.

34

3.4. Robot

Figure 3.5: A selection of randomly initialized robots. Here every joint is in a neutral
position of 0°, and gravity is turned off.

Again, if a limb module is removed, the symmetrical limb module is also
removed. Finally, the swap-mutation works by selecting one module randomly
and swapping the type of that module without changing the controller. For limb
modules, the swap-mutation also selects a random angle, and if the parent is a
limb module, the connection site can also change.

35

Chapter 3. Implementation

3.5 MEAT

The two key aspects of MEAT are simple initialization and morphological
protection. Similarly to NEAT [19], MEAT utilizes the concept of an initial
population consisting of very minimal solutions. This means starting off
with robots initialized with simple initialization (Section 3.4.2). This minimal
initialization allows the robot morphology to grow slowly to a more complex
structure throughout the evolution process. This means that there are no
unnecessary parts in the initial individuals, and there is no need to waste
time optimizing controllers in modules that are later removed. Starting with
simple individuals means there are far fewer controllers to optimize in the early
generations, which might help lay the groundwork for when the complexity has
increased. Every module in the final evolved robot is also added with a purpose,
so the hope is to find more effective solutions with fewer unnecessary modules.
Randomly initializing the robots will increase the chance of having unnecessary
modules, as they can be initialized with many already present. Non-hindering
modules will have no reason to be removed, and optimization time has to be
spent to remove the non-working or hindering parts.

3.5.1 Morphological Protection

One of the key aspects of MEAT is the morphological protection method. The
thought is that it will be necessary to use some protection to avoid premature
convergence due to the problem described in Section 2.3.1. If the controller
has had sufficient time to adapt to the morphology, a mutation to the body
plan will likely decrease fitness, reducing the chance of survival. However,
by allowing newly mutated individuals to only compete against other newly
mutated individuals, they will be given more time to optimize their controllers
to the new body plans. This hopefully will have the effect of helping escape
local optima, thereby limiting premature convergence.

The protection method used is based on Morphological Innovation Protection
[7] and AFPO [38]. In both these studies, there is a multi-objective optimization
based on fitness and age. For an individual to dominate another individual, it
has to be a Pareto dominance on both age and fitness, meaning both a higher
fitness and a lower or equal age. This lets individuals compete with others
of the same age or younger, protecting them from the older, more optimized
solutions. Due to this, the morphological mutations are no longer detrimental

36

3.5. MEAT

to the survival chances in later generations.

In AFPO, the age measures how long the oldest part of a genotype has existed
in the population, and it is also increased after mutations and crossover. This is
done to protect new random individuals that are inserted into the population
during evolution. For Morphological Innovation Protection, a morphological
age is used instead, which is a measurement of how many generations since
the last morphological change. The same age measurement is used for MEAT,
representing how many generations a controller has had to optimize to the
current body. When the body plan changes through a morphological mutation,
the age is reset, but not if the mutation does not lead to a change in the
phenotype.

NEAT also utilizes a form of protection to avoid premature convergence, but
that method is based on speciation, while MEAT is based on morphological
age.

Pareto Tournament Selection

When there is both parent and survivor selection, the survivor selection usually
is more deterministic and selects the n best individuals (Section 2.1). Cheney
et al. used this deterministic survivor selection for both their protection
and baseline, despite the lack of parent selection. The protection worked by
selecting the n best individuals based on Pareto optimality. Because this is
a very elitist approach, the exploitation is very high, and when testing their
approach, the population quickly converged toward the elites, especially for the
baseline without protection.

To lower the exploitation, the Pareto tournament selection used in ALPS was
instead chosen, despite the different age measures. This selection performed
better than the elitist method used by Cheney, as it introduced more noise,
slowing down the convergence and exploring more of the search space. This
selection removes individuals from a too-large population until the population
reaches a size of n instead of adding to the next. By doing this, no duplicates
will be selected, and more diversity will be preserved. Tournaments of size k
are repeatedly selected, and dominated individuals from this tournament are
removed from the population. This also guarantees the survival of the fittest
individual.

Another reason for using the tournament-remove selection instead of

37

Chapter 3. Implementation

tournament-add is the issue of balance between selection pressure and
tournament size when using morphological protection. A smaller tournament
size leads to more noise and randomness in the system, thereby avoiding
local optima. When using protection and a small tournament size, there is
a high chance that no individual in the tournament will be dominated. This is
especially the case in later generations when the individuals in the population
exhibit a lot of different ages. When using tournament-add, this can be a
problem as it can lead to selecting individuals almost randomly, leading to very
low selection pressure. Increasing the tournament size increases the selection
pressure but will also lead to more duplicates in the next generation. When
using tournament-remove instead, the tournament size can be kept low because
when no individuals are dominated, no individuals will be removed, and the
next tournament is selected. This will take longer since more tournaments
must be conducted to remove a sufficient number of individuals, but eventually,
enough individuals will be removed. If no individuals in the population are
dominated, everyone will survive, but this did not happen in any experiments.

k ← tournament size
n← desired population size
P ← current population where lenght(P) > n

while length(P) > n do
tournament← k random individuals from P
front← age-fitness Pareto front of tournament
for ind ∈ tournament do

if ind /∈ front then
remove ind from P

end
end

end
Algorithm 1: Tournament-remove selection based on age and fitness.
The requirement is that the population starts with more individuals than
desired.

3.6 Evolution

3.6.1 Simulation

During all the experiments, the individuals are simulated for the same length
of time, 15 seconds. This simulation time can, however, be interrupted early
not to waste time on poor individuals. This happens either if the robot moves

38

3.6. Evolution

backward or when it has not moved forward during the first two seconds. The
evaluation will also be interrupted if the robot turns beyond ±90°, as it then
moves in the opposite direction.

fitness = xmax − xstart (3.3)

The goal is for the robot to travel the furthest straight forward during the
simulation. The fitness function (Equation 3.3), therefore, is chosen to be
the distance traveled. This is measured by finding the difference between the
starting and maximum x-position for the root. If the robot turns around and
the simulation is interrupted, the fitness value received will be the maximum
achieved fitness until that point. This is because many individuals have a
promising gait but tend to turn slightly towards one of the sides. An individual
that moves fast can get a very low fitness score because it has turned around
entirely and moved closer to the starting point. A minor correction to a gait
like this can lead to a very high-performing individual, so keeping it in the
population can be advantageous.

The two environments used in the experiments are flat and stairs. The flat
environment is just a large flat plane, while the stairs have a flat plane with
stairs starting 3 m away from the robots’ spawning point. The steps of the
stairs are 0.25 m high and 0.5 m deep, so the stairs are not very steep (Figure
3.6).

430

θ = 26.57°
5 61 2

Figure 3.6: Cross section of the stairs with 0 being the starting point for the robots.

3.6.2 Evolutionary Algorithms

As mentioned earlier, the two key aspects of MEAT are simple initialization
and morphological protection. The three other EAs are created to investigate
different aspects of MEAT. Simple Initialization No Protection (SNP) is used to
isolate the effects of the simple initialization alone, while Random Initialization

39

Chapter 3. Implementation

No Protection (RNP) and Random Initialization Protection (RP) serve as
baselines.

All four EAs used in the experiments are based on the approach used by Cheney
et al. [7]. The basic scheme is as follows: (1) n individuals are initialized and
evaluated, (2) every individual reproduces asexually once, (3) either the controls
or the morphology of every child is mutated, (4) all children are evaluated, (5)
(µ + λ) tournament-remove survivor selection. After step 5, the next generation
starts at step 2.

The selection scheme used is (µ + λ), so both parents and offspring can be
a part of the next generation in contrast to generational replacement. This
approach can be very elitist, and the diversity of the population can decrease
quickly. The parent selection is therefore skipped to keep more of the diversity
in the population. This means that every individual is allowed to create
exactly one offspring. With parent selection, high-fitness individuals can be
selected and allowed to reproduce several times, while low-fitness individuals
will have a meager chance of reproduction. By skipping parent selection,
low-fitness individuals can survive and have a higher chance of fulfilling their
potential because of the decreased selection pressure on the elites. The selection
operator is the tournament-remove selection introduced in Section 3.5.1, with
a tournament size of k = 2. Because SNP and RNP do not use any protection,
only fitness is considered instead of using Pareto dominance.

When the children are mutated, either their control or the morphology is
mutated. There is an equal probability for both mutation types, and the reason
for this is that Cheney et al. [7] tested different ratios, and equal chances
showed the best results. A difference from the method used by Cheney et al.
is that they only mutated half the offspring, while for this thesis, every child
is mutated. By not mutating every child, there will be children which are
duplicates of their parents, lowering the population diversity and increasing
exploitation. After testing lower mutation rates, the conclusion was that
mutating every individual led to better performance for all methods, especially
when not employing protection. When a morphological mutation occurs, there
will either be an add-, remove-, or swap-mutation as described in Section 3.4.3.
For the controller mutation (Section 3.3.1), there is a probability of pc = 0.33
for each controller parameter for every module in the robot. This probability
was chosen so every module will have one parameter changed on average. For
all experiments, σc = 0.2.

40

3.6. Evolution

3.6.3 Genome Cleanup

As described in Section 3.1, information about the robot morphology is sent as
a JSON file through a side channel to the Unity executable. After the modules
are built, Python receives a list of GUIDs for the successfully created modules.
If the length of this list differs from the number of modules in the genome, the
genome is cleaned up to contain only modules that can be built in Unity. This
is done to prevent a mismatch between genotype and phenotype. The genomes
are also cleaned up after the population is initialized.

When removing the colliding modules from the genome, the morphological age
will be set back to the age before the latest morphological mutation if all added
modules have collided. This is because if there is a collision, it will be because
of the latest morphological mutation. It is undesired that the individual has
the advantage of having both an unchanged morphology and a morphological
age of zero when using protection. It is crucial that the morphological age
represents the actual age of the morphology and that there is no advantage to
adding colliding modules.

There are several reasons why genome cleanup might be advantageous. One
such situation is when an individual has reached the maximum allowed number
of modules, but several of them collide. These collisions can hinder how future
mutations happen and prevent the addition of new modules. By removing the
colliding modules, the number of expressed modules and the number of modules
in the genome will be the same, and an add-mutation is again possible.

Another reason for using genome cleanup is that individuals with a lot of
bloating in their genome will have an advantage in the selection based on
age. A colliding module might be added, removed, or swapped when this
individual is mutated. New modules might also get a colliding module as a
parent, and over time the bloating increases. These mutations lead to a reset of
the morphological age without actually changing the expressed morphology. As
a result, the individual can have several generations to adjust to its morphology
and still have an age close to zero. This can also remove younger and better
prospects from the population because they have not had the same amount of
generations to adjust to their morphology.

41

Chapter 3. Implementation

3.7 Analysis Methods

3.7.1 Morphological Features

To simplify an individual’s body plan, the robot graph is mapped to points in
R3. Here, each of the three axes corresponds to a feature of morphology. This
is done to make it easier to compare different configurations, thereby avoiding
using the whole graph. It also creates bins for similar individuals to categorize
them easily. The features chosen are the number of body modules, pairs of limb
modules, and pairs of limbs. The reason for going with pairs of limbs and limb
modules instead of the actual number is that every time a limb or limb joint is
added, a complementary one is added to the other side, so it is impossible to
have an odd number of limbs/limb modules.

MF =

body modules

pairs of limb modules

pairs of limbs

3.7.2 Diversity

To measure the diversity of an individual, x, in a population, p, the average
distance to all other individuals in the population is calculated with a distance
measure d. This is done in the same way as Samuelsen and Glette [69]:

Dd(x) = 1
|p| − 1

∑
y∈p

d(x, y) (3.4)

Two main distance measures were considered, Graph Edit Distance (GED) and
the Euclidean distance between the morphological features of two individuals.
Both these measures showed similar information, so the Euclidean distance
between features was chosen as it is much less computationally heavy (Equation
3.5). A comparison can be seen in Figure 3.7.

d(x, y) = ||MF (x)−MF (y)|| (3.5)

42

3.8. Experiment Setup

0 25 50 75 100
Generation

3

4

5

6

7

8

Di
ve

rs
ity

MF

0 25 50 75 100
Generation

2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Di
ve

rs
ity

GED

Figure 3.7: Comparison between diversity calculated with Euclidean distance with
morphological features and graph-edit-distance.

3.8 Experiment Setup

All experiments are performed using identical setups, but there are variations
in which environment the robots are simulated and in which of the EAs (Section
3.6.2) that are used.

All the experiments used the parameter values specified in Table 3.3, and 25
independent runs were performed for each method.

Parameter Value
pc 0.33
σc 0.2
pm 1

Tournament size 2
Population size 100

Generations 500
Simulation time 15 seconds

Table 3.3: Parameters used in experiments. pc is the controller mutation probability
for each controller parameter, σc is the spread of the controller mutation, and pm is
the morphological mutation probability.

43

Chapter 3. Implementation

44

Chapter 4

Experiment 1: Initialization

All experiments focus on the main research question: “What are the
effects of gradually augmenting morphologies from a minimal body plan?”.
Additionally, this first experiment will specifically focus on the effects of
MEAT’s initialization and aims to answer the sub-question: “How does the
initial population affect the search process?”. To do this, the simple and
random initialization methods will be compared by evaluating the performance,
morphological convergence, complexity, and diversity.

A hypothesis that will be explored for this experiment is that a simple
initialization will lead to less complex optimized creatures. This is because
it is expected that the morphology will converge before the complexity of the
random initialization is achieved when no morphological protection is employed.
Furthermore, this early convergence will reduce the performance and also the
variation of elites between the different runs. Another hypothesis is that the
initialization will impact the diversity of a population. Specifically, the low-
diversity initial population will lead to less diversity in later generations.

This chapter will begin with a description of the experimental setup, followed
by the presentation of results, and conclude with an analysis of the findings.

4.1 Setup

Given that the goal of the experiment is to investigate the impact of the
initialization of the population on the search, there are two methods compared
in this experiment, SNP and RNP. These are chosen to focus on the effects

45

Chapter 4. Experiment 1: Initialization

of initialization without the impact of morphological protection and see how
MEAT would perform with just the simple initialization. The individuals are
simulated in the flat environment (Section 3.6.1), and the parameters used are
described in Section 3.8.

4.2 Results

4.2.1 Fitness

Figure 4.1 depicts the average fitness of the best individuals across the 25 runs.
The plot shows that RNP starts off with a higher average fitness. However,
around generation 10, SNP catches up, and they perform very similarly, as
indicated by the overlapping standard errors. The fitnesses of the elites in the
last generation are plotted in Figure 4.2, overlaid with a box plot to show the
distribution. Here the results are also quite similar, although RNP exhibits
slightly higher minimum-, max-, and median values.

0 100 200 300 400 500
Generation

10

20

30

40

Fit
ne

ss

Simple
Random

Figure 4.1: Comparison of average max fitness for simple and random initialization,
where simple is SNP and random is RNP. The shaded area is the standard error.

To confirm whether the differences between the two approaches are statistically
significant, a two-sided Mann-Whitney U test was utilized. The null hypothesis
H0 assumes that both sets of values are sampled from the same distribution.
The test was performed at generation 0, 50, and 500, and the resulting p-
values can be found in table 4.1. At a significance level of 0.05, there was only
a significant difference at generation 0.

46

4.2. Results

Simple Random

30

35

40

45

50

55

Fit
ne

ss

Figure 4.2: Box plots of the highest fitness found for each run.

Generation P-Value
0 1.416 · 10−9

50 0.786
500 0.497

Table 4.1: P-values of the Mann-Whitney U tests for maximum fitness of each run.
The bold value is significant at a significance level of 0.05.

4.2.2 Morphology

One of the hypotheses was that simple initialization would lead to a quicker
convergence to a morphology than random. To test this, the generation of
convergence for morphology was calculated. This was measured by finding the
generation the morphology of the elite last changed. After this generation, only
the control system of the elite could have changed. The convergence generation
for each run is shown in Figure 4.3, presented as a swarm plot. The evolutionary
runs with random initialization converged significantly later than those with
simple initialization (p-value = 0.034, two-sided Mann-Whitney U).

The average number of modules per individual in the population was calculated
at each generation to see whether the different methods found different
solutions. The average numbers of all the 25 runs were also calculated, and
the results can be viewed in Figure 4.4. The hypothesis was that the simple
initialization would lead to smaller robot configurations with fewer modules on
average. In the figure, SNP has a lower average throughout all generations.

47

Chapter 4. Experiment 1: Initialization

0 100 200 300 400 500
Generation

Simple

Random

Figure 4.3: The generations when the morphology of each of the elites converged.
The dotted line is the mean.

0 100 200 300 400 500
Generation

2.5

5.0

7.5

10.0

12.5

15.0

Av
er

ag
e

nu
m

be
r o

f m
od

ul
es

Simple
Random

Figure 4.4: Comparison of the average number of modules for all individuals in the
populations at each generation. The shaded area is the standard error.

In Figure 4.5, the elites’ fitness and their number of modules are plotted as a
scatter plot. This plot shows that the elites of the runs with SNP never have
more than 12 modules, while the elites of RNP have 10 out of the 25 elites
with 13 or more modules. The average number of modules for the elites can be
found in Table 4.2, and RNP has significantly more modules per elite (p-value
= 0.0027, two-sided Mann-Whitney U)

To illustrate the differences in the body configurations of the elites, the elites
are mapped to the three morphological features introduced in Section 3.7.1. In
Figure 4.6, these features are plotted pairwise to illustrate the different elites’
body plans. This figure shows that most elites from both SNP and RNP have
two pairs of limbs. Especially for RNP, this is prominent, as only two of the
elites are not quadrupeds. RNP also has more concentrated peaks, 20 of the

48

4.2. Results

5 10 15
30

40

50
Fit

ne
ss

Simple

5 10 15

Random

Elite's number of modules
Figure 4.5: Scatter plots of the elites’ number of modules and respective fitnesses.
The left is the elites from SNP, while the right is from RNP.

Elites Method Avg. n. of modules Diversity

All SNP 10.0 4.08
RNP 12.32 3.49

Top 10 SNP 9.5 4.54
RNP 12.9 3.35

Table 4.2: Average number of modules and diversities of elites. The top section is for
all 25 elites, while the bottom is for the top 10 of each respective method.

25 elites ended up with three or four body modules and four limbs. The most
variation here is found in the length of these limbs. This figure also illustrates
what can be seen in Figure 4.4 and 4.5, that SNP ends up with smaller body
plans. But it also shows that this is primarily because of fewer and shorter
limbs and not necessarily because of fewer body modules or the number of
limbs.

To have a numeric measure of whether or not simple initialization leads to less
variation in the elites, the diversities of the elites were calculated with respect
to the other elites of the same method. The results can be seen in Table 4.2,
and there is a clear difference between the methods. The numbers indicate that
SNP, on average, leads to more varied elites. When looking at just the top 10
elites, the difference between SNP and RNP is even more prominent.

One question that arises is why SNP leads to fewer modules. Is the reason
that the search area is less explored compared to RNP? To try to answer this
question, all the different body configurations explored throughout the runs

49

Chapter 4. Experiment 1: Initialization

body modules

7
6

5
4

3
2

1
0pa

irs
 o

f l
im

b
m

od
ul

es

Simple

body modules

Random

body modules

7
6

5
4

3
2

1
0

pa
irs

 o
f l

im
bs

body modules

0 1 2 3 4 5 6 7
pairs of limb modules

7
6

5
4

3
2

1
0

pa
irs

 o
f l

im
bs

0 1 2 3 4 5 6 7
pairs of limb modules

1

2

3

4

5

6

7

8

9

10

11

Figure 4.6: Comparison of morphological features for elites. The color bar represents
the number of elites, so the color at each square is how frequently that combination
of features occurred.

were tracked.

explored = gens · pop_size · runs = 500 · 100 · 25 = 1, 250, 000

This means that a total of 1, 250, 000 individuals were tracked per method. The
morphological features of each of these individuals are plotted in the same way
as the elites in Figure 4.7. From this figure, it looks like the different methods
explore the search space similarly. The main differences seem to be that again,
SNP explore more in the area with few limbs and limb modules, while RNP
explores solutions with a higher number. A high concentration of the solutions
explored by RNP seems to be in the area of three and four body modules and

50

4.2. Results

four limbs. This was also seen when looking at the elites.

body modules

14
13
12
11
10

9
8
7
6
5
4
3
2
1
0pa

irs
 o

f l
im

b
m

od
ul

es

Simple

body modules

Random

body modules

14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

pa
irs

 o
f l

im
bs

body modules

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pairs of limb modules

14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

pa
irs

 o
f l

im
bs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pairs of limb modules
0

50000

100000

150000

200000

250000

300000

Figure 4.7: Comparison of morphological features explored throughout all runs. The
color bar shows the number of individuals, so the color of each square in the grid is
decided by how many individuals have that combination of features.

4.2.3 Diversity

The average diversity over the generations was calculated for all of the runs
using the Euclidean distance between features described in Section 3.7.2. The
averages of the runs are shown in Figure 4.8. The simple initialization leads
to a diversity of 0 in the first generation, as every individual consists of one
joint and the root module. This quickly rises to a maximum average of above
5 at generation 12 before it slowly decreases again. For RNP, it starts with a
diversity measurement of 8 and decreases rapidly at the start. After generation
50, both methods have similarly diverse populations, and after generation 100,
the diversity stays almost stagnant for both methods.

51

Chapter 4. Experiment 1: Initialization

0 100 200 300 400 500
Generation

0

2

4

6

8

Di
ve

rs
ity

Simple
Random

Figure 4.8: Average population diversity of each run over time calculated with the
Euclidean distance between features (Section 3.7.2)

4.2.4 Qualitative Results

Ancestry

Another difference between simple and random initialization is clear by looking
at the ancestry of the elites of the different runs. Simple initialization obviously
starts off simple and grows over the generations. Interestingly, in some
instances, like the example in Figure 4.9a, the morphology grows rapidly in
the first generations and then starts shrinking. Through the ancestry of the
elites from random initialization, it seems like a large part of the initial robot
is present in the later generations. Often there are no significant changes and
more minor changes to streamline the original “concept”. For the robot in
Figure 4.9b, there are minimal changes to the main body but more changes to
the limbs.

For SNP, many elites either started off as snakelike or used two limbs to drag
forward. As the generations went on, they often managed to add a couple
more legs and effectively incorporate them. For many of the elites, the gait
used in early generations is still very present in later generations even though
new modules and limbs have been added.

52

4.2. Results

(a) Simple initialization.

(b) Random initialization

Figure 4.9: Parts of the ancestry from first to last generation of a random elite from
SNP at the top and RNP at the bottom.

Body Plan and Gait

The behaviors of the elites can be seen in the videos for SNP1, and RNP2.

A lot of the elites for both methods have many similarities. As mentioned
previously (Section 4.2.2), many of them are quadrupeds with three or four
body modules. These body modules are utilized for locomotion as well by
maximizing the length of the strides, which in turn minimizes the time the
limbs are on the ground. This makes the whole body swing from left to right
quite dramatically. There is also a tendency for these quadrupeds to either
have stiff front- or hind legs. The stiff legs often serve as stabilizers, while the

1https://youtu.be/0R6eBr7LWPM
2https://youtu.be/pHXu9WC8Ixk

53

https://youtu.be/0R6eBr7LWPM
https://youtu.be/pHXu9WC8Ixk

Chapter 4. Experiment 1: Initialization

other legs are primarily responsible for forward movement. Still, they can also
contribute to locomotion with the help of joints in the body. For RNP, 14 of
the 25 elites had stiff front- or hind legs, while for SNP, six of the 25 had this
configuration. In Figure 4.10, the top six elites of both methods are shown, and
the shorter, stiff hind legs are presented in quite a few of them. Both methods
also had quadrupeds that managed to synchronize all four legs, but as this is
a lot more difficult to optimize, it makes sense that it was fewer.

The main difference in elites, which is instantly noticeable, is that the RNP only
had two elites that were not quadrupeds, while there was a lot more variation
in the number of legs for SNP. Nine of these elites were either snakelike (with or
without stabilizing limbs) or were clearly descendants of snakes. These solutions
move like a wave, pushing from the ground to lift the body up. The last elite
in Figure 4.10a can be seen moving in this fashion. There were also a couple
of elites that only had two limbs and were using these limbs to jump/drag over
the ground.

Quite a few of the elites had more potential in optimizing their control system.
Many of them did not move straight, which meant that they slowly drifted
to one side, and because the fitness function only rewarded locomotion in one
direction, this led to less and less gain in fitness. By re-evaluating the solutions
with a longer simulation time, it was found that most of the elites continued
to have a good progression. Most of them also seemed quite robust and stable,
using supporting limbs not to fall over.

As the fitness function only measures the distance traveled, many of the top
elites had more of a jumping gait. The lower-fitness elites often looked more
stable and had better synchronization, but moved a bit slower than the more
jumpy solutions. The lower fitness elites also had more variation in their gait
techniques. While the top elites often alternate the right and left legs, some of
the lower fitness elites used both legs synchronously. This is less effective as
the body can become almost stagnant between each “jump”. However, by
alternating the limbs, the body can maintain a more fluid and continuous
motion, allowing for greater forward momentum.

54

4.3. Analysis

(a) Simple initialization. Fitness-values from top left to bottom right: 50.8, 49.7, 49.3, 48.0,
48.0, 47.7

(b) Random initialization. Fitness-values from top left to bottom right: 54.3, 51.0, 50.9, 49.5,
48.7, 48.5

Figure 4.10: The six best-performing elites of simple and random initialization.

4.3 Analysis

By looking at the performance of the two methods, the results do not show any
significant difference in the fitness values achieved (Figure 4.1). This disproves
the hypothesis that using a simple initialization would lead to significantly
worse performance. Still, there are substantial differences regarding other
aspects. SNP converges towards one morphology faster than the RNP does
(Figure 4.3), confirming the hypothesis that using an initial population of
minimal initialized robots leads to earlier convergence. This earlier convergence
might indicate that starting with a simple initialization is more prone to
premature convergence, or it may also mean that good solutions are discovered

55

Chapter 4. Experiment 1: Initialization

more quickly. If the reason is premature convergence, the EA is unable to
escape these local optima in the search space. Some of these local optima are
snakelike, and as this body plan is quite close to how the minimal individuals
are initialized, it is easy to find and optimize early in the search. The control
of limbless bodies is very different from e.g. quadrupeds, so evolving legs will
normally be detrimental later in the evolution.

The limbless solutions are probably an effect of copying the parent controller
when adding new modules. When several identical modules are added with
close-to-identical controllers, the movement of the modules will be identical,
with an offset between each of them. By not copying the parent controller,
there will be more difficult to find these wavelike movements, as the chance of
adding several similar controllers successively is low.

The generation of morphological convergence is quite late for many runs (Figure
4.3), especially for random initialization, where 60% of the runs converged after
400 generations. One possible explanation is that it takes longer to optimize
the larger configurations, as unnecessary or hindering parts need to be removed.
This also suggests there is a benefit to running for more than 500 generations.
Because of the later convergence for RNP, the difference between SNP and RNP
might also be significant for fitness if the evolution is run for longer. Observing
the gaits of the elites also supports the notion that longer runs are beneficial.
A lot of the elites exhibit controls that need a bit more tuning to uncover their
full potential. Having longer runs can potentially uncover more effective gaits
that exploit the full capabilities of their body plans.

There is also a significant difference in the number of modules for the elites
(Table 4.2). Because the fitnesses of the two approaches are insignificantly
different, this might indicate that the simple initialization leads to more
effective solutions. Another theory here is that fewer modules can be a result
of premature morphological convergence, and this is also supported by other
measurements. This confirms the hypothesis that simple initialization leads to
less complex optimized creatures. More surprisingly, the diversity of the elites
revealed that simple initialization results in greater variety among all elites and
the top 10 elites. As a result of this, the hypothesis that simple initialization
leads to less varied elites seems to be disproven.

One interesting observation is that despite the lack of diversity in the first
generation, SNP manages to attain a good population diversity within a few

56

4.3. Analysis

generations (Figure 4.8). By the 50th generation, the difference in population
diversity is insignificant. While the hypothesis was that simple initialization
would lead to lower diversity, this is only true for the earliest generations.
During most of the evolution, the difference in diversity was practically zero.

To summarize the results, simple initialization leads to less complex body plans,
more varied elites, and similar population diversity. This means that the
simple initialization approach achieves performance on par with the random
initialization while reducing the complexity of the robots. However, there is a
significantly earlier morphological convergence, which may impede the search
from attaining global optima.

57

Chapter 4. Experiment 1: Initialization

58

Chapter 5

Experiment 2: Protection

The results of Experiment 1 (Chapter 4) showed a lot of promise for MEAT as
the performance when using a minimal initialization method was higher than
expected. However, there were indications that using simple initialization leads
to earlier morphological convergence. This was not surprising, and a way to deal
with this issue was already present in the design of MEAT. By enhancing the
two methods used in Experiment 1 with the morphological protection method
discussed in Section 3.5.1, the hope is that both methods will improve.

The focus of this experiment will thus be the research question; “What are the
effects of using morphological protection based on age?”. To answer this, the
performances of methods with and without protection will be compared. Both
the effects on fitness values, individual ages, morphological convergence, and
diversity will be investigated.

A hypothesis suggests that MEAT will yield high-performing minimal solutions
and avoid the early morphological convergence demonstrated in Experiment
1. The performance of MEAT will be similar or better compared to using
the random initialization combined with protection, but also better than the
methods without protection. It is also expected that both methods will gain
higher performance when protection is employed.

5.1 Setup

This experiment aims to illustrate how the morphological protection mechanism
performs compared to no protection. Therefore, the methods used in

59

Chapter 5. Experiment 2: Protection

Experiment 1, SNP and RNP, are compared to their counterparts with
protection, MEAT and RP. The simulations are again done in the flat
environment, and the parameters used are listed in Section 3.8. The results
of SNP and RNP are the same as those presented in the previous experiment.

5.2 Results

5.2.1 Fitness

In the previous experiment, it was shown that there was no significant difference
between the fitness values achieved for SNP and RNP. In Figure 5.1 and 5.2, a
clear difference between MEAT and the other methods can be observed. When
looking at fitness over the generations, all four methods overlap early on, but
over time MEAT diverges from the rest. This difference grows throughout the
rest of the generations. Looking at the individual runs’ fitness values in Figure
5.2, MEAT reaches higher fitness values but also avoids the lower-fitness scores.

0 100 200 300 400 500
Generation

10

20

30

40

50

Fit
ne

ss

RP
RNP
MEAT
SNP

Figure 5.1: Comparison of average max fitness for SNP, MEAT, RNP, and RP. The
shaded area is the standard error.

A two-sided Mann-Whitney U test is again utilized to test the statistical
significance of what is visually observed from the plots. The null hypothesis
H0 assumes that the fitness values of all methods are sampled from the
same distribution. The significance level chosen was 0.05, and a Bonferroni
correction was done because of the several comparisons. This gives a value
of 0.05/6 = 0.0083. With this adjusted level, it is confirmed that there is
no significant difference between SNP, RNP, and RP at the last generation.

60

5.2. Results

SNP MEAT RNP RP
30

35

40

45

50

55

60

Fit
ne

ss

Figure 5.2: Box plots of the highest fitness found for each run.

However, it also shows that MEAT performs significantly better than the rest.
At generation 250, the difference is insignificant for all the methods. The p-
values for all the comparisons are listed in Table 5.1

Comparison Gen 250 Gen 500
SNP vs. MEAT 0.0478 0.0004
SNP vs. RNP 0.5475 0.4971
SNP vs. RP 0.2072 0.4263

MEAT vs. RNP 0.2003 0.0052
MEAT vs. RP 0.3933 0.0036
RNP vs. RP 0.5220 0.9381

Table 5.1: P-values of the Mann-Whitney U tests for maximum fitness of each run.
The bold values are significant at a Bonferroni corrected significance level of 0.0083.

5.2.2 Age

To further investigate the effects of morphological protection, the age of all
individuals were collected in every run. Because age impacts the selection, it is
evident that the population’s average age is lower when using protection. What
is more interesting is to see whether this also holds true for the best-performing
individuals in a population. Because older individuals have had more time to
optimize their controller, it is logical that the best individuals often are older.

Figure 5.3 displays the average age of the top 20 best-performing individuals
in each generation, with and without protection. SNP is combined with RNP,

61

Chapter 5. Experiment 2: Protection

and MEAT with RP. This gives a total of 50 data points for each category.
The effect of the protection is shown clearly here, as the average age without
protection is far higher than with protection. The variation in age for protection
is also much lower, while without protection, there are huge variations between
the runs, illustrated by the percentiles in the plot.

0 100 200 300 400 500
Generation

0

20

40

60

Ag
e

No protection
Protection

Figure 5.3: The average age of the top 20 individuals at each generation. No
protection consists of the combined runs of both SNP and RNP, while protection
is MEAT combined with RP. The shaded area is the area between the 25th and 75th
percentile.

5.2.3 Morphology

One of the problems with using simple initialization, illustrated in Experiment
1, is that the morphologies converge earlier than they do when using random
initialization. To compare if this is still the case when using morphological
protection, the generations of morphological convergence were also calculated
in this experiment. The comparison between the different methods can be seen
in Figure 5.4. Here, an improvement can be observed for simple initialization,
as MEAT on average converges later than SNP and that there is more of a
cluster after 400 generations. For random initialization, more runs converged
very late, but there were also more that converged early.

By doing a two-sided Mann-Whitney U test with a Bonferroni corrected
significance level of 0.0083, there were no significant differences between any
of the methods (Table 5.2). Still, there is an indication that morphological
protection delays the convergence for simple initialization.

62

5.2. Results

0 100 200 300 400 500
Generation

SNP

MEAT

RNP

RP

Figure 5.4: The generations when the morphology of each of the elites converged.
The dotted line is the mean.

Comparison P-Value
SNP vs. MEAT 0.0137
SNP vs. RNP 0.0336
SNP vs. RP 0.0290

MEAT vs. RNP 0.7124
MEAT vs. RP 0.6979
RNP vs. RP 0.5604

Table 5.2: P-values of the Mann-Whitney U tests for morphological convergence
of each run. At a Bonferroni corrected significance level of 0.0083, no values are
significant.

Even though the morphological convergence is later for the MEAT compared to
SNP, there is no indication that the elites’ number of modules changes more in
later generations. Figure 5.5 shows how the elites’ number of modules changes
over time and is sampled every 50th generation to avoid showing changes that
are reverted shortly after. This illustrates how there are a lot of changes in
the complexity early on, but quickly reduces to an average of about zero. The
elites’ complexity, therefore, on average, is pretty much unchanged from the
100th generation to the end of the runs for all methods.

Experiment 1 revealed that using SNP resulted in a lower average number of
modules per robot. By using morphological protection, this average increased

63

Chapter 5. Experiment 2: Protection

0 100 200 300 400 500
Generation

0

2

4

6

8

10

M
od

ul
e

ch
an

ge
s

RP
RNP
MEAT
SNP

Figure 5.5: The average change in the elites’ number of modules. Every 50th
generation, the elites’ numbers of modules are measured and the difference to the
last measurement is calculated, illustrating how the complexity changes over time.
The shaded area is the standard error.

by almost two modules, but when using random initialization, there was no
difference. These results are depicted in Figure 5.6, which displays the average
numbers of modules for every individual in the populations plotted over time.
The average for MEAT is comparable to that of RNP and RP. Figure 5.7
illustrates the number of modules for each elite. The number of modules with
MEAT ranges between 8 and 14, while RNP and RP have elites with up to 17
modules. Even if the average number of modules in the population is similar
for MEAT, the random initialization still produces elites with more modules.

Elites Method Avg. n. of modules Diversity

All

SNP 10.0 4.08
MEAT 11.08 3.65
RNP 12.32 3.49
RP 11.88 3.72

Top 10

SNP 9.5 4.54
MEAT 11.0 4.32
RNP 12.9 3.35
RP 11.9 3.94

Table 5.3: Average number of modules and diversities of elites. The top section is for
all 25 elites, while the bottom is for the top 10 of each respective method.

To check if morphological protection significantly impacts the variation in

64

5.2. Results

0 100 200 300 400 500
Generation

2.5

5.0

7.5

10.0

12.5

15.0

Nu
m

be
r o

f m
od

ul
es

RP
RNP
MEAT
SNP

Figure 5.6: Comparison of the average number of modules for all individuals in the
populations at each generation. The shaded area is the standard error.

30

40

50

60
SNP MEAT

5 10 15
30

40

50

60
RNP

5 10 15

RP

Elite's number of modules

Fit
ne

ss

Figure 5.7: Scatter plots of the elites’ number of modules and respective fitnesses.

the elites, the diversity and the average number of modules of elites were
calculated for all methods (Table 5.3). The results show that protection lowers
the average number of modules for random initialization and increases it for

65

Chapter 5. Experiment 2: Protection

simple initialization. This is true for all the elites and the top 10. Looking
at the diversities of elites, protection increases the variation of the elites for
simple initialization and decreases it for random initialization. There is no
clear indication that protection lowers or increases the variation of the elites,
as the observed differences are relatively small.

5.2.4 Diversity

The main effect of morphological protection is that individuals that would be
eliminated because of lower fitness are allowed to survive when they are younger
than the better individuals. This has the added effect of maintaining diversity
in the population. In Figure 5.8, this effect can be observed by comparing
the protection methods with those without protection. The diversities of both
methods using protection are almost identical and significantly better than
those of the two methods without protection.

0 100 200 300 400 500
Generation

0

2

4

6

8

Di
ve

rs
ity

SNP
MEAT
RNP
RP

Figure 5.8: Average population diversity of each run over time calculated with the
Euclidean distance between features (Section 3.7.2)

5.3 Analysis

The results show a significant increase in fitness when using morphological
protection for simple initialization, while there is no improvement for random
initialization (Figure 5.1). This lack of improvement is interesting because,
as shown by the performance of MEAT, an improvement is possible. This
disproves the hypothesis that both initialization methods would obtain
increased performance due to using protection.

66

5.3. Analysis

One theory as to why random initialization did not improve is that the
complexity of individuals rarely decreases, as this seldom directly gives a
higher fitness. The higher-than-necessary complexity gives more parameters to
optimize for control, making things much more difficult compared to optimizing
the more minimal solutions found using simple initialization. This theory is
supported by looking at the average number of modules for all the elites when
using random initialization (Table 5.3), as this number is higher than for simple
initialization. Still, this table also indicates that morphological protection leads
to a decrease in the elites’ number of modules for random initialization.

Other reasons for the lack of improvement for random initialization can be the
time it takes to optimize the COs and the limitations of the morphological
search space. When modules are added, they inherit their parent’s controller,
speeding up the optimization time as it already inhibits some useful properties.
Newly mutated individuals manage to survive long enough to optimize the
controller even without protection, so protection is not needed. Because of the
morphology rules (Section 3.4.1), the search space is also very reduced, and
it is a lot easier to find working solutions. If these rules were less restrictive,
like if there was no guaranteed bilateral symmetry, there might also have been
more advantages to morphological protection for both initialization methods.

Even though there are indications that morphological protection delays the
morphological convergence for simple initialization, there are no indications
that the elites’ complexities change more (Figure 5.5). This indicates that
the elites converge to a number of modules and that this one rarely changes
in the later generations. Contrary, Figure 5.4 shows that there normally
are morphological changes in the final 100 generations for the methods with
protection. The morphological changes, therefore, are either swap-mutations
or mutations that cancel each other out. Mutations that cancel out can be
when a module is added in one generation but removed shortly after removed.
The individual will then have an age of zero while also having a controller
optimized for the current body plan. This exploits the protection, thereby
gaining an advantage in the selection without having a changed morphology.

As stated, the average number of the modules for the elites is higher for
MEAT compared to SNP, and lower for RP compared to RNP (Table 5.3).
This indicates that morphological protection helps to escape local optima and
therefore manages to come closer to a more optimal number of modules. One
morphology discussed in Experiment 1 was the snakelike one, which emerged

67

Chapter 5. Experiment 2: Protection

quite a few times for SNP and never for RNP. Similarly, for the methods with
protection, some of the highest performing individuals from MEAT are limbless,
but none of the elites for RP. When it comes to variety in the elites, both SNP
and MEAT outperform RNP and RP, with a larger difference for the top 10.

One effect of protection is easy to observe when looking at the ages of the top
20 solutions in a population (Figure 5.3). These individuals dominate with high
fitness values but remain younger than the top individuals without protection.
The lower age indicates that protection has the desired effect of having top
individuals that are not just old morphologies with fully optimized controllers.
The relatively stagnant age over time also shows that new morphologies manage
to break into the top 20. Still, this might also be because some individuals
reset their age through two mutations that cancel each other out, as previously
mentioned.

Another notable effect is that MEAT achieves similar results to RNP and
RP regarding the average number of modules in the population (Figure 5.6).
Because this number is higher than SNP, it suggests that MEAT traverses more
of the search space. Comparing just the elites of the different methods shows
that MEAT’s elites have lower complexity and higher fitness compared to the
methods with random initialization. MEAT, therefore, explores more complex
solutions, but the less complex ones perform better and are easier to optimize.

The hypothesis suggested that MEAT would avoid the early convergence
demonstrated in Experiment 1 while still keeping the complexity of morphology
low. The results indicate this being true, even if the average number of
modules for MEAT was higher than SNP (Table 5.3). MEAT still yielded
less complex elites than both random initialization methods. The differences
between the methods when it comes to convergence are too small to confirm
or deny the hypothesis, as none of the methods converged significantly earlier
than the rest. Still, on average, SNP converged earlier than the other methods.
Another hypothesis was that MEAT would perform better than both methods
without protection while matching the performance of RP. This is confirmed,
as the protection had a pronounced effect for simple initialization, and MEAT
outperformed the other three approaches (Figure 5.1).

From the results, it is confirmed that morphological protection leads to
increased population diversity. When using simple initialization, the effects
of the protection are also later morphological convergence, higher fitness, and

68

5.3. Analysis

more exploration. There was, however, little to no effect of protection for
random initialization. In this experiment, MEAT outperforms or matches
the other methods in all metrics measured, resulting in higher fitness while
maintaining a lower complexity.

69

Chapter 5. Experiment 2: Protection

70

Chapter 6

Experiment 3: Environment

This final experiment aims to answer the research question: “How does
the environment impact the evolution of modular robots?”. The previous
experiments demonstrated that the initialization method influences the
solutions found and that morphological protection is an effective tool for
improving simple initialization. Thus, the question is whether this also holds
true for other environments. Specifically, this experiment aims to determine
whether the robots can adapt to a challenging environment by discovering
new body configurations, or if the same morphologies that were successful on
the flat surface also will succeed in a set of stairs. Another question is how
the environment impacts other aspects of the development process, such as
optimization speed, diversity, and convergence.

The results of Experiment 2 (Chapter 5) showed that MEAT outperformed
the other methods. Is this also the case in a different environment, or can
other methods perform better here? The effectiveness of protection might
be completely different in a more challenging environment, and it might also
improve random initialization. The hypothesis is that the advantage of using
protection will be more prominent in a more challenging environment, as the
optimization likely takes more time. Thus, the relative difference between SNP
and MEAT would be larger when evolved in the stairs.

6.1 Setup

To investigate the impact of the environment, the results from the flat
environment (Experiment 2) are compared to identical runs in the environment

71

Chapter 6. Experiment 3: Environment

with stairs (Figure 3.6). The parameters used are found in Section 3.3. The
stairs are a significantly more challenging environment, and the direction of
travel is angled at 26.57°. Still, the same fitness function as earlier is used, so
the fitness is the distance traveled in only the x-direction.

6.2 Results

6.2.1 Fitness

Because of the different environments, comparing the fitness values achieved on
the stairs directly with those in the flat environment does not make sense. Still,
some interesting observations might be made by comparing the performances
of the different methods in each of the environments. In Figure 6.1 and 6.2, the
performance of every method in both environments is plotted. By looking at
these results, the performances of the different methods are very similar in both
environments, but with a large difference in fitness values achieved. MEAT
performs the best in both environments, while the other methods perform
similarly. The methods with protection did not gain a larger advantage in
the more difficult environment.

0 200 400
Generation

5

10

15

Fit
ne

ss

Stairs

RP
RNP
MEAT
SNP

0 200 400
Generation

10

20

30

40

50

Fit
ne

ss

Flat

RP
RNP
MEAT
SNP

Figure 6.1: Comparison of average max fitness for SNP, MEAT, RNP, and RP. The
shaded area is the standard error.

6.2.2 Morphology

Another way to measure the performance of the methods in different terrains is
to look at the generation of morphological convergence. In Figure 6.3, there are

72

6.2. Results

SNP MEAT RNP RP
7.5

10.0

12.5

15.0

17.5

20.0

22.5
Fit

ne
ss

Stairs

SNP MEAT RNP RP
30

35

40

45

50

55

60
Flat

Figure 6.2: Box plots of the highest fitness found for each run, for the stairs to the
left, and the flat to the right.

swarm plots of all methods for both environments. No method does significantly
better than the rest, and the generations of convergence seem similar in both
environments.

Looking at Figure 6.4, there seems to be a larger difference between the average
number of modules for the methods in the stairs compared to the flat. In the
early generations, all methods had a lower average than when evolved in the
flat environment. Over time this difference decreases, but all methods, bar
RNP, have a lower average number of modules per individual for the stairs.

Comparing just the average number of modules of the elites, the results are
very similar across the environments (Table 6.1). When looking at just the top
10, the difference is larger for all the methods, and the random initialization
methods ended up with an average number of modules similar to the other
methods. RNP went from 12.9 to 10.4 average number of modules, and RP
went from 11.9 to 10.1.

Table 6.1 also includes the diversities of the elites. This diversity says something
about the variations of solutions found. For SNP and MEAT, the diversities
are lower for the stairs than the flat, but for RNP and RP, the opposite is
true. These values make it unclear whether the stairs lead to less or more
varied elites. Diversity is decreased from flat to stairs for the top 10 elites of
all methods.

To look closer at these results, all elites from the four methods are collected

73

Chapter 6. Experiment 3: Environment

0 100 200 300 400 500
Generation

SNP

MEAT

RNP

RP

Stairs

0 100 200 300 400 500
Generation

SNP

MEAT

RNP

RP

Flat

Figure 6.3: The generations when the morphology of each of the elites converged.
The dotted line is the mean.

for each environment. Calculating these elites’ average diversities resulted in
a score of 3.998 for the ones evolved in stairs and 3.908 for the flat. Again
the results are very similar. To investigate if elites from stairs and flat are
different, the average difference to the elites from the other environment is
calculated (using the Euclidean distance between features, Section 3.7.2). This
means that for every elite who evolved in stairs, the distance to all the elites who
evolved in the flat environment is calculated. The average of these distances
is 4.091, insignificantly higher than the environment-specific distance. From
this measure, there is an indication that both environments give rise to similar
individuals. In Figure 6.5a, this similarity can also be observed, as the elites
from both environments have very similar features.

74

6.2. Results

0 200 400
Generation

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Nu

m
be

r o
f m

od
ul

es
Stairs

RP
RNP
MEAT
SNP

0 200 400
Generation

Flat

RP
RNP
MEAT
SNP

Figure 6.4: Comparison of the average number of modules for all individuals in the
populations. The shaded area is the standard error.

Elites Method Avg. n. of modules Diversity
Stairs Flat Stairs Flat

All

SNP 10.04 10.0 2.95 4.08
MEAT 10.4 11.08 3.39 3.65
RNP 12.16 12.32 5.39 3.49
RP 11.88 11.88 4.19 3.72

Top 10

SNP 9.9 9.5 3.57 4.54
MEAT 9.8 11.0 2.13 4.32
RNP 10.4 12.9 2.86 3.35
RP 10.1 11.9 2.41 3.94

Table 6.1: Average number of modules and diversities of elites. The top section is for
all 25 elites, while the bottom is for the top 10 of each respective method.

The average diversities of the top 10 elites were quite a lot lower for the elites
that evolved in stairs (Table 6.1). To investigate the reasons for this, their
morphological features were plotted in Figure 6.5b. Here it is clear that all top
elites evolved in stairs have the same features. All of them are quadrupeds with
six limb modules, and eight have two body modules. In the flat environment,
the individuals have a lot more variation.

Figure 6.6 illustrates the number of modules most effective for the respective
methods in the two environments. From these plots, it can be observed that the
clustering is very similar in both environments. For the random initialization
methods, the worst-performing elites also had the most modules when evolved

75

Chapter 6. Experiment 3: Environment

0
15
30
45
60
75

All Elites Stairs

0 2 4 6 8 10
Body modules

0
15
30
45
60
75

0 2 4 6 8 10
Pairs of limb modules

All Elites Flat

0 2 4 6 8 10
Pairs of limbs

(a) All elites

0
2
4
6
8

10
Top 10 Elites Stairs

0 1 2 3 4 5 6 7 8
Body modules

0
2
4
6
8

10

0 1 2 3 4 5 6 7 8
Pairs of limb modules

Top 10 Elites Flat

0 1 2 3 4 5 6 7 8
Pairs of limbs

(b) The 10 elites with the highest fitness values

Figure 6.5: Features of the elites across all methods for each environment.

in stairs. The best-performing individuals are clustered similarly to SNP and
MEAT.

6.2.3 Diversity

Comparing the average population diversity for the two environments (Figure
6.7), there seem to be two clear groups in the flat environment and no clear
grouping for the stairs. MEAT and SNP reach higher averages in the flat
environment, RP perform similarly, while RNP actually maintains a higher
average in the stairs.

76

6.2. Results

30

35

40

45

50

55

60

30

35

40

45

50

55

60

7.5

10.0

12.5

15.0

17.5

20.0

22.5
SNP MEAT

5 9 13 17 21 25
7.5

10.0

12.5

15.0

17.5

20.0

22.5
RNP

5 9 13 17 21 25

RP

Elite's number of modules

Fit
ne

ss

Figure 6.6: Scatter plots of the elites’ number of modules and respective fitnesses.
The colored dots are evolved in stairs, and the primary y-axis is their fitness. The
grey dots evolved in the flat environment; the secondary y-axis is their fitness.

6.2.4 Qualitative Results

From the results in Section 6.2.2, no differences were found between the final
elites’ morphologies based on their morphological features. There was, however,
less variation in the top-performing elites who evolved in the stairs. Looking
at just the morphological features does have some drawbacks, as it is a very
simplified version of the robot’s actual body plan. The body plans might
contain other qualities and differences not expressed through these features.
To see if this is the case, a qualitative analysis of the body plans and gaits has
to be done.

77

Chapter 6. Experiment 3: Environment

0 200 400
Generation

0

2

4

6

8
Di

ve
rs

ity
Stairs

RP
RNP
MEAT
SNP

0 200 400
Generation

Flat
RP
RNP
MEAT
SNP

Figure 6.7: Average population diversity of each run over time calculated with the
Euclidean distance between features (Section 3.7.2)

Body Plan and Gait

Looking at the different strategies the different elites use, it is clear that there
are some differences between those that evolved in the stairs and those that
evolved in the flat environment. Because of the angle of the stairs, individuals
are much more prone to tipping over than they are in the flat environment.
To mitigate this, the elites use different strategies. One of these is to use a
“ballast” in the front of their body. This ballast is typically expressed as an
extra body module in the front that acts as a counterweight to move the center
of mass forward in the robot body, thus hindering the individual from tipping
over. Figure 6.8 shows this for three of the pictured elites, top right, middle of
the third row, and middle of the bottom row. Another strictly morphological
way of dealing with the issue of tipping over is to have limbs that stabilize. This
is generally expressed by having forward-facing front limbs or stiff rear-facing
hind legs.

The elites from the stairs also use the gait effectively to avoid tipping over.
Compared to the elites from the flat environment (Figure 6.9), they keep a
lower center of mass when walking and do not jump up. Instead, they use
small, more controlled steps to move forward. When looking at the different
gait strategies, it seems to be a lot more variation from the flat environment,
while the stairs have elites that utilize a few strategies often.

The less complex individuals tend to do better in the stairs. This was also

78

6.3. Analysis

noted in Section 6.2.2. The top elites had fewer modules, and all the top 10
elites had the exact same strategy (Figure 6.5b). From visually comparing the
top elites from stairs with the ones from flat, it is clear that there are more
varied locomotion strategies and body plans for the flat environment. These
strategies perform similarly, and no strategy dominates. This is not the case
for the stairs, where it seems to be one dominating strategy that seems quicker
and more stable than the alternatives. In Figure 6.8, the top 3 elites of each
method are displayed. Even if the top 3 are not necessarily representative of a
general trend, both methods with protection found individuals with the same
configurations. These individuals have no unnecessary parts, as every module
is utilized.

The gaits and morphologies of the top 20 elites can be viewed in the videos for
the stairs1, and the flat environment2.

6.3 Analysis

The results of evolving in the stairs are similar to the flat environment.
For both environments, MEAT outperformed the rest, with the other three
methods performing similarly (Figure 6.1). The relative differences between
the methods are no larger in the more challenging environment, so these
results do not indicate that morphological protection is more effective in a
more challenging environment. Thus, the hypothesis that evolving in a more
challenging environment would lead to a greater advantage of using protection
can be discarded.

A reason why there is no increase in the advantage of protection might be
because there are fewer viable solutions in the stairs. This can be seen when
looking at the variation in the top elites compared to the flat environment
(Figure 6.5). There might therefore be very clear peaks in the search landscape,
and the methods without protection can find well-performing morphologies
before convergence.

Looking at the generation of morphological convergence (Figure 6.3), there is no
indication of later convergence in the stairs. However, there is a steeper slope in
the fitness improvements in the later generations for all methods. This reflects
the greater difficulty of walking up the stairs compared to a flat surface, so

1https://youtu.be/dxFKTTmn03s
2https://youtu.be/HT6AngmX8io

79

https://youtu.be/dxFKTTmn03s
https://youtu.be/HT6AngmX8io

Chapter 6. Experiment 3: Environment

Figure 6.8: Top 3 elites evolved in stairs environment for all 4 methods. The top row
is SNP, next is MEAT, then RNP, and finally RP.

individuals need more time to adapt their control system to step up the stairs.
In a flat environment, creating forward locomotion is much easier as there are
no obstacles. This observation suggests that running longer might allow MEAT
to reach a higher fitness relative to the other methods, as the fitness slope for
MEAT is also steeper.

The most effective number of modules in the respective environments also differ
(Table 6.1). It is more effective in the stairs to have fewer modules compared
to the flat environment. One possible explanation for this can be that there
is a clear dominating strategy in the stairs that have quite a low number of
modules. This strategy might be dominating because fewer modules are more
effective, or it can be the cause of the lower average number of modules. It
does make sense that smaller robots are more effective on the stairs, as they
are lighter and more agile, making them better suited for climbing the stairs.
Additionally, smaller robots can be optimized quicker, which is advantageous

80

6.3. Analysis

Figure 6.9: Top 3 elites evolved in the flat environment for all 4 methods. The top
row is SNP, next is MEAT, then RNP, and finally RP.

in the context of the longer optimization time required in the stairs.

Over time robots with more modules might be better, but they might not
have time to optimize during the first 500 generations. When looking at the
populations’ averages, there seems to be a slow increase in the number of
modules throughout the generations for all methods in the stairs. In contrast,
the number remained relatively stagnant in the flat environment. This is likely
because it takes longer for the population to converge to one morphology in
the stairs. In the last generations of both environments, the average number of
modules per individual in the populations is similar to the average for the elites
for each respective method. This implies that there is a complete convergence
of morphology in the population, so every individual has the same number of
modules. Still, there is an increase in modules for all methods in the stairs,
so as the optimization process continues, larger configurations might arise. It
would make sense that the higher effectiveness of the smaller configurations in

81

Chapter 6. Experiment 3: Environment

the stairs would translate to an advantage for simple initialization. There is,
however, no indication of this from the results.

As expected, there are notable differences in body plans and gaits between the
environments. Specifically, the individuals exhibit various strategies to adapt
to the incline and steps of the stairs, as well as to improve their stability.
Still, some solutions converged early and performed poorly. A few of these
solutions are non-working and fail to get past the first step of the stairs.
These non-working solutions are completely avoided in the 50 runs using
simple initialization. There are also elites from both environments that use the
same strategies. Some of these strategies perform well in both environments,
while others struggle with stability in the more challenging environment. The
variation of the elites was a lot lower for all the methods in the stairs compared
to the flat environment. For the stairs, there was a lot of convergent evolution
to similar solutions, even across the different EAs used.

The impact of evolving in a different environment was a lot less than initially
expected. The different methods performed similarly with respect to each other
as they did on a flat surface, and MEAT still performed better than the rest.
The individuals adapted to the stairs, but there was less variation between the
elites, with one dominating strategy.

82

Chapter 7

Discussion

Through three experiments, MEAT has been explored by investigating different
aspects of the algorithm. The results showed a lot of promise, but many
things can still be investigated further. This chapter discusses the experiments
conducted, results achieved, and limitations, focusing on the research questions,
robots evolved, and methods used. Following this, future work is discussed,
looking into what can be further investigated, possible improvements, and the
larger potential for evolutionary- and modular robotics.

Experiment 1 (Chapter 4) investigated the first research sub-question, “How
does the initial population affect the search process?”. In Section 4.3, the results
are analyzed, and the results showed that the simple initialization achieved
equal performance and diversity with less complex elites. Still, there was a
significant earlier morphological convergence.

Following this, Experiment 2 (Chapter 5) focused on the question, “What are
the effects of using morphological protection based on age?”. The morphological
protection increased population diversity and delayed the morphological
convergence for simple initialization, leading to MEAT outperforming the other
methods. However, the results also showed no increased performance with
protection when using random initialization. In the analysis of the results
(Section 5.3), it is theorized that this is due to the quick optimization of the
COs and the limitations of the morphological search space.

The final experiment, Experiment 3 (Chapter 6), investigated the research sub-
question, “How does the environment impact the evolution of modular robots?”.
The analysis of the results (Section 6.3) found that the individuals adapted well

83

Chapter 7. Discussion

to the stairs to create effective locomotion strategies. The performances of the
different methods were very similar when evolving on a set of stairs compared
to the flat environment. Again, MEAT performed the best. However, the
more challenging environment did not accompany a greater advantage to using
morphological protection. One possible explanation for this is that the fewer
viable solutions in the stairs lead to more clear optima in the morphological
search space.

The main research question for this thesis is yet to be discussed; “What are the
effects of gradually augmenting morphologies from a minimal body plan?”. In
the larger context of this question, the results showed that there definitely are
advantages to gradually growing the morphology from a minimal starting point.
All the compared methods are outperformed when the protection is employed
with simple initialization (Figure 6.1). Not only does MEAT perform the best
in terms of fitness, but the elites also have more varied morphologies that, at the
same time, are less complex (Table 6.1). Additionally, this is achieved without
compromising population diversity (Figure 6.7). Therefore, the hypothesis that
MEAT would avoid early convergence at the same time as it would perform
better or equal to the other methods is confirmed. The results from both the
simple and challenging environment also indicate that MEAT can generalize to
more than one environment.

7.1 Elites and Strategies

There are several advantages to robots with less complex morphologies. One
of them is that larger and more complex body plans require more modules,
which in turn requires a more complex control system. As there are more
parameters, it will be harder to optimize and make it less robust to changes.
One such change can be mutations during evolution, and if too much time
is needed to reoptimize the controllers, the mutated individual will likely not
survive. Another change can be in the environment, and reoptimizing for a new
or changed environment will take more time for a complex morphology. Lastly,
an advantage of lower complexity is that it reduces the chance of unnecessary
parts and locked-in imperfections.

Similar strategies were dominating across the different methods explored.
These strategies were quadrupeds with three body modules for the flat
environment and two body modules for the stairs. For the flat environment,

84

7.1. Elites and Strategies

some high-performing solutions had no limbs, but other than this, all were
quadrupeds or used only four of their limbs for locomotion. This indicates that
having four limbs is an effective configuration, which is unsurprising as this is
supported when looking at real animals. An explanation for this phenomenon
is that adding more limbs would increase the controller search, as there are
more controllers to optimize and synchronize. When going from two to four
limbs, this increased search space is worth it, as this allows for more effective
locomotion. The extra set of limbs lifts the robot’s front or back half, reducing
the surface contact time and thereby also reducing friction. If the physics
were tuned differently, so the weight of the robots increased, adding a third
set of limbs might have been justified, as this could allow for more effective
locomotion.

These quadrupeds rarely utilized all four of their legs in the same way. Often
either the front or hind legs were completely stiff, not using the joints in the
modules at all. Because there is enough torque in the body modules, these two
legs could still be utilized for locomotion when the body moves. Using a set
of completely stiff legs reduces the number of limbs to optimize/synchronize,
thereby shrinking the controller search space. This allows for simpler and faster
optimization.

Many of these elites jump or move in ways that would be very difficult in
the real world or a different environment, meaning a large reality gap. One
idea was, therefore, to evolve for stability as well as fitness. The stability was
measured by looking at how much the root module moved up or down, and
the individuals were penalized based on this value. The result of this was
that individuals that dragged their bodies along the ground would gain an
advantage, as this is the most stable it is possible to move. This hindered the
search early on, and overall the elites performed worse. An improvement can
be to penalize the individuals based on both stability and body modules that
make contact with the ground. The effects will be that only limbs can be used
directly for locomotion, which might lead to a reduced reality gap.

The environment is also shown to influence the design of the individuals’ gaits
and body plans. Part of that environment is also the physics configurations
and how often individuals receive actions. This was kept the same for both
environments, but by changing these parameters, different strategies were
dominating. The impact of the torque and controller frequency was especially
influential. By having a higher torque or controller frequency, the diversities in

85

Chapter 7. Discussion

the elites decreased, and there was even more convergence to snakelike bodies.
Low values made individuals struggle to move effectively, even if they had
enough force to lift from the ground. This points to the fact that the control
system is quite limited and that it struggles more to synchronize limbs when a
“jumpy” gait is impossible.

7.2 Methods Used

All methods used in the experiments are very elitist. The best-performing
individual will always reproduce and survive because of no parent selection
and the tournament-remove survivor selection. The drawback of elitism is that
it leads to too stable solutions, and the population will easily be trapped in
local optima. Many other approaches are less elitist and do not guarantee the
survival of the elites. These approaches introduce more noise in the search and
lower the chance of getting trapped in local optima. Another effect of the noise
is that the controllers can be made more robust. The values of the controllers
will vary a lot, and they will need to deal with values within a specific range.
A single fine-tuned combination of values has a lower chance of surviving, as
small changes will disturb it. The tradeoff is that lower exploitation can slow
down the search and also might discard high-performing solutions completely.

Cheney et al. [7] used an even more elitist approach than MEAT, and the
advantages of morphological protection were even higher than what Experiment
2 (Chapter 5) showed. This indicates that the more exploitative the EA is,
the more advantageous morphological protection is. The protection works by
lowering the selection pressure, which will give more exploration that can help
to avoid local optima. When using a less elitist approach, the protection will
still lower the selection pressure, which might reduce it by too much and thereby
hinder the search. The tournament-remove selection chosen for MEAT results
from wanting to increase the exploration of Cheney’s method, as testing showed
that this method led to early convergence and low diversity.

Another reason for the design of the EAs used in this thesis was that other
approaches tested showed worse performance. Figure 7.1 shows SNP and
MEAT compared to an EA using generational replacement and tournament-
add selection. This EA also uses a simple initialized population, and the
mutation probabilities were selected based on the best-performing combination
tested. What is clear from these results is that both MEAT and SNP perform

86

7.3. Future Work

significantly better, and that the other EA converges quite a lot earlier. One
possibility is that the other EA would perform much better with properly
optimized parameters. Unfortunately, because of the stochastic nature of EAs,
a lot of runs would be required per parameter combination to have enough data
to say what combination performs the best. Another problem is that the runs
last for 500 generations, so a parameter sweep for 100 generations would reward
the parameters that lead to quicker improvement at the start. Therefore, long
runs would have to be performed. Because MEAT has fewer parameters to
tune, much time and computational power are saved.

0 100 200 300 400 500
Generation

10

20

30

40

50

Fit
ne

ss

SNP
MEAT
Standard

Figure 7.1: Comparison of SNP, MEAT, and more “standard” EA evolved in the
flat environment. Standard uses simple initialization, a population size of 100,
tournament parent selection with a tournament size of 3, elitism of 1, pc = 0.1,
σc = 0.2, and pm = 0.2.

7.3 Future Work

7.3.1 Further Investigations

For random initialization, there was no difference in performance when using
morphological protection (Figure 5.1) despite an increased diversity (Figure
5.8). The results of the experiments also showed indications of no complete
convergence in the 500 generations. In this case, the benefit of protection will
likely grow as the number of generations increases. Running until complete
convergence might increase the differences between the methods and make
insignificant differences significant. There are, however, very few changes in
the number of modules for the elites in the later generations. This can indicate

87

Chapter 7. Discussion

that running for longer might not change the body plans too much. Still, for
all methods, the fitness increases towards the end of the runs, so the control
optimization has more potential. This is especially the case when evolving in
the stairs.

The reason for not running for longer is time and cost of computation. Ideally,
the runs would have lasted longer, and there could have been more than 25
repetitions to strengthen the statistical significance of the results. The problem
is that this would have taken far too much time and computational power. A
way to reduce the computational time is to reduce the simulation time for each
individual. This would allow for more generations while not increasing the
time a run takes. The problem with doing this is that short simulations will
award high fitnesses for unstable behaviors, like leaping forward and falling
over. A longer run will give a more accurate assessment of how robust the
behavior is. The simulation time chosen was much lower in the early stages of
the experiments, but the elites then tended to fall over or drift to one side when
simulated for longer after evolution. This can possibly be avoided by utilizing
a different fitness function or a more advanced controller able to take sensory
inputs.

MEAT outperformed the three other methods, but further research is needed.
This can include investigating the factors that influence the algorithm’s
success and research into modifications to the algorithm itself (Section 7.3.2).
One question is whether the results are similar outside the chosen system.
Experiment 3 (Chapter 6) demonstrated that the performance of the different
methods was pretty much the same in both a very simple and a more challenging
environment. This indicated some generalization as the performances are not
specific to only one environment. Still, many things might change the outcome
in other systems. Other modules or controllers might lead to entirely different
results, and there is no guarantee that MEAT still performs the best. The same
can be said about different morphological mutations and encodings.

By testing MEAT in different systems, much can be learned about the
algorithm’s generalization. A lot can be done, like changing the physics,
environment, modules, controllers, genetic encodings, and variation operators.
If the algorithm can perform similarly in other systems, it would strengthen
the argument that MEAT performs better than the other methods presented in
this thesis. It can also be interesting to compare MEAT with a method using
an improved random initialization with better individuals. This can lead to

88

7.3. Future Work

more insights into whether or not it really is beneficial to augment minimal
solutions.

7.3.2 Possible Improvements

A lot can be done to try to improve the performance of all the methods used
in the experiments. The controller used is very simple and cannot adapt to
a changing environment because of the lack of input. Because of this, the
chosen environments had to be uniform. The work done in this thesis can be
a stepping stone to something more advanced by using a more sophisticated
controller that takes sensor inputs from the environment. The robots might
be able to perform better in the two presented environments but also perform
well in a more rugged terrain. With the COs, the robot would have to be
reoptimized in a new terrain because of the lack of inputs, while other control
systems can be more adaptable. Another reason to use a controller that takes
sensor inputs is that this can be used for targeted locomotions. This can help
individuals correct the direction they are moving if they drift to a side, making
the movement more robust. Targeted locomotion can also allow the robot to
pursue moving targets.

Optimizing a more advanced controller will be more challenging than
optimizing the COs. Thus, there might be significant changes in the
morphological convergence and the impact of morphological protection. When
a controller requires more time to optimize, a mutation to the body plan of an
already optimized robot can be even more detrimental. This is because it is
necessary to optimize for a higher number of generations to achieve the previous
performance. Without morphological protection, there will be a higher chance
of not surviving long enough to be optimized after a mutation. Therefore,
the protection might improve the performance more than this thesis’s results
indicated, thereby also improving the performance with random initialization.
It can also be interesting to investigate whether the simpler controllers help
avoid premature morphological convergence because of their faster optimization
time. This faster optimization time is due to a low number of parameters and
the copying of the parent’s controller when adding new modules.

For both the current controller and a more advanced one, different encodings
can lead to very different behaviors and solutions found. Section 7.1 discusses
the theory that the reason for the domination of quadrupeds is the increased
control search space when increasing the number of limbs. An indirect

89

Chapter 7. Discussion

genotype-to-phenotype mapping (as in nature) might be advantageous to create
more variations in the elites’ number of limbs. The indirect mapping allows
for the reuse of genetic information, meaning that the search space is not
necessarily increased when adding extra limbs. This can help to create well-
performing solutions that utilize more than just four limbs. In environments
where it is beneficial to have more limbs, an indirect encoding might help create
better-performing robots, as the reuse of genetic information allows for easier
optimization.

Further work to specifically improve MEAT can also be exciting. Despite the
late morphological convergence (Figure 5.4), there is evidence of little change
to the elites’ morphologies in later generations (Figure 5.5). One theory for
this difference is an exploit of the morphological protection method, where an
individual has two following mutations that cancel each other out (Section 5.3).
These two mutations lead to a reset age despite no change in morphology. To
improve upon the protection, the age could, for example, only be reset if there
is a new unseen morphology instead of just a change.

Different ways of implementing the morphological protection were also tested
during the development process of MEAT but did not perform better than the
method presented in this thesis. As mentioned in Section 3.5.1, there is the
issue of lack of selection pressure when using protection with tournament-add
selection. When individuals are to be selected based on both age and fitness,
there is a very good chance that no individuals in a tournament of three are
dominated. Especially in the later generations, this is a big problem because
the individuals’ ages are pretty evenly distributed. The selection pressure is
high for the newly mutated individuals, where everyone is the same age, while
it is low for older individuals, where almost no one is the same age.

The solution to this problem can be to increase the tournament size, but this
can again lead to too much exploitation as the low-fitness individuals never
will survive. To mitigate this problem, different solutions were considered,
like using bins of ages so individuals compete with others of similar ages.
Another method was an increase in tournament size over time. This increasing
tournament size was inspired by simulated annealing and was tested because of
the lack of selection pressure in the later generations. Both methods improved
on using standard tournament-add, but they did not perform better than the
tournament-remove method chosen. Another protection method that might
have potential is based on truncation selection, but there was not enough time

90

7.3. Future Work

to test it thoroughly. This approach uses truncation selection within each
tournament, allowing for larger tournaments without being too exploitative. If
one individual in the tournament dominates on age and fitness, some dominated
individuals will still survive, thus reducing the selection pressure.

A feature that might lead to improved performance is the addition of new
random solutions to populations during the evolutionary process, similar to
AFPO [38] and ALPS [37]. Both of these methods track age differently
than what is done for MEAT, so there might have to be some modifications
for how the age is measured. The reason this might be necessary is that
new, completely random individuals will likely perform worse than mutated,
optimized individuals. A solution can be that these new individuals are
initialized with a lower age than the age after a morphological mutation.

7.3.3 Potential

Future work within evolutionary- and modular robotics might benefit from
using concepts from MEAT. The achieved results suggest that there are
advantages of starting with minimal solutions and that this can lead to well-
performing robots without unnecessary complexity. This can mean that other
algorithms and approaches also can improve by utilizing simple initialization
methods and not wasting time and resources to create well-distributed initial
populations.

The benefits of gradually augmenting an initial population of minimal solutions
have been demonstrated for NeuroEvolution through NEAT [19]. The results
of this thesis indicate that this is also transferable to Evolutionary Robotics.
Therefore, the findings suggest that gradually augmenting solutions can
improve performance and is a promising strategy for optimizing complex
systems through different evolutionary methods.

There is also potential in using the morphological protection from this thesis
outside of evolutionary robotics. The protection method can easily be used
for other purposes with co-optimization by selecting when the age is increased.
When increasing the age after changes for an objective, the protection will
protect innovation for that objective. This will have the effect of preserving
the diversity of solutions in the population.

In addition, other fields, such as physics-based animation, can also benefit
from using and developing virtual creatures using modules. By using a control

91

Chapter 7. Discussion

system with sensory inputs, targeted locomotion can be achieved. Evolutionary
modular robots, therefore, can help quickly model and animate creatures that
can be controlled.

92

Chapter 8

Conclusion

Premature morphological convergence is a common problem when co-
optimizing the morphology and control of robots. This thesis considered
whether augmenting simple body plans aids in evolutionary optimization or
whether it leads to premature convergence. To perform these experiments, the
MEAT algorithm was designed, and Experiment 1 investigated how the simple
initialization would stack up against a random initialization method. The goal
of Experiment 2 was to find out how morphological protection would influence
the methods, while Experiment 3 focused on the effect of the environment on
the robots’ evolution and on the elites’ strategies.

In Experiment 1, it was found that the simple initialization led to faster
morphological convergence and less complex body plans compared to starting
with a randomly initialized population. Still, the variation in the elites was
higher for simple initialization, and the population diversity was similar. This
shows that despite converging earlier, the simple initialization performs on par
with random initialization.

When morphological protection was introduced in Experiment 2, the results
showed a significantly improved performance with simple initialization. MEAT
reached higher fitness, converged later, explored more of the search area,
and maintained a higher population diversity compared to SNP. There were,
however, minimal effects of protection for random initialization outside of
improved population diversity. MEAT outperformed or matched the other
methods in all metrics measured.

The final experiment, Experiment 3, showed that the environment had little

93

Chapter 8. Conclusion

impact on the performance of the methods. MEAT continued outperforming
the other methods, but the advantage of using protection in the more
challenging environment was not larger. The evolved robots generally adapted
well to the stairs, although there was a more evident dominating strategy that
resulted in less variation among the elites.

In general, MEAT outperforms all other methods tested while also keeping
the complexity of the robots lower. Despite the reduced complexity, there are
no indications that MEAT explores less of the search area despite the initial
population being concentrated at one single spot. The results also demonstrate
that starting with an initial population with no diversity quickly improves and
matches methods with higher initial diversity. These findings suggest that
spending time and computational power to make an initial population evenly
distributed in the search space will not always be beneficial.

The findings also give insights into the effects of morphological protection
as a multi-objective selection operator based on fitness and morphological
age. Maintaining a diverse population through morphological protection
enables more exploration of the search space, thereby delaying morphological
convergence. Regardless of the higher exploration, not all methods will
experience increased performance by using protection, demonstrated by the
random initialization methods.

Minimal initialization and morphological protection from using MEAT are
demonstrably beneficial when optimizing the morphology and control when
evolving robots. This approach can thereby be useful to be implemented
in other evolutionary robotics approaches to explore the search space more
effectively. Ultimately, the insights supplied by this thesis can aid in the rapid
exploration of a variety of robot designs that, although now simulated, can
eventually contribute to more effective robot designs in the real world.

94

Bibliography

[1] Charles Darwin. On the origin of species, 1859. Routledge, 2004.
[2] Karl Sims. “Evolving virtual creatures.” In: Proceedings of the 21st

annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’94. the 21st annual conference. ACM Press, 1994, pp. 15–
22. isbn: 978-0-89791-667-7. doi: 10.1145/192161.192167.

[3] Gregory S. Hornby and Jordan B. Pollack. “Evolving L-systems to
generate virtual creatures.” In: Computers & Graphics 25.6 (Dec. 2001),
pp. 1041–1048. issn: 00978493. doi: 10.1016/S0097-8493(01)00157-1.

[4] Joel Lehman and Kenneth Stanley. “Evolving a diversity of creatures
through novelty search and local competition.” In: Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation. Genetic
and Evolutionary Computation Conference, GECCO’11. Jan. 1, 2011,
pp. 211–218. doi: 10.1145/2001576.2001606.

[5] Nick Cheney et al. “Unshackling Evolution: Evolving Soft Robots with
Multiple Materials and a Powerful Generative Encoding.” In: GECCO
2013 - Proceedings of the 2013 Genetic and Evolutionary Computation
Conference. Jan. 1, 2013. doi: 10.1145/2463372.2463404.

[6] Joshua E. Auerbach and Josh C. Bongard. “Environmental Influence
on the Evolution of Morphological Complexity in Machines.” In: PLOS
Computational Biology 10.1 (Jan. 2, 2014), e1003399. issn: 1553-7358.
doi: 10.1371/journal.pcbi.1003399.

[7] Nick Cheney et al. Scalable Co-Optimization of Morphology and Control
in Embodied Machines. Dec. 12, 2017. arXiv: 1706.06133[cs].

[8] David Ha. “Reinforcement Learning for Improving Agent Design.” In:
Artificial Life 25.4 (Nov. 2019), pp. 352–365. issn: 1064-5462, 1530-9185.
doi: 10.1162/artl_a_00301.

95

https://doi.org/10.1145/192161.192167
https://doi.org/10.1016/S0097-8493(01)00157-1
https://doi.org/10.1145/2001576.2001606
https://doi.org/10.1145/2463372.2463404
https://doi.org/10.1371/journal.pcbi.1003399
https://arxiv.org/abs/1706.06133 [cs]
https://doi.org/10.1162/artl_a_00301

Bibliography

[9] Allan Zhao et al. “RoboGrammar: graph grammar for terrain-optimized
robot design.” In: ACM Transactions on Graphics 39.6 (Dec. 31, 2020),
pp. 1–16. issn: 0730-0301, 1557-7368. doi: 10.1145/3414685.3417831.

[10] T. Fukuda et al. “Self Organizing Robots Based on Cell Structures -
CEBOT.” In: IEEE International Workshop on Intelligent Robots. IEEE
International Workshop on Intelligent Robots. Oct. 1988, pp. 145–150.
doi: 10.1109/IROS.1988.592421.

[11] Nicholas Cheney et al. “On the Difficulty of Co-Optimizing Morphology
and Control in Evolved Virtual Creatures.” In: Proceedings of the
Artificial Life Conference 2016. Proceedings of the Artificial Life
Conference 2016. Cancun, Mexico: MIT Press, 2016, pp. 226–233. isbn:
978-0-262-33936-0. doi: 10.7551/978-0-262-33936-0-ch042.

[12] Matteo De Carlo et al. “Influences of Artificial Speciation on Morphologi-
cal Robot Evolution.” In: 2020 IEEE Symposium Series on Computational
Intelligence (SSCI). 2020 IEEE Symposium Series on Computational In-
telligence (SSCI). Dec. 2020, pp. 2272–2279. doi: 10.1109/SSCI47803.

2020.9308433.
[13] Jørgen Nordmoen et al. “MAP-Elites Enables Powerful Stepping Stones

and Diversity for Modular Robotics.” In: Frontiers in Robotics and AI 8
(2021). doi: 10.3389/frobt.2021.639173.

[14] Karine Miras and A.E. Eiben. “The impact of environmental history
on evolved robot properties.” In: Proceedings of the ALIFE 2019: The
2019 Conference on Artificial Life. ALIFE 2019: The 2019 Conference on
Artificial Life. July 1, 2019, pp. 396–403. doi: 10.1162/isal_a_00192.

[15] H. Maaranen, K. Miettinen, and M.M. Mäkelä. “Quasi-random initial
population for genetic algorithms.” In: Computers & Mathematics with
Applications 47.12 (June 2004), pp. 1885–1895. issn: 08981221. doi: 10.

1016/j.camwa.2003.07.011.
[16] Heikki Maaranen, Kaisa Miettinen, and Antti Penttinen. “On initial

populations of a genetic algorithm for continuous optimization problems.”
In: Journal of Global Optimization 37.3 (Jan. 23, 2007), pp. 405–436. issn:
0925-5001, 1573-2916. doi: 10.1007/s10898-006-9056-6.

[17] Pedro A Diaz-Gomez and Dean F Hougen. “Initial population for genetic
algorithms: A metric approach.” In: Gem. 2007, pp. 43–49.

[18] Silvia Poles, Yan Fu, and Enrico Rigoni. “The Effect of Initial Population
Sampling on the Convergence of Multi-Objective Genetic Algorithms.”
In: Multiobjective Programming and Goal Programming. Ed. by Vincent

96

https://doi.org/10.1145/3414685.3417831
https://doi.org/10.1109/IROS.1988.592421
https://doi.org/10.7551/978-0-262-33936-0-ch042
https://doi.org/10.1109/SSCI47803.2020.9308433
https://doi.org/10.1109/SSCI47803.2020.9308433
https://doi.org/10.3389/frobt.2021.639173
https://doi.org/10.1162/isal_a_00192
https://doi.org/10.1016/j.camwa.2003.07.011
https://doi.org/10.1016/j.camwa.2003.07.011
https://doi.org/10.1007/s10898-006-9056-6

Bibliography

Barichard et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 123–133. isbn: 978-3-540-85646-7.

[19] Kenneth O. Stanley and Risto Miikkulainen. “Evolving Neural Networks
through Augmenting Topologies.” In: Evolutionary Computation 10.2
(June 2002), pp. 99–127. issn: 1063-6560, 1530-9304. doi: 10 . 1162 /

106365602320169811.
[20] Pradnya A. Vikhar. “Evolutionary algorithms: A critical review and

its future prospects.” In: 2016 International Conference on Global
Trends in Signal Processing, Information Computing and Communication
(ICGTSPICC). 2016 International Conference on Global Trends in Signal
Processing, Information Computing and Communication (ICGTSPICC).
Dec. 2016, pp. 261–265. doi: 10.1109/ICGTSPICC.2016.7955308.

[21] Xinjie Yu and Mitsuo Gen. Introduction to evolutionary algorithms.
Springer Science & Business Media, 2010.

[22] Ágoston E. Eiben and James E. Smith. “Evolutionary algorithms.” In:
Handbook of memetic algorithms. Springer, 2012, pp. 9–27.

[23] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing.
Natural Computing Series. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2015. isbn: 978-3-662-44874-8. doi: 10.1007/978-3-662-44874-8.

[24] Leila Kallel and Marc Schoenauer. “Alternative random initialization in
genetic algorithms.” In: Proceedings of the 7 th International Conference
on Genetic Algorithms. Morgan Kaufmann, 1997, pp. 268–275.

[25] Kalyanmoy Deb. “Multi-Objective Optimization Using Evolutionary
Algorithms: An Introduction.” In: (Feb. 1, 2011).

[26] Hisao Ishibuchi, Tsutomu Doi, and Yusuke Nojima. “Incorporation
of Scalarizing Fitness Functions into Evolutionary Multiobjective
Optimization Algorithms.” In: Parallel Problem Solving from Nature -
PPSN IX. Ed. by Thomas Philip Runarsson et al. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 493–502. isbn:
978-3-540-38991-0. doi: 10.1007/11844297_50.

[27] Joel Lehman and Kenneth O. Stanley. “Abandoning Objectives:
Evolution Through the Search for Novelty Alone.” In: Evolutionary
Computation 19.2 (June 2011), pp. 189–223. issn: 1063-6560, 1530-9304.
doi: 10.1162/EVCO_a_00025.

[28] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. “Quality
Diversity: A New Frontier for Evolutionary Computation.” In: Frontiers
in Robotics and AI 3 (2016). issn: 2296-9144.

97

https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1109/ICGTSPICC.2016.7955308
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1007/11844297_50
https://doi.org/10.1162/EVCO_a_00025

Bibliography

[29] Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by
mapping elites. Apr. 19, 2015. doi: 10.48550/arXiv.1504.04909. arXiv:
1504.04909[cs,q-bio].

[30] Brad L Miller and David E Goldberg. “Genetic Algorithms, Tournament
Selection, and the Effects of Noise.” In: Complex systems 9.3 (1995),
pp. 193–212.

[31] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. “Exploration and
exploitation in evolutionary algorithms: A survey.” In: ACM Computing
Surveys 45.3 (June 2013), pp. 1–33. issn: 0360-0300, 1557-7341. doi:
10.1145/2480741.2480752.

[32] A. E. Eiben and C. A. Schippers. “On Evolutionary Exploration and
Exploitation.” In: Fundamenta Informaticae 35.1 (Jan. 1, 1998), pp. 35–
50. issn: 0169-2968. doi: 10.3233/FI-1998-35123403.

[33] Marcus Hutter. “Fitness uniform selection to preserve genetic diversity.”
In: Evolutionary Computation, 2002. June 12, 2002, pp. 783–788. isbn:
978-0-7803-7282-5. doi: 10.1109/CEC.2002.1007025.

[34] De Jong and Kenneth Alan. “Analysis of the behavior of a class of genetic
adaptive systems.” In: (1975).

[35] David E. Goldberg and Jon Richardson. “Genetic algorithms with sharing
for multimodal function optimization.” In: Proceedings of the Second
International Conference on Genetic Algorithms on Genetic algorithms
and their application. USA: L. Erlbaum Associates Inc., Oct. 1, 1987,
pp. 41–49. isbn: 978-0-8058-0158-3.

[36] Robert J. Collins and David R. Jefferson. “Selection in Massively
Parallel Genetic Algorithms.” In: Proceedings of the Fourth International
Conference on Genetic Algorithms. Morgan Kaufmann, 1991, pp. 249–
256.

[37] Greg Hornby. “ALPS: The age-layered population structure for reducing
the problem of premature convergence.” In: GECCO 2006 - Genetic and
Evolutionary Computation Conference. Vol. 1. Jan. 1, 2006. doi: 10 .

1145/1143997.1144142.
[38] Michael Schmidt and Hod Lipson. “Age-Fitness Pareto Optimization.” In:

Genetic Programming Theory and Practice VIII. Ed. by Rick Riolo, Trent
McConaghy, and Ekaterina Vladislavleva. Genetic and Evolutionary
Computation. New York, NY: Springer, 2011, pp. 129–146. isbn: 978-
1-4419-7747-2. doi: 10.1007/978-1-4419-7747-2_8.

98

https://doi.org/10.48550/arXiv.1504.04909
https://arxiv.org/abs/1504.04909 [cs, q-bio]
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.3233/FI-1998-35123403
https://doi.org/10.1109/CEC.2002.1007025
https://doi.org/10.1145/1143997.1144142
https://doi.org/10.1145/1143997.1144142
https://doi.org/10.1007/978-1-4419-7747-2_8

Bibliography

[39] Tobias Friedrich and Markus Wagner. “Seeding the initial population
of multi-objective evolutionary algorithms: A computational study.” In:
Applied Soft Computing 33 (Aug. 2015), pp. 223–230. issn: 15684946.
doi: 10.1016/j.asoc.2015.04.043.

[40] Shahryar Rahnamayan, Hamid R. Tizhoosh, and Magdy M. A. Salama.
“A novel population initialization method for accelerating evolutionary
algorithms.” In: Computers & Mathematics with Applications 53.10
(May 1, 2007), pp. 1605–1614. issn: 0898-1221. doi: 10.1016/j.camwa.

2006.07.013.
[41] J. D. Schaffer, D. Whitley, and L. J. Eshelman. “Combinations of

genetic algorithms and neural networks: a survey of the state of the art.”
In: COGANN-92: International Workshop on Combinations of Genetic
Algorithms and Neural Networks. June 6, 1992, pp. 1–37. doi: 10.1109/

COGANN.1992.273950.
[42] Dario Floreano, Peter Dürr, and Claudio Mattiussi. “Neuroevolution:

from architectures to learning.” In: Evolutionary Intelligence 1.1 (Mar.
2008), pp. 47–62. issn: 1864-5909, 1864-5917. doi: 10.1007/s12065-007-

0002-4.
[43] Alan McIntyre et al. neat-python.
[44] Reem J. Alattas, Sarosh Patel, and Tarek M. Sobh. “Evolutionary

Modular Robotics: Survey and Analysis.” In: Journal of Intelligent &
Robotic Systems 95.3 (Sept. 2019), pp. 815–828. issn: 0921-0296, 1573-
0409. doi: 10.1007/s10846-018-0902-9.

[45] M. Yim, D.G. Duff, and K.D. Roufas. “PolyBot: a modular reconfig-
urable robot.” In: Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Pro-
ceedings. Proceedings 2000 ICRA. Millennium Conference. IEEE Inter-
national Conference on Robotics and Automation. Symposia Proceedings.
Vol. 1. Apr. 2000, 514–520 vol.1. doi: 10.1109/ROBOT.2000.844106.

[46] Jordan B. Pollack et al. “Chapter 21 - Evolutionary Techniques in
Physical Robotics.” In: Creative Evolutionary Systems. Ed. by Peter J.
Bentley and David W. Corne. The Morgan Kaufmann Series in Artificial
Intelligence. San Francisco: Morgan Kaufmann, 2002, pp. 511–IX. isbn:
978-1-55860-673-9. doi: https : / / doi .org /10 .1016 /B978- 155860673- 9 /

50061-6.
[47] Joshua E Auerbach and Josh C Bongard. Evolving complete robots with

CPPN-NEAT: the utility of recurrent connections. July 12, 2011.

99

https://doi.org/10.1016/j.asoc.2015.04.043
https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1016/j.camwa.2006.07.013
https://doi.org/10.1109/COGANN.1992.273950
https://doi.org/10.1109/COGANN.1992.273950
https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1007/s12065-007-0002-4
https://doi.org/10.1007/s10846-018-0902-9
https://doi.org/10.1109/ROBOT.2000.844106
https://doi.org/https://doi.org/10.1016/B978-155860673-9/50061-6
https://doi.org/https://doi.org/10.1016/B978-155860673-9/50061-6

Bibliography

[48] Karine Miras, Eliseo Ferrante, and A. E. Eiben. “Environmental
influences on evolvable robots.” In: PLOS ONE 15.5 (May 29, 2020),
e0233848. issn: 1932-6203. doi: 10.1371/journal.pone.0233848.

[49] Jörg Conradt and Paulina Varshavskaya. “Distributed Central Pattern
Generator Control for a Serpentine Robot.” In: Proceedings of the
International Conference on Artificial Neural Networks (ICANN). 2003,
pp. 338–341.

[50] Frank Veenstra et al. “Evolution and Morphogenesis of Simulated
Modular Robots: A Comparison Between a Direct and Generative
Encoding.” In: Applications of Evolutionary Computation. Ed. by
Giovanni Squillero and Kevin Sim. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2017, pp. 870–885. isbn: 978-
3-319-55849-3. doi: 10.1007/978-3-319-55849-3_56.

[51] Jørgen Nordmoen et al. Quality and Diversity in Evolutionary Modular
Robotics. Aug. 5, 2020. arXiv: 2008.02116[cs].

[52] D.J. Christensen. “Evolution of shape-changing and self-repairing control
for the ATRON self-reconfigurable robot.” In: Proceedings 2006 IEEE
International Conference on Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006. May 2006, pp. 2539–2545. doi: 10.1109/

ROBOT.2006.1642084.
[53] Deepak Pathak et al. Learning to Control Self-Assembling Morphologies:

A Study of Generalization via Modularity. Nov. 21, 2019. arXiv: 1902.

05546[cs,stat].
[54] Mia-Katrin Kvalsund, Kyrre Glette, and Frank Veenstra. Centralized and

Decentralized Control in Modular Robots and Their Effect on Morphology.
June 27, 2022. arXiv: 2206.13366[cs].

[55] Stephane Doncieux et al. “Evolutionary Robotics: What, Why, and
Where to.” In: Frontiers in Robotics and AI 2 (2015). issn: 2296-9144.

[56] Josh C. Bongard. “Evolutionary robotics.” In: Communications of the
ACM 56.8 (Aug. 2013), pp. 74–83. issn: 0001-0782, 1557-7317. doi: 10.

1145/2493883.
[57] T. Geijtenbeek and N. Pronost. “Interactive Character Animation Using

Simulated Physics: A State-of-the-Art Review.” In: Computer Graphics
Forum 31.8 (Dec. 2012), pp. 2492–2515. issn: 01677055. doi: 10.1111/j.

1467-8659.2012.03189.x.

100

https://doi.org/10.1371/journal.pone.0233848
https://doi.org/10.1007/978-3-319-55849-3_56
https://arxiv.org/abs/2008.02116 [cs]
https://doi.org/10.1109/ROBOT.2006.1642084
https://doi.org/10.1109/ROBOT.2006.1642084
https://arxiv.org/abs/1902.05546 [cs, stat]
https://arxiv.org/abs/1902.05546 [cs, stat]
https://arxiv.org/abs/2206.13366 [cs]
https://doi.org/10.1145/2493883
https://doi.org/10.1145/2493883
https://doi.org/10.1111/j.1467-8659.2012.03189.x
https://doi.org/10.1111/j.1467-8659.2012.03189.x

Bibliography

[58] Tønnes Nygaard, Eivind Samuelsen, and Kyrre Glette. “Overcoming
Initial Convergence in Multi-objective Evolution of Robot Control and
Morphology Using a Two-Phase Approach.” In: European Conference on
the Applications of Evolutionary Computation. European Conference on
the Applications of Evolutionary Computation. Mar. 25, 2017, pp. 825–
836. isbn: 978-3-319-55848-6. doi: 10.1007/978-3-319-55849-3_53.

[59] Charles Schaff et al. Jointly Learning to Construct and Control Agents
using Deep Reinforcement Learning. Sept. 14, 2018. arXiv: 1801 .

01432[cs].
[60] Frank Veenstra and Kyrre Glette. “How Different Encodings Affect

Performance and Diversification when Evolving the Morphology and
Control of 2D Virtual Creatures.” In: The 2020 Conference on Artificial
Life. The 2020 Conference on Artificial Life. Online: MIT Press, 2020,
pp. 592–601. doi: 10.1162/isal_a_00295.

[61] Emma Hjellbrekke Stensby, Kai Olav Ellefsen, and Kyrre Glette. Co-
optimising Robot Morphology and Controller in a Simulated Open-Ended
Environment. Apr. 7, 2021. doi: 10.1007/978-3-030-72699-7_3. arXiv:
2104.03062[cs].

[62] Karine Miras and A. E. Eiben. “How the History of Changing
Environments Affects Traits of Evolvable Robot Populations.” In:
Artificial Life 28.2 (June 28, 2022), pp. 224–239. issn: 1064-5462. doi:
10.1162/artl_a_00379.

[63] Hod Lipson and Jordan B. Pollack. “Automatic design and manufacture
of robotic lifeforms.” In: Nature 406.6799 (Aug. 2000), pp. 974–978. issn:
1476-4687. doi: 10.1038/35023115.

[64] Arthur Juliani et al. “Unity: A general platform for intelligent agents.”
In: arXiv preprint arXiv:1809.02627 (2020).

[65] Félix-Antoine Fortin et al. “DEAP: Evolutionary Algorithms Made Easy.”
In: Journal of Machine Learning Research 13 (July 2012), pp. 2171–2175.

[66] A. Crespi and A.J. Ijspeert. “AmphiBot II: An Amphibious Snake
Robot that Crawls and Swims using a Central Pattern Generator.” In:
Proceedings of the 9th International Conference on Climbing and Walking
Robots (CLAWAR 2006) (Jan. 1, 2006).

[67] F. Delcomyn. “Walking in Invertebrates.” In: Encyclopedia of Neuro-
science. Ed. by Larry R. Squire. Oxford: Academic Press, Jan. 1, 2009,
pp. 479–484. isbn: 978-0-08-045046-9. doi: 10.1016/B978-008045046-

9.01977-X.

101

https://doi.org/10.1007/978-3-319-55849-3_53
https://arxiv.org/abs/1801.01432 [cs]
https://arxiv.org/abs/1801.01432 [cs]
https://doi.org/10.1162/isal_a_00295
https://doi.org/10.1007/978-3-030-72699-7_3
https://arxiv.org/abs/2104.03062 [cs]
https://doi.org/10.1162/artl_a_00379
https://doi.org/10.1038/35023115
https://doi.org/10.1016/B978-008045046-9.01977-X
https://doi.org/10.1016/B978-008045046-9.01977-X

Bibliography

[68] John R. Finnerty. “Did internal transport, rather than directed
locomotion, favor the evolution of bilateral symmetry in animals?” In:
BioEssays 27.11 (2005), pp. 1174–1180. issn: 1521-1878. doi: 10.1002/

bies.20299.
[69] Eivind Samuelsen and Kyrre Glette. “Some distance measures for

morphological diversification in generative evolutionary robotics.” In:
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation. GECCO ’14: Genetic and Evolutionary Computation
Conference. Vancouver BC Canada: ACM, July 12, 2014, pp. 721–728.
isbn: 978-1-4503-2662-9. doi: 10.1145/2576768.2598325.

102

https://doi.org/10.1002/bies.20299
https://doi.org/10.1002/bies.20299
https://doi.org/10.1145/2576768.2598325

	Introduction
	Motivation
	Research Questions
	Contributions
	Thesis Outline

	Background
	Evolutionary Algorithms
	Exploration and Exploitation
	Effect of Initial Population
	Neuroevolution

	Modular Robotics
	Control

	Evolutionary Robotics
	Co-Optimization of Morphology and Control
	Protection
	Diversity
	Impact of Environment
	Encodings

	Implementation
	Tools and System Overview
	Modules
	Controller
	Mutation

	Robot
	Rules
	Initialization
	Mutation

	MEAT
	Morphological Protection

	Evolution
	Simulation
	Evolutionary Algorithms
	Genome Cleanup

	Analysis Methods
	Morphological Features
	Diversity

	Experiment Setup

	Experiment 1: Initialization
	Setup
	Results
	Fitness
	Morphology
	Diversity
	Qualitative Results

	Analysis

	Experiment 2: Protection
	Setup
	Results
	Fitness
	Age
	Morphology
	Diversity

	Analysis

	Experiment 3: Environment
	Setup
	Results
	Fitness
	Morphology
	Diversity
	Qualitative Results

	Analysis

	Discussion
	Elites and Strategies
	Methods Used
	Future Work
	Further Investigations
	Possible Improvements
	Potential

	Conclusion

