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Abstract

Climate change will affect the insurance industry. We develop a Bayesian hierarchical statis-
tical approach to explain and predict insurance losses due to weather events at a local geograph-
ical scale. The number of weather-related insurance claims is modelled combining generalized
linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible
jump MCMC, the model is fitted on daily weather and insurance data from each of the 319
municipalities of southern and central Norway for the period 1997-2006. Out-of-sample predic-
tions from the model are very good. Our results show interesting regional patterns in the impact
of different weather covariates. In addition to being useful for insurance pricing, our model can
be used for short-term predictions based on weather forecasts and long-term predictions based
on downscaled climate models.

Keywords: Bayesian Poisson Hurdle, Zero-Altered Poisson, Spatial Variable Selection, Hierar-
chical Models, Generalized Linear Models, Climate Change.

1 Introduction

The global insurance industry is highly exposed to risks caused by weather related events. In
the past two decades, there are clear signs of a significant increase in the number of claims,
possibly due to changes in the spatial distribution, frequency, and intensity of both ordinary
and catastrophic weather events. Simultaneously, demographic and socio-economic trends are
increasing society’s exposure to weather-related losses. An analysis of insurance industry data
showed that weather-related catastrophic losses (hurricanes, storms, floods, extreme draughts)
have increased by 2% each year since the 1970s, adjusting for changes in wealth, inflation
and population growth (Muir-Wood et al., 2006). While extreme and large scale catastrophic
events represent roughly 40% of the insured weather-related losses globally, small scale weather
related events (such as rain, hailstorms, heavy wind, frost) account for most of the incurred
losses (Mills et al., 2005; Botzen & van den Bergh, 2008). Losses due to non-catastrophic
weather patterns are expected to increase non-linearly with precipitation intensity. Neglecting
this could lead to underestimating losses; this would represent a serious danger to insurance
companies.

In order to understand patterns of risk over time and geography, the first step is to explore
the relationship between weather events and incurred losses by analysing historical data. In this
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paper we analyse the relation between the number of claims and the weather, using ten years
of historical insurance and meteorological data in Norway. We focus on damages caused to
privately owned buildings, and exclude a small number of catastrophic weather related events,
which in Norway are covered by a separate national fund. We consider only the number of
claims. Modelling the size of the claims is more simple, but requires adjustment for several
economical trends (Frees & Valdez, 2008).

The purpose of our study is (i) to understand which weather patterns are responsible for
claims and (ii) to predict the number of losses given a certain weather pattern. In both cases we
work at a local scale. Our results can be used to develop strategies to limit the effects of weather
events, through preventive actions together with insured customers and local authorities. Also,
they help update risk estimation and premium calculations. Our model can be used to predict
the number of claims at a regional scale, while it rains, using actually occurring meteorological
conditions. This is useful if the actual reporting is delayed. Also, we can provide short term
predictions of insurance losses based on weather forecasts one or two weeks ahead. The insur-
ance company can use these predictions to organise inspections and support in the right place
immediately for clients whose buildings are damaged.

We can also use the model to investigate the effect of hypothetical weather scenarios, con-
structed for example by resampling historical events and placing them at different geographical
locations. More interestingly, one can use downscaled climate models, to understand the poten-
tial exposure of the insured portfolio under future climate conditions.

We cast the problem in a Bayesian space-time setting, where appropriate regressions are
performed in each municipality, with weather variables as covariates. We wish to select the
relevant covariates locally, but assume that models vary smoothly over space. This leads to the
formulation of a hierarchical Bayesian spatial variable selection process. Insurance count data,
as we analyse in this paper, show an excess of zeros (many days without claims). Different
weather patterns are thought to be responsible for having a day with no claims as opposed to
one or more claims, and for the actual count on days with claims. This leads to the Hurdle
Poisson model, as in Mullahy (1986), rather than a Zero Inflated Poisson model (Lambert,
1992). We use conjugate Gaussian g-priors for the GLM of the Positive Poisson part (which
allows us to integrate out the regression parameters), and a spatial Ising model which steers
the variable selection in a spatially smooth way. The local model varies smoothly over the
geography of Norway, as we do not expect abrupt changes in the weather-related claims in
areas with comparable geographical conditions, and we can therefore borrow strength due to
inhomogeneous exposures. Inference can be conveniently split in two separate tasks: one for
the Bernoulli probability of a claim, the other for the intensity of the Positive Poisson count. We
implemented a Gibbs Sampler for the Positive Poisson intensity and a reversible jump MCMC
scheme for the Bernoulli component of the model. When predicting the number of claims, the
two components cannot be treated separately any more, and we used predictive Gibbs sampling
for the variable dimension parameter space.

Our results show interesting regional patterns of weather covariates contributing to pres-
ence/absence of claims and to the number of claims. While precipitation and drainage are
important for conditions that lead to at least one claim: the number of claims (i.e. the seri-
ousness of the local damage) seems to be modulated by more complex weather events. For the
Positive Poisson intensity, the model with largest posterior probability includes more covariates,
and show less smoothness. Snow variables are present in some municipalities. Out-of-sample
predictions are very good: on average we predict the right quantity of claims per week in a mu-
nicipality in 89% of the weeks, and in all but one of the municipalities we predict correctly in
more than 50% of the weeks. Our model copes reasonably well with extreme precipitation, but
is less able to predict extreme numbers of claims, which happen unrelated to extreme weather.

There has been some research on the relation between weather and the insurance industry
(Vellinga et al., 2001; Nordhaus, 2008; Association of British Insurers, 2005), but this area lacks
public data, due to their presumed competitive value, and studies are scarce. Some data ag-
gregated in space and time are available, and Mills (2005) identifies the financial services and
asset management companies as vulnerable to climate change. Botzen & van den Bergh (2008)
discuss various types of risk exposures to weather related events in the insurance industry, con-
centrating on the case of the Netherlands. We support these authors’ call for the industry to
share their data. The study presented in this paper shows that insight can be gained by a thor-

2



ough statistical analysis. Adaptation to climate change for the insurance industry is discussed
in Warner et al. (2009) and Kleindorfer (2010). Actuarial applications of hierarchical insurance
claim models, including several Zero Inflated stochastic models, are presented in the fundamen-
tal papers Frees & Valdez (2008); Frees et al. (2009); Boucher & Denuit (2006); Boucher &
Guillen (2009).

The outline of this paper is as follows: In section 2 we describe our data set. Section 3
contains the hierarchical model. We present results in Section 4, and conclude with a brief
discussion in Section 5.

2 Insurance and weather data

The insurance data are from Gjensidige (www.gjensidige.no), the largest non-life insurance
company in Norway, and include all insured private buildings in the period 1997-2006. For a
more complete description of the data see Haug et al. (2008, 2009). In this paper we focus
on the municipalities of central and south Norway, which have the majority of the claims. For
each of the K = 319 municipalities, we obtained the daily number of claims due to damages
caused by either precipitation, surface water, snow melting, undermined drainage, sewage back-
flow or blocked pipes. In addition we have the monthly number of insured buildings, for each
municipality, representing exposure. For municipality k, k = 1, 2, ...,K, Nkt is the observed
number of claims in day t, Tk is the set of days for which we have observed Nkt (as there are a
few missing values in the data), tk is the number of days in Tk. Let Nk = (Nk1, Nk2, ..., Nktk)

T

and Ak = (Ak1, Ak2, ..., Aktk)
T be the vectors of claims and insured units in municipality k for

each time point.
Figure 1 describes the spatial variability of the exposure: for each municipality we computed

the average daily number of policies, and plotted the percentage with respect to the maximum
exposure (which is in Bergen). Most claims are concentrated on the main cities. The mean claim
size in the various municipalities ranged from 20000 NOK to 65000 NOK (price index adjusted,
data not shown).

The Norwegian Meteorological Institute (www.met.no), together with the Norwegian Water
Resources and Energy Directorate (www.nve.no), produced meteorological and hydrological
data: daily mean precipitation, mean temperature, drainage run-off and snow water equivalent
for each municipality, on each day for the period 1997-2006. Data were interpolated from a
grid of monitoring stations, weighting areas within each municipality proportionally to the pop-
ulation density. In this way the meteorological covariates describe more accurately the occurred
weather at locations of insured buildings for larger municipalities.

Table 1 shows the q = 7 covariates we use in our models, four are basic and three derived.
The measurement period for precipitation is delayed by 6 hours compared to calendar time.
That is, the total precipitation registered in day t + 1 is the amount collected from six in the
morning of day t to six in the morning of day t+1. R3t is the accumulated rain in the last three
days. The difference in snow water equivalent for successive days, S∆, can also be relevant.
Define Xk as the tk × q weather covariate matrix for municipality k. We will use the full
covariate matrix as well as a reduced version corresponding to the days with positive number of
claims, both of which are appropriately centred and scaled.

3 Bayesian Poisson Hurdle model with Ising smoothed vari-
able selection

The daily number of claims Nkt in a municipality k is zero more often than would be modelled
with a Poisson distribution. Also, we expect a threshold effect of the weather covariates on
claims, as there is no damage caused by normal weather states. Therefore, the number of claims
are assumed to follow a Hurdle model (Mullahy, 1986), also known as the two-part model
(Heilbron, 1994). The model consists of two parts, one of which is a Bernoulli distribution
modelling whether the count is zero or positive. The second part models strictly positive counts
by a count distribution.
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Figure 1: The exposure for each municipality in central and south Norway described by the average
daily number of insurance policies as percentage w.r.t. maximum (Bergen).Exposure (number of policies as percentage of maximum)
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Let αkt be the probability of a zero count. The latent binary variable ζkt indicates whether
there is a zero (ζkt = 0) or positive (ζkt = 1) count, with an a priori Bernoulli(1−αkt) probability.
The second component of the Hurdle model, modelling positive counts, is assumed to be Positive
Poisson with parameter λkt. We call the whole model the Bayesian Poisson Hurdle (BPH) model.
The BPH model for the number of claims is hence

P (Nkt = n | αkt, λkt) = αkt · 1n=0 + (1− αkt)
λnkt

(exp(λkt)− 1)n!
· 1n>0,

k = 1, . . .K, t ∈ Tk
(1)

where 1C equals 1 when C is true, and 0 otherwise, and we writeNk | αk,λk ∼ BPH(αk,λk),
where αk is the vector of αkt for all t, and λk is the vector of λkt defined only on days with
positive count. We model αkt and λkt by generalized linear models (GLM), separately for each
municipality, but with spatially smoothed variable selection. We use a logit-link for αkt in the
Bernoulli distribution, and a log-linear model for λkt in the Positive Poisson distribution, with
Gaussian overdispersion. Each municipality has a pair of GLMs for αkt and λkt. A consequence
of the Hurdle model formulation is that λkt only matters for a day t and municipality k if there
is a positive count. Consequently λkt is dependent on ζkt and αkt. However, posterior inference
for the model separates into two: the zero count part and the positive count part. These can be
executed completely separately, as they are conditionally independent given the data. We will
first describe the GLM model for λkt, and then the GLM model for αkt.

In order to model the selection of the covariates appropriate for the GLM for λk for munic-
ipality k, we introduce the vector of binary variables γλk· = (γλk1, . . . , γ

λ
kq)

T . For municipality k
and covariate j, γλkj = 1 means that covariate j enters the model for λk, γλkj = 0 otherwise. Let
βk = (βk1, . . . , βkq)

T be the coefficients of the covariates for the GLM for λkt, with βkj = 0 if
γλkj = 0. Define the reduced vector βγk as the vector of βkj for which γλkj = 1. The intercept βk0

is always part of the model. We reduce Xk to include only the rows corresponding to the days
with positive count, and for convenience denote it still as Xk, with a slight abuse of notation.
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Variable Description Unit
Rt Precipitation registered day t

(mainly collected during day t− 1) mm
Ct Mean temperature in day t ◦C
Dt Total drainage run-off in day t mm
St Total snow water equivalent in day t mm
Rt+1 Precipitation registered day t+ 1

(mainly collected during day t) mm
R3t Sum of precipitation last three days (Rt−2 +Rt−1 +Rt) mm
S∆ Change in snow water equivalent (St − St−1) mm

Table 1: Weather variables directly observed (upper part of the table) and derived (lower part).

Furthermore, we define Xγ
k as the reduced covariate matrix consisting only of the columns j of

Xk for which γλkj = 1. The GLM for λk is given by

log(λk) | βk, σ2
k,γ

λ
k·, ζk ∼ Normal(βk01 +Xγ

kβ
γ
k + log(Ak), σ

2
kI)

βk(γ
λ
k·) | σ2

k,γ
λ
k·ζk ∼ Normal(0, pkσ2

k(X
γ
k
T
Xγ
k)
−1)

p(βk0) ∝ 1

p(σ2
k) ∝ Inv-Gamma(a, b),

(2)

where pk is the number of days with Nkt ≥ 1 and Ak is now the vector of insured units for
those days only. The structure of the covariance of βγk is in the form of a g-prior (Zellner,
1986), and has been considered for variable selection in Gaussian linear models (see e.g. Smith
& Kohn, 1996; George & McCulloch, 1997; Fernandez et al., 2001). In such models, the g-
prior covariance structure replicates the covariance structure of the likelihood. The Gaussian-
Inverse-Gamma conjugate prior structure is convenient, as it allows calculation of the marginal
likelihood for the variable selection parameters, thus enabling sampling the variable selection
indicator variables directly. This avoids the difficulty of the variable dimension of the parameter
space. In our case, the Gaussian linear regression is lifted one level up in the hierarchy to
model log(λkt), which itself is a parameter in the Poisson Hurdle model. Thus the g-prior does
not mimic the covariance structure of the likelihood, but has the same convenient properties.
Our choice of pk as the scale factor corresponds to unit prior information for βγk as in Kass &
Wasserman (1995), Kohn et al. (2001) and Smith & Fahrmeir (2007).

Integrating out the regression coefficients and the overdispersion variance results in the
following prior for log(λk)

p(log(λk) | γλk·, ζk) ∝
(
1 + Sk(θk,γ

λ
k·)
)−(pk−1)/2

(1 + pk)
−rk/2 (3)

where θk = log(λk)− log(Ak), rk =
∑q
j=1 γ

λ
kj is the number of non-zero regression coefficients

and
Sk(θk,γ

λ
k·) = (θk − θk1)T (I + pkH

γ
k)
−1(θk − θk1),

with θk being the average of the elements of θk and

Hγ
k =Xγ

k(X
γ
k
T
Xγ
k)
−1Xγ

k
T
.

See Appendix A.1.1 for a full derivation of the model.
We make the variable selection for covariate j smooth across Norway by assuming apriori a

spatial model for γλ. Define the K × q matrix of binary indicator random variables

γλ =



γλ11 · · · γλ1q
... ·

...
γλk1 · γλkq

... ·
...

γλk1 · · · γλKq

 =



γλ1·
T

...
γλk·

T

...
γλK·

T


=
(
γλ·1 · · ·γλ·j · · ·γλ·q

)
,
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We assume a spatial model for each covariate j across Norway, by giving γλ·j = (γλ1j , . . . , γ
λ
Kj)

T

(the vector of indicators for covariate j over all municipalities K) an Ising prior distribution

p(γλ·j | ωj) ∝ exp

(
ωj
∑
k′∼k

I(γλk′j = γλkj)/dk′k

)
, j = 1, . . . , q.

with ωj apriori uniformly distributed on (0, ωmax) for some fixed value of ωmax. Here k′ ∼ k
indicates that the two municipalities k and k′ are neighbours, with a distance of dk′k. Various
topologies are possible. Here we simply assume that municipalities sharing a boundary are
neighbours, and dk′k = 1,∀(k′, k). Smith & Fahrmeir (2007) used the Ising model to spatially
smooth the variable selection process in linear regression models on a regular lattice. The q
variable selection indicator variable vectors γλ·j , j = 1, . . . , q are assumed apriori to be indepen-
dent.

We move now to the other component of the model, describing presence or absence of
claims. The variable selection in the GLM for αkt is done in the same way as for λk, using the
variable selection indicator matrix γα. For each municipality k, γαkj = 1 means that covariate j
enters the model for αkt. Abusing notation, we now let βk = (βk1, . . . , βkq)

T be the vector of
regression coefficients for the GLM for αkt and define βγk as the reduced vector of βkj for which
γαkj = 1. Here, Xk is again the full covariate matrix for all the days t ∈ Tk. The GLM for αk is
given by

logit(αk) = βk01 +Xγ
kβ

γ
k

βγk | γ
α
k· ∼ Normal(0, 4tk(X

γ
k
T
Xγ
k)
−1)

βk0 ∼ N(0, 4)

(4)

where logit(αk) is the vector of components logit(αkt) for all t. Details on the choice of priors
for the regression coefficients can be seen in Appendix A.1.2. The prior on γα is exactly the
same as the prior on γλ, with different hyperparameters ωαj .

A graph representation of the complete model can be seen in Figure 2. As mentioned, sam-
pling from the posterior distributions can be done separately for the two model parts. For the
Positive Poisson part, integrating out the regression coefficients and the overdispersion variance
from the prior for log(λk) (3) avoids varying dimension of the parameter space. For the Positive
Poisson intensity we hence implemented a Gibbs Sampler, the relevant full conditional distri-
butions can be seen in Appendix A.2. An adaptive Metropolis algorithm (Roberts & Rosenthal,
2006) was implemented for sampling the Poisson rates log(λk). The algorithms for sampling
the variable selection indicator variables γλ and the smoothing parameters ω follow Smith &
Fahrmeir (2007) (using single-site Gibbs sampling for γλ), however the algorithm for ω was
modified to an adaptive Metropolis algorithm. For the Bernoulli component of the model, we
implemented a reversible jump sampling scheme (Green, 1995) for sampling the regression
coefficients βγk and the variable selection indicator variables γαk· jointly. See Appendix A.2 for
details. The algorithm for the smoothing parameters ωα is the same as for ω.

4 Results

To investigate the predictive abilities of our model and study the fit to the data, we divided the
data into a training set, used for the posterior analysis, and a test set, reserved for evaluating
predictions. The test set consists of one of the ten years of data (the year 2001), and the training
set contains of the other 365×9 days. Posterior analysis was performed by Markov Chain Monte
Carlo with 10.000 iterations after convergence (100.000 iterations of burn-in). Traceplots were
inspected. Simulations were set up with two chains and Gelman-Rubin convergence diagnostics
(Gelman & Rubin, 1992) were checked for convergence.

What are the covariates that appear a posteriori significantly in the first component of the
Hurdle model, concentrating on presence/absence of claims? Of the seven weather covariates
(see Table 1), four appear to have no, or very little effect: Temperature (Ct), snow-water equiv-
alent (St) and snow difference (S∆) and the mean precipitation during the last three days (Rt3)
(results not shown). The other three covariates (drainage run-off Dt, precipitation on the pre-
vious day and early morning Rt, precipitation on the same day Rt+1) have an important role.
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Figure 2: Graph representation of the full model. Square nodes represent data. The node αkt is a
deterministic function of its parents, which is indicated by the double arrows (⇒). Here l and m
represent municipalities which are neighbours to k.
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Figure 3 a illustrates the effect of Rt+1, showing for each municipality k the Monte Carlo es-
timate of the posterior probability of γαkj = 1. Same-day precipitation is important for most
of the western coast (though not around the Sognefjord) and in south-east Norway, around
the Oslofjord, but less along the south coast, and not at all in the mountainous central areas,
where exposure is very low. Also, the effect is present along the southern border to Sweden
(south Hedmark). In general, precipitation has less impact in mountainous and remote areas
than in urbanised areas due to vegetation and soil absorbing water, as opposed to asphalt cov-
ered streets in towns which rely on a properly dimensioned sewage system to collect the water.
Figure 3 b illustrates the effect of the precipitation in the previous day Rt. Comparing these
two maps, we see that the effect of the previous day is stronger and more widespread along
the north-west coast, penetrating into the country, but still stops when the altitude begins to in-
crease. The effect of drainage (Figure 3 c) is very strong in south-east Norway, just off the coast,
and for most municipalities below the mountains. These areas are flatter and water does not
escape as easily. The map in Figure 3 d indicates which model has largest posterior probability
among the 128 possibilities (the coding of which covariates are in the different models can be
found in Table 3 in Appendix A.3). Inspecting the posterior probabilities of the models for each
municipality shows that the most likely model very often has a probability much larger than
all other models (L-shaped density). Eleven models are present in this map of most probable
models, but the most frequent ones involve some (or all )of Rt+1, Rt and Dt. On the west coast,
precipitation alone enters the most probable model, while in south-east Norway, more covari-
ates are suggested. For example, in Bergen where snow is rare and terrain varied, the selected
model includes Rt and Rt+1.

Next we look to the results for the second component of the Hurdle model, the positive count
part, and investigate the posterior probability of γλkj = 1. First we consider the a posteriori most
probable model, and compare Figure 4 c and Figure 3 d. The models are much more rich
in covariates, and differ more, including locally. Snow variables are often present, both snow
equivalent on the same day and change in snow equivalent in the last two days (a measure
of melting snow). For example, in Bergen the selected model includes Rt, Rt+1, St and S∆.
Not all municipalities have counts > 1, which means that there is no Positive Poisson model
for these municipalities and hence the spatial models for the γλkj ’s are less smooth than was the
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Figure 3: Maps of south and central Norway, divided into the municipalities, showing the Monte
Carlo estimate of the posterior probability of the binary inclusion variable γαkj = 1 for each munic-
ipality k for covariate j representing (a) precipitation on the current day Rt+1, (b) precipitation
on the previous day and early morning Rt and (c) drainage run-off Dt. A map of the model with
largest posterior probability, among the 128 possible ones, for each municipality is shown in (d).Gamma.alpha, original, posterior mean, Rtp1
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case for the γαkj ’s. While precipitation and drainage are important for conditions that lead to
at least one claim, the number of claims (that is the seriousness of the local damage) seems
to be modulated by more complex weather events. Of course, this may to some extent be
explained by the fact that there is less data for the λk model than for the αk model. The
variables which have large posterior probability of γλkj = 1 are precipitation on the same day
and the day before: these maps are very similar to those seen for the γαkj ’s (results not shown).
Drainage has no importance for the quantity of claims (results not shown), while it does have
importance for the presence of claims, therefore it must be associated more to isolated weather
related damages. Snow equivalent on the same day St (Figure 4 a) and the difference in snow
equivalent S∆ (Figure 4 b) enter now to a varying extent all over the country; St with highest
probability mostly along the coast, and S∆ mostly on the border between the regions Oppland
and Hedmark. On the west coast, snow is quite rare. When it snows, the temperatures are
mostly around freezing, and the snow is wet and heavy which can make water collection systems
dense. Along the south-coast, snow often comes in extremely heavy amounts over short time
intervals.

Figure 4: Maps of south and central Norway, divided into the municipalities, showing the Monte
Carlo estimate of the posterior probability of the binary inclusion variable γλkj = 1 for each munici-
pality k for covariate j representing (a) snow equivalent on the same day St and (b) difference in
snow equivalent S∆. A map of the model with largest posterior probability, among the 128 possible
ones, for each municipality is shown in (c). For 118 of the 319 municipalities almost all (and in
many cases all) positive observed counts are equal to 1, and hence it is not possible to fit a Positive
Poisson part. The model for these municipalities is collapsed to the binary model of a 0 or 1 count.
Some municipalities have too few positive counts to fit the full GLM for λk, and hence only the
intercept is included in the λk model for these municipalities. For 5 municipalities, the covariate
S∆ = St−St−1 is linearly dependent on the covariate St, and St is therefore not included for these
municipalities.Gamma.p, original, posterior mean, swe2
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4.1 Prediction

We used all data except for the year 2001, to predict the number of claims for year 2001.
The posterior predictive distribution and details on how to sample from it can be found in
Appendix A.4. As weather predictions are considered reliable for one-week-ahead, we studied
how well we could predict the number of claims in each municipality in each of the 52 weeks
of 2001. We used actual observed weather, instead of weather predictions, to compute the
posterior predictive distribution for the weekly number of claims for each municipality in 2001.

In order to evaluate the predictive performance, each week of 2001 is classified as one of
three types: ’Week Type 0’=No claims, ’Week Type 1’=1, 2, or 3 claims and ’Week Type 2’=4
or more claims (nationwide, this is approximately 5% of the weeks). The type of each week
of 2001 for each municipality was predicted as the type with the highest posterior predictive
probability using the posterior predictive distribution of the number of claims. On average, the
percentage of the 52 weeks in 2001 with predicted class equal to observed class for a munici-
pality is 89%. The ”success” percentages for the four largest cities are: Oslo and Bergen, 69%
of weeks, Trondheim, 71% of weeks and Stavanger, 67% of weeks. With 46%, Sarpsborg is the
only municipality with < 50% of weeks with predicted class equal to observed class.

To investigate how predictions are in extreme situations, we considered for each municipality
the four weeks among all 52 weeks in 2001 with the highest observed number of claims, i.e.
the four weeks with the maximum observed values of

∑
t∈a week Nkt. The posterior predictive

quantiles of
∑
t∈a week Nkt, together with the observed number of claims, for those four weeks

for Oslo and Bergen can be seen in Table 2. There is a tendency to underpredict the number
of claims. For comparison, Table 2 also displays the corresponding prediction results for the
four weeks with medial observed number of claims: predictions are excellent, with no sign of
systematic bias. A different comparison is described in the bottom half of Table 2. Here we
consider the four weeks among all weeks in 2001 with the maximum total precipitation, and
also the four weeks with the medial total precipitation. Comparing the prediction results for
the most rainy weeks with the prediction results for the medial rainy weeks in Bergen and Oslo,
we see less evident negative bias than for the comparison between the prediction results for the
weeks with the maximum and medial observed number of claims. Our model can apparently
cope reasonably well with extreme precipitations, but is less able to predict extreme numbers
of claims. One possible reason can be that we lack one or more weather covariates that cause
extreme number of claims.

Figure 5 shows maps of the observed and posterior predictive median of the yearly number
of claims for 2001. The observed and predicted yearly counts agree quite well all over the
country, with a few exceptions. For the large cities with the most claims, the results are good.
The prediction intervals for the four largest cities are Oslo : (142, 207), Bergen : (128, 184),
Trondheim : (106,175) and Stavanger : (66, 108). Posterior predictive histograms of the yearly
number of claims for 2001 (with the observed number indicated) can be seen in Figure 6.

5 Discussion

In this paper we have developed a new statistical approach to explain and predict insurance
losses based on weather events on a local scale. We have considered the number of claims; sim-
ilar models can be derived for the type of damage and its economical value. In this case mixed
gamma models are used (Yip & Yau, 2005), conditioned on damage happening (Nkt > 0). In
our model, we separate the occurrence of claims in each municipality and day, from the actual
number of claims therein. Results indicate that there are differences in which weather covari-
ates explain and best predict these dynamics, however this difference may be partly due to the
fact that there is less data available to fit the model for the positive counts. We have suggested
a Bayesian spatially smooth variable selection approach, assuming local spatial homogeneity in
the underlying meteorological causes. As is usual in spatial Bayesian inference, this strengthens
inference and prediction, as areas with less data can borrow strength from neighbouring ones
with more data. Incorporating geographical gradients to improve neighbourhood structure is
possible. We smooth the latent variable selection variables γα and γλ, not the regression coef-
ficients. We do not expect the regression coefficients to be smooth in space, as the strength of
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Figure 5: Maps of south and central Norway, divided into the municipalities, showing (a) the
observed and (b) posterior predictive median of the yearly number of claims for 2001. For visual
reasons, in both (a) and (b) the counts > 40 are marked with the count number. The counts for the
large cities are for (a) Oslo: 182 , Bergen: 138 , Trondheim: 161 , Stavanger: 109 , and (b) Oslo:
173 , Bergen: 153 , Trondheim: 137 , Stavanger: 85.
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Figure 6: Posterior predictive histograms with the observed number indicated in black for (a) Oslo,
(b) Bergen, (c) Trondheim and (d) Stavanger.
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Table 2: Posterior predictive quantiles and actual observation of
∑

t∈a weekNkt for (a) the four
weeks with the maximum observed

∑
t∈a weekNkt, (b) the four weeks with the median observed∑

t∈a weekNkt, (c) the four weeks with maximum total precipitation and (d) the four weeks with
medial total precipitation, for Oslo and Bergen.

Oslo Bergen
Posterior predictive quantiles Observed Posterior predictive quantiles Observed

0% 25% 50% 75% 100%
∑

Nkt 0% 25% 50% 75% 100%
∑

Nkt

0 3 4 7 54 11 0 2 3 4 13 7
(a) 0 3 4 6 18 11 0 2 3 4 12 7

0 2 3 5 17 8 0 1 2 3 9 6
0 2 3 4 14 7 0 1 2 4 11 6
0 2 3 4 34 3 0 1 2 4 10 2

(b) 0 2 3 4 10 3 0 1 2 4 10 2
0 2 3 4 10 3 0 2 3 4 17 2
0 2 3 4 15 3 0 1 2 3 9 2
0 3 5 7 28 5 0 3 4 6 18 5

(c) 0 3 4 7 54 11 0 3 4 6 17 1
0 2 4 5 30 6 0 2 3 5 15 3
0 3 4 6 18 11 0 2 3 5 15 3
0 2 3 4 12 6 0 2 3 4 11 0

(d) 0 1 3 4 16 3 0 1 3 4 11 2
0 2 3 4 16 1 0 1 2 4 10 3
0 2 3 4 15 3 0 1 3 4 11 3

the effect of the covariates depends more on local factors.
Our study of damages to buildings due to externally inflicted water damage shows interest-

ing regional patterns. Finding the weak points of regional building traditions allows petitioning
for improvements, both with owners and local authorities. Mitigation and prevention are im-
portant strategies for the insurance industry. Our results can also be used to price policies better.
We show that our model has sufficient predictive power to be useful in predicting high risk situ-
ations for damages to buildings based on short term weather forecasts. Also, it can predict with
sufficient precision the regional distribution of damages immediately after a weather event, al-
lowing a more efficient dispatchment of insurance inspectors. This study shows that weather
information in Norway is useful in the near-the-event market.

For comparison, we ran the model without spatial smoothing. Maps of the prosterior pos-
terior probability of γαkj = 1 for all seven covariates can be seen in Figure 7. As expected, the
results obtained with the full spatial model are more smooth than when running without the
hidden Ising fields. In some places, more covariates are selected in the spatial model, thanks
to borrowing strength effects from neighbouring municipalities, while they are not entering the
reduced model without smoothing. However, mostly the opposite happens, i.e. more covari-
ates are selected in the reduced model compared to the full spatial one. This is because spatial
smoothing favours γ’s being close to zero, if this is what neighbouring municipalities tend to
indicate. A close inspection of the maps obtained with the models with no spatial compo-
nent shows that the selected variables vary too much compared to known precipitation patterns
and building traditions, which are more smooth in space. This indicates that the Ising-model
modulated variable selection acts in a useful way. On a broader perspective, our study can be
combined with future climate predictions in order to estimate possible changes in the frequency
and number of claims (Haug et al., 2008, 2009). Downscaled regional climate models provide
scenarios of temperature, precipitation, and many other weather variables at a fine scale (e.g.
10 by 10 km) for the decades to come, under various hypotheses. We can use these climate
predictions as input in our model to predict, for example, the distribution of the yearly num-
ber of claims in every municipality in the future. The reliability of regional climate prediction
is, however, unclear, especially in countries like Norway that have important mountain chains.
These are poorly represented in the rough global circulation models which deliver the input
for downscaling. We are currently working on evaluating downscaling techniques for Norway,
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Figure 7: Maps of south and central Norway, divided into the municipalities, showing for the
model without spatial smoothing the Monte Carlo estimate of the posterior probability of the binary
inclusion variable γαkj = 1 for each municipality k for covariate j representing (a) Precipitation
registered day t (Rt), (b) Mean temperature day t (Ct), (c) Total drainage run-off day t (Dt), (d)
Total snow water equivalent day t (St), (e) Precipitation registered day t + 1 (Rt+1), (f) Sum of
precipitation last three days (R3t) and (g) Change in snow water equivalent (S∆)
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comparing predicted and empirical distributions of precipitation in the past. When reliable
downscaling at a fine scale is validated, we will use it to provide the insurance industry with
predictions of exposure to climate risk. Most likely, as the underlying statistical distribution of
events will change, this will lead to new adaptation strategies for the insurance industry.

15



A Appendix

A.1 Detailed model description

A.1.1 Details on the model for λkt

We define the vector βk = (βk1, . . . , βkq)
T to be the coefficients for the covariates for the GLM

for λkt. Let βkj = 0 if γλkj = 0, j = 1, . . . , q, while βkj has a continuous distribution if γλkj = 1,
and define βγk as the vector of βkj for which γλkj = 1. The intercept βk0 is always part of the
model. Denote now by pXk the submatrix consisting of the rows of Xk corresponding to the
days with positive count. All the columns of pXk are centred and scaled. The intercept is hence
orthogonal to the covariates. Conditional on γλk· and ζk, the GLM for λk is given by

log(λk) | βk, σ2
k,γ

λ
k·, ζk ∼ Normal(βk01 + pX

γ
kβ

γ
k + log(Ak), σ

2
kI)

βγk | σ
2
k,γ

λ
k·ζk ∼ Normal(µγk , pkσ

2
k(pX

γ
k
T
pX

γ
k)
−1)

p(βk0) ∝ 1

p(σ2
k) ∝ Inv-Gamma(a, b),

(5)

On the one hand the scale factor of the g-prior covariance should ensure an appropriately non-
informative prior; on the other, it must not be too large, otherwise the null model with intercept
only will tend to be selected. This is, as noted by Chipman et al. (2001), a form of the Bartlett-
Lindley paradox (Bartlett, 1957). Our choice of pk as the scale factor corresponds to unit prior
information for βγk (Kass & Wasserman, 1995), as used for variable selection in Gaussian linear
models by e.g. Kohn et al. (2001) and Smith & Fahrmeir (2007). There are various possibilities
for choosing the conditional mean µγk . We use here µγk = 0. The reason for giving βk0 a
flat prior is that we avoid the prior guess of location of λk (Fernandez et al., 2001; Bottolo &
Richardson, 2008). Since the columns of pXk are centred and the intercept is orthogonal to the
other covariates, this does not affect the conjugacy.

Because of the conjugate prior distributions for βγk and σ2
k in (5), we can obtain the density

for log(λk) conditioned only on γλk· and ζk given in (3) in Section 3 by integrating out βk0, βγk
and σ2

k. This is analogous to deriving the marginal likelihood in the g-prior variable selection
setting for Gaussian linear models (see e.g. Smith & Kohn (1996), George & McCulloch (1997),
and Fernandez et al. (2001) for a flat prior on the intercept). To ease notation, we here drop
the municipality index k, λ indication on β and γ, indication of dependency on γ = γλk· and
positive count indicator p. Hence λ = λk, N = Nk, A = Ak, ζ = ζk, β = βγk , β0 = βk0, µ = µγk
and X = pX

γ
k . First, well known conjugate Gaussian-Inverse-Gamma family calculus gives us

p(β0,β, σ
2 | λ,γ, ζ) = p(log(λ) | β0,β, σ

2,γ, ζ)p(β0)p(β | σ2,γ, ζ)p(σ2) ·A1(λ)

= (σ2)−p/2 exp
{
− 1

σ2 (θ − β01−Xβ)T (θ − β01−Xβ)
}

·
∣∣σ2Σ0

∣∣−1/2 · exp
{
− 1

σ2 (β − µ)T Σ0−1
(β − µ)

}
·
(
σ2
)−(a+1) · exp

{
− b/σ2

}
·A1(λ) ·A2

= exp
{
− 1

σ2

[ (
θ − θ1

)T (
θ − θ1

)
+ (1/p) · µTXTXµ− β̂

T
Σ̂
−1
β̂

+
(
β − β̂

)T
Σ̂
−1
(
β − β̂

)
+ p

(
β0 − θ

)2
+ 2b

]}
·
∣∣σ2p(XTX)−1

∣∣−1/2

·
(
σ2
)−(a+1+p/2) ·A1(λ) ·A2

= exp
{
− 1

σ2

[ (
θ − θ1−Xµ

)T
(I −XΣ̂XT )

(
θ − θ1−Xµ

)
+
(
β − β̂

)T
Σ̂
−1
(
β − β̂

)
+ p

(
β0 − θ

)2
+ 2b

]}
·
∣∣σ2p(XTX)−1

∣∣−1/2

·
(
σ2
)−(a+1+p/2) ·A1(λ) ·A2

(6)
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where θ = log(λ)− log(A), θ is the mean of θ,

Σ0 = p(XTX)−1

Σ̂ =
(
Σ0−1

+XTX
)−1

= (p/(p+ 1)) · (XTX)−1

β̂ = Σ̂XT (Xµ/p+ θ − θ1)

and

I −XΣ̂XT = I −X
(
Σ0−1

+XTX
)−1

XT = (I +XΣ0XT )−1 = (I + pH)−1,

with
H =X(XTX)−1XT .

The density of the p-variate t-distributed y with ν degrees of freedom, mean vector η and
correlation matrix R (and hence covariance matrix R · ν/(ν − 2)), denoted by MVTp(ν,η,R), is

f(y) =
[
ν + (y − η)T R−1 (y − η)

]−(ν+p)/2

·
νν/2

(
ν+p

2 − 1
)
!

πp/2
(
ν
2 − 1

)
!

∣∣R∣∣−1/2
(7)

From (6) and (7) we get

p(log(λ) | γ, ζ) =
∫ ∫ ∫

p(log(λ), β0,β, σ
2 | γ, ζ)dβ0dβdσ2

=

∫ ∫ ∫
p(log(λ) | β0,β, σ

2,γ, ζ)p(β0)p(β | σ2,γ, ζ)p(σ2)dβ0dβdσ2

∝
∫ ∫ ∫

exp
{
− 1

σ2

[ (
θ − θ1−Xµ

)T
(I −XΣ̂XT )

(
θ − θ1−Xµ

)
+
(
β − β̂

)T
Σ̂
−1
(
β − β̂

)
+ p

(
β0 − θ

)2
+ 2b

]}
·
∣∣σ2p(XTX)−1

∣∣−1/2

·
(
σ2
)−(a+1+p/2)

dβ0dβdσ2

∝
∫

exp
{
− 1

σ2

[ (
θ − θ1−Xµ

)T
(I −XΣ̂XT )

(
θ − θ1−Xµ

)
+ 2b

]}
·
∣∣σ2p(XTX)−1

∣∣−1/2 ·
(
σ2
)−(a+1+(p−1)/2) ·

∣∣σ2Σ̂
∣∣1/2dσ2

∝ (2b+ S(θ,γ))
−(2a+p−1)/2

(1 + p)−r/2

∝ MVTp
(
2a, log(A) + θ1 +Xµ, ba (I + pH)

)
, 2a > 0

(8)

where
S(θ,γ) = (θ − θ1−Xµ)T (I + tH)−1(θ − θ1−Xµ)

and

r =

q∑
j=1

γkj

(the number of non-zero regression coefficients). Notice that

I + pH = (I − (p/(p+ 1))H)−1.

When r = 0 and the model consists of intercept only, it is easy to see that integrating out β0 and
σ2 gives

p(log(λ) | γ, ζ) ∝
(
2b+ (θ − θ1)T (θ − θ1)

)−(2a+p−1)/2

∝ MVTp
(
2a, log(A) + θ1, baI

)
, 2a > 0

For the prior distribution of σ2
k we chose to use a → 0 and b = 0.5, which gives a relatively

flat prior, while b = 0.5 ensures a more numerically stable p(log(λk) | γλk·, ζk) than the choice
of b→ 0.
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A.1.2 The prior for the regression coefficients for the αk model

Letting Xk be the full covariate matrix for all the days t ∈ Tk, centred and scaled, the priors for
βk0 and βγk is

βγk | γ
α
k· ∼ Normal(µγk ,Σ

γ
0)

βk0 ∼ N(0, tk(1
TW k(γ

α
k·,µ

α
k )1)

−1)

where
Σγ

0 = tk(X
γ
k
T
W k(γ

α
k·,µ

α
k )X

γ
k)
−1.

Here, W k(γ
α
k·,βk) is the matrix of the usual GLM weights applied to αkt, which are given by

W−1
k (γαk·,βk) = diag(b′′(νkt))g′(αkt)2)

with νkt = logit(αkt), b(νkt) = log(1 + exp(νkt)) and g(αkt) = logit(αkt), so that

W k(γ
α
k·,βk) =

exp(Xγ
kβ

γ
k)(

1 + exp(Xγ
kβ

γ
k)
)2 ,

following the notation in McCullagh & Nelder (1989). Analogously to the covariance speci-
fication for βγk , the prior covariance structure and scale factor tk provide unit prior informa-
tion for βγk , as suggested by Ntzoufras et al. (2003) and Nott & Leonte (2004) for variable
selection in GLMs. We use here µγk = 0, which means that W k(γ

α
k·,µ

α
k ) = 1/4 and hence

Σγ
0 = 4tk(X

γ
k
T
Xγ
k)
−1 and the prior variance for βk0 is 4. Because the columns of Xk are

centred, the intercept is orthogonal to the covariates. The Normal prior on the intercept is jus-
tifiable in this situation because tk is large, while in the λk model the scale factor pk could be
quite small.

A.2 Sampling from the posterior distributions

For the model of the positive counts we suggest a Gibbs sampling approach. Let T pk be the subset
of days with positive counts in municipality k, with cardinality pk. The relevant full conditional
distributions are

p(log(λk) | ·) ∝ p(Nk | αk,λk) · p(log(λk) | γλk·, ζk) ∝ (9)∏
t∈Tpk

[
αkt1Nkt=0 + (1− αkt)

λNktkt

(exp(λkt)− 1)
1Nkt≥1

]
·
(
2b+ Sk(θk,γ

λ
k·)
)−(2a+pk−1)/2

(1 + pk)
−rk/2

∝
∏
t∈Tpk

[ λNktkt

(exp(λkt)− 1)
1Nkt≥1

]
·
(
2b+ Sk(θk,γ

λ
k·)
)−(2a+pk−1)/2

p(γλ | ·) ∝
K∏
k=1

p(log(λk) | γλk)
q∏
j=1

p(γλ·j | ωj) (10)

∝ exp


K∑
k=1

lk(γ
λ
k·) +

q∑
j=1

ωj
∑
k′∼k

I(γλk′j = γλkj)


with lk(γλk·) = log

(
p(log(λk) | βk0,γ

λ
k·, ζk)

)
= −((2a+ pk − 1)/2) log

(
2b+ Sk(θk,γ

λ
k·)
)
− (rk/2) log(1 + pk) + constant

p(ωj | ·) ∝ p(γλ·j | ωj) · I(0 < ωj < ωmax) (11)

∝ 1

Bj (ωj)
exp

(
ωj
∑
k′∼k

I(γλk′j = γλkj)

)
· I(0 < ωj < ωmax), j = 1, . . . q,

Sampling from the full conditional distribution of γλ is facilitated by the fact that the full con-
ditional probability p(γλkj = 1 | ·) is available in closed form. Let γλ(γλkj = i) denote γλ with the
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(k, j)’th element equal to i, and similarly γλk(γ
λ
kj = i) denote γλk with the j’th element equal to

i, where i ∈ {0, 1}. Because

p(γλkj | γλ−(k,j),ω
λ,λ) ∝ p(γλ | ·),

we have

p(γλkj = 1 | ·) =
p(γλ(γλkj = 1) | ·)

p(γλ(γλkj = 0) | ·) + p(γλ(γλkj = 1) | ·)
=

1

1 +
p(γλ(γλkj=0)|·)
p(γλ(γλkj=1)|·)

=
1

1 + ukj
,

where

ukj = exp

{
lk(γ

λ
k(γ

λ
kj = 0))− lk(γλk(γλkj = 1)) + ωj

∑
i∈δk

(
1− 2γλij

)}
with δk = {i | i ∼ k} (Smith & Kohn, 1996; Smith & Fahrmeir, 2007).

The normalising constant

Bj (ωj) =
∑
γλ·j

exp

(
ωj
∑
k′∼k

I(γλk′j = γλkj)

)
,

summing over all possible values of the vector γλ·j , is needed in order to obtain posterior samples
of ωj , but is computationally difficult to obtain exactly for regions with many municipalities.
Following Smith & Fahrmeir (2007) we use an off-line computed approximation based on the
thermodynamic integration approach of Green & Richardson (2002). For ωj > 0, we have
Bj(ωj) ∝ exp (cj(ωj)), where

cj(ωj) =

∫ ωj

0

E(U(γλj ) | ωj ′)dωj ′, U(γλj ) =
∑
k′∼k

I(γλk′j = γ
λ
kj). (12)

We get an approximation to cj(ωj) by approximating the integral in (12). The algorithm can be
described as follows

1. Choose a discrete grid ωji, i = 1, . . . , I on the interval [0, ωmax]

2. For each ωji, i = 1, . . . , I

(a) Simulate γλ·j
[l]

from p(γλ·j | ωj = ωj
i) for l = 1, . . . , L. This can be done by single-

site Gibbs sampling. Let γλ−(k,j) be γλ·j with γλkj omitted. Sample γλkj
[l]

from the
conditional distribution p(γλkj | ωj = ωj

i,γλ−(k,j)), given by

p(γλkj = 1 | ωj = ωj
i,γλ−(k,j)) = 1/(1 + vkj)

where

vkj = exp

{
ωj
i
∑
i∈δk

(
1− 2γλij

)}
, δk = {i | i ∼ k}

(see (13)).
(b) Calculate

E
[
U(γλ·j) | ωj = ωj

i
]
≈ 1

L

L∑
l=1

U
(
γλ·j

[l]
)

3. Approximate the continuous functionE(U(γλj ) | ωj ′) over the interval [0, ωmax] by B-spline-
based numerical interpolation, and store the spline coefficients

4. cj(ωj) can now be approximated for any ωj ∈ [0, ωmax] by evaluating the corresponding
numerical integral of the B-spline interpolation from 3. above

19



For the model dedicated to presence or absence of events, we need to design a reversible
jump sampling scheme (Green, 1995), because βγk has a variable dimension depending on γαk·.
In our algorithm, we propose and accept/reject γαk· and βγk jointly: first, a new γαk·

′ is proposed
(which can be a ”null” move, i.e. γαk·

′ = γαk·); then given γαk·
′, βαk

′
(γαk·

′) is proposed. We use
the same proposal distribution for βαk

′
(γαk·

′) as in Nott & Leonte (2004). This was previously
suggested by Gamerman (1997) for the MCMC simulation of the regression coefficients in a GLM
without variable selection. It is essentially the result of a single step of an iteratively weighted
least squares algorithm for finding the posterior mode and approximate posterior covariance
matrix for the regression coefficients in a GLM, see West (1985). To simplify notation, we drop
the α index on γα in the remainder of this section.

The proposal distribution q(βγk ,β
γ′′

k ) for proposing βγ
′′

k (a vector of proposals β′kj for the
covariates for which γ′kj = 1) from βγk and γ′k· is

q(βγk ,β
γ′′

k ) = Normal(m(βk,γk·,γ
′
k·),M(βk,γk·,γ

′
k·))

with
where

M(βk,γk·,γ
′
k·) =

(
Σγ′

0

−1
+Xγ′

k

T
W k(γk·,βk)X

γ′

k

)−1

m(βk,γk·,γ
′
k·) =M

(
Σγ′

0

−1
µγ

′

k +Xγ′

k

T
W k(γk·,βk)ρkt(β

γ
k)

)
=MXγ′

k

T
W k(γk·,βk)ρkt(β

γ
k)

where
ρkt(β

γ
k) =X

γ
kβ

γ
k + (1− ζkt − αkt(βγk))g

′(αkt(β
γ
k))

with
αkt(β

γ
k) = g−1(Xγ

kβ
γ
k) = logit−1(Xγ

kβ
γ
k) = 1/(1 + exp(−Xγ

kβ
γ
k)).

Because we accept or reject γk· and βγk with a joint acceptance probability, it does not make
sense to propose γkj from its full conditional distribution as we did for γλkj . Instead, we propose
γk· by sampling from the conditional prior for γkj given γ−(k,j). Because p(γkj | γ−(k,j),ω

α) ∝
p(γ | ωα), we have

p(γkj = 1 | ωα,γ−(k,j)) =
p(γ(γkj = 1) | ωα)

p(γ(γkj = 0) | ωα) + p(γ(γkj = 1) | ωα)
=

1

1 +
p(γ(γkj=0)|ωα)
p(γ(γkj=1)|ωα)

=
1

1 + vkj
,

where

vkj = exp

{
ωαj
∑
i∈δk

(1− 2γij)

}
. (13)

(Kohn et al., 2001; Smith & Fahrmeir, 2007). Proposing from this conditional prior means
that the proposal terms and prior terms for γk· cancel out in the joint acceptance probabil-
ity for γk· and βγk . Also, since all elements of βγk are proposed, that is u = βk

′(γk·) and
(βk
′(γk·), u

′) = (u,βγk), the Jacobian in the reversible jump acceptance rate equals 1. Hence,
the joint acceptance probability for γk· and βγk becomes

min

1,

∏
t:Nkt=0 αkt(β

γ′′

k ) ·
∏
t:Nkt>0

(
1− αkt(βγ

′′

k )
)
· p(βγ

′′

k | γ′k·) · q(β
γ′′

k ,βγk)∏
t:Nkt=0 αkt(β

γ
k) ·

∏
t:Nkt>0 (1− αkt(β

γ
k)) · p(β

γ
k | γk·) · q(β

γ
k ,β

γ′′

k )

 .

For a ”null” move, i.e. γk·
′ = γk·, this equals an ordinary Metropolis-Hastings move for βγk .

Posterior sampling for the interaction parameter ωαj can be done by Gibbs sampling in exactly
the same way as for ωj . The full conditional distribution is the same, when we replace ωj and
γλ·j with ωαj and γ·j .
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A.3 Coding of which covariates are in the different models

Model Rt Rt+1 Tt Dt St Rt3 S∆

1
2 x
3 x
4 x x
5 x
6 x x
7 x x
8 x x x
9 x
A x x
B x x
C x
D x x
E x x
F x x x
G x x x
H x
I x x
J x x
K x x x
L x x
M x x x
N x x x
O x x x x
P x
Q x x
R x x
S x x x
T x x
U x x x

Table 3: Coding of which covariates are in the models that appear in the maps in Figure 3 d and
Figure 4 e. The intercept is in all the models (Model 1 consists of intercept only).

A.4 Posterior predictive distribution

As described in Section 3, because the zero count part and the positive count part of the model
are conditionally independent given the data Nkt, we can treat the two model parts separately
when performing the posterior sampling. However, not conditioning on Nkt the two model
parts are not independent, and hence for predictive sampling of random Nkt, the two model
parts cannot be treated separately.

Let T̃k be the set of days t for which we wish to predict Nkt, Ñk, ζ̃k and α̃k the vectors
of Nkt, ζkt and αkt, t ∈ T̃k. Denote by T̃ pk the subset of days in T̃k with positive counts in
municipality k, i.e. T̃ pk = {t ∈ T̃k : ζkt = 1}, and let p̃k be the number of days in T̃ pk , i.e.
p̃k =

∑
t∈T̃k ζkt. Now, log(λ̃k) and log(Ãk) are the vectors of log(λkt) and log(Akt), t ∈ T̃ pk , X̃k

is the covariate matrix for municipality k for t ∈ T̃k, and pX̃k is the submatrix of the test data
covariate matrix corresponding to the days t ∈ T̃ pk . Also, denote here by pXk the submatrix of
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the training data covariate matrix corresponding to the days with positive count t ∈ T pk . The
columns of X̃k are ”centred and scaled” by using the same centre and scaling factors used to
produce the training covariate matrixXk (which was used for the posterior analysis). Similarly,
the columns of pX̃k are ”centred and scaled” by using the same centre and scaling factors used
to produce pXk.

To ease notation, we once again drop the municipality index k. The posterior predictive
distribution of Ñk given the observed data N =Nk is given by the following equations

p(Ñ |N) =

∫ ∫
p(Ñ | λ̃, ζ̃)p(ζ̃ |N)p(log(λ̃) |N , ζ̃)dζ̃d log(λ̃)

p(Ñ | λ̃, ζ̃) =
∏
t∈T̃k

p(Nkt | λkt, ζkt)

p(Nkt = n | λkt, ζkt) =

{
δ(0) if ζkt = 0

λnkt
(exp(λkt)−1)n! if ζkt = 1

p(ζ̃ |N) =
∑
γα

∫
p(ζ̃ | βγ ,γα)p(βγ ,γα |N)dβγ

p(ζ̃ | βγ ,γα) = Bernoulli(1− α̃), α̃ = β0 + X̃
γ
βγ (14)

p(log(λ̃) |N , ζ̃) =
∑
γλ

∫
p(log(λ̃) | λ,γλ, ζ̃)p(log(λ),γλ |N)d log(λ)

p(log(λ̃) | λ,γλ, ζ̃) = MVTp̃
(
2a+ p− 1, log(Ã) + θ1 + pX̃

γ

λβ̂
γ
, (15)

2b+S(θ,γλ)
2a+p−1 (I + 1

p11T + p
p+1pX̃

γ
(pX

γT
pX

γ)−1
pX̃

γT
)
)

where
λβ̂

γ
= (p/(p+ 1))(pX

γT
pX

γ)−1
pX

γT (θ − θ).

The full conditional (15) is obtained in the same way as in (8) by replacing p(log(λ), β0,β, σ
2 |

γ, ζ) with p(log(λ̃), β0,β, σ
2 | λ,γ, ζ̃). To ease notation further, we drop in the following the λ

indicator on γλ, the positive count indicator p on pX, pX̃, as well as the γ indicator on βγ , Xγ

and X̃
γ
. From (6) it is easily seen that

p(β0 | λ, σ2, ζ̃) ∝ p(β0,β, σ
2 | λ,γ, ζ̃) ∝ Normal(θ, σ2/p)

p(β | λ, σ2,γ, ζ̃) ∝ p(β0,β, σ
2 | λ,γ, ζ̃) ∝ Normal(β̂, σ2Σ̂)

p(σ2 | λ, ζ̃) =
∫ ∫

p(β0,β, σ
2 | λ,γ, ζ̃)dβ0dβ = Inv-Gamma(ap, bp)

(16)

where
ap = (2a+ p− 1)/2

bp =
2b+S(θ,γ)

2 .
(17)
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Now

p(log(λ̃) | λ,γ, ˜̃ζ) = ∫ ∫ ∫ p(log(λ̃), β0,β, σ
2 | λ,γ, ζ̃)dβ0dβdσ2

=

∫ ∫ ∫
p(log(λ̃) | β0,β, σ

2,γ, ζ̃)p(β0 | λ, σ2, ζ̃)p(β | λ, σ2,γ, ζ̃)p(σ2 | λ, ζ̃)dβ0dβdσ2

∝
∫ ∫ ∫

(σ2)−p̃/2 exp
{
− 1

σ2

(
θ̃ − β01− X̃β

)T (
θ̃ − β01− X̃β

)}
· (σ2)−1/2 · exp

{
− p

σ2

(
β0 − θ

)2 } · ∣∣σ2Σ̂
∣∣−1/2 · exp

{
− 1

σ2

(
β − β̂

)T
Σ̂
−1
(
β − β̂

)}
·
(
σ2
)−(ap+1) · exp

{
− bp/σ2

}
dβ0dβdσ2

∝
∫ ∫ ∫

exp
{
− 1

σ2

[ (
θ̃ − θ1− X̃β̂

)T
(I + 1

p11T + X̃Σ̂X̃
T
)−1

(
θ̃ − θ1− X̃β̂

)
+

(
β − ̂̃β)T ̂̃Σ−1

(
β − ̂̃β)+ (p+ p̃)

(
β0 − 1

p+p̃

(
pθ + p̃θ̃

))2

+ 2bp

]}
·
∣∣σ2p(X̃

T
X̃)−1

∣∣−1/2

·
(
σ2
)−(ap+1+(p̃+1)/2)

dβ0dβdσ2

∝
∫

exp
{
− 1

σ2

[ (
θ̃ − θ1− X̃β̂

)T
(I + 1

p11T + X̃Σ̂X̃
T
)−1

(
θ̃ − θ1− X̃β̂

)
+ 2bp

]}
·
∣∣σ2p(X̃

T
X̃)−1

∣∣−1/2 ·
(
σ2
)−(ap+1+p̃/2) ·

∣∣∣∣σ2 ̂̃Σ∣∣∣∣1/2 dσ2

∝
(
2bp +

(
θ̃ − θ1− X̃β̂

)T
(I + 1

p11T + X̃Σ̂X̃
T
)−1

(
θ̃ − θ1− X̃β̂

))−(2ap+t̃)/2

∝ MVTp̃
(
2ap, log(Ã) + θ1 + X̃β̂,

2bp
2ap

(
I + 1

p11T + p
p+1X̃(XTX)−1X̃

T ))
(18)

where θ̃ = log(θ̃)− log(Ã), ̂̃
Σ =

(
Σ̂
−1

+ X̃
T
X̃
)−1

̂̃
β =

̂̃
Σ
(
Σ̂
−1
β̂ + X̃

T
θ̃
)

and ap and bp are given in (17). When r = 0 and the model consists of intercept only, we get

p(log(λ̃) | λ,γ, ζ̃) = MVTp̃
(
2ap, log(Ã) + θ1,

2bp
2ap

(
I + 1

p11T
))
.

Fernandez et al. (2001) derived the analogue of (15) for predicting a single response in the
Gaussian linear model setting.

A.4.1 Sampling from the posterior predictive distribution

The dimension of log(λ̃) varies depending on ζ̃, and hence ζ̃ and log(λ̃) should be sampled
jointly. However, since we are sampling from a posterior predictive distribution (and hence
avoid the ”likelihood” term in the acceptance probability), a variant of Gibbs sampling with
proposal

q((λ̃, ζ̃), (λ̃
′
, ζ̃
′
)) = q(ζ̃, ζ̃

′
) · q(λ̃, λ̃

′
)

= p(ζ̃
′
| βγ ,γα) · p(log(λ̃

′
) | λ,γλ, ζ̃

′
)

i.e. proposing ζ̃
′

conditioned on γα and βγ using (14), and then log(λ̃)
′

conditioned on γλ,
λ and ζ̃

′
using (15), which is sampling (ζ̃, log(λ̃)) directly from its joint ”predictive full condi-

tional”, will have acceptance probability

min

(
1,

p(log(λ̃
′
) | λ,γλ, ζ̃

′
)p(ζ̃

′
| βγ ,γα)q((λ̃

′
, ζ̃
′
), (λ̃, ζ̃))

p(log(λ̃) | λ,γλ, ζ̃)p(ζ̃ | βγ ,γα)q((log(λ̃), ζ̃), (log(λ̃)
′
, ζ̃
′
))

)
= 1

and hence it is easy to obtain posterior predictive samples within the existing posterior MCMC
algorithm.
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