
Nationwide service and
vulnerability detection

Identifying vulnerable services using
non-intrusive techniques

Harald Aarseth

Thesis submitted for the degree of
Master in Informatics: Information Security

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2023

Nationwide service and
vulnerability detection

Identifying vulnerable services using
non-intrusive techniques

Harald Aarseth

© 2023 Harald Aarseth

Nationwide service and vulnerability detection

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

This Master’s thesis explores the field of internet-accessible devices in
Norway, their vulnerability status, and the challenges faced in developing
a scanning platform to identify these vulnerabilities. Initial findings
indicate that the developed platform is capable of conducting a nationwide
network scan, providing a platform that identified known vulnerabilities
in outdated software from open ports, showcasing its potential for detailed
vulnerability assessments. Furthermore, the thesis highlights the critical
need for continuous monitoring and vulnerability assessment of internet-
accessible devices in order to ensure their protection against potential cyber
threats.

i

Acknowledgments

This project is the final project of my Information Security master’s degree.
I am thankful to supervisor Vasileios Mavroeidis for assigning me this in-
teresting thesis. I am also grateful to the NREC cloud services at UiO for
allowing me to conduct extensive internet scanning activities from their
networks. Their provision of resources and infrastructure greatly contrib-
uted to the data collection and analysis, enhancing the quality of my re-
search.

Lastly, I want to acknowledge the support from my family and friends,
throughout this academic journey. Their encouragement and belief in my
abilities played a significant role in overcoming challenges and reaching
the completion of this thesis.

ii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objective . 3

1.2.1 Research questions . 3
1.3 Thesis structure . 3

2 Background 5
2.1 Related work . 5
2.2 Literature review . 5

2.2.1 Literature review conclusion 7

3 Analysis of Vulnerability Scanners 8
3.1 Open source solutions . 8
3.2 Closed Source Alternatives 9
3.3 Exploring Available Search Engine Solutions 9

3.3.1 Shodan . 10
3.3.2 ZoomEye . 11
3.3.3 Censys . 12

4 Fundamentals of Internet Scanning 13
4.1 IP Addresses . 13
4.2 TCP Protocol . 14
4.3 UDP . 14
4.4 Network ports . 15

4.4.1 Network Ports in the Context of Firewall and NAT . 16
4.4.2 Port ranges . 16

4.5 In-depth Port Scanning: Which Ports to Prioritize 17
4.6 Detecting Software using Banner Grabbing 20
4.7 Connection-Oriented, and Connectionless Scanning Tech-

niques . 21
4.8 Nmap - Network Mapper . 22

4.8.1 The Nmap-services File: Mapping Port Numbers to
Known Services and Protocols 25

4.8.2 Optimizing Nmap . 26
4.9 Masscan: A High-Performance Port Scanning Tool 27
4.10 Rate limiting . 28

iii

5 Identifying Services and Vulnerabilities 29
5.1 Uncovering Services: Alternative Techniques 29

5.1.1 Utilizing Ping for Host Discovery 29
5.1.2 TLS Fingerprinting . 30
5.1.3 Favicon Hash . 31
5.1.4 Website Screenshots for Service Discovery 32

5.2 An Overview of Common and High-Risk Vulnerability Types 32
5.3 Vulnerability Detection with Nmap 34
5.4 Classifying vulnerabilities: CVSS System 34

6 Evaluation 36
6.1 Performance and Detection Analysis: Nmap vs. Masscan . . 37
6.2 Assessing Public and Individually Collected Port Information 38
6.3 Assessing Throughput for Large-Scale Port Detection 39
6.4 Identifying the Most Frequent Network Ports 40
6.5 Nmap Vulnerability Discovery Rate 42
6.6 Assessing Bandwidth and Network Usage in Large-Scale

Port Scanning . 43
6.7 Comparison of Nmap and Masscan for Banner Grabbing . . 45

7 Implementation and development 46
7.1 Choosing the Right Tools: Combining Nmap and Masscan . 46
7.2 Optimizing Network Discovery: Masscan and Nmap Integ-

ration . 47
7.3 Storing and Visualizing Obtained Results: ElasticSearch . . . 48

7.3.1 Ingesting results into ElasticSearch Database 50
7.3.2 Visualizing using the Kibana Dashboard 53

7.4 Web Interface to launching Service Discovery 54
7.5 Working with Docker . 55
7.6 Exploring Hosting Provider Policies on Port Scanning 58

7.6.1 Norwegian Research and Education Cloud 58

8 Results 60
8.1 Comparing Identified ports against the Nmap-Service record 60
8.2 Nation-Wide Port Scanning: An In-Depth Investigation . . . 62
8.3 Results for Service and Vulnerability Scanning 64

8.3.1 Amount of Identified Vulnerabilities 65
8.3.2 Exploitable against Non-Exploitable vulnerabilities . 66
8.3.3 CVSS scoring . 67

9 Discussion 68
9.1 Port Detection Compared to Shodan 68
9.2 Service Detection Compared to Shodan 69
9.3 Vulnerabilities Detected Compared to Shodan 71
9.4 Analyzing the Detected Results 72

9.4.1 Unveiling False Positives: SYN Cookies 74
9.5 Complains and Detection for the Conducted Scanning Activity 74

iv

9.6 Choosing Appropriate Scan Intervals for Network Assess-
ments . 75

9.7 Limitations . 76
9.8 Further Research and Work 76
9.9 Legal and Ethical Implications 78

10 Conclusion 79

11 Appendix 82
11.1 Code for the Main Scanning Function 83
11.2 Script to detect Favicon Hash 86
11.3 Masscan Service Discovery Test 86
11.4 Nmap banner XML results . 86
11.5 Logstash-codec-nmap . 87
11.6 Webpage . 88

11.6.1 Scantypes . 88
11.6.2 Custom port scan . 89
11.6.3 Custom Nmap or Masscan command scan 89

v

List of Figures

4.1 The example banner displays the status for an Apache web
server running on Linux Red Hat [31]. 20

4.2 TLS 3-way handshake and retrieval of banner information [32] 24

6.1 Results of exhaustive TCP port scanning, sorted by the
number of ports detected . 41

6.2 Comparing Nmap and Masscan banner grabbing 45

7.1 Stored XML information for port discovery 47
7.2 Example of a document with banner information stored in

ElasticSearch Discovery page for a discovered service 52
7.3 Screenshot of Kibana Dashboard created for the UiO Secur-

ityLab robot . 53
7.4 Homepage for the UiO SecurityLab robots web interface . . 54
7.5 Dockerfile for running a provided Python script 56
7.6 Overview of implemented Docker containers 57

8.1 Comparing Nmaps stored port popularity against the UiO
scanner . 61

8.2 Chart for the top most responding ports 63
8.3 Most frequent service detected from banner grabbing 64
8.4 Most frequent CVE detected from banner information 65

9.1 List of the 20 most frequent open ports as of March 24, 2023. 69
9.2 Comparing Shodan and UiO robot service detection results 70
9.3 Comparison of Shodan vs. UiO Robot CVE detection 71

11.1 Web interface for starting a new scan 88
11.2 Web interface for default scan type 88
11.3 Web interface for custom port scan type 89
11.4 Web interface for custom command scan type 89

vi

List of Tables

4.1 TCP and UDP ports required for different effectiveness rates
[28]. 19

5.1 Favicon Hash Table [39] . 31

6.1 Network Scanning Tool Performance 37

8.1 Exploitable vs Non-Exploitable data classification 66
8.2 Distribution of vulnerabilities by CVSS Scores 67

vii

Chapter 1

Introduction

According to estimates, the number of devices connected to the Internet in
2023 surpassed 51 billion [1]. Alongside the rise of disclosed vulnerabilities
[2], the probability of owning a vulnerable device connected to the Internet
escalates. This escalation has provided cybercriminals with opportunities
to exploit these vulnerabilities, eliminating the need for physical intrusion
to pose a substantial threat to personal assets. To better understand the cur-
rent attack surface, it is essential to have a way of monitoring the number
of vulnerable devices online.

While existing search engines are available to access vulnerable device
data, there are still questions about the accuracy and completeness of the
information provided, particularly regarding closed-source data. There
is concern that certain information may be censored, altered, or ignored,
which can compromise the reliability of the data. Given these limitations,
exploring other possible solutions and conducting experiments is essential
to ensure that the information provided is trustworthy.

This thesis will examine strategies for overcoming obstacles related to
implementing an efficient vulnerability scanning service with the ability
to conduct on a large scale. The outcome will be a network port scanning
service designed for UiO SecurityLab, which aims at identifying vulnerable
services and devices within the Norwegian IP range for research purposes.

1

1.1 Motivation

Within the current digital landscape, the usage of the Internet has become
an important part of our lives. It assists us in providing access to a wide
range of information and services. This convenience however comes at
a cost, as the Internet is filled with potential threats and vulnerabilities,
where bad actors seek to gain unauthorized access to sensitive data. These
malicious actors constantly search for ways to exploit vulnerabilities to gain
unauthorized computer access. In today’s information age, data has be-
come increasingly important and is now considered one of our most crucial
assets.

Attackers use various methods to gain unauthorized access to computer
systems. These methods pose a significant threat to individuals and organ-
izations. Before launching an attack, reconnaissance tools are often utilized
to gain valuable information about the target systems. Port scanning is a
popular reconnaissance technique attackers use to help identify open net-
work ports, and running services on the target systems. This information
can allow the attackers to identify potential vulnerabilities, which can be
exploited to gain access to the target.

From a defensive perspective, it is crucial to thoroughly understand the
available connections on a computer system to prevent such attacks. This
can be achieved by deploying an authorized port scanner, which can aid in
identifying potential entry points that an infiltrator might utilize. Medium
to large organizations often conduct network scans to identify and address
potential internal security risks before attackers can exploit them.

Utilizing a vulnerability scanner for research purposes can provide a
valuable understanding of the security status of a computer system or net-
work. Possessing such information allows a security researcher to locate
potentially vulnerable machines quickly. By identifying and assessing vul-
nerabilities, researchers can better understand potential attack vectors and
develop effective countermeasures to prevent the attacks.

Developing a dedicated vulnerability scanner named the UiO Secur-
ityLab Robot grants researchers comprehensive control over the scanning
process. By constructing the scanner internally, we maintain absolute con-
trol over every aspect of the scanning process, including the types of scans
performed, frequency, and detail level. This approach will allow for con-
trol over the collected data, guaranteeing its reliability and authenticity. In
addition, by focusing on particular sections of the Internet, we can increase
the intensity of our scans and allow for a more comprehensive awareness
of the security flaws in those regions.

2

1.2 Objective

The objective of this master thesis is to research and analyze the existing
security robot solutions available on the Internet, investigate their technical
gathering methods and functionalities, and use this knowledge to develop
a demo version of the UiO SecurityLab Robot, capable of scanning specific
parts of the Internet. Achieving the objective of this thesis will contribute to
the network security scanning field by providing insights into the obstacles
faced when developing a large-scale scanning service. The purpose of this
study is not to perform exploits on public machines but to allow researchers
to gather data to determine the number of devices that are vulnerable to
different types of vulnerabilities.

1.2.1 Research questions

The following research questions have been specified for this study.

• Q.1 How many devices in Norway are accessible via the Internet?

• Q.2 How can we determine the vulnerability status of internet-facing
devices in Norway, considering their exposure to different types of
vulnerabilities, and how does this compare to available solutions?

• Q.3 What are the obstacles in creating a platform that can perform
vulnerability scans on specific infrastructure targets and store the
obtained data in a format that can be retrieved easily?

1.3 Thesis structure

Provided is a short overview of the thesis. The thesis totals ten chapters.

2 Background

This chapter covers previous research and experiments related to the topic
of vulnerability identification.

3 Assessing the Landscape of Vulnerability Scanning Software

Introduces available solutions for service and vulnerability scanning and
their capabilities.

4 Fundamentals of Internet Scanning

This chapter covers relevant concepts and terminologies necessary to
understand when tasked with creating a large-scale vulnerability scanner.
The chapter also introduces techniques used by some popular tools to
detect services.

3

5 Identifying Vulnerabilities in computer systems

Describing different types of vulnerabilities and the ways of classifying
them. The chapter also describes a method of identifying vulnerabilities
using a non-intrusive technique.

6 Evaluating and Benchmarking of port scanning tools

Here, different tools and parameters are compared and tested, including a
small-scale scan, to assess the most commonly open TCP port.

7 Implementation and Development

Describing the tools and configuration implemented to make the UiO
SecurityLab Robot.

8 Results

Presenting the results gathered using the previously implemented tool.

9 Discussion

Comparing the results gathered against already available solutions. Fur-
ther, this chapter discusses the limitations of the project and recommends
further work for the project. Finally, a section about the legal implications
of the techniques utilized in the thesis is also discussed.

10 Conclusion

Assessing the research questions against the provided results

4

Chapter 2

Background

In this chapter, previous research and experiments related to the topic
of vulnerability identification are discussed. Several papers are listed,
including a summary.

2.1 Related work

Two master theses at the University of Oslo investigate vulnerability
detection of online devices. The first thesis, "Development of a large-scale
web scanner for detecting vulnerabilities" by Torjus Dahle in 2020, involves
the creation of a tool to scan the most commonly used websites for known
OWASP top 10 vulnerabilities. [3] The second thesis, "An extendable
internet security scanner and Analyzer" by Kristian Helgesen Torkveen,
examines website security by assessing their use of secure protocols and
techniques. [4]

Both theses concentrate on globally popular websites to evaluate
their security, reflecting the importance of assessing the security of these
websites, given their broad reach and usage. As a result, these findings
provide valuable insights into the vulnerabilities on commonly used
websites and highlight the importance of implementing robust security
measures to mitigate user risks.

2.2 Literature review

In the preliminary research on internet-wide scanning, a search was con-
ducted for port and vulnerability scanning topics and reviewed relevant
literature on different widely known tools used for network scanning. The
techniques presented in the research can be broadly categorized into dis-
covery techniques, results, and the legality and ethical considerations of
scanning the Internet. The literature review provides valuable insights
into the different approaches and challenges associated with internet-wide
scanning, including identifying vulnerable devices and the need for ethical
and legal considerations.

5

In the paper "Large scale port scanning through Tor using parallel
Nmap scans to scan large portions of the IPv4 range", researchers from the
University of Arizona discuss a method for performing anonymous port
scans by using the TOR network to target specific areas of interest in the
IPv4 range and then scanning those areas anonymously with parallelized
scanners. The results demonstrate that this approach is feasible and effect-
ive for collecting internet scan data anonymously. [5]

"The Design of Large Scale IP Address and Port Scanning Tool" is an art-
icle from the Institute of Modern Physics, Chinese Academy of Sciences in
China. The report provides a detailed comparison of port scanning results
using different parameters of Nmap. It also compares their created scan-
ning tool with Nmap for speed and against the Shodan database for open
port detection. The result is a tool capable of performing a higher scanning
rate than the Nmap tool. [6]

The article "Who is scanning the Internet" by Roman Trapickin from
the Department of Informatics at the Technical University of Munich intro-
duces the publicly available tools for internet-wide scans and answers the
question of who is actively scanning the Internet for open ports. The article
also discusses the legality and ethical aspects of scanning the Internet. [7]

"A review of network vulnerabilities scanning tools: types, capabilit-
ies and functioning" is an article by Andrea Tundis, Wojciech Mazurczyk,
and Max Mühlhäuser. The study investigates some available Internet-wide
scanning tools, highlighting their main objectives, application context, and
distinguishing features. [8]

The article "An Intelligent Improvement of Internet-Wide Scan Engine
for Fast Discovery of Vulnerable IoT Devices" by Hwankuk Kim, Taeun
Kim, and Daeil Jang from the Korea Internet & Security Agency aims to per-
form Internet-wide scanning to detect vulnerable IoT devices. This paper
proposes an intelligent internet-wide scan model that employs advanced
IP randomization, reactive protocol (port) scanning, and OS fingerprinting
scanning, applying the k* algorithm to locate vulnerable IoT devices. The
proposed model demonstrates improved performance compared to exist-
ing internet-wide scanning solutions, such as ZMap and Shodan. [9]

The article "Identifying Devices across the IPv4 address space" by Ryan
Jicha, Mark W Patton, and Hsinchun Chen at the University of Arizona
centers around the comparative analysis of connection-oriented and con-
nectionless scanners. The findings of this study indicate that a connection-
less scanner, such as Masscan, can perform scans at a rate exceeding 200
times that of a connection-oriented scanner like Nmap. [10]

The web blog article "Finding the Balance Between Speed & Accuracy
During an Internet-wide Port Scanning" posted by the user "CaptMeelo"
has conducted various tests involving simultaneous usage of multiple in-

6

stances of Masscan and Nmap, which can potentially accelerate scanning
speed, but may also decrease detection rate. Based on these tests, the blog
suggests using the Masscan tool to identify open ports before conducting a
comprehensive scan with Nmap is a useful technique. [11]

The article "Improving Accuracy of Applications Fingerprinting on
Local Networks Using NMAP-AMAP-ETTERCAP as a Hybrid Frame-
work" was authored by Waheed Ali H. M. Ghanem and Bahari Belaton,
affiliated with Universiti Sains Malaysia, explores the subject of service
detection on remote hosts using different fingerprinting techniques. The
study assesses the efficiency of various methods to detect running services
and applications. The authors also propose a hybrid solution that combines
active and passive fingerprinting techniques. [12]

The Carna botnet was a large-scale network of compromised devices
used to conduct a comprehensive internet survey. A researcher created
the botnet to map out the entire Internet and gather information on the
number of services and devices online. The researcher developed a tool
to brute-force attacks on weak passwords towards SSH servers. It would
then distribute the network mapping tool Nmap, and a list of addresses
the infected machine will be configured to probe against. After scanning
the entire IPv4 part of the Internet, the Carna botnet found 1.41 billion
addresses in use. The researchers performed this scanning activity within
half a year by infecting over 420,000 computers, each performing scanning
activities. The data was transferred back to a central server. Although
its origins are highly controversial, the Carna botnet has proved to be
a valuable source of information for cybersecurity researchers, as it has
provided insights into the structure and security of the Internet. The results
gathered from the botnet are still relevant today, over ten years later. [13]

2.2.1 Literature review conclusion

Looking at the papers mentioned above, we gain insights into the different
techniques and challenges associated with internet-wide scanning. Several
studies discussed using widely-known tools for network scanning, such as
Nmap and Masscan, in which they compared the results obtained using
different parameters. Additionally, a few articles focused on the ethical
and legal implications of internet-wide scanning, highlighting the legality
of different behavior and the potential risks associated with unauthorized
scanning and information disclosure.

7

Chapter 3

Analysis of Vulnerability
Scanners

In today’s cybersecurity landscape, the detection of vulnerabilities in a
network has become an essential component of maintaining a secure
infrastructure. There exist numerous software solutions capable of
identifying vulnerabilities in computer systems. These programs come
in open-source and commercial offerings, providing organizations with
options for selecting the best software for their needs. The topic of the
proposed master thesis is to collect and analyze the existing examples of
security robots, meaning tools designed to perform automated network
scanning for port, service, and vulnerability detection to enhance system
security. Their strengths and weaknesses will be discussed.

3.1 Open source solutions

The most popular open-source solutions, Nmap and OpenVAS, provide
basic network scanning capabilities, which allow for the detection of open
network ports on systems, vulnerabilities, and other information about the
systems, like operative system detection.

Nmap is a popular open-source software tool widely used by network
administrators, security professionals, and researchers to explore and audit
network security. Nmap can perform port scanning, host discovery, and
vulnerability detection towards hosts on a network. Nmap is highly mod-
ular and allows for customization using various scripts to perform more
specialized scans. A more detailed look at Nmap is in Section 4.8 provides
a more detailed look at Nmap.

OpenVAS (Open Vulnerability Assessment System) is also an open-
source vulnerability scanner. The tool provides a user interface for scan-
ning and detecting security issues in servers, software, and other network
devices. OpenVAS utilizes a database of known vulnerabilities to identify
and analyze possible security threats. Even with multiple advanced fea-
tures, the OpenVAS tool is simple to use by utilizing the provided interface.

8

[14]

IVRE (Instrument de veille sur les réseaux extérieurs, or Dynamic Recon of
Unknown Networks in English) is an open-source network reconnaissance
framework designed for collecting, processing, and managing network
scan data. The framework relies on information from open-source tools
such as Nmap, Masscan, and others and provides a way of storing the
gathered data in a database. IVRE provides a web-based interface for
searching and visualizing the collected data, making it simple for service
and vulnerability detection. [15]

3.2 Closed Source Alternatives

Commercial software solutions, such as Qualys, Rapid7, and Tenable.io
Nessus, offer more advanced features, including compliance auditing and
web application scanning. These proprietary tools are provided at an
enterprise level, often requiring expensive license keys.
.

Nessus, developed by Tenable, is a commercial vulnerability scanner fo-
cused on in-depth local network scanning. Nessus is a popular commercial
software tool that provides advanced vulnerability detection. Developed
by Tenable, the vulnerability scanner focused on in-depth local network
scanning. It performs network-based vulnerability scanning activities and
a more thorough system configuration analysis. Nessus uses various tech-
niques, such as exploit-based scanning and web authentication scanning
and exploitation. The tool produces detailed reports on the identified vul-
nerabilities, including remediation suggestions. Nessus is licensed soft-
ware and can be costly, making it less accessible than open-source tools
such as Nmap. It is also not designed for scanning more extensive network
ranges, e.g., a country. [16]

The Norwegian security agency, known as the National Security
Authority (NSM), offers an automated vulnerability scanning service called
Allvis NOR to public agencies and owners of critical infrastructure. Allvis
NOR functions by performing port scanning to detect exposed services,
followed by automated tests to identify the protocol and software in use.
Subsequently, a test is launched against the specific identified software to
detect vulnerabilities. Upon identifying any vulnerabilities, the signed-up
agency is notified accordingly. [17]

3.3 Exploring Available Search Engine Solutions

In this section, we will examine search engines that offer access to
previously conducted scans, enabling users to view the results of internet-
wide information gathering without having to perform the scanning
themselves. These search engines simplify the process of retrieving the
desired network-gathered data.

9

3.3.1 Shodan

Shodan is a website that allows users to search for information about com-
puters with open ports on the Internet. The website was launched in 2009,
allowing users to do an advanced search for open source information (OS-
INT) about computers connected to the Internet. The service is intuitive to
use and allows for information about open services without conducting a
port scan on your own. The service indexes information from open internet
ports from all over the Internet and lets users search through the scanner’s
findings. These findings range from web servers with default credentials,
cameras exposed to the Internet, and industrial control systems, to possible
vulnerable software. The search results often include detailed information
on the location of the device. [18]

The Shodan search engine receives its information from multiple
sources, such as crawling the web, receiving data feeds from third-party
providers, and getting inputs from the Shodan community. Shodan is argu-
ably the most known platform for accessing worldwide information about
internet-exposed machines, providing insights into otherwise not easily
discoverable devices. This tool’s capabilities extend beyond vulnerability
assessment and can serve various purposes. Notably, researchers have util-
ized Shodan to monitor malware’s spread across the Internet and identify
devices possibly being misused. [19]

The feature Trends display the growth and decrease of open ports and
technology exposed to the Internet. With Trends, it is possible to see unique
insights into the evolution of services over time. Further, it allows users to
track and monitor specific property values, allowing for continuous up-
dates for a given search query. Shodan’s facet analysis and trend tracking
are both features that the search engine provides. The facet analysis allows
tracking specific property values, giving a bigger picture of the most com-
monly open port or active vulnerability, for example, the current amount
of operational Cobalt Strike command and control servers.

Shodan Vuln is a feature for academic and professional users. The
features allow users to search for known device vulnerabilities, not
just software information. The search engine will append a Common
Vulnerabilities and Exposures (CVE) identifier to the detected vulnerable
machine. This identifier calculates the number of vulnerable devices
exposed on the internet. The vulnerabilities that have been identified,
although not verified by Shodan, can not be confirmed as an accurate
indicator of a device’s vulnerability status.
.

These features mentioned above make Shodan a feature-rich and over-
all solution for analyzing the behavior of internet-connected devices. While
Shodan can be a valuable tool for vulnerability assessment and other re-
search purposes, the tools could also be utilized by adversaries seeking
potential targets for cyber-attacks. This is why it is important that users

10

follow ethical guidelines to prevent any misuse of the tool.

In conclusion, Shodan is a powerful search engine that provides in-
sights into details about internet-connected devices. Given the always-
expanding internet, the significance of Shodan’s role in monitoring
internet-connected devices is becoming even more important.

3.3.2 ZoomEye

ZoomEye, created by Knownsec, is a search engine designed to assist
security professionals, researchers, and enthusiasts obtain information
about internet-connected devices and web applications [20]. This simplifies
the identification of potential vulnerabilities and security risks. Knownsec
was founded in 2007 and is based in Beijing, China. Like the Shodan search
engine, Zoomeye was developed with the Chinese market in mind.

The search engine continuously scans the internet and collects data
about hosts, devices, and other web-facing applications. The collected
data includes open ports, banner information, and software configuration,
among additional information. ZoomEye indexes and makes the informa-
tion from their scanners easily searchable and accessible for users.

ZoomEye offers a web-based interface and an Application Program-
ming Interface (API) for users to access the gathered data. Users can search
using parameters such as IP address, domain, hostname, software, and ser-
vices. This enables the search engine to provide insight into the distribution
of specific technologies, vulnerable systems, and potential attack surfaces.
In addition to having search capabilities, ZoomEye provides aggregation
analysis, which helps users identify patterns and correlations in the cyber-
security landscape. By analyzing this aggregated data, the users can better
understand the overall security aspect of various technologies and systems.
This information can be used to anticipate potential threats, prioritize se-
curity efforts, and develop effective mitigation strategies.

By default, ZoomEye does not retest the results it gathers after a spe-
cific time, resulting in a potentially high number of devices displayed by
the search engine service. Some of these devices may have been identified
a long time ago and may no longer be online, affecting the results’ accur-
acy. This limitation in retesting gathered results may impact the service’s
usefulness for certain applications and should be considered when inter-
preting the data retrieved from ZoomEye.

The search engine functionality is primarily designed to explore
internet-connected devices and web services. Therefore, their mapping
towards vulnerabilities that apply to internet-connected devices is not as
accurate and up-to-date as the Shodan search engine.

11

3.3.3 Censys

Censys Search is a search engine, intended to provide data about the vari-
ous devices connected to the Internet [21]. This project emerged from the
academic research efforts at the University of Michigan in 2013, wherein
the Zmap tool was developed as a part of the initiative. The Censys Search
engine utilizes the open-source software tools Zmap and Zgrab to gather
its data. These tools function similarly to other central tools in the field,
such as Nmap and Masscan.

The function of Censys search is to display gathered data about devices,
specifically focusing on service configuration data. This is stored in a large
search engine, making it easily accessible for research purposes. The regu-
lar scanning of the Internet forms a significant part of this search engine’s
operations, ensuring that the data remains updated and relevant. Censys
provides services similar to those offered by the Shodan search engine,
however with fewer features for advanced searches.

Censys Search also allows interested individuals to request access to its
comprehensive dataset [22]. This dataset is built up by scanning the IPv4
address space, known IPv6 addresses towards more than 3,500 ports, and
about 100 protocols.

12

Chapter 4

Fundamentals of Internet
Scanning

Detecting vulnerable devices in computer networks is critical for ensuring
their security. However, before diving into the details of these techniques,
it is essential to understand some fundamental concepts in networking
and network security. This chapter will discuss topics such as the TCP
protocol, banner grabbing, firewalls, and other essential aspects necessary
to understand when creating a large-scale vulnerability scanner.

4.1 IP Addresses

An IP (Internet Protocol) address is an identifying number assigned to
every device connected to a computer network. The addresses serve as
unique identifiers for the devices, allowing them to communicate with each
other by transmitting data packets. IP addresses can be either set as either
public or private. Public IP addresses are assigned by Internet Service Pro-
viders (ISP) and allow for connection between devices throughout the en-
tire Internet. A private IP address is only accessible within a local network.
Currently, two types of IP addresses exist IPv4 and IPv6. IPv4 is assigned
32-bit numbers represented in a dotted decimal notation; for IPv6, the num-
ber of bits assigned is 128-bit. This makes the total amount of available IPv4
addresses 232 = 4, 294, 967, 296, which may seem large; however, it quickly
became apparent that this was insufficient to meet the growing demand for
IP-connected devices. This led to the creation of IPv6 addresses, which al-
lows for a virtually limitless number of unique addresses.

In Norway, about 16 million IPv4 addresses are allocated according to
ipinfo.io.’s list of IP ranges. [23] The website provides a list of IP addresses
in the CIDR format, which includes all the subnets and Autonomous
System Numbers (ASNs) allocated to Norway. ASN (Autonomous System
Numbers) is an extensive network of IP addresses controlled by a company
or organization. An instance of this is Telenor, the leading network
provided in Norway, which controls the autonomous system number
AS2119, incorporating nearly 7 million IP addresses.

13

4.2 TCP Protocol

The Internet Protocol (IP) is an essential component of network commu-
nication. Its primary function is transporting packets from a sender to a
receiver device. Once a package arrives at its destination, a different pro-
tocol manages the transmission of data byte streams between the sender
and receiver computers. The Transmission Control Protocol (TCP) takes
charge of this task. TCP is a dependable and connection-oriented trans-
port layer protocol that ensures the accurate and efficient data transmission
across networks. To establish a data transfer, a three-way handshake pro-
cess must occur between the sender and receiver computers. This process
involves three steps.

1. The client sends an SYN (synchronize) packet to the server, signaling
its intention to establish a connection.

2. The server will then respond with an SYN-ACK (synchronize-
acknowledge) message, responding to the initial SYN packet. This
indicates that the server is open to establish a connection with the
client.

3. After the client receives the SYN-ACK packet, it sends an ACK
(acknowledge) message in response.

Once the connection is established, data can be reliably sent between
the two parts. For an illustrated look at the three-way handshake, look at
Figure 4.2. TCP uses different flags to manage data transmission between
the two devices. The SYN (synchronize) flag is used to request an initiate
connection. The ACK (acknowledge) flag is sent to confirm the arrival
of a packet. Lastly, the RST (reset) flag is used to terminate a data
connection. These messages are important to understand when we later
discover different port scanning techniques. They are explained in more
detail, and practically in section 4.8.

4.3 UDP

Similar to TCP, UDP (User Datagram Protocol) is also a communication
protocol used for the transmission of data over a network. However, unlike
TCP, it does not provide the same reliability, making it fast but more prone
to data loss. The UDP protocol is more suitable for speed over reliability,
where packet loss is not as critical.

Although UDP is an important protocol on the Internet, it is not the
focus of this master thesis. The primary reason for this is that detecting
UDP services can be challenging. In addition, UDP does not have the
same connection-oriented characteristics as TCP, making it harder to detect
open ports and services. Nonetheless, it is important to acknowledge the
existence of UDP and its relevance to certain types of applications and
services.

14

4.4 Network ports

Computer ports function as communication endpoints, enabling interac-
tion between devices. With ports, a computer can establish multiple con-
nections simultaneously between different devices. An IP address is alloc-
ated 65,535 ports, utilized for both TCP and UDP connections. This number
of available ports is constrained by a 16-bit unsigned integer. Linked to a
port number is the source IP address and also the type of transport layer
protocol used.

Port binding is utilized by computers to enable communication
between different processes and services across a network. This involves
associating a specific port number with a particular process or service, and
listening for incoming network connection requests. Port binding ensures
that only that process or service can receive incoming network traffic on
the specific port.

To be able to listen to incoming traffic, ports utilize sockets to establish
network connections and exchange data. The operating system directs in-
coming network packets to the relevant process by matching the packet’s IP
address and port number with a corresponding socket. When port binding,
only a particular process can receive incoming network traffic on the spe-
cific port. When multiple programs attempt to utilize the same port num-
ber, IP address, and protocol, common application failures or port conflicts
can occur. These conflicts arise due to the overlap in resource allocation,
causing issues in the proper functioning of the applications involved.

The activity and connectivity expected from ports result in three dis-
tinct states. The first state is the “open” state, indicating that a particular
port is actively listening for incoming connections, and is available to re-
ceive data packets. This indicates that a service is most likely bound to the
port. The second state is “closed”, indicating that the particular port is not
actively listening for incoming connections. This port state is typically as-
sociated with systems which not require any network traffic to be routed
toward the device.

The third and final state a port can have is the “undetermined” state,
also commonly known as the filtered state. This state indicates that a
firewall or network intrusion prevention system mechanism is blocking
access to the port, which prevents incoming traffic from being delivered
to the process or service. This measure is in place to protect systems and
services from unauthorized access, or incoming attacks. In some cases,
ports also may be intentionally filtered to avoid detection by port scanners.
Devices within the same network can still communicate with filtered ports
as the filtering is directed towards external sources only.

15

4.4.1 Network Ports in the Context of Firewall and NAT

While filtering ports may improve security, it could also hinder legitim-
ate communication between devices within the same network. Network
Address Translation (NAT) is a technology used for mapping private IP
addresses to a single public IP address, enabling multiple devices on a
local network able to communicate with the internet from one IP address.
Without opening a port on the firewall, all incoming traffic from the inter-
net will be blocked. If a user wants to make a web server accessible from
the Internet, they need to open the corresponding port bound to the web
server service on their firewall and map the port opening to the internal
IP that is listening for incoming requests. Common vulnerability scanners
such as Nmap, Nessus, and Shodan are only able to look for services that
are accessible from the internet, and not behind a firewall. Opening a port
on the firewall poses a potential security risk by allowing attackers and
scanners to access internal network devices. This risk is important to take
into account.

An example of the consequences is the data breach incident at Norkart
in May 2022. [24] Norkart is a company that specializes in providing digital
mapping and geographic information system (GIS) solutions for both
public and private sector clients. They informed about a security breach
10th of May, where unidentified attackers gained entry to an unsecured
Application Programming Interface (API), where a single port was exposed
to the internet. [25] The attackers found this single open port using a port
scanning tool, which allowed them to retrieve a copy of Norway’s official
property register. This register provides an overview of who owns what in
Norway, including names, addresses, and dates of birth of over 3,3 million
Norwegian citizens. With the installation of a firewall, it is likely that
the occurrence of such incidents would have been averted as the firewall
could have prohibited access to the port from IP addresses outside the local
network.

4.4.2 Port ranges

As previously known, the port range exists of 65,535 possible ports. This
range is divided into three categories: well-known ports, registered ports,
and dynamic or private ports. The ports ranging from 0 to 1023 is classi-
fied by the Internet Assigned Numbers Authority (IANA) as well-known
ports. This range contains some of the TCP and UDP ports that are most
commonly used by server applications. For instance, web servers com-
monly use ports such as 80 and 443, and Secure Shell (SSH) is commonly
used on port 22.

Ports from the range 1024 to 49151 are registered ports. Vendors can
apply to IANA for the assignment of specific services registered to a port.
The ports within this range are often assigned to specific services by the
operating system or other software.

16

Ports assigned the number above 49151 are known as dynamic or
private ports and can be used by any application. This range is also
used for ephemeral ports. Ephemeral ports are temporary ports that are
used for only a short period of time, within the time frame of the data
session. They are managed by the operating system and allow for multiple
connected clients to establish connections with a server simultaneously.
Once a connection is established, the ephemeral port is used to send and
receive data between the client and the server. With this port, a client is
then able to send and receive data using the specified port. [26]

4.5 In-depth Port Scanning: Which Ports to Prioritize

Port scanning is a widely used reconnaissance technique used in computer
networks to identify open ports on target systems. The process involves
systematically iterating through a range of port numbers toward one or
multiple hosts to determine which ports are open, closed, or filtered. The
technique can be used for various purposes, such as network security as-
sessments, vulnerability scanning, and penetration testing. However, it can
also be used by a malicious adversary when scoping out a potential tar-
get. This is why port scanning should be conducted with caution and with
proper authorization and in compliance with legal and ethical guidelines
to avoid any legal consequences.

We often differentiate network scans into two types: Service sweep
and regular port scanning. Even though both techniques aim to discover
information about a system or network, there are important differences
between the two. The service sweep technique is used to identify a par-
ticular service running on a system, or network without having to iterate
through all possible ports. One illustration of this concept is when there
is a need to identify all servers within a network that have SSH (Secure
Shell) enabled. In such a scenario, a straightforward approach is to execute
a service sweep, which involves sending requests to each machine within
the network using the established port 22, which is commonly utilized by
the SSH protocol. This differs from a port scan, which is a broader scan
that attempts to identify all open ports on a target system or network, not
targeting a specific software as in service sweeping.

When performing a port scan, it is important to be aware of the different
categories of port ranges to determine which ports should be given priority.
Conducting port scanning activities over a wide range of ports and hosts
is a time-consuming process that also produces excessive network traffic.
Consequently, it is preferable to constrain the number of scanned ports, fo-
cusing primarily on those that are more likely to yield a greater number of
discovered services. As a result, it is uncommon for port scanning software
to examine all 65,535 available ports, as this would generate a large amount
of network traffic. The aspects of performance and network traffic will be

17

discussed in more detail in Chapter 6.

We can examine the known port ranges to determine which most likely
contain responsive ports. The "Well-known" port range is utilized for
widely recognized protocols and services that are commonly employed on
both Linux and Windows systems. This range is an obvious option to scan,
which is why the popular port scanning tool Nmap used to look towards
these ports by default when a user did not specify a port range in the tools
parameters. Running the tool on the port range 0-1023 would most likely
detect a large amount of services, and only need to send around one thou-
sand requests per host.

The registered ports range is the largest out of the three categories.
About one-third of the ports are registered at IANA. [27]. Among the ports
that are registered, it is evident that many of them correspond to outdated
and less frequently used services and applications. This characteristic re-
duces the efficiency of scanning the entire registered port range.

When it comes to the ephemeral ports, they are not that important to
scan because it often does not host any services, do not listen for incoming
requests, and are temporarily used by clients. Applications however can
be hosted within this port range as well, so a middle ground when port
scanning needs to be selected.

In terms of the ephemeral ports, their importance in scanning is relat-
ively low since they usually do not host any services, do not listen for in-
coming requests, and are only temporarily utilized by clients. Applications,
however, can be configured to operate within this port range, necessitating
a balanced approach when conducting port scanning.

The Nmap Project has conducted independent calculations regarding
the required number of ports to be checked in order to assess the scanner’s
effectiveness in detecting open ports.

18

Effectiveness TCP ports required UDP ports required
10% 1 5
20% 2 12
30% 4 27
40% 6 135
50% 10 1,075
60% 18 2,618
70% 44 5,157
80% 122 7,981
85% 236 9,623
90% 576 11,307
95% 1,558 13,035
99% 3,328 15,094
100% 65,536 65,536

Table 4.1: TCP and UDP ports required for different effectiveness rates [28].

This table provides an analysis of the relationship between the different
levels of effectiveness and the number of TCP and UDP ports when per-
forming network scanning. The data presented in the table indicates that
as the desired level of effectiveness rises, there is a corresponding increase
in the number of ports that need to be scanned. The effectiveness levels
range from 10 % to 100%.

The table reveals interesting findings demonstrating how scanning just
a specific set of 10 TCP ports can enable the discovery of 50 percent of
all running services. Also when scanning a selected 576 ports, which is
only 0.878% of the total available 65535 ports, one can expect to discover
90 percent of services and applications. The data demonstrate a significant
enhancement in efficiency by sending requests to ports that frequently re-
spond. In subsequent sections of the thesis, the specific common ports will
be identified and discussed.

It is important to mention that the data has remained unchanged for
an extended period. Originally published in Gordon "Fyodor" Lyon´s 2009
book, "Nmap Network Scanning" [29], the information continues to be hos-
ted on the Nmap.org website without any updates. The popularity of vari-
ous services has undoubtedly evolved since 2009, requiring an updated
table to utilize the provided data in a more scientific approach.

Looking at the specified ports some of the available search engine
solutions prioritize, it is hard to find a list or a definite answer, since
their solutions are proprietary, and closed source. Compared to the search
engine Shodan, their service computers reportedly crawl toward a list of
1225 ports, as of May 2020 [30]. This number is only 1.87 percent of all the
possible ports, however looking at the effectiveness table when focusing
on TCP, the Shodan search engine would then be able to identify anywhere
from 90 to 95 percent of all the services.

19

4.6 Detecting Software using Banner Grabbing

Now that we have a better understanding of network ports, we can go into
more detail on how we can use port information to detect software and ser-
vices on computer networks.

A banner is a piece of information that a service transmits to the
connecting client upon establishing a connection between two ports The
banner includes information such as hostname, protocols, software, and
software version. Additionally, the banner may indicate the status code of
the request, such as 404 for "not found" or 200 for "successful." Essentially,
the banner serves as metadata that provides insight into the service
associated with a TCP or UDP port.

Figure 4.1: The example banner displays the status for an Apache web
server running on Linux Red Hat [31].

The banner grabbing technique can be utilized for fingerprinting, which
is the process of identifying the operating system, software, and other char-
acteristics of a system or network. Fingerprinting is an important step in
reconnaissance, as it helps identify software, and possible vulnerabilities
linked to the software. The banner often reveals information about what
version of the software assigned to the port is running, which allows us to
look for outdated software that is affected by known vulnerabilities. The
tool Nmap allows users to perform banner grabbing on open ports. The
tool will then connect to an open port and store all traffic sent by the listing
service within a specified amount of seconds. The Nmap tool is described
in more detail in Section 4.8, where we also look at the features of detecting
vulnerable devices.

Netcat is a command line utility that is used for performing network-
ing tasks to interact with network ports. It is commonly used to obtain a
banner by establishing a connection with the target server on a desired port
and afterward requesting the port’s banner information. Netcat is a com-
mand line tool frequently employed for executing networking operations

20

and interacting with network ports. One of its features allows for request-
ing a banner by establishing a connection with the intended server on a spe-
cified port and subsequently requesting the banner information associated
with that port. Banners are typically in the form of a byte stream, and the
request can vary depending on the specific service or protocol being util-
ized. To obtain the banner, Netcat must wait for a response from the target
to ensure that the entire banner is received. The amount of time it takes to
receive a response can vary depending on a number of factors, such as net-
work latency, distance, the load on the target host, and the specific service
or protocol being used. In cases where no response is received, Netcat will
terminate the connection by terminating its ephemeral port. This is a prac-
tical feature as it eliminates indefinite waiting periods for non-responsive
hosts. Waiting insufficient duration pose the risks of only partial capture
of the banner or not receiving it at all. On the other hand, waiting too long
can overcrowd the scanning process, causing delays in performance when
performing banner grabbing across multiple ports and devices.

Although Netcat is capable of performing banner grabbing, Nmap’s
dedicated tool, Ncat, provides numerous advantages compared to its
predecessor. The Ncat tool is created to extend the Netcat tool, providing
additional features that make it more flexible and efficient in performing
banner grabbing. Ncat extends the waiting time required for banner
grabbing, by adjusting the waiting time itself during a banner-grabbing
scan. The tool will learn from the response time of the previously scanned
ports, and adjust the waiting time accordingly. It provides the ability
to automate banner grabbing tasks, enabling the user to perform banner
grabbing on multiple servers or ports simultaneously.

4.7 Connection-Oriented, and Connectionless Scan-
ning Techniques

When talking about port scanners, there are two main different types that
perform in slightly different ways. A connection-oriented scanner is a type
of network port scanner used to identify ports on a target. This scanning
technique establishes a full TCP connection with the target and sends pack-
ets similar to a real connection’s behavior. This way of scanning allows the
scanner to identify any open ports and their associated services accurately.
Additionally, a connection-oriented scanner will bypass certain firewalls
designed to block network packets that do not behave like genuine TCP
traffic. This type of activity is how the popular port scanning tool Nmap
operates by default.

On the other hand, a connectionless scanner is a port scanner that iden-
tifies open ports on targets without establishing a full TCP connection. In-
stead of establishing a TCP connection as the Connection-Oriented scanner,
it sends packets designed to obtain a response from the target system, al-
lowing it to identify open ports. Connectionless scanners have the ability

21

to operate faster than connection-oriented scanners since the entire TCP
connection does not need to be established. However, they can also be less
accurate, as the reliability of distinguishing between an open and closed
port with the same level of certainty as a full TCP connection. Connec-
tionless scanners operate in an asynchronous manner, sending packets in-
dependently and without the need for establishing and maintaining TCP
connections or waiting for responses before proceeding to the next packet
or target.

However, connectionless scanning comes with a trade-off in accuracy as
it relies on the target system to respond within a short time frame to the sent
packet. The send packages are also more commonly blocked by receiving
firewalls, which results in the scanning type being less accurate and reliable
in detecting open ports. The scenarios suitable for a connectionless scanner
would be more large-scale scans of large networks or the Internet, where
speed is more important than accuracy. A popular tool that is implemented
using this technique is called Masscan, which is described in greater detail
in section 4.9

4.8 Nmap - Network Mapper

Throughout this thesis, the tool Nmap has been referenced multiple times
in various contexts, highlighting its significance in network scanning and
reconnaissance abilities. Section 3.1 provides a brief overview of the tool;
however, a more comprehensive look at Nmap capabilities and fundament-
als is required to recognize its abilities in network reconnaissance. There-
fore, this section aims to provide a more detailed exploration of Nmap,
including its features and capabilities.

Nmap is a commonly employed tool utilized by security professionals
to examine network systems for accessible ports. The tool is short for
"Network Mapper", and is free and open-source and was first released in
1997 by Gordon Lyon. Nmap can be used to perform network-wide scans
of hosts and services and offers various advanced features, such as OS
detection, version detection, and stealth scanning. The features can be
extended by writing supported Nmap Scripting Engine (NSE) scripts in
the Lua programming language. These scripts automate the Nmap tool to
search for particular patterns or data. Nmap has the capability to perform
both connection-oriented scanning and connectionless scanning methods.

22

Nmap supports a wide variety of scanning techniques, including the
following:

• TCP scan: The default option for Nmap. The scan works by sending
an SYN packet to the target system and waiting for an SYN-ACK
response. If the target responds with SYN-ACK, then to complete
the three-way handshake, Nmap will send an ACK packet. Once the
TCP connection has been established, Nmap sends an RST packet to
terminate the connection and registers the port as open. Allowing
for a full connection with each port adds additional time, making it
slower than most other scanning techniques. However, it is the most
reliable way of accurately determining a port’s status.

• ACK scan: Sending a packet with only the ACK flag set is a distinct
scanning technique that differs from the methods mentioned earlier.
This technique is used to map out if the target is protected by a
firewall. When scanning a system not protected by a firewall, the
targeted host will answer with an RST packet if the port is open or
closed. If the device does not respond, we can assume the host is
behind a firewall.

• SYN / Stealth scan : Also known as the "half-open" scan. This
scanning technique aims to hide its activity from being detected by
firewalls. The client sends an SYN packet, and if open, the server will
answer with an SYN-ACK packet. This scanning technique differs
from the standard TCP SYN scan in that, immediately after receiving
the SYN packet from the host, the client promptly responds with
an RST (reset) packet directed back to the host. By doing so, the
TCP handshake is effectively halted, preventing the establishment
of a complete connection. This approach limits the number of
detected connections that a host may initiate. SYN scanning typically
involves creating and using raw sockets, which on Linux require sudo
privileges.

• UDP scan: The abovementioned techniques are used for detecting
TCP ports. To detect UDP ports, Nmap, unlike TCP, does not
establish a connection or return an ACK flag. Instead, Nmap uses
the characteristic of UDP to determine if a port is open or closed by
sending a UDP packet to the target port and awaiting a response. If
an ICMP "Destination Unreachable" message is received, it signifies
that the port is closed. On the other hand, if no response is received,
the port is considered open.

• ICMP: The ICMP, also called ping scan, is a technique used to check
if a target is alive and reachable. Nmap will then send an ICMP Echo
Request packet, commonly called a ping, to the target. It will then
wait for an Echo Reply. If the device does not answer the ping request,
Nmap assumes that the host is offline and will not respond on any
port scan. ICMP does not use TCP or UDP and is not tied to ports.
This technique is explained in greater detail in Section 5.1.1.

23

Figure 4.2: TLS 3-way handshake and retrieval of banner information [32]

Figure 4.2 displays a client named "krad" performing banner grabbing
activities towards the server "scanme". The figure shows which TCP flags
are used to establish and kill the connection.

When selecting an appropriate approach for network scanning, it is im-
portant to be familiar with the various scanning techniques available. Dif-
ferent techniques are suited for different recognizance purposes, with some
prioritizing being undetected and others prioritizing speed. Given all the
possible scanning techniques available, selecting a suitable technique for
the UiO SecurityLab robot is important. The discussion of what approach
the SecurityLab will adopt is explored in detail in Section 7.2 .

As mentioned, Nmap supports different scripts using the Nmap Script-
ing Engine (NSE). It allows users to write or reuse scripts written in Lua
programming language to automate various tasks. The NSE scripts are or-
ganized into categories that separate the scripts by how they interfere with
the targeted device. Some scripts are marked as "intrusive", a categoriza-
tion of scripts that can use significant resources or are likely to crash the
system or service. Scripts within the category "exploit" are scripts that act-
ively attempt to exploit some vulnerability in a system [33]. Utilizing these
types of scripts may not be considered legally acceptable towards devices
not owned by oneself.

The NSE scripts can greatly enhance the functionality of Nmap by
integrating with various external tools and accessing additional data
sources. Additionally, the NSE provides a secure and flexible platform
for writing custom scripts and sharing them with the community. As a
result, the NSE has become an integral part of the Nmap toolkit and has
significantly expanded its capabilities beyond simple network mapping.
For example, NSE was used in the Carna botnet to brute force default telnet
login usernames and passwords toward thousands of hosts.

24

local socket = require("socket")

function action(host, port)
local s = socket.tcp()
s:settimeout(1)
local success = s:connect(host, port)
if success then

s:send("GET / HTTP/1.0\r\n\r\n")
local banner = s:receive()
print(host .. ":" .. port .. " banner: " .. banner)

end
s:close()

end

function run(host, port)
for p = 1, 65535 do action(host, port) end

end

Listing 1: Example of a Nmap NSE script for banner grabbing

The code example in Listing 1 represents a Nmap script implemented in
the Lua programming language. The script aims to establish a connection
towards all possible ports using sockets. First, a new TCP socket is created
with the timeout set to 1 second. The script then attempts to connect to the
designated host and port. If the connection attempt is successful within the
specified time limit, an HTTP request is sent to the server to retrieve the
server’s banner as a response. This request will repeat for every specified
port, which is all possible 65,535. The results of this script are subsequently
printed out as an output. The provided script in Listing 1 offers a basic
example of what is possible with Nmap scripting. More advanced scripts
can automate and look for specific features conveniently. Furthermore, it
allows integration with third-party libraries and tools, further extending its
capabilities.

4.8.1 The Nmap-services File: Mapping Port Numbers to Known
Services and Protocols

The Nmap-services file is a registry connecting port numbers with their
corresponding known services and protocols. The file acts as a lookup
table, with mapped descriptions and popularity for most available ports.
Initially, the file was based on the IANA assigned ports list (0-1023), dis-
cussed in Section 4.4.2. Over time, the registry file has undergone multiple
expansions to encompass a broader range of services for identification pur-
poses. Additionally, these expansions have enabled the identification and
detection of port numbers associated with potentially malicious activities,
such as trojans, worms, and other attacks indicating a compromised device.

The file includes a frequency number, which indicates in percentage

25

how often the port is discovered as open. This frequency is utilized when
users only want to iterate over the most commonly open ports.

After some research and investigation of the frequency percentages, it is
apparent that a significant number of the top most listed ports and associ-
ated services are in less use today. Ports related to non-secure HTTP traffic,
printer ports, Telnet remote access, and Microsoft Netbios are listed among
the top 10, all services that have declined in popularity since 2023. Given
the mentioned findings, an investigation was conducted into how the fre-
quency data was collected and the specific time frame for the data gather-
ing research. It appears that the data was collected through a large-scale
internet scan conducted during the summer of 2008 by Nmaps´s founder
"Fyodor" [34].

The utilization of the service file to iterate through the most common
ports has become less effective compared to its effectiveness at the time of
data collection in 2008. Over the span of 15 years, the adoption of new
protocols has gained population, which is now listed with lower frequency
in Nmap’s services file. Consequently, the frequency percentages reflected
in this file are regarded as outdated and may lead to inaccurate results.
Therefore, relying entirely on this outdated file for port analysis would
result in an improper assessment of current network configurations and
service usage. A comparison is conducted in Section 8.1, where newly
gathered results are compared to the ones listed in the Nmap-services file.

4.8.2 Optimizing Nmap

We previously discussed in Section 4.6 why having as low as possible run
time is essential for not causing delays and overcrowding the scanning pro-
cess. Therefore, Nmap includes several options that allow for optimizing
the scanning time, enabling the adjustment of various parameters. Dur-
ing the testing phase of this master thesis, a considerable amount of time
experimenting with various command parameters to enable and disable
different techniques in Nmap. Some of these tests are explained in detail in
Chapter 6.

A theoretical possibility would be to run multiple instances of jobs of
Nmap simultaneously, dividing the target list evenly to each job; in the art-
icle “Finding the Balance Between Speed & Accuracy During an Internet-
wide Port Scanning,” Capt. Meelo researched optimizing large-scale port
scanning by experimenting with executing both Nmap and Masscan in par-
allel jobs and with different host timeout parameters. [11]

The article’s conclusion revealed that a high number of multiple
parallel jobs containing Nmap tasks had a negative effect on the amount
of discovered ports. Nmap has built-in parallelization capabilities that
already enable the execution of numerous concurrent scanning processes
of multiple targets. Therefore, executing Nmap in multiple parallel jobs
will lead to resource conflict and performance issues, resulting in the

26

discovery of fewer ports. The topic of parallelism is also written about in
the Nmap’s webpage “Execute Concurrent Nmap Instances”, [35] which
conclusions that running multiple parallel Nmap scans against a single
target is inefficient and slow while dividing the scan into large groups and
utilizing different hosts within the network improves speed and efficiency.

4.9 Masscan: A High-Performance Port Scanning Tool

Masscan is an open-source network scanning tool created by Robert Gra-
ham in 2013 [36]. The tool has the capability to identify open ports and
services on a large number of target hosts at high performance. In this
section, we will explore the essential features and capabilities of Masscan,
highlighting its unique abilities.

The most notable feature of Masscan is its ability to perform port scan-
ning at a high rate using the connectionless traffic technique. The Masscan
tool was developed to run faster than Nmap, leveraging an asynchronous
TCP scanning methodology. This approach involves sending TCP SYN
packets and later analyzing the response received from the incoming pack-
ets. The tool does not promptly wait for an answer after sending out the
SYN packet, which allows the tool to continue to send out SYN packages to
the following hosts on the list. This technique is also known as Asynchron-
ous I/O. It allows the program to start multiple SYN connections simultan-
eously without waiting for each previous connection to finish. If the target
port is open, it will send back a TCP SYN-ACK packet, which indicates that
the machine is willing to open a TCP connection. Upon receiving an SYN-
ACK packet, Masscan assumes that the port is open without completing
the three-way TCP handshake typically required to establish if the port is
reachable. This eliminates waiting for the slow three-way TCP handshake.
The program will then send a TCP RST packet toward the target immedi-
ately to close the connection.

Masscan implements a custom TCP/IP stack that facilitates the utiliz-
ation of asynchronous I/O within the program. This custom stack also
minimizes the overhead sent in the Ethernet frame header, which typic-
ally includes packet metadata. Using raw sockets, the operating system
bypasses certain internal checks and enables the capture of all incoming
traffic, effectively functioning as a packet sniffer. Consequently, Masscan
can accurately associate the received SYN-ACK packets with the corres-
ponding scanned host machines, thereby predicting their source.

Using these techniques, Masscan can send millions of packets per
second, allowing for the rapid detection of services on a large scale. The
tool has gained attention after claiming to be able to scan the whole inter-
net within 5 minutes, using a 10GB internet connection, combined with a
network card which allows for a protocol called PF_RING [36].

27

Masscan supports various scanning options allowing for a high level of
customization regarding’ rate, ports, and output. The tool also supports
banner grabbing features that enable users to obtain information about de-
tected running services. Section 6.7 compares the banner information ob-
tained through Masscan and Nmap’s corresponding data, examining the
results’ differences and similarities.

4.10 Rate limiting

Rate limiting refers to the practice of restricting the number of actions a
device or application can perform within a specific time period. Websites
often limit the amount of GET and POST requests one IP address can do
within a given timeframe. Network firewalls and applications may also
limit the number of requests one machine can make to a given host. When
scanning, a firewall can block the traffic from a port scanner after X requests
within Y seconds. This is to prevent the scanner from being able to do re-
cognizance on the host and to limit the amount of network traffic the server
must handle.

Conducting rapid and extensive scanning activities is prone to trigger-
ing firewalls to impose restrictions on the source IP of the scanning device.
For example, it is common for organizations and online services to en-
force limits on the number of requests per second originating from a single
source IP address. Consequently, this may lead to the denial of further
requests and subsequently cause ports that could have been potentially ac-
cessible to appear as closed. Further, the source IP address of the scanner
might be blocked entirely, thereby potentially influencing the results of a
reconnaissance scan.

28

Chapter 5

Identifying Services and
Vulnerabilities

In this chapter, we will discuss further the possible ways of detecting
services and vulnerabilities on services connected to the Internet, including
methods like TLS fingerprinting, favicon hashing, and screenshot analysis
for service identification. Host discovery using ICMP ping is discussed,
along with the limitations imposed by devices blocking ICMP requests.
This chapter also covers software and network vulnerabilities, including
buffer overflow, XSS, and SQL injection, and a way of identifying and
scoring the identified vulnerabilities.

5.1 Uncovering Services: Alternative Techniques

The use of Nmap and other port scanning tools provides a straightforward
and efficient approach to identifying services on target networks. It
is although important to consider alternative techniques for detecting
services. In this section, we will discuss various other methods which
allow for service identification, going through TLS fingerprinting, favicon
hashing, and screenshot analysis.

5.1.1 Utilizing Ping for Host Discovery

The Internet Control Message Protocol (ICMP) is a network protocol util-
ized for error reporting and network diagnostics. This protocol can also
be utilized for host and service discovery on network-connected devices.
To perform this reconnaissance, a message called the ICMP Echo Request
message, commonly known as a ’ping’ is sent towards the target. If the
target device responds with an ICMP Echo Reply message, then it can be
assumed that the target is reachable. The ICMP messages are sent within
the IP layer, meaning features from the transport layer, such as port inform-
ation is not present.

Ping is often utilized by network administrators to identify and
troubleshoot network-related issues. Additionally, the technique can also

29

be utilized at the beginning of a network reconnaissance, to quickly dis-
cover active and reachable network devices, without having to scan a wide
range of ports against it. When identified, a port scan towards the devices
that answered with an ICMP Echo Reply message can be launched. The
port scanning tool Nmap implements this feature by default.

There are however downsides to implementing ping scanning, which
makes the technique not always recommended. Many devices, such as
Windows are set up by default to block incoming ICMP, so utilizing the
above-mentioned method would classify the host as down, even though
the host has active running services. Firewalls are also often configured
to block incoming ICMP requests, further falsely identifying services as
unreachable.

5.1.2 TLS Fingerprinting

TLS fingerprinting is a method used to identify the features of a TLS hand-
shake. The technique can reveal information about the server’s running
software version and operating system. The TLS protocol is used for es-
tablishing a secure network communication session between a client and a
server. In contrast, the TLS handshake is the process of how the securely
created connection is established. TLS fingerprinting relies on the fact that
there can be variations in the TLS handshake process due to the diverse
implementations of the TLS protocol.

To achieve TLS fingerprinting, one must analyze the specific character-
istics of the TLS handshake for the different operating systems and soft-
ware versions. For instance, various versions of the same web server soft-
ware may implement TLS differently, resulting in variations in the TLS
handshake process. By analyzing these variations, one can determine the
specific TLS implementation used.

Ncat, the Netcat-modified tool by Nmap provides the ability to detect
operative system versions by sending a series of TCP/IP packets to the
target system and analyzing the responding target’s TLS fingerprints to
determine the characteristics of the operating systems. It compares the
response towards a database of known patterns and signatures associated
with known various operative systems [37]. This analysis is known as OS
fingerprinting.

An example TLS fingerprint is provided, written in the ja3 format. The
TLS traffic is generated from a host infected with the Neutrino malware.
[38]

30

{
"desc": "Malware Test FP: neutrino-traffic",
"ja3_hash": "fd6bbdf835788b3c7d33372127470a06",
"ja3_str": "769,57-56-53-22-19-10-51-50-47-7-5-4-21-18-9-20-17-8-6-3-255,,"
}

Listing 2: TLS fingerprint example for the Neutrino malware

Looking at the above-mentioned code listing displays ja3_hash and
ja3_str string values. JA3 is a TLS fingerprinting technique that extracts
a distinctive hash value during the establishment of a connection between
a client and a server. This method helps in identifying and categorizing
TLS client applications. Utilizing the ja3_hash technique can assist in the
tracking of Command and Control (C2) server, to detect the widespread
of both infected devices and servers used for spreading various malware.
This enables security analysts to identify and track the usage of specific TLS
client applications and servers associated with C2 activities.

5.1.3 Favicon Hash

A favicon is a small icon present in the browser’s page tab. The word
favicon is short for "favorite icon", and is used to quickly help users identify
web pages in the computer’s browser. Favicon hashing is a technique
that is used to identify web services on a target system, by analyzing the
favicon sent to the client, when requesting the website. The technique
requires computing a hash value of the favicon’s small 16x16 pixel image
and comparing the hash to a database of known favicon hashes. Table
4.2 presents an illustrative example showcasing various web applications
along with their respective favicon hashes.

http.favicon.hash Product/Application
81586312 Jenkins
743365239 Atlassian

2128230701 Chainpoint
-1277814690 LaCie
855273746 JIRA

Table 5.1: Favicon Hash Table [39]

To identify the hash, a simple Python script can be developed to retrieve
the favicon image and generate a hash for the retrieved file. This script can
be expanded by integrating it with a database containing known hashes,
which allows for service detection. For a practical implementation of
favicon hashing for websites, refer to Appendix 11.2 , which includes an
example code demonstrating the process.

31

One limitation of using the favicon hashing technique for detecting
services is its inability to provide information regarding the version of the
detected service. While the method is efficient at detecting services, it may
not always be reliable, in terms of not all websites possessing a favicon.
Due to these limitations, the techniques were deemed beyond the scope of
this thesis.

5.1.4 Website Screenshots for Service Discovery

Implementing a feature that allows for taking screenshots of webpages, can
help to identify services hosted on machines. By visually displaying the
target machines software, users could view a large gallery of screenshots,
and conduct a more in-depth analysis of the services they find interesting.
This feature is provided by the Shodan search engine, allowing users
to view images from services such as websites, web cameras, and open
dashboards for 3D printers [40].

The implementation of website screenshots can be achieved through
the utilization of a Python script or by employing pre-existing tools such as
EyeWitness. EyeWitness facilitates the capturing of screenshots for services
that are detected within the output file of a Nmap scan [41].

This functionality may prove useful in situations where the Nmap tool
fails to identify a service, even though it is evident from browsing the
location that the server is a website containing a web camera feed, for
instance.

5.2 An Overview of Common and High-Risk Vulner-
ability Types

In this section of the master thesis, we will discuss the types of vulnerab-
ilities to look for when designing a vulnerability scanner. There are sev-
eral different types of vulnerabilities that exist in computer systems. One
of the more common types is software vulnerabilities, which occur when
programming errors or flaws in software design leave the system open to
exploitation, which is when the program gives out information that is not
intended. Another type is network vulnerabilities, which arise when weak-
nesses in network protocols, configuration, or devices allow unauthorized
access or data interception. Having knowledge of the most dangerous vul-
nerabilities enables us to concentrate on addressing them as a primary pri-
ority.

Within software vulnerabilities exist multiple different types of specific
vulnerabilities that pose a significant threat to computer systems. One such
vulnerability is a buffer overflow, which occurs when an application or sys-
tem attempts to store more data in a buffer than it was designed to hold,
causing the excess data to spill over into the neighboring memory locations.
This can result in system crashes, data corruption, and even unauthorized
code execution. The vulnerability is ranked as one of the most common

32

software vulnerabilities categorized by the CWE. Common Weakness Enu-
meration (CWE) is a standardized method of identifying and classifying
security vulnerabilities that may exist in software systems. The standard
is developed and maintained by the MITRE Corporation [42]. It is created
as a comprehensive reference for both developers and security profession-
als to better understand potential weaknesses and take appropriate coun-
termeasures. Furthermore, it helps in the development of secure coding
practices, vulnerability detection tools, and effective mitigation strategies,
ultimately contributing to the overall improvement of software security.

Buffer overflows are identified as CWE-787 (Out-of-bounds Write), and
according to the CWE list for 2022, buffer overflow vulnerabilities have a
Common Weakness Scoring System (CWSS) score of 64.20 out of 100, mak-
ing them the highest-ranked vulnerability on the list of the "2022 CWE Top
25 Most Dangerous Software Weaknesses" [43].

Another highly ranked CWE is CWE-79, referred to as "Improper Neut-
ralization of Input During Web Page Generation", commonly known as ’Cross-
site Scripting’ (XSS). XSS vulnerabilities occur when an application in-
cludes data provided by users on a web page, without properly validating
the input. This can allow attackers to execute malicious scripts within the
context of the users’ browsers. The vulnerability can lead to theft of sensit-
ive data, session hijacking, and defacement of web content. This is why the
score for the CWE-79, is set to 45.97 out of 100.

According to Miter, the third most dangerous software weakness is the
Improper Neutralization of Special Elements used in an SQL Command
(’SQL Injection’). SQL Injection vulnerabilities occur when an application
allows for user-supplied data into SQL queries without proper sanitation or
validation of the input. Attackers can exploit this weakness to manipulate
the SQL queries, allowing for modification, deletion, and access to sensitive
data stored in the underlying database.

Verifying attacks like SQL injection poses challenges as they require act-
ive system exploitation. However, when we know about the vulnerability
of a particular version of a database service, it becomes possible to search
for active instances of that specific version. This enables us to easily identify
if the server is vulnerable to SQL injection.

These three mentioned critical vulnerabilities all share a common
theme: insufficient input handling and validation. They all can have severe
consequences, including unauthorized access to sensitive data, execution
of malicious code, and system crashes. This is why vulnerabilities like these
are important to detect, and patch to mitigate the exploitation of devices
that occurs daily.

33

5.3 Vulnerability Detection with Nmap

As discussed in the previous chapter, Nmap is a versatile port-scanning
tool, that allows additional features using the Nmap Scripting Engine
(NSE). A resourceful NSE script named "vulners" allows for vulnerability
detection through an analysis of the banner data distributed by the tar-
get service [44]. The script performs software and host version checks and
compares the version with data stored in the Vulners database. This data-
base collects and archives information about information security vulner-
abilities in software and hardware computer systems [45]. The database is
integrated with the "vulners" script using a simple API. If a correlation is
found between the scanning results and the database, it suggests that the
target system could potentially possess vulnerabilities related to the iden-
tified threat. This vulnerability lookup activity is automatically done by
Nmap and a Vulners database API. Nmap will output the corresponding
vulnerabilities in a list assigned to the host.

The identified vulnerabilities will be allocated a designated Common
Vulnerabilities and Exposures (CVE) identifier. A CVE is a publicly dis-
closed computer-related vulnerability in software products. Each CVE is
assigned to a uniquely identifiable number. An identified CVE contains
a detailed description of the disclosed vulnerability, including the sever-
ity level, and the possible impact. It allows for simple tracing and sharing
of vulnerabilities, enabling organizations to implement necessary adjust-
ments to mitigate potential risks. The CVE system is maintained by the
Mitre Corporation and is widely used in the security industry.

The Vulners NSE script is considered non-intrusive as it does not re-
quire exploding the target to detect any possible vulnerability. It stands
out as one of the few present non-intrusive techniques that enable vulner-
ability assessment of devices at a large scale.

Further in this thesis, a benchmark test of the Vulners script is present
in Section 6.5. In Section 8.3, the results from utilizing the script towards a
large portion of the nation’s devices are presented.

5.4 Classifying vulnerabilities: CVSS System

Having a way of categorizing different identified vulnerabilities allows for
prioritizing the ones classified as the most severe. The CVSS system, short
for Common Vulnerability Scoring System, is a standard used to evalu-
ate the severity of publicly disclosed vulnerabilities. The system was de-
veloped by the US National Infrastructure Advisory Council (NIAC) and first
published in 2004 and is currently maintained by the Forum of Incident Re-
sponse and Security Teams (FIRST) [46]. The scoring system takes multiple
factors into consideration, including ease of exploitation, level of user in-
teraction requirements, and the impact of the vulnerability. The assigned

34

score ranges from 0 to 10, with 10 being the most severe. Vulnerabilities
with a CVSS score of 7 or higher are classified as high and are more likely to
cause significant harm to computer systems. As such, these vulnerabilities
should be prioritized in order to mitigate the potential risk of exploitation.
The system can be used to assess the severity of any security vulnerabil-
ity, not only limited to CVEs, however, CVE identifiers are commonly used
in combination with the CVSS scoring system. Utilizing the CVSS scoring
system, organizations can effectively identify the most critical vulnerabilit-
ies and address them as a priority.

Section 8.3.3, presents a CVSS scoring table with provided data from the
outcomes of a comprehensive vulnerability scan conducted on a significant
number of devices nationwide.

35

Chapter 6

Evaluation

As explored in Chapter 3, a variety of port scanning tools have been iden-
tified, each with its own unique features and limitations. Consequently,
the assessment and comparison of these tools are important in order to
determine their effectiveness and suitability for different scenarios of port
scanning. In this chapter, we will perform a comprehensive analysis of the
strengths and weaknesses of a selected set of tools, which will aid in select-
ing the most appropriate tool and configurations for a given scenario. The
findings presented in this chapter will contribute to the decisions in imple-
menting the UiO SecurityLab Robot.

In the initial phase of the thesis, the possibility of implementing a
port scanning tool from scratch was considered and tested. However,
this approach presented several challenges that hindered the detection
of vulnerabilities on a large number of devices. The tool encountered
issues in regard to features such as banner grabbing for retrieval of
service information, especially in estimating the time interval in which
the tool would listen for replies from the server, before closing the
connection. This timing implication was discussed in greater detail
in Section 4.6. Additionally, the tool demonstrated poor performance,
with only having the capability to reliably scan two ports per second
in the initial implementation. This slow pace was due to the reason of
lack of parallelization. These challenges, which included difficulties in
determining an appropriate time interval for banner and port grabbing,
and ensuring effective overall performance of the tool led to the exploration
of alternative and reliable tools.

36

6.1 Performance and Detection Analysis: Nmap vs.
Masscan

This study aims to compare and evaluate the performance and detection
capabilities of two widely used open-source port scanning tools, namely
Nmap and Masscan. The assessment focuses on detecting services and
measuring the duration of the scanning process. The target network se-
lected for this evaluation is Autonomous System number AS29695, encom-
passing a subnet mask of /17 and comprising approximately 32,768 avail-
able IP addresses. The scanning is conducted specifically to identify web
servers operating on port 80. The evaluation is carried out using a Vir-
tual Private Server (VPS) hosted in the cloud, equipped with a 1 Gbps fiber
internet connection. Various parameter configurations are applied to the
tools to assess their impact on the scan duration. Masscan is executed four
times with different packet transmission rates, while Nmap is tested with
two distinct timing templates: the default -T4 option, which balances speed
and reliability, and the more aggressive -T5 option, intended for faster scan-
ning but potentially leading to incomplete or inaccurate results due to pos-
sible packet drop. The results of this study provide insights into the de-
tection capabilities and time efficiency of the scanning tools, aiding in the
selection of the most suitable tool and configurations.

Tool Used Detected Services Time (s)
Nmap T4 106 6259
Nmap T5 107 1836

Masscan 1000 112 35.3
Masscan 10,000 112 13.8

Masscan 100,000 112 6.5
Masscan 1,000,000 113 3.5

Table 6.1: Network Scanning Tool Performance

The findings of the study indicate that the Masscan tool is significantly
faster to detect open ports, and also, in this case, reports more ports as
being open. The increased speed achieved by the tool can be attributed
to its higher rate of request transmission per second in comparison to
Nmap. It is worth noting that with the specific virtual machine and
configured network card used to perform this test, the traffic rate within
Masscan reaches a maximum value of 200,000 packets per second (PPS).
This is why we only see a two-time speed increase from one hundred
thousand requests per second to one million requests per second. The
findings also suggest that although Masscan demonstrates a considerably
faster speed than Nmap, the rate of operations remains within reasonable
limits. Further, the accuracy of service detection achieved by Masscan is
comparable to that of Nmap.

37

Upon comparing the two different Nmap timing profiles, it becomes
evident that the T5 profile, in this instance, resulted in a scan time that
was three times faster, while detecting nearly the same number of services.
However, it is worth noting that the application of these two profiles pos-
sibly becomes more different when considering banner grabbing, as the T5
profile could potentially lead to a reduced collection of complete banners,
due to the aggressive rate.

Furthermore, it is important to mention that a comparison between
the most aggressive scan of Masscan and the most aggressive scan of
Nmap reveals a substantial speed difference. Specifically, Masscan is
approximately 524 times faster than Nmap in this particular scenario.

6.2 Assessing Public and Individually Collected Port
Information

The purpose of this next test was to compare publicly available port in-
formation obtained from the search engine Shodan, in contrast to utilizing
self-collected data through the usage of open-source port scanning tools.

As of February 9th, 2023, Shodan reports a total of 104,102 open ports
associated with port 80 HTTP within the Norwegian internet infrastruc-
ture [47]. It is worth noting that the number of open port values experi-
ences monthly variations, with fluctuations of approximately 5-10 percent
in either direction, as indicated by the Shodan trends feature.

To perform a comparative analysis, the Masscan port scanning tool was
employed. The scan targeted the entire registry of Autonomous System
Numbers (ASNs) assigned to Norway, containing a total of 16,099,072
distinct IP addresses. The Masscan tool, operating at its maximum rate,
required 245 seconds to complete a port sweep across the entire IP address
range. The scan successfully identified 97,646 open ports on port 80,
seen in Appendix 11.3. Comparing these results with those obtained
from Shodan, a 6 percent variation was observed, suggesting that the
obtained data is not significantly different. Furthermore, the execution
of 16 million requests within 245 seconds calculates to an approximate
rate of 65,710 requests per second. Notably, this rate is lower than that
achieved in the previous performance test, indicating that the performance
of Masscan varies depending on the characteristics of the targeted network
infrastructure.

38

6.3 Assessing Throughput for Large-Scale Port Detec-
tion

An investigation was conducted to assess the theoretical maximum speed
of service discovery by conducting a test scan on a subset of allocated IP
addresses in Norway. This evaluation aimed to determine the approximate
time required to perform discovery scans across different port ranges. The
Masscan tool was configured with a maximum scanning rate of 1,000,000
requests per second. The scan focused on approximately 2.7 million IP
addresses, which included approximately one-fifth of the total allocated
IP addresses in Norway. This subset was chosen as a representative sample
to evaluate the performance of Masscan on a large scale, eliminating the
necessity to gather data for all 16 million addresses in the country.

The choice of port 443 was based on its association with HTTPS
web server protocol, which is a frequent activity on the internet and,
would most likely result in a large number of detected services. The rate
of transmitted packets was calculated by dividing the total number of
destination IP addresses by the overall scan duration of 52 seconds.

2744320
52 sec

= 52775 packets/sec (pps)

Masscan achieved an average transmission rate of 52,775 packets per
second. Despite configuring the tool with a rate parameter of 1 million,
it could only execute approximately 50,000 packets per second. This lim-
itation is attributed to operating the tool within a virtual machine, which
restricts the output to a maximum of 300 kpps (kilo packets per second)
due to buffer overhead. Further, the disk and network configuration of the
virtual machine may also contribute to the low packet rate. Possible ways
to tackle this limitation are discussed in detail in Section 9.8

To estimate the time required to scan the entire IP range allocated to
Norway against a range of 1000 ports, similar to the search engine Shodan’s
scanning approach, the following calculation can be performed by dividing
the total number of packets by the packets sent per second.

16 million IPs × 1000 ports = 16 billion packets

16 billion packets
50000 pps

= 320000 seconds = 88.8 hours

39

For scanning all available TCP ports (65,535), the calculation is as
follows:

16 million IPs × 65535 ports ≈ 1 trillion packets

1 trillion packets
50000 pps

= 5820.5 hours = 242 days

Utilizing the maximum rate of the server hosted for this project, more
discussed in Section 7.6.1, it would take 242 days to execute TCP port
scanning for all available ports. These calculations will be useful for further
analysis in determining the possibility of conducting continuous scanning
for trend analysis.

6.4 Identifying the Most Frequent Network Ports

Following the identification of the outdated Nmap-services file in Section
4.2.5, a subsequent test was conducted to determine a more current and
accurate list of the most commonly open ports in Norway. In order to
gather this data, an analysis was conducted targeting the largest assigned
Autonomous System (AS) in Norway, AS41164, which is affiliated with the
Internet Service Provider (ISP) Telia. This AS contains a /13 subnet com-
prising of 524,286 assigned IP addresses. The IP range is primarily alloc-
ated to residential networks, which may provide insight into the nature of
devices targeted in the scan, indicated by few servers and a high number
of personal devices.

The port scan was configured to evaluate all possible ports, totaling
65,535 distinct ports. While this approach will require a significantly longer
duration compared to scanning a more conventional range of 0-1024 ports,
it offers more comprehensive insights into potential open ports within less
frequently scanned ranges. The following command was employed to
execute the port scan:

masscan 84.208.0.0-84.215.255.255 -p 1-65535 --max-rate=1000000

The command specifies a port range from 1 to 65,535, assessing all pos-
sible ports. The rate was set to a maximum of million packets per second;
however, the actual scanning rate achieved by the machine was discovered
in the previous section to achieve about 52,000 packets per second.

The scan lasted for a duration of 2 days, 1 hour, 40 minutes, and 57
seconds. Throughout this period, the Masscan tool detected a total of
235,305 open ports, resulting in an estimated rate of approximately 1.3
ports detected per second. Upon closer inspection of the results, it becomes
evident that certain IP addresses reoccur numerous times within the data.
Four IP addresses, in particular, respond to tens of thousands of requests,
consequently saturating the scan results file. Potential explanations for this

40

occurrence include firewalls configured to report every port as responsive
in order to obfuscate genuine open ports, or honeypot devices designed
to intercept oncoming attacks and identify scanner IP addresses. Such
activities is discussed further in Section 9.4.1.

After removing the records for IP addresses that potentially caused
false positive responses, the number of open ports was reduced to 42,545,
which accounts for only 18 percent of the previous count. With this revised
dataset, we can proceed to determine the frequency of occurrence for the
most commonly encountered open port.

Figure 6.1: Results of exhaustive TCP port scanning, sorted by the number
of ports detected

The findings reveal a substantial number of open ports on 51005 and
30005, which could potentially be associated with the TR-069 protocol. TR-
069, also known as the Customer Premise Equipment WAN Management
Protocol (CWMP), is a widely utilized standard allowing service providers
and equipment manufacturers to remotely manage, configure and update
their customer’s network-connected devices. This allows the Internet Ser-
vice Provider (ISP) to remotely diagnose and resolve issues as well as apply
security updates to routers and modems. Further examination is necessary
to validate this hypothesis and evaluate the security ramifications associ-
ated with these exposed ports.

Upon further analysis of the identified open ports, it becomes apparent
that numerous frequently encountered ports are present, with a significant

41

number of them being associated with web services. Notably, ports 80,
443, 8443, and 8080 are well known for their connection to web servers,
handling HTTP and HTTPS traffic. These findings indicate a considerable
presence of web servers within the scanned IP range, suggesting that many
individuals may be hosting web services from their residential networks.
The results from this experiment will be used to generate an own list of top
ports in the results Section 8.2.

6.5 Nmap Vulnerability Discovery Rate

In order to determine the time required for conducting Nmap’s vulner-
ability detection on known open ports, a benchmark test was conducted.
The process involved utilizing Masscan to initially identify the open ports
on the target hosts, followed by employing Nmap banner grabbing, along
with the NSE script "vulners" for vulnerability lookup. This test was per-
formed on a limited set of hosts to calculate an approximate average dur-
ation per host. By multiplying the seconds per host by the total number
of network-connected devices, a rough estimation can be obtained for the
overall time required to conduct vulnerability scanning across all internet-
connected devices in the country.

In this experiment, the data from the conducted experiment in Section
6.2 were used. The previous experiment focused on conducting a service
sweep on port 80, identifying 97646 services responding. Subsequently, a
new experiment was conducted to identify vulnerabilities for the respond-
ing services utilizing the Nmap tool, with the NSE script vulners, previ-
ously mentioned in Section 5.3. The goal for this new experiment was to
identify as many possible vulnerabilities on the target systems. The dura-
tion required for this experiment will provide the thesis with an estimated
timeframe for conducting large-scale vulnerability identification.

The process of conducting a service sweep combined with banner
grabbing took a total of 402,693 seconds, equivalent to over four days.
Within this timeframe, the tool successfully identified 91,335 out of the pre-
viously detected 97,646 services. The output file generated by the Nmap
tool consists of an XML file with over 119 MegaBytes in size. This file con-
tains detailed information such as service version, potential vulnerabilities,
and additional data related to each service. To calculate the rate at which
the Nmap tool performs banner grabbing towards the detected hosts, we
can divide the number of services by the number of seconds.

91335 services
402693 seconds

= 4.4 seconds per service

42

Based on the calculated rate of 4.4 seconds per service, the Nmap ban-
ner grabbing feature, when combined with the vulners NSE scrip, demon-
strates a relatively slow performance. When compared to the discovery in
Section 6.3, which revealed that the Masscan tool is capable of transmitting
over 50,000 packets per second to different services, it becomes evident that
the Nmap banner grabbing process is considerably time-consuming.

According to Shodan, there are approximately 800,000 services in
Norway [48]. Utilizing the Masscan tool on Shodan’s indicated port range
of 1200, it is possible to identify these ports within approximately 88 hours
using previously calculated rates. To estimate the total time required to
perform vulnerability detection towards the approximately 800,000 ports,
we can multiply the average duration of 4.4 seconds per service by the
number of services, resulting in approximately 40.7 days. This highlights
the significant time investment necessary for scanning all reported open
ports in Norway. Consequently, conducting large-scale scans on a weekly
or monthly basis is often impractical due to the extensive duration of the
scanning process.

6.6 Assessing Bandwidth and Network Usage in
Large-Scale Port Scanning

This section is dedicated to calculating the necessary bandwidth for
conducting port scanning reconnaissance on a large number of hosts.
The results of this calculation can assist in determining the appropriate
configuration for the host machine that will be utilized for network
operations. During service discovery using the Masscan tool, a total of
three packets are sent to each target port, each containing a specific number
of bytes:

• 54 bytes for the initial SYN packet request.

• 60 bytes for responding RST and ACK if the port is closed, or SYN
and ACK if open.

• 60 bytes for closing the connection with an RST packet.

The number of bytes is retrieved by listening on the network traffic
using the software tool Wireshark. Within this tool, we can see the byte
length for each packet. SYN, ACK, and RST are different TCP flags that can
be present in an IP packet. The TCP flags are explained in greater detail in
Section 4.2.

43

The number of bytes remains consistent for both open and unrespons-
ive ports. In the case of the Masscan tool, the total traffic sent to a TCP
port is determined to be 172 bytes. By utilizing the request rate per second,
as calculated in Section 6.3, the outgoing throughput for the initial SYN
packet requests sent by the Masscan tool can be calculated as follows.

54 bytes × 52,775 PPS = 2,848,770 bytes/s = 22,79016 Mbps

The total traffic generated by scanning all ports of a single IP address
can be determined by multiplying 174 bytes by the number of ports
(65,535), resulting in 10.87 megabytes of data transfer. While this data
volume may appear manageable for an individual IP address, the data
amount become significant when scaled up. For instance, if we were to
scan the entire Norwegian IP range consisting of 16 million IP addresses,
targeting all 65,535 possible network ports, the total number of packets
would approach nearly one trillion, as derived from Section 6.3. To
calculate the total data traffic for such a network operation across the entire
nation, we can multiply the amount of traffic for one IP address by the total
number of IP addresses assigned to Norway.

10.87 MB × 16,000,000 ≈ 173.92 TB

Performing a comprehensive network assessment that involves a
simple SYN scan targeting every assigned service, totaling over 1 trillion,
would result in network traffic exceeding 173 Terabytes. This extensive
scanning process emphasizes the significant volume of data required for
conducting such comprehensive network assessments. It is important
to reduce the number of requests, and network bandwidth sent when
performing large-scale network operations. This reduces the load on
network switches and routers around the nation, which is often not
designed to handle such an amount of traffic.

44

6.7 Comparison of Nmap and Masscan for Banner
Grabbing

The Masscan port scanning tool also includes a banner-grabbing feature,
which allows for service detection. After some initial testing, it is evident
that the features are limited by the fact that the tool does not maintain an
open connection to the target, which makes banner grabbing more difficult
than using more common tools like Nmap or Netcat. As mentioned before
in Section 4.9, when Masscan sends an SYN packet as part of the hand-
shake, it does not maintain the connection open to await the SYN-ACK
response. Instead, upon receiving the SYN-ACK response from the target,
the tool promptly responds with an RST packet. This immediate termin-
ation of the connection prevents the tool from capturing detailed banner
information before the connection is closed.

When experimenting with banner grabbing search across various IP
addresses, comparing the Nmap and the Masscan tool, it is evident that
the Nmap tool is more reliable at retrieving banner information reliability.

Figure 6.2: Comparing Nmap and Masscan banner grabbing

The comparison of the two tools is shown in the figure. The target
device used in the experiment is a Proxmox Debian host. Observing the
banner results, it is clear that both tools successfully identify the two open
ports. However, only Nmap is capable of detecting the corresponding
services and their versions. The banner grabbing feature in Masscan is
deemed ineffective when employed for service detection. Consequently,
this limitation restricts the tool’s effectiveness in performing vulnerability
detection.

45

Chapter 7

Implementation and
development

This chapter focuses on the integration and development of a comprehens-
ive tool for automated network scanning and result storage. Building upon
the previous testing and experimentation with various tools, the goal is
to create a complete solution that integrates the various steps in gather-
ing and presenting network data. The chapter outlines the steps taken to
integrate different components and technologies, enabling the automated
launch of scans and efficient storage of the obtained results. The focus is
placed on the practical implementation and development aspects, allow-
ing for a more efficient and effective scanning workflow. By leveraging the
knowledge gained from previous experiments, this chapter presents a com-
prehensive approach to scanning, resulting in a robust and automated tool
for network reconnaissance.

7.1 Choosing the Right Tools: Combining Nmap and
Masscan

After conducting performance testing, it is evident that Masscan outper-
forms Nmap as a port scanning tool in terms of speed. However, the ef-
fectiveness of both tools in determining the software version running on
a port differs. The Masscan banner grabbing test indicates that it is not
well-suited for this purpose, while Nmap proves to be more suitable.

The choice came to implement both Nmap and Masscan, which allow
for the speed of Masscan, and the accuracy of Nmap. To implement both
these tools, Masscan will first be used to identify services, and then Nmap
will be used to perform detailed banner and vulnerability lookup from the
detected services. Further, the usage of other Nmap NSE (Nmap Scripting
Engine) scripts will be possible, for example using the recent NSE scripts
created by the UK’s National Cyber Security Center (NCSC), which aims at
helping system owners to detect specific vulnerabilities [49].

46

The web article "Finding the Balance Between Speed & Accuracy Dur-
ing an Internet-wide Port Scanning" [11] explores the approach of combin-
ing the Nmap and Masscan tools, using various Linux commands to filter
and pass on the output. Taking inspiration from this web article, we can
integrate the results from both tools, explained in more detail in the next
section.

The decision was made to exclude the implementation of Favicon
hashing and website screenshots due to their insufficient ability to provide
a reliable indication of services and vulnerabilities. Furthermore, these
methods have the potential to expose personal or sensitive information,
which also justifies not implementing these features.

7.2 Optimizing Network Discovery: Masscan and
Nmap Integration

This section will go through the steps implemented for combining the
Nmap and Masscan tools. The combination will result in a detailed and
efficient scanning service. A Python script was created to handle the tool
integration. The script first performs a port discovery scan using Masscan.
Here, the user can provide parameters to specify the port range and rate.
The results from this initial service discovery will be stored in an Extensible
Markup Language (XML) file.

<host endtime="1679331505">
<address addr="89.8.156.51" addrtype="ipv4"/>
<ports>

<port protocol="tcp" portid="6112">
<state state="open" reason="syn-ack" reason_ttl="247"/>

</port>
</ports>

</host>

Figure 7.1: Stored XML information for port discovery

The result stores records for every discovered port, as displayed in the
figure. The record includes most importantly timestamp, IP address, port
number, and port state. With this data, the before mentioned Python script
will create a file for every unique port, seen in Appendix 11.1.

Every IP host responding for each unique port will be added to the
file, resulting in the creation of multiple files, containing a large list of IP
addresses. Additionally, a separate file will be generated to store a list of
all the distinct ports identified, sorted in descending order based on their
frequency of occurrence. Further, Nmap will be executed for every port
in the unique ports list, focusing on the corresponding file containing IP

47

addresses associated with that specific port. The Nmap process will be ex-
ecuted for every unique identified port, with a transition to the subsequent
port as soon as the previous one completes its execution.

The Nmap process will scan the IP addresses once more, with version
detection enabled, and the NSE script named "vulners". Nmap will capture
the services banner information and store the results in XML files for each
unique port. Here, each discovered port would have a record where
banner information and output from the "vulners" NSE (Nmap Scripting
Engine) script are stored. An example of one of these records is provided
in Appendix 11.4.

This example displays a service on port 80, where the banner reveals
the Apache service, with its according version. Further, the NSE script
provides related CVE vulnerabilities for the Apache services. In this partic-
ular example, a service running on port 80 is illustrated, wherein the banner
information discloses the presence of the Apache service along with its cor-
responding version. Additionally, the utilization of the NSE (Nmap Script-
ing Engine) script facilitates the identification of relevant CVE (Common
Vulnerabilities and Exposures) vulnerabilities associated with the Apache
services.

This approach builds upon the methodology outlined in the web
article titled "Finding the Balance Between Speed & Accuracy During
an Internet-wide Port Scanning" [11], which employed Nmap to conduct
supplementary scans for each identified port. However, in the present
implementation, a more efficient strategy is adopted. Instead of conducting
scans for all identified ports across all hosts, a more intelligent approach is
employed, targeting only the identified open ports for each individual host.

7.3 Storing and Visualizing Obtained Results: Elast-
icSearch

The generated scan result files from Nmap lack readability, and their
presentation appears chaotic, as illustrated in Appendix 11.4. To facilit-
ate a more favorable presentation of the results, a decision was made to
adopt a database as a solution for storing the data. This choice enables the
management of a more robust and simple search for the data.

When deciding on a storage method for the scanning results produced
by Nmap, careful consideration should be given to the data format. Nmap
offers various options for storing results, with the XML format being one of
them. Storing this format in conventional relational databases like MySQL
can pose challenges due to the structured nature of such databases. Rela-
tional databases rely on well-defined schemas, which can make it difficult
to store unstructured data like XML files, which is the chosen approach
utilized by Nmap.

48

NoSQL databases, which are specifically designed to handle unstruc-
tured data, may initially appear to be a suitable option for storing Nmap
output results. However, it is worth noting that NoSQL databases, such
as MongoDB and Cassandra, are not ideally suited for efficiently search-
ing and analyzing extensive datasets. These databases lack the advanced
searching capabilities that we need for analyzing and making sense of the
obtained data.

ElasticSearch is a widely used search and analytics engine, built on the
Apache Lucene library, written in Java. It employs a distributed architec-
ture, where data is stored across multiple modes. The data is organized into
indices, which are collections of documents that have similar characterist-
ics. In ElasticSearch, data is stored in a JSON format, and all fields within
each document are indexed to make searching efficient and fast. The search
engine provides a query language (EQL), a powerful and intuitive search
language, which enables users to retrieve and analyze data from Elastic-
Search indices.

ElasticSearch is a component of the ELK stack, which consists of three
different components; ElasticSearch, Logstash, and Kibana, which all work
together to provide a feature-rich database. All of the components are
open-source and are designed to be integrated with each other. The ELK
stack provides an efficient solution for storing data, transforming, and visu-
alizing the data. The following provides a brief description of each com-
ponent:

Elasticsearch is a search and analytics engine that stores and retrieves
data. It is designed in mind to be able to handle large amounts of data in
real time. The search engine provides a feature-rich set of APIs that allows
for integration and interaction with the engine.

Logstash is a data processing pipeline that is designed to manage and
analyze large amounts of log data. The tool is capable of ingesting log data
from a variety of sources and transforming the data into a common format.
The tool can parse, manipulate and enhance data before forwarding it to
other tools, such as Elasticsearch for indexing and searching or Kibana for
visualization.

Kibana is a visualization and dashboard tool that provides a web inter-
face for searching, and visualization data stored in Elasticsearch. Kibana
can generate interactive visualizations based on data stored in Elastic-
search, such as pie charts, bar charts, heat maps, and more. This makes
Kibana a great tool for creating visualization dashboards.

By combining these three components, the ELK stack is formed. In
essence, Elasticsearch provides the data storage, Logstash ingests and
processes the data, and Kibana visualizes the data, and provides a web
dashboard. The ELK stack makes a suitable solution for storing Nmap

49

results because it is the ability to process and parse data using Logstash.
This is why the storage solution was chosen for the project.

7.3.1 Ingesting results into ElasticSearch Database

In order to store the Nmap results in ElasticSearch, the data must go
through a transformation process. This is enabled by the Logstash codec
plugin logstash-codec-nmap, which enables the conversion of Nmap’s stored
data into a format that can be utilized by ElasticSearch [50]. A codec plu-
gin is used to decode and parse data from a specific format, in this case, an
XML file, to a readable format by ElasticSearch.

The logstash-codec-nmap contains a mapping of how the data should be
parsed and mapped to specific fields. Logstash uses codec mapping to un-
derstand the structure of receiving data, and how to parse it into individual
fields. In the case of the Nmap codec, the mapping contains instructions for
how different entries in the Nmap XML file shall be transformed, such as
IP address, port, service, and timestamp. The mapping is used to define
structure and data types of fields within ElasticSearch indexes for storing
the result data from previous network scans using the Nmap tool. Manu-
ally mapping the data can be a time-consuming process. Therefore, Elast-
icSearch, in combination with the Logstash Nmap codec, proves to be a
suitable option since it creates a pipeline to automate the tedious process.

During the exploration of methods to index Nmap results, a project
appeared, which aims at solving the task of ingesting Nmap result data in
ElasticSearch. The GitHub project "elk-nmap" by Bennett Warner combines
the projects of 5 different public GitHub repositories, to an easy-to-deploy
ELK stack, with the capabilities of ingesting Nmap´s XML scan result files
into an ElasticSearch database [51]. The subsequent bullet points provide a
brief overview of each of the merged projects.

50

• The project implements docker-elk, a popular repository that allows
for running the ELK stack with Docker [52]. The repository includes a
configuration file used by Docker Compose to configure the different
services for the ELK stack, which is run within its own containers.

• VulntoES is a GitHub project created by Chris Rimondi, created
to ingest and import results from a range of vulnerability scanner
outputs into ElasticSearch [53]. A provided Python script parses
Nmap XML results and uploads the results to extracted data to
ElasticSearch using a REST API. It extends on the logstash-codec-nmap
Logstash codec plugin, by allowing for mapping of output by the
Nmap NSE script Vulners.

• "Docker_offensive_elk" updates and improves the code from Vul-
ntoES, which is over 6 years old as of February 2023 [54]. The re-
pository also implements code from "docker-elk", to deploy the ELK
stack using Docker.

• Lastly, the combines code from the repositories scan2elk [55] and
vulnscan-parser [56] by the developer happyc0ding, which allows for
parsing scan results from the output of the tools Nessus, testssl,
Nmap, SSLYZE, and Burp Suite. This allows for ingesting data from
other tools than just Nmap, which is something that can be good for
future-proofing the project.

All of these repositories combined make up the elk-nmap repository.
The deployment of the ELK stack, alongside the provided data ingesting
container is straightforward using the provided docker-compose file.
Using the "elk-nmap" repository for ingesting the Nmap results offers a
time-saving advantage. Prior to discovering this consolidated GitHub
repository, considerable effort was invested in attempting to ingest XML
files using the default Nmap codes, followed by the manual inclusion of
mappings for data records associated with the vulners vulnerability lookup
Nmap NSE script.

51

Once successfully indexed, the data is visible in ElasticSearch´s web
interface. Each index is stored as a JSON object, and the discover search
functionality within Elasticsearch offers users an interface to explore ex-
tensive datasets while enabling filtration through the use of a straightfor-
ward query language. The stored data is organized into separate indices,
and the JSON objects can be displayed as a table, where every mapped data
using Logstash codec is present.

Figure 7.2: Example of a document with banner information stored in
ElasticSearch Discovery page for a discovered service

52

7.3.2 Visualizing using the Kibana Dashboard

The Kibana component allows for presenting data in a more visually-
oriented format. The dashboard feature lets users create customizable
dashboards to visualize data. These customizable dashboards allow for
displaying data using various visualization types, such as bar charts, pie
charts, tables, and histograms. A visualization in Kibana uses ElasticSearch
queries to retrieve data. A user can apply ElasticSearch queries and filters
to retrieve only the desired data. This feature is used as a front-end dash-
board for visualizing the results from the large-scale vulnerability scan con-
ducted in the results Chapter 8. Utilizing this functionality, it becomes feas-
ible to generate a dashboard that emulates the Facets feature of the Shodan
search engine, as mentioned in Section 3.3.1.

Figure 7.3: Screenshot of Kibana Dashboard created for the UiO Secur-
ityLab robot

The visualized data presented in the figure was collected before
conducting a full nationwide scan of all ports and IP addresses. As a result,
the data displayed in the figure does only represent a selected portion of
the nation’s infrastructure.

53

7.4 Web Interface to launching Service Discovery

To facilitate vulnerability scanning without requiring users to utilize the
command line shell, a website was developed. The website provides a
simple interface for launching different types of network reconnaissance
activities. The creation of the website involved using Django, a widely-
used open-source web framework designed for building web applications.
Django, written in Python, effectively manages incoming HTTP requests
by leveraging Python’s native web server, commonly known as the "WSGI"
server.

The utilization of Django enables simple handling of incoming POST
and GET requests from clients, and allows the execution of Python scripts
on the server for specified types of actions. The implemented website
utilizes this functionality to execute Python scripts to initiate the running
of Docker images configured to launch scans aimed at targets specified by
the user.

Figure 7.4: Homepage for the UiO SecurityLab robots web interface

CSS was utilized to implement simple styling for the website. The
design was kept simple, and visible. The website contains three main
pages, starting with the home page, where the user is greeted with a page
giving a brief explanation of the purpose of the website. The home page
links to the page for starting a new scan, the most important feature of the
website. This allows for the execution of Masscan and or Nmap scans by
the user. The "Start a new page/Run scan" page initiates access to three
different scan methodology pages, enabling the user to conduct a "Default"
scan, a "Custom Port" scan, or a "Custom Command" scan.

54

The default scan page is designed to conduct a scan command against
the top 1000 most frequently open ports. The user can initiate the scan by
simply entering an IP range or list and pressing the "Start Scan" button. A
screenshot of this page is provided in Figure 11.2 in the Appendix.

In contrast, the custom port scan feature allows a user to specify both
an IP address list and a port list. This feature is great for conducting a ser-
vice sweep against a specific port. Figure 11.3 in the Appendix displays
this page.

Lastly, the custom command scan page allows the user to conduct a
scan using a user-generated command for either Nmap or Masscan. This
page opens up the possibility for the user to conduct a scan utilizing differ-
ent parameters and Nmap NSE scripts. User input is required, which will
be appended after either the Nmap or Masscan command execution. This
feature is displayed in Figure 11.4 in the Appendix.

The results from all of these scan techniques will be ingested into
the ElasticSearch database. A URL redirecting to the ElasticSearch web
interface is also provided on the web server. There, the user can view
visualized graphs and the database entry for the recently conducted
reconnaissance scan.

7.5 Working with Docker

In Section 7.3.1 of the thesis, the reference was made to the utilization of
Docker for integrating database features. Docker is an ideal choice for
hosting the running services of a port scanner due to its features which
allow for robust and scalable deployment of services. Docker runs each
service as an individual container, which provides an isolated environ-
ment for the software. Within this container, all necessary dependencies
and libraries are packaged within the container image, ensuring consistent
deployment across different deployment environments. Utilizing Docker
enables simple deployment processes for services and allows for great con-
trol of configurations to provide a suitable environment. The conversion of
Docker container environments into images enables simple sharing of the
service or application.

These capabilities assist during the deployment of the previously
mentioned port scanner service, ELK stack database, and web server.
Docker will be utilized to host all of these services on one host device.
Every service has a configuration specified in a "Docker-compose" file.
This file specifies configurations such as storage paths, source ports,
and networks, enabling the containers to launch with predetermined
configurations. The usage of "Dockerfiles" is also utilized, which enables
the building of a custom container, allowing for the possibility of deploying
preconfigured Linux images, in this case, used for conducting scanning

55

activities. Provided is the code used to implement the scanning container
in a Dockerfile.

FROM ubuntu : 2 0 . 0 4
ENV DEBIAN_FRONTEND n o n i n t e r a c t i v e

RUN apt update && apt −get i n s t a l l −y
python3 python3−pip nmap net − t o o l s
masscan libpcap −dev

COPY scan . py .
COPY requirements . t x t .
COPY hosts . t x t .
RUN mkdir /f inalOutput
RUN python3 −m pip i n s t a l l −r requirements . t x t
ENV IP ={ $ip }
ENV PORT={ $port }
ENTRYPOINT [" python3 " , " scan . py "]

Figure 7.5: Dockerfile for running a provided Python script

The provided Dockerfile code in the figure builds a Ubuntu container
that performs a port scan toward a list of host and port values provided
as environment variables. The Ubuntu container is configured to update
to the latest version of Ubuntu prior to installing the necessary Linux
tools. Once installed, a Python program script provided will be executed
to initiate the scan.

A Dockerfile is also used to deploy the Django web server, which is
configured to install and run the necessary commands for the instance.
Figure 7.6 displays a diagram of the container flow between the different
Docker containers.

56

Figure 7.6: Overview of implemented Docker containers

The containers communicate with one another, and their interactions
are dependent on the data provided by the prior service. The data flow
process can be described as follows:

1. To initiate the process, a user launches the scanning activity on the
created Django website by selecting the "start scan" button.

2. Thereafter the Django webserver is prompted to execute a script
that launches a docker container with specified entry point variables
provided by the web server.

3. Upon the completion of the scanning activity, the data ingestion
container is launched. This container will parse Nmap XML output
files to extract findings, certificates, ciphers, hosts, and services,
which will be stored in ElasticSearch.

4. During this phase, Logstash is utilized to parse and transform the
scan results data from Elasticsearch using the designated pipeline file
for Nmap.

5. Once the data is transformed, Logstash transmits it to the Elastic-
Search database.

6. Finally, Kibana is employed to execute queries towards ElasticSearch,
retrieving the data required for visualization purposes.

57

Docker containers can by default not talk to each other. Therefore the
Docker mounting feature is used, for allowing the containers to have a
"shared folded" used to transfer data between each other.

7.6 Exploring Hosting Provider Policies on Port Scan-
ning

While the web server for launching scans and the database storing the res-
ults do not pose any issues hosting, the port scanner is expected to generate
a considerable amount of SYN packet traffic towards potentially millions
of hosts. This kind of traffic may be perceived as potentially malicious by
network and hosting providers, which often take appropriate measures in
order to mitigate potential legal consequences that may occur from the gen-
erated scan traffic.

Virtual Private Server (VPS) and cloud computing hosting providers
offer a platform for users to host Software as a service (SaaS) applications
and hardware as a service (HaaS) virtual machines. This type of service
is commonly used to host projects. The providers may, however, not al-
low their services to generate large amounts of SYN traffic or perform port
scanning activities. Both the VPS hosting providers and Internet Service
Providers (ISPs) may have to comply with legal or regulatory compliments
in order to protect their infrastructure against potential malicious activities.
Consequently, they may adopt policies that prohibit users from conducting
activities such as port scanning.

To comply with these legal and regulatory compliments, the hosting
and internet providers require their users to comply with terms of service
that prohibit any form of possible malicious activities. They also may
implement measures to detect possible malicious traffic, utilizing network
monitoring and intrusion detection systems (IDS). The legality of port
scanning activities is discussed in greater detail in Section 9.9.

7.6.1 Norwegian Research and Education Cloud

In order to deploy a large-scale scanning activity and avoid violating the
above-mentioned terms of services, the request was made to Norwegian
Research and Education Cloud, NREC, to use one of their machines for
the network scanning activity. NREC is a cloud service for research and
education purposes, provided in collaboration between the University of
Oslo UiO and the University of Bergen UiB. The service is available for
students and researchers within numerous major universities in Norway
and provides Infrastucture-as-a-Service(IaaS) for users to create instances
of different Linux and Windows distributions. The platform allows for se-
lecting between different resource tiers, limited by a quota, that is tied to
projects.

58

The request towards NREC asked for permission to use an instance
within their cloud computers to conduct large-scale, non-intrusive service
and vulnerability discovering using methods previously explained in this
chapter. After some internal discussion upon receiving my request, they
allowed for the activity and would notify the national cyber security cen-
ter (NCSC) at the National Security Authority (NSM) in Norway about the
planned activity.

59

Chapter 8

Results

This chapter will present the results from a series of conducted network
reconnaissance assessments. By analyzing the identified ports and
comparing them to established port popularity data, we gain insights into
the changing landscape of service usage and potential vulnerabilities. The
purpose of this activity was also to enable a comparison between existing
data and the data we gathered ourselves. Furthermore, we present an
overview of the vulnerabilities detected during the scan, including their
exploitability and severity score. This chapter emphasizes the importance
of up-to-date port popularity data and targeted scanning approaches for
effective network security assessment. Within this chapter, the various
data-gathering activities will complement one another, as the results
obtained from one scan will be utilized in the subsequent analysis.

8.1 Comparing Identified ports against the Nmap-
Service record

This section presents a comparison between the popular ports list used by
Nmap for TCP ports and the results obtained from our own test conduc-
ted in Section 6.4. The previous experiment involved conducting recon-
naissance activity by sending SYN packets to all available 65535 TCP ports
within a specific AS IP address range. The objective was to determine the
port that occurred with the highest frequency.

The port popularity data stored by the Nmap services file was obtained
from research conducted back in 2008, as documented in Section 4.8.1.
It is important to acknowledge that the collected data differ in terms of
timestamp and scale. The conducted scan covered 524,286 IP addresses,
while the data from Nmap is reported to be gathered from tens of millions
of Internet hosts.

The gathered data is converted from a count format to a popularity
percentage format. This conversion is done to ensure consistency in data
representation and align with the data format used by Nmap for storing
port popularity values.

60

Figure 8.1: Comparing Nmaps stored port popularity against the UiO
scanner

The y-axis of the figure presents the most frequently discovered port
from the server hosted at UiO in descending order. On the x-axis, the pop-
ularity frequency number for each port is displayed, indicating the likeli-
hood of the port being open. Analyzing the figure reveals significant dif-
ferences in reported port popularity.

Observing the data, it becomes evident that the usage of certain ports
has undergone significant changes over the past 15 years. For instance,
ports like 23, commonly used by Telnet, have experienced a considerable
decline in popularity over time. These substantial variations suggest
that the stored popularity data in Nmap is likely outdated and requires
updating to reflect the current landscape of service usage. This issue is
further discussed in Section 9.4.

61

8.2 Nation-Wide Port Scanning: An In-Depth Invest-
igation

Recognizing that the commonly used Nmap ports list is no longer up to
date, we took the initiative to update the list and initiate an extensive in-
vestigation encompassing the entire nation’s IP ranges. This assessment
aimed to offer a comprehensive analysis of the distribution of open ports
throughout the nation, which would serve as an indicator for determining
the types of services that will be prioritized when conducting a vulnerabil-
ity assessment later.

The recent scan conducted in the previous section has provided us with
the results that can be filtered and sorted to identify the most frequently
open ports. The results from this sorting process offer an accurate repres-
entation of the ports and services typically exposed to the Norwegian In-
ternet. The scan confined all possible TCP ports, allowing for the identific-
ation of the ports that were most frequently responsive. Based on these dis-
coveries, we compiled a list that included the ports exhibiting the greatest
frequency of positive responses.

Utilizing the compiled list, a subsequent scan was initiated to invest-
igate the top 1000 ports that were previously identified. By focusing our
efforts on these ports, we can significantly reduce the time and resources re-
quired to conduct a comprehensive scan of the entire country. Furthermore,
this targeted approach contributes to a more efficient scanning process and
enables us to obtain accurate and relevant insights into the current state
of network security in Norway. In order to carry out this evaluation, the
Masscan tool was employed due to its demonstrated superiority in terms
of speed.

During a span of 2 days, the Masscan tool was able to find 11,584,412
open ports. After investigating the results, an abnormal pattern was de-
tected in some devices. These devices reported a large number of open
ports. The devices are all contained within the same /13 network, a sub-
set of 16,000 IP addresses reporting exactly 535 open ports. This particu-
lar behavior is commonly linked to the implementation of an SYN cookie
technique used by firewalls to prevent attacks. Further discussion of this
behavior will be discussed in Section 9.4.1. To address this anomaly, IP
addresses with over 500 open ports were removed from the stored results
records, resulting in the identification of 2,071,968 open ports.

62

Figure 8.2: Chart for the top most responding ports

The findings reveal that web servers are the most commonly exposed
devices on the Norwegian network, with ports 443, 80, 8443, 8080,
and 8008 all associated with HTTP and HTTPS web traffic. This is a
predictable outcome, given the widespread use of the internet for browsing
websites, searching for information, and using social media platforms.
These findings underscore the importance of protecting web servers and
implementing security measures for remote management services, as they
are highly susceptible to cyberattacks. The results will contribute to a better
understanding of the nation’s exposed internet network infrastructure.

The second most frequently exposed services are related to the remote
management of hosts. Specifically, ports 7547, 30005, and 51005 are
associated with TR-069, which was previously discussed in the last chapter
as a protocol used by ISPs to manage their customers’ internet routers
remotely.

63

8.3 Results for Service and Vulnerability Scanning

The subsequent section presents the outcomes of a comprehensive Nmap
service and vulnerability search. The data is collected by scanning hosts at
their corresponding open ports as reported in Section 8.2.

After operating for a one-week period, the NREC cloud hosting
provider was contacted due to receiving multiple reactions regarding
the outgoing network activity. Within this timeframe, the UiO robot
successfully performed banner grabbing on the top 35 most frequently
reported open ports detected in the previous scan. The decision was made
to conclude the vulnerability assessment after receiving the complaint
message, to avoid causing any further issues. As a result, the data
presented in this section comprises information extracted from banners
associated with 598,228 ports. Various bash, grep, and awk commands
were employed to extract the relevant information from the XML output
files generated by Nmap. The figure illustrates the most frequently
occurring product value derived from the extracted banner information.

Figure 8.3: Most frequent service detected from banner grabbing

The figure illustrates the software identified on ports that closely align
with the popularity findings presented in Figure 8.2. Among the detected
services, web services are the most frequently encountered, with the Nginx
web service being the most common. It is important to note that the
product field may not be consistently present in a banner, resulting in less
detected software.

64

8.3.1 Amount of Identified Vulnerabilities

From the collected banner grabbing, the Nmap Vulners NSE script allows
us to perform vulnerability lookups using the vulnerability database
described in more detail in Section 5.3.

Figure 8.4: Most frequent CVE detected from banner information

The overall number of detected vulnerabilities in the identified software
is 400,882 CVE records. Out of all the detected CVEs, 1546 unique ones are
detected. The most frequent CVE vulnerability detected was CVE-2021-
41617, seen on 18,630 different IP addresses and involved a vulnerability in
the OpenSSH protocol.

A device can possess several CVE vulnerabilities that can create an
illusion of a higher number of infected devices than the actual count. It
is common for software that consists of multiple components or features to
have multiple CVEs associated with each of these distinct elements.

65

8.3.2 Exploitable against Non-Exploitable vulnerabilities

Identified vulnerabilities may not always be known to be exploitable.
An analysis of the "is_exploit" stored value in the output of the Nmap
vulnerability scan enables the identification of whether the vulnerability
has been labeled as exploitable or not.

<elem key="is_exploit">true</elem>

The "is_exploit" value returns true or false for a given vulnerability. The
difference is crucial in evaluating the potential impact of a vulnerability
on a system and determining the appropriate response. A non-exploitable
CVE vulnerability identifies a security weakness. However, there are no
known methods for an attacker to exploit the vulnerability. While the
classification may offer some relief for security personnel, the identified
non-exploitable vulnerability is valuable and important not to disregard. It
is crucial to address the issue before a potential exploit or proof of concept
exploit becomes available. In addition, the exploit state may change over
time as researchers discover new tools and techniques. The allocation
of vulnerabilities, categorized as exploitable and non-exploitable, can be
represented as follows:

Label Count

True 164,092
False 236,790

Table 8.1: Exploitable vs Non-Exploitable data classification

Looking at the results, we can see that more than half of the detected
vulnerabilities are not classified as exploitable, which is information
assessed by the vulners database, described in Section 5.3.

66

8.3.3 CVSS scoring

Various CVEs have different levels of severity. Each CVE is allocated
a CVE score that represents its severity. Additionally, some CVEs lack
public proof of concept (POC), which hinders adversaries from exploiting
the vulnerability. The Common Vulnerability Scoring System (CVSS)
score ranges from 0-10, where 10 is the highest severity. The CVSS
system was described in greater detail in Section 5.4. From our previous
vulnerability assessment, we can extract the CVSS identified scores, and
plot the numbers in a table.

CVSS Score Count Percentage
0-1 36098 9.0%
1-2 0 0.0%
2-3 0 0.0%
3-4 1752 0.44%
4-5 49649 12.38%
5-6 120151 29.97%
6-7 46369 11.57%
7-8 111270 27.76%
8-9 0 0.0%

9-10 25255 6.3%
Total 400882 100%

Table 8.2: Distribution of vulnerabilities by CVSS Scores

The presented table showcases the distribution of CVSS scores associ-
ated with the detected CVEs. Analyzing the distribution of CVSS scores
reveals that the identified vulnerabilities show a broad range of severity
levels, with a median score of 6-7.

Vulnerabilities with a high CVSS score of 9 to 10 are considered critical
and require immediate attention. Knowing the CVSS score of a CVE can
help security teams to prioritize the vulnerability by assessing the most
critical vulnerabilities that require immediate attention. On the other hand,
vulnerabilities with scores of 5 or below are generally regarded as less
severe and can be addressed at a later stage, allowing security teams to
allocate resources appropriately and focus on mitigating the most pressing
risks first. This prioritization approach enables organizations to enhance
their overall security posture by efficiently addressing vulnerabilities based
on their severity levels.

67

Chapter 9

Discussion

This chapter will compare, analyze and discuss the results presented in
the previous chapter, along with the challenges encountered during the
implementation of a software and vulnerability scanning service. Through
this discussion, the intention is to provide a wider context of the findings
in the results chapter.

The discussion chapter will also cover potential areas for future work
that can support the project. By exploring additional possibilities for
investigation and development, this section will contribute to the overall
progress and enhancement of the project’s results.

9.1 Port Detection Compared to Shodan

From the data gathered in Section 8.2, we can compare the results against
data collected from the Shodan search engine platform. A thorough eval-
uation of the developed scanning service can be achieved by comparing it
to a well-established service and examining the similarities and differences
between the two datasets. This will provide valuable insight into its effect-
iveness.

We can compare the occurrences for the most common ports against
ports reported by Shodan, as mentioned in the source referenced in [57],
obtained in March 2023.

68

Figure 9.1: List of the 20 most frequent open ports as of March 24, 2023.

An analysis of reported open ports from both the UiO scanner and
Shodan indicates similar patterns. The results are sorted based on those
reported by UiO rather than Shodan. As previously discussed in Section
8.2, the most occurring open ports are associated with web traffic. The
identification of web ports 80 and 443, which are commonly used for HTTP
and HTTPS protocols, was observed by both Shodan and the locally hos-
ted scanner at UiO. Notably, Shodan’s detection of these ports exceeded the
locally developed scanner’s detection rate by approximately 15 percent.

When comparing the remaining scanning result data with the Facet
Analysis tool of the Shodan database, the most notable difference in port
occurrence is observed for the lack of Shodan identifying the ports 51005
and 30005, known to be associated with the TR-069 application protocol. A
potential reason for this is explained later in Section 9.4.

9.2 Service Detection Compared to Shodan

The primary objective of this section is to perform a comparative analysis of
the detection capabilities concerning services running on Norwegian hosts.
This analysis is based on observations made by the UiO scanner and the
data collected from the Shodan search engine. The aim is to assess the
effectiveness of the UiO Robot in detecting services in comparison to the
well-established Shodan service.

To accomplish this, data was gathered from both sources in March 2023.
The detected services by the UiO robot are previously presented in Figure
8.3. The analysis will focus on identifying the most frequently detected

69

services in Norway by Shodan and compare them with the number of
times the UiO robot detected them. The following figure was generated
to represent the findings.

Figure 9.2: Comparing Shodan and UiO robot service detection results

Upon examining the comparison, it becomes evident that the UiO robot
fails to identify all of the most commonly detected services identified by
Shodan. One possible reason for this could be that a considerable number
of detected ports lack accurate product descriptions. Consequently, it be-
comes crucial to explore alternative parameters that can facilitate accurate
identification of the product description. Shodan utilizes TLS fingerprint-
ing as a mechanism to identify more specific services, thereby enabling the
determination of the product even in situations where the product field is
not present. This approach is particularly useful in cases such as identify-
ing the Chromecast product, displayed second to last in Figure 9.2.

The cause of the insufficient detection of Cisco services can be traced
back to the compilation of the frequently opened port list, as outlined in
Section 6.4. According to the Shodan search engine, these services are com-
monly found on TCP port 161. The data obtained in Section 8.2 reveals that
port 161 has only been identified 2851 times by the UiO scanner, ranking
it as the 339th most frequently opened port. Ideally, performing banner
grabbing and version detection on this port would have been preferable.
However, unfortunately, as explained in Section 8.3, the detailed banner
grabbing had to be terminated due to numerous complaints received to-
wards UiOCERT regarding the network activity generated by the scanner.

Nonetheless, before being stopped, the scanner was able to perform de-
tailed banner grabbing and vulnerability identification on the top 35 iden-
tified services towards 616,405 ports. This accounts for over 30 percent of
the 2 million open ports detected in Norway, indicating a moderate level of

70

coverage.

9.3 Vulnerabilities Detected Compared to Shodan

This section aims to compare the detection of software vulnerabilities clas-
sified with a CVE number detected by the UiO SecurityLab Robot against
the public internet search engine Shodan. The results will be analyzed
to determine how well the UiO Robot compares to the well-established
Shodan service. The data gathered from both the Shodan service and UiO
Robot was retrieved in March 2023. To compare the data, the following fig-
ure was generated to represent the findings of the most frequently detected
CVEs by Shodan in Norway, compared with the number of times the UiO
robot detected them.

Figure 9.3: Comparison of Shodan vs. UiO Robot CVE detection

The graph presents a comparison of findings, indicating that the num-
ber of CVEs identified by Shodan is greater than those detected by the UiO
scanner. Additionally, the data reveal that certain CVEs, which were fre-
quently identified by the UiO Robot scanner in Figure 8.4, were either less
frequently detected or not detected at all by the Shodan services.

The presence of the top 41 CVE vulnerabilities detected by Shodan cor-
relates with Apache web server vulnerabilities, which is not surprising
considering it is one of the most commonly detected services. [58]. The
findings differ from those obtained by the UiO scanner, where OpenSSH

71

emerges as the most frequently identified vulnerability. Thus, there is a dis-
parity in the identification of vulnerabilities between the two approaches.

As discussed in the previous section, some of the missing identified
vulnerabilities could be the result of the scanner having to stop performing
vulnerability identification, due to complaints received about the network
activity generated by the scanner machine.

9.4 Analyzing the Detected Results

The results obtained from the network scanning experiments reveal com-
parable detection to the Shodan search engine. Analysis of the service and
vulnerability detection activities conducted earlier revealed that web ser-
vices on ports 443, 80, 8443, 8080, and 8008 are the most commonly ex-
posed and vulnerable services. These findings align with the results ob-
tained from the Shodan search engine service. This highlights the import-
ance of protecting web services, as they are highly exposed to incoming
attacks, especially since the top 41 CVEs identified by Shodan are related
to Apache web servers.

In terms of web server product security, Figure 9.2 of the product ban-
ner information illustrates that the Nginx web server is more widely used
than Apache. However, by looking at the identified CVEs, Apache exhibits
a higher vulnerability detection than Nginx, indicating that it is generally
more prone to vulnerabilities. While web servers ranked highest in vulner-
ability detection according to Shodan, it is worth noting that among the top
vulnerabilities detected by UiO, there are multiple identified vulnerabilit-
ies specific to devices running the OpenSSH service.

The reason for the high amount of identified CVE vulnerabilities in Sec-
tion 8.3.1 is due to that multiple identified vulnerable services have mul-
tiple CVEs assigned for each identified vulnerability.

The findings from performing a selected scan of the home provider in-
ternet service provider (ISP) in Section 6.4 revealed a substantial number
of devices with open ports related to TR-069. These devices listening for
traffic on ports 30005, and 51005 indicate a relation to the TR-069 protocol,
a protocol used for applications enabling remote management and provi-
sion access of the customer’s ISP network router. Even though TR-069 was
detected most amount of times, the port was not identified to the same ex-
tent when conducting a port scan toward the entire nation in Section 8.2.
One possible explanation for this anomaly is that the service is specific for
router devices hosted on Internet Service Providers (ISPs) networks, result-
ing in a higher rate of devices supporting the TR-069 service compared to
other enterprise networks. Even though TR-069 is a commonly open port,
the vulners database engine did only detect a few CVE vulnerabilities re-
lated to the service from the gathered data.

72

The TR-069 protocol is not detected within the Shodan search engine for
the country of Norway, however, detection for the service is largely present
in the United States. In the USA, the protocol is commonly on port 7547,
however, in Norway, TR-069 is more present on ports 30005 and 51005. A
reason for this can be that Shodan only apparently scans for about 1225
ports, mentioned earlier in section 4.5, and the ports 30005 and 51005 do
not appear to be in one of them.

The TR-069 protocol does not appear to be detected within the Shodan
search engine for the country of Norway. However, considerable detection
of this service is observed in the United States. In the USA, the protocol
is commonly found on port 7547, whereas in Norway, TR-069 is more fre-
quently encountered on ports 30005 and 51005. One possible explanation
for the lack of detection could be that Shodan’s scanning coverage is lim-
ited to approximately 1225 ports, as previously mentioned in Section 4.5,
and ports 30005 and 51005 do not appear to be included among them. This
observation highlights a constraint of Shodan’s scanning capabilities, as it
focuses on a relatively limited range of approximately 1225 ports, thereby
restricting the detection of potential services.

The analysis comparing the most common ports listed by Nmap with
the results obtained from the test in Section 8.1 shows that the usage of
specific ports has changed significantly over the past 15 years. This finding
suggests that the currently stored popularity data by Nmap may not be up-
to-day for the services which are currently utilized today and may require a
change. When conducting network reconnaissance using the Nmap tool, it
is typical to specify parameters such as -F, –top-ports, or no port parameter
at all. These commands indicate the target port number, utilizing either a
fast scan or a "top-ports" scan that emphasizes selecting the most frequently
used ports. By default, Nmap uses the registry list from "Nmap-services"
to conduct scanning activities, when no specific ports are specified by the
user. It should be noted that if this list is outdated, it can significantly im-
pact the efficiency of users’ deployed scans, requiring them to scan a larger
number of ports to achieve optimal results.

Considering that Nmap is an open-source tool, there exists the possib-
ility of contributing to the project by creating pull requests in the associ-
ated GitHub repository and providing a more updated popularity number
of utilized ports and services. This initiative would enable users to con-
duct network scans that are more effective, accurate, and likely to identify
a greater range of services.

73

9.4.1 Unveiling False Positives: SYN Cookies

During the comprehensive scan conducted across all possible TCP ports
(Section 8.2), an abnormal pattern was detected on some devices, where
they reported a large number of open ports. All these devices were con-
tained within the same /13 network, including over 16,000 IP addresses,
each reporting on exactly 535 open ports. Consequently, this scanning
activity led to the identification of over 8.5 million additional open ports
on a national scale.

After some investigations suggest that this behavior can be attributed to
the utilization of an SYN cookie technique implemented by firewalls. SYN
cookies are employed as a defensive measure against SYN Flood Denial of
Service (DoS) attacks. This technique limits the total number of half-open
connections, in order to prevent attackers from overloading the server with
connections. The firewall responds with an SYN-ACK packet to the cli-
ent before receiving the final ACK packet to complete the three-way hand-
shake. The technique mitigates the server having to keep a backlog of half-
open connections, which can be used to overload the server with connec-
tion requests.

While the use of SYN cookies helps to prevent DoS attacks, it can
also prevent the detection of network reconnaissance activities, by falsely
presenting a port as open, as the result of an incoming SYN packer will
always respond with an SYN-ACK packet, regarding of the ports state.
This will result in the port status falsely classifying the port as open and
will result in an overestimation of the number of open ports on networks.
In light of this issue, the NSM Allvis Nord service recommends that its
users should whitelist their scanner’s IP addresses, to avoid false positive
detection of open ports [59].

9.5 Complains and Detection for the Conducted Scan-
ning Activity

As mentioned briefly in Section 8.3, UiO-CERT reached out, informing of
several reactions received regarding activities from the IP address used for
collecting information. The cause or source of the commendations received
by the actors involved was not explicitly specified, but it is presumed to
originate from individuals or organizations within the Norwegian IP range
infrastructure.

It is likely that the reactions were due to a large number of port requests
sent to internet-exposed infrastructures within a short period. Large-scale
reconnaissance as performed by the UiO SecurityLab robot could also be
implemented by threat actors, seeking simple ways to intrude into an
actor’s network. The received traffic could also in some cases act as a low-
scale SYN flood DoS attack, based on the number of SYN packets sent.

74

9.6 Choosing Appropriate Scan Intervals for Network
Assessments

Selecting the appropriate scan frequency is a crucial aspect for effectively
detecting trends in the threat landscape. The assessments would need to
be performed at regular intervals, in order to detect changes in activity
from internet-connected devices. However, frequent network assessments
can result in network noise and produce only slight variations in the res-
ults obtained. Regarding assessment frequency, the Shodan search engine’s
feature "Trends" displays a monthly interval. This approach allows for de-
tecting new trends in online internet devices over time.

In our study from Section 6.3, we determined that performing detection
towards all ports would take 242 days, making large-scale scanning activ-
ities at this scope an impractical task. As discovered in Section 4.5, Shodan
only performs requests towards about 1225 ports, according to a Twitter
post by their official account as of 2020 [30], making a monthly approach
more feasible. In our study from Section 6.5, we determined that conduct-
ing a vulnerability assessment on all ports identified through the use of
Masscan on the top 1000 ports would require approximately 40 days when
performed from a single host. This makes a monthly interval frequency
impractical for the UiO Robot scanner. In Section 9.8, methods to reduce
the scan time will be discussed.

In the scenario where the UiO scanning Robot is hosted by a provider
that permits constant network reconnaissance, it could be set up to conduct
scans every two months. This will enable students and researchers to com-
pare the outcomes of the scans conducted during alternate months.

In conclusion, selecting an appropriate scanning frequency is a crucial
factor in network scanning that necessitates thoughtful consideration.
Choosing a bimonthly scanning frequency strikes a balance between
conducting regular scans and preventing excessive network noise and
complaints.

75

9.7 Limitations

The results obtained in this study have some limitations that must be taken
into consideration. One significant limitation is the slow performance of
the scanning process, which restricts the frequency of scans that can be
conducted. This can affect the comprehensiveness of the scan results and
limit the ability to detect changes in the threat landscape, as discussed in
the previous section. Additionally, the lack of detailed service descriptions
for detected ports may limit the ability to identify all potential threats.

In addition to these limitations, several challenges emerged during the
project’s development. One major challenge was the occurrence of data-
base indexing bugs, which resulted in less accurate mapping of certain
CVEs than expected. Furthermore, not all records were successfully added
to the database during indexing, impacting the completeness of the data.
The GitHub repositories used for data ingestion, as explained in Section
7.3.1, did not appear to support the ingestion of such large amounts of data
as collected in this project. These challenges highlight the need for ongo-
ing development and refinement to ensure the effectiveness and accuracy
of the scanning process.

Furthermore, it is important to note that the various tests were
conducted at different times, which may have led to variations in the
results. Certain services might have been inaccessible during one scan but
available during another. Furthermore, some of the previously scanned
IPs could be behind a firewall is configured to block incoming traffic from
IP addresses previously known to perform reconnaissance activities. To
mitigate this issue, future research could consider conducting each testing
stage from different machines with different IP addresses.

9.8 Further Research and Work

In this section, we discuss possible directions for further research and de-
velopment to address the limitations of the scanning process and enhance
its effectiveness. One area that requires attention is the optimization of
the scanning process to improve its performance and enable more frequent
scans. To achieve this, it would be necessary to explore ways to reduce the
time required for port and banner grabbing, by further analyzing the over-
head and latency introduced by virtual machines and hypervisors, which
can impact the speed of Nmap scans. One possible solution could be to
use a bare metal system, which can offer more direct access to hardware
resources, allowing Nmap to run faster and more efficiently. Additionally,
the scanner could be set up with multiple computers on different IP ad-
dresses scanning a section of their own, which would reduce the scanning
time and noise detection by ISP or firewalls. This technique is reportedly
used by the Shodan search engine, having multiple hosts with each its own
public IP address, configured to perform network reconnaissance activities

76

towards separate parts of the internet.

Furthermore, implementing a way of notifying about the intent of the
scanning activity could also be implemented. Deploying a website with
information, and linking the website as a custom user agent when con-
ducting scanning activities could be a helpful step in avoiding complaints
for the scanning activity. Security personnel could then be informed about
the activity, and a form could also be created in order for companies to fill
out and send in, to avoid being scanned further. This feature would help to
reduce the incoming complaints mentioned in Section 9.5.

Another area for further development is usability which allows users to
launch network scan activities. For instance, implementing additional fea-
tures on the webpage implemented in Section 7.4, allowing for more fine
control of the scanner, without having to utilize a Linux terminal, would
make it easier for users to customize the scanning process to their needs
and preferences.

The scanning of UDP ports is also an important step to detect further
services. As mentioned in Section4.3, UDP services are much harder to de-
tect than TCP and also require much more time. This is why the protocol
was cut out in this project. Further research into methods for detecting ser-
vices on the protocol could be conducted, which would help in allowing
for the detection of UDP services.

The implementation of selecting target IP addresses at random would
reduce concurrent traffic towards the same network infrastructure at once,
reducing the probability of performing a denial of service attack towards
switches and routers not capable of handling large amounts of incoming
SYN packets.

Lastly, some improvements could be made to the storage and manage-
ment of scan results. For instance, adding better timestamps for the results
stored in ElasticSearch would make it easier to analyze and interpret the
data. Furthermore, adding a button or function for the user to easily empty
the stored data in ElasticSearch would improve the user experience and
help manage the storage space.

77

9.9 Legal and Ethical Implications

Port scanning, although not necessarily illegal, can result in severe
consequences. Since it is often the first step attackers use to scope out a
target, which makes the intent of the scanning activity malicious. However,
the objective of this project is not to facilitate attacks, but rather to pinpoint
devices that are vulnerable due to open ports.

From a legal perspective, port scanning is a bit unclear because the in-
ternet is open and not controlled by one authority. In order to successfully
prosecute individuals for port scanning, it is necessary to provide evidence
that demonstrates their intent to gain unauthorized access or infiltrate a
system, rather than simply performing a port scan.

Although it is uncommon, there have been instances of legal cases
involving port scanning without subsequent hacking attacks. One not-
able case involves Scott Moulton, who was contracted to connect a router
between the Georgia Police Department with the 911 call center [60]. Scott,
concerned about potential risks to the security of the E911 Center, took the
initiative to conduct preliminary port scanning on the involved networks.
During this process, he scanned the Cherokee County web server. This web
server was maintained by the consulting firm VC3, which notified the po-
lice about Scott´s scanning activity. This caused Scott to lose his contract
with the 911 call center, and was arrested for violating the "Computer Fraud
and Abuse Act of America". The case against Scott was dismissed before trial,
indicating that the case lacked sufficient legal grounds or valid arguments
to proceed.

Port scanning’s legality is unclear due to the decentralized internet. Dif-
ferentiating between malicious intent and legitimate security assessments
is crucial. For a more in-depth discussion of legal issues and similar cases,
please refer to the source mentioned above for Scott’s case at [60].

78

Chapter 10

Conclusion

The concluding chapter of this thesis will summarize the key findings from
the results, addressing the research questions outlined in the introduction.
The central research question proposed initially was to assess the number
of devices in Norway that are accessible via the Internet, and the sub-
sequent questions aimed to investigate the vulnerability status of these
devices, as well as the challenges involved in creating a platform capable
of scanning for vulnerabilities.

The initial research question (Q.1) aimed to assess the number of
internet-accessible devices in Norway. The results demonstrated that the
developed platform scanner, as presented in the preceding chapters, can
facilitate nationwide network scan activities, providing a reliable answer
to this question.

The second question (Q.2) further explored how we could identify
device vulnerabilities and how our solution compares to other available al-
ternatives. Our scanner could identify vulnerabilities for internet-exposed
outdated software, resulting in 400,882 identified CVE vulnerabilities as of
March 2023. This finding shows that the scanner can conduct detailed vul-
nerability assessments, directly answering our second research question.

The final question (Q.3) relate to the obstacles encountered when
creating a platform capable of identifying service and vulnerabilities.
During the development process, we overcame challenges such as slow
packet rates, outdated frequent port lists, complaints, and legal issues.
Despite these obstacles, we successfully developed the first demo version
of the UiO SecurityLab robot to scan specific parts of the Internet.

79

We experimented with different ways of addressing the port status for
network devices, and the results provided insights into their comparable
effectiveness. In our comparison, Masscan emerged as a faster option than
Nmap due to its different scanning approach, speed optimization, smaller
packet sizes, and absence of service discovery. However, the lack of certain
features in Masscan suggests that Nmap may be more suitable for more
complex detailed types of scans.

Further, our study revealed that Nmap’s most commonly used port list
appears outdated, indicating a significant shift in online services since 2008.
This discovery highlights the need for updated port lists to accurately and
effectively scan today’s internet landscape.

The Shodan search engine provided a noteworthy representation of
the Norwegian service landscape, demonstrating its ability to capture and
present valuable insights into the diverse range of services present in Nor-
way. We also conclude that the solution often fails to scan all meaningful
ports. This oversight can result in missing service detection, resulting in
the need for a more comprehensive scanning solution.

In summation, this thesis contributes valuable insights into the land-
scape of internet-accessible devices in Norway, their vulnerability status,
and the development of a platform to conduct nationwide assessments.

80

Chapter 11

Appendix

The full code implemented for this project can be found at the following
GitHub repository: https://github.com/haraldaarz/MasterThesis.

List of Selected Ports from Nmap’s Services File

The following displays the 14 most popular services on the internet accord-
ing to Nmap´s "Well Known Port list".

To generate the output, the following Linux command was used:

awk '$2~/tcp$/' /usr/share/nmap/nmap-services | sort -r -k3 | head -n 14

Results:

http 80/tcp 0.484143 # World Wide Web HTTP
telnet 23/tcp 0.221265
https 443/tcp 0.208669 # secure http (SSL)
ftp 21/tcp 0.197667 # File Transfer [Control]
ssh 22/tcp 0.182286 # Secure Shell Login
smtp 25/tcp 0.131314 # Simple Mail Transfer
rdp 3389/tcp 0.083904 # Microsoft Remote Display Protocol
pop3 110/tcp 0.077142 # PostOffice V.3
microsoft-ds 445/tcp 0.056944 # SMB directly over IP
netbios-ssn 139/tcp 0.050809 # NETBIOS Session Service
imap 143/tcp 0.050420 # Interim Mail Access Protocol v2
domain 53/tcp 0.048463 # Domain Name Server
msrpc 135/tcp 0.047798 # epmap | Microsoft RPC services
mysql 3306/tcp 0.045390

82

https://github.com/haraldaarz/MasterThesis

11.1 Code for the Main Scanning Function

import os
import time
import sys
import argparse

print current date
currentDate = time.strftime("%d-%m-%Y-%H:%M:%S")
scanfile = "masscanOUT3.txt"
portsandIP = "portsandIP.txt"
sortedPorts = "sortedPorts.txt"
onlyPorts = "onlyPorts.txt"
uPorts = "uniqPorts.txt"

def inputIps(ips): # Stores provided IP addresses in a file
os.system("rm hosts2.txt")

with open ("hosts2.txt", "a+") as file:
for ip in ips:

file.write(ip + "\n")
else :

print("No IP addresses entered")

def discoveryScan():
Discovery Scan
masscan all ports on all hosts
Output number of open ports and IP addresses to a file
date = time.strftime("%d-%m-%Y-%H:%M:%S")
os.system('masscan -iL hosts.txt -p1-65535 --max-rate 100000
-oX discoveryScan' + date + ' --wait 20')
os.system('cp hosts.txt ' + "discoveryScan_" + date)

def masscanExecute2(ports, rate):
print("Starting masscan")
os.system('masscan ' + '-iL hosts.txt -p' + ports
+ ' --rate ' + rate + ' -oL ' + ' masscanOUT3.txt --wait 20')

Create a file for each open port
def uniquePorts():

print("Creating files for each port")
os.system("awk '{ print $3 }' " + scanfile +
" | sort -u -n | grep '\S' | awk 'NF' >" + uPorts + "")
print("Check 1")

if not os.path.exists('ports'):
os.makedirs('ports')

with open(uPorts, "r+") as f:
for line in f:

filename = "ports/" + line.strip() + ".txt" # port filename

83

if filename == "0.txt":
print("A file with the name 0.txt is created")

os.system("touch " + filename) # create a file for each port
print("Created the file: " + filename)
if the file is empty, remove it
if os.stat(filename).st_size == 0:

os.remove(filename)

def parsefile(): # Takes input from masscan -oL file
print("Parsing ports and IP addresses to corresponding files")
with open (scanfile , "r+") as f:

if f.read(1):
os.system("awk '{print $3 \" \" $4}' " + scanfile +
" | grep '\S' > '" + portsandIP + "'")

else:
print("File is empty 2")
sys.exit()

with open(portsandIP, "r+") as f:
if f.read(1):

os.system("sort -k1 -n -t ' ' " + portsandIP +
" | awk 'NF' > '" + sortedPorts + "'")

else:
print("File is empty 3")
sys.exit()

with open(sortedPorts, "r+") as f:
for line in f:

port = line.split()[0] # Get the port
ip = line.split()[1] # Get the IP

#store the port and ip in a file named after the port
filename = "ports/" + port + ".txt"
with open(filename, "a+") as f:

f.write(ip + "\n")

print("Done parsing ports and IP addresses to corresponding files")

def mostUsedPortOrder(): # Start nmap on the most used ports first
ports = sortedPorts
os.system("cat " + scanfile + "| awk '{print $3}' |
sort | uniq -c | sort -nr | awk '{print $2}' | grep '\S' > " + onlyPorts + "")

def nmapExecute():
run nmap on each of the port files. Starting with the most used port
nmap on the ports with banners found in the
masscan output file to separate files for each port
if not os.path.exists('outputs'):

os.makedirs('outputs')

84

print("Starting Nmap")

with open (onlyPorts, "r+") as f:
for line in f:

print("Ports:", line)

port = line.strip()
hosts = "ports/" + port + ".txt"
outputFile = "outputs/nmapOutput-" + port + ".xml"

os.system("nmap -sV -T5 -Pn -n --open --script=vulners
-iL " + hosts + " -p " + port + " -oX " + outputFile) #+ " >/dev/null")

print("Done with Nmap")

if __name__ == "__main__":

if len(sys.argv) == 2:
port = sys.argv[1]
masscanExecute2(port, "10000")

if len(sys.argv) == 3:
port = sys.argv[1]
ips = sys.argv[2]
with open("hosts.txt", "w+") as f:

f.write(ips)
masscanExecute2(port, "10000")

if len(sys.argv) == 4:
port = sys.argv[1]
ips = sys.argv[2]
rate = sys.argv[3]
with open("hosts.txt", "w+") as f:

f.write(ips)
masscanExecute2(port, rate)

uniquePorts()
parsefile()
mostUsedPortOrder()
nmapExecute()
#discoveryScan()

85

11.2 Script to detect Favicon Hash

import mmh3
import sys
import codecs
import requests

if len(sys.argv) != 2:
print(f"Usage: {sys.argv[0]} [Favicon URL]")
sys.exit(0)

try:
response = requests.get(sys.argv[1])
favicon = codecs.encode(response.content, 'base64')
hash = mmh3.hash(favicon)
print(f"Favicon Hash: {hash}")

except Exception as e:
print(f"Error occured as: {e}", file=sys.stderr)

11.3 Masscan Service Discovery Test

Terminal Output

Starting masscan 1.0.5 (http://bit.ly/14GZzcT) at 2023-02-09 21:11:59 GMT
Forced options: -sS -Pn -n --randomize-hosts -v --send-eth
Initiating SYN Stealth Scan
Scanning 16,099,072 hosts [1 port/host]
Rate: 0.00-kpps, 100.00% done, waiting 2 seconds, found 97,646

11.4 Nmap banner XML results

<host starttime="1676085874" endtime="1676088263">
<status state="up" reason="user-set" reason_ttl="0"/>
<address addr="78.26.22.37" addrtype="ipv4"/>
<hostnames></hostnames>
<ports>
<port protocol="tcp" portid="80">
<state state="open" reason="syn-ack" reason_ttl="48"/>
<service name="http" product="Apache httpd" version="2.0.65"
extrainfo="(Unix) mod_ssl/2.0.65 OpenSSL/0.9.8zf PHP/4.3.11" method="probed"
conf="10">
<cpe>cpe:/a:apache:http_server:2.0.65</cpe>
</service>
<script id="http-server-header" output="Apache/2.0.65 (Unix)
mod_ssl/2.0.65 OpenSSL/0.9.8zf PHP/4.3.11">
<elem>Apache/2.0.65 (Unix) mod_ssl/2.0.65 OpenSSL/0.9.8zf PHP/4.3.11</elem>
</script>

86

<script id="vulners" output="
 cpe:/a:apache:http_server:2.0.65:

	CVE-2011-3192	7.8	https://vulners.com/cve/CVE-2011-3192

	CVE-2013-1862	5.1	https://vulners.com/cve/CVE-2013-1862

	CVE-2012-0031	4.6	https://vulners.com/cve/CVE-2012-0031

	SSV:20555	4.3	https://vulners.com/seebug/SSV:20555	*EXPLOIT*

	EXPLOITPACK:FDCB3D93694E48CD5EE27CE55D6801DE	4.3	
https://vulners.com/exploitpack/EXPLOITPACK:FDCB3D93694E48CD5EE27CE55D6801DE	
EXPLOIT
 	CVE-2012-0053	4.3	https://vulners.com/cve/CVE-2012-0053
 	CVE-2011-0419	4.3	https://vulners.com/cve/CVE-2011-0419">
<table key="cpe:/a:apache:http_server:2.0.65"></table>
</script>
</port>
</ports>
<times srtt="69155" rttvar="69155" to="345775"/>
</host>

11.5 Logstash-codec-nmap

Sample of code mapping

def hashify_service(service)
return unless service

protocol = service.protocol rescue nil
{

'name' => service.name,
'ssl' => service.ssl?,
'protocol' => protocol,
'product' => service.product,
'version' => service.version,
'hostname' => service.hostname, # This is just a string
'device_type' => service.device_type,
'fingerprint_method' => service.fingerprint_method.to_s,
'fingerprint' => service.fingerprint,
'confidence' => service.confidence

}
end

87

11.6 Webpage

Screenshots of the webservers features

Figure 11.1: Web interface for starting a new scan

11.6.1 Scantypes

Default scan against the top ports

Figure 11.2: Web interface for default scan type

88

11.6.2 Custom port scan

Figure 11.3: Web interface for custom port scan type

11.6.3 Custom Nmap or Masscan command scan

Figure 11.4: Web interface for custom command scan type

89

Bibliography

[1] Statista. Internet of Things (IoT) connected devices installed base world-
wide from 2015 to 2025. 2023. URL: https://www.statista.com/statistics/
471264 / iot - number - of - connected - devices - worldwide/ (visited on
05/10/2023).

[2] CVE Details - Browse Vulnerabilities By Date. URL: https : / / www .
cvedetails.com/browse-by-date.php (visited on 14/05/2023).

[3] Torjus Kleng Dahle. ‘Large scale vulnerability scanning’. MA thesis.
2020. URL: https://www.duo.uio.no/bitstream/handle/10852/79552/
torjuskd-master-2020v14.pdf?sequence=8.

[4] Kristian Helgesen Torkveen. ‘Internet Security Scanner’. MA thesis.
2021. URL: https://www.duo.uio.no/bitstream/handle/10852/87009/
Master.pdf?sequence=1.

[5] Rodney R Rohrmann, Vincent J Ercolani and Mark W Patton.
‘Large scale port scanning through tor using parallel Nmap scans
to scan large portions of the IPv4 range’. In: 2017 IEEE International
Conference on Intelligence and Security Informatics (ISI). 2017, pp. 185–
187. DOI: 10.1109/ISI.2017.8004906. URL: https://ieeexplore.ieee.org/
document/8004906.

[6] Chao Yuan et al. ‘The Design of Large Scale IP Address and Port
Scanning Tool’. In: Sensors 20.16 (2020). ISSN: 1424-8220. DOI: 10.3390/
s20164423. URL: https://www.mdpi.com/1424-8220/20/16/4423.

[7] Roman Trapickin, Oliver Gasser and Johannes Naab. ‘Who Is Scan-
ning the Internet’. In: 2015. URL: https://www.net.in.tum.de/fileadmin/
TUM/NET/NET-2015-09-1/NET-2015-09-1_11.pdf.

[8] Andrea Tundis, Wojciech Mazurczyk and Max Mühlhäuser. ‘A Re-
view of Network Vulnerabilities Scanning Tools: Types, Capabilities
and Functioning’. In: Proceedings of the 13th International Conference on
Availability, Reliability and Security. ARES 2018. Hamburg, Germany:
Association for Computing Machinery, 2018. ISBN: 9781450364485.
DOI: 10.1145/3230833.3233287. URL: https://doi.org/10.1145/3230833.
3233287.

[9] Hwankuk Kim, Taeun Kim and Daeil Jang. ‘An Intelligent Improve-
ment of Internet-Wide Scan Engine for Fast Discovery of Vulnerable
IoT Devices’. In: Symmetry 10.5 (2018). ISSN: 2073-8994. DOI: 10.3390/
sym10050151. URL: https://www.mdpi.com/2073-8994/10/5/151.

90

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://www.duo.uio.no/bitstream/handle/10852/79552/torjuskd-master-2020v14.pdf?sequence=8
https://www.duo.uio.no/bitstream/handle/10852/79552/torjuskd-master-2020v14.pdf?sequence=8
https://www.duo.uio.no/bitstream/handle/10852/87009/Master.pdf?sequence=1
https://www.duo.uio.no/bitstream/handle/10852/87009/Master.pdf?sequence=1
https://doi.org/10.1109/ISI.2017.8004906
https://ieeexplore.ieee.org/document/8004906
https://ieeexplore.ieee.org/document/8004906
https://doi.org/10.3390/s20164423
https://doi.org/10.3390/s20164423
https://www.mdpi.com/1424-8220/20/16/4423
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2015-09-1/NET-2015-09-1_11.pdf
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2015-09-1/NET-2015-09-1_11.pdf
https://doi.org/10.1145/3230833.3233287
https://doi.org/10.1145/3230833.3233287
https://doi.org/10.1145/3230833.3233287
https://doi.org/10.3390/sym10050151
https://doi.org/10.3390/sym10050151
https://www.mdpi.com/2073-8994/10/5/151

[10] Ryan Jicha, Mark W Patton and Hsinchun Chen. ‘Identifying devices
across the IPv4 address space’. In: 2016 IEEE Conference on Intelligence
and Security Informatics (ISI). 2016, pp. 199–201. DOI: 10.1109/ISI.2016.
7745469. URL: https://ieeexplore.ieee.org/document/7745469.

[11] Capt. Meelo. Finding the Balance Between Speed & Accuracy During an
Internet-wide Port Scanning. 29th July 2019. URL: https ://captmeelo .
com/pentest/2019/07/29/port-scanning.html (visited on 05/10/2023).

[12] Waheed Ali H. M. Ghanem and Bahari Belaton. ‘Improving accur-
acy of applications fingerprinting on local networks using NMAP-
AMAP-ETTERCAP as a hybrid framework’. In: 2013 IEEE Interna-
tional Conference on Control System, Computing and Engineering. 2013,
pp. 403–407. DOI: 10.1109/ICCSCE.2013.6719998.

[13] Unknown researchers. ‘Internet Census 2012’. In: 2012. URL: https :
//census2012.sourceforge.net/paper.html.

[14] OpenVAS, Open Vulnerability Assessment Scanner. URL: https://www.
openvas.org (visited on 05/10/2023).

[15] IVRE, Instrument de veille sur les réseaux extérieurs. URL: https://ivre.
rocks/ (visited on 05/10/2023).

[16] Tenable. Nessus. URL: https : / / www . tenable . com / products / nessus
(visited on 05/10/2023).

[17] Norwegian National Security Authority (NSM). Allvis NOR. URL:
https://nsm.no/tjenester/allvis-nor/ (visited on 05/10/2023).

[18] Shodan. Shodan. URL: https : / / www . shodan . io/ (visited on
05/10/2023).

[19] John Matherly. Complete Guide to Shodan. Last updated on 2017-08-23.
Leanpub, Oct. 2016. URL: http://leanpub.com/shodan.

[20] ZoomEye. Accessed: 2023-05-15. 2023. URL: https://www.zoomeye.org/.

[21] Censys Search. Accessed: 2023-05-15. 2023. URL: https://search.censys.
io/.

[22] Research Access to Censys Data. Accessed: 2023-05-15. 2023. URL: https:
//support.censys.io/hc/en-us/articles/360038761891-Research-Access-
to-Censys-Data.

[23] ipinfo.io. IPinfo. 2023. URL: https://ipinfo.io/countries/no (visited on
03/04/2023).

[24] Norkart. Datainnbrudd Q&A. https://www.norkart.no/2022/05/13/
datainnbrudd-q-a/. May 2022. (Visited on 05/10/2023).

[25] Mattis Vaaland. Norkart-hacking skyldtes trolig en åpen port: – Viktig å
støtte utviklerne som har tabbet seg ut. May 2022. URL: https ://www.
kode24 . no / artikkel / norkart - hacking - skyldtes - trolig - en - apen - port -
viktig - a - stotte - utviklerne- som- har - tabbet - seg- ut/76072937 (visited
on 05/10/2023).

91

https://doi.org/10.1109/ISI.2016.7745469
https://doi.org/10.1109/ISI.2016.7745469
https://ieeexplore.ieee.org/document/7745469
https://captmeelo.com/pentest/2019/07/29/port-scanning.html
https://captmeelo.com/pentest/2019/07/29/port-scanning.html
https://doi.org/10.1109/ICCSCE.2013.6719998
https://census2012.sourceforge.net/paper.html
https://census2012.sourceforge.net/paper.html
https://www.openvas.org
https://www.openvas.org
https://ivre.rocks/
https://ivre.rocks/
https://www.tenable.com/products/nessus
https://nsm.no/tjenester/allvis-nor/
https://www.shodan.io/
http://leanpub.com/shodan
https://www.zoomeye.org/
https://search.censys.io/
https://search.censys.io/
https://support.censys.io/hc/en-us/articles/360038761891-Research-Access-to-Censys-Data
https://support.censys.io/hc/en-us/articles/360038761891-Research-Access-to-Censys-Data
https://support.censys.io/hc/en-us/articles/360038761891-Research-Access-to-Censys-Data
https://ipinfo.io/countries/no
https://www.norkart.no/2022/05/13/datainnbrudd-q-a/
https://www.norkart.no/2022/05/13/datainnbrudd-q-a/
https://www.kode24.no/artikkel/norkart-hacking-skyldtes-trolig-en-apen-port-viktig-a-stotte-utviklerne-som-har-tabbet-seg-ut/76072937
https://www.kode24.no/artikkel/norkart-hacking-skyldtes-trolig-en-apen-port-viktig-a-stotte-utviklerne-som-har-tabbet-seg-ut/76072937
https://www.kode24.no/artikkel/norkart-hacking-skyldtes-trolig-en-apen-port-viktig-a-stotte-utviklerne-som-har-tabbet-seg-ut/76072937

[26] Wikipedia. List of TCP and UDP port numbers. May 2023. URL: https:
//en.wikipedia .org/wiki/List_of_TCP_and_UDP_port_numbers
(visited on 11/05/2023).

[27] Internet Assigned Numbers Authority (IANA). Service Name and
Transport Protocol Port Number Registry. URL: https://www.iana.org/
assignments/service-names-port-numbers/service-names-port-numbers.
xhtml (visited on 11/05/2023).

[28] Nmap Project. Port Selection Data and Strategies. 2009. URL: https :
/ / nmap . org / book / performance - port - selection . html (visited on
11/05/2023).

[29] Gordon "Fyodor" Lyon. Nmap Network Scanning. City: Publisher
Name, Jan. 2009. ISBN: 978-0-9799587-1-7.

[30] ShodanHQ. Tweet. May 2020. URL: https : // twitter . com/shodanhq/
status/1263329574525468672?s=20 (visited on 11/05/2023).

[31] Wikipedia. Banner grabbing. June 2022. URL: https://en.wikipedia.org/
wiki/Banner_grabbing (visited on 11/05/2023).

[32] Gordon "Fyodor" Lyon. 2009. URL: https : / / nmap . org / book / scan -
methods-connect-scan.html (visited on 11/05/2023).

[33] Gordon "Fyodor" Lyon. Chapter 9. Nmap Scripting Engine, Usage and
Examples. 2009. URL: https://nmap.org/book/nse- usage.html#nse-
categories (visited on 11/05/2023).

[34] Gordon "Fyodor" Lyon. Chapter 4. Port Scanning Overview, What Are
the Most Popular Ports? 2009. URL: https : / / nmap . org / book / port -
scanning.html#most-popular-ports (visited on 13/05/2023).

[35] Scan Time Reduction Techniques. URL: https://nmap.org/book/reduce-
scantime.html (visited on 11/05/2023).

[36] Robert David Graham. Masscan. https://github.com/robertdavidgraham/
masscan. Released: September 2013 (Pre-release).

[37] Gordon "Fyodor" Lyon. Nmap OS Detection Database. 2009. URL: https:
//nmap.org/book/nmap-os-db.html (visited on 11/05/2023).

[38] Trisul Network Analytics. ja3prints. https : //github . com/trisulnsm/
ja3prints/blob/master/ja3fingerprint.json. Added: March 1, 2018.

[39] John Sansatart. Shodan´s Stored Favicon Hashes. 2019. URL: https : //
github.com/sansatart/scrapts/blob/master/shodan-favicon-hashes.csv
(visited on 12/04/2023).

[40] Shodan Images. URL: https : / / images . shodan . io/ (visited on
11/05/2023).

[41] FortyNorth Security. EyeWitness. https://github.com/FortyNorthSecurity/
EyeWitness. Created by FortyNorth Security. (Visited on 11/05/2023).

[42] Mitre Corporation. Common Weakness Enumeration. Page Last Up-
dated: May 02, 2023. 2023. URL: https ://cwe.mitre .org/ (visited on
11/05/2023).

92

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://nmap.org/book/performance-port-selection.html
https://nmap.org/book/performance-port-selection.html
https://twitter.com/shodanhq/status/1263329574525468672?s=20
https://twitter.com/shodanhq/status/1263329574525468672?s=20
https://en.wikipedia.org/wiki/Banner_grabbing
https://en.wikipedia.org/wiki/Banner_grabbing
https://nmap.org/book/scan-methods-connect-scan.html
https://nmap.org/book/scan-methods-connect-scan.html
https://nmap.org/book/nse-usage.html#nse-categories
https://nmap.org/book/nse-usage.html#nse-categories
https://nmap.org/book/port-scanning.html#most-popular-ports
https://nmap.org/book/port-scanning.html#most-popular-ports
https://nmap.org/book/reduce-scantime.html
https://nmap.org/book/reduce-scantime.html
https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
https://nmap.org/book/nmap-os-db.html
https://nmap.org/book/nmap-os-db.html
https://github.com/trisulnsm/ja3prints/blob/master/ja3fingerprint.json
https://github.com/trisulnsm/ja3prints/blob/master/ja3fingerprint.json
https://github.com/sansatart/scrapts/blob/master/shodan-favicon-hashes.csv
https://github.com/sansatart/scrapts/blob/master/shodan-favicon-hashes.csv
https://images.shodan.io/
https://github.com/FortyNorthSecurity/EyeWitness
https://github.com/FortyNorthSecurity/EyeWitness
https://cwe.mitre.org/

[43] Mitre Corporation. CWE VIEW: Weaknesses in the 2022 CWE Top 25
Most Dangerous Software Weaknesses. Page Last Updated: May 02,
2023. 2022. URL: https://cwe.mitre.org/data/views/2022.html (visited
on 11/05/2023).

[44] Nmap Project. Vulners NSE Script. URL: https ://nmap.org/nsedoc/
scripts/vulners.html (visited on 11/05/2023).

[45] Vulners. Vulners Database. URL: https : / / vulners . com/ (visited on
11/05/2023).

[46] Forum of Incident Response and Security Teams. Common Vulnerab-
ility Scoring System (CVSS). 2023. URL: https ://www.first .org/cvss/
(visited on 11/05/2023).

[47] Shodan Search: Port 80 in Norway. URL: https://www.shodan.io/search?
query=country%5C%3A%5C%22NO%5C%22+port%5C%3A80 (visited
on 09/02/2023).

[48] Shodan - Open Ports in Norway. https://www.shodan.io/search?query=
country%3A%22NO%22. Accessed on [Insert Date].

[49] Ollie N. Introducing Scanning Made Easy. National Cyber Security
Centre. Jan. 2022. URL: https : / / www . ncsc . gov . uk / blog - post /
introducing-scanning-made-easy (visited on 11/05/2023).

[50] Nmap Codec Plugin. Elastic. Nov. 2022. URL: https : / / www . elastic .
co/guide/en/logstash/current/plugins- codecs- nmap.html (visited on
11/05/2023).

[51] Bennett Warner. elk_nmap. https ://github .com/bennettwarner/elk_
nmap. May 2021. (Visited on 11/05/2023).

[52] Anthony Lapenna. docker-elk. https://github.com/deviantony/docker-
elk. Accessed on [date]. Jan. 2015.

[53] Chris Rimondi. VulntoES. https://github.com/ChrisRimondi/VulntoES.
May 2014. (Visited on 11/05/2023).

[54] Marco Lancini. Offensive ELK: Elasticsearch for Offensive Security. https:
//github.com/marco-lancini/docker_offensive_elk. July 2018. (Visited
on 11/05/2023).

[55] happyc0ding. scan2elk. https://github.com/happyc0ding/scan2elk. Mar.
2019. (Visited on 11/05/2023).

[56] happyc0ding. vulnscan-parser. https : / / github . com / happyc0ding /
vulnscan-parser. June 2019. (Visited on 11/05/2023).

[57] Shodan Facet Analysis for Ports in Norway. URL: https://www.shodan.
io/search/facet?query=country%5C%3A%5C%22NO%5C%22%5C&
facet=port (visited on 24/03/2023).

[58] Shodan Facet Analysis for CVEs in Norway. URL: https://www.shodan.
io/search/facet?query=country%5C%3A%5C%22NO%5C%22%5C&
facet=vuln (visited on 24/03/2023).

[59] Allvis Nord, Teknisk informasjon. URL: https : / / doc . allvis . no / # /
technical?id=hvor-kommer-trafikken-fra (visited on 13/05/2023).

93

https://cwe.mitre.org/data/views/2022.html
https://nmap.org/nsedoc/scripts/vulners.html
https://nmap.org/nsedoc/scripts/vulners.html
https://vulners.com/
https://www.first.org/cvss/
https://www.shodan.io/search?query=country%5C%3A%5C%22NO%5C%22+port%5C%3A80
https://www.shodan.io/search?query=country%5C%3A%5C%22NO%5C%22+port%5C%3A80
https://www.shodan.io/search?query=country%3A%22NO%22
https://www.shodan.io/search?query=country%3A%22NO%22
https://www.ncsc.gov.uk/blog-post/introducing-scanning-made-easy
https://www.ncsc.gov.uk/blog-post/introducing-scanning-made-easy
https://www.elastic.co/guide/en/logstash/current/plugins-codecs-nmap.html
https://www.elastic.co/guide/en/logstash/current/plugins-codecs-nmap.html
https://github.com/bennettwarner/elk_nmap
https://github.com/bennettwarner/elk_nmap
https://github.com/deviantony/docker-elk
https://github.com/deviantony/docker-elk
https://github.com/ChrisRimondi/VulntoES
https://github.com/marco-lancini/docker_offensive_elk
https://github.com/marco-lancini/docker_offensive_elk
https://github.com/happyc0ding/scan2elk
https://github.com/happyc0ding/vulnscan-parser
https://github.com/happyc0ding/vulnscan-parser
https://www.shodan.io/search/facet?query=country%5C%3A%5C%22NO%5C%22%5C&facet=port
https://www.shodan.io/search/facet?query=country%5C%3A%5C%22NO%5C%22%5C&facet=port
https://www.shodan.io/search/facet?query=country%5C%3A%5C%22NO%5C%22%5C&facet=port
https://www.shodan.io/search/facet?query=country%5C%3A%5C%22NO%5C%22%5C&facet=vuln
https://www.shodan.io/search/facet?query=country%5C%3A%5C%22NO%5C%22%5C&facet=vuln
https://www.shodan.io/search/facet?query=country%5C%3A%5C%22NO%5C%22%5C&facet=vuln
https://doc.allvis.no/#/technical?id=hvor-kommer-trafikken-fra
https://doc.allvis.no/#/technical?id=hvor-kommer-trafikken-fra

[60] The Nmap Project. Nmap Legal Issues. 2008. URL: https://nmap.org/
book/legal-issues.html (visited on 13/05/2023).

94

https://nmap.org/book/legal-issues.html
https://nmap.org/book/legal-issues.html

	Introduction
	Motivation
	Objective
	Research questions

	Thesis structure

	Background
	Related work
	Literature review
	Literature review conclusion

	Analysis of Vulnerability Scanners
	Open source solutions
	Closed Source Alternatives
	Exploring Available Search Engine Solutions
	Shodan
	ZoomEye
	Censys

	Fundamentals of Internet Scanning
	IP Addresses
	TCP Protocol
	UDP
	Network ports
	Network Ports in the Context of Firewall and NAT
	Port ranges

	In-depth Port Scanning: Which Ports to Prioritize
	Detecting Software using Banner Grabbing
	Connection-Oriented, and Connectionless Scanning Techniques
	Nmap - Network Mapper
	The Nmap-services File: Mapping Port Numbers to Known Services and Protocols
	Optimizing Nmap

	Masscan: A High-Performance Port Scanning Tool
	Rate limiting

	Identifying Services and Vulnerabilities
	Uncovering Services: Alternative Techniques
	Utilizing Ping for Host Discovery
	TLS Fingerprinting
	Favicon Hash
	Website Screenshots for Service Discovery

	An Overview of Common and High-Risk Vulnerability Types
	Vulnerability Detection with Nmap
	Classifying vulnerabilities: CVSS System

	Evaluation
	Performance and Detection Analysis: Nmap vs. Masscan
	Assessing Public and Individually Collected Port Information
	Assessing Throughput for Large-Scale Port Detection
	Identifying the Most Frequent Network Ports
	Nmap Vulnerability Discovery Rate
	Assessing Bandwidth and Network Usage in Large-Scale Port Scanning
	Comparison of Nmap and Masscan for Banner Grabbing

	Implementation and development
	Choosing the Right Tools: Combining Nmap and Masscan
	Optimizing Network Discovery: Masscan and Nmap Integration
	Storing and Visualizing Obtained Results: ElasticSearch
	Ingesting results into ElasticSearch Database
	Visualizing using the Kibana Dashboard

	Web Interface to launching Service Discovery
	Working with Docker
	Exploring Hosting Provider Policies on Port Scanning
	Norwegian Research and Education Cloud

	Results
	Comparing Identified ports against the Nmap-Service record
	Nation-Wide Port Scanning: An In-Depth Investigation
	Results for Service and Vulnerability Scanning
	Amount of Identified Vulnerabilities
	Exploitable against Non-Exploitable vulnerabilities
	CVSS scoring

	Discussion
	Port Detection Compared to Shodan
	Service Detection Compared to Shodan
	Vulnerabilities Detected Compared to Shodan
	Analyzing the Detected Results
	Unveiling False Positives: SYN Cookies

	Complains and Detection for the Conducted Scanning Activity
	Choosing Appropriate Scan Intervals for Network Assessments
	Limitations
	Further Research and Work
	Legal and Ethical Implications

	Conclusion
	Appendix
	Code for the Main Scanning Function
	Script to detect Favicon Hash
	Masscan Service Discovery Test
	Nmap banner XML results
	Logstash-codec-nmap
	Webpage
	Scantypes
	Custom port scan
	Custom Nmap or Masscan command scan

