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Abstract

Hull-White interest rate models driven by fractional Brownian motion
with Hurst parameter H ̸= 1/2 is applied to life insurance policies. The theory
of life insurance policies under stochastic interest rates is thus generalized to a
wider class of interest rate models. Utilizing the theory of markets with small
proportional transaction costs, where it is possible to avoid arbitrage even
when the market noise is driven by fractional Brownian motion, we derive
formulas for the reserves of life insurance policies under fractional Hull-White
interest rates. Single premiums for a theoretical pension policy under a
fractional Vasicek model is computed and a sensitivity analysis is carried
out. The results of the analysis suggests that persistence in the interest rates
might increase the single premiums substantially and thus prose a threat to a
insurance company’s solvency.
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Chapter 1

Introduction

The business of the insurance industry is the future. And, at risk of stating the obvious,
the future is, if not unknowable, at least uncertain and therefore one will have to resort
to more or less educated guessing when talking about it. This is the raison d’être of
actuarial science.

The field of life insurance deals with facets of risk that often span decades into the
future and so a good picture of these risks is important to have from the outset, for
instance when the premium of a life insurance policy is calculated. In life insurance and
finance, models based on Brownian motion is well known and widely used to get such a
picture. However, these may fail to capture important features of real world phenomena
such as reported persistency in interest rates ([McC+04]) or roughness in stock price
volatility ([GJR18].

Fractional Brownian motion is a stochastic process that can model these features,
but as usual, more realistic models comes at a cost. In the case of fractional interest
rates, the mathematical machinery used in connection with the Markovian non-fractional
Brownian motion breaks down faced with the non-Markovianity of fractional Brownian
motion.

Some of this machinery might be salvaged however, by modifying the market model
usually applied in the Markovian case and incorporate transaction costs into our model.
These changes, luckily, is not a simplification and so the resulting market model might
be more realistic. This thesis applies the works of [Oha09] and [FKZ13] regarding bond
markets with transaction costs and we use them to price life insurance policies under
fractional Hull-White interest rates. Along the way, we review material on Brownian
motion, mathematical finance, life insurance and fractional Brownian motion. The rest
of the text is organised as follows.

Chapter 2 : This chapter is devoted to a review of stochastic analysis and mathematical
finance with respect to non-fractional Brownian motion. Gaussian stochastic
processes and the multidimensional Itô integral are discussed. We also study some
stochastic differential equations and review how these concepts are utilized in the
field of mathematical finance.

Chapter 3 : We review the mathematical basis of life insurance. We discuss Markov
chains and price a pension policy with deterministic interest rates. We also review
some stochastic interest rate models based on Brownian motion and discuss life
insurance reserves under stochastic interest rates.

Chapter 4 : Stochastic analysis with respect to fractional Brownian motion is reviewed
and we show how fractional Brownian motion is not a martingale, unless in the
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special case of "standard" Brownian motion. We also discuss fractional calculus
and multidimensional integrals with fractional Brownian motion as integrators.

Chapter 5 : Following [Bia+10], we demonstrate how one can make an arbitrage in a
Black-Scholes market if fractional Brownian motion is the driving noise. We then
review the Heath-Jarrow-Morton forward curve model and discuss the Musiela
parametrization of said model. Then, following [Oha09], we discuss a forward curve
based on fractional Brownian motion and mathematical finance under proportional
transaction costs. Using these concepts, we follow [FKZ13] in modelling fractional
Hull-White short rates under proportional transaction costs and show how these
can be made arbitrage free under an average risk-neutral-measure.

Chapter 6 : We continue with fractional interest rates and follow[Fin11] in discussing the
conditional distribution of some processes related to fractional Brownian motion
and deriving a closed price for zero-coupon bonds for fractional Hull-White short
rates.

Chapter 7 : Utilizing the above theory, life insurance reserves under the fractional Hull-
White model is derived and we provide an example of a life insurance policy under
fractional Vasicek interest rates. We then discuss some numerical results regarding
the distribution of the fractional Vasicek short rates and provide a sensitivity
analysis with respect to the single premiums of the life insurance reserves.
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Chapter 2

Stochastic calculus and mathematical
finance with respect to Brownian motion

This chapter aims at reviewing the fundamentals of stochastic analysis with respect to
Brownian motion as well as an introduction to financial mathematics. The material is
mainly collected from [LL96], [Wal12] an to some extent [Kol12] and interested readers
may consult these works for further details.

2.1 Preliminaries, stochastic processes and martingales

We start (almost) at the bottom with stochastic processes. Throughout this thesis we
will work on a probability space (Ω,F ,P), unless otherwise stated.

Definition 2.1.1 (Stochastic process). Let I be a non-empty index set. A stochastic process
X is a collection of random variables X = {X(i), i ∈ I} on some probability space
(Ω,F ,P).

As we work in a finance- and insurance setting the index should be thought of as
time and we will usually write X = {X(t), t ∈ [0, T ]} or sometimes X = {Xt, t ∈ [0, T ]}

We shall need the notion of a filtration to model how the information generated by a
stochastic process is growing (heuristically; for every new step we know more about the
movement of the process). In the context of finance this can be thought of as the market
information flow.

Definition 2.1.2 (Filtration). Let {Ft, t ∈ [0, T ]} be a family of σ-algebras. If Ft1 ⊂ Ft2

for all 0 ≤ t1 ≤ t2 ≤ T then {Ft}t∈[0,T ] is a filtration.

If the stochastic process knows its path up until now we say that is it adapted.

Definition 2.1.3 (Adapted stochastic process). A stochastic process X is adapted to the
filtration Ft if, for each t ≥ 0, X(t) is an Ft-measurable random variable.

A special class of stochastic processes is that of Gaussian processes. They will come
in to play later, but we define them here.

Definition 2.1.4 (Gaussian process). An R-valued stochastic process X is called Gaussian
if, for any integer k ≥ 1 and real numbers 0 ≤ t1 ≤ t2 ≤ ... ≤ tk <∞, the random vector
(X(t1), X(t2), X(t3), ..., X(tk)) has a joint normal distribution.
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2.1. Preliminaries, stochastic processes and martingales

In insurance, finance and economics a very important and useful class of stochastic
processes is given by ("standard", sub- and super) martingales

Definition 2.1.5 (Martingale). Let X be a stochastic process adapted to a filtration Ft. X
is a martingale if

• for each t, X(t) is integrable;
• for each s < t, E[X(t)|Fs] = X(s)

The stochastic process is a sub- or supermartingale if the last condition is replaced
by Xs ≥ E[X(t)|Fs] (for submartingales), or X(s) ≤ E[Xt|Fs] (for supermartingales).
We see that a stochastic process is a martingale if and only if it is both a sub- and a
supermartingale.

An extension of the class of martingales, which proves to be "good" stochastic
integrators, are semimartingales. They are in fact the largest class of integrators for
which the Itô integral (as a local martingale itself) can be defined and as such, it will
prove challenging when the process one deals with is not a semimartingale (see the
discussions later with respect to non-semimartingale integrators). We need a couple more
concepts to define them.

First, a stopping time is a time where something interesting happens and where we
know if it has happened or not. One can assign a stopping rule that determines the
stopping time. For instance an investor can decide that if a stock drops below a certain
value she will sell. The time τ that the stock drop below the value becomes a stopping
time.

Definition 2.1.6 (Stopping time). A random variable τ with values in [0,∞] is a stopping
time if

{τ ≤ t} ∈ Ft, for all t ≥ 0

If we are only interested in the process’ history up until the stopping time τ we only
need the stopping time σ-algebra.

Definition 2.1.7 (Stopping σ-algebra Fτ ). For a stopping time τ we define the stopping
σ-algebra as

Fτ := {A ∈ A : A ∩ {τ ≤ t} for all t ≥ 0}

We are now ready to define a local martingale:

Definition 2.1.8 (Local martingale). An F-adapted càdlàg process M is a local martingale
if there are increasing stopping times τn, n ≥ 1 with τn →∞ as n→∞ with probability
1 such that

• the stopped process

M τn(t) := Mmin(t,τn)1{τn>0}

is a martingale for each n, that is

E[M τn(t)|Fs] = M τn(s), t ≥ s

for each n ≥ 1, and
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2.2. Brownian motion

• M τn(t) is uniformly integrable. That is

sup
t≥0

E[|M τn(t)|1{|Mτn (t)|≥m}]→ 0, as m→∞

A semimartingale is the sum of a local martingale and a càdlàg process. More
precisely:

Definition 2.1.9 (Semimartingale). An F-adapted càdlàg process X is a semimartingale if

X(t) = X(0) +A(t) +M(t), t ≥ 0,

where A and M are càdlàg adapted processes such that A is of bounded variation (with
probability one) and M is a local martingale.

It can be shown that if A(0) = M(0) = 0 and A is continuous then the decomposition
of X in the above is unique.

2.2 Brownian motion

We now turn to a particularly useful class of Gaussian processes, the Brownian motion,
used extensively in many fields, especially insurance and finance. We start with the
definition:

Definition 2.2.1 (Standard Brownian Motion). A standard Brownian motion is a stochastic
process {Wt, t ≥ 0} which satisfies the following properties:

• W0 = 0
• Wt+s −Ws is N(0, t) distributed
• If 0 ≤ t1 < t2 < ... < tn, then the increments Wt1 ,Wt2 −Wt1 , ...,Wtn −Wtn−1 are

independent.
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2.2. Brownian motion

Figure 2.1: Realizations of sample paths for standard Brownian motion

We shall also need the notion of a Brownian motion with respect to a filtration Ft.

Definition 2.2.2 (Ft-Brownian motion ). A real-valued continuous stochastic process
{Wt, t ≥ 0} is an Ft-Brownian motion if it satisfies

• Wt is Ft-measurable for t ≥ 0
• Wt −Ws is independent of the σ-algebra Fs for s ≤ t.
• Wt −Ws and Wt−s −W0 have the same distribution

So {Wt, t ≥ 0} is a Gaussian process with mean zero and covariance E[BsBt] =
min(s, t) as well as quadratic variation E[W 2

t ] = t. More importantly, it is a martingale
and therefore also a semimartingale and we can apply Itò-calculus.

The Lèvy characterization theorem states says that in fact Brownian motion is the
only local martingale with quadratic variation being identical to time t;

Theorem 2.2.3 (Lèvy’s characterization theorem). Let W = {Wt, t ∈ [0, T ]} be a stochastic
process on (Ω,A),P and F its natural filtration. Then the following are equivalent:

• W is a Brownian motion
• W is a (F ,P)-martingale with W0 = 0 P−a.s and quadratic variation [W,W ]t = t

P− a.s

Proof. A variant of this theorem along with the proof is provided in [KS91] (Theorem
3.16) □
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2.3. Stochastic integration with respect to Brownian motion

2.3 Stochastic integration with respect to Brownian motion

The paths of Brownian motion are almost surely not differentiable at any point. This
poses a problem as the non-differentiability makes it difficult to give meaning to integrals
of the type ∫ t

0
f(s)dWs =

∫ t

+
f(s)dWs

ds
ds,

where W is a Brownian motion, as dWs
ds does not exist as a classical process. We want to

define an integral with respect to Ws, s ≥ 0. The overall strategy will be to approximate
a process via simpler processes, very much like the Riemann integral in classical calculus.
We start out by defining the stochastic integral for a small class of stochastic processes
and then extend it to Brownian motion. We start with simple processes:

Definition 2.3.1 (Simple process). A (uniformly bounded) process {H(t), t ∈ [0, T ]} is called
a simple process if it can be written as

H(t, ω) :=
n−1∑
i=1

fi(ω)1(ti,ti+1](t)

where 0 = t1 ≤ t2 ≤ ... ≤ tn = T and fi is Fti−1-measurable.

We can now construct an integral with simple processes as integrands:∫ t

0
H(s)dWs :=

n∑
i=1

fi(Wmin(t,ti) −Wmin(t,ti−1))

this "simple" integral will be denoted by I(H). It has the following properties:

Proposition 2.3.2. If H is a simple process then

• The process {
∫ t

0 H(s) dWs, t ∈ [0, T ]} is a continuous Ft-martingale

• E
((∫ t

0 H(s) dWs

)2)
= E

(∫ t
0 H(s)2 ds

)

• E
(

supt≤T

∣∣∣∣∫ t
0 H(s) dWs

∣∣∣∣2)
≤ 4E

(∫ T
0 H(s)2 ds

)
Proof. See [LL96], Proposition 3.4.2 □

We will extend this integral to also encompass a larger class of adapted processes H
as integrands, which we will denote by H and which is defined as

H =
{
{H(t), t ∈ [0, T ]}, measurable and Ft-adapted process, where E

[∫ T

0
(H(s))2ds

]
<∞

}
where measurable is in the sense of

H : Ω× [0, T ]→ R is F ⊗ B([0, T ]) -measurable

where F is a σ-algebra on Ω and B is the Borel sigma algebra.

Proposition 2.3.3. Consider a Ft - Brownian motion W . There exists a unique linear
mapping J from H to the space of continuous Ft-martingales defined on [0, T ] s.t:
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2.3. Stochastic integration with respect to Brownian motion

• If H is a simple process, then J(H)(t) = I(H)(t) a.s

• If t ≤ T , then E[J(H)(t)2)] = E
[∫ t

0 H(s)2 ds

]
the linear mapping is unique in the following sense: if both mappings J and J ′ satisfy
the properties above, then we have for all t ∈ [0, T ]

J(H)(t) = J ′(H)(t) a.s

Proof. See [LL96], Proposition 3.4.4 □

The integral ∫ t

0
H(s) dWs

will be denoted by J(H)(t) for H ∈ H. The stochastic integral J(H)(t) satisfies the
following properties:

Proposition 2.3.4. Let H ∈ H, then

•

E
(

sup
t≤T

∣∣∣∣∫ t

0
H(s) dWs

∣∣∣∣) ≤ 4E
(∫ T

0
H(s)2 ds

)
• If τ is a Ft-stopping time, then∫ τ

0
H(s) dWs =

∫ T

0
1s≤τH(s) dWs, a.s (2.1)

Proof. See [LL96], Proposition 3.4.5. □

The integrability condition on the processes in H is quite strong, and so we define a
class of integrand processes H̃ for which the requirements are a bit weaker:

H̃ =
{
{H(t), t ∈ [0, T ]}, Ft-adapted, where

∫ T

0
H(s)2ds <∞ a.e

}

The next propositions allows us to extend the integral from H to H̃:

Proposition 2.3.5. There exists a unique linear mapping J̃ from H̃ into the vector space of
continuous processes defined on the interval [0, T ] s.t

• If H is a simple process then for all t ∈ [0, T ] we have

J̃(H)(t) = I(H)(t), a.s (2.2)

• If {Hn, n ≥ 0} is a sequence of processes in H̃ s.t the integral
∫ T

0 (Hn(s))2 ds

converges to 0 in probability, then supt≤T |J̃(Hn)(t)| converges to 0 in probability.

the process {J̃(H)(t), t ∈ [0, T ]} is not necessarily a martingale

Proof. See [LL96], proposition 3.4.6 and remark 3.4.7. □
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2.3. Stochastic integration with respect to Brownian motion

We will from now on use the notation∫ t

0
H(s) dWs = J̃(H)(t)

With these assumptions regarding integrability in mind, we turn to Itô calculus. We
start by defining an Itô process, which is a sum of an integral with respect to a Brownian
motion and an integral with respect to time.

Definition 2.3.6 (Itô process). A stochastic process X = {Xt, t ∈ [0, T ]} is an R-valued Itô
process if it can be written as

X(t) = X(0) +
∫ t

0
G(s)ds+

∫ t

0
H(s) dWs, (2.3)

where

• X(0) is Ft-measurable
• G and H are Ft-adapted processes.

•
∫ T

0 |G(s)| ds <∞ a.s

•
∫ T

0 |H(s)|2 ds <∞ a.s

The process defined in Equation (2.3) is unique, as the following proposition shows:

Proposition 2.3.7. Let M be a continuous martingale s.t

M(t) =
∫ t

0
G(s) ds,

where the following holds a.s: ∫ T

0
|G(s)| ds <∞.

Then for all t ≤ T , M(t) = 0, a.e.

The implication of this is that if

X(t) = X(0) +
∫ t

0
G(s) ds+

∫ t

0
H(s) dWs

= X ′(0) +
∫ t

0
G′(s) ds+

∫ t

0
H ′(s) dWs,

then

X(0) = X ′(0)P-a.s, H(s) = H ′(s) ds× dP a.e, G(s) = G′(s) ds× dP a.e

and also that if X is a martingale of the form X(0) +
∫ t

0 G(s) ds +
∫ t

0 H(s) dWs then
G(t) = 0 dt × dP a.e. Remember that [W,W ]t = t P − a.s implies d[W,W ]t = dt. We
state the Itô formula for Brownian motion:

Theorem 2.3.8 (Itò’s formula w.r.t Brownian motion). Let f ∈ C1,2([0, T ]× R) and W a
(Ft)-Brownian motion. Then

f(t,Wt) = f(0, B0) +
∫ t

0

(
∂

∂s
f(s,Ws) + 1

2
∂2

∂x2 f(s,Ws)
)
ds+

∫ t

0

∂

∂x
f(s,Ws)dWs
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2.3. Stochastic integration with respect to Brownian motion

or, on differential form:

df(t,Xt) = ∂

∂t
f(t,Xt) + ∂

∂x
f(t,Xt)dXt + 1

2
∂2

∂x2 f(t,Xt)d[X,X]t

A useful integration by parts formula is given by

Proposition 2.3.9. Let X and Y be two Itô processes. Then

X(t)Y (t) = X(0)Y (0) +
∫ t

0
X(s)dYs +

∫ t

0
Y (s)dXs + [X,Y ]t

2.3.1 Multidimensional and infinite dimensional Itò calculus

Interest rate modelling often relies on the use of a multidimensional or even infinite
dimensional Brownian motions, and so an introduction to multidimensional Itô calculus
is useful. The following material on the subject is inspired by [GM11].

Definition 2.3.10 (Cylindrical Gaussian random variable). Let U be a separable Hilbert
space with inner product ⟨·⟩ and norm || · ||2. X is a cylindrical standard Gaussian random
variable on U if X : U → L2(Ω,F ,P) if

• The mapping X is linear.
• For a u ∈ U , X(u) is a Gaussian random variable with mean zero and variance
||u||2

• if u, u′ ∈ U are orthogonal, i.e, ⟨u, u′⟩ = 0, then the random variables X(u) and
X(u′) are independent.

Given an orthonormal basis on U , (en, n ∈ N) then {X(en)}∞i=1 is a sequence of
independent Gaussian random variables with mean zero and variance one. We can then
represent X as the P-a.s convergent sum

X(u) =
∞∑

n=1
⟨u, en⟩X(en) (2.4)

The cylindrical Brownian motion can be defined in almost the same way;

Definition 2.3.11 (Cylindrical Brownian motion). Let (Ω,F ,P) be a complete probability
space and U be a separable Hilbert space with inner product ⟨ · ⟩ and norm || · ||2. The
process W is a cylindrical Brownian motion if

• For a t ≥ 0 we have that the mapping Wt : U → L2(Ω,Ft,P) is linear
• For an u ∈ U , ||u||−1 ·Wt(u) is a Ft-Brownian motion
• For u, u′ ∈ U and t ≥ 0 we have

E[Wt(u)Wt(u′)] = t⟨u, u′⟩

As we can scale this to be a standard cylindrical Gaussian random variable by setting
Wt/
√
t, this also has a P-a.s convergent sum representation akin to Equation (2.4) given

by

Wt(u) =
∞∑

n=1
⟨u, en⟩βt(en), (2.5)

where βt(en) := Wt(en).
The stochastic integral with respect to cylindrical Brownian motion can be defined

as:
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2.4. Stochastic differential equations

Lemma 2.3.12 (Stochastic integral wrt cylindrical Brownian motion). Let Wt be a
cylindrical Brownian motion and G : [0, T ] × Ω → L2(U, V ) a square-integrable Ft-
adapted process, where L2(U, V ) is the family of Hilbert-Schmidt linear operators from U
to V . Further, let (en, n ∈ N) be a orthonormal basis on U . Then the stochastic integral
with respect to cylindrical Brownian motion is defined as∫ T

0
G(s)dWs =

∞∑
n=1

∫ T

0
G(s)endβt(en) (2.6)

in L2(Ω;V ).

Proof. See [GM11], Lemma 2.8 □

2.4 Stochastic differential equations

Consider the stochastic differential equation (SDE):

S(t) = x0 +
∫ t

0
Ss(µds+ σ dWs), 0 ≤ t < T, T ∈ R, (2.7)

where σ, µ ∈ R, {Wt, t ≥ 0}. The unique process satisfying Equation (2.7) is given by

S(t) = x0 exp((µ− σ2/2)t+ σWt). (2.8)

This can be deduced using the integration by parts formula in Itô calculus. However,
we do want to study more general SDE’s driven by Brownian motion. We will consider
equations of the type:

Xt = Z +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs

for Borel-measurable functions b and σ.

Definition 2.4.1 (Conditions on the solution). Consider the probability space (Ω,A,P) with
a filtration {Ft, 0 ≤ t ≤ T}. A solution to Equation (2.8) is an Ft-adapted stochastic
process {Xt, t ≥ 0} that satisfies

• b(s,Xs) and σ(s,Xs) are integrable:∫ t

0
|b(s,Xs)|ds < +∞, P− a.s∫ t

0
|σ(s,Xs)|2ds < +∞, P− a.s

• {Xt, t ≥ 0} satisfies;

Xt = Z +
∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, ∀t > 0,P− a.s

where b : R×R→ R, σ : R×R→ R are Borel-measurable functions, Z a F0-measurable
random variable and {Wt, t ≥ 0} an Ft-Brownian motion.

We need some further constraints on b and σ to ensure the existence and uniqueness
of a solution.
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2.4. Stochastic differential equations

Theorem 2.4.2 (Existence and uniqueness). Let b, σ ∈ C and K < +∞ ∈ R. Then if

• |b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y| (Lipschitz continuity)
• |b(t, x)|+ |σ(t, x)| ≤ K(1 + |x|) (Linear growth)
• E[Z2] <∞

Then the Equation (2.8) has a unique (pathwise) solution in the interval [0, T ]. The
solution {Xs, 0 ≤ s ≤ T} satisfies

E[ sup
s∈[0,T ]

|Xs|2] < +∞

Proof. See Theorem 2.9 in [KS91] □

In the following we will denote the solution starting x at time t by {Xt,x
s , s ≥ t} and

Xx the solution starting from x at time 0. So {Xt,x
s , s ≥ t} satisfies

Xt,x
s = x+

∫ s

t
b(u,Xt,x

u )du+
∫ s

t
σ(u,Xt,x

u )dWu

For financial applications a very important property of the solutions to equation
Equation (2.8) is the Markov property. In plainspeak it says that what happens after
time t only depends on the state at time t and not the processes’ past. In finance the
property can be utilized in, for instance, options pricing; if the asset price process is
Markovian, the option price on that asset only depends on the assets price today. This
is true in the Black-Scholes market model which we will encounter later, but false in
markets where the noise is driven by fractional Brownian motion, which we will also
encounter later. We begin with a more precise definition of Markovianity:

Definition 2.4.3 (Markov property). An Ft-process {X(t), t ≥ 0} satisfies the Markov
property if, for any bounded Borel function f and for any s and t such that s ≤ t we have

E[f(X(t))|Fs] = E[f(X(t))|X(s)]

Lemma 2.4.4. If {Xt,x(s), s ≥ t} exists and is unique and s ≥ t we have , P-a.s

X0,x(s) = Xt,X(t)x(s)

Proof. [LL96], lemma 3.5.6. □

This is the flow property of the solution. If the above lemma is satisfied, which it is
for solutions of Equation (2.8), we can state the Markov property as

Theorem 2.4.5. Let {X(t), t ≥ 0} be a solution to Equation (2.8). It is a Markov process
with respect to the Brownian filtration Ft. Furthermore, for any bounded Borel function
f we have, P-a.s

E[f(X(t))|Fs] = ψ(X(s)) (2.9)

with ψ(x) = E[f(Xs,x(t))].

Proof. [LL96], theorem 3.5.7. □
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2.5. Equivalent probability measures

2.5 Equivalent probability measures

It will later be useful to manipulate stochastic processes while retaining certain properties.
If a process is a Brownian motion, the Girsanov theorem says that we can add a drift
term and the new process still remains a Brownian motion, albeit under a different (but
equivalent) probability measure. We define the latter:

Definition 2.5.1 (Equivalent measures). Let P and Q be probability measures. We say that
they are equivalent if they operate on the same sample space Ω and if we let A ∈ F on Ω
we have

P(A) > 0 ⇐⇒ Q(A) > 0

Theorem 2.5.2 (Girsanov’s theorem). Let Y be an Itô-process of the form

dY (t) = g(t)dt+ dWt, Y0 = 0, t ∈ [0, T ]

and set

M(t) = exp(−
∫ t

0
g(s)dWs −

1
2

∫ t

0
g(s)2ds), 0 ∈ [0, T ] (2.10)

Assume that M is a martingale with respect to P and define the measure Q on FT by
dQ
dP = M(T ). Then Q is a probability measure on FT and Y is a Brownian motion under
Q.

Proof. See e.g Theorem 5.1 in [KS91] . □

As we will see later, this is a very important result in view of applications to
mathematical finance. In danger of jumping too far ahead, it makes it possible to obtain
discounted stock prices (modelled by an Itô-process) as martingales which in turn makes
it possible to find a fair price for an option (given certain conditions).

To verify that M in fact is a martingale we can use the sufficient condition in the
following lemma:

Lemma 2.5.3 (Novikov condition). Let M be as in Girsanov’s theorem. If

E
[
exp

(1
2

∫ T

0
|g(t)|2dt

)]
<∞,

then M is a martingale and E[M(t)] = E[M(0)] = 1

Proof. See [KS91], Corollary 5.14 □

2.6 Mathematical finance based on Brownian motion

In this section we want to use the preceding material and highlight the principles behind
no-arbitrage pricing, which will be heavily utilized later in this thesis. We will provide
some important definitions and results used to price bonds and financial derivatives.

13



2.6. Mathematical finance based on Brownian motion

Portfolios, and their value

Our market will consist of the following two assets:

• A risky asset, that is a stock or a fund with price S(t) at time t. With dynamics
given by

S(t) = x+
∫ t

0
µ(s, S(s))S(0) ds+

∫ t

0
σ(s, S(s))s(s) dWs

• A riskless fixed-income asset given by B(t) with dynamics

dB(t)
B(t) = r(t)dt,

where r(t) is a (for now) deterministic interest rate process.

Note that

B(t) = exp
(∫ t

0
r(s)ds

)
, t ∈ [0, T ]

is the solution of the latter.
We need a notion of the units invested in each asset at each time t. Let ϕ0

t be the
units invested in the riskless asset at time t and analogously let ϕ1

t be the units invested
in the risky asset. Both are adapted stochastic processes in (Ω,FT ,P) and together they
define a portfolio ϕ = (ϕ0, ϕ1).

Definition 2.6.1. The couple ϕ is said to be a portfolio if it is F-adapted and

E
[∫ T

0
|ϕ0

t r(t)B(t)|dt
]
<∞,

E
[∫ T

0
|ϕ1

tµ(t, S(t))S(t)|dt
]
<∞,

E
[∫ T

0
|ϕ1

tµ(t, S(t))S(t)|2dt
]
<∞

If we follow the trading strategy represented by the portfolio ϕ we will gain (or lose)
some wealth described by the value process V ϕ

t :

Definition 2.6.2 (Value process). The value of the portfolio ϕ is given by

V ϕ
t = ϕ0

tBt + ϕ1
tS(t), t ∈ [0, T ]

It is also reasonable to put a limit on cash to ensure that the investor cannot lose an
infinite amount of money;

Definition 2.6.3 (Admissible portfolio). If there exists some K ≤ 0 ∈ R such that

V ϕ
t ≥ K a.s

we say that the portfolio is admissible
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2.6. Mathematical finance based on Brownian motion

We would also like that the only gain (or loss) in wealth stems from the change of
value of the assets and so in our model we are not allowed to deposit (or withdraw) more
money into the process once it has started. Mathematically:

Definition 2.6.4 (Self Financing Portfolio). We say that ϕ is a self-financing portfolio if

dV ϕ
t = ϕ0

tdBt + ϕ1
tdS(t), t ∈ [0, T ]

We discount with respect to the risk-less asset B(t) to find the relative value of assets
compared to each other. The discounted price process S̃t and the discounted value of the
portfolio Ṽ ϕ

t is defined by

S̃t = S(t)
B(t) , t ∈ [0, T ]

Ṽ ϕ
t = V ϕ

t

B(t) , t ∈ [0, T ]

Fundamental theorems of asset pricing

If there exist a portfolio that allows us to make sure profit without taking risk we have
an arbitrage opportunity in our hands.

Definition 2.6.5 (Arbitrage opportunity). An arbitrage opportunity is a self-financing
portfolio ϕ with

V ϕ
0 = 0
V ϕ

T ≥ 0
P[V ϕ

T > 0] > 0

The whole point of non-arbitrage pricing is to make the price so that we can rule out
arbitrage opportunities. The fundamental theorems of asset pricing gives us conditions
for when arbitrage pricing is fullfilled. The most important concept in this regard is that
of an equivalent martingale measure:

Definition 2.6.6 (Equivalent Martingale Measure). A probability measure Q on (Ω,F) is a
equivalent martingale measure (EMM) if the following holds:

• Q is equivalent to P

• The discounted price process S̃t is a (Q,F)-martingale,

that is, under the equivalent martingale measure we force the discounted price process
of the asset to be a martingale and so "betting" on the discounted price process is a fair
game. We now have the concepts needed to state the first fundamental theorem of asset
pricing:

Theorem 2.6.7 (First Fundamental Theorem of Asset Pricing). There are no arbitrage
opportunities if and only if there exists an equivalent martingale measure Q

Proof. A general version of this theorem is discussed and proved in [DS06] (Theorem
2.2.7). □
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2.6. Mathematical finance based on Brownian motion

This allows us to find a fair price for claims as long as we are able to find such an
equivalent martingale measure. The Girsanov theorem from the chapter on stochastic
analysis states the conditions which can be used to construct the martingale measure.

Definition 2.6.8 (Attainable contigent claim). A contigent claim is a financial contract
that pays the holder a nonnegative random amount H at time T (the exercise time). The
random variable H is assumed to be FT -measurable with E[H2+ϵ] <∞ for some ϵ > 0.
The claim H is attainable if there exists a self-financing and admissible portfolio ϕ such
that V ϕ

T = H, P− a.s. We call ϕ the replicating or hedging portfolio of H.

The above definitions imply that two portfolios that lead to the same cash flow have
the same value.

Definition 2.6.9 (Completeness). A market is complete if all contingent claims are
attainable.

Heuristically we can say that if all the sources of noise can be traded, then the market
is complete. The next theorem give a condition for when a market is complete:

Theorem 2.6.10 (Second Fundamental Theorem of Asset Pricing). An arbitrage-free market
is complete if and only if there exists a unique equivalent martingale measure.

Proof. See e.g Theorem 1.3.4 in [LL96]. □

As mentioned above, pricing the claim H = max(P, S(t)) by its expectation leads to
arbitrage if we use the physical measure P. However, the price of the claim can be given
by the expectation under the equivalent martingale measure Q. The fair price C of the
claim H above is thus given by

C(t) = EQ[max(P, S(t))|Ft].

where Ft is the market information up to time t (the filtration generated by the risky
asset S) .
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Chapter 3

Life insurance with stochastic interest
rates

3.1 The life insurance setting

When someone buys a life insurance policy, the insured does not need to pay the full
amount one will receive. There are two reasons for this: 1) is the time value of money and
2) not everyone who pays premiums will receive the money, as one may for instance outlive
the terms of the contract (endowment) or die before the payments starts (pension). To
make up for this the mathematical reserve, the amount of money the insurance company
has to set aside can be computed as a conditional expectation conditioned on the state
of the insured:

Vj(t, Ag) = E
[ 1
v(t)

∫
I
v(s)dAg(s)|Xt = j

]
, (3.1)

where Xt is a Markov chain describing the state of the insured over the interval I. Here
Xt = j at the time of the calculation, I is the time interval, Ag(t) is the sum of payments
the insured is to receive when in state g and v(s) is the discount factor. The aim of this
chapter is to define these concepts more thoroughly and introduce policies with stochastic
interest rates. The material is mainly gathered from [Bãn22], [Kol12] and [BM06]

3.1.1 Markov Chains and transition probabilities

The state of the insured is modelled by Markov chains. We start out by defining these
and the concept of transition probabilities:

Definition 3.1.1 (Markov Chain). Let Xt ∈ S, t ∈ J ⊂ R be a stochastic process on
(Ω,A,P). Then Xt, t ∈ J is a Markov chain if

P(Xtn+1 = Xt1 = i1, ..., Xtn = in|) = P(Xtn+1 = in+1|Xtn = in)

for all t1 < t2 < ... < tn+1 ∈ J, i1, ..., in+1 ∈ S with P(Xt1 = i1, ..., Xtn = in) ̸= 0.

The transition probabilities determine the probability that an insured switches from
state i to j.
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3.1. The life insurance setting

Definition 3.1.2 (Transition probabilities). We call the functions

pij(s, t) = P(Xt = j|Xs = i), s ≥ t, i, j ∈ S

transition probabilities. Here, pij(s, t) denotes the probability that X will be in state j at
time t given that X was in state i at a previous time s.

Transition probabilities put together in a matrix is aptly named a transition matrix:

Definition 3.1.3 (Transition matrix). Let P (s, t) = {pij(s, t)}i,j∈S be a matrix with entries
pij(s, t). Then P is called a tranition matrix if

• pij(s, t) ≥ 0

• ∑
j∈S pij(s, t) = 1 for all i ∈ S

• pij(s, s) = 1i=j provided that P(Xs = i) ̸= 0

In our model, as the state of the insured is defined by a Markov chain, it is natural
that this process has the Markov property. That is; we do not care if the insured used
to be disabled yesterday as long as they are healthy today. The state tomorrow is only
determined by the state today.

Definition 3.1.4 (Markov property). Consider a Markov chain X = {Xt}t∈J . Let
t1 < t2 < ... < tn < tn+1 < ... < tn+m, i ∈ S,A ⊂ Sn−1, B ⊂ Sm. Assume that

P((Xt1 , Xt2 , ..., Xtn−1) ∈ A,Xtn = i) ̸= 0,

then the Markov property holds. That is

P((Xtn+1 , Xtn+2 , ..., Xtn+m) ∈ B|Xt1 , Xt2 , ..., Xtn−1) ∈ A,Xtn = i)
= P((Xtn+1 , Xtn+2 , ..., Xtn+m) ∈ B|Xtn = i)

Definition 3.1.5 (Transition rates). Let X = {Xt, t ∈ J} be a Markov process with finite
state space S. The transition rates µi, µij , i, j ∈ S, j ̸= i are the functions defined by

µi(t) = lim
h→0,h>0

1− pii(t, t+ h)
h

, t ∈ J, i ∈ S

and

µij(t) = lim
h→0,h>0

pij(t, t+ h)
h

, t ∈ J, i, j ∈ S, i ̸= j

Definition 3.1.6. Let X = {Xt, t ∈ J} be a Markov process with finite state space S. We
say that X is regular if the transition rates µi, µij , i, j ∈ S, j ≠ i exist and are continuous
as functions of t.

Often only the transition rates are avaliable. However, the Kolmogorov equations
provide a way to retrieve the transition probabilities from the transition rates;

Theorem 3.1.7 (Kolmogorov equations).
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3.1. The life insurance setting

• Backward Kolmogorov equation:

d

ds
pij(s, t) = µi(s)pij(s, t)−

∑
k∈S,k ̸=i

µik(s)pkj(s, t)

• Forward Kolmogorov equation:

d

ds
pij(s, t) = −pij(s, t)µi(t) +

∑
k∈S,k ̸=i

pkj(s, t)µik(t)

These are pretty unwieldy (sometimes even impossible) to solve analytically, so we
usually need to resort to numerical methods such as the RK4-scheme, Euler-scheme etc
(see e.g [Bãn22] for a discussion on this).

Finally we do have a closed formula for the probability that the insured remains in
state j:

Theorem 3.1.8 (Calculation of p̄jj(s, t)). If X = {Xt, t ∈ J} is regular then

p̄jj(s, t) = exp
(
−

∑
k ̸=j

∫ t

s
µjk(u)du

)

3.1.2 Mathematical reserves

We are now ready to define mathematical reserves in greater detail. The ingredients we
need to get a closed formula for mathematical reserves are the stochastic cash flow, policy
functions and the discount factor. The mathematical reserves amount to the expected
present value at time t ≥ 0, of all payments given Xt = i.

Definition 3.1.9 (Stochastic cash flow). A stochastic cash flow is a stochastic process
A = {A(t), t ∈ [0, T ]} with almost all sample paths of bounded variation.

Definition 3.1.10 (Policy functions). Let ai, aij : [0,∞)→ R, i, j ∈ S, i ̸= j be functions of
bounded variation. We call them policy functions if they model the following quantities:

• ai(t) = the accumulated payments from the insurer to the insured up to time t,
given that we know that insured has always been in state i

• aij(t) = the punctual payments which are due when the insured switches from
state to j at time t.

The "given that we know that insured has always been in state i"-part can be somewhat
confusing. Remember that we are in a Markovian world where we only care about the
state of today to predict the state tomorrow. This means that "Always been in state i"
means that the insured is in state i at the time of the computation.

Definition 3.1.11 (Policy cash flow). Let ai(t) and aij(t), t ≥ 0, i, j ∈ S, j ̸= i be policy
functions. The (stochastic) cash flow associated to this insurance is defined by

A(t) =
∑
i∈S

Ai(t) +
∑

i,j∈S,j ̸=i

Aij(t),
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3.1. The life insurance setting

where

Ai(t) =
∫ t

0
IX

i (s)dai(s), Aij(t) =
∫ t

0
aij(s)dNX

ij (s),

where both integrals are given a.s in the Riemann-Stieltjes sense. The quantity Ai

corresponds to the accumulated liabilities while the insured is in state i and Aij for the
case when the insured switches from i to j

As we deal with time-value of money we need a discount factor:

Definition 3.1.12 (Discount factor). The following function v : [0,∞) → [0,∞) will be
called a discount factor,

v(t) = e−
∫ t

0 r(u)du, t ≥ 0

where r : [0,∞) is an interest rate process.

The interest rate process r(t) can be stochastic, but we will deal with a deterministic
one for now and introduce the stochastic version later.

We are now ready to put together the stochastic value of the cash flow:

Definition 3.1.13 (Stochastic prospective value of a cash flow). The prospective value
of a stochastic cash flow A at time t will be denoted by V +(t, A) and is defined, via
discounting, as

V +(t, A) = 1
v(t)

∫ ∞

t
v(s)dA(s), t ≥ 0

where v is the discount factor given above.

The process V +(t, A) can be adapted to the Markov process modelling the states of
the insured, to the performance of a fund or to an interest rate process, which we will do
later. Combining the above yields an explicit formula for the prospective reserves. Note
that there also exist formulas for discrete time. See [Kol12] and [Bãn22].

Theorem 3.1.14 (Mathematical reserves). Let x be the age of the insured at the start of
the contract. The value at time t of the liability A associated with to policy functions ai

and aij, i, j ∈ S, j ̸= i, given that the insured is in state i at time t is given by

V +
i (t, S(t)) = 1

v(t)
∑
j∈S

v(s)px
ij(t, T )∆ai(T )

+ 1
v(t)

∑
j∈S

∫ T

t
v(s)px

ij(t, s)ȧi(t)

+ 1
v(t)

∑
j∈S,k ̸=j

∫ T

t
v(s)px

ij(t, s)µx
jk(s)aij(t)ds

Example 3.1.15 (Pension policy with deterministic interest rate). We illustrate this with
an example which we will use for benchmarking purposes later. Consider a pension policy
which pays out a yearly benefit B from T0 until T . We do not consider premiums. The
policy functions are given by

a∗(t) =
{

0, t ∈ [0, T0)
B(t− T0), t ∈ [T0, T ]
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3.1. The life insurance setting

which gives us

ȧ∗(t) =
{

0, t ∈ [0, T0)
B, t ∈ [T0, T ]

We get

V +
∗ (t, S(t)) =B

∫ T

max(t,T0)

v(s)
v(t) p

x
∗∗(t, s)ds

Let the insured be a male aged 30 at the start of the contract with the pension
policy paying 200000 NOK a year, starting at 70 (T0 = 40) and lasting until he is 110
(T = 80) with a deterministic interest rate given by r0 = 2%. For simplicity we will use
the Gompertz-Makeham mortality model for the rest of this thesis, see e.g. [Bøl14]. The
single premium (i.e the present value of the benefits at time t = 0) for this policy is then
given by π0 ≈ 1173531.

To see how the reserve develops, one can compute the present value of the benefits
for every time t ∈ [0, T ], this is shown in Figure 3.1.

Figure 3.1: Present values for the pension policy in Example 3.1.15

3.1.3 Premiums

In the above example we did not take into account premiums. We can find the premium of
a life insurance policy quite easily by introducing a new term −π in the policy functions,
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3.2. Short rate models and bond prices

denoting the premium paid from time 0 to time T0 (usually only while the insured was
in an active state). In Example 3.1.15, the policy function then becomes

a∗(t) =
{
−πt, t ∈ [0, T0)
−πT0 +B(t− T0), t ∈ [T0, T ]

which gives us

ȧ∗(t) =
{
−π, t ∈ [0, T0)
B, t ∈ [T0, T ]

The present value of the policy is thus given by

V +
∗ (t, A =− π

∫ max(t,T0)

t

v(s)
v(t) p

x
∗∗(t, s)ds+B

∫ T

max(t,T0)

v(s)
v(t) p

x
∗∗(t, s)ds

Using the equivalence principle, want the premium-part of the policy to be equal to the
benefit part of the policy at time t = 0. In Example 3.1.15 this amounts to

π

∫ T0

0
v(s)px

∗∗(0, s)ds =B
∫ T

T0
v(s)px

∗∗(0, s)ds

which yields

π =
B

∫ T
T0
v(s)px

∗∗(0, s)ds∫ T0
0 v(s)px

∗∗(0, s)ds

The premium in Example 3.1.15 is π ≈ 43552.
The reserve of Example 3.1.15 is plotted in Figure 3.2. We see that at t = T0, the

premiums is fully paid and the payouts start.

3.2 Short rate models and bond prices

We will soon turn to a more mathematically juicy (and realistic) kind of policy, where
the interest rate is not determined but stochastic. For a life insurance company this is
important to be able to price accurately, as the fluctuation of the interest rate market
can pose a severe threat to its solvency.

As rates can not be traded per se, the market is not complete by the definition of
complete markets. However, we will complete the market by introducing bonds, more
specifically zero-coupon bonds. That is a security that pay out 1 unit of money at time
T and nothing else. Formally:

Definition 3.2.1 (Zero-coupon bond). A zero-coupon bond price P (t, T ) with maturity T is
defined as the time t value of 1 unit of money at the future time T ≥ t.

Note that P (T, T ) = 1 for all T and one may assume that P (t, T ) is differentiable
in T . If the interest rate r(u) = r is deterministic, the price of the zero-coupon bond is
simply P (t, T ) = exp(−

∫ T
t rdu) and can be regarded as the bank account, or the risk-less
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3.2. Short rate models and bond prices

Figure 3.2: Present value of reserves for the pension policy in Example 3.1.15

fixed-income asset v(t) = B(t). However, we will deal with stochastic interest rates. For
now we will use interest rate models driven by a Brownian motion.

The short rate, r(t), is the rate of which the interest rate grows instantaneously,
whereas the forward rate f(t, T ) is the rate contracted at time t for a loan starting at
time T and returned instantaneously. We will introduce a model for the forward rate in
later chapters. In the Markovian case we assume the following:

• the short rate follows an Itô-process:

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dWt,

which determines the money-market account B(t) = e
∫ t

0 r(s)ds

• there exists an equivalent martingale measure Q such that the discounted bond
price process Z(t) = P (t, T )/B(t), t ≤ T , is a Q-martingale.

The last assumption yields the following

P (t, T ) = EQ

[
e−

∫ T

t
r(s)ds∣∣Ft

]
(3.2)

Take the Girsanov transformed Q-Brownian motion W̃t = Wt−
∫ t

0 γsds. Under the above
assumptions, the process r satisfies under the measure Q

dr(t) = µ(t, r(t)) + γtσ(t, r(t))dt+ σ(t, r(t))W̃t (3.3)
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3.2. Short rate models and bond prices

under the real world measure P this amounts to

dP (t, T )
P (t, T ) =

(
r(t)− vtγt

)
dt+ vtdWt (3.4)

Here, the term γt represents the market price of risk as the excess of instantaneous return
over r(t) in units of volatility.

A class of short rate models which we will deal with variations of later is given by
affine term structure models; short rate models where the bond price is of the form

P (t, T ) = A(t, T )e−B(t,T )r(t), (3.5)

where A and B are smooth functions.

Proposition 3.2.2. The short rate model described by Equation (3.3) provides an affine
term structure iff its diffusion and drift terms are of the form

σ(t, r) = a(t) + α(t)r
b(t, r) = b(t) + β(t)r

for some continuous functions a, α, b, β and the functions A,B satisfies the following
system of ordinary differential equations for all t ≤ T :

∂

∂t
A(t, T ) = 1

2a(t)B2(t, T )− b(t)B(t, T )
∂

∂t
B(t, T ) = 1

2α(t)B2(t, T )− β(t)B(t, T )− 1

A(T, T ) = 0
B(T, T ) = 0

Proof. [Fil12], Proposition 5.2 □

In the following, we will concentrate on the Vasicek model, the Hull-White model
and the Hull-White extension of the Vasicek model.

The Vasicek model

The Q-dynamics of the Vasicek model is given by:

dr(t) = a[b− r(t)]dt+ σW̃t (3.6)

where b is the long-term mean, a is the speed of reversion, and σ is the volatility. We
require a, b, σ > 0. We can also note that as the market price of risk is assumed to be
constant, the dynamics is the same under the real world measure P as under the measure
Q. A useful property of the Vasicek model is the mean-reversion effect. What was long
thought of as a downside is that the probability that it can take on negative interest
rates is not zero (albeit, very small). However, later developments have shown that this
need not be a drawback as negative -or zero- interest rates have occured recently and
might do so more frequently in the future (see e.g [HK20] for a discussion on this).

As for the zero-coupon bond price, the Vasicek model has affine term structure and
is given by the following
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3.2. Short rate models and bond prices

Figure 3.3: Vasicek zero-coupon bond price as a function of maturities with parameters
r0 = 2%, a = 20%, b = 3% and σ = 1%. A long maturity is chosen as this is relevant for
our purpose.

Theorem 3.2.3 (Vasicek Zero-Coupon bond price). A Zero coupon bond under the Vasicek
model issued at time t with maturity T is given by

P (t, T ) = A(t, T )e−B(t,T )r(t)

where A and B are given by the following:

B(t, T ) =(1− exp(−a(T − t)
a

A(t, T ) = exp
{(

b− σ2

2a2

)
(B(t, T )− T + t)− σ2

4aB(t, T )2
}

Proof. [BM06], pp.59 and references therein □

The Hull-White model

Its Q-dynamics is, quite similarly to the Vasicek model, given by

dr(t) = [k(t)− a(t)r(t)]dt+ σ(t)W̃t (3.7)

where k(t), a(t) and σ(t) are deterministic functions of time and so allows for fitting to
the yield- and volatility curve. This model can generally not be handled analytically
and, as noted by [BM06](pp.72-73), it is also prone to treacherous volatility models when
fitted to the forward curve. Therefore, the following model is rather used:
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3.3. Policies with stochastic interest rates

The Extended Vasicek model

Taking the Hull-White model and choosing the coefficient functions a(t) and σ(t) as
constants and fitting only the term k(t) to the initial forward curve yields the Extended
Vasicek model. The function k(t) is given by

k(t) = ∂

∂T
f(0, t) + af(0, t) + σ2

2a(1− e−2at), (3.8)

where f(0, t) is the instantaneous forward rate at time 0. The extended Vasicek model is
still affine, so that we can use Equation (3.5) to price the bond. The closed formula is
given by;

Theorem 3.2.4 (Extended Vasicek Zero-Coupon bond price). A Zero coupon bond under
the Extended Vasicek model issued at time t with maturity T is given by

P (t, T ) = A(t, T )e−B(t,T )r(t)

where A and B are given by the following:

B(t, T ) =(1− exp(−a(T − t)
a

A(t, T ) =P (0, T )
P (0, t) exp

{
B(t, T )f(0, t)− σ2

4a
(
1− e−2a(T −t))B(t, T )2)}

Proof. [BM06], pp.75 and references therein. □

3.3 Policies with stochastic interest rates

We return to life insurance. Using the machinery above we can price policies where the
interest rate is stochastic. Note that we can set

B(t) = exp
(∫ t

0
r(s)ds

)
= 1
v(t) , t ∈ [0, T ]

Which, together with Equation (3.1), yields

Vj(t, Ag) = EQ

[ 1
v(t)

∫
I
v(s)dAg(s)

∣∣∣∣Ft

]
, (3.9)

Where the (completed) filtration Ft is generated by the bond price process and the state
process {Xt, t ≥ 0}, which are assumed to be independent. We can, in the similar vein
as the deterministic case expand this to be

V +
i (t, r(t)) =

∑
j∈S

EQ

[
v(s)
v(t) |Ft

]
px

ij(t, T )∆ai(T )

+
∑
j∈S

∫ T

t
EQ

[
v(s)
v(t) |Ft

]
px

ij(t, s)ȧi(t)

+
∑

j∈S,k ̸=j

∫ T

t
EQ

[
v(s)
v(t) |Ft

]
px

ij(t, s)µx
jk(s)aij(t)ds

The idea is to substitute the term EQ
[v(s)

v(t) |Ft
]

with the price of the bond.
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3.3. Policies with stochastic interest rates

Definition 3.3.1 (Mathematical reserves with stochastic interest rates). Let x be the age of
the insured at the start of the contract. Let P (t, s) be the price of a zero-coupon bond. The
value at time t of the liability A associated with to policy functions ai and aij, i, j ∈ S,
j ̸= i, given that the insured is in state i at time t is given by

V +
i (t, r(t)) =

∑
j∈S

P (t, T )px
ij(t, T )∆ai(T )

+
∑
j∈S

∫ T

t
P (t, s)px

ij(t, s)ȧi(t)

+
∑

j∈S,k ̸=j

∫ T

t
P (t, s)px

ij(t, s)µx
jk(s)aij(t)ds

Example 3.3.2 (Pension policy under the Vasicek model). Consider the same policy as
in Example 3.1.15. The policy functions are the same, however we consider stochastic
interest rates. The mathematical reserves are then expressed by

V +
∗ (t, r(t)) =B

∫ T

max(t,T0)
P (t, s)px

∗∗(t, s)ds

where P (t, s) is given as in Theorem 3.2.3.
As in the deterministic case, let the insured be a male aged 30 at the start of the

contract with the pension paying 200000 NOK, starting at 70 (T0 = 40) and lasting until
he is 110 (T = 80) with Vasicek parameters given by a = 20%, b = 3% and σ = 1%.

Figure 3.4: Single premiums of the policy in Example 3.3.2 for some values of r0

For r0 = 2% this amounts to π0 ≈ 790225.
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3.3. Policies with stochastic interest rates

Figure 3.5: Present value of the policy in Example 3.3.2 for some values of r0
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Chapter 4

Stochastic calculus with respect to frac-
tional Brownian motion

Up until now we have mainly dealt with standard Brownian motion and semimartingales
in a Markovian setting. This is useful for computational purposes, but empirical evidence
suggests that interest rates does not behave that way (see [McC+04] and references
therein). A candidate for a more realistic model might be the fractional Brownian motion
(fBm). For reasons that will become apparent, the Itô calculus presented earlier is not
able to capture fBm (if the Hurst parameter H ̸= 1/2). We need a different theory. In the
following we first present fBm and its properties, we show that is not a semimartingale
and that it does not have the Markov property. We then review some concepts from
fractional calculus and end with the derivation of a stochastic integral with respect to
fractional Brownian motion.

4.1 Definitions and properties of fBm

The following material is gathered from [Bia+10], chapter 1.

Definition 4.1.1 (Fractional Brownian motion). (Standard) Fractional Brownin motion
with Hurst-parameter H ∈ (0, 1) is a continuous and centered Gaussian stochastic process
(WH

t , t ≥ 0) with covariance function

E(WH
t WH

s ) = 1
2(|t|2H − |t− s|2H + |s|2H)

for all s, t ≥ 0.

From the definition it can be shown that the standard fBm has the following properties:

1. WH
0 = 0

2. E[WH
t ] = 0 for all t ≥ 0

3. WH
t+s −WH

s has the same distribution as WH
t for s, t ≥ 0 (i.e it has homogeneous

increments)

4. E[(WH
t )2] = t2H , t ≥ 0 for all H ∈ (0, 1).

5. WH has continuous trajectories.
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4.1. Definitions and properties of fBm

When H = 1/2 the fBm corresponds to a standard Brownian motion. It is important
to note that fBm with Hurst parameters H ∈ (0, 1/2), H = 1/2 and H ∈ (1/2, 1) exhibit
very different behaviour and so it is often natural to treat them separately.

We will now present the stochastic integral representation of the fBm over finite
intervals. We need to treat each Hurst parameter family separately.

Theorem 4.1.2 (Stochastic integral representation over finite intervals). Let Wt be a
standard Brownian motion. Then

Zt :=
∫ t

0
KH(t, s)dWs

is an fBm for Hurst parameter H, where;

• H > 1/2:

KH(t, s) = cHs
1/2−H

∫ t

s
|u− s|H−3/2uH−1/2du, t > s

where cH = [H(2H − 1)/β(2− 2H,H − 1/2)]1/2

• H < 1/2:

KH(t, s) = bH [ t
s

H−1/2
(t− s)H−1/2 − (H − 1

2)s1/2−H
∫ t

s
(u− s)H−1/2uH−3/2du],

where bH = [2H/((1− 2H)β(1− 2H,H + 1/2))]1/2
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4.1. Definitions and properties of fBm

in the above β(a, b) := Γ(a+ b)/(Γ(a)Γ(b)) and t > s

As a fBm with Hurst parameter H = 1/2 is a standard Brownian motion, W 1/2

has independent increments. This is not the case for H ̸= 1/2. In fact if one has two
increments WH

t+h −WH
t and WH

t+2h −WH
t+h, they are negatively correlated for H < 1/2

and positively correlated for H > 1/2.
For Hurst-parameters H ∈ (1/2, 1) fBm displays the property of long-range

dependence. We state it here in two ways. First:

Definition 4.1.3 (Long-range dependence I). A stationary sequence {Xn, n ∈ N} exhibits
long-range dependence if the autocovariance function (defined as ρ(n) = Cov(Xk, Xk+n))
satisfy

lim
n→∞

ρ(n)
cn−α

for some constant c and α ∈ (0, 1). In this case the dependence between Xk and Xk+n

decays slowly as n tends to infinity and
∞∑

n=1
ρ(n) =∞

Take the increments Xk and Xk+n of WH , that is Xk := WH
k − WH

k−1 and
Xk+n := WH

k+n −WH
k+n−1. If we look at the case H > 1/2 we see that

ρH(n) = 1
2[(n+ 1)2H + (n+ 1)2H − 2n2H ] ∼ H(2H − 1)n2H−2

as n→∞ and it is clear that

lim
n→∞

ρH(n)
H(2H − 1)n2H−2 = 1

Hence we obtain that Xk and Xk+n exhibits the long-range dependence property.

Remark 4.1.4. Long range dependence implies that fBm does not have the Markov property
for Hurst parameter H ∈ (1/2, 1)

In the second definition the notion of a slowly varying function is needed, so we start
with that.

Definition 4.1.5 (Slowly varying functions). Let a > 0 and L be a measurable function on
a finite interval. Then

• L is slowly varying at zero, if

lim
x→0

L(ax)
L(x) = 1

• L is slowly varying at infinity, if

lim
x→∞

L(ax)
L(x) = 1

We will also need the spectral density of autocovariance functions ρ(k):

31



4.1. Definitions and properties of fBm

Definition 4.1.6 (Spectral density). Let λ ∈ [−π, π]. Then the spectral density of the
autocovariance function ρ(k) is given by

f(λ) := 1
2π

∞∑
k=−∞

exp (−iλk)ρ(k)

The long-range dependence property can also be stated as

Definition 4.1.7 (Long-range dependence II). For stationary sequences {Xn, n ∈ N} with
finite variance, we say that {Xn, n ∈ N} exhibits long-range dependence if one of the
following properties holds:

•

lim
n→∞

(
n∑

k=−n

ρ(k))/cnβL1(n) = 1 for c, β ∈ (0, 1)

•

lim
k→∞

ρ(k)/ckγL2(k) = 1 for c, γ ∈ (0, 1)

•

lim
λ→∞

f(λ)/c|λ|−δL3(|λ|) = 1 for c, δ ∈ (0, 1)

for slowly varying functions L1, L2 (at infinity) and L3 (at zero).

It is worth noting that for a Hurst parameter H between 1/2 and 1 the definitions
above are equivalent.

Definition 4.1.8 (Self-similarity). We say that an Rd-valued random process X = {Xt, t ≥
0} is self-similar if for every a > 0 there exists b > 0 such that {Xat, t ≥ 0} and
{bXt, t ≥ 0} has the same distribution. That is

{Xat, t ≥ 0} d= {bXt, t ≥ 0}

This means that the two processes Xat and bXt have the same finite-dimensional
distribution functions. Fractional Brownian motion also displays (local) Hölder continuity
and is not differentiable, as the following results state.

Theorem 4.1.9 (Hölder continuity). Let H ∈ (0, 1). WH admits a version whose sample
paths are a.s (locally) Hölder continuous of order strictly less than H.

Proof. See [Bia+10], Theorem 1.6.1 □

Proposition 4.1.10. The fBm sample path WH
· is not differentiable. For every t0 ∈ [0,∞)

we have with probability one that

lim sup
t→t0

|
WH

t −WH
t0

t− to
| =∞

Proof. See [Bia+10], Proposition 1.7.1. □
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4.1. Definitions and properties of fBm

Definition 4.1.11 (Self-similarity with Hurst index H). If b = a−H in the above definition
we say that X = {Xt, t ≥ 0} is a self-similar process with Hurst index H or that it satisfies
the property of statistical self-similarity with Hurst index H. The quantity D = 1/H is
called the statistical fractal dimension of X.

As the covariance function of the fBm is homogeneous of order 2H we obtain that
WH is a self-similar process with Hurst index H. That is; for any a > 0 the processes
WH

at and a−HWH
t have the same distribution.

In previous chapters we introduced an integral and a calculus for semimartingales.
fBm is, however, not a semimartingale. The main idea behind the proof for this is to
show that fractional Brownian motion does not have quadratic or bounded variation for
H ̸= 1/2, opposed to semimartingales. To show this we need some definitions;

Definition 4.1.12 (p-variation). Let {Xt, t ≥ 0} be a stochastic process and consider a
partition π = {0 = t0 < t1 < ... < tn = T}. Set

Sp(X,π) =
n∑

i=1
|Xtk

−Xtk−1 |
p

The p-variation of X over the interval [0,T] is defined as

Vp(X, [0, T ]) = sup
π
Sp(X,π)

where π is the finite partition of [0, T ].

Definition 4.1.13 (Index of p-variation). The index of p-variation of a process is defined as

I(X, [0, T ]) := inf{p > 0;Vp(X, [0, T ]) <∞}

We are now ready to prove the following proposition (gathered from [Bia+10]).

Proposition 4.1.14 (fBm is not a semimartingale). The fBm is not a semimartingale for
Hurst parameter H ̸= 1/2

Proof. As every semimartingale X consists of a local martingale and a process of locally
bounded variation, it has quadratic variation (2-variation) or, if the martingale part is
zero, bounded variation (1-variation). The index I(X, [0, T ]) of a semimartingale must
then belong to {2} or [0, 1]. To show that this is not the case for fBm with H ̸= 1/2 we
need to compute the p-variation of an fBm WH with H ̸= 1/2. We want to show that

I(WH , [0, T ]) = 1
H

as this would put I(WH , [0, T ]) in [0, 1] ∪ {2} if and only if H = 1/2.

Define for p > 0

Yn,p = npH−1
n∑

i=1
|WH

i/n −W
H
(i−1)/n|

p
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4.2. Fractional calculus

Because WH is self-similar, {Yn,p, n ∈ N} has the same distribution as

Ỹn,p = n−1
n∑

i=1
|WH

i −WH
i−1|p

Now, by the Ergodic theorem (see e.g [Wei]), the sequence {Ỹn,p, n ∈ N} converges almost
surely and in L1 to E[|WH

1 |p] as n→∞. As convergence in L1 implies convergence in
probability we get that {Ỹn,p, n ∈ N} p→ E[|WH

1 |p. Thus we obtain that

Vn,p =
n∑

i=1
|WH

i/n −W
H
(i−1)/n|

p

converges in probability to 0 if pH > 1 and to ∞ if pH < 1 as n → ∞. Hence we
conclude that

I(WH , [0, T ]) = 1
H

□

4.2 Fractional calculus

We will need some basic concepts from fractional calculus and this section introduces the
Riemann-Liouville integral as well as the fractional derivative. The material is gathered
from [Bia+10] Appendix B as well as [FKZ13].

There exists separate definitions for the right- and left-hand sided Riemann-Liouville
integrals and derivatives. We will mainly use the right-hand side version, but we state
both for completeness. We will however only need the integral defined for finite time e.g
on an interval.

Definition 4.2.1 (Riemann-Liouville fractional integral of order κ). We have for almost all
x ∈ [0, T ] that

• Left hand side:

Iκ
a+f(x) := 1

Γ(κ)

∫ x

a
f(y)(x− y)κ−1dy

• Right hand side:

Iκ
b−f(x) := 1

Γ(κ)

∫ b

x
f(y)(y − x)κ−1dy

where f ∈ L1([0, T ]), κ > 0, and Γ is the gamma-function.

We also state an integration by parts formula:

Definition 4.2.2 (Integration by parts for Riemann-Liouville integrals).∫ b

a
Iκ

a+f(x)g(x)dx =
∫ b

a
f(x)Iα

b−g(x)dx,

where f ∈ Lp, g ∈ Lq(a, b), and the following holds: 1/p + 1/q ≤ 1 + κ and p, q > 1 if
1/p+ 1/q = 1 + κ.
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4.2. Fractional calculus

The fractional integrals satisfy the following compositions

1. Iκ
a+(Iβ

a+f) = Iκ+β
a+ f

2. Iκ
b−(Iβ

b−f) = Iκ+β
b− f

We define the Liouville derivatives as the opposite operation:

Definition 4.2.3 (Liouville fractional derivative for κ < 1). We have

Dκ
a+f := d

dx
I1−κ

a+ f and Dκ
b−f := d

dxI
1−κ
b− f,

if the right-hand sides are well-defined.

It can be shown that the following holds for almost every x ∈ (a, b):

Definition 4.2.4 (Weyl-representation of Liouville derivatives). Let f ∈ Lp(a, b) then for
almost every x ∈ (a, b)

Dκ
a+f(x) = 1

Γ(1− κ)

[
f(x)

(x− a)κ
+ κ

∫ x

a

f(x)− f(y)
(x− y)κ−1 dy

]
and

Dκ
b−f(x) = 1

Γ(1− κ)

[
f(x)

(b− x)κ
+ κ

∫ b

x

f(x)− f(y)
(y − x)κ−1 dy

]
for the left- and right side respectively.

As with its integral counterparts the following relations hold:

1. Dκ
a+(Dβ

a+f) = Dκ+β
a+ f

2. Dκ
b−(Dβ

b−f) = Dκ+β
b− f

The following relations between the Riemann-Liouville integrals and Liouville
derivatives hold:

1. Let f ∈ L1(a, b). Then Dα
a+I

α
a+f = f and Dα

b−I
α
b−f = f

2. Let f ∈ Iκ
a+(Lp(a, b)) (that is; functions that can be represented as an Iκ

a+-integral).
Then Iκ

a+D
κ
a+f = f

We can now define a second integration by parts formula:

Definition 4.2.5 (Integration by parts for Riemann-Liouville integrals II).∫ b

a
Dκ

a+f(x)g(x)dx =
∫ b

a
f(x)Dκ

b−g(x)dx

where f ∈ Iκ
a+(Lp(a, b)), g ∈ Iκ

b−(Lq(a, b)), and the following holds: 1/p + 1/q ≤ 1 + κ
and κ ∈ [0, 1].
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4.3. Integration with respect to cylindrical fBm

4.3 Integration with respect to cylindrical fBm

With later applications in mind, we want to define integration with respect to fractional
Brownian motion. As we have seen, fBm with H ̸= 1/2 is not a martingale and so
classical Itô calculus can not be used. In the sequel, we do not however, need to integrate
processes driven by fBm, only deterministic functions. The integral utilized in [Oha09],
where fundamental results used below is proved, is defined in [DPB02].

Definition 4.3.1 (Cylindrical fractional Brownian motion). Let (Ω,F ,P) be a complete
probability space and U be a separable Hilbert space with inner product ⟨ · ⟩ and norm
|| · ||. A cylindrical process ⟨WH , ·⟩ : Ω× R+ × U → R on (Ω,F ,P) is called a standard
cylindrical fractional Brownian motion with Hurst parameter H ∈ (0, 1) if

• For each x ∈ U − {0}, 1
||x||⟨W

H(·), x⟩ is a standard scalar fractional Brownian
motion with Hurst parameter H.

• For a, b ∈ R and x, y ∈ U :

⟨WH(t), ax+ by⟩ = a⟨WH(t), x⟩+ b⟨WH(t), y⟩ a.s P

Let (en, n ∈ N) be a complete orthonormal basis of U and set

βH
n (t) = ⟨WH(t), en⟩ for n ∈ N

The sequence of scalar processes (βH
n , n ∈ N) is independent and with the same Hurst

parameter. Then WH can be represented by the series

WH(t) =
∞∑

n=1
βH

n (t)en (4.1)

this series does not converge in L2(P) and is as such not well-defined as a U -valued random
variable. One can, however, show that if U1 is a Hilbert space such that U is included in
U1, and the linear embedding is a Hilbert-Schmidt operator, then Equation (4.1) is a
U1-valued fBm ([DPB02], pp.228).

We turn to the construction of a integral with respect to (cylindrical) fBm. We want
to make sense of the expression ∫ T

0
G(s) dWH(s) (4.2)

where G is a deterministic function.

Lemma 4.3.2. If p > 1/H, then for a φ ∈ Lp(0, T ;R) the following inequality is satisfied∫ T

0

∫ T

0
φ(u)φ(v)ηH(u− v) du ds ≤ CT |φ|2Lp(0,T ;R) (4.3)

for some CT > 0 that only depends on T where

ηH(u) = H(2H − 1)|u|2H−2 (4.4)

Proof. See [DPB02], Lemma 2.1 □
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4.3. Integration with respect to cylindrical fBm

Assume that the integral ∫ T

0
f(s) dWH(s) (4.5)

is defined for f ∈ Lp(0, T ;V ). Let H∗ be the family of V -valued step-functions H defined
by

Definition 4.3.3 (Step function).

H(t) =
n−1∑
i=1

fi1[ti,ti+1)(t)

where 0 = t1 < t2 < ... < tn = T and fi ∈ V .

For f ∈ H∗ define the stochastic integral given by Equation (4.5) as

∫ T

0
f(s) dWH(s) :=

n−1∑
i=1

fi(βH(ti+1)− βH(ti)) (4.6)

This random variable constituted by the integral has mean zero and second moment
given by

E
[ ∣∣∣∣∫ T

0
f(s) dWH(s)

∣∣∣∣2 ]
=

∫ T

0

∫ T

0
⟨f(u), f(v)⟩ϕ(u− v) du dv (4.7)

By Lemma 4.3.2 it follows that∣∣∣∣∣∣∣∣∫ T

0
f(s) dβH(s)

∣∣∣∣∣∣∣∣2
L2(P)

=
∫ T

0

∫ T

0
⟨f(u), f(v)⟩ϕ(u− v) du dv

≤ cT,p

(∫ T

0
|f(s)|p ds

)2/p

= cT,p|f |2Lp(0,T ;V ),

where cT,p is some constant that depends only on p and T . As H∗ is dense in Lp(0, T ;V ),
the stochastic integral can thus be extended a.s from H∗ to Lp(0, T ;V ) .

The integral given by Equation (4.2) is now defined for a U -valued standard fractional
Brownian motion and for G : [0, T ]→ L2(U, V ) where L2(U, V ) is the family of Hilbert-
Schmidt linear operators from U to V . We assume the following about G:

• For each x ∈ U we have G(·)x ∈ Lp(0, T ;V )

• ∫ T

0

∫ T

0
|G(s)|L2(U,V )|G(r)|L2(U,V )ϕ(s− r) ds dr <∞

and further define the integral Equation (4.2) for cylindrical fBm as∫ T

o
G(s) dWH(s) :=

∞∑
n=1

∫ T

0
G(s)en dβ

H
n (s) (4.8)

We shall need a notion for the space of integrands we deal with and so we introduce the
following spaces of deterministic integrands, as done in [FKZ13] and references therein:
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4.3. Integration with respect to cylindrical fBm

Definition 4.3.4 (Possible spaces of integrands for fBm).

Λ̃κ
T :=

{
{f : [0, T ]→ R|

∫ T
0 [sκIH

T −((·)κf(·))(s)]2ds <∞} κ ∈ (0, 1/2)
{f : [0, T ]→ R|∃ϕf ∈ L2[0, T ] s.t f(s) = s−κI−κ

T −((·)κϕf (·))(s)} κ ∈ (0, 1/2)

closed under multiplication with the index function we get

Λκ
T := {f : [0, T ]→ R|∀[s, t] ⊂ [0, T ] : f1[s,t] ∈ Λ̃κ

T }, κ ∈ (−1/2, 1/2)

We define the scalar product of Λκ
T for f, g ∈ Λκ

T by

⟨f, g⟩κ,T = πκ(2κ+ 1)
Γ(1− 2κ) sin(πκ)

∫ T

0
s−2κ[Iκ

T −((x)κf(x))(s)][Iκ
T −((x)κg(x))(s)] ds (4.9)

and its corresponding norm by

||f ||2κ,T = πκ(2κ+ 1)
Γ(1− 2κ) sin(πκ)

∫ T

0
s−2κ[Iκ

T −((x)κf(x))(s)]2 ds (4.10)

It can be shown that when κ = 0 (remember κ = 0 =⇒ H = 1/2) the space Λκ
T is

equal to Λ̃κ
T which is again equal to L2([0, T ]), the norms and inner products will align

accordingly.
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Chapter 5

Bond markets with proportional transac-
tion costs

We have seen how we can price insurance contracts with stochastic interest rates driven
by Brownian motion. As mentioned above, empirical evidence suggests that interest rates
does not behave Markovian and so we want to be able to price insurance contracts where
the stochastic interest rate is non-Markovian. In a first step, we discuss bond markets
where the noise is driven by fBm.

5.1 Arbitrage with fBm in a Black-Scholes market

The price of a zero-coupon bond is, as in the Markovian case above, given by the
conditional expectation

P (t, T ) = EQ[e−
∫ T

t
r(u)du|Ft], t ∈ [0, T ]

where Q is a risk-neutral measure of sorts. The Markov property makes these sometimes
relatively easy to calculate if the short rate is driven by standard Brownian motion.
For fBm, however, things are more complicated and arbitrage opportunities arise if
the the fBm-process is introduced naively into a market. We illustrate this with an
example gathered from [Bia+10]; We need to show that there exists a portfolio which is
an arbitrage opportunity. We do this by providing a arbitrage example. We assume the
same market as in the classical Black-Scholes case, but with the driving factor in the
risky asset being a fBm such that its dynamic is given by:

dS(t) = µS(t)dt+ σS(t)dWH
t , S(0) > 0

with solution
S(t) = S(0) exp(σWH

t + µt)

for simplicity we assume that µ = r and σ = S0 = 1. We recall that a portfolio is given
by the tuple ϕ = (ϕ0, ϕ1) corresponding to the proportion invested in the riskless- and
risky asset respectively. Further, we define

ϕ0(t) = 1− exp(2WH
t )

ϕ1(t) = 2(exp(WH
t )− 1),
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5.2. The forward curve

which result in the following value process:

V ϕ(t) = ϕ0(t)B(t) + ϕ1(t)S(t)
= (1− exp(2WH

t ) exp(rt) + 2(exp(WH
t )− 1) exp(WH

t + rt)
= exp(rt)(exp(WH

t − 1)2

> 0

It can be shown that the portfolio is self-financing and thus, it is an arbitrage opportunity.
In fact, if the driving process is not a semimartingale, Delbaen and Schachermayer has
shown that it does imply a weak form of arbitrage [DS94]. However, even though it is
true in Black-Scholes-markets that fBm as noise produces arbitrage, it is not generally
true in markets with (small) proportional transaction costs. This is proven in the works
of Guasoni [Gua06], [GSR10].

Handwaivingly, Guasonis argument is that when we introduce transaction costs we
also introduce a "hurdle" the asset price will have to jump in order to be sold with profit.
There will always be a probability that the asset price will not make the jump over the
hurdle and so we can not make a sure profit. Arbitrage is therefore ruled out.

This chapter is devoted to a review of Ohashi [Oha09] who utilizes the results of
Guasoni to develop no-arbitrage conditions for a fractional forward curve.

The strategy going forward is to model a fractional forward rate under a quasi-
martingale measure Q∗, to be defined. Once that is done we can extract certain short
rates from the forward rate using the relation f(t, t) = r(t) and price bonds.

As this is a relatively new field of research, we will keep it more thorough than in the
well established martingale case.

5.2 The forward curve

We begin with an introduction to the forward curve driven by Brownian motion, more
precisely the Heath-Jarrow-Morton (HJM) framework. It allows us to calibrate the
short-rate models better to the initial term structure by directly modelling the forward
curve. This review highlights the most important features from [HJM92] for our task.

We set our trading horizon to be [0, T ⋆] and define a continuum of zero-coupon bonds
with maturities for each trading date T ∈ [0, T ⋆]. We start with the instantaneous
forward rate f(t, T ) which is the rate contracted at time t for a loan starting at time T
and returned instantaneously. Let T > t, then we define f(t, T ) by

f(t, T ) = − ∂

∂T
logP (t, T ), ∀T ∈ [0, T ⋆], 0 ≤ t ≤ T (5.1)

If we solve Equation (5.1) we get a familiar expression:

P (t, T ) = exp
(
−

∫ T

t
f(t, s)ds

)
, 0 ≤ t ≤ T ≤ T ⋆

the relation between the instantaneous forward rate and the short rate can be expressed
as follows:

r(t) = f(t, t), 0 ≤ t ≤ T ⋆ (5.2)

the interpretation is that the short rate is the instantaneous forward rate at a time t if
the bond is set to be paid back an instant later. The strength of the HJM model is in its
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5.2. The forward curve

ability to model the forward rate movements, and in extension the short rates and thus
also the bond prices.

For every T ∈ [0, T ⋆], the forward rate process f(t, T ) is described by

f(t, T ) = f(0, T ) +
∫ t

0
α(s, T )ds+

d∑
i=1

∫ t

0
σi(s, T )dW i

s , ∀0 ≤ t ≤ T, (5.3)

where Wt = (W 1
t , ...,W

d
t )′ is a Brownian motion under a risk-neutral measure Q and the

following holds for all 0 ≤ t ≤ T and i = 1, 2, ..., d:∫ T

0
|α(t, T )|dt <∞,

∫ T

0
|σi(t, T )|2dt <∞

Invoking Equation (5.2) we can write the dynamics of the short rate process by

r(t) = f(0, t) +
∫ t

0
α(s, t)ds+

d∑
i=1

∫ t

0
σi(0, t)dW i

s (5.4)

5.2.1 The Musiela parametrization

We conclude this section with the Musiela parametrization. Under the regular
unparametrized HJM model, the state space is a function space on an interval that varies
with the parameter t. The Musiela parametrization uses time to maturity, x = T − t
instead of time of maturity, T . As such, the state space under the Musiela parametrization
does not vary with t. Another advantage is that the volatility term σ is also not dependent
on the state, but rather on the whole forward curve. For a detailed discussion of the
advantages, see [Fil01].

The forward rate and the coefficient functions can be written in the Musiela
parametrization as

ft(x) = f(t, t+ x)
αt :=αt(x) = α(t, t+ x)
σt :=σt(x) = σ(t, t+ x)

Defining the semigroup of right shifts {S(t); t ≥ 0} by S(t)g(x) = g(t + x) for any
g : R+ → R allows us to write Equation (5.3) as

ft(x) = S(t)f(0, x) +
∫ t

0
S(t− s)αs(x)ds+

d∑
i=1

∫ t

0
S(t− s)σi

s(x)dW i
s (5.5)

As the infinitesimal generator of S is given by A = ∂
∂x , the dynamics of the Musiela

parametrization ft(x) is given by

dft(x) =
(
Aft(x) + α(t, ft(x))

)
+

d∑
i=1

σi(t, ft(x))dW i
t (5.6)

In order for Equation (5.6) to be well defined when regarded as a Hilbert space - valued
process with solution given by Equation (5.5), we need to specify some conditions on the
Hilbert space. The space we seek needs to fulfill the following three criteria:

• H1: The functions h in the space are continuous and the pointwise evaluation
Jx := h(x) is a continuous linear functional on the space for all x ∈ R+
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5.3. The fractional forward curve

• H2: The semigroup {S(t)|t ∈ R+} is strongly continuous in the space with
infinitesmal generator denoted by A.

• H3: There exists a constant K such that

||Sh|| ≤ K||h|||2

for all h in the space with Sh also in the space for a norm || · || to be defined.

Such a space, denoted by E, can be defined as the following weighted Sobolev space:

Definition 5.2.1 (E-space). Let w : R+ → [1,∞) be a non-decreasing C1-function such that

w
1
3 ∈ L1(R+)

We write
||h||2E := |h(0)|2 +

∫
R+
|h′(x)|2w(x) dx

and define
E := {h ∈ L1

loc(R+)| ∃h′ ∈ L1
loc(R+) and ||h||E <∞}

the following result ensures that the space E does indeed meet the requirements
H1-H3.

Theorem 5.2.2. The set E equipped with the norm || · ||E forms a separable Hilbert space
meeting H1 - H3

Proof. [Fil01], Theorem 5.1.1 □

For a detailed discussion of the requirements on the space E we refer to [Fil01].

5.3 The fractional forward curve

We turn to the fractional version of the forward curve as described by [Oha09]. Our
starting point is to assume that the forward curve is described by the Hilbert-space
valued linear SPDE

dft(x) =
(
Aft(x) + αt

)
+

d∑
i=1

σi
t dW

H,i
t (5.7)

with WH
s under the physical measure P (for the time being).

In the following, the space E is analogous to the identically named space used in the
non-fractional case.

The forward rate is assumed to be given by the following process

f(t, T ) = f(0, T ) +
∫ t

0
α(s, T )ds+

d∑
i=1

∫ t

0
σi(s, T )dWH,i

s , (5.8)

where the coefficients(σi, ..., σd) and α are deterministic functions. To make sure
Equation (5.8) is well defined we require that the following holds for all 0 < T <∞:∫ T

0
|α(s, T )|ds+

∫ T

0

∫ T

0
|σi(s, T )||σi(t, T )|ηH(t− s) ds dt <∞,
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5.3. The fractional forward curve

where ηH(u) = H(2H − 1)|u|2H−2 and u ∈ R.
Using the parametrization T = t + x and the same notation as in the Musiela

parametrization for the coefficient functions we write Equation (5.8) as

ft(x) =S(t)f(0, x) +
∫ t

0
S(t− s)αs(x)ds+

d∑
i=1

∫ t

0
S(t− s)σi

s(x)dWH,i
s (5.9)

The following two assumptions make sure that Equation (5.9) is the continuous mild
solution to Equation (5.7);
1) We assume that α and σ are integrable:∫ T

0
||αs||E ds+

∫ T

0
||σs||2 ds <∞ (5.10)

and
2) we assume that there exists an γ ∈ (0, 1/2) such that∫ T

0

∫ T

0
u−γv−γ ||S(u)σu)|| ||S(v)σv|| ηH(u− v) du dv <∞ (5.11)

By Proposition 3.1 and 3.2 of [DPB02], we see that Equation (5.7) is indeed the continuous
mild solution to Equation (5.9).

Returning to the task at hand, we assume that for every 0 < T <∞ the following
two expressions hold:∫

[0,T ]4
||σu(s)||Rd ||σv(r)||Rd ηH(u− v) du dv ds dr <∞ (5.12)

∫
[0,T ]3

||σu(t)||Rd ||σv(t)||Rd ηH(u− v) du dv ds <∞ (5.13)

For the following, it is useful to define

Iv(s, T ) =
∫ T −s

0
vs(x) dx,

where v : [0, T ] × R+ → R is locally integrable in R+. We also define ∆2 = {(t, T ) ∈
R2|0 ≤ t ≤ T <∞}.

Lemma 5.3.1. Assume that α and σ satisfy Equation (5.10), Equation (5.11),
Equation (5.12) and Equation (5.13). Then f(t, t+ x) is given by Equation (5.9) is the
continuous mild solution of Equation (5.7) and the term structure of bond prices is given
by

P (t, T ) = P (0, T )× exp
(∫ t

0
[r(s)− Iα(s, T )] ds+

d∑
i=1

∫ t

0
−Iσi(s, T ) dWH

s,i

)
(5.14)

for (t, T ) ∈ ∆2.

Proof. See [Oha09], Lemma 2.1. □
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5.4. Arbitrage-free pricing under transaction costs

5.4 Arbitrage-free pricing under transaction costs

In the transaction cost market, defining the usual finance concepts such as portfolio,
value process and arbitrage opportunity is more involved than in the standard case.

We start out by definingMT ⋆ as the space of finite signed measures on [0, T ⋆] endowed
with the total norm denoted ||x||T S . Set mi ∈MT ⋆ , Fi ∈ Fti and 0 = t0 < ... < TN ≤ T ⋆.
We define the elementary process ϕ by

ϕ(t)(ω, x) =
N−1∑
i=0

χFi×(ti,ti+1](ω, t)mi(x) (5.15)

and S the set of elementary processes of the form Equation (5.15) with the norm
given by

||ϕ||2
S

= E
[

sup
0≤t≤T ⋆

||ϕt||2T V

]
(5.16)

and the completion with respect to Equation (5.16) given by S.
We let the relative bond price be given by

Z(t, T ) := P (t, T )
Bt

= P (t, T )
exp

(∫ t
0 r(s)ds

) , (5.17)

where Bt is the numeraire and r(t) is a short rate. As our trading horizon is [0, T ⋆]
we set Z(t, T ) = 0 if (t, T ) /∈ [0, T ⋆]2. Assuming Equation (5.10), Equation (5.11),
Equation (5.12) and Equation (5.13), the discounted bond price process Z(t, T ) satisfies
the following two conditions.

• Condition I: {Z(t, T ); (t, T ) ∈ [0, T ⋆]2} is a jointly continuous real-valued
stochastic process s.t

E
[

sup
(t,T )∈[0,T ⋆]2

|Z(t, T )|2
]
<∞ (5.18)

We define the integral representing the value gain of the portfolio by∫ t

0
ϕ(s)dZs =

N−1∑
i=0

χFi(Zti+1 − Zti)mi (5.19)

it is well defined for every ϕ ∈ S and it can be shown that the following relation hold:

E
[

sup
0≤t≤T ⋆

∣∣∣∣∫ t

0
ϕsdZs

∣∣∣∣] ≤ ||ϕ||SE1/2
[

sup
0≤s,t≤T ⋆

||Zs − Zt||2∞
]
<∞ (5.20)

Under proportional transaction costs one has also to take into account the transaction
costs with respect to the portfolio value needed to sell the whole portfolio as well as the
cost of selling parts of it. It is therefore given by:

V k
t (ϕ) =

N−1∑
i=0

χFi(Zti+1 − Zti)mi

− k
N−1∑
i=0

Zti |ϕti+1 − ϕti | − kZt|ϕt|, (5.21)

where k > 0 is an arbitrary number.
After introducing Condition II, we can extend the process to continuous trading;
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5.4. Arbitrage-free pricing under transaction costs

• Condition II: Let PT ⋆ denote the set of all partitions of [0, T ⋆] and assume that
ΠT ⋆(ϕ) = supπ∈PT ⋆

∑
ti∈π ||ϕti+1 − ϕti ||T V is square integrable.

Leading to the following lemma:

Lemma 5.4.1. Let ϕ ∈ S satisfy Condition II. Then Equation (5.21) converges to

V k
t (ϕ) =

∫ t

0
ϕsdZs − k

∫ t

0
Zsd|ϕs| − kZt|ϕt|

Proof. [Oha09], pp.9 and references therein. □

We are ready to define some familiar concepts;

Definition 5.4.2 (Admissible portfolio). For proportional transaction costs with propor-
tionality factor k > 0 a portfolio ϕ ∈ S is called admissible if it is adapted, it satisfies
Condition II, and there exists a M > 0 such that V k

t (ϕ) ≥ −M a.s for every 0 ≤ t ≤ T ⋆.

The intuition is as in the classical case; the investor is not allowed to "disturb" the
process by depositing or withdrawing cash once it has started and it is not possible to
lose an infinite amount of money. We follow up with the familiar notions of an arbitrage
opportunity and arbitrage free market:

Definition 5.4.3 (Arbitrage opportunity). An admissible portfolio ϕ ∈ S is called an
arbitrage opportunity with transaction costs k > 0 if V k

T ⋆(ϕ) ≥ 0 a.s and P(V k
T ⋆(ϕ) > 0) >

0

Definition 5.4.4 (k-arbitrage free market). The bond market is called k-arbitrage free with
transaction costs k > 0 if for every admissible portfolio ϕ, V k

T ⋆(ϕ) ≥ 0 a.s implies
V k

T ⋆(ϕ) = 0

As before, the process should not be able to give a sure profit, and as always in
mathematical finance our most important task is to avoid the possibility of arbitrage.
The following proposition is a general criteria for no-arbitrage;

Proposition 5.4.5. Fix k > 0. If for every {Ft, t ≥ 0}-stopping time τ s.t P(τ < T ⋆) > 0
we have

P
(

sup
τ≤t≤T ≤T ⋆

∣∣∣∣ Zτ (τ)
Z(t, T ) − 1

∣∣∣∣ < k, τ < T ⋆
)
> 0, (5.22)

then the bond market is arbitrage free on [0, T ⋆] with transaction costs k

Proof. See [Oha09], Proposition 3.1. □

The reasoning behind the proposition is as follows: we choose τ as our first trading
point in time. The trade generates the transaction costs k. To make an arbitrage the
price will have to be larger than k in a future time. If we choose an event A as the
event that the price will not go above k and find that the probability of A happening is
positive, we can not make a risk less profit and hence arbitrage is impossible.

We would like to find more specific criteria for k-arbitrage free bond markets. In the
following denote C(∆2

T ⋆) as the space of all real-valued continuous functions on ∆2
T ⋆ .

The following lemma gives a condition for when we can use Proposition 5.4.5.

Lemma 5.4.6. Let Y : Ω→ C(∆2
T ⋆) be a measurable map s.t X := log Y has full P-support.

Then Y satisfies the assumption in Proposition 5.4.5
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5.4. Arbitrage-free pricing under transaction costs

Proof. See [Oha09], Lemma 3.1 □

We remember that the paths of fBm is Hölder-continuous. The following lemma states
volatility conditions that need to be fulfilled in order for the market to be k-arbitrage
free.

Lemma 5.4.7. Assume that Iσi(t, T ) is λ-Hölder continuous on ∆2
T ⋆ for every i ≥ 1 where

1/2 < λ < 1. Then the process

d∑
i=1

∫ t

0
Iσi(s, T )dWH

s,i

has P-full support on C(∆2
T ⋆).

Proof. See Ohashi [Oha09], Lemma 3.2. □

If we put together Lemma 5.4.6 and Proposition 5.4.5 we see that the bond market is
k-arbitrage free if the process log(Z) has P-full support. By Lemma 5.4.7 we constrain
the volatility σ by imposing conditions such that log(Z) has the full support property.
We would however, like to find conditions on α such that a) the full-support property is
ensured, and b) there exist a quasi-martingale measure. We start with the definition of
the latter:

Definition 5.4.8 (Quasi-martingale measure). We say that an equivalent probability measure
Q∗ ∼ P is a quasi-martingale measure if the discounted bond price process Z(t, T ) has
Q∗-constant expectation. That is, for every 0 < T <∞

EQ∗[Z(t, T )] = P (0, T ) (5.23)

holds for all 0 ≤ t ≤ T .

We start by stating a condition on α under the measure P. We will soon come
up with a change of measure which let us state the fractional forward curve under a
quasi-martingale measure Q∗.

Lemma 5.4.9. The P-constant expectation E[Z(t, T )] = P (0, T ) holds for every 0 < T <
∞, 0 ≤ t ≤ T iff the drift α satisfies the following equality:

αt(x) =
d∑

i=1

[
σt(x)

∫ t

0
Iσi(θ, x+ t)ηH(t− θ)dθ

+
∫ x

0
σt,i(y)dy

∫ t

0
σθ,i(x+ t− θ)ηH(t− θ)dθ

]
(5.24)

Proof. See [Oha09], Corollary 3.1 □

5.4.1 Change of measure

We now turn to the change of measure. Consider

Kh(t) =
∫ t

0
K(t, s)h(s)ds, h ∈ L2(0, T ⋆;R), (5.25)
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where K is given by

K(t, s) = cHs
1/2−H

∫ t

s
(u− s)H−3/2uH−1/2du (5.26)

for some cH > 0.
We recognize K(t, s) as the stochastic integral representation of fBm over finite

intervals which let us describe fBm by a standard Brownian motion H > 1/2. Using this
we can state a version of the Girsanov theorem:

Lemma 5.4.10. Let γ(t) be a R-valued measurable function s.t
∫ T ⋆

0 ||γ(t)||Rdt < ∞ and
R(x) =

∫ x
0 γ(s)ds ∈ H. Then W̃H

t = WH
t −

∫ t
0 γ(s)ds is a Q∗-fBm on [0, T ⋆] s.t

dQ⋆

dP
= E(K−1R ·W )⋆

T (5.27)

where
E(K−1R ·W )T ⋆ = exp

[
(K−1R ·W )T ⋆ − 1

2

∫ T ⋆

0
||K−1R(t)||2Rdt

]
(5.28)

Proof. See [Oha09], Lemma 3.3. □

Lastly, we develop a no-arbitrage drift condition. Fix the proportional transaction
cost k > 0 and define

SHσt(x) =
d∑

i=1

[
σt,i(x)

∫ t

0
Iσi(θ, x+ t)ηH(t− θ)dθ

+
∫ x

0
σt,i(y)dy

∫ t

0
σθ,i(x+ t− θ)ηH(t− θ)dθ

]
, (5.29)

where we require that the the volatilities are regular:∫ T

0
||SHσt||Edt <∞ (5.30)

and we observe that Equation (5.29) corresponds to αt in Equation (5.24).
By Lemma 5.4.9 we know that if αt in Equation (5.24) holds, the constant expectation

condition is satisfied. We also see that SHσt(x) does exactly that. In the following theorem
we define the process σtγt = SHσt−αt. Making use of Lemma 5.4.10 we construct a new
measure Q∗, under which the drift SHσt satisfies Equation (5.24) by definition. This
ensures the existence of a quasi-martingale measure. Condensed:

Theorem 5.4.11. Assume that the volatility satisfies assumptions in Lemma 5.4.7 and
there exists an R-valued measurable function γt satisfying assumptions in Lemma 5.4.10
in a way such that

σtγt = SHσt − αt, t ≥ 0 (5.31)

Then there exists a quasi-martingale measure for the bond market. In addition, the
market is arbitrage free on [0, T ⋆] with transaction costs k

Proof. See [Oha09], Theorem 3.1 □
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Rearranging the last term σtγt = SHσt−αt to σtγt+αt = SHσt we can, as in the classic
case, interpret −γ as the market price of risk. Moreover, if we set dW̃H = dWH − γtdt
(from Lemma 5.4.10) we can write the forward curve under the measure Q∗ as

f(t, T ) = f(0, t) +
∫ t

0
α̃(s, T )ds+

d∑
i=1

∫ t

0
σi(s, T )dW̃H,i

s (5.32)

where α̃(s, T ) = SHσ(s, T )
Note that the change of measure does not affect the bonds volatility nor its rate of

return. This is contrary to the real world where we would expect the volatility to be a
major factor in an investors decision to buy or sell a bond. A higher volatility would be
deemed to give a higher return. Under the quasi-martingale measure, all bonds have the
same expected rate of return regardless of their riskiness.

5.5 Modelling fractional short rates under the average risk-neutral-
measure

We retrieve the short rates:

r(t) = f(t, t) = f(0, t) +
∫ t

0
α̃(s, t)ds+

∫ t

0
σ(s, t)dW̃H

s

computing
∫ t

0 α̃(s, t)ds:∫ t

0
α̃(s, t)ds =

∫ t

0
SHσ(s, T )ds

=
d∑

i=1

(∫ t

0

[
σi(s, t)

∫ s

0

∫ t−θ

0
σi

θ(x)ηH(s− θ)dxdθ

+
∫ t−s

0
σi

s(x)dx
∫ s

0
σ(θ, t)ηH(s− θ)dθ

]
ds

)

factorizing σ(t, T ) to ξ(t)ν(T ), where ξ(x), ν(x) > 0, ν(x) differentiable and ξ(x) of
bounded p-variation for 0 < p < 1/H yields

∫ t

0
α̃(s, t)ds =ν(t)

d∑
i=1

(∫ t

0

[ ∫ s

0

∫ t

θ
ξi(s)ξi(θ)ν(x)ηH,i(s− θ)dxdθ

+
∫ t

s
ξi(s)ν(x)dx

∫ s

0
ξi(θ)ηH,i(s− θ)dθ

]
ds

)

=ν(t)
d∑

i=1

([ ∫ t

0

∫ s

0
ξi(s)ξi(θ)

∫ t

θ
ν(x)dxηH,i(s− θ)dθds

+
∫ t

0

∫ s

0
ξi(s)ξi(θ)

∫ t

s
ηH,i(s− θ)dθds

])
.

Furthermore, setting

λ(t) := f(0, t) +
∫ t

0
α̃(t, s)ds.
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We can write the fractional Vasicek short rate model under Q∗, for t ∈ [0, T ⋆] by

r(t) = λ(t) + ν(t)
d∑

i=1

∫ t

0
ξi(s)dW̃H,i

s . (5.33)

However, we are interested in the fractional short rate model for 0 ≤ s ≤ t ≤ T ⋆.

r(t)− r(s) =λ(t) + ν(t)
d∑

i=1

∫ t

0
ξi(u)dW̃H,i

u − λ(s)− ν(s)
d∑

i=1

∫ s

0
ξi(u)dW̃H,i

u

=
∫ t

s
λ′(u)du+

d∑
i=1

[∫ t

s

(∫ u

0
ξi(v)dW̃H,i

v

)
dν(u) +

∫ t

s
ν(u)d

(∫ u

0
ξi(v)dW̃H,i

v

)]

=
∫ t

s
λ′(u)du+

d∑
i=1

[∫ t

s
ν ′(u)

(∫ u

0
ξi(v)dW̃H,i)du+

∫ t

s
ν(u)ξi(u)dW̃H,i

u

]

=
∫ t

s

[
λ′(u) + ν ′(u)

d∑
i=1

(∫ u

0
ξi(v)dW̃H,i

v

)]
du+

d∑
i=1

∫ t

s
ν(u)ξi(u)dW̃H,i

u

=
∫ t

s

[
λ′(u) + ν ′(u)r(u)− λ(u)

ν(u)

]
du+

d∑
i=1

∫ t

s
ν(u)ξi(u)dW̃H,i

u .

Using the following (Musiela-) equations for t ∈ [0, T ⋆] and i ∈ {0, 1, 2..., d}

k(t) = λ′(t)− ν ′(t)
ν(t) λ(t) (5.34)

a(t) = −ν
′(t)

−ν(t) (5.35)

σi(t) = ξi(t)ν(t), (5.36)

we end up with the following short-rate dynamics under Q∗:

r(t) = r(s) +
∫ t

s

(
k(u)− a(u)r(u)

)
du+

d∑
i=1

∫ t

s
σi(u)dW̃H,i

u , (5.37)

where we again can factor out a(u) to get the mean reversion effect and hence a fractional
Vasicek model under Q∗:

r(t) = r(s) +
∫ t

s
a(u)

(
k(u)
a(u) − r(u)

)
du+

∫ t

s
σi(u)dW̃H

u

for simplicity we again denote b(t) = k(t)
a(t) . In differential form:

dr(t) = dr(s) + a(t)(b(t)− r(t))dt+ σ(t)dW̃H
t . (5.38)

We want to model directly under Q∗ and the following lemma ensures that we can
find ξ(x), ν(x), f(0, x) such that Equation (5.34), Equation (5.35) and Equation (5.36)
holds:

49



5.5. Modelling fractional short rates under the average risk-neutral-measure

Lemma 5.5.1. Given b, a, σ continuous on t ∈ [0, T ⋆], take

ν(t) = exp
(
−

∫ t

0
a(s)ds

)
ξ(t) = σ(t) exp

(∫ t

0
a(s)ds

)
and let f(0, x) be the first order linear differential equation

∂

∂t
f(0, t) = −a(t)f(0, t) +

[
k(t)− a(t)

∫ t

+
ã(s, t)ds− ∂

∂t

∫ t

0
α̃(s, t)ds

]
, t ∈ [0, T ⋆]

then Equation (5.34), Equation (5.35) and Equation (5.36) is satisfied.

Proof. [Fin11], Lemma 3.3.10 □

Thus we can model short rates directly under Q∗ given that the coefficient functions
satisfies Lemma 5.5.1.
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Chapter 6

Bond prices under fBm-driven Hull-White
models

6.1 Conditional distributions of fBm

We recall the space of suitable integrands for fBm Λκ
T defined earlier and we recall that a

random variable X is normally distributed with expectation µ ∈ R and variance σ2 > 0
iff

E[eiuX ] = eiuµ− u2
2 σ2

Throughout the rest of this chapter we will condition on the completion of the generated
σ-algebra denoted by

Fs := σ{WH
v , 0 ≤ v ≤ s}, 0 ≤ s ≤ T

We will also rescale the Hurst parameter so that the notation align with that of fractional
calculus:

κ = H − 1
2

The main building block going forward in this chapter is the following lemma

Lemma 6.1.1. Let 0 ≤ t ≤ T ≤ T ⋆ and 0 ≤ κ ≤ 1. Then

E[W κ
T |Ft] = W κ

t +
∫ t

0
Ψκ(t, T, v)dW κ

v ,

where

Ψκ(s, t, v) =v−κ(I−κ
s− (I−κ

t− (x)κ1[s,t](x)))(v)

=sin(πκ)
π

v−κ(s− v)−κ
∫ t

s

zκ(z − s)κ

z − v
dz

for v ∈ (0, t) and with Ψκ(s, t, v) = 0 for v ∈ {0, s}.

Proof. [FKZ13], Lemma 2.1. □

the following auxiliary result will also be utilized. Take c ∈ Λκ
T . We start with the

expectation of the fractional process
∫ t

0 c(v)dWH
v :
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6.1. Conditional distributions of fBm

Proposition 6.1.2. For 0 ≤ s ≤ t ≤, let c ∈ ΛH
T . Then

E
[∫ t

0
c(v)dW κ

v

∣∣∣∣W κ
v , v ∈ [0, s]

]
=

∫ s

0
c(v)dW κ

v +
∫ s

0
Ψκ

c (s, t, v)dW κ
v

where

ΨH
c (s, t, v) =v−κ(I−κ

s− (I−κ
t− (x)κc(z)1[s,t](z)))(v)

=sin(πκ)
π

v−κ(s− v)−κ
∫ t

s

zκ(z − s)κ

z − v
c(z)dz

Proof. [Dun06], Lemma 1. □

The distribution of
∫ t

0 c(v)dWH
v is characterized by:

Theorem 6.1.3. Let c ∈ Λκ
T and let 0 ≤ t ≤ T ≤ T ⋆. Then

∫ t
0 c(v)dWH

v is normally
distributed with expectation

E
[∫ t

0
c(v)dW κ

v

∣∣∣∣Fs

]
=

∫ s

0
c(v)dW κ

v +
∫ s

0
Ψκ

c (s, t, v)dW κ
v

and variance

V
[∫ t

0
c(v)dW κ

v

∣∣∣∣Fs

]
= ||c(x)1[s,t](x)||2κ,T − ||Ψκ

c (s, t, x)1[0,s](x)||2κ,T .

The conditional expectation of
∫ t

0 c(v)dW κ
v |Fs is already established by Proposi-

tion 6.1.2. However, utilizing Gaussianity and an application of Lemma 5.1 in [FKZ13]
the conditional variance is calculated as a limit. This is done by by partitioning the
interval [0, s] and approximate the covariance matrices (Σn

22)−1Σn
21 and Σn

12(Σn
22)−1Σn

21.
For the full proof, see [FKZ13], Theorem 3.1.

Tying in to the overall theme, consider a fractional Hull-White processes with the
dynamics

dX(t) = (k(t)− a(t)X(t))dt+ σ(t)dW κ
t , X(0) ∈ R, t ∈ [0, T ] (6.1)

and solution given by

X(t) =X(0) exp
(
−

∫ t

0
a(s)ds

)
+

∫ t

0
exp

(
−

∫ t

s
a(u)du

)
k(s)ds

+
∫ t

0
exp

(
−

∫ t

s
a(u)du

)
σ(s)dW κ

s (6.2)

We constrain k(x) and a(x) to be locally integrable and σ(x) ∈ Λκ
T . Setting σ(x) ̸= 0

yields the following equality

Fs := σ{W κ
v , 0 ≤ v ≤ s} = σ{X(v), 0 ≤ v ≤ s}, 0 ≤ s ≤ T.

Recall the norm on Λκ
T ;

||f ||2κ,T = πκ(2κ+ 1)
Γ(1− 2κ) sin(πκ)

∫ T

0
s−2κ[Iκ

T −((x)κf(x))(s)]2 ds (6.3)

By Equation (6.2), we see that X(t)|Fs is Gaussian distributed. Setting c(x) =
exp

(
−

∫ t
x a(w)dw

)
σ(x) and invoking Theorem 6.1.3 yields the following result:
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6.1. Conditional distributions of fBm

Theorem 6.1.4. Let 0 ≤ t ≤ T ≤ T ⋆ and set c(x) = exp(−
∫ t

x a(w)dw)σ(x), c(x) ∈ Λκ
T .

Then X(t)|Ft is normally distributed with expectation

E
[
X(t)

∣∣Ft
]

=X(s) exp
(
−

∫ T

t
a(v)dv

)
+

∫ T

t
exp

(
−

∫ T

v
a(u)du

)
k(v)dv

+
∫ t

0
Ψκ

c (t, T, v)dW κ
v

variance
V

[
X(t)

∣∣Fs
]

= ||c(x)1[s,t](x)||2κ,T − ||Ψκ
c (s, t, x)1[0,s](x)||2κ,T

and characteristic function given by

E[eiuX(t)|Fs] = exp
{
iu

[
X(s) exp

(
−

∫ t

s
a(v)dv

)
+

∫ t

s
exp

(
−

∫ t

v
a(w)dw

)
k(v)dv

+
∫ s

0
Ψκ

c (s, t, v)dW κ
v

]}
× exp

{
−u

2

2
[
||1[s,t](x)||2κ,T − ||Ψκ(s, t, x)1[0,s](x)||2κ,T

]}
Proof. For a full proof, see [FKZ13], Theorem 3.2 □

Assume that σ(x) and 1/σ(x) are of bounded p-variation for some 0 < p < 1/κ.
Inverting Equation (6.1) ([FKZ13], proof of Proposition 3.1) we can write the the
distribution in terms of X only.

Proposition 6.1.5. Assume the same situation as in Theorem 6.1.4. Assume that σ(x)
and 1/σ(x) are of bounded p-variation for some 0 < p < 1/κ. Let 0 ≤ t ≤ T and set
c(x) = exp(−

∫ t
x a(w)dw)σ(x). Then X(t)|Fs is normally distributed with expectation

E
[
X(t)

∣∣Fs
]

=X(s) exp
(
−

∫ t

s
a(v)dv

)
+

∫ t

s
exp

(
−

∫ t

v
a(w)dw

)
k(v)dv

−
∫ s

0
Ψκ

c (s, t, b) ṽ

σ(v)dv +
∫ s

0
Ψκ

c (s, t, v)a(v)
σ(v)X(v)dv

+
∫ t

0
Ψκ

c (s, t, v) 1
σ(v)dX(v), t ∈ [0, T ]

and variance

V
[
X(t)

∣∣Fs
]

= ||c(x)1[s,t](x)||2κ,T − ||ΨH
c (s, t, x)1[0,s](x)||2κ,T

where c(x) = exp(−
∫ t

x a(v)dv)σ(x). The characteristic function is given by

E[eiuX(t)|Ft] = exp
{
iu

[
X(t) exp

(
−

∫ T

t
a(v)dv

)
+

∫ T

t
exp

(
−

∫ T

v
a(w)dw

)
k(v)dv

−
∫ t

0
Ψκ

c (t, T, v)k(v)
σ(v)dX(v) +

∫ t

0
Ψκ

c (t, T, v)a(v)
σ(v)dX(v)

+
∫ t

0
Ψκ

c (t, T, v) 1
σ(v)dX(v)

]}
× exp

(
−u

2

2
[
||1[t,T ](x)||2κ,T ⋆ − ||Ψκ(t, T, x)1[0,t](x)||2κ,T ⋆

])
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6.2. Zero-coupon bonds for fBm-driven short rates

Proof. [FKZ13], Proposition 3.1 and references therein. □

As bond prices are not given in terms of the "pure" short rate X(t), but rather the
integrated short rate, we need a formula for the conditional characteristic function of∫ t

s X(v)dv. To ease notation, define

D(x, t) =
∫ t

x
exp

(
−

∫ v

x
a(w)dw

)
dv, t ∈ [0, T ]

and assume in the following that

c(x) = D(x, t)σ(x) ∈ Λκ
T (6.4)

Proposition 6.1.6. Let X be the process in Equation (6.2). Let 0 ≤ t ≤ T ≤ T ⋆. Assume
that σ(x) and 1/σ(x) are of bounded p-variation for some 0 < p < 1/κ. Then for u ∈ R:

E
[
eiu

∫ t

0 X(v)dv∣∣Fs
]

= exp
(
iu

[∫ t

0
X(v)dv +D(t, T )X(t) +

∫ T

t
D(v, T )k(v)dv

−
∫ t

0
Ψκ

c (t, T, v)k(v)
σ(v)dv +

∫ t

0
Ψκ

c (t, T, v)a(v)
σ(v)X(v)dv

+
∫ t

0
Ψκ

c (t, T, v) 1
σ(v)dX(v)

])
× exp

(
−u

2

2
[
||c(x)1[t,T ](x)||2κ,T ⋆ − ||Ψκ

c (t, T, x)1[0, t](x)||κ,T ⋆

])
Proof. [FKZ13], Proposition 3.2 □

6.2 Zero-coupon bonds for fBm-driven short rates

Due to Gaussianity we can extend the characteristic function from Proposition 6.1.6 to
C. If we set u = i we see that the above formula becomes the price of a zero-coupon
Bond for a fractional Hull-White short rate process r(t) = X(t), under the measure Q∗.
We recall r is given by

dr(t) = (k(t)− a(t)r(t))dt+ σ(t)dW̃ κ
t , r(0) ∈ R, t ∈ [0, T ] (6.5)

Theorem 6.2.1 (Zero-coupon bond price for fractional Hull-White models). Let r(t) = X(t)
be the process in Equation (6.2). Let 0 ≤ t ≤ T ≤ T ⋆. Assume that σ(x) and 1/σ(x)
are of bounded p-variation for some 0 < p < 1/κ, κ ̸= 0. Assume that c(x) ∈ Λκ

T for
κ ∈ (0, 1). Then the price of a zero-coupon bond PfHW(t, T ) at time t with maturity T is
given by:

PfHW(t, T ) =EQ∗

[
e−

∫ T

0 r(v)dv
∣∣∣∣Ft

]
= exp

{
−

[
D(t, T )r(t) +

∫ T

t
D(v, T )k(v)dv

−
∫ t

0
Ψκ

c (t, T, v)k(v)
σ(v)dv +

∫ t

0
Ψκ

c (t, T, v)a(v)
σ(v)r(v)dv

+
∫ t

0
Ψκ

c (t, T, v) 1
σ(v)dr(v)

]}
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6.2. Zero-coupon bonds for fBm-driven short rates

× exp
(
−1

2
[
||c(x)1[t,T ](x)||2κ,T ⋆ − ||Ψκ

c (t, T, x)1[0, t](x)||κ,T ⋆

])
Remark 6.2.2. Theorem 6.2.1 is originally given for d-dimensional short rates. We will
focus on one-dimensional models and so we only state the d = 1 case. The original
theorem and its proof can be found in [FKZ13], Theorem 4.1.

For the reasons mentioned above with regards to the dangers of the Hull-White
method, we will concentrate on a fractional Vasicek model with constant coefficients
given by

dr(t) = a(b− r(t))dt+ σdW̃ κ
t , r(0) ∈ R, t ∈ [0, T ] (6.6)

Figure 6.1: Sample paths from the fractional Vasicek model for some values of H

The price of a zero-coupon bond based on such a model can easily be derived from
Theorem 6.2.1:

Corollary 6.2.3 (Zero-coupon bond price for fractional Vasicek models). Assume the same
situation as in Theorem 6.2.1 and short rates r(t) given by Equation (6.6). The price of
a zero-coupon bond PfV is given by:

PfV(t, T ) = exp
{
−

[
D(t, T )

(
r(0)e−at + ab

∫ t

0
e−a(t−s) ds+

∫ t

0
e−a(t−s)σdW κ

s

)
+ ab

∫ T

t
D(v, T )dv − ab

σ

∫ t

0
Ψκ

c (t, T, v)dv

+ a

σ

∫ t

0
Ψκ

c (t, T, v)
(
r(0)e−av + ab

∫ v

0
e−a(v−s) ds+

∫ v

0
e−a(v−s)σdW κ

s

)
dv
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6.2. Zero-coupon bonds for fBm-driven short rates

+ 1
σ

∫ t

0
Ψκ

c (t, T, v)(a(b− 1)
(
r(0)e−av + ab

∫ v

0
e−a(v−s) ds+

∫ v

0
e−a(v−s)σdW κ

s )
)
dt

+
∫ t

0
Ψκ

c (t, T, v)dW κ
t

]}
× exp

(
−1

2
[
||c(x)1[t,T ](x)||2κ,T ⋆ − ||Ψκ

c (t, T, x)1[0,t](x)||κ,T ⋆

])
(6.7)

where c(x) = σD(x, T )

Proof. Take the equation from Theorem 6.2.1. The result follow from setting k(t) = ab,
a(t) = a and σ(t) = σ and inserting Equation (6.2) for r(t)-terms. □

Though this equation is still mildly abhorrent, it is now in terms of fBm and not the
short rate process. It is also worth to note that the most messy parts disappear when
t = 0 as the next example shows

Example 6.2.4 (Fractional Vasicek ZCB price for t = 0). Using t = 0, the above equation
simplifies to the more tractable

PfV(0, T ) = exp
{
−

[
D(0, T )

(
r(0) + k

∫ T

0
D(v, T )dv

]}
× exp

(
−1

2
[
||c(x)1[0,T ](x)||2κ,T ⋆

])

Figure 6.2: Prices of a zero-coupon bond under the fractional Vasicek model with parameters
a = 20%, b = 3% and σ = 1% for some values of H
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6.2. Zero-coupon bonds for fBm-driven short rates

Remark 6.2.5 (What about parameter estimation?). It is out of the scope of this thesis to
do parameter estimation of the fractional Vasicek model, both with respect to the Hurst
parameter, but also with respect to a, b and σ. We do however direct the interested
reader to [TXY20] for a discussion of Maximum Likelihood Estimation with respect to
the fractional Vasicek model and to [GSP08] for a discussion of the Rescaled Range
(R/S)-method for the estimation of long-range dependence in financial datasets. There is
also a discussion of estimation methods with respect to H in [Bia+10].
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Chapter 7

Life Insurance reserves under fractional
interest rates

Arriving at the main result of this thesis, we apply the theory of fractional interest rates
from previous chapters to life insurance reserves.

7.1 Life insurance reserves

Under the measure Q∗, the definition of life insurance reserves with stochastic interest
rates is given by;

Vj(t, Ag) = EQ∗

[ 1
v(t)

∫
I
v(s)dAg(s)

∣∣∣∣Ft

]
, (7.1)

As in the Markovian case, we can expand this to be:

V +
i (t, r(t)) =

∑
j∈S

EQ∗

[
v(T )
v(t) |Ft

]
px

ij(t, T )∆ai(T )

+
∑
j∈S

∫ T

t
EQ∗

[
v(s)
v(t) |Ft

]
px

ij(t, s)ȧi(t)

+
∑

j∈S,k ̸=j

∫ T

t
EQ∗

[
v(s)
v(t) |Ft

]
px

ij(t, s)µx
jk(s)aij(t)ds

setting
PfHW(t, T )(t, T ) = EQ∗

[
v(T )
v(t) |Ft

]
yields, analogous to the Markovian case, the following expression

Definition 7.1.1 (Mathematical reserves with fractional stochastic interest rates). Let x
be the age of the insured at the start of the contract and let PfHW(t, T ) be given as in
Theorem 6.2.1. The value at time t of the liability A associated with to policy functions
ai and aij, i, j ∈ S, j ̸= i, given that the insured is in state i at time t is given by

V +
i (t, r(t)) =

∑
j∈S

PfHW(t, T )px
ij(t, T )∆ai(T )

+
∑
j∈S

∫ T

t
PfHW(t, s)px

ij(t, s)ȧi(t)
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7.2. Numerical analysis

+
∑

j∈S,k ̸=j

∫ T

t
PfHW(t, s)px

ij(t, s)µx
jk(s)aij(t)ds

These reserves can handle time-dependent parameters and can in principle be
computed for every t ∈ [0, T ]. However, the formula for the bond used, given by
Theorem 6.2.1, forces the life insurance reserves to be a non-Markovian stochastic
variable due to the loss of semimartingality for t ∈ (0, T ). Therefore, the derivation of
a Thiele’s PDE (see e.g [Bãn22]) and computing the present value for time t ∈ (0, T ]
as in Figure 3.5 is impossible (at least in the classical sense). For t = 0, however, the
computation is quite straight forward as indicated by Example 6.2.4. This is illustrated
by the next example.

Example 7.1.2 (Pension policy with fractional Vasicek interest rates). Consider the same
policy as in Example 3.1.15; I.e. a policy which pays out a yearly benefit B from T0 until
T . We still do not consider premiums. Recall that the policy functions are then given by

a∗(t) =
{

0, t ∈ [0, T0)
B(t− T0), t ∈ [T0, T ]

which gives us

ȧ∗(t) =
{

0, t ∈ [0, T0)
B, t ∈ [T0, T ]

Our stochastic interest rates are modelled by a fractional Vasicek model. The
mathematical reserves are then expressed by

V +
∗ (t, r(t)) =B

∫ T

max(t,T0)
PfV(t, s)px

∗∗(t, s)ds

where PfV(t, s) is given as in Equation (6.7). As in the above cases, let the insured be a
male aged 30 at the start of the contract with the pension payouts of 200000 NOK a year
starting at 70 (T0 = 40) and lasting until he is 110 (T = 80) with Vasicek parameters
given by a = 20%, b = 3% and σ = 1%. We will compute the single premiums for some
values of H, including the Markovian case H = 1/2.

In Figure 7.1 we see that the single premium for interest rates with H = 0.9 is
significantly higher than the life insurance reserves based on "standard" Vasicek interest
rates (H = 0.5) for all initial interest rates r0. Seeing the results for the bond prices, this
should come at no surprise.

7.2 Numerical analysis

Admittedly, the parameters in the above examples is chosen carefully so that the present
values does not explode. This happens with certain combinations of values and especially
over the long maturities used in connection with life insurance. It is therefore interesting
to have a closer look at the parameters in the fractional Vasicek model and how they
influence the single premium of a life insurance policy. Varying any of the parameters
vary the price of the bond, and as the value of the policy is contingent on the price of
the bond, we expect the former to be very sensitive to the latter.
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Figure 7.1: Single premiums for the policy in Example 7.1.2

7.2.1 Distributional characteristics of fractional Vasicek interest rate paths

As a preliminary investigation, we study the distribution of the fractional Vasicek interest
rate model endpoints, given by Equation (6.1) and see how the Hurst-parameter influence
the distribution of r(T ). From Theorem 6.1.4 we know that r(T ) is normally distributed.
With s = 0, and b = k/a, the moments become:

E[r(T )] = r(0) exp(−aT ) + b(1− exp(−aT ))
V[r(T )] = ||σ exp(−a(T − x)1[0,T ](x)||2κ,T

In the following, we will use H = κ+ 1
2 . Now we have explicit expressions for the functions

connected to the distribution of r(T ).
We perform 5000 simulations of fractional Vasicek sample paths endpoints.
The theoretical mean and standard deviation and the mean and standard deviation

obtained from the Monte-Carlo simulation is summarized in the following table:

Mean and Variance of r(80)
H Theoretical mean Empirical mean Theoretical S.D Empirical S.D
0.1 0.030 0.0301 0.0069 0.0080
0.3 0.030 0.0299 0.0096 0.0108
0.5 0.030 0.0304 0.0158 0.0160
0.7 0.030 0.0303 0.0218 0.0241
0.9 0.030 0.0302 0.0356 0.0386

First, we see that the Monte-Carlo simulations are fairly accurate. More importantly
is that the standard deviation increase quite significantly with the Hurst-parameter.
Our suspicion, that fractional Vasicek interest rates with high Hurst-parameter values is
dangerous in the sense of being more volatile, seems to find steady ground. The increased
variance of higher values of H is very well illustrated in Figure 7.2.
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Figure 7.2

From the simulations we can also compare the theoretical and empirical probability of
the interest rates ending up sub-zero. The results are summarized in the following table:

P(r(80) < 0|H)
H Theoretical Empirical
0.1 0 0.000
0.3 0.0009 0.0038
0.5 0.0289 0.0266
0.7 0.0846 0.1052
0.9 0.1996 0.2126

Clearly, as H increases, so does the probability of r(T ) being negative. This probability
increase rapidly with H. The probability of negative interest rates will of course affect
bond prices and in turn single premiums. In the following we explore this dynamic
further.

7.2.2 Sensitivity analysis

To see how this plays out with respect to the single premiums of a life insurance reserve,
we will now look at the same pension policy as Example 7.1.2 and vary one parameter
while letting the remaining parameters be fixed. We will use maturity T = 80 and
reference values r0 = 2%, a = 20%, b = 3% and σ = 1%.

Sensitivity with respect to r0

From Figure 7.3 we see that an increase in r0 increase the single premiums modestly,
and it seems, almost linearly. We see a breaking point for all values of r0 when H ≈ 0.75
where the single premiums suddenly increase exponentially.
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Figure 7.3

Sensitivity with respect to a

Figure 7.4

Recall that a determines the mean-reversion speed of the fractional Vasicek model. In
Figure 7.4 we see that values of a will direct the interest rate toward the long term mean
(and thus away from ending up sub zero) with a higher force. Therefore we see that the
single premium is higher with lower values of a and vice versa as the risk of going sub-zero
decreases with higher values of a. The increase in single premiums increase rapidly with
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small values of a and the breaking point for a = 0.1 comes quickly at H ≈ 0.6. On the
other hand, the breaking point is less pronounced or non-existent for the other, higher
values of a.

Sensitivity with respect to b

Figure 7.5

It is worth to note that the maturities of the bonds involved in the computations
are very long (up to 80 years) which again increase the possibility of negative interest
rate, especially if the long-term mean is low. However, we see from Figure 7.5 that it
does not affect the single premium in as a dramatic way as a; a decrease in b shifts the
value upwards while lowering the breaking point about 0.1 units of H. However, the shift
upwards seem to be almost exponential, which does correlate well with the fact that a
lower long-term mean obviously increase the probability of negative interest rates.

Sensitivity with respect to σ

The influence of σ on the single premium is quite dramatic. We see from Figure 7.6
that higher values of σ increases the single premium significantly. We see that σ clearly
influence the single premiums the most and we see a rapid increase already at H ≈ 0.4
for all values bar σ = 0.5%. Also, the explosions comes earlier, even as early as H ≈ 0.55
for the highest value. The explanation is straight forward; for higher the value of σ, the
more volatile the process is and the more likely it is to turn negative or be lower than
the interest rate at t = T .
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Figure 7.6
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Chapter 8

Conclusion and further work

After an introduction to mathematical finance and life insurance mathematics we discussed
fractional Brownian motion and reviewed arbitrage theory in markets with transaction
costs, including a fractional version of the HJM framework (due to [Oha09]). We then
followed [FKZ13] and [Fin11] in deriving short rates under transaction costs and priced a
zero-coupon bond in this model. We then implemented these results in life insurance
policies and studied an example pension policy under the fractional Vasicek model.

Investigating the example pension policy and the distribution of r(T ), we saw that
an increase in the Hurst-parameter H is dangerous with respect to single premiums.
The sensitivity analysis also showed how an increase in H made the reserves a lot more
sensitive to changes in variables, especially the volatility, which easily exploded for high
values of H. It is, however, doubtful that interest rates show that much persistence. In
any case, it suggests that more persistence in the interest rates equal a higher single
premium for life insurance policies. As persistence is what has been reported ([McC+04]),
this could be of interest to practitioners in the industry.

During the work of this thesis, several related topics that could prove fruitful has
come to mind. First, further research on the persistency or roughness of financial
assets is warranted in order to assess the usefulness of fractional interest rate models in
life insurance and finance. The existing literature on the persistence of interest rates
referenced in this thesis is from 2004 and earlier and could be outdated and new analyses
should be conducted.

From the authors of [FKZ13] and [Fin11], whose work we have utilized extensively in
this thesis, there is more implementations of fractional short rates that can be used. For
instance one could implement defaultable bonds driven by fractional Hull-White models
in life insurance policies to account for credit risk driven by fractional Brownian motion
(see [BFK13]).

Another topic to explore could be regime-switching interest rate models based on
fractional Brownian motion, where for instance the long-term mean b(t) in the Hull-White
model would change when r(t) exceeded a threshold. This could be used to better model
shifts such as the interest rates before and after the financial crisis of 2008. In the same
vein, studying the implementation of fractional Brownian motion with time-dependent
Hurst-parameters as driving noise in interest rate models could also prove fruitful as one
could imagine that the persistency of the interest rates decreases or increases during the
’lifetime’ of a policy.

Finally, as seems to be mandatory when writing a thesis in a field bordering on

65



statistics, I must mention George Box’s principle that all models are wrong, but some
are useful. Life insurance reserves under fractional Hull-White interest rates is, I believe,
a useful model. Arguably, one downside of the model is the lack of Markiovanity. This
leads to grizzly expressions and often less than elegant mathematics. However, as is
often the case, while we lose some elegance, we gain some realisticness. Transaction costs
(occurs in real life) is added to the model as well as persistence or roughness in interest
rates (might occur in real life).

In sum, modelling life insurance reserves with fractional interest rates seem to
highlight a substantial risk not shown in the classic Markovian models. One could say,
with apologies to Dermon and Willmott, "while all models sweep dirt under the rug, the
non-Markovian model here presented also makes some of the dirt in the Markovian case
visible". And, I believe, again with apologies, that it does so without excessively sacrifice
reality for elegance. In any case I hope it could be a useful addition to the actuary’s
toolbox.
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Appendix A

Theory

A.1 Probability theory

Definition A.1.1 (Characteristic function). The characteristic function of a random variable
X is given by

ϕ(t) = E
(
eitX)

Definition A.1.2 (P-a.s). Let (P,Ω,F) be a probability space. An event E ∈ F happens
P-almost surely if P(E) = 1. It is abbreviated P-a.s

P-almost surely is used interchangeably with its measure theoretical counterpart
P-almost everywhere. We write a.s when it is obvious which measure it is referred to.

Definition A.1.3 (Convergence in probability). The sequence of random variables {Xn}
converges to X in probability if for all ε ≥ 0

P{|Xn −X| > ε} −→ 0 as n→∞

A.2 Spaces, measures and norms

Definition A.2.1 (Banach space). A Banach space is a complete normed space (X, ∥ · ∥)

Definition A.2.2 (Hilbert-space). A complete inner product space is called a Hilbert space

Definition A.2.3 (Lp-space). Lp is a Hilbert space of functions f for which the following
holds ∫

|f |p dx <∞

with norm given by

||f ||p =
(∫
|f | dµ

) 1
p

(A.1)

Note that the space L2 has an inner product given by

⟨f, g⟩L2 =
∫
fg dµ (A.2)

L2 is the only Lp space that is an inner product space.
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A.3. Miscellaneous definitions

Definition A.2.4 (Sobolev-space). The Sobolev space W s,p is defined by

W s,p(Ω) = {f ∈ Lp(Ω) : ∀|α| ≤ s, ∂αf ∈ Lp(Ω)}

where Ω is an open subset of Rd, p ∈ [1,∞] and s ∈ N. Also α = (α1, ..., αd),
|α| = α1 + ...+ αd and the derivatives ∂α

x f = ∂α1
x1 ...∂

αd
xd
f are taken in a weak sense.

Note that the Sobolev space is a Banach space when endowed with the norm

||f ||s,p,Ω =
∑

|α|≤s

||∂α
x f ||Lp(Ω)

and a Hilbert space when p = 2.

Definition A.2.5 (Hilbert-Schmidt operator). Let H be a Hilbert space and {ei, i ∈ I} an
orthonormal basis for H. An operator T for which

∑
i∈I ||Tei||2 < ∞ is a self-adjoint

ideal of B(H) is called an Hilbert-Schmidt operator on H.

Definition A.2.6 (Locally integrable function and Lloc-space). A locally integrable function
is a function which is integrable on every compact subset of its domain of definition. The
space of these functions is denoted Lloc.

Definition A.2.7 (Finite signed measure). Let X be a set and Σ a σ-algebra such that
(X,Σ) is a measurable space. A finite signed measure is a set function

µ : Σ→ R \ (−∞,∞)

such that the usual requirements on a measure is fulfilled:

1. µ(∅) = 0
2. For disjoint sets A1, A2, ...An of Σ we have

µ
( ∞⋃

n=1
An

)
=

∞∑
n=1

µ(An)

Definition A.2.8 (Total variation norm). Let µ be a signed measure on a measurable space
(X,Σ) and define for all E ∈ Σ the upper- and lower variation

W+(µ,E) = sup{µ(A)|A ∈ Σ and A ⊂ E}
W−(µ,E) = inf{µ(A)|A ∈ Σ and A ⊂ E}

then the total variation norm is given by

||µ||T V =W+(µ,E)−W−(µ,E)

A.3 Miscellaneous definitions

Definition A.3.1 (Semigroup). Let L(X) be the Banach space of bounded linear operators
on X. A family S(t) ∈ L(X), t ≥ 0 of bounded operators on a Banach space X is called
a strongly continuous semigroup if

1. S(0) = I, where I is the identity operator on X
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A.3. Miscellaneous definitions

2. S(t+ s) = S(t)S(s) for every t, s ≥ 0
3. limt→0+ S(t)x = x for every x ∈ X

[GM11] def.1.1

Definition A.3.2 (Infinitesmal generator). Let S(t) be a strongly continuous semigroup on
a Banach space X. The linear operator A with domain

D(A) =
{
x ∈ X : lim

t→0

S(t)x− x
t

exists
}

defined by
Ax = lim

t→0

S(t)x− x
t

is called the infinitesmal generator of S(t) [GM11] def.1.2

Definition A.3.3 (P-full support). Let X be a Polish space. A random element ξ : Ω→ X
has P-full support when Pξ := P ◦ ξ−1(U) > 0 for every nonempty open set U in X
([Oha09], pp.10).

Definition A.3.4 (γ-Hölder continuous.). A function f is (γ-)Hölder continuous when there
are constants C, γ > 0 s.t

|f(x)− f(y)| ≤ C||x− y||γ

for all x and y in the domain of f .
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Appendix B

Computation of the conditional variance
of a integrated fractional Hull-White-
process

The conditional variance term in Equation (6.7) is given by[
||c(x)1[t,T ](x)||2κ,T ⋆ − ||Ψκ

c (t, T, x)1[0,t](x)||κ,T ⋆

]
and as noted in [Fin11] it is hard to compute due to the instability of the fractional
integration. We follow [Gao+23], where an algorithm has been developed and
tested to compute the conditional variance for a fractional Hull-White process, as
in Proposition 6.1.5, but not for an integrated fractional Hull-White process. We can,
however, easily expand the algorithm to account for this.

In [Gao+23], the term c(r) in Algorithm 1 is given by

c(r) = σe−a(T −r)

which is expanded into

c(r) =
∞∑

n=0
cnr

n (B.1)

where
cn = σe−aT a

n

n! (B.2)

This needs some modification as we use the following expression for c(r)

c(r) = σD(r, T ) = σ

∫ T

r
exp

{
−

∫ v

r
a dw

}
dv = σ

1− e−a(T −r)

a
(B.3)

we therefore need to write a similar expansion as done in the paper. We get

c(r) = σD(t, T )

= σ
1− e−a(T −r)

a

= σ

a
− σ

a
e−a(T −r)

= σ

a
− 1
a

∞∑
n=0

σe−aT a
n

n! r
n
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= σ

a
− 1
a

∞∑
n=0

cnr
n

Inserting into equation (3.13) in [Gao+23];

κ

∫ t

z
rκc(r)(r − z)κ−1 dr =

∫ t

z
rκ(σ

a
− 1
a

∞∑
n=0

σe−aT a
n

n! r
n)

(r − z)κ−1 dr

=κ
∫ t

z
rκσ

a
(r − z)κ−1 dr

− κ
∫ t

z
rκ(1

a

∞∑
n=0

σe−aT a
n

n! r
n)

(r − z)κ−1 dr

σ

a
κ

∫ t

z
rκ(r − z)κ−1 dr − 1

a

∞∑
n=0

σe−aT a
n

n! κ
∫ t

z
rκ+n(r − z)κ−1 dr

= σ

a
R0(κ, z)− 1

a
cnRn(κ, z)

Denoting

h⋆ := σ

a
R0 −

1
a
h(k, z)

jumping into section 3.3 of [Gao+23] we adjust Algorithm 1 so that we insert under line
21:
h⋆ ← σ

aR0 − 1
ah

and change line 22 to
I ← I +me(−m·i)2

h2
⋆

The variance when κ = 0 is also different. Remembering that when κ = 0 the norm

||c(x)1[t,T ](x)||2κ,T ⋆ − ||Ψκ
c (t, T, x)1[0, t](x)||κ,T ⋆

is equal to the L2-norm given by

||f ||20,T =
∫ T

0
f2(r) dr

We get

||
(
σ

a
− σ

a
e−a(T −t)

)
1[t,T ]||20,T =

∫ T

t

(
σ

a
− σ

a
e−a(T −t)

)2
dr

=σ2

a2

(2Ta− 3− e−2T a
(
−4eas+T a + e2as + 2ase2T a

)
2a

)
and so line 2 will result in an error message while line 3 will return

Var = σ2

a2

(
2T a−3−e−2T a

(
−4eas+T a+e2as+2ase2T a

)
2a

)
Figure B.1 shows that the norm plotted via this modified scheme yields the same

result as in [Fin11] pp.64.
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Figure B.1: The norm in Equation (6.7) calculated via a modification of Algorithm 1 in [Gao+23]
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Appendix C

Python code

Simulations of fBm, fractional Gaussian noise, Brownian motion and Gaussian noise
are done using the "stochastic" Python package by Christopher Flynn, under the MIT
license. Documentation can be found at: https://stochastic.readthedocs.io/en/stable/

C.1 Functions

import numpy as np
import math
import scipy.integrate
import scipy.stats as stats
from stochastic.processes.noise import GaussianNoise, FractionalGaussianNoise
from stochastic.processes.continuous import FractionalBrownianMotion

#---------------------------------------------------------------------------------------
# Gompertz-Makeham survival probability
#---------------------------------------------------------------------------------------
def surv_prob(t, s, a=-11.693,b=0.1092,c=0.000063):

mu = b / (2*c)
sigma = np.sqrt(1/(2*c))
return np.exp(-sigma*np.exp(a+(b**2)/(4*c))*np.sqrt(2*np.pi)\

*(stats.norm.cdf((s-mu)/sigma) - stats.norm.cdf((t-mu)/sigma)))

#---------------------------------------------------------------------------------------
# Conditional variance of a fractional HW-process and integrated fractional HW-process
#---------------------------------------------------------------------------------------
def f_2F1(alfa, beta, gamma, zeta, N=20):

s = [(math.gamma(alfa + n) / math.gamma(alfa) * math.gamma(beta + n) /
math.gamma(beta))/(math.factorial(n) * math.gamma(gamma + n)
/ math.gamma(gamma)) * (zeta **n) for n in range(N)]
return sum(s)

# Variance of the fractional Hull-White model
def var_fHW(a, sigma, kappa, s,T, stepsize=0.5, sumrange=5, expansterms=20):

tol = 10e-8
if abs(kappa) < tol:

if a < tol:
var = sigma**2 * (T-s)

else:
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var = ((sigma**2 * (1- np.exp(-2*a*(T-s)))) / (2*a) )
else:

if abs(T-s) < tol:
var = 0

else:
I = 0
M = math.floor(sumrange / stepsize)
M_list = np.arange(-M, M+1, 1)
for i in M_list:

w = stepsize * i
y = 1/2 * math.erfc(-w)
x = (T**(1-2*kappa) - s**(1-2*kappa))*y + s**(1-2*kappa)
z = x ** (1 / (1-2*kappa))
h = 0
R = np.zeros(expansterms+1)
for n in range(expansterms+1):

c_n = sigma * np.exp(-a*T) * ((a**n) / math.factorial(n))
if n < tol:

if s < tol and z/T < 1/2:
R[0] = (math.gamma(kappa + 1)**2 * z**(2*kappa))\

/(2*math.cos(math.pi*kappa) * math.gamma(1 + 2*kappa))\
+ (kappa*(T-z)**kappa * T**kappa) / (2*kappa) *
f_2F1(-kappa, 1, 1-2*kappa, z/T)

else:
R[0] = z**(2*kappa) * (1 - z/T)**kappa *
f_2F1(2*kappa+1, kappa, kappa+1, 1-z/T)

else:
R[n] = (kappa*T**(kappa + n) * (T-z)**kappa + z*(kappa + n) *
R[n-1]) / (2*kappa + n)

h += c_n * R[n]
I += stepsize * np.exp(- (stepsize*i)**2) * h**2

var = (math.gamma(1-kappa)/(math.gamma(2-2*kappa) * math.gamma(kappa + 1)))\
* (((1 + 2*kappa)*(T**(1-2*kappa) - s**(1-2*kappa)))/ math.sqrt(math.pi)) * I

return var

# Variance of the integrated fractional Hull-White model
def var_integrated_fHW(a, sigma, kappa, s,T, stepsize=0.5, sumrange=5, expansterms=20):

tol = 10e-8
if abs(kappa) < tol:

if a < tol:
print("UNDEFINED FOR a=0")

else:
var = (sigma**2/a**2) * (1/(2*a)) * (2*T*a-3 - math.exp(-2*T*a)\

* (-4*math.exp(a*(T-s)) + math.exp(2*a*s) + 2*a*math.exp(2*T*a) * s))
else:

if abs(T-s) < tol:
var = 0

else:
I = 0
M = math.floor(sumrange / stepsize)
M_list = np.arange(-M, M+1, 1)
for i in M_list:

w = stepsize * i
y = 1/2 * math.erfc(-w)
x = (T**(1-2*kappa) - s**(1-2*kappa))*y + s**(1-2*kappa)
z = x ** (1 / (1-2*kappa))
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h = 0
R = np.zeros(expansterms+1)
for n in range(expansterms+1):

c_n = sigma * np.exp(-a*T) * ((a**n) / math.factorial(n))
if n < tol:

if s < tol and z/T < 1/2:
R[0] = (math.gamma(kappa + 1)**2 * z**(2*kappa))\

/(2*math.cos(math.pi*kappa) * math.gamma(1 + 2*kappa))\
+ (kappa*(T-z)**kappa * T**kappa) / (2*kappa) *
f_2F1(-kappa, 1, 1-2*kappa, z/T)

else:
R[0] = z**(2*kappa) * (1 - z/T)**kappa *
f_2F1(2*kappa+1, kappa, kappa+1, 1-z/T)

else:
R[n] = (kappa*T**(kappa + n) * (T-z)**kappa + z*(kappa + n) *
R[n-1]) / (2*kappa + n)

h += c_n * R[n]
h_star = (sigma/a) * R[0] - 1/a * h
I += stepsize * np.exp(- (stepsize*i)**2) * h_star**2

var = (math.gamma(1-kappa)/(math.gamma(2-2*kappa) * math.gamma(kappa + 1)))\
* (((1 + 2*kappa)*(T**(1-2*kappa) - s**(1-2*kappa)))/ math.sqrt(math.pi)) * I

return var

#---------------------------------------------------------------------------------------
# Vasicek interest rate model path
#---------------------------------------------------------------------------------------
def vasicek_path(T, r0, a, b, sigma, n):

r = np.zeros(T*n)
r[0] = r0
dt = 1/n
gn = GaussianNoise(T)
dWt = gn.sample(T*n)
for i in range(1, T*n):

r[i] = r[i-1] + a * (b - r[i-1]) * dt + sigma * dWt[i]
return r

#---------------------------------------------------------------------------------------
# Price of a Zero-Coupon Bond under Vasicek interest rate model
#---------------------------------------------------------------------------------------
def B(t,T, a):

return 1/a * (1 - np.exp(-a*(T-t)))

def A(t,T, a, b, sigma):
return np.exp((b - (sigma**2)/(2*a**2)) * (B(t,T,a) - T + t)

- (sigma**2)/(4*a)*B(t,T,a)**2)

def vasicek_ZCB(t,T,rt, a, b, sigma):
return A(t,T,a,b,sigma) * np.exp(- B(t,T,a) * rt)

#---------------------------------------------------------------------------------------
# Fractional Vasicek interest rate model path
#---------------------------------------------------------------------------------------
def frac_vasicek_path(T, r0, b, a, sigma, H, n=1000):

r = np.zeros(T*n)
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r[0] = r0
dt = 1/n
fgn = FractionalGaussianNoise(H, T)
dWHt = fgn.sample(T*n)
for i in range(1, T*n):

r[i] = r[i-1] + a*(b - r[i-1]) * dt + sigma * dWHt[i]
return r

#---------------------------------------------------------------------------------------
# Price of a Zero-Coupon Bond under the fractional Vasicek interest rate model
#---------------------------------------------------------------------------------------
def frac_vasicek_D(t,T,a):

return 1/a - 1/a * math.exp(-a*(T-t))

def frac_vasicek_ZCB(t,T, r0, k, a, sigma, kappa):
part1 = frac_vasicek_D(0,T,a)*r0
part2 = k * scipy.integrate.quad(frac_vasicek_D, 0, T, args=(T,a))[0]
norm = var_integrated_fHW(a, sigma, kappa, 0, T)
return math.exp(- part1 - part2 + 1/2 * norm)

#---------------------------------------------------------------------------------------
# Present value of a pension policy under deterministic interest rate
#---------------------------------------------------------------------------------------
# Policy function
def adot_benefit(benefit):

return benefit

# Discounting
def v(t,s,r):

f = lambda s: r
return np.exp(-scipy.integrate.quad(f, 0, s)[0] + scipy.integrate.quad(f, 0, t)[0])

# Present value of benefits
def PV_integrand_det(s, x, t, r, benefit):

return surv_prob(x+t,x+s) * adot_benefit(benefit) * v(t,s,r)

def PV_det(x, t, lower, upper, r, benefit):
return scipy.integrate.quad(PV_integrand_det, lower, upper,

args=(x, t, r, benefit))[0]

#---------------------------------------------------------------------------------------
# Present value of a pension policy under the Vasicek interest rate model
#---------------------------------------------------------------------------------------
# Discounting under the Vasicek model
def P_V(t,s,r, a, b, sigma):

return vasicek_ZCB(t, s, r, a, b, sigma)

# Reserves
def PV_vasicek_integrand(s, x, t, r, benefit, a, b, sigma):

return adot_benefit(benefit) * surv_prob(x+t,x+s) * P_V(t,s,r, a, b, sigma)

def PV_vasicek(x, t, lower, upper, r, benefit, a, b, sigma):
return scipy.integrate.quad(PV_vasicek_integrand, lower, upper,
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args=(x, t, r, benefit, a, b, sigma))[0]

#---------------------------------------------------------------------------------------
# Present value of a pension policy under the fractional Vasicek interest rate model
#---------------------------------------------------------------------------------------
# Discounting under the fractional Vasicek model
def P_fV(t,s,r, b, a, sigma, H):

k = b*a
return frac_vasicek_ZCB(t,s, r, k, a, sigma, H-0.5)

# Present value of reserves at time t
def PV_frac_vasicek_integrand(s, x, t, r, benefit, b, a, sigma, H):

return adot_benefit(benefit) * surv_prob(x+t,x+s) * P_fV(t,s,r, b, a, sigma, H)

def PV_frac_vasicek(x, t, lower, upper, r, benefit,b, a, sigma, H):
return scipy.integrate.quad(PV_frac_vasicek_integrand, lower, upper,

args=(x, t, r, benefit, b, a, sigma, H))[0]

#---------------------------------------------------------------------------------------
# Expectation of fractional Vasicek interest rate model
#---------------------------------------------------------------------------------------
def psi_c_kappa(s,t,v,kappa,a, sigma):

tol = 10e-8
if v > tol and (s-v) > tol:

p1 = np.sin(np.pi * kappa) / np.pi
p2 = v**(-kappa) * (s-v)**(-kappa)
integrand = lambda r: (r**kappa * (r-s)**kappa)

/ (r-v) * (sigma * np.exp(-a*(t-r)))
I = scipy.integrate.quad(integrand, s, t)[0]
return p1 * p2 * I

else:
return 0

def expectation_fHW(r0, a, b, T):
return r0 * np.exp(-a*T) + b*(1-np.exp(-a*T))

#---------------------------------------------------------------------------------------
# CDF of the fractional Vasicek model
#---------------------------------------------------------------------------------------
def cdf_frac_Vasicek(x, r0, b, a, sigma, T, H):

k = a*b
kappa = H-0.5
mean = expectation_fHW(r0, a, b, T)
sd = np.sqrt(var_fHW(a, sigma, kappa, 0, T))
return stats.norm.cdf(x, loc=mean, scale=sd)

#---------------------------------------------------------------------------------------
# PPF of the fractional Vasicek model
#---------------------------------------------------------------------------------------
def ppf_frac_Vasicek(q, r0, b, a, sigma, T, H):

k = a*b
kappa = H-0.5
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mean = expectation_fHW(r0, a, b, T)
sd = np.sqrt(var_fHW(a, sigma, kappa, 0, T))
return stats.norm.ppf(q, loc=mean, scale=sd)

#---------------------------------------------------------------------------------------
# PPF of the fractional Vasicek model
#---------------------------------------------------------------------------------------
def pdf_frac_Vasicek(x_arr, r0, b, a, sigma, T, H):

kappa = H-0.5
mean = expectation_fHW(r0, a, b, T)
sd = np.sqrt(var_fHW(a, sigma, kappa, 0, T))
return stats.norm.pdf(x_arr, loc=mean, scale=sd)

C.2 Chapter 2

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl; mpl.rcParams["axes.grid"] = True; mpl.rcParams['lines.linewidth'] = 1
from stochastic.processes.continuous import BrownianMotion

"""Brownian motion path realization"""
N = 1000
bm = BrownianMotion()
x = np.linspace(0, 1, N)
plt.plot(x, bm.sample(N-1))
plt.title("Standard Brownian Motion")
plt.show()

C.3 Chapter 3

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl; mpl.rcParams["axes.grid"] = True; mpl.rcParams['lines.linewidth'] = 1

""" Present value of a pension policy with deterministic interest rate """
# Contract specifications
x0 = 30 # age at start of contract
T0 = 40 # pension age from start of contract
T = 80 # pension end from start of contract
benefit = 200000 # yearly pension
r0 = 0.02 # interest rate

# Single premium
pi0 = PV_det(x0, 0, T0, T, r0, benefit)
print(f"Single premium of pension policy with deterministic interest rate = {pi0}")

# Present value plot
t_arr = np.linspace(0, T, T*10)
PV_det_benefit = [PV_det(x0, t, max(T0, t), T, r0, benefit) for t in t_arr]
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plt.plot(t_arr, PV_det_benefit)
plt.title("Present value of benefits")
plt.xlabel("Age of contract")
plt.show()

""" Present value of premiums in a pension policy with deterministic interest rate """
# Premium
pi = PV_det(x0, 0, T0, T, r0, benefit)/PV_det(x0, 0, 0, T0, r0, 1)
print(f"Premium of pension policy with deterministic interest rate = {pi}")

""" Reserves of a pension policy with deterministic interest rate """
# Reserve plot
PV_det_premium = [-PV_det(x0, t, min(t,T0), T0, r0, pi) for t in t_arr]
plt.plot(t_arr, PV_det_benefit, label = "PV Benefit")
plt.plot(t_arr, PV_det_premium, label = "PV Premium")
PV_reserve = [(PV_det_benefit[i] + PV_det_premium[i]) for i in range(len(t_arr))]
plt.plot(t_arr, PV_reserve, label="PV Reserve")
plt.title("Present value of reserve")
plt.xlabel("Age of contract")
plt.legend()
plt.show()

"""Vasicek interest rate paths"""
# Vasicek parameters
a = 0.2 # mean-reversion speed
b = 0.03 # long-term mean
sigma = 0.01 # volatility
r0 = 0.02 # initial interest rate
t = 0

# Plot
T_maturity = 10
x = np.linspace(0, T_maturity, T_maturity*1000)
for i in range(5):

plt.plot(x, vasicek_path(1,r0, a, b,sigma,len(x)))
plt.title("Vasicek interest rate path realizations")
plt.show()

"""Vasicek interest rate bond prices"""
# Plot of ZCB-prices wrt different initial interest rates
T_maturity = 80 #Maturity
T_arr = np.linspace(t,T_maturity,T_maturity, 1000)
y = np.zeros(T)
for i in range(len(T_arr)):

y[i] = vasicek_ZCB(t, T_arr[i], r0, a, b, sigma)
plt.plot(T_arr,y)
plt.title("Vasicek ZCB price")
plt.xlabel("Maturity")
plt.show()

"""Life insurance reserves under the Vasicek model"""
# Contract specifications, policy function and vasicek parameters as above.
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# Plots of single premium wrt different initial interest rates
r_arr = np.linspace(0.01,0.2, 100)
V = []
for r in r_arr:

V.append(PV_vasicek(x0, 0, T0, T, r, benefit, a, b, sigma))
plt.vlines(r0,0,max(V), linestyles="--")
plt.plot(r_arr,V)
plt.title("Single premiums")
plt.xlabel("Initial interest rate")
plt.show()

# Single premium r0 = 0.02
pi0 = PV_vasicek(x0, 0, T0, T, r0, benefit, a, b, sigma)
print(f"Single premium of a pension policy under the Vasicek model = {pi0}")

# Plot of present value
for r in [0.01, 0.03, 0.05, 0.07]:

t_arr = np.linspace(0, T, T*10)
PV_vasicek_dev = [PV_vasicek(x0, t, max(T0, t), T, r, benefit, a, b, sigma)

for t in t_arr]
plt.plot(t_arr, PV_vasicek_dev, label=f"Vasicek, r0 = {r}")

plt.plot(t_arr, PV_det_benefit, label=f"Deterministic, r0 = {r0}", color="black",
linestyle="--")

plt.title("Present value")
plt.xlabel("Age of contract")
plt.legend()
plt.show()

C.4 Chapter 4

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl; mpl.rcParams["axes.grid"] = True; mpl.rcParams['lines.linewidth'] = 1
from stochastic.processes.continuous import FractionalBrownianMotion

"""fBm path realizations"""
N = 1000
H = [0.1, 0.5, 0.9]
x = np.linspace(0, 1, N)
for i in range(len(H)):

fbm_i = FractionalBrownianMotion(H[i])
plt.subplot(3,1,i+1)
plt.plot(x, fbm_i.sample(N-1))
plt.title(f'H={H[i]}')

plt.tight_layout()
plt.show()

C.5 Chapter 6

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl; mpl.rcParams["axes.grid"] = True; mpl.rcParams['lines.linewidth'] = 1
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# Vasicek parameters
a = 0.2 # mean-reversion speed
b = 0.03 # long-term mean
sigma = 0.01 # volatility
r0 = 0.02 # initial interest rate
T = 80 # Maturity

"""fractional Vasicek path realizations"""
N = 1000
H = [0.1, 0.5, 0.9]
t = np.linspace(0, T, num=T*1000)
for i in range(len(H)):

plt.subplot(3,1,i+1)
plt.plot(t, frac_vasicek_path(T, r0, b, a, sigma, H[i]))
plt.title(f'H={H[i]}')

plt.tight_layout()
plt.show()

"""Fractional Vasicek interest rate bond prices"""
N = 10
x = np.linspace(0,T,T*N)
P_fV = np.zeros(T*N)
for H in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]:

for i in range(T*N):
P_fV[i] = frac_vasicek_ZCB(0, x[i], r0, a*b, a, sigma, H-0.5)

plt.plot(x, P_fV, label=f"H = {H}")
plt.legend()
plt.title("Fractional Vasicek ZCB price")
plt.xlim(0, T); plt.ylim(0, 1)
plt.xlabel("Maturity")
plt.show()

C.6 Chapter 7

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl; mpl.rcParams["axes.grid"] = True

""" Pension policy with fractional Vasicek interest rates """
# Contract specifications
x0 = 30 # age at start of contract
T0 = 40 # pension age from start of contract
T = 80 # pension end from start of contract
benefit = 200000 # yearly pension

# Vasicek parameters
a = 0.2 # mean-reversion speed
b = 0.03 # long-term mean
sigma = 0.01 # volatility

H = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
r = np.linspace(0.01, 0.2, 50)
for Hi in H:

V = np.zeros(len(r))
for i in range(len(r)):
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V[i] = PV_frac_vasicek(x0, 0, T0, T, r[i], benefit, b, a, sigma, Hi)
plt.plot(r, V, label=f"H = {Hi}")

plt.title("Single premiums")
plt.xlabel("Initial interest rate")
plt.legend()
plt.show()

""" Numerical analysis of the distribution of r(T)"""
# Vasicek parameters
r0 = 0.02
a = 0.2
b = 0.03
sigma = 0.01

H = [0.1, 0.3, 0.5, 0.7, 0.9]
T = 80

# Monte-Carlo simulation
numsim = 5000
frac_vasicek_endpoints = np.zeros((len(H), numsim))

for i in range(len(H)):
for j in range(numsim):

frac_vasicek_endpoints[i][j] = frac_vasicek_path(T, r0, b, a, sigma, H[i])[-1]

# Theoretical and empirical moments from simulation
for i in range(len(H)):

mean_empirical = np.mean(frac_vasicek_endpoints[i])
sd_empirical = np.std(frac_vasicek_endpoints[i])
mean_theoretical = expectation_fHW(r0, a, b, T)
sd_theoretical = np.sqrt(var_fHW(a, sigma, H[i]-0.5, 0, T))
print(f"H = {H[i]} : theoretical mean = {mean_theoretical:.4f},

empirical mean = {mean_empirical:.4f}, theoretical sd = {sd_theoretical:.4f},
empirical sd = {sd_empirical:.4f}")

# P(r(80)<0|H)
for i in range(len(H)):

sum_over_zero = (frac_vasicek_endpoints[i] > 0).sum()
prob_empirical = (numsim - sum_over_zero)/numsim
prob_theoretical = cdf_frac_Vasicek(0, r0, b, a, sigma, T, H[i])
print(f"H = {H[i]} : Prob sub zero theoretical = {prob_theoretical:.4f},

empirical = {prob_empirical:.4f}")

# Plot
for i in [0, 2, 4]:

plt.hist(frac_vasicek_endpoints[i], bins=int(numsim/10), alpha=0.5,
density=True, label=f"Monte-Carlo, H = {H[i]}")

x_lower = ppf_frac_Vasicek(0.001, r0, b, a, sigma, T, H[i])
x_upper = ppf_frac_Vasicek(0.999, r0, b, a, sigma, T, H[i])
x = np.linspace(x_lower, x_upper)
plt.plot(x, pdf_frac_Vasicek(x, r0, b, a, sigma, T, H[i]), label=f"PDF, H = {H[i]}")

plt.title("Monte Carlo simulation of r(T)")
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plt.legend()
plt.show()

""" Pension policy with fractional Vasicek interest rates """
# Contract specifications
x0 = 30 # age at start of contract
T0 = 40 # pension age from start of contract
T = 80 # pension end from start of contract
benefit = 200000 # yearly pension

""" Sensitivity analysis for a pension policy with fractional Vasicek interest rates """
# Contract spesifications as above
# Baseline Vasicek parameters:
a = 0.2 # mean-reversion speed
b = 0.03 # long-term mean
sigma = 0.01 # volatility
r0 = 0.02 # initial interest rate

# Parameters to check
H = np.linspace(0.1, 0.9)
r0_arr = np.arange(0.01, 0.06, step=0.01)
a_arr = np.arange(0.1, 1, step=0.2)
b_arr = np.arange(0.01, 0.1, step=0.02)
sigma_arr = np.arange(0.005, 0.03, step=0.005)

# Sensitivity analysis computation
Va, Vb, Vsigma, Vr0 = [], [], [], []
param_arr = [Vr0,Va,Vb,Vsigma]
param_name = ["r_0","a", "b", "sigma"]
param_value = [r0_arr, a_arr, b_arr, sigma_arr]
for Hi in H:

Vr0.append([[PV_frac_vasicek(x0, 0, T0, T, ri, benefit, b, a, sigma, Hi)
for Hi in H] for ri in r0_arr])

Va.append([[PV_frac_vasicek(x0, 0, T0, T, r0, benefit, b, ai, sigma, Hi)
for Hi in H] for ai in a_arr])

Vb.append([[PV_frac_vasicek(x0, 0, T0, T, r0, benefit, bi, a, sigma, Hi)
for Hi in H] for bi in b_arr])

Vsigma.append([[PV_frac_vasicek(x0, 0, T0, T, r0, benefit, b, a, sigmai, Hi)
for Hi in H] for sigmai in sigma_arr])

# Plot of sensitivities
for k in range(len(param_arr)):

V_ = param_arr[k]
p = param_value[k]
p_name = param_name[k]
for i in range(len(p)):

p_val = p[i]*100
plt.plot(H, V_[k][i], label = f"{p_name} = {p_val:.1f}%")
plt.ylim(0,3000000)

plt.title(f"Sensitivity with respect to {p_name}")
plt.legend()
plt.show()
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C.7 Appendix B

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl; mpl.rcParams["axes.grid"] = True; mpl.rcParams['lines.linewidth'] = 1

a = 4
sigma = 1
t = 0
T = 5

T_ = np.linspace(t,T)
for kpa in [0, 0.1, 0.25, 0.45]:

norm_ = np.zeros(len(T_))
for i in range(len(norm_)):

norm_[i] = var_integrated_fHW(a, sigma, kpa, t, T_[i])/(sigma**2)
plt.plot(T_, norm_, label=f"Kappa = {kpa}")
plt.ylabel("Norm(0,T)")
plt.legend()

plt.show()
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