
.

Master’s thesis

Advancements in Risk-Free
Reference Rates and
ESG-linked interest rate swaps

Andreas Slåttelid

Mathematics
60 ECTS study points

Department of Mathematics
Faculty of Mathematics and Natural Sciences

Spring 2023





Andreas Slåttelid

Advancements in Risk-Free
Reference Rates and ESG-linked

interest rate swaps

Supervisor:
Fred Espen Benth





Contents

List of Figures iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Overview 1
1.2 Outline 2

2 Theoretical Background 3
2.1 Measure Theory 3
2.2 Probability theory 7
2.3 Stochastic Analysis 9
2.4 Levy processes 16

3 Mathematical Finance 25
3.1 Market Model 25
3.2 Fundamental theorems of asset pricing 26

4 Interest rate theory 27
4.1 Zero Coupon Bonds and interest rates 27
4.2 Swaps 28
4.3 Short rate models 30
4.4 Affine Term Structures 32
4.5 HJM-modelling 34
4.6 Estimating the Term Structure 40
4.7 Forward Measures 41
4.8 The LIBOR market model 45

5 SOFR- Secured Overnight Financing Rate 51
5.1 Introduction 51
5.2 SOFR futures 56
5.3 Interest rate swap with SOFR-futures as floating 62
5.4 Options on SOFR futures 64
5.5 Hedging with SOFR-futures 66

6 ESG swaps 79
6.1 ESG 79
6.2 Case study 80
6.3 General setup 81

i



6.4 Zero Coupon Bond ESG-swap 86

7 Numerical Simulation 87
7.1 Introduction 87
7.2 Simulation of Zero Coupon Bond ESG-swap 90

8 Conclusion and further work 95
8.1 SOFR 95
8.2 ESG 96

References 99

A Estimating parameters for interest rate models 103

B Scripts Chapter 5 107
B.1 SOFR: Dynamics of f1M (t, S1M , T1M ) and f3M (t, S3M , T3M ) 107
B.2 SOFR: Simulation of κ3M−SOF R

t 110
B.3 SOFR: Hedging 3M-arithmetic SOFR 114

C Scripts Chapter 7 121
C.1 Numerical Simulation For ESG swap rate 121

ii



List of Figures

4.1 Example of estimated term structure 40

5.1 O/N, 1M and 3M SOFR-rates 52
5.2 SOFR and EFFR 54
5.3 CME term SOFR 54
5.4 Daily volume of SOFR futures, source: [HSB22] 55
5.5 Realization of f1M (t, S1M , T1M ) and f3M (t, S3M , T3M ) for t ∈ [0, S1M ] 61
5.6 Realizations of t 7→ r(t), t ∈ [0, T0] 63
5.7 Realizations of t 7→ κ3M−SOF R

t , t ∈ [0, T0] 63
5.8 level Curve G(xt) = k, where all constants are set to one 71
5.9 Path of Vasicek model for u ∈ [0, T ] 73
5.10 Simulation of ER1(0) 75
5.11 Simulation of ERinv

2 (0) 75

5.12 Simulation of ER(â0,b̂0,ĉ0)
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Abstract

In this thesis, we look at the new SOFR rates and how they differ from the
outgoing LIBOR rates. We also propose a model for pricing ESG-linked
interest rate swaps.

We look deeper into SOFR futures and examine the consequences of different
underlying calculation methods for 1-month and 3-month futures. This will be
further studied via a particular hedge, where numerical examples are provided.

An ESG-fixed rate process is proposed yielding an expression κESG
t for an

ESG-swap rate process. We choose an OU-process X(t) for modelling a
firm’s ESG risk score. The evolution of the ESG-swap rate process κESG

t is
illustrated using a Monte Carlo scheme.
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Chapter 1

Introduction

1.1 Overview

Following the LIBOR scandal, the Alternative Reference Rates Committee (ARRC) was
established to help ensure a robust alternative (for USD-LIBOR) and came up with
the Secured Overnight Financing Rate (SOFR). Other options include SONIA (Sterling
Overnight Index Average) for GBP-LIBOR and €STR ( Euro Short-Term Rate) for the
Euro-zone.

Since LIBOR will no longer be the key benchmark, it is crucial to understand the
new alternative reference rates and how they differ. For instance, LIBOR is an inter-
bank rate based on a market survey, while SOFR is an overnight rate based on the
U.S. Treasury repurchase market. This leads to a fundamental difference as LIBOR
works as a forward-looking prediction of future rates, while the overnight rates will be
backwards-looking.

This transition also requires a better understanding of available products and hedging
instruments tied to Risk-Free Reference rates, and we will study SOFR futures and
associated derivatives.

There is an urgent need for a green transition to address climate change. The EU
has put in place a new taxonomy so that the EU can be carbon neutral by 2050. Incor-
porating ESG into Finance (Sustainable Finance) is becoming increasingly important,
and with this in mind, we propose a framework for ESG-linked interest-rate swaps. This
framework is constructed to incentivise one to achieve favourably climatic goals.

Understanding the new RFRs and ESG-linked financial products is crucial for the
Insurance industry. A pension fund might have many SOFR-linked products in its
portfolio. A better understanding of ESG-linked products is needed to meet stakeholder
expectations, and regulatory requirements, get better risk management and provide
measures for a sustainable future.
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Chapter 1. Introduction

1.2 Outline

The thesis is organized as follows:

Chapter 2 The theoretical background/framework for interest rate theory is established.
This includes Measure Theory, its relationship with Probability Theory, and then,
finally Stochastic Analysis.

Chapter 3 Introduces important concepts from mathematical finance, like the
fundamental theorems of asset pricing.

Chapter 4 Consists of interest rate theory. Here we introduce the zero coupon bond,
interest rate swaps, short rate models, HJM framework, and the outgoing LIBOR
rates.

Chapter 5 We look deeper into Risk-Free Reference rates, particularly SOFR. We
highlight fundamental differences between SOFR and LIBOR and look further into
interest rate futures. The difference between 1-month and 3-month SOFR futures,
Black and Scholes Option methodology, Swaps and specific hedges are studied.

Chapter 6 An approach for incorporating ESG into Interest-rate Swaps is introduced.
We take one particular case study from real life and use this as motivation for
establishing a mathematical framework for ESG-linked Interest-rate swaps.

Chapter 7 We include a numerical simulation to grasp better how ESG-linked Interest-
rate swaps could work. Here we benchmark different scenarios and study how the
ESG framework responds.

Chapter 8 We summarize our findings and discuss shortcomings, possible model
extensions and aspects for further research.

Appendix A A method for estimating parameters in the Vasicek model is presented, and
how estimation can be done in an Affine Term Structure-setting.

Appendix B The Julia code used in SOFR examples includes dynamics of 1M- and
3M-SOFR futures, 3M-SOFR futures swap, and the specified SOFR hedge.

Appendix C Julia code for the Monte Carlo simulation of the ESG-linked interest rate
swap.
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Chapter 2

Theoretical Background

2.1 Measure Theory

The measure theory results have been gathered from [Lin17]

Definition 2.1.1 (Sigma-algebra). Assume that X is a non-empty set, a family F of
subsets of X is called a sigma-algebra if the following holds:

(i) ∅ ∈ F

(ii) If A ∈ F , then AC ∈ F

(iii) If An ∈ F for all n ∈ N, then ⋃n∈NAn ∈ F

Definition 2.1.2 (Measure). Assume that X is a non-empty set, and that F is a σ-algebra
on X. A measure µ on (X,F) is a function µ : F → R+ = [0,∞) ∪ {∞} such that:

(i) µ(∅) = 0

(ii) if {An}n∈N is a pairwise disjoint sequence, then:

µ

⋃
n∈N

An

 =
∑
n∈N

µ(An)

We call the triplet (X,F , µ) a measure space.

Proposition 2.1.3 (Intersection of σ-algebras is a σ-algebra). Let (X,F , µ) be a
measure space, let I be a non-empty index set and let Gi, i ∈ I be σ-algebras on X, then:

G =
⋂
i∈I

Gi = {A ⊆ X : A ∈ Gi, ∀ i ∈ I}

is a σ-algebra on X

Proof. Since all Gi’s are σ-algebras, we have that ∅ ∈ Gi ∀ i ∈ I, thus ∅ ∈ G.

Assume that A ∈ G, meaning that A ∈ Gi ∀i ∈ I, now: since all Gi’s are σ-algebras we
have that AC ∈ G

Assume that {An}n∈N ∈ G, then we have that {An}n∈N ∈ Gi ∀i ∈ I, and thus:⋃
n∈NAn ∈ G. ■
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Chapter 2. Theoretical Background

Proposition 2.1.4 (Continuity of measure). Let {An}n∈N be a sequence of measurable
sets in (X,F , µ), then we have:

(i) Assume that {An}n∈N is an increasing sequence, i.e that An ⊆ An+1 for all n ∈ N,
then:

µ

⋃
n∈N

An

 = lim
n→∞

µ(An)

(ii) Assume that {An}n∈N is a decreasing sequence, i.e that An+1 ⊆ An for all n ∈ N,
and that µ(A1) < ∞ then:

µ

⋂
n∈N

An

 = lim
n→∞

µ(An)

Definition 2.1.5 (Null set). A set N ⊆ X is called a null set, if there is a set B ∈ F such
that N ⊆ B and µ(B) = 0.

Definition 2.1.6 (Complete measure space). A measure space (X,F , µ) is called
complete if all null sets belong to F .

Let N denote the collection of all null sets.

Theorem 2.1.7 (Complete measure space with complete measure). Assume that
(X,F , µ) is a measure space, and let:
F = {A ∪N : A ∈ F and N ∈ N }, define µ : F → R+ by:

µ(A ∪N) = µ(A), ∀A ∈ F

Then (X,F , µ) is a complete measure space extending (X,F , µ).

Proposition 2.1.8. Let X be a nonempty set, and A a collection of subsets of X. Then
there exists a smallest σ-algebra σ(A) containing A. Such that if C is any other σ-algebra
containing A then σ(A) ⊆ C.

Definition 2.1.9 (Borel σ-algebra). We define the Borel σ-algebra B as the smallest
σ-algebra generated by all open sets on R.

Example 2.1.10 (Lesbegue Measure). Let X = R and B the Borel σ-algebra, the
Lesbegue measure is a measure µ such that:

µ([a, b]) = b− a

Measurable functions

Definition 2.1.11 (Inverse image of B under f). Let X,Y be two non-empty sets, and
let f : X → Y with B ⊆ Y , we then define the inverse image of B as:

f−1(B) = {x ∈ X : f(x) ∈ B}

We use the convention that R = R ∪ {−∞,∞}

Definition 2.1.12 (Measurable function). Let (X,F , µ) be a measure space. A function
f : X → R is measurable if:

f−1([−∞, r)) ∈ F

4



2.1. Measure Theory

Proposition 2.1.13. Assume that f, g : X → R are measurable functions, then:

(i) f + g is measurable.
(ii) f − g is measurable.

(iii) fg is measurable.

Integration of non negative functions

Definition 2.1.14 (Integration of simple function). Assume that:

f(x) =
n∑

i=1
ai1Ai(x)

is a non negative simple function on standard form i.e. X = ⋃n
i=1Ai with Ai = {x ∈ X :

f(x) = ai} disjoint and measurable. The integral of f with respect to µ is defined as:∫
fdµ =

n∑
i=1

aiµ(Ai)

We use the convention that 0 · ∞ = 0

Definition 2.1.15. If f : X → R+ is measurable we define:∫
fdµ = sup

{∫
gdµ : g is a non negative simple function, g ≤ f

}
Proposition 2.1.16. If f : X → R+ is a measurable function, there exists an increasing
sequence {hn} of simple functions converging pointwise to f . Moreover, for each n and
each x ∈ X either:

f(x) − 1
2n

< hn(x) ≤ f(x) or hn(x) = 2n

Theorem 2.1.17 (Monotone Convergence Theorem). Assume that f : X → R+ is
measurable, and assume that {fn} is an increasing sequence of non-negative measurable
functions converging pointwise to f so that lim

n→∞
fn(x) = f, ∀x ∈ X, then:

lim
n→∞

∫
fndµ =

∫
lim

n→∞
fndµ

Theorem 2.1.18 (Fatou’s lemma). Let {fn} be a sequence of non-negative measurable
functions, then:

lim inf
n→∞

∫
fndµ ≥

∫
lim inf
n→∞

fndµ

Definition 2.1.19. A function f : X → R+ is said to be integrable if it is measurable and∫
fdµ < ∞

5



Chapter 2. Theoretical Background

Integration of general functions
We would also like to integrate functions taking negative values as well, we then observe
that if f : X → R then f = f+ − f− with:

f+(x) =
{
f(x) f(x) ≥ 0
0 otherwise

f−(x) =
{

−f(x) f(x) < 0
0 otherwise

Definition 2.1.20. A function f : X → R is called integrable it if is measurable, and f+
and f− are integrable, we define the integral of f as:∫

fdµ =
∫
f+dµ−

∫
f−dµ

Lemma 2.1.21. A measurable function f is integrable if and only if it’s absolute value |f |
is integrable i.e. if and only if: ∫

|f |dµ < ∞

Theorem 2.1.22 (Lebesgue’s Dominated Convergence Theorem). Assume that
g : X → R+ is a non-negative, integrable function and that {fn} is a sequence of
measurable functions converging pointwise to f . If |fn| ≤ g for all n, then:

lim
n→∞

∫
fndµ =

∫
fdµ

Riemann and Lesbegue integration

Theorem 2.1.23. Assume that f : [a, b] → [0,∞) is a bounded Riemann integrable function
on [a, b]. Then f is measurable and the Riemann and Lebesgue integral coincide:∫ b

a
f(x)dx =

∫
[a,b]

fdµ

Lp-spaces

Definition 2.1.24. Lp If 1 ≤ p < ∞ and (X,F , µ) is a measure space, we define:

Lp(X,F , µ) = {f : X → C : f is measurable and
∫

|f |pdµ < ∞}

furthermore, define:

∥f∥p =
(∫

|f |pdµ
) 1

p

Definition 2.1.25 (Lp). Let p ∈ [1,∞), and define a relation by:

f ∼ g ⇐⇒ f = g a.e.

Consider the equivalence class:

[f ] := {g ∈ Lp : g ∼ f}

We then define:

Lp(X,F , µ) := {[f ] : f ∈ Lp}

6



2.2. Probability theory

2.2 Probability theory

Most of the results in this section are gathered from [Wal12], let F be a σ-algebra and
let Ω denote the sample space.

Definition 2.2.1 (Probability measure). A probability measure P on (Ω,F) is a function
P : F → [0, 1] such that:

(i) if A ∈ F , then P (A) ≥ 0
(ii) P (Ω) = 1
(iii) if {An}n∈N is a pairwise disjoint sequence, then:

P

⋃
n∈N

An

 =
∑
n∈N

P (An)

Definition 2.2.2 (Random Variable). Let (Ω,F , P ) be a probability space. A random
variable X is a function X : Ω → R such that:

{ω : X(ω) ≤ x} ∈ F

Proposition 2.2.3. Let X be a random variable, and let A ∈ B (the Borel σ-algebra), then:

{X ∈ A} ∈ F

Expectations and Conditional Expectations
We will now use the results from measure theory and see how it relates to the construction
of expectations and conditional expectations.

Definition 2.2.4 (Discrete random variable). We say that a random variable X is
discrete if:

X(ω) =
∞∑

i=1
xi1Ai(ω)

Where Ai = {X = xi}, furthermore we assume that it is on standard-form (See Definition
2.1.14)

Definition 2.2.5 (Expectation Discrete case). Let X be a discrete random variable, we
say that X is integrable if:

∞∑
i=1

|xi|P (Ai) < ∞

If X is integrable, we define the expectation as:

E[X] =
∞∑

i=1
xiP (Ai)

In order to define the expectation of a general random variable X one also consider
sequences of non-negative simple functions, and decomposes the expectation in two
positive random variables, i.e. X = X+ − X− whit X+ = max(X, 0) and X− =
max(−X, 0), and define the expectation as:

E[X] = E[X+] − E[X−]

We will mostly consider the expectation as a measure-theoretic integral, i.e:

E[X] =
∫

Ω
X(ω)dP (ω)

7



Chapter 2. Theoretical Background

Definition 2.2.6 (Conditional Expectation). Let (Ω,F , P ) be a probability space, let
X be an integrable random variable, and let G ⊆ F be a sub σ-algebra, we say that a
random variable Z = E[X|G] is the conditional expectation of X given G if:

(i) Z is G-measurable, and
(ii) if A ∈ G, then: ∫

A
ZdP =

∫
A
XdP

Theorem 2.2.7. Let X and Y be integrable random variables, let a, b ∈ R and let G ⊆ F
be a sub σ-algebra, then:

(i) G = {∅,Ω}, then: E[X|G] = E[X]
(ii) E[E[X|G]] = E[X]

(iii) If X is G-measurable, E[X|G] = X a.e.
(iv) E[aX + bY |G] = aE[X|G] + bE[Y |G] a.e.
(v) If X ≥ 0 a.e., E[X|G] ≥ 0 a.e.

(vi) If X ≤ Y a.e., E[X|G] ≤ E[Y |G] a.e.
(vii) |E[X|G]| ≤ E[|X||G] a.e.

(viii) Suppose that Y is G-measurable and XY are integrable, then:

E[XY |G] = Y E[X|G] a.e.

(ix) If X and G are independent, then:

E[X|G] = E[X] a.e.

(x) If Xn and X are integrable, and either Xn ↑ X, or Xn ↓ X, then:

E[Xn|G] → E[X|G] a.e.

Theorem 2.2.8 (Tower Law). If X is an integrable random variable, and if G1 ⊆ G2 are
σ-algebras, then:

E[E[X|G1]|G2] = E[E[X|G2]|G1] = E[X|G1]

Theorem 2.2.9 (Jensen’s inequality). Let ϕ be a convex function on an open interval
(x1, x2) and let X be a random variable whose range is in (x1, x2). Suppose X and ϕ(X)
are integrable and that G ⊆ F are σ-algebras, then:

ϕ (E[X|G]) ≤ E [ϕ(X)|G] a.e.

8



2.3. Stochastic Analysis

2.3 Stochastic Analysis

The results in this section are based on [Wal12] and [Bal17].

Stochastic processes and filtrations

Definition 2.3.1 (Filtration). Let T denote an index set either countable or a subset of R,
we say that the collection F = (Ft)t∈T of σ-algebras is a filtration if for every s ≤ t ∈ T :

Fs ⊆ Ft

Definition 2.3.2 (Augmented Filtration). The augmented filtration is the filtration
obtained by including the collection of null sets N to the σ-algebra Ft = σ(Xu : u ≤ t),
i.e:

F t = σ(Ft ∪ N )
Definition 2.3.3 (Stochastic process). Let (Ω,F , (Ft)t∈T , P ) denote a probability
equipped with a filtration (Ft)t∈T .
A stochastic process X = (Xt)t∈T is a collection of random variables defined on (Ω,F)
taking values in a measurable space (E, E)

Definition 2.3.4 (Adapted process). We say that the stochastic process X = (Xt)t∈T is
adapted to the filtration F = (Ft)t∈T if for every t ∈ T we have that Xt is Ft-measurable.

Definition 2.3.5 (Modification and Indistinguishable processes). Let (Ω,F , (Ft)t≥0, P ) =
(Ω′,F ′, (Ft)t≥0, P

′), we say that X is a modification of X ′ if:

∀ t P (Xt = X ′
t) = 1

We say that X is indistinguishable from X ′ if:

P (Xt = X ′
t ∀ t) = 1

Definition 2.3.6 (σ-finite measure [Lin17]). We say that a measure space (X,F , µ) is
σ-finite if X is a countable union of sets with finite measure, i.e for {An}n∈N ∈ F we
have:

X =
⋃

n∈N
An with µ(An) < ∞, ∀n ∈ N

Theorem 2.3.7 ([Lin17]). Assume that (X,F , µ) and (Y,G, ν) are two measure spaces, and
let F ⊗G denote the σ-algebra generated by the measurable rectangles F×G,F ∈ F , G ∈ G.
Then there exists a measure µ× ν on (F ⊗ G) such that:

µ× ν(F ×G) = µ(F )ν(G) for all F ∈ F , G ∈ G

If µ and ν are σ-finite, this measure is unique and is called the product measure of µ and
ν.

Definition 2.3.8 (Measurable Process). A stochastic process X = (Xt)t≥0 taking values
on a measurable space (E, E) is said to be measurable if:

A× Ω ∋ (t, ω) 7→ Xt(ω) ∈ E

is measurable (with A ⊆ E), i.e:

∀B ∈ B(E) : {(t, ω) ∈ A× Ω : Xt(ω) ∈ B} ∈ B(A) ⊗ F

9



Chapter 2. Theoretical Background

Definition 2.3.9 (Progressively measurable process). A stochastic process X = (Xt)t≥0
is said to be progressively measurable w.r.t F if:

∀t : [0, t] × Ω ∋ (s, ω) 7→ Xs(ω)

is measurable w.r.t B([0, t]) ⊗ Ft

Theorem 2.3.10 (Kolmogorov’s continuity theorem). Let D ⊆ Rm, be an open set,
and consider the process X = (Xθ)θ∈D and assume there exists α > 0, β > 0, C > 0 such
that:

E[|Xθ1 −Xθ2 |β] ≤ C|θ1 − θ2|m+α

then there exists a continuous modification X̃ of X. Furthermore X̃ is Hölder continuous
with exponent γ < α

β on all compact subsets K ⊆ D, i.e:

|X̃θ1 − X̃θ2 | ≤ C|θ1 − θ2|γ

Integral Spaces

Definition 2.3.11 (Mp
loc). Let Mp

loc([a, b]) denote the space of equivalence classes of real-
valued progressively measurable processes X = (Xt)t≥0 ∈ Rd such that:∫ b

a
|Xs|pds < ∞ a.s

Definition 2.3.12 (Mp). Let Mp[a, b] denote the subspace of Mp
loc[a, b] such that:

E
[∫ b

a
|Xs|pds

]
< ∞

10



2.3. Stochastic Analysis

Fubini and Stochastic Fubini

Theorem 2.3.13 (Fubini’s theorem). Let (X,F , µ) and (Y,G, ν) be two σ-finite measure
spaces, and assume that f : X × Y → R is µ× ν-integrable, i.e.∫∫

|f(x, y)|d(µ× ν) < ∞

Then:

x 7→
∫
f(x, y)dν(y) and y 7→

∫
f(x, y)dµ(x)

are µ− and ν−integrable, respectively. Moreover:∫
X×Y

fd(µ× ν) =
∫

X

[∫
Y
f(x, y)dν(y)

]
dµ(x) =

∫
Y

[∫
X
f(x, y)dµ(x)

]
dν(y)

The functions y 7→
∫
f(x, y)dµ(x) and x 7→

∫
f(x, y)dν(y) are defined µ (a.e.) and ν

(a.e.) respectively.

Theorem 2.3.14 (Stochastic Fubini for Brownian Motion [Fil09]). Let X =
(X(ω, t, s))[0≤t,s≤T ] be an Rd-valued stochastic process satisfying:

• X is progressively measurable w.r.t FT ⊗ B([0, T ])
• sup

0≤s,t≤T
|X(t, s)| < ∞

Then λ(t) =
∫ T

0 X(t, s)ds ∈ M2
loc[0, T ] and there exists a FT ⊗ B([0, T ])-measurable

modification ψ(s)of
∫ T

0 X(t, s)ds such that ψ ∈ M2
loc([0, T ]), moreover:∫ T

0
ψ(s)ds =

∫ T

0
λ(t)dW (t)

i.e. ∫ T

0

[∫ T

0
X(t, s)dW (t)

]
ds =

∫ T

0

[∫ T

0
X(t, s)ds

]
dW (t)

11



Chapter 2. Theoretical Background

Girsanov’s theorem, Equivalent martingale measures and Bayes theorem

Definition 2.3.15 (Absolutely continuous measures). Let µ and ν be two measures
defined on (X,F), and define:

Nµ = {A ∈ F : µ(A) = 0}
Nν = {A ∈ F : ν(A) = 0}

We say that ν is absolutely continuous w.r.t µ iff Nµ ⊆ Nν and we write ν ≪ µ, i.e
µ(A) = 0 =⇒ ν(A) = 0

Definition 2.3.16 (Equivalent measures). Consider the situation as described in
Definition 2.3.15, we say that ν and µ are equivalent iff Nµ ⊆ Nν and Nν ⊆ Nµ

i.e. Nµ = Nν and we write ν ∼ µ, i.e:

µ(A) = 0 ⇐⇒ ν(A) = 0

Theorem 2.3.17 (Radon Nikodym derivative). Let (X,F , µ) be a σ-finite measure
space. Let ν be a σ-finite measure on (X,F) such that ν ∼ µ. Then there exists a unique
non-negative function f on X which is measurable w.r.t F for which:

ν(E) :=
∫

E
fdµ, ∀E ∈ F

f is unique in the sense that if there is another non-negative measurable function g such
that:

ν(E) =
∫

E
gdµ =⇒ f = g, µ− a.e

One usually denotes:
f = dν

dµ

Let W = (Wt)t∈[0,T ] ∈ Rm denote a Brownian motion on (Ω,F , (Ft)t∈[0,T ], P ),
furthermore let ϕ be an Rm-valued process (also valid for Cm) with
ϕ ∈ M2

loc([0, T ]), the process we will be interested in looks like:

Zt := Et (ϕ •W ) = exp
(∫ t

0
ϕsdWs − 1

2

∫ t

0
ϕ2

sds

)
(2.1)

Proposition 2.3.18 (Application of Radon-Nikodym derivative). Let Q ∼ P and
define Q(A) := E[ZT1A] =

∫
A ZTdP , where A ∈ F and Z is defined as in Equation 2.1,

furthermore require that E[ZT ] = 1, then Q defines a new probability measure on (Ω,F),
and

dQ

dP

∣∣∣∣
FT

= ZT

Proof. Let {An}n∈N be a sequence of disjoint sets in F , we then have that Q defines a
measure as:

Q(∅) =
∫

∅
ZTdP = 0

1 = E[ZT ] =
∫

Ω
ZTdP = Q(Ω)

12



2.3. Stochastic Analysis

Q

⋃
n∈N

An

 =
∫⋃

n∈N An

ZTdP =
∫

Ω
ZT1

⋃
n∈N An

dP =
∑
n∈N

Q(An)

As Z = (Zt)t≥0 by construction is measurable as well as non-negative, it follows from
Radon-Nikodym theorem that:

dQ

dP

∣∣∣∣
FT

= ZT

■

Theorem 2.3.19 (Girsanov’s theorem [Bal17]). Let W = (Wt)t∈[0,T ] be an m-
dimensional Brownian motion on (Ω,F , (Ft)t∈[0,T ], P ), let Z = (Zt)t∈[0,T ] be defined
as in equation 2.1 with ϕ ∈ M2

loc[0, T ]. Furthermore assume that Z is a martingale w.r.t
P and let Q be a probability measure on (Ω,F) defined via the Radon-Nikodym density
ZT , then:

WQ
t = Wt −

∫ t

0
ϕsds

defines a (Q,F)-Brownian motion on [0, T ]

Often what makes Girsanov’s theorem hard to use is the requirement of Z being a
martingale under P , therefore the next theorem is quite useful:

Theorem 2.3.20 ([Bal17]). Let ϕ ∈ M2
loc([0, T ]), define Mt =

∫ t
0 ϕsdWs, t ∈ [0, T ] with

⟨M⟩t =
∫ t

0 ϕ
2
sds, and let:

Zt = exp
(
Mt − 1

2⟨M⟩t

)
Consider the following properties:

(i) E
[
e

1
2

∫ T

0 |ϕs|2ds
]
< ∞ (Novikov’s condition)

(ii) M = (Mt)t∈[0,T ] is a bounded martingale in L2(Ω,F , P ) and
E[e 1

2 MT ] < ∞
(iii) Z = (Zt)t∈[0,T ] is a uniformly integrable martingale.

Then (i) =⇒ (ii) =⇒ (iii)

Theorem 2.3.21 (Bayes theorem [Øks03]). Let P and Q be two probability measures on
(Ω,F) such that dQ

dP = f with f ∈ L1(Ω,F , P ). Let X be a random variable on (Ω,F)
such that:

EQ[|X|] =
∫

Ω
|X(ω)|f(ω)dP (ω) < ∞

Let G be a sigma-algebra with G ⊆ F , then:

EQ[X|G] = E[fX|G]
E[f |G] a.s

13



Chapter 2. Theoretical Background

Stochastic Differential Equations

Definition 2.3.22 (1-dimensional Ito process). Let F ∈ M1
loc([a, b]) and G ∈

M2
loc([a, b]), and W = (Wt)t∈[a,b] be a one-dimensional standard Brownian motion on

(Ω,F , (Ft)t∈[a,b], P ) then a process on the form:

Xt = Xa +
∫ t

a
Fsds+

∫ t

a
GsdWs

is called an Ito process, this can also be rewritten in differential form as:

dXt = Ftdt+GtdWt

Theorem 2.3.23 (1-dimensional Ito formula [Øks03]). Let Xt be an Ito process, given
by:

dXt = Ftdt+GtdWt

Let g(t, x) ∈ C1,2([0,∞) × R) (one time differentiable in time, and twice differentiable in
space), then Yt = g(t,Xt) is again an Ito process and:

dYt = ∂g

∂t
(t,Xt)dt+ ∂g

∂x
(t,Xt)dXt + 1

2
∂2g

∂x2 (t,Xt)(dXt)2

where (dXt)2 = dXt · dXt is computed according to:

dt · dt = dt · dWt = dWt · dt = 0
dWt · dWt = dt

Theorem 2.3.24 (Integral representation theorem w.r.t Brownian Motion
[Bal17]). Let W = (Wt)t≥0 be an m-dimensional Brownian motion on (Ω,F , (F t)t, P ),
where (F t)t represents the augmented natural filtration. Let T > 0, then we can represent
every Z ∈ L2(Ω,FT , P ) uniquely as:

Z = E[Z] +
∫ T

0
HsdWs

where H ∈ M2([0, T ]) is (F t)t-adapted.

Theorem 2.3.25 (Martingale representation theorem [Bal17]). Let M = (Mt)t∈[0,T ]
be a square integrable martingale with w.r.t (F t)t. Then there exist a unique process
H ∈ M2([0, T ]) such that:

Mt = E[MT ] +
∫ T

0
HsdWs = M0 +

∫ T

0
HsdWs a.s

Let b(t, x) = (bi(t, x))1≤i≤m and σ(t, x) = (σ(t, x)ij)1≤i≤m
1≤j≤d

be measurable functions on

[0, T ] × Rm

14
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Definition 2.3.26 ([Bal17]). Let X = (Xt)t∈[u,T ] be a stochastic process defined on
(Ω,F , (Ft)t∈[0,T ], P ), it is said to be a solution of the SDE (Stochastic differential equation)

(∗)
{
dXt = b(t,Xt)dt+ σ(t,Xt)dWt

Xu = x ∈ Rm

if:

• W = (Wt)t∈[0,T ] ∈ Rd is a Brownian motion on (Ω,F , (Ft)t∈[0,T ], P ) and
• ∀t ∈ [u, T ] we have:

Xt = x+
∫ t

u
b(s,Xs)ds+

∫ T

u
σ(s,Xs)dWs

Definition 2.3.27 (Strong solution). We say that equation 2.2 has strong solutions if for
every standard Brownian motion W = (Wt)t on (Ω,F , (Ft)t, P ), there exists a process
X that satisfies equation 2.2.

Definition 2.3.28 (Uniqueness in distribution). We say that for the SDE in 2.2, there
is uniqueness in distribution if given two solutions Xi on (Ωi,F i, (F i

t )t, P
i), i = 1, 2 have

the same distribution, i.e.
X1 d= X2

Theorem 2.3.29 ([Bal17]). Let X = (Xt)t∈[u,T ] be a stochastic process defined on
(Ω,F , (F)t∈[0,T ], P ), furthermore let η ∈ L2(Ω,F , P ) be Fu-measurable and consider
the SDE: {

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

Xu = η
(2.2)

where b, σ satisfies:

• b, σ are measurable functions such that: ∃L > 0,M > 0 such that ∀x, y ∈ Rm, ∀t ∈
[u, T ]

|b(t, x)| ≤ M(1 + |x|)
|σ(t, x)| ≤ M(1 + |x|)

|b(t, x) − b(t, y)| ≤ L|x− y|
|σ(t, x) + σ(t, y)| ≤ L|x− y|

Then ∃X ∈ M2([u, T ]) satisfying 2.2 and the solution is strong and strongly unique.

Assumption 2.3.30. Throughout this thesis, unless otherwise specified, we will assume
that our probability space (Ω,F ,F = (Ft)t≥0, P ) are such that:

• F is augmented with it’s respective measure, i.e Ft = F t = σ(Ft ∪ N ) and
• F is right-continuous, i.e.

Ft = Ft+ :=
⋂
u>t

Fu

15
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2.4 Levy processes

Definition 2.4.1 (Levy process [Ken]). A stochastic process X = (Xt)t≥0 is a Levy
process if:

1. X0 = 0
2. X has independent increments, i.e ∀ 0 ≤ t < u :

Xu −Xt is independent of Xs −Xr ∀ 0 ≤ r < s ≤ t

3. X has stationary increments, i.e.

∀ 0 ≤ s < t : Xt −Xs
d= Xt−s

4. X is stochastically continuous:

∀ ϵ > 0 : lim
h→0

P (|Xt+h −Xt| ≥ ϵ) = 0

5. X has càdlàg sample paths

Definition 2.4.2 (Infinitely divisible [App+04]). A random variable X is said to be
infinitely divisible if ∀ n ∈ N there exist Xn,1, . . . , Xn,n such that:

X
d=

n∑
k=1

Xn,k

Proposition 2.4.3. If X = (Xt)t≥0 is a Levy-process, then ∀ t ≥ 0 Xt is infinitely divisible.

Definition 2.4.4 (Levy-measure). A Levy-measure is a Borel-measure ν defined on
Rd

0 = Rd \ {0} such that: ∫
Rd

0

1 ∧ |x|2ν(dx) < ∞

Theorem 2.4.5 (Levy-Khintchine theorem [App+04]). Let µ be a probability measure
on Rd, then there exist:

• γ ∈ Rd

• A ∈ Rd×d: Positive semi-definite symmetric matrix (uT rAu ≥ 0, ∀ u ∈ Rd)
• ν a Levy-measure on Rd

0 such that ∀ u ∈ Rd:

φµ(u) = exp
(
i⟨γ, u⟩ − 1

2⟨u,Au⟩ +
∫
Rd

0

[
ei⟨u,x⟩ − 1 − i⟨u, x⟩1(|x| < 1)

]
ν(dx)

)

(γ,A, ν) is called the characteristic triplet of X.

16
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Definition 2.4.6 (Characteristic exponent). The function Ψ : Rd → C:

Ψ(u) = i⟨γ, u⟩ − 1
2⟨u,Au⟩ +

∫
Rd

0

[
ei⟨u,x⟩ − 1 − i⟨u, x⟩1(|x| < 1)

]
ν(dx)

is called the characteristic exponent of the Levy-process X

Theorem 2.4.7 ([App+04]). If X = (Xt)t≥0 is a Levy process, then the characteristic
triplet of each random variable Xt takes the following form:

(γ(t), A(t), ν(t)) = (tγ, tA, tν)

where γ,A and ν are as described in Theorem 2.4.5, the characteristic function takes the
following form:

E[eiuX(t)] = exp
(
Ψ(t)(u)

)
= exp

(
tΨ(1)(u)

)
One uses the following convetion:

Ψ(u) := Ψ(1)(u) = i⟨γ, u⟩ − 1
2⟨u,Au⟩ +

∫
Rd

0

[
ei⟨u,x⟩ − 1 − i⟨u, x⟩1(|x| < 1)

]
ν(dx)

17
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2.4.1 Compound Poisson Process (CPP)

Definition 2.4.8 (Compound Poisson process). A compound Poisson process (CPP)
with intensity λ > 0 and jump size distribution FJ(dx) is a stochastic process:

Y (t) =
N(t)∑
i=1

Jk

where Jk are iid with distribution FJ(dx) and N(t) is a Poisson process with intensity λ,
independent of (Jk)k≥1

Proposition 2.4.9 (Charactersitc function of CPP [Tan03]). The characteristic
function of a CPP I(t) is given by:

E[eiuI(t)] = exp
(
λt

∫
R

(eiux − 1)FJ(dx)
)

Proof.

E[eiuI(t)] = E
[
eiu
∑Nt

k=1 Jk

]
= E

[
E[eiu

∑Nt
k=1 Jk |Nt = n]

]
=
∑

n∈N0

E
[
eiu
∑n

k=1 Jk

]
P (Nt = n)

=
∑
n∈N

n∏
k=1

E[eiuJk ] · e−λt (λt)n

n!

=
∑
n∈N

(
E
[
eiuJ1

])n
e−λt (λt)n

n!

= e−λt
∑
n∈N

(λtE[eiuJ ])n

n!

= e−λteλtE[eiuJ ]

= exp
(
λt(E[eiuJ ] − 1)

)
= exp

(
λt

(∫
R
eiuxFJ(dx) − 1

))
= exp

(
λt

∫
R

[
eiux − 1

]
FJ(dx)

)
■
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Proposition 2.4.10 (Characteristic triplet of CPP). Let I(t) be a CPP as described in
Definition 2.4.8, we then have that the characteristic triplet of I is given by:

(γ,A, ν) =
(
λ

∫
|x|<1

xFJ(dx), 0, λFJ

)

Proof. From Proposition 2.4.9, we have:

E[eiuI(t)] = exp
(
λt

∫
R

(eiux − 1)FJ(dx)
)

= exp (tΨ(u))

Now:∫
R

[
eiux − 1 − iux1(|x| < 1)

]
λFJ(dx) = λ

∫
R

[eiux − 1]FJ(dx) − iuλ

∫
R
x1(|x| < 1)FJ(dx)

= λ

∫
R

[eiux − 1]FJ(dx) − i

〈
λ

∫
R
x1(|x| < 1)FJ(dx), u

〉
From this, we infer that:

i⟨γ, u⟩ − i

〈
λ

∫
R
x1(|x| < 1)FJ(dx), u

〉
= 0

⇕

γ = λ

∫
|x|<1

xFJ(dx)

■

Proposition 2.4.11 ([BBK08]). Assume that I is a CPP, g a continuous function and
that s 7→ Ψ(ug(s)) ∈ L1([0, t],F , P ), then:

E
[
exp

(
iθ

∫ t

s
g(u)dI(u)

)]
= exp

(∫ t

s
Ψ(θg(u))du

)
Where Ψ(x) is the cumulant function of I(1) i.e:

Ψ(x) = λ

∫
R

(eiyx − 1)FJ(dy)

Proof. Since g is a continuous function on [s, t] we know that there exist M > 0 such
that |g(u)| ≤ M, ∀u ∈ [s, t], furthermore from Proposition 2.1.16, we know that g may
be approximated by simple functions:

h(u) =
n∑

k=1
ak1(uk−1,uk](u), where: s = u0 < u1 < · · · < un = t

E
[
exp

(
iθ

∫ t

s
h(u)dI(u)

)]
= E

[
exp

(
iθ

n∑
k=1

ak[I(uk) − I(uk−1)]
)]

Now as I is a CPP (and therefore a Levy-process), we know that it has independent
increments and has a stationary distribution, meaning that: I(uk) − I(uk−1) d=
I(uk − uk−1) = I(∆k), leaving us with:
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E
[
exp

(
iθ

n∑
k=1

ak[I(uk) − I(uk−1)]
)]

=
n∏

k=1
E [exp (iθI(∆k))]

=
n∏

k=1
exp (Ψ(θak)∆k)

= exp
(

n∑
k=1

Ψ(θak)∆k

)

Thus:

E
[
exp

(
iθ

∫ t

s
g(u)dI(u)

)]
= lim

∆k→0
E
[
exp

(
iθ

∫ t

s
h(u)dI(u)

)]
= lim

∆k→0
exp

(
n∑

k=1
Ψ(θak)∆k

)
DCT= exp

(
lim

∆k→0

n∑
k=1

Ψ(θak)∆k

)

= exp
(∫ t

s
Ψ(θg(u))du

)
■
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2.4. Levy processes

2.4.2 Esscher Transform for CPP

Let Y ∼ FY (dy), we then have:

E[eθY ] =
∫
R
eθyFY (dy)

Furthermore, we denote:

Zθ(T ) := dQθ

dP
= eθY

E[eθY ]

Now let I(t) denote a CPP with intensity λ and jump-distribution J ∼ FJ(dx), in this
case we get:

Zθ(T ) = eθI(T )

E[eθI(T )]

In order for Zθ(T ) to be well defined, we need E[eθI(T )] < ∞, now from Theorem 2.4.5
in combination with Proposition 2.4.9, we have:

E[eθI(T )] = exp(TΨ(−iθ)) = exp
(
λT (E[eθJ ] − 1)

)
Meaning that we need E[eθJ ] < ∞ for Zθ(T ) to be well defined.

Notation 2.4.12. For simplicity and ease of notation, we define:

ξ(θ) := Ψ(−iθ) = λ(E[eθJ ] − 1)

We can now rewrite Zθ(T ) as:

Zθ(T ) = eθI(T )−ξ(θ)T

Proposition 2.4.13. Zθ = (Zθ(t))t∈[0,T ] is a (P,F)-martingale.

Proof. Let 0 ≤ s ≤ t ≤ T :

E[Zθ(t)|Fs] = E
[
eθI(t)−ξ(θ)t

∣∣∣∣Fs

]
= e−ξ(θ)tE

[
eθ[I(s)+(I(t)−I(s))]

∣∣∣∣Fs

]
= e−ξ(θ)teθI(s)E

[
eθI(t−s)

]
= e−ξ(θ)teθI(s)eξ(θ)(t−s)

= eθI(s)−ξ(θ)s

= Zθ(s)

■
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Proposition 2.4.14 ([BBK08]). I(t) is a CPP under Qθ with intensity λQθ = λE[eθJ ]

Proof. We start off by calculating the characteristic function under Qθ:

EQθ

[
eiuI(t)

]
= E

[
eiuI(t)Zθ(t)

]
= E

[
eiuI(t)eθI(t)−ξ(θ)t

]
= exp(−ξ(θ)t) exp

(
λt(E[e(iu+θ)J ] − 1)

)
= exp

(
λt(E[e(iu+θ)J ]) − λt(E[eθJ ] − 1)

)
= exp

(
λtE[eθJ(eiuJ − 1)] · E[eθJ ]

E[eθJ ]

)
= exp

(
λtE[eθJ ]E[Zθ(1)(eiuJ − 1)]

)

= exp

t λE[eθJ ]︸ ︷︷ ︸
=λ

Qθ

(EQθ [eiuJ ] − 1)


Thus:

EQθ

[
eiuI(t)

]
= exp

(
tΨQθ (u)

)
, where: ΨQθ (u) = λQθ

(
EQθ [eiuJ ] − 1

)
■

Lemma 2.4.15 ([Exercise MAT4770, Spring 2021]). Let I(t) be a CPP under P with
intensity λ, and jump distribution J ∼ Exp(µ), then for θ < µ, we have:

λQ = λµ

µ− θ
and J1 ∼ Exp(µ− θ)

Proof. For the Esscher transform to be well-defined, we must have that E[eθJ ] < ∞, now:

E[eθJ ] =
∫ ∞

0
eθxµe−µxdx

= µ

θ − µ
e(θ−µ)x

∣∣∣∣∞
0

=
{

∞ θ ≥ µ
µ

θ−µ θ < µ

To find the distribution of J under Q, we can derive it’s characteristic function:

EQ[eiuJ ] = EQ[eiuI(1)] = exp (ξ(iu+ θ) − ξ(θ))

ξ(iu+ θ) − ξ(θ) = λ
(
E[e(iu+θ)J ] − 1

)
− λ

(
E[eθJ ] − 1

)
= λE[eθJ(eiuJ − 1)]

= λ

∫ ∞

0
eθx[eiux − 1]FJ(dx)

= λ

∫ ∞

0
eθx[eiux − 1]µe−µxdx · θ − µ

θ − µ
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2.4. Levy processes

= λµ

θ − µ

∫ ∞

0
[eiux − 1](µ− θ)e−(µ−θ)xdx

= λQ

∫ ∞

0
[eiux − 1]FQ

J (dx)

Meaning that J Q∼ Exp(µ− θ) ■
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Chapter 3

Mathematical Finance

3.1 Market Model

For the time being consider r = (rt)t∈[0,T ] to be a deterministic interest rate process.
Furthermore assume that we have the following probability space (Ω,F , (F̄t)t∈[0,T ], P )

Definition 3.1.1 (Money market account). We define the money market account B(t) as a
solution to the ODE:

dB(t) = r(t)B(t)dt
with initial condition B(0) = 1, this gives the solution:

B(t) = e
∫ t

0 r(s)ds

Consider the following processes:
• B = (Bt)t∈[0,T ] the money market account

• dSt = µ(t, St)Stdt+ σ(t, St)StdWt the risky asset.
Let µ and σ be defined so that the conditions in Theorem 2.3.29 are met.

Let ϕi = {ϕi
t, t ∈ [0, T ]} be two stochastic processes defined on the above probabil-

ity space. Denote ϕ = (ϕ0, ϕ1), where:
• ϕ0

t represents the number of units invested in the money market account at time t.

• ϕ1
t represents the number of units invested in the risky asset S at time t.

Definition 3.1.2 (Trading strategy). We say that ϕ = (ϕ0, ϕ1) is a trading strategy is it
is (Ft)t∈[0,T ]-adapted and:

ϕ0rB ∈ M1([0, T ]), ϕµS ∈ M1([0, T ]) ϕ1σS ∈ M2([0, T ])

Definition 3.1.3 (Value of portfolio). The value of a portfolio with trading strategy ϕ is
given by:

V ϕ(t, St) = ϕ0
tBt + ϕ1

tSt, t ∈ [0, T ]
Definition 3.1.4 (Self-financing strategy). We say that the trading strategy ϕ is self-
financing if:

dV ϕ(t, St) = ϕ0
tdBt + η1

t dSt, t ∈ [0, T ]
Definition 3.1.5 (Arbitrage opportunity). An arbitrage opportunity is a self-financing
strategy ϕ with:

V ϕ(0, S0) = 0, V ϕ(T, ST ) ≥ 0, P (V ϕ(T, ST ) ≥ 0) > 0
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3.2 Fundamental theorems of asset pricing

Theorem 3.2.1 (First Fundamental theorem of asset pricing). The following are
equivalent:

i There are no arbitrage opportunities
ii there exists an equivalent martingale measure Q ∼ P such that the process

(S̃)t∈[0,T ] =
(

St
Bt

)
t∈[0,T ]

is a (Q,F)-martingale.

Definition 3.2.2 (Attainable claim). We say that a claim H is attainable if there exists
a trading strategy ϕ = (ϕ0, ϕ1) such that:

V ϕ(T, ST ) = H a.s

We assume that H is FT -measurable as well as H ∈ M2([0, T ])

Definition 3.2.3 (Complete market). We say the market is complete if all contingent
claims in Definition 3.2.2 are attainable.

Theorem 3.2.4 (Second Fundamental Theorem of Asset Pricing). An arbitrage-free
market is complete if and only if there exists a unique equivalent martingale measure
Q ∼ P .
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Chapter 4

Interest rate theory

4.1 Zero Coupon Bonds and interest rates

Definition 4.1.1 (Zero Coupon Bond [Fil09]). A zero coupon bond (ZCB) with maturity
T guarantees the holder one dollar to be paid out at maturity T . We denote the time t
price of the zero coupon bond as P (t, T )

We will assume the following:

• There is a frictionless market for T -bonds for all T > 0

• P (T, T ) = 1 for all T

• P (t, T ) is differentiable in T .

0 S t T

Definition 4.1.2 (Simple forward rate [Fil09]). The simple forward rate for [S, T ]
prevailing at time t ≤ T is defined as:

F (t, S, T ) = 1
T − S

P (t, S) − P (t, T )
P (t, T )

Definition 4.1.3 (Continuously compounding forward rate [Fil09]). The continuously
compounded forward rate for [S, T ] prevailing at t ≤ T is given by:

R(t;S, T ) = − lnP (t, T ) − lnP (t, S)
T − S

Definition 4.1.4 (Instantaneous forward rate [Fil09]). The instantaneous forward rate
with maturity T , prevailing at time t is defined as:

f(t, T ) = −∂ logP (t, T )
∂T

Definition 4.1.5 (Short rate [Fil09]). The instantaneous short rate at time t is defined
as:

r(t) = f(t, t) =
(

−∂ logP (t, T )
∂T

) ∣∣∣∣
T =t
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4.2 Swaps

Definition 4.2.1 (Fixed Interest rate swap). An interest rate swap is a forward contract
in which one stream of future interest payments is exchanged for a fixed interest rate.

Some clarification:

• N represents the nominal value, think of it as the amount you loan/lend.

• 0 < T0 < T1 < · · · < Tn a sequence of future dates.

• δ = Ti − Ti−1 a fixed leg between payments

• κ a fixed rate.

δ

t T0 T1 Ti−1 Ti Ti+1 Tn−1 Tn

We use the following notation for the simple forward rate:

F (t, T ) := F (t, t, T ) = 1
T − t

( 1
P (t, T ) − 1

)
This means that we can write:

F (Ti−1, Ti) = 1
Ti − Ti−1

( 1
P (Ti−1, Ti)

− 1
)

= 1
δ

( 1
P (Ti−1, Ti)

− 1
)

Exchanging a floating rate with a fixed-rate payer-swap contract has the following
specification:

• Pay κδN (-)

• Receive F (Ti−1, Ti)δN (+)

Cash flow at time Ti:

F (Ti−1, Ti)δN − κδN = [F (Ti−1, Ti) − κ]δN

Time t-value for t ≤ T0 at time Ti:

P (t, Ti)[F (Ti−1, Ti) − κ]δN = P (t, Ti)
(1
δ

( 1
P (Ti−1, Ti)

− 1
)

−K

)
δN

= P (t, Ti)
P (Ti−1, Ti)

N − P (t, Ti)N − P (t, Ti)κδN
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Proposition 4.2.2. We have the following relationship:

P (t, Ti)
P (Ti−1, Ti)

= P (t, Ti−1)

Proof. We use a classical arbitrage argument:

First, we note that:
P (t, Ti)

P (Ti−1, Ti)
= P (t, Ti)

1
P (Ti−1, Ti)

This is the time t-value of receiving 1
P (Ti−1,Ti) at time Ti. Our strategy will be:

• at time t: buy Ti−1-bond (−P (t, Ti−1))
• at time Ti−1: receive (+$1), and immediately reinvest in Ti-bonds, we buy 1

P (Ti−1,Ti)
number of Ti-bonds.

• at time Ti: we have 1
P (Ti−1,Ti)

t

−P (t, Ti)

Ti−1

+$1,
(
− 1

P (Ti−1,Ti)

)
Ti

+ 1
P (Ti−1,Ti)

This means that we have a risk-free profit of 1
P (Ti−1,Ti) , meaning that in order to avoid

arbitrage we must have that:

P (t, Ti)
P (Ti−1, Ti)

= P (t, Ti−1)

■

Thus from the above proposition, we get the following time t-value for t ≤ T0:

N [P (t, Ti−1) − P (t, Ti)] − κδNP (t, Ti)

Total payer cash flow:

Cp(t) =
n∑

i=1
[N [P (t, Ti−1) − P (t, Ti)] − κδNP (t, Ti)]

= N(P (t, T0) − P (t, Tn)) − κδN
n∑

i=1
P (t, Ti)

A receiver interest rate swap corresponds to changing the sign of the cash flows, this
yields:

Cp(t) = −Cr(t)

Result 4.2.3. The "fair" fixed rate κ = Rswap(t) should be chosen such that Cp(t) =
−Cr(t) = 0, this gives:

RSwap(t) = P (t, T0) − P (t, Tn)
δ
∑n

i=1 P (t, Ti)
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4.3 Short rate models

Consider the following probability space (Ω,F , (Ft)t∈[0,T ], P ), the market model consists
of:

• Money market account B = (B(t))t with B(t) = e
∫ t

0 r(u)du

• Short rate process r = (r(t))t

We assume the following short-rate dynamics:

dr(t) = b(t)dt+ σ(t)dW (t)

Where r = (r(t))t≥0 is a process satisfying the necessary conditions given in Theorem
2.3.29.

Furthermore, the market is assumed to be arbitrage-free, meaning that there ∃ Q ∼ P
such that:

dQ

dP

∣∣∣∣
Ft

= Et (γ •W )

Result 4.3.1 (Relationship between zero coupon bonds and the short rate). We
can express the Zero Coupon Bond price as follows:

P (t, T ) = EQ

[
e−
∫ T

t
r(u)du

∣∣∣∣Ft

]
, ∀ t ∈ [0, T ]

Proof. By the First Fundamental theorem of asset pricing (Theorem 3.2.1), we have that
to avoid arbitrage, all tradable assets should be (Q,F)-martingales after discounting,
meaning that:

EQ

[
P (T, T )
B(T )

∣∣∣∣Ft

]
= P (t, T )

B(t)

Now P (T, T ) = 1, and B(t) is Ft-measurable, this gives us:

P (t, T ) = EQ

[
B(t)
B(T )

∣∣∣∣Ft

]
= EQ

[
e−
∫ T

t
r(u)du

∣∣∣∣Ft

]
■
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Proposition 4.3.2 ([Fil09]). Considering the above setting, then we have that the process
r = (r(t))t∈[0,T ] have the following Q-dynamics:

dr(t) =
(
b(t) + σ(t)γ(t)T r

)
dt+ σ(t)dWQ(t) (Q)

Proof. Let W = (Wt)t∈[0,T ] ∈ Rm, and let Ft = σ(Ws : s ≤ t), also let γ ∈ Rm, as well as
γ ∈ M2

loc([0, T ]). By assumption there are no arbitrage, thus Et(γ •W ) ∈ M2([0, T ]), this
is also a (P,F)-martingale. Girsanov’s Theorem 2.3.19, then tells us that the Q-dynamics
takes the following form:

dWQ(t) = dW (t) − γ(t)T rdt

This yields:

dr(t) = b(t)dt+ σ(t)dW (t)
= b(t)dt+ σ(t)[dWQ(t) + γ(t)T rdt]

=
(
b(t) + σ(t)γT r(t)

)
dt+ σ(t)dWQ(t)

■
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4.4 Affine Term Structures

Consider the general SDE:

dr(t) = b(t, r(t))dt+ σ(t, r(t))dWQ(t), (Q) (4.1)

Assume that b and σ are such that they satisfy the necessary conditions given in Theorem
2.3.29, meaning that a solution exists and is strongly unique.

Definition 4.4.1 (Affine Term Structure). A short rate model r = (r(t))t≥0 is said
to provide an ATS (Affine Term Structure) if the Zero Coupon Bond P (t, T ), can be
expressed as:

P (t, T ) = exp (−A(t, T ) −B(t, T )r(t))

Where A,B are smooth C1-functions, meaning they are continuous and have continuous
first derivatives.

Proposition 4.4.2 ([Fil09]). The short rate model r = (r(t))t≥0 provides an ATS if and
only if the diffusion and drift terms take the form:

σ2(t, r(t)) = a(t) + α(t)r(t)
b(t, r(t)) = b(t) + β(t)r(t)

a, α, b, β are continuous functions, furthermore A and B solve the Ricatti equations:

∂tA(t, T ) = 1
2a(t)B2(t, T ) − b(t)B(t, T ), A(T, T ) = 0

∂tB(t, T ) = 1
2α(t)B2(t, T ) − β(t)B(t, T ), B(T, T ) = 0

4.4.1 Vasicek model

Consider the probability space (Ω,F , (Ft)t∈[0,T ], Q) and let the dimension d = 1.

Proposition 4.4.3 (Vasicek Model). The Vasicek model is an Ornstein–Uhlenbeck process
with the following dynamics:

dr(t) = α[m− r(t)]dt+ σdWQ(t)

Here α,m, σ are real-valued constants, with σ > 0.

Let 0 ≤ t ≤ T we then have an explicit solution given by:

r(T ) = e−α(T −t)r(t) +m[1 − e−α(T −t)] + σ

∫ T

t
e−α(T −u)dWQ(u)

Furthermore, the Vasicek model belongs to the class of Affine term structures where:

B(t, T ) = 1
α

[
1 − e−α(T −t)

]
A(t, T ) = −mB(t, T ) −m(T − t) − σ2

2

∫ T

t
B2(u, T )du
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Proof. This follows from applying Ito’s Formula on g(t, x) = eαtx:
d[eαtr(t)] = αeαtr(t)dt+ eαtdr(t)

= αeαtr(t)dt+ eαt
(
α[m− r(t)]dt+ σdWQ(t)

)
= αmeαtdt+ σeαtdWQ(t)

Thus:

r(T ) = e−α(T −t)r(t) + αm

∫ T

t
e−α(T −u)du+ σ

∫ T

t
e−α(T −u)dWQ(u)

= e−α(T −t)r(t) +m[1 − e−α(T −t)] + σ

∫ T

t
e−α(T −u)dWQ(u) (4.2)

We want to find an expression for −
∫ T

t r(u)du:

r(T ) − r(t) = αm(T − t) − α

∫ T

t
r(u)du+ σ

∫ T

t
dWQ(u)

⇓

−α
∫ T

t
r(u)du = r(T ) − r(t) − αm(T − t) − σ

∫ T

t
dWQ(u) (4.3)

By plugging in the expression for r(T ) as found in Equation 4.2, into Equation 4.3 and
dividing by α yields:

−
∫ T

t
r(u)du = 1

α
[e−α(T −t) − 1]︸ ︷︷ ︸

=−B(t,T )

r(t) + m

α
[1 − e−α(T −t)] +m(T − t)︸ ︷︷ ︸

=−b(T −t)

+
∫ T

t

σ

α
[e−α(T −u) − 1]︸ ︷︷ ︸

=−c(T −u)

dWQ(u)

(4.4)

= −B(t, T ) − b(T − t) −
∫ T

t
c(T − u)dWQ(u)

Now:

P (t, T ) = EQ

[
e−
∫ T

t
r(u)du

∣∣∣∣Ft

]
= e−B(t,T )r(t)−b(T −t)EQ

[
e−
∫ T

t
c(T −u)dW Q(u)

]
c(T − u) is a deterministic function, we thus have:

−
∫ T

t
c(T − u)dWQ(u) ∼ N

(
0,
∫ T

t
c2(T − u)du

)
Furthermore if X ∼ N (µ, σ2), we have:

φX(t) = E[eitX ] = eiut− 1
2 σ2t2

Thus:

EQ

[
e−
∫ T

t
c(T −u)dW Q(u)

]
= e− 1

2

∫ T

t
c2(T −u)

Leaving us with:

P (t, T ) = exp

−b(T − t) − 1
2

∫ T

t
c2(T − u)du︸ ︷︷ ︸

=−A(t,T )

−B(t, T )r(t)


■
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4.5 HJM-modelling

We have seen how the short rate and the zero coupon bond are related, however, we also
have the relation:

P (t, T ) = e−
∫ T

t
f(t,u)du

where f represents the forward rate, the Heath-Jarrow-Morton (HJM) approach consists
of modelling the forward rate directly:

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t)

f(t, T ) = f(0, T ) +
∫ T

0
α(s, T )ds+

∫ T

0
σ(s, T )dW (s)

Consider (Ω,F , (Ft)t∈[0,T ], P ) as the objective probability space, and let α =
(α(t, T ))t∈[0,T ] denote an R-valued process and let σ = (σ(t, T ))t∈[0,T ] be an Rd-valued
process, i.e σ(t, T ) = (σ1(t, T ), . . . , σd(t, T )). We impose the following conditions:

• (HJM.1) α and σ are progressively measurable w.r.t B([0, t]) ⊗ Ft

• (HJM.2) ∫ T

0

∫ T

0
|α(s, u)|dsdu < ∞, ∀ T

• (HJM.3)
sup

s,u≤T
∥σ(s, u)∥ < ∞, a.e. ∀ T

4.5.1 P -dynamics

Proposition 4.5.1 (Dynamics of lnP (t, T )). We have that the dynamics of lnP (t, T ) is
given by:

d lnP (t, T ) = r(t)dt−
∫ T

t
α(t, u)dudt−

∫ T

t
σ(t, u)dudW (t)

Proof. Quite involved, so we start on the next page.
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4.5. HJM-modelling

We have the following relationship: lnP (t, T ) = −
∫ T

t f(t, u)du, this can be rewritten as:

lnP (t, T ) = −
∫ T

t
f(0, u)du−

∫ T

t

∫ t

0
α(s, u)duds−

∫ T

t

∫ t

0
σ(s, u)dW (s)du

= −
∫ T

t
f(0, u)du−

∫ t

0

∫ T

t
α(s, u)dsdu−

∫ t

0

∫ T

t
σ(s, u)dudW (s)

In order to get cleaner expressions, we split up the integral in the following way:

0 s t T

Hence 0 ≤ s ≤ t ≤ T , and: ∫ T

t
=
∫ T

s
−
∫ t

s

We will now replace the integral parts containing
∫ T

t with the above:

lnP (t, T ) = −
∫ T

0
f(0, u)du︸ ︷︷ ︸

=ln P (0,T ),(1)

+
∫ t

0
f(0, u)du︸ ︷︷ ︸

=(2)

−
∫ t

0

∫ T

s
α(s, u)duds︸ ︷︷ ︸
=(3)

+
∫ t

0

∫ t

s
α(s, u)duds︸ ︷︷ ︸
=(4)

−
∫ t

0

∫ T

s
σ(s, u)dudW (s)︸ ︷︷ ︸

=(5)

+
∫ t

0

∫ t

s
σ(s, u)dudW (s)︸ ︷︷ ︸

=(6)

Now let’s rewrite this again, here (x)′ means that one used Fubini on the following part:

lnP (t, T ) = (1) + (2) + (4)′ + (6)′ + (3) + (5)

This means that Fubini is applied to (4) and (6):

(4) =
∫ t

0

∫ t

s
α(s, u)duds =

∫ t

0

∫ u

0
α(s, u)dsdu = (4)′

and:

(6) =
∫ t

0

∫ t

s
σ(s, u)dudW (s) =

∫ t

0

∫ u

0
σ(s, u)dW (s)du = (6)′

Here we used Fubini (Theorem 2.3) and Stochastic Fubini (Theorem 2.3.14), with:{
s ≤ u ≤ t

0 ≤ s ≤ t
⇐⇒

{
0 ≤ s ≤ u

0 ≤ u ≤ t
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We would also like to recall, that:

r(t) = f(t, t) = f(0, t) +
∫ t

0
α(s, t)ds+

∫ t

0
σ(s, t)dW (s)

⇓

r(u) = f(0, u) +
∫ u

0
α(s, u)ds+

∫ u

0
σ(s, u)dW (s)

⇓∫ t

0
r(u)du =

∫ t

0
f(0, u)du︸ ︷︷ ︸

=(2)

+
∫ t

0

∫ u

0
α(s, u)dsdu︸ ︷︷ ︸
=(4)′

+
∫ t

0

∫ u

0
σ(s, u)dW (s)du︸ ︷︷ ︸

=(6)′

This yields:

lnP (t, T ) = (1) +
∫ t

0
r(u)du+ (3) + (5)

= lnP (0, T ) +
∫ t

0
r(u)du−

∫ t

0

∫ T

s
α(s, u)duds−

∫ t

0

∫ T

s
σ(s, u)dudW (s)

Which then finally yields:

d lnP (t, T ) = r(t)dt−
∫ T

t
α(t, u)dudt−

∫ T

t
σ(t, u)dudW (t)

■

Notation 4.5.2 (Volatility process). We will use the following notation for the volatility
process:

v(t, T ) := −
∫ T

t
σ(t, u)du

Lemma 4.5.3. We have that for every maturity T , that the dynamics of P (t, T ) can be
expressed as:

dP (t, T )
P (t, T ) =

[
r(t) −

∫ T

t
α(t, u)du+ 1

2∥v(t, T )∥2
]
dt+ v(t, T )dW (t)

Proof. For simplicity, consider d = 1, we will use Ito’s formula on ex with x = lnP (t, T ):

dP (t, T ) = P (t, T )d lnP (t, T ) + 1
2P (t, T )[d lnP (t, T )]2

= P (t, T )
[
r(t)dt−

∫ T

t
α(t, u)dudt+ v(t, T )dW (t)

]

+ 1
2P (t, T ) (v(t, T ))2 dt

Collecting dt-terms and dividing by P (t, T ) gives:

dP (t, T )
P (t, T ) =

[
r(t) −

∫ T

t
α(t, u)du+ 1

2 (v(t, T ))2
]
dt+ v(t, T )dW (t)

■
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Corollary 4.5.4. The discounted zero coupon bond process has the following dynamics:

d

[
P (t, T )
B(t)

]
= P (t, T )

B(t)

(
1
2∥v(t, T )∥2 −

∫ T

t
α(t, u)du

)
dt+ P (t, T )

B(t) v(t, T )dW (t) (4.5)

Proof. This is just an application of Ito’s product rule:

d

[
P (t, T )
B(t)

]
= dP (t, T ) 1

B(t) + P (t, T )d
[ 1
B(t)

]
+ dP (t, T )d

[ 1
B(t)

]
= r(t)P (t, T )

B(t) dt− P (t, T )
B(t)

∫ T

t
α(t, u)dudt+ 1

2
P (t, T )
B(t) ∥v(t, T )∥2dt

+ P (t, T )
B(t) v(t, T )dW (t) − r(t)P (t, T )

B(t) dt

= P (t, T )
B(t)

(
1
2∥v(t, T )∥2 −

∫ T

t
α(t, u)du

)
dt+ P (t, T )

B(t) v(t, T )dW (t)

■
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4.5.2 Q-dynamics and absence of arbitrage

Let γ(t) = (γ1(t), . . . , γd(t)) ∈ M2([0, T ]) be an Ft-adapted process, furthermore assume
that Et(γ •W ) is a (P,F)-martingale, then from Girsanov’s Theorem (2.3.19) we know
that ∃ Q ∼ P such that

dWQ(t) = dW (t) − γ(t)T rdt

is a Q-Brownian motion, yielding the following Q-dynamics for f :

df(t, T ) = [α(t, T ) + σ(t, T )γ(t)T r]dt+ σ(t, T )dWQ(t) (4.6)

Plugging the Q-Brownian motion into Equation 4.5 yields:

d

[
P (t, T )
B(t)

]
= P (t, T )

B(t)

(
1
2∥v(t, T )∥2 −

∫ T

t
α(t, u)du+ v(t, T )γ(t)T r

)
dt

+ P (t, T )
B(t) v(t, T )dWQ(t)

Theorem 4.5.5 ([Fil09]). We have that P (t,T )
B(t) is a Q-martingale if and only if:

−v(t, T )γ(t)T r = 1
2∥v(t, T )∥2 −

∫ T

t
α(t, u)du (4.7)

and the Q-dynamics of f are given by:

df(t, T ) =
∫ T

t
σ(t, u)du · σ(t, T )T rdt+ σ(t, T )dWQ(t)

And the discounted T -bond price satisfy:

P (t, T )
P (0, T )B(t) = Et(v(·, T ) •WQ)

Proof. As a consequence of the Martingale Representation Theorem (2.3.25), we get that
in order for Q-martingality there cannot be any drift, i.e.

1
2∥v(t, T )∥2 −

∫ T

t
α(t, u)du+ v(t, T )γ(t)T r = 0

⇕

−v(t, T )γ(t)T r = 1
2∥v(t, T )∥2 −

∫ T

t
α(t, u)du
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In order to get the desired dynamics, we take the partial derivative w.r.t T on LHS and
RHS of Equation 4.7 where:

∂

∂T

[
−v(t, T )γ(t)T r

]
= σ(t, T )γ(t)T r

and:

∂

∂T

[1
2∥v(t, T )∥2

]
= ∂

∂T

1
2

d∑
i=1

(∫ T

t
σi(t, u)du

)2


=
d∑

i=1

∫ T

t
σi(t, u)du ∗ σi(t, T )

=
∫ T

t
σ(t, u)du · σ(t, T )T r

This leaves us with:

σ(t, T )γ(t)T r =
∫ T

t
σ(t, u)du · σ(t, T )T r − α(t, T )

Now plugging this into Equation 4.6, yields:

df(t, T ) =
[
α(t, T ) +

∫ T

t
σ(t, u)du · σ(t, T )T r − α(t, T )

]
dt+ σ(t, T )dWQ(t)

=
∫ T

t
σ(t, u)du · σ(t, T )T rdt+ σ(t, T )dWQ(t)

Suppose that the arbitrage condition in Equation 4.7 holds, then:

d

[
P (t, T )
B(t)

]
= P (t, T )

B(t) v(t, T )dWQ(t)

⇓

d

[
P (t, T )

P (0, T )B(t)

]
= P (t, T )
P (0, T )B(t)v(t, T )dWQ(t)

⇕
P (t, T )

P (0, T )B(t) = Et(v(·, T ) •WQ)

■
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4.6 Estimating the Term Structure

In the market we can only observe: P (0, T1), . . . , P (0, Tn) for maturities T1, . . . , Tn,
however it could be that we need P (0, Tr) where the ZCB with maturity Tr is not
observable.

Figure 4.1: Example of estimated term structure

Typical methods to estimate these term structures are regressions and interpolation
methods. We will look at parametric estimation methods, in particular, exponential-
polynomial families as these methods are often used by central banks. For instance, the
Norwegian Central Bank uses the Svensson method [21c].

4.6.1 Exponential-Polynomial Families

Let P1, . . . , Pn be the observed ZCB’s with maturities T1, . . . , Tn, the goal will be the
following:

min
θ

|Pθ(Ti) − Pi|2

One proposal is the Nelson-Siegel Curve

fNS(T, z1, z2, z3, z4︸ ︷︷ ︸
θ

) = z1 + (z2 + z3T )e−z4T

where one has the following link between Pθ and fNS :

Pθ(T ) = exp
(

−
∫ T

0
fNS(u; θ)du

)

The Svensson curve is given by:

fS(T, θ) = z1 + (z2 + z3T )e−z5T + z4Te
−z6T
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4.7 Forward Measures

Consider the following probability space (Ω,F , (Ft)t∈[0,T ], Q)), furthermore let
X ∈ L1(Ω,F , Q) as well as FT -measurable. The goal of this section is to study:

π(t) = EQ

[
B(t)
B(T )X

∣∣∣∣Ft

]
Notation 4.7.1. We use the following notation:

ZT (t) := P (t, T )
P (0, T )B(t)

Proposition 4.7.2. Assume that EQ

[
e

1
2

∫ T

0 ∥v(s,T )∥2ds
]
< ∞ ∀T , then we have that:

ZT (t) = Et(v(·, T ) •WQ), t ≤ T

is a Q-martingale, furthermore there ∃ QT ∼ Q such that:

dQT

dQ

∣∣∣∣
Ft

= ZT (t)

and:

dW T (t) = dWQ(t) − v(t, T )dt

defines a QT -Brownian motion.

Proof. Since we assume that EQ

[
e

1
2

∫ T

0 ∥v(s,T )∥2ds
]
< ∞ ∀T , it follows from Novikov’s

condition (2.3.20) and Theorem 4.7, that ZT (t) is a Q-martingale. Girsanov’s Theorem
(2.3.19) justifies that ∃ QT ∼ Q such that

dQT

dQ

∣∣∣∣
Ft

= ZT (t)

and that dW T (t) = dWQ(t) − v(t, T )dt defines a QT -Brownain motion. ■

Proposition 4.7.3 ([Fil09]). Let X ∈ L1(Ω,F , Q) as well as FT -measurable, we then have
that:

EQT [|X|] < ∞
and:

π(t) = P (t, T )EQT [X|Ft]

Proof. We get from Bayes theorem (2.3.21) the following:

EQT [|X|] =
EQ

[
|X|dQT

dQ

]
EQ

[
dQT

dQ

]
=

EQ

[
|X|ZT (T )

]
ZT (0)

= EQ

[ |X|
P (0, T )B(T )

]
≤ EQ[|X|] < ∞
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The second part also relies on Bayes theorem:

EQT [X|Ft] =
EQ

[
X dQT

dQ

∣∣∣∣Ft

]
EQ

[
dQT

dQ

∣∣∣∣Ft

]

=
EQ

[
XZT (T )

∣∣∣∣Ft

]
ZT (t) (4.8)

We recall that ZT (t) = P (t,T )
P (0,T )B(t) , now from Equation 4.8 we get:

ZT (t)EQT [X|Ft] = EQ[XZT (T )|Ft] ⇐⇒ P (t, T )EQT [X|Ft] = EQ

[
B(t)
B(T )X

∣∣∣∣Ft

]
:= π(t)

■

Lemma 4.7.4 ([Fil09]). Let S > 0 and S ≤ T . Then the T -bond discounted S-bond price
process:

P (t, S)
P (t, T ) = P (0, S)

P (0, T )Et(σS,T •W T ), t ≤ S ≤ T

is a QT -martingale. Where we define:

σS,T (t) = −σT,S(t) = v(t, S) − v(t, T ) =
∫ T

S
σ(t, u)du

Moreover, the T - and S-forward measures are related by:

dQS

dQT

∣∣∣∣
Ft

= P (t, S)
P (t, T )

P (0, T )
P (0, S) = Et(σS,T •W T )

Proof. Quite involved, so we start on the next page:
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QT -martingality:

Let u ≤ t ≤ S ≤ T , we then get:

EQT

[
P (t, S)
P (t, T )

∣∣∣∣Fu

]
Bayes:2.3.21=

EQ

[
P (t,S)
P (t,T )Z

T (T )
∣∣∣∣Fu

]
EQ [ZT (T )|Fu]︸ ︷︷ ︸

(∗)

Now from Proposition 4.7.2 and the Tower law of conditional expectation (Theorem
2.2.8), we get that:

(∗) =
EQ

[
EQ

[
P (t,S)
P (t,T )Z

T (T )
∣∣∣∣Ft

] ∣∣∣∣Fu

]
ZT (u)

=
EQ

[
P (t,S)
P (t,T )

P (t,T )
P (0,T )B(t)

∣∣∣∣Fu

]
P (u,T )

P (0,T )B(u)

=
EQ

[
P (t,S)
B(t)

∣∣∣∣Fu

]
P (u,T )
B(u)

= P (u, S)
P (u, T )

Where the last equality comes from the fact that the discounted zero coupon bond process
is a Q-martingale.

Explicit expression:

From Proposition 4.7.2, we have that: P (t, T ) = B(t)P (0, T )Et(v(·, T ) • WQ), this
yields:

P (t, S)
P (t, T ) = P (0, S)

P (0, T )
exp

(∫ t
0 v(u, S)dWQ(u) − 1

2
∫ t

0 ∥v(u, S)∥2du
)

exp
(∫ t

0 v(u, T )dWQ(u) − 1
2
∫ t

0 ∥v(u, T )∥2du
)

= P (0, S)
P (0, T ) exp


∫ t

0
[v(u, S) − v(u, T )]dWQ(u) − 1

2

∫ t

0

(
∥v(u, S)∥2 − ∥v(u, T )∥2

)
du︸ ︷︷ ︸

=(∗)


Now: dWQ(u) = dW T (u) + v(u, T )du, this leaves us with:

(∗) =
∫ t

0
[v(u, S) − v(u, T )]dW T (u) +

∫ t

0
[v(u, S) − v(u, T )]v(u, T )du− 1

2

∫ t

0

(
∥v(u, S)∥2 − ∥v(u, T )∥2

)
du
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Now let’s collect the du-terms into one integral, and work with the inner expression

[v(u, S) − v(u, T )]v(u, T ) − 1
2
(
∥v(u, S)∥2 − ∥v(u, T )∥2

)
=v(u, S)v(u, T ) − ∥v(u, T )∥2 − 1

2∥v(u, S)∥2 + 1
2∥v(u, T )∥2

=v(u, S)v(u, T ) − 1
2∥v(u, T )∥2 − 1

2∥v(u, S)∥2

= − 1
2∥v(u, S) − v(u, T )∥2

= − 1
2∥σS,T (u)∥2

Thus:

P (t, S)
P (t, T ) = P (0, S)

P (0, T ) exp
(∫ t

0
σS,T (u)dW T (u) − 1

2

∫ t

0
∥σS,T (u)∥2du

)
= P (0, S)
P (0, T )Et

(
σS,T •W T

)
Radon-Nikodym derivative:

dQS

dQT

∣∣∣∣
Ft

= dQS

dQ

∣∣∣∣
Ft

•
(
dQT

dQ

∣∣∣∣
Ft

)−1

= ZS(t)[ZT (t)]−1

= P (t, S)
P (0, S)B(t)

P (0, T )B(t)
P (t, T )

= P (t, S)P (0, T )
P (t, T )P (0, S)

= Et

(
σS,T •W T

)
■
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4.8 The LIBOR market model

4.8.1 Introduction

Definition 4.8.1 (LIBOR-rate). The LIBOR-rate L(t, T ) is defined as:

L(t, T ) = F (t, T, T + δ) = 1
δ

(
P (t, T )

P (t, T + δ) − 1
)

Typically LIBOR has the following Tenors:

• O/N (Overnight)

• 1 Week

• 1 Month

• 2 Months

• 3 Months

• 6 Months

• 12 Months

The rates are calculated by a trimmed average provided by Panel Banks, meaning that it
works as a market survey. Let’s say that there were 16 Panel Banks: B1, . . . , B16. Each
Bank Bi would submit a borrowing rate ri to Intercontinental Exchange Benchmark
Administration (ICE) . It would then be sorted, and then one would cut the highest 25%,
and the lowest 25%. For further information, one can consult [Exc23].

Example 4.8.2. Assume that the Panel Banks provide the data below for a 3-month tenor.
First, one collects the data, then sort it in ascending order, followed by trimming the
data:

0.043 0.056 0.049 0.050
0.046 0.058 0.052 0.041
0.039 0.037 0.045 0.044
0.046 0.042 0.034 0.057

 →


0.034 0.037 0.039 0.041
0.042 0.043 0.044 0.045
0.046 0.046 0.049 0.050
0.052 0.056 0.057 0.058

 →
[
0.042 0.043 0.044 0.045
0.046 0.046 0.049 0.050

]

After the data is trimmed, one takes the mean:

1
8 (0.042 + 0.043 + 0.044 + 0.045 + 0.046 + 0.049 + 0.050) = 0.04550

One also has conventions for the number of decimals, which are currency specific.
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In a Market model, one is interested in modelling only the relevant T ’s, meaning that
one finds a model for each Ti. In the market, there are essentially three types of interest
rate derivatives: caps, floors and swaptions. By swaption, we mean a call/put on a
swap.

Definition 4.8.3 (LIBOR-Caplet). A caplet with reset date T and settlement T+δ pays
the holder: LIBOR minus strike κ if it is positive:

δ(F (T ;T, T + δ) − κ)+ = δ(L(T, T ) − κ)+

Definition 4.8.4 (LIBOR-Floorlet). The opposite of a caplet, it has the following payoff:

δ(κ− L(T, T ))+

We assume equidistant times Tm = mδ,m = 0, 1, . . . ,M , furthermore we will work on:
(Ω,F , (Ft)t∈[0,TM ], Q

TM ), W TM (t) is a QTM -BM. In addition L(0, Ti) ≥ 0 are given for
m = 1, . . . ,M − 1:

L(0, Tm) = 1
δ

(
P (0, Tm)
P (0, Tm+1) − 1

)
, m = 0, . . . ,M − 1

We get the following timeline:

t Tm Tm+1 Tn Tn+1 TM−1 TM

The dynamics of L(t, TM−1) are given by:

dL(t, TM−1) = L(t, TM−1)λ(t, TM−1)dW TM (t), t ≤ TM−1

⇓

L(t, TM−1) = L(0, TM−1) exp
(∫ t

0
λ(s, TM−1)dW TM (s) − 1

2

∫ t

0
∥λ(s, TM−1)∥2ds

)
Here: t 7→ λ(t, TM−1) is assumed to be an Rd-valued bounded deterministic measurable
function.

Since

EQTM

[
e

1
2

∫ TM−1
0 ∥λ(s,TM−1)∥2ds

]
< ∞ and L(t, TM−1)

L(0, TM−1) = Et

(
λ(·, TM−1) •W TM )

)
We have that L(t, TM−1) is a QTM -martingale. The idea will be to iterate backwards, so
that L(t, Tm−1) will be martingales under QTm for m ≥ 2, we thus need valid measure
changes from QTm to QTm−1 on FTm−1
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One defines:

dQTM−1

dQTM

∣∣∣∣
FTM−1

= ETM−1

(
σTM−1,TM

•W TM

)
Where:

σTM−1,TM
(t) := δL(t, TM−1)

δL(t, TM−1) + 1λ(t, TM−1), t ≤ TM−1

Let K ∈ R, now as: ∥∥σTM−1,TM
(t)
∥∥2 ≤ ∥λ(t, TM−1)∥2 ≤ K

⇓

EQTM

[
e

1
2

∫ TM−1
0

∥∥σTM−1,TM
(s)
∥∥2

ds
]

≤ e
1
2 TM−1K < ∞

Furthermore:

EQTM

dQTM−1

dQTM

∣∣∣∣
FTM−1

 = EQTM

dQTM−1

dQTM

∣∣∣∣
FTM−1

∣∣∣∣F0

 = E0
(
σTM−1,TM

•W TM

)
= 1

We thus have that QTM−1 ∼ QTM and from Girsanov’s Theorem we have that:

dW TM−1(t) = dW TM (t) − σTM−1,TM
(t)dt

defines a QTM−1 Brownian Motion on FTM−1 .

Lemma 4.8.5 ([Fil09]). Let X be a Tm-contingent claim, we then have that for
t ≤ Tm ≤ Tn

π(t)
P (t, Tm) = P (t, Tn)

P (t, Tm)EQTn

[
X

P (Tm, Tn)

∣∣∣∣Ft

]
Proof. We already have that π(t) = P (t, Tm)EQTm [X|Ft], and from Lemma 4.7.4, by
using S = Tn and T = Tm, we have:

dQTm

dQTn

∣∣∣∣
Ft

= Et

(
σTm,Tn •W Tn

)
This is a QTn-martingale, now in combination with Bayes Theorem, we get:

EQTm [X|Ft] =
EQTn

[
P (Tm,Tm)
P (Tm,Tn)

P (0,Tn)
P (0,Tm)

∣∣∣∣Ft

]
P (t,Tm)
P (t,Tn)

P (0,Tn)
P (0,Tm)

= P (t, Tn)
P (t, Tm)EQTn

[
X

P (Tm, Tn)

∣∣∣∣Ft

]
■
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4.8.2 LIBOR-caplets

We will consider a caplet with reset time Tn−1 and settlement Tn and derive the Tm-price.
Meaning that we will be interested in:

Cpl(Tm, Tn−1, Tn) : = π(Tm)

= P (Tm, Tn)EQTn

[
δ (L(Tn−1, Tn−1) − κ)+

∣∣∣∣FTm

]
Proposition 4.8.6 (Price of LIBOR-caplet [Fil09]).

Cpl(Tm, Tn−1, Tn) = δP (Tm, Tn) [L(Tm, Tn−1)Φ(d+(Tm, Tn−1)) − κΦ(d−(Tm, Tn−1)]

where:

d±(Tm, Tn−1) =
ln
(

L(Tm,Tn−1)
κ

)
± 1

2
∫ Tn−1

Tm
∥λ(s, Tn−1)∥2ds(∫ Tn−1

Tm
∥λ(s, Tn−1)∥2ds

)1/2

Proof. We have the following dynamics for L(t, Tn−1):

dL(t, Tn−1) = L(t, Tn−1)λ(t, Tn−1)dW Tn(t)

where W Tn is a QTn-Brownian motion and t ≤ Tn−1

We also recall that:

L(t, Tn−1) = L(0, Tn−1)Et

(
λ(·, Tn−1) •W Tn

)
L(Tn−1, Tn−1) = L(0, Tn−1)ETn−1

(
λ(·, Tn−1) •W Tn

)
Leaving us with:

L(Tn−1, Tn−1) = L(t, Tn−1)ETn−1
t

(
λ(·, Tn−1) •W Tn

)
= L(t, Tn−1) exp

(∫ Tn−1

t
λ(s, Tn−1)dW Tn(s) − 1

2

∫ Tn−1

t
∥λ(s, Tn−1(s)∥2ds

)
We are interested in the Tm-price, giving us:

L(Tn−1, Tn−1) = L(Tm, Tn−1)︸ ︷︷ ︸
FTm - measurable

ETn−1
TM

(
λ(·, Tn−1) •W Tn

)
︸ ︷︷ ︸

FTm independent

Furthermore: ∫ Tn−1

Tm

λ(s, Tn−1)dW Tn(s) QTn

∼ N
(

0,
∫ Tn−1

Tm

∥λ(s, Tn−1)∥2ds

)

Now let b2 =
∫ Tn−1

Tm
∥λ(s, Tn−1)∥2ds, and Z ∼ N (0, 1), then:∫ Tn−1

Tm

λ(s, Tn−1)dW Tn(s) − 1
2

∫ Tn−1

Tm

∥λ(s, Tn−1(s)∥2ds
d= bZ − 1

2b
2

This leaves us with:

EQTn

[
(L(Tn−1, Tn−1) − κ)+

∣∣∣∣FTm

]
= EQTn

[(
x exp

(
bZ − 1

2b
2
)

− κ

)+
]

x=L(Tn−1,Tn−1)
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(
x exp

(
bZ − 1

2b
2
)

− κ

)
≥ 0 ⇐⇒ Z ≥

ln
(

κ
x

)
+ 1

2b
2

b
:= d1

Now this gives us:(
x exp

(
bZ − 1

2b
2
)

− κ

)+
=
(
x exp

(
bZ − 1

2b
2
)

− κ

)
1{Z≥d1}

Taking the expectation yields:

EQTn

[(
x exp

(
bZ − 1

2b
2
)

− κ

)+
]

=
∫ ∞

d1

(
x exp

(
bz − 1

2b
2
)

− κ

)
fZ(z)dz

= x

∫ ∞

d1
exp

(
bz − 1

2b
2
)
fZ(z)dz︸ ︷︷ ︸

=(1)

−κ
∫ ∞

d1
fZ(z)dz︸ ︷︷ ︸
=(2)

Let’s rewrite (1):

(1) =
∫ ∞

d1
ebz− 1

2 b2 1√
2π
e− z2

2 dz =
∫ ∞

d1

1√
2π
e− 1

2 (z2−2bz+b2)dz

=
∫ ∞

d1

1√
2π
e− 1

2 (z−b)2
dz

This is just an ordinary u-substitution, whit u = (z−b), now z = d1 gives u = d1 −b = d′
1,

so we have: ∫ ∞

d′
1

fU (u)du = P (U ≥ d′
1) = P (U ≤ −d′

1) = Φ(−d′
1)

d+(Tm, Tn−1) := −d′
1 =

ln
(

x
κ

)
+ 1

2
∫ Tn−1

Tm
∥λ(s, Tn−1)∥2ds(∫ Tn−1

Tm
∥λ(s, Tn−1)∥2ds

)1/2

And then we calculate (2):

(2) =
∫ ∞

d1
fZ(z)dz = P (Z ≥ d1) = P (Z ≤ −d1) = Φ(−d1)

With −d1 = d−(Tm, Tn−1).

Plugging all together, yields:

Cpl(Tm, Tn−1, Tn) = P (Tm, Tn)δEQTn

[(
x exp

(
bZ − 1

2b
2
)

− κ

)+
]

x=L(Tn−1,Tn−1)

= δP (Tm, Tn) [L(Tm, Tn−1)Φ(d+(Tm, Tn−1)) − κΦ(d−(Tm, Tn−1)]

■
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Chapter 5

SOFR- Secured Overnight Financing
Rate

5.1 Introduction

Following the LIBOR scandal, the Federal Reserve and regulators in the U.K. have come
up with a replacement called the Secured Overnight Financing Rate (SOFR) . There are
also other RFR alternatives (Risk-Free Reference Rates) who work similarly: SONIA
(Sterling Overnight Index Average) managed by The Bank of England. One could also
mention €STR (Euro Short-Term Rate) [Gro23].

On November 30, 2020, the Federal Reserve announced that the LIBOR would be
phased out and eventually replaced by June 2023. Banks were also instructed to stop
writing contracts using the LIBOR by the end of 2021, and that all contracts using the
LIBOR should wrap up by June 30, 2023 [Hay22].

SOFR is fundamentally different from LIBOR. The Federal Reserve Bank of New York
collects transaction data from the overnight Treasury Repo market. It then calculates a
volume-weighted median interest rate. Which then gets published at 08.00 AM (Eastern
Time) the following business day [ARR21].

This means that SOFR is backwards looking as it is based upon overnight transac-
tions. Furthermore, it cannot look beyond 24 hours.

Key differences between LIBOR and SOFR/RFR’s

1. Calculation Method: LIBOR is calculated based on submissions from Panel Banks.
SOFR is based on the overnight repo market.

2. Tenors: LIBOR has multiple tenors, while SOFR has one: overnight. Meaning that
LIBOR is forward-looking while SOFR is backwards-looking.

3. Validity: Following the LIBOR scandal, one has seen that LIBOR has been more
prone to manipulation, as one can give higher or lower rate submissions altering the
trimmed mean. SOFR is transaction based, meaning that it is harder to manipulate.

4. Secured vs unsecured. Any collateral does not back up the loans that involve LIBOR.
In the SOFR situation, the repo transaction is collateralized by a high-quality bond
such as a US-Treasury note [HSB22].
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Definition 5.1.1 (Discrete overnight SOFR [SS20]). The discrete overnight SOFR is
defined as:

Rdi
(Ti) = 1

di

( 1
P (Ti, Ti + di)

− 1
)

Where:

• di: denotes the day count fraction multiplied by the number of days the overnight
rate applies. I.e. di = 1/360 on business days, and di = 3/360 on fridays.

Definition 5.1.2 (Backward-looking compounding SOFR-average [SS20]). The
backwards-looking compounded average over the period [S, T ] is defined as:

RB(S, T ) = 1
T − S

(
N∏

i=1
[1 + diRdi

(Ti)] − 1
)

• N : total number of days in the applicable period.
• S ≤ T1 ≤ · · · ≤ TN ≤ T

Figure 5.1: O/N, 1M and 3M SOFR-rates

This figure is collected from [Fed23] and displays the following SOFR rates: green:
O/N, blue: 1M-average and red: 3M-average. Here the 1M-average and 3M-average are
calculated according to Definition 5.1.2.

If we look at the green O/N rates, we see a spike in September 2019. This was related
to quarterly corporate tax payments due September 16. This led to a demand-supply
mismatch [AAS20].
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As discussed in [SS20], one has that RB(S, T ) is FT -measurable. This is unsuitable as it
does not incorporate market expectations about future rates. This leads to the following
definition.

Definition 5.1.3 (Forward-looking term-SOFR rate [SS20]). The forward-looking
term SOFR rate over the period [S, T ] is defined as:

RF (S, T ) = 1
T − S

[ 1
P (S, T ) − 1

]
We see that the term SOFR rate is just a simple forward rate evaluated at time t = S
(See Definition 4.1.2 p.27, i.e RF (S, T ) = F (S, S, T )).

Proposition 5.1.4 ([SS20]). We have the following relationship between the forward-looking
term SOFR rate RF (S, T ) and the backwards-looking SOFR rate RB(S, T ):

RF (S, T ) = EQT [RB(S, T )|FS ]

Proof. We start by calculating the expectation:

EQT

[
RB(S, T )|FS

]
= EQT

[
1

T − S

(
N∏

i=1
[1 + diRdi

(Ti)] − 1
) ∣∣∣∣FS

]

= 1
T − S

(
EQT

[
N∏

i=1
[1 + diRdi

(Ti)]
∣∣∣∣FS

]
− 1

)
(5.1)

Now: Rdi
(Ti) = RF (Ti, Ti + di), this means that:

1 + diRdi
(Ti) = 1

P (Ti, Ti + di)

This yields:

EQT

[
N∏

i=1
[1 + diRdi

(Ti)]
∣∣∣∣FS

]
= EQT

[
N∏

i=1

1
P (Ti, Ti + di)

∣∣∣∣FS

]

For simplicity we let Ti+1 = Ti + di, this gives us the following timeline:

S = T1 T2 TN TN+1 = T

We observe that:

P (S, T ) = P (T1, TN+1) =
N∏

i=1
P (Ti, Ti+1)

This gives us:

EQT

[
N∏

i=1

1
P (Ti, Ti + di)

∣∣∣∣FS

]
= EQT

[ 1
P (S, T )

∣∣∣∣FS

]
= 1
P (S, T )

Plugging this into Equation 5.1, yields:

EQT

[
RB(S, T )|FS

]
= 1
T − S

( 1
P (S, T ) − 1

)
:= RF (S, T )

■
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It should also be mentioned that SOFR is closely related to EFFR (Effective Federal Funds
Rate). This is an overnight rate reflecting the rate banks and depository institutions
lend/borrow to maintain the reserve requirements given by the Federal Reserve.

Figure 5.2: SOFR and EFFR

As mentioned earlier, we have that SOFR is backwards-looking and cannot give any
indications beyond 24 hours. However, the CME Group publishes daily a set of forward-
looking interest rate estimates called CME Term SOFR Reference Rates Benchmarks.
They have the following tenors: 1M, 3M, 6M and 12M.

Figure 5.3: CME term SOFR
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5.1. Introduction

They use SOFR futures for calculating the term rates. The calculation method can be
found at [Lim23]. Some of the reasons why futures were chosen were because of their
liquidity. This represents the market’s view on the rate; furthermore, this does not
require expert judgment or a survey of market participants.

Figure 5.4: Daily volume of SOFR futures, source: [HSB22]

We see that there are some significant differences between the volumes. This is further
discussed in [HSB22], where some of the explanation could be of the calculation methods
for SOFR futures, i.e. arithmetic and geometric. However, it is also mentioned that there
may be a boost in demand for 1M-SOFR futures when LIBOR is fully phased out.
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5.2 SOFR futures

Let (Ω,F , (Ft)t≥0, Q) denote our probability space, and let Q be the risk-neutral prob-
ability measure defined via the money market account B(t) as numeraire.

Definition 5.2.1 (Futures contract [Bjö19]). A futures contract on X with delivery T ,
is a financial asset with following properties:

1. For all t with 0 ≤ t ≤ T , there exists in the market a quoted object f(t, T ;X) known
as the futures price of X at time t, with delivery T .

2. At time T of delivery, the holder of the contract pays: f(T, T ;X) and receives the
claim X.

3. During an arbitrary interval (s, t], the holder of the contract receives:

f(t, T ;X) − f(s, T ;X)

In typical futures contracts, the underlying asset X could be oil barrels, corn, cattle etc.
In our situation, the underlying asset is an interest rate. The typical settlement is a cash
settlement.

Some reasons to enter a futures contract:

• Speculation: By trading futures, one can make money by differences in quotes.

• Hedging: One could hedge against higher/lower interest rates. For instance,
someone paying a floating rate might buy futures to lock in a future interest rate.

We will be interested in SOFR futures, and such futures can be found at CME (Chicago
Mercantile Exchange) . CME uses the following convention for quoting interest rate
futures:

100 −R

Here R will represent the implied SOFR rate. Let’s say we observe a 3M-SOFR futures
today (March 23) with settlement Jun 23, quoted at 96.6. This would mean that the
implied 3M -SOFR rate (annualized) over the period March 23 - June 23 would be:

(100 − 96.6)% = 3.4%

Further specifications on how CME quotes 3M-SOFR futures can be found in [Gro19].
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5.2. SOFR futures

When dealing with SOFR futures, one distinguishes between 1-month- and 3-month
futures, as they are not based upon the same calculation methodology:

Definition 5.2.2 (SOFR 1-month arithmetic average [SS20]). The 1-month SOFR
arithmetic average of the daily reference rate observed over the period [S, T ] is defined as:

R1M (S, T ) = 1
N

N∑
i=1

Rdi
(Ti)

Where:

• N : total number of days in the month
• S ≤ T1 ≤ · · · ≤ TN ≤ T

Definition 5.2.3 (SOFR 3-month geometric average). The 3-month SOFR geometric
average of the daily reference rate observed over the period [S, T ] is defined as:

R3M (S, T ) = 1
T − S

(
N∏

i=1
(1 + diRdi

(Ti)) − 1
)

As futures contracts are free to enter, we get that:

EQ

[
RℓM (S, T ) − f ℓM (t, S, T )

∣∣∣∣Ft

]
= 0, ℓ = 1, 3

Furthermore, one uses the following convention:

R1M (S, T ) ≈ 1
T − S

∫ T

S
r(s)ds and R3M (S, T ) ≈ 1

T − S

(
e
∫ T

S
r(s)ds − 1

)
This gives rise to the following definitions:

Definition 5.2.4 (1-month SOFR futures [SS20]). We denote the time t rate of the
1-month futures starting to accrue at time S and with settlement on time T as:

f1M (t, S, T ) = 1
T − S

EQ

[∫ T

S
r(s)ds

∣∣∣∣Ft

]

Definition 5.2.5 (3-month SOFR futures [SS20]). We denote the time t rate of the
3-month futures starting to accrue at time S and with settlement on time T as:

f3M (t, S, T ) = 1
T − S

(
EQ

[
e
∫ T

S
r(s)ds

∣∣∣∣Ft

]
− 1

)
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Proposition 5.2.6 (Vasicek dynamics of 1M/3M-SOFR futures, [Exercise
STK4530, Autumn 2021]). Assume that the short rate has the following dynamics:

dr(t) = α[m− r(t)]dt+ σdWQ(t)

Then the dynamics of f1M (t, S, T ) is given by:

df1M (t, S, T ) = 1
T − S

B(t, S, T )σdWQ(t)

and the dynamics of f3M (t, S, T ) is given by:

df3M (t, S, T ) =
(
f3M (t, S, T ) + 1

T − S

)
B(t, S, T )σdWQ(t)

Where:

B(t, S, T ) = 1
α

[
e−α(S−t) − e−α(T −t)

]
Proof. From Proposition 4.4.3, we have that:

r(s) = e−α(s−t)r(t) +m[1 − e−α(s−t)] + σ

∫ s

t
e−α(s−u)dWQ(u)

Now: f1M (t, S, T ) = 1
T −SEQ

[∫ T
S r(s)ds|Ft

]
:

EQ [r(s)|Ft] = r(t)e−α(s−t) +m
(
1 − e−α(s−t)

)
⇓

f1M (t, S, T ) = e−αS − e−αT

α(T − S) [r(t) −m]eαt +m

Giving rise to the following dynamics:

df1M (t, S, T ) = e−αS − e−αT

α(T − S) d
[
(r(t) −m)eαt

]
Let’s work with the differential part first:

d[(r(t) −m)eαt] = d[r(t)eαt] −md(eαt)
= αmeαtdt+ σeαtdWQ(t) − αmeαtdt

= σeαtdWQ(t)

Thus:

df1M (t, S, T ) = e−αS − e−αT

α(T − S) σeαtdWQ(t)

= 1
T − S

B(t, S, T )σdWQ(t)

58



5.2. SOFR futures

Now for f3M (t, S, T ) we must study
∫ T

S r(s)ds:

We have the following timeline:

t S u s T

namely t ≤ S ≤ u ≤ s ≤ T , this gives us:∫ T

S
r(s)ds = r(t)

α

[
e−α(S−t) − e−α(T −t)

]
+m(T − S) − m

α

[
e−α(S−t) − e−α(T −t)

]
+ σ

∫ T

S

∫ s

t
e−α(s−u)dWQ(u)ds︸ ︷︷ ︸

=(∗)

Now by additivity of the integral, we see that:∫ s

t
=
∫ S

t
+
∫ s

S

This leaves us with:

(∗) =
∫ T

S

(∫ S

t
e−α(s−u)dWQ(u) +

∫ S

s
e−α(s−u)dWQ(u)

)
ds

=
∫ T

S

∫ S

t
e−α(s−u)dWQ(u)ds︸ ︷︷ ︸

=(1)

+
∫ T

S

∫ s

S
e−α(s−u)dWQ(u)ds︸ ︷︷ ︸

=(2)

By Stochastic Fubini, we get:

(1) =
∫ T

S

∫ S

t
e−α(s−u)dWQ(u)ds =

∫ S

t

∫ T

S
e−α(s−u)dsdWQ(u) = (1)′

S u s

{
S ≤ s ≤ T

S ≤ u ≤ s
⇐⇒

{
u ≤ s ≤ T

S ≤ u ≤ T

Now this leaves us with the following:

(2) =
∫ T

S

∫ s

S
e−α(s−u)dWQ(u)ds =

∫ T

S

∫ T

u
e−α(s−u)dsdWQ(u) = (2)′

We now calculate the inner integral in (1)′ and (2)′ respectively:∫ T

S
e−α(s−u)ds = 1

α

[
eα(S−u) − e−α(T −u)

]
∫ T

u
e−α(s−u)ds = 1

α

[
1 − e−α(T −u)

]
We can then define:

Σ(u, t, S, T ) =
{
eα(S−u) − e−α(T −u), u ∈ [t, S)
1 − e−α(T −u), u ∈ [S, T ]
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We are thus left with:∫ T

S
r(s)ds = r(t)

α

[
e−α(S−t) − e−α(T −t)

]
+m(T − S) − m

α

[
e−α(S−t) − e−α(T −t)

]
+ σ

α

∫ T

t
Σ(u, t, S, T )dWQ(u)

=
(
r(t) −m

α

) [
e−α(S−t) − e−α(T −t)

]
+m(T − S) + σ

α

∫ T

t
Σ(u, t, S, T )dWQ(u)︸ ︷︷ ︸
Ft−independent

(5.2)

As the last part is Ft-independent,we get:

EQ

[
exp

(∫ T

S
r(s)ds

) ∣∣∣∣Ft

]
= exp

[(
r(t) −m

α

) [
e−α(S−t)−e−α(T −t)]+m(T − S)

]

× EQ

[
exp

(
σ

α

∫ T

t
Σ(u, t, S, T )dWQ(u)

)]

Since Σ is deterministic, we have that:

EQ

[
exp

(
σ

α

∫ T

t
Σ(u, t, S, T )dWQ(u)

)]
= exp

(
1
2
σ2

α2

∫ T

t
Σ2(u, t, S, T )du

)

This leaves us with the following expression:

EQ

[
exp

(∫ T

S
r(s)ds

) ∣∣∣∣Ft

]
= exp (A(t, S, T ) +B(t, S, T )r(t)) := g(t, r(t)) (5.3)

where:

A(t, S, T ) = m(T − S) − m

α

[
e−α(S−t) − e−α(T −t)

]
+ 1

2
σ2

α2

∫ T

t
Σ2(u, t, S, T )du

B(t, S, T ) = 1
α

[
e−α(S−t) − e−α(T −t)

]
This means that we have:

f3M (t, S, T ) = 1
T − S

[g(t, r(t)) − 1] (5.4)

We note that EQ

[
exp

(∫ T
S r(s)ds

) ∣∣∣∣Ft

]
is a Q-martingale, thus from the Martingale

Representation Theorem 2.3.25, we can neglect the dt-terms of g(t, r(t)):

We apply Ito’s Formula as g(t, x) ∈ C1,2([0,∞] × R), giving us:

∂tg(t, x) = 0, ∂xg(t, x) = g(t, x)B(t, S, T ), ∂xxg(t, x) = g(t, x)B2(t, S, T )
dr(t)2 = σ2dt

⇓
dg(t, r(t)) = B(t, S, T )g(t, r(t))σdWQ(t)
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5.2. SOFR futures

This gives the following dynamics for f3M (t, S, T ):

df3M (t, S, T ) = 1
T − S

dg(t, r(t))

= 1
T − S

B(t, S, T ) exp (A(t, S, T ) +B(t, S, T )r(t))σdWQ(t)

= 1
T − S

B(t, S, T )
[
(T − S)f3M (t, S, T ) + 1

]
σdWQ(t)

=
(
f3M (t, S, T ) + 1

T − S

)
B(t, S, T )σdWQ(t)

■

To get a bit better grasp of the SOFR futures rates f1M and f3M , we include a graph of
possible Q-dynamics:

Figure 5.5: Realization of f1M (t, S1M , T1M ) and f3M (t, S3M , T3M ) for t ∈ [0, S1M ]

Here we have assumed that the quotes for 1M and 3M futures differ. We took:

f1M (0, S1M , T1M ) = (100 − 95.025) · 1
100 ≈ 0.0498

f3M (0, S3M , T3M ) = (100 − 95.160) · 1
100 ≈ 0.0484

Furthermore, we have S1M = S3M = 6 months, and f1M , f3M are generated by the same
Brownian motion.
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Chapter 5. SOFR- Secured Overnight Financing Rate

5.3 Interest rate swap with SOFR-futures as floating

Proposition 5.3.1. The fixed swap rate κℓM−SOF R
t in a swap with 1M/3M-SOFR as floating

is given by:

κℓM−SOF R
t =

∑n
i=1 P (t, Ti)f ℓM (t, Ti−1, Ti)∑n

i=1 P (t, Ti)
, ℓ = 1, 3

Proof. In this swap, we have the following specification, at time Ti:

• Pay κℓM−SOF R
t δN (-)

• Receive f ℓM (t, Ti−1, Ti)δN , ℓ = 1, 3 (+)

Cash flow at time Ti:

f ℓM (t, Ti−1, Ti)δN − κℓM−SOF R
t δN = [f ℓM (t, Ti−1, Ti) − κℓM−SOF R

t ]δN, ℓ = 1, 3

Time t-value for t ≤ T0 at time Ti:

P (t, Ti)[f ℓM (t, Ti−1, Ti) − κSOF R
t ]δN, ℓ = 1, 3

Total payer cash flow:

CℓM−SOF R
P (t) = δN

n∑
i=1

P (t, Ti)[f ℓM (t, Ti−1, Ti) − κℓM−SOF R
t ], ℓ = 1, 3

κℓM−SOF R
t should be chosen such that:

EQ[CℓM−SOF R
P (t)|Ft] = 0

Thus:
n∑

i=1
P (t, Ti)f ℓM (t, Ti−1, Ti) =

n∑
i=1

P (t, Ti)κℓM−SOF R
t

⇓

κℓM−SOF R
t =

∑n
i=1 P (t, Ti)f ℓM (t, Ti−1, Ti)∑n

i=1 P (t, Ti)

■
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5.3. Interest rate swap with SOFR-futures as floating

Let us consider the case where we look at ℓ = 3, n = 3, and δ = 3
12 . For simplicity, we

choose the Vasicek model as this gives an explicit formula for f3M (t, S, T ) as described
in Equation 5.4.

Figure 5.6: Realizations of t 7→ r(t), t ∈ [0, T0]

Here we see two realizations of [0, T0] ∋ t 7→ r(t). In the graph below, we see the effect of
the time horizon and the starting point for the fixed rate κ3M−SOF R

t :

Figure 5.7: Realizations of t 7→ κ3M−SOF R
t , t ∈ [0, T0]

Here we took two realizations of [0, T0] ∋ t 7→ κ3M−SOF R
t . For t = 0, we got:

κ3M−SOF R
0 =

∑3
i=1 P (0, Ti)f3M (0, Ti−1, Ti)∑3

i=1 P (0, Ti)
= 0.042
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5.4 Options on SOFR futures

Consider a call option on SOFR futures, with exercise time τ ≤ S ≤ T and strike κ, the
price at time t ≤ τ for ℓ = 1, 3 is given by:

CℓM (t, τ) : = EQ

[
B(t)
B(τ)

(
f ℓM (τ, S, T ) − κ

)+
∣∣∣∣Ft

]
Prop 4.7.3= P (t, τ)EQτ

[(
f ℓM (τ, S, T ) − κ

)+
∣∣∣∣Ft

]

Here we use the convention that (x)+ = max(x, 0). From Theorem 4.7 p 38, we have:

dQτ

dQ

∣∣∣∣
Ft

= Et(v(·, τ) •WQ)

Assuming Novikov’s condition holds, i.e: EQ

[
e

1
2

∫ T

0 ∥v(s,τ)∥2ds
]
< ∞ we get from

Girsanov’s theorem, that

dW τ (t) = dWQ(t) − v(t, τ)dt

defines a Qτ -Brownian motion.

Proposition 5.4.1 (1M-SOFR futures Caplet [Lecture STK4530]). Consider a call
option on the 1M-SOFR futures with exercise time τ ≤ T and strike κ. Let

df1M (t, S, T ) = Σ1M (t, S, T )dWQ(t)

Where Σ1M (t, S, T ) is assumed to be a deterministic and bounded function. The price at
time t ≤ τ is given by:

C1M (t, τ) = P (t, τ)
√∫ τ

t
Σ1M (u, S, T )2du [dΦ(d) + φ(d)]

Where:

d = f1M (t, S, T ) +
∫ τ

t Σ1M (u, S, T )v(u, τ)du− κ√∫ τ
t Σ1M (u, S, T )2du

And Φ, φ represents the cumulative and density function of a standard-normal distribution
respectively.

Proof. The Qτ -dynamics are given by:

df1M (t, S, T ) = Σ1M (t, S, T )v(t, τ)dt+ Σ1M (t, S, T )dW τ (t)
⇓

f1M (τ, S, T ) = f1M (t, S, T )︸ ︷︷ ︸
x

+
∫ τ

t
Σ1M (u, S, T )v(u, τ)du︸ ︷︷ ︸

m

+
∫ τ

t
Σ1M (u, S, T )dW τ (u)

Let
b2 =

∫ τ

t
Σ1M (u, S, T )2du
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5.4. Options on SOFR futures

We are then left with the following:

EQτ

[
(f1M (τ, S, T ) − κ)+

∣∣∣∣Ft

]
= E

[
(x+m+ bZ − κ)+

] ∣∣∣∣
x=f1M (t,S,T )

where Z ∼ N (0, 1), this yields:

E
[
(x+m+ bZ − κ)+

] ∣∣∣∣
x=f1M (t,S,T )

=
∫
R

(x+m+ bz − κ)+φ(z)dz

Furthermore:

x+m+ bz − κ ≥ 0 ⇐⇒ z ≥ κ− x−m

b
:= d′

This yields:∫
R

(x+m+ bz − κ)+φ(z)dz = (x+m− κ)
∫ ∞

d′
φ(z)dz + b

∫ ∞

d′
zφ(z)dz︸ ︷︷ ︸

(A)

By symmetry of the normal distribution we have: P (Z > d′) = P (Z ≤ −d′), where we
define:

d := −d′ = x+m− κ

b

furthermore zφ(z) = −φ′(z), thus:

∫ ∞

d′
zφ(z)dz = −

∫ ∞

d′
φ′(z)dz = −(φ(∞) − φ(d′)) = φ(d′) = φ(d)

Leaving us with:

(A) = (x+m− κ)Φ(d) + bφ(d)
= b[dΦ(d) + φ(d)]

Now from Proposition 4.7.3 p.41, we get:

C1M (t, τ) = P (t, τ)EQτ

[
(f1M (τ, S, T ) − κ)+

∣∣∣∣Ft

]

= P (t, τ)
√∫ τ

t
Σ1M (u, S, T )2du [dΦ(d) + φ(d)]

■
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5.5 Hedging with SOFR-futures

For SOFR futures, we have two pricing approaches: arithmetic (1M) and geometric (3M).
In this section, we will look at some relationships between them.

5.5.1 Hedging 3-month arithmetic with 3-month geometric

Consider the case where we want to hedge:

X3MA(S, T ) = 1
T − S

∫ T

S
rudu (5.5)

We want to hedge an arithmetic interest rate over the 3M period [S, T ]. The only available
product for hedging a 3M period in the market is the 3M futures contract f3M (t, S, T ).

Proposition 5.5.1.

arg min
at∈R

EQ

[(
X3MA(S, T ) − atf

3M (t, S, T )
)2
∣∣∣∣Ft

]
=

∫ T
S EQ[r(u)|Ft]du

(T − S)f3M (t, S, T )

Meaning that the optimal weighting â3M
t in 3M-SOFR futures will be:

â3M
t =

∫ T
S EQ[r(u)|Ft]du

(T − S)f3M (t, S, T )

Proof. We have that the 3M-SOFR futures f3M (t, S, T ) is based upon a geometric
average, giving us the following hedge:

arg min
at∈R

EQ

[(
X3MA(S, T ) − atf

3M (t, S, T )
)2
∣∣∣∣Ft

]
Now, fix t and denote:

G(at) := EQ

[(
X3MA(S, T ) − atf

3M (t, S, T )
)2
∣∣∣∣Ft

]
Expanding the square yields:

G(at) = EQ

[
(X3MA(S, T ))2|Ft

]
− 2atf

3M (t, S, T )EQ

[
X3MA(S, T )

∣∣∣∣Ft

]
+ a2

t [f3M (t, S, T )]2

Taking the derivative w.r.t. at yields:

d

dat
G(at) = −2f3M (t, S, T )EQ

[
X3MA(S, T )

∣∣∣∣Ft

]
+ 2at[f3M (t, S, T )]2
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Since:

d2

da2
t

G(at) = 2[f3M (t, S, T )]2 > 0

We have that the minimum is obtained by setting the derivative equal to zero, i.e.

d

dat
G(at) = 0

Now:

d

dat
G(at) = 0

⇕

at = EQ[X3MA(S, T )|Ft]
f3M (t, S, T )

Furthermore:

EQ[X3MA(S, T )|Ft] = 1
T − S

∫ T

S
EQ[r(u)|Ft]

Yielding:

at =
∫ T

S EQ[r(u)|Ft]du
(T − S)f3M (t, S, T )

■
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5.5.2 Affine Term Structure-setting

Proposition 5.5.2. Consider the above setting, and let r = (r(t))t≥0 be a model that provides
ATS, meaning that:

dr(t) = [b(t) + β(t)r(t)]dt+
√
a(t) + α(t)r(t)dWQ(t)

a, α, b, β are continuous and deterministic functions. This gives us the following:

arg min
at∈R

EQ

[(
X3MA(S, T ) − atf

3M (t, S, T )
)2
∣∣∣∣Ft

]

= r(t)(T − S) +
∫ T

S

∫ u
t b(s)dsdu+

∫ T
S

∫ u
t β(s)g(s)dsdu

(T − S)f3M (t, S, T )

Where:

g(s) = exp
(∫ s

t
β(v)dv

)(∫ s

t
e−
∫ w

t
β(v)dvb(w)dw + EQ[r(t)]

)
Proof. Since r = (r(t))t≥0 is a model that provides ATS (Affine Term Structure), as
described in Proposition 4.4.2, as well as above, we have the following dynamics:

dr(t) = [b(t) + β(t)r(t)]dt+
√
a(t) + α(t)r(t)dWQ(t)

Here b, β, a, α are deterministic continuous functions. Now from the dynamics, we get
that for u ≥ t:

r(u) = r(t) +
∫ u

t
b(s)ds+

∫ u

t
[β(s)r(s)]ds+

∫ u

t

√
a(s) + α(s)r(s)dWQ(s) (5.6)

Each term is assumed to be Ito-integrable, i.e in M2([0, T ]), and by
Ft-independence, we get:

EQ

[∫ u

t

√
a(s) + α(s)r(s)dWQ(s)

]
= 0

And again by Ft-independence in combination with Fubini, we get:

EQ

[∫ u

t
[β(s)r(s)]ds

]
=
∫ u

t
β(s)EQ[r(s)]ds

This leaves us with the following:∫ T

S
EQ[r(u)|Ft]du = r(t)(T − S) +

∫ T

S

∫ u

t
b(s)dsdu+

∫ T

S

∫ u

t
β(s)EQ[r(s)]dsdu (5.7)

Overview of time-interval:

t S s u T

Thus in our setting we have: t ≤ S ≤ s ≤ u ≤ T , proceeding as in Equation 5.6, we have:
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r(s) = r(t) +
∫ s

t
b(v)dv +

∫ s

t
β(v)r(v)dv +

∫ s

t

√
a(v) + α(v)r(v)dWQ(v) (5.8)

Now let g(s) := EQ[r(s)], applying the expectation to 5.8 yields:

g(s) = r(t) +
∫ s

t
b(v)dv +

∫ s

t
β(v)g(v)dv

Taking the derivative w.r.t. s and using the fundamental theorem of calculus gives us
the following:

g′(s) = b(s) + β(s)g(s)

We have initial condition g(t) = EQ[r(t)], this is an ordinary differential equation with
solution:

g(s) = exp
(∫ s

t
β(v)dv

)(∫ s

t
e−
∫ w

t
β(v)dvb(w)dw + g(t)

)
We have that g(s) = EQ[r(u)] appears in Equation 5.7, this gives us the desired result.

■

5.5.3 Bounding the hedge with available instruments in the market

We now denote:

X3MA(S, T ) = 1
T − S

∫ T

S
rudu = 1

T − S
Z(S, T )

f3MA(t, S, T ) = 1
T − S

EQ

[∫ T

S
rudu

∣∣∣∣Ft

]
= 1
T − S

EQ[Z(S, T )|Ft]

Now from Jensen’s Inequality 2.2.9, we have that for Z,φ(Z) ∈ L1(Ω,F , Q), with
φ(x) = ex

exp (EQ[Z(S, T )|Ft]) ≤ EQ [exp(Z(S, T ))|Ft]
⇕

exp
(
(T − S)f3MA(t, S, T )

)
≤ EQ [exp(Z(S, T ))|Ft] (5.9)

Now from definition 5.2.5, we have:

f3M (t, S, T ) = 1
T − S

EQ

e∫ T

S
rudu︸ ︷︷ ︸

=eZ(S,T )

∣∣∣∣Ft

− 1


⇓

EQ[exp(Z(S, T ))|Ft] = (T − S)f3M (t, S, T ) + 1 (5.10)

Now by inserting 5.10 into 5.9 yields:

exp
(
(T − S)f3MA(t, S, T )

)
≤ (T − S)f3M (t, S, T ) + 1

⇕

f3MA(t, S, T ) ≤ ln[(T − S)f3M (t, S, T ) + 1]
(T − S)
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5.5.4 Hedging three-month arithmetic with 1M-SOFR futures

We still want to hedge:
X3MA(S, T ) = 1

T − S

∫ T

S
rudu

However, now we will not use the available 3M-SOFR future contract, rather we will
hedge by buying (ât, b̂t, ĉt) 1M-SOFR future contracts at time t. Here [S, T ] will still
denote a 3M period, we get the following timeline:

3M

t S T1M T2M T

Our hedge will in this case look like:

arg min
(at,bt,ct)∈R3

EQ

[(
X3MA(S, T ) −

[
atf

1M (t, S, T1M ) + btf
1M (t, T1M , T2M ) + ctf

1M (t, T2M , T )
])2

∣∣∣∣Ft

]
Denote:

G(at, bt, ct) := EQ

[(
X3MA(S, T ) −

[
atf

1M (t, S, T1M ) + btf
1M (t, T1M , T2M ) + ctf

1M (t, T2M , T )
])2

∣∣∣∣Ft

]
Expanding the square yields:

G(at, bt, ct) = EQ

[
(X3MA(S, T ))2|Ft

]
− 2EQ[X3MA(S, T )|Ft]

[
atf

1M (t, S, T1M ) + btf
1M (t, T1M , T2M ) + ctf

1M (t, T2M , T )
]

+ a2
t [f1M (t, S, T1M )]2

+ 2atf
1M (t, S, T1M )

[
btf

1M (t, T1M , T2M ) + ctf
1M (t, T2M , T )

]
+ b2

t [f1M (t, T1M , T2M )]2

+ 2btct

[
f1M (t, T1M , T2M )f1M (t, T2M , T )

]
+ c2

t [f1M (t, T2M , T )]2

Fix t, to ease the notation we denote (at, bt, ct) = (x1(t), x2(t), x3(t)) = xt furthermore
let: (

f1M (t, S, T1M ), f1M (t, T1M , T2M ), f1M (t, T2M , T )
)

= (αt, βt, γt)

We also let:

EQ

[
(X3MA(S, T ))2|Ft

]
= pt

EQ[X3MA(S, T )|Ft] = qt

This leaves us with:

G(xt) = pt

− 2qt [αtx1(t) + βtx2(t) + γtx3(t)]
+ α2

tx1(t)2

+ 2αx1(t) [βtx2(t) + γtx3(t)]
+ β2

t x2(t)2

+ 2βtγtx2(t)x3(t)
+ γ2

t x3(t)2
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To get a bit better grasp of G(xt) we include a level plot:

Figure 5.8: level Curve G(xt) = k, where all constants are set to one

NB! Figure 5.8, is purely for illustration purposes, this will not be a realistic representa-
tion of G(xt).

We will be interested in obtaining a minimum of G(xt), meaning that we will be
interested in the following:

∇G(xt) = (∂x1G(xt), ∂x2G(xt), ∂x3G(xt))

Where:

∂x1G(xt) = −2qtαt + 2α2
tx1(t) + 2αt [βtx2(t) + γtx3(t)]

∂x2G(xt) = −2qtβt + 2β2
t x2(t) + 2βt [αtx1(t) + γtx3(t)]

∂x3G(xt) = −2qtγt + 2γ2
t x3(t) + 2γt [αtx1(t) + βtx2(t)]

To verify that G obtains a minimum we need the Hessian matrix H(G) of G. This will
be a 3 × 3 matrix with entries:

[H(G)]i,j = ∂2G

∂xi∂xj
, i = 1, 2, 3, j = 1, 2, 3
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Meaning that our Hessian matrix looks the following:

H(G) =


2α2

t 2αtβt 2αtγt

2αtβt 2β2
t 2βtγt

2αtγt 2βtγt 2γ2
t


Now as ∂2G(x)

∂x2
i

> 0 for i = 1, 2, 3 we know that the minimum should be obtained by
setting ∂xiG(x) = 0, i.e we must solve:

∇G(xt) = 0 (5.11)

Now Equation 5.11, gives arise to the following matrix equation:α2
t αtβt αtγt

β2
t αtβt βtγt

γ2
t αtγt βtγt


︸ ︷︷ ︸

M

x1(t)
x2(t)
x3(t)


︸ ︷︷ ︸

xt

= q

αt

βt

γt


︸ ︷︷ ︸

b

⇐⇒ Mxt = b

Now:

det(M) = α2
t

[
αtβ

2
t γt − αtβtγ

2
t

]
− αtβt

[
β3

t γt − βtγ
3
t

]
+ αtγt

[
β2

t αtγt − αtβtγ
2
t

]
= αtβtγt(βt − γt) [αt(αt + γt) − βt(βt + γt)]

In order for det(M) ̸= 0, we must have:

αt ̸= 0, βt ̸= 0, γt ̸= 0
βt ̸= γt, γt ̸= −(αt + βt) (5.12)

Thus the optimal weight x̂t will then be:

x̂t = M−1b

Now if the Condition 5.12 does not hold, one approach could be:

minimize
3∑

i=1
xi(t)

subject to Mxt = b
(5.13)

Assume that x̃t is the optimal solution to 5.13, this method is very much related to Basis
Pursuit [CDS98].
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5.5.5 Simulation of Error distribution

To say something about how good the hedge in Proposition 5.5.1, we study:

ER1(t) : = X3MA(S, T ) − â3M
t f3M (t, S, T )

= 1
T − S

∫ T

S
r(u)du− 1

T − S

∫ T

S
EQ[r(u)|Ft]du

= 1
T − S

(∫ T

S
r(u)du−

∫ T

S
EQ[r(u)|Ft]du

)

We will also study the Error distribution from Section 5.5.4, now this will correspond to:

ER2(t) = X3MA(S, T ) −
(
âtf

1M (t, S, T1M ) + b̂tf
1M (t, T1M , T2M ) + ĉtf

1M (t, T2M , T )
)

We choose the Vasicek model for simulation:

dr(t) = α[m− r(t)]dt+ σdWQ(t)

For calculating X3MA(S, T ), we use the closed expression for
∫ T

S r(u)du as described in
Equation 5.2 p.60:

∫ T

S
r(u)du =

(
r(t) −m

α

) [
e−α(S−t) − e−α(T −t)

]
+m(T − S) + σ

α

∫ T

t
Σ(u, t, S, T )dWQ(u)

Where:

Σ(u, t, S, T ) =
[
e−α(S−u) − e−α(T −u)

]
1[t,S)(u) +

[
1 − e−α(T −u)

]
1[S,T ](u)

For simplicity we fix t = 0, meaning that we will study: ER1(0) and ER2(0), using the
Vasicek model, where the parameters are as shown below:

Figure 5.9: Path of Vasicek model for u ∈ [0, T ]
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3M-arithmetic vs â3M
0 3M-SOFR futures calculations:

We have that:

â3M
t =

∫ T
S EQ[r(u)|Ft]du

(T − S)f3M (t, S, T )

For calculating f3M (t, S, T ) we have from Equation 5.4 p.60, that:

f3M (t, S, T ) = 1
T − S

[exp (A(t, S, T ) +B(t, S, T )r(t)) − 1]

Where:

A(t, S, T ) = m(T − S) − m

α

[
e−α(S−t) − e−α(T −t)

]
+ 1

2
σ2

α2

∫ T

t
Σ2(u, t, S, T )du

B(t, S, T ) = 1
α

[
e−α(S−t) − e−α(T −t)

]
We are interested in the case where t = 0, giving us:

â3M
0 =

∫ T
S EQ[r(u)]du

(T − S)f3M (0, S, T ) = 0.995

3M-arithmetic vs (â0, b̂0, ĉ0) 1M-SOFR futures calculations

In this simulation we had that Condition 5.12 were met, as we got:

α0 = 0.0423
β0 = 0.0421
γ0 = 0.0420

Furthermore, the optimal weight x̂0 turned out to be:

x̂0 =

α2
0 α0β0 α0γ0
β2

0 α0β0 β0γ0
γ2

0 α0γ0 β0γ0


−1 q0α0

q0β0
q0γ0

 =

 0.501
0.501

−0.004


Here:

q0 = EQ[X3MA(S, T )] = 0.0421
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3M-arithmetic vs 3M-geometric SOFR futures:

Figure 5.10: Simulation of ER1(0)

Here we see the distribution ER1(0), we see that the mean of ER1(0), ER1(0) = 0, this
indicates that one average hedging X3MA(S, T ) where one takes â0 = 0.995-positions in
3M -SOFR futures would be a good hedge. We also have that EQ[ER1(0)] = 0.

3M-arithmetic vs (â0, b̂0, ĉ0) 1M-SOFR futures

Figure 5.11: Simulation of ERinv
2 (0)

Here we see the ER2(0) distribution under the assumption that M is invertible. Here we
have taken the following position in 1M -SOFR futures:

(â0, b̂0, ĉ0) = (0.501, 0.501,−0.004)
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We see that the mean of ERMinv
2 (0), ERMinv

2 (0) = 0, which then again indicated that on
average taking the above position at time t = 0 would be a good hedge.

To illustrate this a bit further, we can take a look at the error distribution where
one naively chooses a strategy in 1M-SOFR futures, for instance, the following weighting:

(â0, b̂0, ĉ0) = (0.33,−0.33, 0.33)

Figure 5.12: Simulation of ER(â0,b̂0,ĉ0)
2 (0)

Now, the weights that we have calculated are weighing in SOFR futures rates, not the
actual position one would take at CME, from earlier we remember that SOFR futures at
CME are quoted the following way (modified to our example with decimals):

QℓM (t, S, T ) = 1 − f ℓM (t, S, T ), ℓ = 1, 3

To get more intuition about the weighing in SOFR futures, we construct an example:

Example 5.5.3. Assume that we have a loan of 30 million over a 3M period. From the
contract, it is agreed upon that the rate we will pay is the floating 3M-arithmetic rate
X3MA(S, T ) plus an additional risk-premium of 200 bp (basis points).

We want to hedge against rising interest rates, so if f ℓM increases, then QℓM decreases.

Case 1: Hedge by taking position in 3M-SOFR futures. From previous calculations,
we got â3M

0 = 0.995. This will correspond to the position in the 3M SOFR futures rate.
Now a 3M SOFR futures are based upon a notional of 1 million dollars. Meaning that we
would need 30 contracts to cover our loan amount. We can not take a fractional position,
meaning that we, in this case, would take one position in the futures rate. Since we want
to hedge against rising interest rates, we would take 30 short positions here.
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Case 2: Hedge by taking position in 1M-SOFR futures. From our simulation we got
(â0, b̂0, ĉ0) = (0.501, 0.501,−0.004) ≈ (0.5, 0.5, 0.0). Now 1M-SOFR futures has a notional
of 5 million dollars. So to cover our loan, we would need six contracts. These would be
covered by taking three positions in the first futures contract, three in the middle futures
contract, and zero in the last. The type of position would be a short position.

We see that for all our simulations, the error distributions seem to be normally distributed.
This is not surprising as in each simulation, and we take a normal random variable:∫ T

S r(u)du as described in Equation 5.2 p.60, and subtract a constant/linear combination
of constants. This is a new, normally distributed random variable with an altered mean.
We can also address the normality via a QQplot:

Figure 5.13: (Q-Q) plot of ER1(0)
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Chapter 6

ESG swaps

6.1 ESG

ESG stands for Environmental, Social, and Governance. ESG metrics are becoming
more critical for the financial sector in the European Union. The European Union have
established a new taxonomy for sustainable activities [21a].

This taxonomy is implemented so the EU can be carbon neutral by 2050. The goal is to
help investors and companies contribute to the Paris Climate Agreement. It will enable
companies and issuers to access financing consistent with these goals.

One such contribution could be to access cheaper financing, for instance, by lower-
ing the fixed swap rate if certain ESG criteria are met. In our case, this will be when a
firm manages to get below a certain ESG risk score. We take a look at what the different
letters could represent:

• Environmental: Carbon emissions, usage of renewable energy, waste generation etc.

• Social: workforce rights, human-rights policies, customer satisfaction etc.

• Governance: management structure and diversity, CEO pay ratio, crisis
management, transparency, codes of conduct etc.

We will not go into detail regarding the ESG risk score, however, we propose a model
and highlight some implications.
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6.2 Case study

Our modelling approach will be based on the ISDA document [21b], particularly the
interest rate swap between SBM Offshore and ING, where Sustainalytics set the ESG
risk score. The deal has the following specifications:

• It gets added a positive or negative spread to the fixed rate set at the inception of
the swap, based upon SBM’s ESG score set by Sustainalytics.

• At the beginning of every year during the contract’s life, ING sets a target ESG
score.

• If the score has been met, a discount of 5-10 basis points is applied to the fixed
rate.

• If the score has not been met, a 5-10 basis points penalty is applied to the fixed
rate.

We consider the ESG criteria to be F0-measurable. We will also take a constant discount
d. To exemplify this deal pretend that the original fixed rate was set at κ = 0.07, with a
discount/penalty d = 0.005 and the contract length is n = 4 years.

Assume that SBM Offshore met the criteria the first three times but did not meet
the last time. That would give rise to the following ESG fixed rate sequence:

KESG
1 = 0.065, KESG

2 = 0.060, KESG
3 = 0.055, KESG

4 = 0.060

Figure 6.1: ESG-fixed rate trajectory
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6.3 General setup

We will take this deal as motivation but generalize a bit further:

Assumption 6.3.1. We assume the following:

• N represents the nominal value. Think of it as the amount you loan/lend.
• 0 < T0 < T1 < · · · < Tn a sequence of future dates.
• δ = Ti − Ti−1 a fixed leg between payments
• κ the fixed rate from the original swap, i.e. without ESG-link.
• d basis points added or subtracted to the fixed rate κ
• {Ai}n

i=1 sequence of events, where: Ai = {XTi ≤ CESG
Ti

} i.e. the sequence of events
measuring if the ESG-risk score at time Ti: XTi , is below the ESG-criteria CTi or not.

Definition 6.3.2 (ESG fixed rate process). Let KESG = (KESG
i (ω))n

i=1 denote the ESG
fixed rate process, we define it recursively as:

KESG
i (ω) = (KESG

i−1 (ω) − d)1Ai(ω) + (KESG
i−1 (ω) + d)1AC

i
(ω), i ≥ 2

Where:

KESG
1 (ω) = (κ− d)1A1(ω) + (κ+ d)1AC

1
(ω)

Notation 6.3.3. Let I = {k1, . . . , kn} represent an index set. Furthermore, let
k1 < · · · < kl < · · · < km < · · · < kn We then define:(⋂

i∈I
Ai

){(k1,kl,km)}

= AC
k1 ∩Ak2 ∩ · · · ∩AC

kl
∩Akl+1 ∩ · · · ∩AC

km
∩Akm+1 ∩ · · · ∩Akn

Result 6.3.4. Let n ∈ N2 := {k : k ≥ 2, k ∈ N}, consider the above situation. Let
In = {1, . . . , n} and IEven

2n = {2, . . . , 2n}, (Ai)i∈I denotes the event that the ESG criteria
are met. Let j1 < j2 < · · · < j|IEven

α | ∈ N furthermore |IEven
2n | and |In| denotes the

cardinality of the respective sets.

We can then express KESG
n (ω) as:

KESG
n (ω) = [κ− dn]1

 ⋂
i∈In

Ai

 (ω)

+
∑

α∈IEven
2n

[κ− d(n− α)]1

 ⋃
j1 ̸=... ̸=j|IEven

α |∈In

 ⋂
i∈In

Ai

{(j1,...,j|IEven
α |)}


 (ω)
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To get a better grasp of Result 6.3.4, we include the following graph:

Figure 6.2: Possible outcomes of KESG
n (ω)

For a general n, we have 2n possible paths, and the unique values will be

κ+ id, i ∈ {n− 2k : k = 0, . . . , n}

We will have |{n − 2k : k = 0, . . . , n}| = n + 1 unique values. With
(n

|i|
)

number of
possible paths leading to the value κ+ id.

Thus for n = 3, we have 23 = 8 possible paths, and 3 + 1 = 4 unique values:

κ+ 3d, κ+ d, κ− d κ− 3d

We see that there are
(3

1
)

= 3 different paths yielding a result of κ+ d, which in this case
are: ffs, fsf and sff .
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KESG
3 (ω) = [κ− 3d]1

 ⋂
i∈I3

Ai

 (ω)

+
∑

α∈{2,4,6}

[κ− d(3 − α)]1

 ⋃
{j1 ̸=... ̸=j|IEven

α |}∈{1,2,3}

( 3⋂
i=1

Ai

)(j1,...,j|IEven
α |)


 (ω)

The number of unique possible outcomes will be |{2, 4, 6}|+1 = 4. If we fix α, say, α = 4,
we get the value κ+ d, and there are 3 paths leading to this result. Now for j1 < j2, we
see that j1, j2 ∈ {1, 2, 3}, leads to the following set-combinations:

{1, 2}, {1, 3} and {2, 3}

Namely 3 sets, where we got the index of where the criteria were not met. And this
corresponds to the following expression:

[κ− d(3 − 4)]1

 ⋃
j1 ̸=j2∈{1,2,3}

[ 3⋂
i=1

Ai

]{(j1,j2)} (ω)

=[κ+ d]

1(AC
1 ∩AC

2 ∩A3)(ω)︸ ︷︷ ︸
=ffs

+1(AC
1 ∩A2 ∩AC

3 )(ω)︸ ︷︷ ︸
=fsf

+1(A1 ∩AC
2 ∩AC

3 )(ω)︸ ︷︷ ︸
=sff


This shows that the expression provided in Result 6.3.4 is reasonable and behaves as one
would like.
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Proposition 6.3.5. Let us denote κESG
t (i) := EQ[KESG

i (ω)|Ft]. We then have
that for t ≤ T0 that:

κESG
t (i) = κ− d ·D(i)

Where:

D(i) = i · EQ

[
i∏

l=1
1(Al)

∣∣∣∣Ft

]
+

∑
α∈IEven

2i

[i− α]
∑

j1 ̸=... ̸=j|IEven
α |

EQ

( i∏
l=1
1(Al)

){(j1,...,j|IEven
α |)} ∣∣∣∣Ft


Proof. KESG

i (ω) is as described in Result 6.3.4:

EQ

[
KESG

i (ω)
∣∣∣∣Ft

]
= [κ− d · i]EQ

[
1

(
i⋂

l=1
Al

)
(ω)
∣∣∣∣Ft

]

+
∑

α∈IEven
2i

[κ− d(i− α)]EQ

1
 ⋃

{j1 ̸=... ̸=j|IEven
α |}

(
i⋂

l=1
Al

){(j1,...,j|IEven
α |)}

 (ω)
∣∣∣∣Ft




Now:

EQ

1
 ⋃

{j1 ̸=... ̸=j|IEven
α |}

(
i⋂

l=1
Al

){(j1,...,j|IEven
α |)}

 (ω)
∣∣∣∣Ft


=

∑
j1 ̸=... ̸=j|IEven

α |

EQ

1( i⋂
l=1

Al

){(j1,...,j|IEven
α |)}

(ω)
∣∣∣∣Ft


Furthermore:

EQ

[
1

(
i⋂

l=1
Al

)
(ω)
∣∣∣∣Ft

]
= EQ

[
i∏

l=1
1(Al)

∣∣∣∣Ft

]
︸ ︷︷ ︸

=s(l=1,i)

and:

EQ

1( i⋂
l=1

Al

){(j1,...,j|IEven
α |)}

(ω)
∣∣∣∣Ft

 = EQ

( i∏
l=1
1(Al)

){(j1,...,j|IEven
α |)}

(ω)
∣∣∣∣Ft


︸ ︷︷ ︸

=f(l=1,i,j|Iα|)

EQ[KESG
i (ω)|Ft] = [κ− d · i]s(l = 1, i)

+ κ
∑

α∈IEven
2i

 ∑
j1 ̸=... ̸=j|IEven

α |

f(l = 1, i, j|IEven
α |)


− d

∑
α∈IEven

2i

[i− α]

 ∑
j1 ̸=... ̸=j|IEven

α |

f(l = 1, i, j|IEven
α |)


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6.3. General setup

We collect κ and d-terms:

EQ[KESG
i (ω)|Ft] = κ

s(l = 1, i) +
∑

α∈IEven
2i

∑
j1 ̸=... ̸=j|IEven

α |

f(l = 1, i, j|IEven
α |)


︸ ︷︷ ︸

=M(i)

− d

i · s(l = 1, i) +
∑

α∈IEven
2i

[i− α]
∑

j1 ̸=... ̸=j|IEven
α |

f(l = 1, i, j|IEven
α |)




︸ ︷︷ ︸
=D(i)

= κM(i) − d ·D(i)

Where:

D(i) = i · EQ

[
i∏

l=1
1(Al)

∣∣∣∣Ft

]
+

∑
α∈IEven

2i

[i− α]
∑

j1 ̸=... ̸=j|IEven
α |

EQ

( i∏
l=1
1(Al)

){(j1,...,j|IEven
α |)} ∣∣∣∣Ft


and:

M(i) = EQ

[
i∏

l=1
1(Al)

∣∣∣∣Ft

]
+

∑
α∈IEven

2i

∑
j1 ̸=... ̸=j|IEven

α |

EQ

( i∏
l=1
1(Al)

){(j1,...,j|IEven
α |)} ∣∣∣∣Ft


Let’s rewrite M(i) on set notation again:

M(i) = EQ

1
⋂

l∈Ii

Al

 ∣∣∣∣Ft

+
∑

α∈IEven
2i

EQ

1
 ⋃

j1 ̸=... ̸=j|IEven
α |

⋂
l∈Ii

Al

{(j1,...,j|IEven
α |)}

 ∣∣∣∣Ft


For i = 1, . . . , n, we have:

Ωi =

 ∑
α∈IEven

2i

⋃
j1 ̸=... ̸=j|IEven

α |

⋂
l∈Ii

Al

{(j1,...,j|IEven
α |)}


︸ ︷︷ ︸

=Hi

⋃⋂
l∈Ii

Al


︸ ︷︷ ︸

=Li

with Q(Ωi) = 1

Now as Hi ∩ Li = ∅, and Hi ∪ Li = Ωi, in addition to exploiting the linearity of the
expectation operator we get:

M(i) = EQ

1

 ∑

α∈IEven
2i

⋃
j1 ̸=... ̸=j|IEven

α |

⋂
l∈Ii

Al

{(j1,...,j|IEven
α |)}

⋃
⋂

l∈Ii

Al


 ∣∣∣∣Ft


= EQ [1(Ωi)|Ft]
= 1

Leaving us with:

EQ[KESG
i (ω)|Ft] = κ− d ·D(i) := κESG

t (i)

■
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Chapter 6. ESG swaps

6.4 Zero Coupon Bond ESG-swap

Proposition 6.4.1. Consider a zero coupon bond swap, i.e where the situation is as described
in Section Section 4.2, we then get that the
ESG-swap rate process κESG

t = (κESG
t (i))i=1,...,n is given by:

κESG
t (i) = κZCB

t − d ·D(i)

Where:

κZCB
t = P (t, T0) − P (t, Tn)

δ
∑n

i=1 P (t, Ti)

And D(i) is as described in Proposition 6.3.5

Proof. Now from Section Section 4.2 we have that:

κZCB
t = P (t, T0) − P (t, Tn)

δ
∑n

i=1 P (t, Ti)

Thus:

κESG
t (i) = κZCB

t − d ·D(i)

■
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Chapter 7

Numerical Simulation

7.1 Introduction

To grasp the ESG-swap rate process κESG
t , we need a model for the ESG-risk score

process of the company. It could be logical with a downward trending score since the
company will be incentivised to enter such an agreement.

There are many possible alternatives to model such a model, so we impose the fol-
lowing model for the ESG-risk score:

X(t) = 100 exp(−Z(t))

Here Z(t) is an OU-process given by:

dZ(t) = −βZ(t)dt+ σdWQ(t) + dIQ(t)

Where:

IQ(t) =
N(t)∑
k=1

Jk, Jk ∼ Exp(µ), N(t) ∼ Pois(λt)

Furthermore IQ and WQ are assumed to be independent, now for J ∼ Exp(µ), we have:

fJ(x) = µe−µx
1[0,∞)(x), E[J ] = 1

µ
, and V ar[J ] = 1

µ2

An explicit solution is given by:

d[eβtZ(t)] = d[eβt]Z(t) + eβtdZ(t)
= βeβtZ(t)dt+ eβt[−βZ(t)dt+ σdWQ(t) + dIQ(t)]
= σeβtdWQ(t) + eβtdIQ(t)
⇓

Z(t) = Z(0)e−βt +
∫ t

0
e−β(t−s)dWQ(s) +

∫ t

0
e−β(t−s)dIQ(s) (7.1)
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Proposition 7.1.1 (Characteristic function of Z(t)). The characteristic function of Z(t)
is given by:

EQ [exp(iuZ(t))] = exp
(
iuZ(0)e−βt

)(
−u2

4β [1 − e−2βt]
)(

1 − iue−βt1/µ
1 − iu1/µ

)λ
β

Proof. Since IQ and WQ are independent we have that:

EQ[eiuZ(t)] = exp
(
iuZ(0)e−βt

)
EQ

[
exp

(
iu

∫ t

0
e−β(t−s)dWQ(s)

)]
EQ

[
exp

(
iu

∫ t

0
e−β(t−s)dIQ(s)

)]
The normality of deterministic Ito-integrals gives us the following:

iu

∫ t

0
e−β(t−s)dWQ(s) ∼ N

(
0,−u2

∫ t

0
e−2β(t−s)ds

)
⇓

EQ

[
exp

(
iu

∫ t

0
e−β(t−s)dWQ(s)

)]
= exp

(
−u2

4β [1 − e−2βt]
)

From Proposition 2.4.11 p.19, we have:

E
[
exp

(
iu

∫ t

0
e−β(t−s)dI(s)

)]
= exp

(∫ t

0
Ψ(ue−βs)ds

)
To ease some notation, we write:

Ψ(x) = λ(φF (x) − 1), where: φF (x) =
∫
R
eiyxFJ(dy)

We start with calculating φF (x) with FJ(dy) = µe−µy1[0,∞)(y)dy :

φF (x) =
∫ ∞

0
eixyµe−µydy = 1

1 − ix 1
µ

Giving us:

φF (x) − 1 = 1
1 − ix 1

µ

−
1 − ix 1

µ

1 − ix 1
µ

=
ix 1

µ

1 − ix 1
µ

Now:

Ψ(ue−βs) = λ(φF (ue−βs)) − 1)

= λ

(
iue−βs1/µ

1 − iueβs1/µ

)
· β
β

= λ

β

(
βiue−βs1/µ
1 − iueβs1/µ

)
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7.1. Introduction

We observe:

h(s) : = ln[1 − iue−βs1/µ]
⇓

h′(s) = βiue−βs1/µ
1 − iueβs1/µ

Leaving us with:∫ t

0
Ψ(ue−βs)ds = λ

β

∫ t

0
h′(s)ds = λ

β
[h(t) − h(0)] = λ

β
ln
[

1 − iue−βt1/µ
1 − iu1/µ

]

■

By using Proposition 7.1.1 we can find the expectation of X(t):

EQ [X(t)] = EQ

[
ei(−i)Z(t)

]
= exp

(
Z(0)e−βt

)
exp

( 1
4β [1 − e−2βt]

)(1 + e−βt1/µ
1 + 1/µ

)

Now if β > 0, one can find:

lim
t→∞

EQ[X(t)] = exp
( 1

4β + 1
1 + 1/µ

)

Figure 7.1: ESG-risk score with underlying process X(t)

The blue dots represent the observed ESG-risk score at the relevant observation times.
The solid dark line represents the ESG-risk score between observation times, and the
underlying orange process describes our continuous time ESG-risk score process X(t).
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7.2 Simulation of Zero Coupon Bond ESG-swap

In this section, we will look at a numerical simulation of the ESG-swap rate process
κESG

t = (κESG
t (i))i=1,...,4. We will simulate different scenarios. These will be when the

ESG-criteria CESG is reasonable and when the ESG criteria are unreasonable.

By unreasonable, we will look at the extremes, i.e. where the criteria are met all
the time and where the criteria are never satisfied. This will show the effect of the
discount and penalty, respectively.

After analysis, one has concluded that the model described in Figure 7.1 is a good
fit for the counterparty company in this ESG swap.

Parameters

• X(0) = 20 =⇒ Z(0) = − ln
(

20
100

)
• β = −0.05

• σ = 0.02

• λ = 20

• µ = 150

We will use a stepsize of dt = 1
360 , and since the calculation is based upon Monte Carlo

simulations, we will establish the analysis on 1 Million simulations.

Agreement/specifications

• For simplicity, we will assume that our ESG criteria process CESG =
(CESG

Ti
){i=1,...,4} to be F0-measurable.

• δ = 1 meaning that the time between observations times Ti and Ti−1 is one year.

• We assume that the penalty/discount d = 0.005.

• We will also, for simplicity, set:

κZCB
t = P (t, T0) − P (t, T4)

δ
∑4

i=1 P (t, Ti)
= 0.07
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7.2. Simulation of Zero Coupon Bond ESG-swap

Reasonable criteria

• CESG = (17.8, 16.8, 15.8, 14.8)

Figure 7.2: ESG-risk score where ESG-criteria is reasonable

In this figure, we see the underlying ESG risk score process. Here the dark-solid lines
represent the criteria CESG

Ti
. The blue dots represent the ESG-risk score at time Ti. In

this particular realization, we see that the criteria are not met at T1 and T2, and then
met at T3 and T4.

After 1 Million simulations, we got:

CESG
Ti

κZCB
t κESG

t

T1 17.8 0.070 0.071
T2 16.8 0.070 0.070
T3 15.8 0.070 0.068
T4 14.8 0.070 0.065

Figure 7.3: ESG-swap rate when ESG-criteria is reasonable
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unreasonable criteria, where criteria are always met

• CESG = (24, 23, 22, 21)

Figure 7.4: ESG-risk score where ESG-criteria is unfavourable for lender

The blue dots are always under the dark solid lines, meaning the criteria are always met.

After 1 Million simulations, we got:

CESG
Ti

κZCB
t κESG

t

T1 24 0.070 0.065
T2 23 0.070 0.060
T3 22 0.070 0.055
T4 21 0.070 0.050

Figure 7.5: ESG-swap rate, when ESG-criteria is not reasonable for the lender

Here we see the effect of how the discount d works. For each Ti, we see that κESG
t goes

down by the discount d.
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unreasonable criteria, where criteria are never met

• CESG = (15, 14, 13, 12)

Figure 7.6: ESG-risk score where ESG-criteria is unfavourable for borrower

The blue dots are consistently above the criteria, meaning that the criteria will not be met.

After 1 Million simulations, we got:

CESG
Ti

κZCB
t κESG

t

T1 24 0.070 0.075
T2 23 0.070 0.080
T3 22 0.070 0.085
T4 21 0.070 0.090

Figure 7.7: ESG-swap rate, when ESG-criteria is not reasonable for the borrower

In this situation, d works like a penalty, and correspondingly κESG
t increases.
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Chapter 8

Conclusion and further work

8.1 SOFR

In the SOFR studies, we examined the implications of different underlying calculation
methods for the SOFR futures. We studied a 3M-arithmetic interest rate:

X3MA(S, T ) = 1
T − S

∫ T

S
rudu

We bench marked taking a ât − f3M (t, S, T ) 3M-SOFR futures position against
taking a (ât, b̂t, ĉt) − f1M (t, S, T ) 1M-SOFR futures position.

For simulation purposes, we chose the following model for the integral of r = (r(t))t≥0:∫ T

S
r(u)du =

(
r(t) −m

α

) [
e−α(S−t) − e−α(T −t)

]
+m(T − S) + σ

α

∫ T

t
Σ(u, t, S, T )dWQ(u)

Where:

Σ(u, t, S, T ) =
[
e−α(S−u) − e−α(T −u)

]
1[t,S)(u) +

[
1 − e−α(T −u)

]
1[S,T ](u)

It should be mentioned that this may not be a realistic representation of r, and should
be addressed accordingly. As discussed in [BM13], a solution could be multi-factor mod-
els, as one source of uncertainty could be too restrictive for realistic modelling approaches.

In [SS20], they consider 1-, 2- and 3-factor versions of Gaussian arbitrage-free short-rate
models. One should also take into account the market price of risk λt, coming from
Girsanov’s Theorem: dWQ(t) = dW (t) − λtdt, to get suitable P -dynamics of the futures
rates: f ℓM , ℓ = 1, 3

It would also be interesting to study term-SOFR dynamics further. For instance,
in [GS21] the authors discuss how SOFR is related to EFFR, which then again is heavily
affected by US monetary policy rates. It would also be interesting to further study how
the CME term SOFR is inferred from the futures market.
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From simulations we got â3M
t = 0.95 for the position in 3M-SOFR futures. An ideal hedge

here would be if this number equalled 1. Pretend that instead of hedging X3MA(S, T ),
we wanted to hedge:

X3MG(S, T ) := 1
T − S

[
e
∫ T

S
r(u)du − 1

]
Namely a geometric average over the period [S, T ], then:

G(at) := arg min
at∈R

EQ

[(
X3MG(S, T ) − atf

3M (t, S, T )
)2
∣∣∣∣Ft

]
Now following the same arguments as on p.66, one has:

â3M
t = EQ[X3MG(S, T )|Ft]

f3M (t, S, T ) = f3M (t, S, T )
f3M (t, S, T ) = 1

8.2 ESG

We imposed a model for ESG-linked swaps, which led to an ESG swap rate process
κESG

t = (κESG
t (i))n

i=1 giving a penalty/discount depending on whether the criteria were
met or not.

We remember that the criteria Ai looked like the following:

Ai = {XTi ≤ CESG
Ti

}

This means that our ESG-fixed rate process heavily depends upon the OU-process
X(t) and the criteria CESG

Ti
. It could be hard to establish "reasonable" criteria. In our

simulation, we took CESG = (CESG
Ti

)i≥1 to be F0-measurable, this could lead to some
uncertainty as one would have to "know" even more about the company’s development.
Maybe a more reasonable approach would be to take CESG to be FTi−1-measurable.
However, this would again add to the complexity.

In our modelling approach, we modelled directly under Q. However, the market one op-
erates in is under P , meaning that it would have been suitable with an Esscher-transform
of X(t), which then by Proposition 2.4.14 implies that we would still have a CPP, but
with altered intensity λQ and jump-size distribution FQ

J (dx).

In our case we have I(t) = ∑N(t)
k=1 Jk with N(t) ∼ Pois(λt) and J ∼ Exp(µ), and

from Lemma 2.4.15, with θ ∈ (−∞, µ), we have:

λQ = λµ

θ − µ
and J Q∼ Exp(µ− θ)

Furthermore, X(t) is company dependent, meaning that to get reasonable estimates
of the necessary parameters included, data accessibility is crucial to impose a suitable
model.
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As highlighted in [BKR22], there are several problems associated with ESG scoring,
including:

• Measurement: measure the same indicator using different ESG metrics.

• Scope: ratings based upon different sets of ESG indicators.

• Weight: different views on the relative importance of ESG indicators.

Consider the case where the ESG score S is defined as a linear combination of weighted
ESG metrics Xj i.e.

S =
m∑

j=1
wjXj

How many metrics X1, . . . , Xm should one choose? And how should one choose the
weights w1, . . . wm? In [Bil+21], it is even highlighted that rating agencies can have
opposite opinions on the same evaluated companies.

If one looks at the expression KESG
n (ω):

KESG
n (ω) = [κ− dn]1

 ⋂
i∈In

Ai

 (ω)

+
∑

α∈IEven
2n

[κ− d(n− α)]1

 ⋃
j1 ̸=... ̸=j|IEven

α |∈In

 ⋂
i∈In

Ai

{(j1,...,j|IEven
α |)}


 (ω)

We see that it tracks every path, and for each n there are 2n-possible paths, meaning
that as n increases, the complexity increases. Furthermore, this expression is rather
general, meaning that one must rely upon Monte Carlo simulations to get an estimate of
κESG

t (i). At the same time, its generality also gives greater flexibility for other types of
stochastic models for the ESG-risk score.
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Nomenclature

κESG
t ESG-swap rate process

R Extended real-line i.e [−∞,∞]

R+ Positive real line including infinity, i.e [0,∞]

Rd
0 Rd \ {0}

ξ Transformed characteristic exponent of Levy process, ξ(θ) := Ψ(−iθ)

f1M (t, S, T ) 1-month SOFR futures

f3M (t, S, T ) 3-month SOFR futures

KESG ESG fixed rate process

L(t, T ) LIBOR-rate

v(t, T ) Volatility process, where: v(t, T ) = −
∫ T

t σ(t, u)du

ZT (t) Radon Nikodym derivative where: ZT (t) = P (t,T )
P (0,T )B(t)

1M 1-month

3M 3-months

ARRC Alternative Reference Rates Committee

ATS Affine Term Structure

Borel-measure Measure defined on the σ-algebra of Borel sets

CME Chicago Mercantile Exchange

CPP Compound Poisson process

càdlàg right continuous with existing left limits

DCT Dominated Convergence Theorem

EFFR Effective Federal Funds Rate

ESG Environmental, Social, and Governance

HJM Heath-Jarrow-Morton

ICE Intercontinental Exchange Benchmark Administration
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Nomenclature

LIBOR London Interbank Offered Rate

O/N Overnight

OU Ornstein Uhlenbeck

RFR Risk-Free Reference Rates

SDE Stochastic Differential Equation

SOFR Secured Overnight Financing Rate

SONIA Sterling Overnight Index Average

ZCB Zero Coupon Bond

€STR Euro Short-Term Rate
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Appendix A

Estimating parameters for interest rate
models

Definition A.0.1 (ARMA(p,q)). A stochastic process Y = (Yi)i≥1 is called anARMA(p, q)
process, if it has the following representation:

Yi = µ+
p∑

j=1
ϕj(Yi−j − µ) + ϵi −

q∑
k=1

θkϵi−k

Where:

• ϵi are iid with E[ϵi] = 0 and V ar[ϵi] = σ2
ϵ as well as independent of

Yi−1 = (Y1, . . . , Yi−1)

A special case of an ARMA(p, q) is AR(p), we have the the following relationship:

AR(p) = ARMA(p, 0)

We will be interested in AR(1), meaning that:

Yi = µ+ ϕ[Yi−1 − µ] + ϵi

Maximum likelihood AR(1)
Consider the case when ϵi ∼ N (0, σ2

w), in order to find the MLE estimates: θ = (µ, ϕ, σ2
w),

one can use the conditional likelihood function L(θ|Y1). We note that Yi|Yi−1, i ≥ 2 is
Markovian, meaning that the conditional likelihood takes the following form:

L(θ|Y1) =
n∏

i=2
fYi|Yi−1(yi|yi−1)

Furthermore Yi|Yi−1 ∼ N (µ+ ϕ[Yi−1 − µ], σ2
w), meaning that:

L(θ|Y1) =
(

1√
2πσ2

w

)n−1 n∏
i=2

exp
(

− 1
2σ2

w

[yi − (µ+ ϕ[yi−1 − µ])]2
)

⇓

l(θ|Y1) = (n− 1) ln
(

1√
2πσ2

w

)
− 1

2σ2
w

n∑
i=2

[yi − µ− ϕ[yi−1 − µ])]2
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Appendix A. Estimating parameters for interest rate models

Now from [Rem13], it follows that the MLE estimates are approximate:

µ̂ = 1
n

n∑
i=1

Yi = Y

ϕ̂ =
∑n

i=2(Yi − Y )(Yi−1 − Y )∑n
i=1(Yi − Y )2

σ̂2
w = 1

n− 1

n∑
i=2

[Yi−1 − Y − ϕ̂(Yi−1 − Y )]2

Now recall that the Vasicek model looks like:

dr(t) = α[m− r(t)]dt+ σdWQ(t)

With explicit solution:

r(T ) = e−α(T )r(0) +m[1 − e−α(T )] + σ

∫ T

0
e−α(T −u)dWQ(u)

= m+ e−αT [r(0) −m] + σ

∫ T

0
e−α(T −u)dWQ(u) (A.1)

Proposition A.0.2 ([Rem13]). One can express the Vasicek model as an AR(1)-process:

rk = m+ ϕ(rk−1 −m) + ϵk, k = 1, . . . , n (A.2)

Where:

• rk := r(kh), here r is as described in Equation A.1.
• h is an equidistant time-interval between ri and ri−1.
• ϕ = e−αh

• ϵk ∼ N
(
0, σ2

2α

[
1 − ϕ2])

Thus in order to estimate m,ϕ and σ2
w = σ2

2α

[
1 − ϕ2] from Equation A.2 one can plug it

into the approximate MLE AR(1)-estimates.

There are also other expressions for the MLE estimates like the following from [FP15]:

m̂ = S1S00 − S0S01
S0S1 − S2

0 − S01 + S00

α̂ = 1
h

ln
(
S0 − m̂

S1 − m̂

)

σ̂2 = 1
nβ(α̂)[1 − 1

2 α̂β(α̂)]

n∑
k=1

[rk − ℓk−1(k)]2
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Where:

S0 = 1
n

n∑
k=1

rk, S1 = 1
n

n∑
k=1

rk−1

S00 = 1
n

n∑
k=1

rk−1rk−1, S01 = 1
n

n∑
k=1

rk−1rk

Furthermore:

• β(α) = 1
α

[
1 − e−αh

]
• ℓs(t) = m · α ·B(s, t) + rs[1 − αB(s, t)]

• B(s, t) = 1
α

[
1 − e−α(t−s)

]
Typically we will not observe the short-rate r. However, zero coupon bond yields are
observable, often called the yield term structure. The idea is to establish the connection
between the zero coupon yields and Affine term structures:

P (t, T ) = e−R(t,T )(T −t), and P (t, T ) = exp (−A(t, T ) −B(t, T )r(t))

This gives us the following relationship between ATS and zero-coupon yields:

R(t, T ) = A(t, T ) +B(t, T )r(t)
T − t

Let τ = T − t; we can then express the short rate. For the Vasicek model, we have the
following:

Bτ (θ) = 1
α

[1 − e−ατ ]

Aτ (θ) =
(
σ2

2α −m

)
[τ −Bτ (θ)] + σ2

4αB
2
τ (θ)

This again gives us the following expression for the short-rate:

r(t) := rθ(t) = τR(t, t+ τ) −Aτ (θ)
Bτ (θ)

Let R1, . . . , Rn represent the observed annualized zero coupon yields with maturities
τ1, . . . , τn, meaning that:

Rk := R(kh, kh+ τk)

This yields:

rk := rθ
k = τkRk −Aτk

(θ)
Bτk

(θ)

We have that R = (R1, . . . , Rn) are observable, while r = (r1, . . . , rn) are not. We note
that:

Rk = Aτk
(θ) +Bτk

(θ)rk

τk
:= g(rk)
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Appendix A. Estimating parameters for interest rate models

Here g is a linear function of rk, meaning it is invertible and strictly increasing. This
means that:

fθ(R|R1) = fθ(r|r1)
|Jg(r)|

Here:

Jg(r) = det
(
∂gi(r)
∂rk

)n

i,k=1

In our case we have gi = g, with:

∂g(r)
∂rl

=


Bτk(θ)

τk
= 1

aτk
[1 − e−aτk ] ̸= 0 , l = k

0 , l ̸= k

This means that Jg is a diagonal matrix, giving us the following determinant:

|Jg(r)| =
n∏

k=1

∣∣∣∣∂g(r)
∂rk

∣∣∣∣ =
n∏

k=1

Bτk(θ)
τk

And again from [Rem13] we get that:

l(θ|R1) = ln
[
fθ(r|r1)
|Jg(r)|

]
= l(θ|g−1(R1)) − ln(|Jg(r)|)

= (n− 1) ln
(

1√
2πσ2

ϵ

)
− 1

2σ2
ϵ

n∑
k=2

[
rθ

k −m− ϕ(rθ
k−1 −m)

]2
−

n∑
k=1

Bτk(θ)
τk
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Appendix B

Scripts Chapter 5

B.1 SOFR: Dynamics of f 1M(t, S1M , T1M) and f 3M(t, S3M , T3M)

using Revise

#stats etc.
using Random
using Distributions

#plotting histogram and LaTeX labels:
using Plots
using LaTeXStrings

#Vasicek dynamics of SOFR futures rates:
alpha = 0.30
sigma = 0.03

function B(t,S,T)
return (1/alpha)*(exp(-alpha*(S-t))-exp(-alpha*(T-t)))

end

function f1M(t,S,T, dt, initial)
"
Simulates 1M-futures rates for t<= S
Args:

t {Float64}: initial start point
S {Float64}: start observation period
T {Float65}: end observation period
dt {Float64}: stepsize
inital {Float64}: inital futures rate

Returns:
df1M(t,S,T) = 1/(T-S)*B(t,S,T)*sigma*dW^{Q}(t)

"
time = range(t, S, step=dt)
n = length(time)
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Random.seed!(1)
Z = rand(Normal(0,1), n)
f1_r = zeros(n)
f1_r[1] = initial
for i in 2:n

f1_r[i] = f1_r[i-1] + (1/(T-S))*B(time[i-1],
S,T)*sigma*sqrt(dt)*Z[i]↪→

end

return f1_r
end

function f3M(t,S,T, dt, initial)
"
Simulates 3M-futures rates for t<= S
Args:

t {Float64}: initial start point
S {Float64}: start observation period
T {Float65}: end observation period
dt {Float64}: stepsize
inital {Float64}: inital futures rate

Returns:
df3M(t,S,T) = (f3M(t,S,T)+1/(T-S))*B(t,S,T)*sigma*dW^{Q}(t)

"
time = range(t, S, step=dt)
n = length(time)

Random.seed!(2)
#W(t) d= sqrt(t)Z, Z ~ N(0,1)
Z = rand(Normal(0,1), n)
f3_r = zeros(n)
f3_r[1] = initial
for i in 2:n

f3_r[i] = f3_r[i-1] +
(f3_r[i-1] + 1/(T-S))*B(time[i-1], S,T)*sigma*sqrt(dt)*Z[i]

end

return f3_r
end

Random.seed!(3)
#time params:
t = 0
dt = 1/360
#1M-futures:
S1M = 6/12
T1M = S1M + 1/12
#3M-futures:
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B.1. SOFR: Dynamics of f1M (t, S1M , T1M ) and f3M (t, S3M , T3M )

S3M = S1M
T3M = S3M + 3/12

#simulation
time = range(t, S1M, step=dt)
n = length(time)
Z = rand(Normal(0,1), n)
f1 = zeros(n)
f3 = zeros(n)

f1[1] = (100-95.025)*1/100
f3[1] = (100-95.16)*1/100

for i in 2:n
f1[i] = f1[i-1] + (1/(T1M-S1M))*B(time[i-1],

S1M,T1M)*sigma*sqrt(dt)*Z[i]↪→

f3[i] = f3[i-1] + (f3[i-1] + 1/(T3M-S3M))*B(time[i-1],
S3M,T3M)*sigma*sqrt(dt)*Z[i]↪→

end

plot(f1, label = L"f^{1M}(t, S_{1M},T_{1M})", title =
L"\alpha = 0.30,\; \sigma = 0.03,\; t\in [0,S_{1M}]", legend= :topleft)
plot!(f3, label = L"f^{3M}(t, S_{3M}, T_{3M})")
xticks!([0, n/2 ,n], ["0", L"\frac{S_{1M}}{2}", L"S_{1M}"])
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B.2 SOFR: Simulation of κ3M−SOFR
t

using Revise

#statistics and distributions
using Random
using Distributions
using Statistics

#data-wrangeling:
using DataFrames

#for numerical integration:
using QuadGK

#plotting histogram and LaTeX labels:
using Plots
using LaTeXStrings

#---------------------------------------------------------------------
#time parameters
T0 = 1/12
T1 = 4/12
T2 = 7/12
T3 = 10/12
timepoints = [T0, T1, T2, T3]
n_steps = 10000

#We use that Vasicek is ATS, i.e P(t,T) = exp(-A(t,T)-B(t,T)r(t))

function r_Vasicek(alpha, m,sigma, r_t, time_interval, n_steps)
"""
Args:

#Vasicek parameters:
alpha{Float64}: speed of reversion
m{Float64}: long term mean level
sigma{Float64}: volatility
r_t{Float64}: initial value of r = (r(u))

#time:
time_interval (vector): the time interval we model measured in

years.↪→

n_steps (int): number of timesteps we partition over

Returns:
it simulates the process: r = (r(u)), for u in [t_start, t_end]

"""

#time partition:
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B.2. SOFR: Simulation of κ3M−SOF R
t

t_start = time_interval[1]
t_end = time_interval[2]
dt = (t_end-t_start)/n_steps
n_steps = length(collect(t_start:dt:t_end))

#initializing r:
r = zeros(n_steps)
r[1] = r_t

#Standard normal rv's
Z = rand(Normal(0,1), n_steps)

for i in 2:n_steps
r[i] = r[i-1] - alpha*(m-r[i-1])*dt + sigma*sqrt(dt)*Z[i]

end

return r
end

function B_ZCB(t,T)
ans = -(1/alpha)*(exp(-alpha*(T-t))-1)
return ans

end

function A_ZCB(t,T)
integral, _ = quadgk(u -> B_ZCB(u,T)^(2), t,T)
ans = m*B_ZCB(t,T) - m*(T-t) - (1/2)*sigma^(2)*integral
return ans

end

function P(t,T, r_t)
ans = exp(-A_ZCB(t,T) -B_ZCB(t,T)*r_t)
return ans

end

#--------------------------------------------------------------
#Calculating f^3M(t,S,T), again using ATS structure:
#f^3M(t,S,T) = 1/(T-S)*(exp(A(t,S,T) + B(t,S,T)r(t))-1)
function Sigma1(u,t,S,T)

ans = exp(-alpha*(S-u)) - exp(-alpha*(T-u))
return ans

end

function Sigma2(u,t,S,T)
ans = 1-exp(-alpha*(T-u))
return ans

end

function B(t,S,T)
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ans = (1/alpha)*(exp(-alpha*(S-t))-exp(-alpha*(T-t)))
return ans

end

function A(t,S,T)
first_part = m*(T-S) - m*B(t,S,T)
c1_2, _ = quadgk(u -> Sigma1(u, t, t, S)^(2), t,S)
c2_2, _ = quadgk(u -> Sigma2(u, t, S, T)^(2), S,T)

ans = first_part + (1/2)*(sigma^2/alpha^2)*(c1_2 + c2_2)

return ans
end

function f_3M(t,S,T, r_t)
ans = (1/(T-S))*(exp(A(t,S,T) + B(t,S,T)*r_t) - 1)
return ans

end

#time t-value of kappa in 3M SOFR-futures rate swap
function kappa_t(t, r_t)

"
Args:

t{Float64}: vector of time points i.e [0,T1]
r_t{Float64}: vector of realization of interest rate model

Returns:
above = sum(P(t,T_{i}*f^{3M}(t,T_{i-1}, T_{i})), i = 1:n)
below = sum(P(t,T_{i}), i = 1:3)
kappa_t_3M_SOFR = above/below

"
ZCB_prices = map(T -> P(t,T, r_t), timepoints[2:end])
f_3M_rates = map((x, y) -> f_3M(t, x, y, r_t), timepoints[1:end-1],

timepoints[2:end])↪→

above = sum(ZCB_prices.*f_3M_rates)
below = sum(ZCB_prices)
ans = above/below
return ans

end

#Vasicek parameters:
alpha = 0.25
m = 0.035
r_0 = 0.0425
sigma = 0.02

#time:
t_start = 0
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B.2. SOFR: Simulation of κ3M−SOF R
t

t_end = T0
dt = (t_end-t_start)/n_steps
t = collect(t_start:dt:t_end)

#initialization of simulation
n_sim = 2

R = zeros(length(t), n_sim) #Vasicek rates
K = zeros(length(t), n_sim) #fixed rate kappa for each pair (t,r_t)

Random.seed!(1234)
for i in 1:n_sim

#Vasicek realization:
r = r_Vasicek(alpha, m, sigma, r_0, [t_start,t_end], n_steps)
#collect the time t rate and time t kappa:
R[:, i] = r
K[:, i] = map((x,y)-> kappa_t(x,y), t, r)

end

R
K[1]

#plot of rates
plot(R, layout = (1,1),

legend = false,
title = L"t \mapsto r(t),\alpha = 0.25, m = 0.035, \sigma =

0.02, r_{0} = 0.0425 "↪→

)
xticks!([0, 10_000/2 ,10_000], ["0", L"\frac{T_{0}}{2}", L"T_{0}"])

#plot of kappa_t
plot(K, layout=(1,1),

legend = false,
title = L"t \mapsto \kappa_{t}^{3M-SOFR},\alpha = 0.25, m =

0.035, \sigma = 0.02, r_{0} = 0.0425"↪→

)
xticks!([0, 10_000/2 ,10_000], ["0", L"\frac{T_{0}}{2}", L"T_{0}"])
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B.3 SOFR: Hedging 3M-arithmetic SOFR

using Random
using Distributions
using Statistics
using StatsPlots #qqplot

#for matrix operations and linear programming
using LinearAlgebra
using JuMP #lp-problem setup
using HiGHS #lp-solver

#data-wrangeling:
using DataFrames

#for numerical integration:
using QuadGK

#rerun calculations easier:
using Revise

#plotting histogram and LaTeX labels:
using Plots
using LaTeXStrings

#--------------------------------------------------------------------------#
#Vasicek parameters:
alpha = 0.25
m = 0.035
r_t = 0.0425
sigma = 0.02

#time parameters
t = 0
S = 1/12
T1M = 2/12
T2M = 3/12
T = 4/12

function Sigma1(u,t,S,T)
ans = exp(-alpha*(S-u)) - exp(-alpha*(T-u))
return ans

end

function Sigma2(u,t,S,T)
ans = 1-exp(-alpha*(T-u))
return ans

end
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function int_r_start_stop(low,up, t)
"
The integral: integral(r(u)du, low, up) as described in Eq (5.5)
p.66↪→

Args:
low{Float64}: lower integration limit
up{Float64}: upper integtation limit

Returns:
the integral: int_low_up r(u)du

"
if t > low

return "Please chose t <=low"
end

#Sigma1 is N(0, int_t_low c1_2 du), Sigma2 is N(0, int_low_up c2_2
du)↪→

c1_2, _ = quadgk(u -> Sigma1(u, t, low,up)^(2), t,low)
c2_2, _ = quadgk(u -> Sigma2(u, t, low,up)^(2), low,up)

c1 = sqrt(c1_2)
c2 = sqrt(c2_2)
Z = rand(Normal(0,1))
ans = ((r_t-m)/alpha)*(exp(-alpha*(low-t))-exp(-alpha*(up-t))) +

m*(up-low) + sigma/alpha*(c1*Z + c2*Z)
return ans

end

function integrand_E_Q_r(u, r_t, t)
ans = exp(-alpha*(u-t))*r_t + m*(1-exp(-alpha*(u-t)))
return ans

end

#int_S_T E_Q[r(u)|F_t]du:
integral_E_Q_r, _ = quadgk(u -> integrand_E_Q_r(u, r_t, t), S,T)

integral_E_Q_r
#--------------------------------------------------------------------------#
# Calculating a_hat_3M:
function B(t,S,T)

ans = (1/alpha)*(exp(-alpha*(S-t))-exp(-alpha*(T-t)))
return ans

end

function A(t,S,T)
first_part = m*(T-S) - m*B(t,S,T)
c1_2, _ = quadgk(u -> Sigma1(u, t, t, S)^(2), t,S)
c2_2, _ = quadgk(u -> Sigma2(u, t, S, T)^(2), S,T)

ans = first_part + (1/2)*(sigma^2/alpha^2)*(c1_2 + c2_2)
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return ans
end

function f_3M(t,S,T)
"
Vasicek representation of f^{3M}(t,S,T) as described in Eq. (5.4)
p.60↪→

"
ans = (1/(T-S))*(exp(A(t,S,T) + B(t,S,T)*r_t) - 1)
return ans

end

f_3M(0,S,T)

a_hat = integral_E_Q_r/((T-S)*f_3M(0,S,T))

#-------------------------------------------------------------------------------------------#
# 3M-arithmetic vs (a,b,c) 1M-SOFR futures:
integral1 , _ = quadgk(u -> integrand_E_Q_r(u, r_t, t), S,T1M)
integral2 , _ = quadgk(u -> integrand_E_Q_r(u, r_t, t), T1M,T2M)
integral3 , _ = quadgk(u -> integrand_E_Q_r(u, r_t, t), T2M,T)

f_1M_S_T1M = (1/(T1M-S))*integral1
f_1M_T1M_T2M = (1/(T2M-T1M))*integral2
f_1M_T2M_T = (1/(T-T2M))*integral3

#variable naming to be more consistent with MSc Thesis:
a = f_1M_S_T1M #alpha, I use alpha in Vasicek, hence a:
beta = f_1M_T1M_T2M #beta
gamma = f_1M_T2M_T #gamma

futures = [a,beta,gamma]

#E_Q[X^(3M_A)(S,T)|F_t] = q:
q = (1/(T-S))*integral_E_Q_r

#matrix of coeff:
M = [a^(2) a*beta a*gamma;

beta^(2) a*beta beta*gamma;
gamma^(2) a*beta beta*gamma]

#vector of values:
b = q.*[a;

beta;
gamma]

#optimal weight of futures:
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x_hat = inv(M)*b
#-------------------------------------------------------------------------------------------#
# incase M is not invertible:
# Define optimization problem
model = Model(HiGHS.Optimizer)
@variable(model, x[1:3])
@objective(model, Min, sum(x))
@constraint(model, M * x .== b)

# Solve optimization problem
optimize!(model)
# optimal value
x_tilde = value.(x)

#-------------------------------------------------------------------------------------------#
# Simulations:
n_sim = 10^(6)
#constants:
#int_S_T E_Q[r(u)|F_t]du:
integral_E_Q_r, _ = quadgk(u -> integrand_E_Q_r(u, r_t, t), S,T)

futures_weighted_M_inv = x_hat'futures
futures_weighted_BP = x_tilde'futures

Random.seed!(1234)
X_3MA = zeros(n_sim)
for i in 1:n_sim

#aritmetic interest rate relaization:
X_3MA[i] = (1/(T-S))*(int_r_start_stop(S,T,t))

end

mean(X_3MA)
#elementwise substraction:
ER_1 = X_3MA .-(1/(T-S))*integral_E_Q_r
ER_2_M_inv = X_3MA .-futures_weighted_M_inv
ER_2_random = X_3MA .-[0.33, -0.33, 0.33]'futures

#-----------------------------------------------------------
# plotting of histograms:
#hedge with a_{t}^{3M}- f^{3M}
mean_ER_1 = round(mean(ER_1), digits = 3)
sigma_ER_1 = round(std(ER_1), digits = 2)

#hedge with optimal (a_{t}^{1M}, b_{t}^{1M}, c_{t}^{1M})-f^{1M}
mean_ER_2_M_inv = round(mean(ER_2_M_inv), digits = 3)
sigma_ER_2 = round(std(ER_2_M_inv), digits = 2)

#not optimal 1M hedges, naive strategy:
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mean_ER_2_random = round(mean(ER_2_random), digits = 3)
sigma_ER_2_random = round(std(ER_2_random), digits = 2)

#ER_1
ticks_ER_1 = round.([mean_ER_1 + i*sigma_ER_1 for i in -3:1:3], digits =

3)↪→

histogram(ER_1,
color =:lightblue,
xlabel="Value",
ylabel="Frequency",
title =
L"Histogram\; of\; ER_{1}(0), \; s_{ER_{1}}\approx

0.01,\;n_{sim} = 10^{6}",↪→

labels = "ER_1(0)",
xticks = ticks_ER_1
)

vline!([mean_ER_1], lw = 5, labels = L"mean(ER_{1}(0))" )

#ER_2_M_inv:
ticks_ER_2_M_inv = round.([mean_ER_2_M_inv + i*sigma_ER_2 for i in

-3:1:3], digits = 3)↪→

histogram(ER_2_M_inv,
color =:lightblue,
xlabel="Value",
ylabel="Frequency",
title =
L"Histogram\; of\; ER_{2}^{M_{inv}}(0), \;

s_{ER_{2}^{M_{inv}}} \approx 0.01, \;n_{sim} = 10^{6}",↪→

labels = L"ER_{2}^{M_{inv}}(0)",
xticks = ticks_ER_2_M_inv
)

vline!([mean_ER_2_M_inv], lw = 5, labels = L"mean(ER_{2}^{M_{inv}}(0))")

#Naive strategy ER_2_random (0.33, -0.33, 0.33)
ticks_random = round.([mean_ER_2_random + i*sigma_ER_2_random for i in

-2:1:2], digits = 3)↪→

histogram(ER_2_random,
color =:lightblue,
xlabel="Value",
ylabel="Frequency",
title =
L"Hist\; of\; ER_{2}^{(\hat{a}_{0}, \hat{b}_{0},

\hat{c}_{0})}(0), \; s_{ER_{2}^{(\hat{a}_{0}, \hat{b}_{0},
\hat{c}_{0})}} \approx 0.01, \;n_{sim} = 10^{6}",

↪→

↪→
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labels = L"ER_{2}^{(0.33,-0.33,0.33)}(0)",
xticks = ticks_random
)

vline!([mean_ER_2_random], lw = 5, labels =
L"mean(ER_{2}^{(0,0,1)}(0))")↪→

#adressing normality:
#-----------------------------------------
x = ER_1[1:10^(6)]
y = rand(Normal(mean_ER_1, sigma_ER_1), 10^(6))

qqplot(x,y, title =
L"(Q-Q)\; plot\; of\; ER_{1}(0) \;vs\;

\mathcal{N}\left(\overline{ER_1(0)},
s_{ER_1(0)}^{2})\right)",

↪→

↪→

xlabel = "Theoretical Quantiles",
ylabel = "Sample Quantiles")
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C.1 Numerical Simulation For ESG swap rate

using Revise

using Random
using Distributions
using Statistics

using LinearAlgebra
using DataFrames

#using Combinatorics
using Plots

function create_array(dims::Array{Tuple{Int,Int},1})
"
Args:

dims{Array{Int64}}:
vector of tuples, where each element corresponds to

matrix-dimension↪→

Returns:
Array of matrices A = (M_{1}, ..., M_{n})
Each matrix can take on different dimensions, i.e.:
dimensions = [(m,n), (k,l), (r,q), ...]
The array will return an initialization of zero matrices

"
arr = Array{Array{Float64,2}}(undef, length(dims))

for (i, dim) in enumerate(dims)
arr[i] = zeros(dim...)

end

return(arr)
end
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function all_perm(xs, n)
"
Args:

xs{Vector}: input vector of what should be permutated
n{Int64}: desired length of vector

Returns:
generates permutation of elements in vector xs of length n
all_perm([0.0, 1.0], 2) = [0.0, 0.0],[1.0, 0.0], [0.0, 1.0],

[1.0, 1.0]↪→

all_perm([0.0, 1.0], 3) = [0.0, 0.0, 0.0], [0.0, 1.0, 0.0],
[1.0, 0.0, 0.0], ...↪→

"
return(vec(map(collect, Iterators.product(ntuple(_ -> xs, n)...))))

end

function OU_CPP(z0::Float64, beta::Float64, sigma::Float64,
lambda::Float64, mu::Float64, dt::Float64,T_end::Float64)↪→

"
Description:

dZ(t) = -beta*Z(t)dt + sigma*dW(t) + dI(t)
I(t): I(t) = sum_{i=1}^{N(t)}J_k, J_k ~ Exp(mu),
NB! Julia parametrize with 1/mu

Args:
z0{Float64}: inital value of the process Z(t)
beta{Float64}: mean-retreving parameter
sigma{Float64}: volatility parameter of Brownian Motion
lambda{Float64}: jump intensity of process, N(t)~ Pois(lambda*t)
dt{Float64}: stepsize
T_end{Float64}: for how long the simulation should go

Returns:
X(t) = 100exp(-Z(t))

"

time = collect(0:dt:T_end)
n = length(time)

#number of jumps from [0,T_end] on each dt: N(dt) ~ Pois(lambda*dt)
N = rand(Poisson(lambda*dt),n)

#Brownian motion W~N(0,dt) on [0,dt]
W = rand(Normal(0,1) ,n)

#intialising Z(t)
z = zeros(n)
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z[1] = z0

#dZ(t) = -beta*Z(t)dt + sigma*dW(t) + dI(t)
for i in 2:n

dI = sum(rand(Exponential(mu), N[i])) -
sum(rand(Exponential(mu), N[i-1]))↪→

z[i] = z[i-1] - beta*z[i-1]*dt + sigma*W[i]*sqrt(dt) + dI
end

#X(t) = 100exp(-Z(t))
x = 100*exp.(-z)
df = DataFrame(time = time, score = x)
return df

end

function simulation(n_sim, params, C_ESG, T_end, relevant_times)
"
Args:

n_sim{Int64}: number of simulations
params{Vector{Float64}}: the parameters in OU_CPP
C_ESG{Vector{Float64}}: ESG-criteria at time T_{i}
relevant_times{Vector{Float64}}: vector of relevant times, [T1,

T2, T3, ...],↪→

expressed as a percentage of the year.
"

"
returns:

m{Matrix{Float64}}: matrix checking if criteria at time T_{i} is
met or not.↪→

Each row in the matrix corresponds to a simulation, i.e.
m = [0,0,0; did not meet any criteria

0,1,1; met criteria at T2 and T3
... ]

"
z0 = params[1]
beta = params[2]
sigma = params[3]
lambda = params[4]
mu = params[5]

#store matrix of zeros, row = simulation number, col = agreed
observation times↪→

m = zeros(n_sim, length(relevant_times))
for i in 1:n_sim

#df_tmp: general simulation
df_tmp = OU_CPP(z0, beta, sigma, lambda, mu ,1/360, T_end)
#get the relevant time points as df:
df_relevant = filter(row -> row.time in relevant_times, df_tmp)
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#get the score:
relevant_score = df_relevant.score

#check if X_{T_{i}} <= C^_{T_{i}}^{ESG} for T_{1}, ..., T_{n}
ESG_criteria = relevant_score .<= C_ESG
ESG_criteria = Float64.(ESG_criteria)

#store ESG_criteria:
m[i, :] = ESG_criteria

end

return(m)
end

function D(i::Int, m::Matrix)
"
Args:

i{Int64}: index in sequence
m{Matrix}: matrix with measurements of whether criteria were met

or not.↪→

Returns:
D(i)-term in in E_{Q}[K_{i}^{ESG}(omega)|F_{t}] = kappa_t -

d*D(i)↪→

"
if i > size(m)[2]

return println("You cannot evaluate D outside of agreed
contract")↪→

end

#adjusting for column dimensions in Boolean check:
m_adj = m[:, 1:i]

v = all_perm([0.0, 1.0], i)
possible_patterns = mapreduce(permutedims, vcat, v)

#use the row sum to determine how many errors/fails there are:
success_sum = collect(0.0:Float64(i))

#p is the indicator of successes for the trial:
p = zeros(size(possible_patterns)[1], i+1)
for k in 1:(i+1)

p[:, k] = Bool[success_sum[k] == sum(possible_patterns[j, :])
for j=1:size(possible_patterns,1)]'↪→

end
#turn p into Boolean object so that we can use findall:
p = Bool.(p)

#store row dimensions, so that we can initialize array later
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row_dims = zeros(Int, i+1)
for i in 1:(i+1)

row_dims[i] = size(possible_patterns[findall(p[:, i]), :])[1]
end

#initializing the needed dimensions
dimensions = [(row_dims[k], i) for k in 1:(i+1)]
"
A: array of matricies, A=(M_1, ..., M_i)
Let i = 3:
M_1: matrix of patterns giving zero successes [0,0,0] (1x3)
M_2: matrix of patterns giving one succeses [0,0,1;

0,1,0;
1,0,0] (3x3)

M_3: matrix of patterns giving two succeses [1,1,0;
1,0,1;
0,1,1] (3x3)

etc.
"
A = create_array(dimensions)

for l in 1:(i+1)
A[l] = possible_patterns[findall(p[:, l]), :]

end

"
E_fails: (vector) Expecation of all linear combinations where:
E_fails[1]: expectation of all linear combinations giving all fails
(1 path)↪→

E_fails[2]: expectation of all linear combinaition giving fails, but
1 success (multiple paths)↪→

Let i=3: E_fails[1] = E[fff|F_t]
E_fails[2] = E[ssf|F_t] + E[sfs|F_t] + E[fss|F_t]

etc.
"
E_fails = zeros(i+1)

for l in 1:(i+1)
s = 0
for j in 1:size(A[l],1)

s += mean(Bool[A[l][j, :] == m_adj[r, :] for
r=1:size(m_adj,1)])↪→

end
E_fails[l] = s

end

#represents I_{2i}^{Even} = {2,...,2i}
I_2_Even = collect(2.0:2.0:Float64(2*i))
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#represents vector of sum_{alpha in I_{2i}^{Even}}[i-alpha],
weight = i .- I_2_Even

#all success, all success but one, all success but two, ...
E_success = reverse(E_fails)

#=
i*E_{Q}[\cap 1(A_{l})|F_t] +
sum_[alpha \in I_2_Even]sum_[j_1 != ... != j_I_alpha_Even]x
E_{Q}[(\cap 1(A_{l}))^[[j_{1} != ... != j_I_alpha_Even]]|F_t]
=#

ans = i*E_success[1] + sum(weight.*E_success[2:length(E_success)])

return(ans)
end

#nice parameters:
z0 = -log(20/100)
beta = -0.05
sigma = 0.02
lambda = 20.0
mu = 1/150
dt = 1/360

OU_params = [z0, beta, sigma, lambda, mu]

#ESG criteria:
C_ESG_reas = [17.8, 16.8, 15.8, 14.8]
C_ESG_wins = [24.0, 23.0, 22.0, 21.0]
C_ESG_loss = [5.0, 5.0, 5.0, 5.0]

T_end = 5.0
relevant_times = [1.25, 2.25, 3.25, 4.25]
n_sim = 10^(6)
n_sim_unreas = 10^(6)

m_reas = simulation(n_sim, OU_params, C_ESG_reas, 5.0, relevant_times)
m_wins = simulation(n_sim_unreas, OU_params, C_ESG_wins, 5.0,

relevant_times)↪→

m_loss = simulation(n_sim_unreas, OU_params, C_ESG_loss, 5.0,
relevant_times)↪→

#----------------------------------------------------------------------------
#kappa_{t}^{ESG} and kappa_{t}^{ZCB}:
d = 0.005
kappa_t_ZCB = 0.070
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function kappa_t_ESG(i, m)
"
The ESG swap rate process
Args:

i (Int64): corresponds to T_{i}
m (Matrix): matrix showing wheter or not criteria were met at

relevant T_{i}'s↪→

Returns:
The ESG swap rate process in ZCB case

"
ans = kappa_t_ZCB-d*D(i,m)
return round(ans, digits = 3)

end

#reasonable criteria:
println("(t, kappa_t_ZCB, kappa_t_ESG, C_ESG_reas, relevant_times)")
for i in 1:length(relevant_times)

println((i, kappa_t_ZCB ,kappa_t_ESG(i, m_reas), C_ESG_reas,
relevant_times))↪→

end

#wins all the time:
println("(t, kappa_t_ZCB, kappa_t_ESG, C_ESG_wins, relevant_times)")
for i in 1:length(relevant_times)

println((i, kappa_t_ZCB ,kappa_t_ESG(i, m_wins), C_ESG_wins,
relevant_times))↪→

end

#loss all the time
println("(t, kappa_t_ZCB, kappa_t_ESG, C_ESG_loss, relevant_times)")
for i in 1:length(relevant_times)

println((i, kappa_t_ZCB ,kappa_t_ESG(i, m_loss), C_ESG_loss,
relevant_times))↪→

end
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