
.

Master’s thesis

S-unit Attacks for Lattice-Based
Cryptography
The Mathematical Theory

Ingeborg Nedkvitne

Mathematics
60 ECTS credits

Department of Mathematics
Faculty of Mathematics and Natural Sciences

Spring 2023

Ingeborg Nedkvitne

S-unit Attacks for Lattice-Based
Cryptography

The Mathematical Theory

Supervisors:
Kristian Ranestad

Thomas Gregersen
Martin Strand

Abstract

Lattice-based cryptography derived from cylotomic rings, base their security
on two hard mathematical problems, finding the shortest and the closest
vector in a lattice. Even though there are many factors to consider when
analyzing attacks against cryptosystems, this thesis focus on the mathematical
theory. We study the properties of cyclotomic fields, S-units and how they
relate to lattices. We present a detailed step by step approach on how to
preform an S-unit attack and highlight the most important aspects to it. In
addition, we develop new and comprehensive examples that demonstrates the
different sides to such attacks.

i

ii

Contents

Acknowledgements v

1 Introduction 1
1.1 Outline 2
1.2 Notation 2

2 Lattice-Based Cryptography 5
2.1 Lattice Theory 5
2.2 Lattice-Based Cryptosystems 8
2.3 The Hard Mathematical Problems 13
2.4 The LLL Reduction Algorithm 15

3 Cyclotomic Rings 21
3.1 Cyclotomic Fields 21
3.2 S-units 31

4 S-unit Attacks in Cryptography 43
4.1 Unit Attacks 43
4.2 S-unit Attack 44

5 Examples of S-unit Attacks 47
5.1 Applying Unit Attacks to a General Ideal 47
5.2 Applying S-unit Attacks to a General Ideal 49
5.3 Applying S-unit Attacks to NTRU 57

6 Conclusion 61

References 63

A Computations 65
A.1 Computations for Example 2.27 65
A.2 Computations for Example 5.2.2 67

B Sage documentation 71
B.1 Prime Ideal Generators 71
B.2 Key Generator for NTRU 72
B.3 LLL-algorithm 73
B.4 Unit Attack 74
B.5 S-unit Attack 75

iii

iv

Acknowledgements

I want to thank my supervisor, Kristian Ranestad, for introducing me to algebra and for
the great guidance throughout this thesis. I also want to thank my supervisors, Thomas
Gregersen and Matrin Strand, for introducing me to lattice-based cryptography and
S-unit attacks, and for the additional help.

A special thank you to Leandros and Herman for the support during the two years.
To "løpegruppa" and everyone else in the study halls, thank you for the great company.

v

vi

Chapter 1

Introduction

Public key cryptography was first discovered in 1970’s by James H. Ellis [5] and was an
important development in cryptographic history. It consists of a secret and a public key,
where the encryption is held secure by hard mathematical problems. Until recently these
mathematical problems consisted of finding prime factorization of large numbers and the
discrete log problem, including elliptic curves. Both of these problems are considered
secure on classical computers, but with the threat of quantum computers becoming more
powerful in the future, these problems will no longer be hard. It was already showed by
Peter W. Shor in 1994 that such problems could easily be solved by quantum algorithms
[13]. Therefore, in 2016 the National Institute of Standards and Technology (NIST)
proposed to start a process for finding the next standardized public key cryptosystem
that is both secure against quantum and classical computers.

Most of the entries to this process were lattice-based and in July of 2022, they
announced that CRYSTALS-Kyber [11] was one of the most promising candidates for the
new standardization in public key cryptography. CRYSTALS-Kyber is a lattice-based
cryptosystem inspired by LWE and NTRU, both defined by cyclotomic rings. With
lattice-based cryptography as the new standard it is natural to ask the following questions:
are these schemes as secure as they seems? What if there is some not yet discovered
hidden mathematical theory that could be exploited?

Lattice-based cryptography was first introduced by Miklós Ajtai in 1996, and the first
lattice-based public key cryptosystem was introduced in 1998 by Jeffrey Hoffstein, Jill
Pipher, and Joseph H. Silverman. There have been several improvements since then, which
has produced many different variations of the original schemes, including CRYSTALS-
Kyber. Lattice-based cryptography depends on either of two hard mathematical problems,
the short vector problem and the closest vector problem. Today, there exists well known
algorithms that attempt to solve these problems, but they depend on the dimension of
the lattice, which makes them uncertain of how accurate their findings actually are. This
means that there has not yet been found any attacks proving lattice-based cryptography
insecure. Inspired by work of Daniel J. Bernstein and Tanja Lange [4], [2] we will look at
the mathematical theory of lattice-based cryptography and explore a potential attack
against them, namely S-unit attacks. This attack uses a very different approach than the
best algorithms we have today. Instead of looking at the properties of the cryptosystem as
a lattice, it rather attempts to exploits the properties of the cyclotomic ring itself. For the
mathematical theory we primarily rely on Lawrence C. Washington’s book Introduction
to Cyclotomic Fields [15] and Gerald J. Janusz’s book Algebraic Number Fields [6].

1

Chapter 1. Introduction

Our contribution is to present the mathematical theory behind cyclotomic fields
and S-units. We provide a detailed step by step approach on how to preform an S-unit
attack, declare mathematically the necessary choices done, along with simple examples
for each concept. Most importantly, we apply the theory through new and comprehensive
examples, where we implement all the techniques and display different outcomes of an
S-unit attack.

1.1 Outline

In Chapter 2 we start by introducing lattices and some of their properties. We look
at the basic concepts for lattice-based cryptography by describing the algorithms for
NTRU and LWE. Then we present the hard mathematical problems for lattices and
give a brief overview of why the existing algorithms for lattice attacks may not have
the most accurate estimations to these hard problems. We end the chapter with the
LLL-algorithm, including an example of a key recovery attack against NTRU.

The main mathematical theory is presented in Chapter 3. This is where we get an
understanding of cyclotomic rings, highlight their most important properties for S-unit
attacks and give some explanations for the choices we make. We introduce the concept of
S-units and how they are related to lattices by using well-known concepts from algebraic
number theory.

In the fourth chapter we describe the algorithms for attacks against lattice-based
cryptography. We begin with outlining the steps for a unit attack. Then we construct
an algorithm for S-unit attacks, where we also give some additional justification for
the choices we made, such as how to choose the prime ideals for the S-units and which
element we should attempt to reduce.

In Chapter 5 we present the main results through new and complex examples. These
examples will display how the algorithms work for concrete values, both for general ideals
and for specific attacks against NTRU. Most importantly, we construct new examples
showcasing the different outcomes when preforming an S-unit attack.

In the sixth and final chapter we conclude on what we have found, look at the
assumptions we have made for the S-unit attack and provide different areas that could
be interesting to explored further or done differently.

Most of the computations are done using SageMath [14], which is a free open-source
mathematics software written for calculations in algebra, number theory, calculus and
statistics. See Appendix B for SageMath documentation.

1.2 Notation

We write polynomials with bold font, such as a(x) = a0 + a1x+ a2x
2 + · · · am−1x

m−1,
to emphasize that they correspond to vectors. When we refer to the size of an element
v = (v1, ..., vn), it is the length of a vector with respect to the Euclidean norm on Rn,

∥v∥ =

√√√√ n∑
i=1

|vi|2.

The notion of a good basis for a lattice means a basis where the vectors are as orthogonal
as possible to each other and with the smallest size as possible. The notation ⌊·⌉ denotes
the round of to closest integer.

2

1.2. Notation

We denote sets without zero by F∗ and the residue class of integers co-prime to m
modulo m by (Z/mZ)∗. The sets on the form Zp are Z modulo p. We use the letter K
for the cyclotomic field and the letter R for the cyclotomic ring. For the the m’th root of
unity we use x, ζm and e2πi/m interchangeably.

Lower case p is reserved as prime elements in Z, capital P as prime ideals in the
cyclotomic ring R and p as prime ideals in a general ring. Unless otherwise, norm
is referred to the algebraic norm NK/Q(a) for the field extension K/Q . The infinite
norm and finite norm are absolute values, where we use finite norm and p-adic norm
interchangeably.

3

Chapter 1. Introduction

4

Chapter 2

Lattice-Based Cryptography

We begin by introducing lattices and some of their most important properties for lattice-
based cryptography. Then, we give a brief overview of two classical cryptosystems, NTRU
and LWE. We present the hard mathematical problems for lattices, including the bounds
and heuristics used for solving these. To end the chapter, we describe the LLL algorithm,
followed up with an example.

2.1 Lattice Theory

Definition 2.1. A lattice L is a finitely generated abelian subgroup of a real vector space
V ⊆ Rn on the form

L = {a1v1 + ...+ advd | ai ∈ Z}

where v1, ..., vd ∈ Rn are linearly independent vectors. If L has the same dimension as V
L is a full lattice and the basis v1, ..., vn of V is the basis of L.

The basis vectors v1, ..., vn can be written as the n× n-matrix ML with v1, ..., vn as
the columns. The span of a lattice L is the linear space spanned by its vectors,

span(L) = span(v1, ..., vn) = {My | y ∈ Rn}.

Let v1, ..., vn be a basis of L and let w1, ..., wn ∈ L be another set of vectors, then each
wi can be written as a linear combination of the basis vectors with integer coefficients
aij , such as

w1 = a11v1 + a12v2 + . . .+ a1nvn

w2 = a21v1 + a22v2 + . . .+ a2nvn
...

wn = an1v1 + an2v2 + . . .+ annvn.

The wi’s are also a basis for L if and only if the integer coefficients has a matrix

ML =


a11 a12 . . . a1n

a21 a22 . . . a2n
...
an1 an2 . . . ann


with determinant different from zero, i.e. det(ML) = ±1. This follows from the fact that
the coefficients are integers, hence det(ML) must be an integer and we have that

1 = det(I) = det
(
MLM

−1
L

)
= det(ML) det

(
M−1

L

)
,

5

Chapter 2. Lattice-Based Cryptography

where both det(ML) and det
(
M−1

L

)
are integers. Otherwise, if any of them were bigger

than 1 the other one must be less than 1, hence not contain integer coefficients for a
lattice.

Definition 2.2. For a full lattice L with the basis vector B = {v1, ..., vn}, the set

F = {a1v1 + ...+ anvn | 0 ≤ ai < 1, 1 ≤ i ≤ n}

is the fundamental domain for L.

Definition 2.3. Every vector w ∈ Rn can be written on the form w = t + v, called the
translates of F . The set

F + v = {w = t+ v | t ∈ F , v ∈ L}

is the union of all the translates which covers all of Rn as the v ranges over all the vectors
in L.

Definition 2.4. The volume of F is the determinant of L given by

Vol(F) = |det(L)|,

where the basis vectors B = {v1, ..., vn} of L have the coordinates vi = (ai1, ..., ain)
corresponding to the matrix

ML =


a11 a12 . . . a1n

a21 a22 . . . a2n
...
an1 an2 . . . ann

 .

The volume of F has an upper bound called Hadamard’s inequality

det(L) = vol(F) ≤ ∥v1∥∥v2∥ . . . ∥vn∥,

and the closer the basis is to being orthogonal the closer this inequality is an equality.
We define the Hadamard ratio to be

H(B) =
(det(L)

∥v1∥ . . . ∥vn∥

)1/n

,

for the basis B = {v1, ..., vn} of L. This has the ratio 0 < H(B) ≤ 1, and the closer it is
to be 1, the more orthogonal are the basis vectors.

Now, we present some important results that are useful when estimating the size of a
vector in a lattice, including Minkowski and Hermite’s Theorem.

Definition 2.5. Define the closed ball with center a ∈ Rn and radius r to be

Br(a) = {x ∈ Rn | ∥x− a∥ ≤ r}.

Theorem 2.6 (Janusz [6]). An additive subgroup L of V is a lattice if an only if every ball
Br contains a finite number of points of L.

6

2.1. Lattice Theory

Definition 2.7. Let S ⊆ Rn be a subset.

• S is bounded if the lengths of the vectors in S are bounded.

• S is symmetric if for every point x ∈ S, then −x ∈ S.

• S is convex if whenever two points x, y ∈ S, then x+y
2 ∈ S.

• S is a centrally symmetric, convex set if for every x, y ∈ S, we have that x−y
2 ∈ S.

Theorem 2.8 (Minkowski [6]). Let L ⊆ Rn be a full lattice and S a bounded, centrally
symmetric, convex subset of Rn. If Vol(S) > 2n Vol(L), then S contains a nonzero point
of L.

Proof. Let F be the fundamental domain for a lattice L. By definition we know that
every vector a ∈ S can be written as a = va + wa for va ∈ L and wa ∈ F , which means
elements from L and F will cover all of S . Now, consider the set

1
2S =

{1
2a | a ∈ S

}
,

then
Vol

(1
2S
)

= 2−nVol(S) > det(L) = Vol(F).

So, for L and F to cover all of S there must exists two distinct points a1, a2 ∈ S such
that for 1

2a1 = v 1
2 a1

+ w 1
2 a1

and 1
2a2 = v 1

2 a2
+ w 1

2 a2
, we have that v 1

2 a1
̸= v 1

2 a2
, but

w 1
2 a1

= w 1
2 a2

. This gives us the following

1
2a1 = v 1

2 a1
+ w and 1

2a2 = v 1
2 a2

+ w with v1, v2 ∈ L and w ∈ F
⇒ 1

2a1 − 1
2a2 = v 1

2 a1
− v 1

2 a2
∈ L.

Hence, we have a nonzero point v 1
2 a1

− v 1
2 a2

∈ L and since S is symmetric and convex we
also have that v 1

2 a1
− v 1

2 a1
= a1−a2

2 ∈ S.

Theorem 2.9 (Hermite [8]). Every lattice L of dimension n consists of a nonzero vector
v ∈ L such that

∥v∥ ≤
√
n · det(L)1/n.

Proof. Let L ⊆ Rn be a lattice and S ⊆ Rn the hypercube centered at 0 with sides of
length 2s, such that

S = {(x1, ..., xn) ∈ Rn | − s ≤ xi ≤ s, ∀ 1 ≤ i ≤ n}.

The set S is closed, bounded and symmetric, with Vol(S) = (2s)n. If we set s = det(L)1/n,
then Vol(S) = (2s)n = 2n det(L) and by Minkowski’s theorem there exists a nonzero
vector a = (a1, ..., an) ∈ S ∩ L with norm,

∥a∥ =
√
a2

1 + . . .+ a2
n ≤

√
s2 + . . .+ s2 =

√
n · s =

√
n · det(L)1/n.

7

Chapter 2. Lattice-Based Cryptography

2.2 Lattice-Based Cryptosystems

To understand how to construct an attack against lattice-based cryptography, we need
some knowledge about the actual cryptosystems. By introducing the well known
cryptosystems, NTRU and LWE, we get an idea of the basic concepts of the algorithms
within lattice-based cryptography and how to potentially break them. Today, these
cryptosystems are know to be insecure, but most of the new post-quantum algorithms
builds on the same theory and attain their security from the same hard mathematical
problems.

2.2.1 NTRU

We start by looking at the basic concept for the cryptosystem NTRU. Consider the
cyclotomic ring over the polynomial xm − 1 (for more details see Chapter 3)

R = Z[ζm],

and the two finite polynomial rings

Rp = R/pR = Zp[ζm] and Rq = R/qR = Zq[ζm],

where p, q are two primes, ζm is the m’th root of unity and gcd(m, p) =gcd(m, q) = 1.
The coefficients for an element in the ring R

a(x) = a0 + a1x+ a2x
2 + · · · am−1x

m−1 ∈ R

correspond to a vector on the form

(a0, a1, a2, ..., am−1) ∈ Zm.

The coefficients in the rings Rp and Rq lies between {0, 1, ..., p− 1} and {0, 1, ..., q − 1}
respectively. Further, we need the following definitions and results from Silverman [8].

Definition 2.10. For a polynomial ā(x) ∈ Rq, the center lift of ā(x) to R is the unique
polynomial a(x) ∈ R such that

a(x) (mod q) = ā(x)

where the coefficients are in the interval (−q/2, q/2).

Definition 2.11. For any positive integers d1 and d2 we let

T (d1, d2) =


d1 coefficients are equal to 1

a(x) ∈ R

∣∣∣∣∣ d2 coefficients are equal to − 1

all others equal to 0

 .
Polynomials in T (d1, d2) are called ternary polynomials.

Proposition 2.12. Let q be a prime. Then a(x) ∈ Rq has a multiplicative inverse if and
only if

gcd(a(x), xm − 1) = 1 in Rq.

If this is true, then the inverse a(x)−1 ∈ Rq can be computed using the extended Euclidean
algorithm to find polynomials f(x), g(x) ∈ Rq satisfying

a(x)f(x) + (xm − 1)g(x) = 1.

Then a(x)−1 = f(x) in Rq.

8

2.2. Lattice-Based Cryptosystems

Proof. Assume we have found two polynomials f(x),g(x) ∈ Rq such that

a(x)f(x) + (xm − 1)g(x) = gcd(a(x), xm − 1).

If gcd(a(x), xm − 1) = 1 we get that a(x)f(x) + (xm − 1)g(x) = 1 and by reducing modulo
(xm − 1) we get a(x)f(x) = 1 ∈ Rq. Hence, f(x) is the inverse of a(x). Conversely,
if a(x) ∈ Rq has a multiplicative inverse in Rq, then a(x) is a unit and there exists a
polynomial f(x) ∈ Rq such that a(x)f(x) = 1 ∈ Rq. This implies that

a(x)f(x) ≡ 1 (mod xm − 1),

and so there is a polynomial g(x) ∈ Rq satisfying

a(x)f(x) = 1 + (xm − 1)g(x) in Rq.

The following example shows how to find such multiplicative inverse to a polynomial.
For later, we use Sage when constructing the keys for NTRU. See Appendix B.2 for the
Sage code.

Example 2.13. Let m = 16 and q = 3, such that we have the cyclotomic rings R = Z[ζ16]
and R3 = Z3[ζ16]. Since the cyclotomic ring is over the polynomial x16 − 1, we have
that (−1)2 = 1 = x16 = (x8)2 and so x8 + 1 = 0 is the minimal polynomial for R. Let
a(x) = x6 −x5 −x3 +1 be a polynomial in R3, we want to find a(x)−1 (mod 3). First use
the Euclidean algorithm to compute the greatest common divisor of x6 − x5 − x3 + 1 and
x8 + 1 in Z3. Then, reverse the algorithm to find the inverse polynomial. The Euclidean
algorithm gives us

x8 + 1 = (x6 − x5 − x3 + 1)(x2 + x+ 1) + (2x5 + x4 + x3 − x2 − x)
x6 − x5 − x3 + 1 = (2x5 + x4 + x3 − x2 − x)(2x) + (x4 + x3 − x2 + 1)

2x5 + x4 + x3 − x2 − x = (x4 + x3 − x2 + 1)(2x− 1) + (x3 − 2x2 + 1)
x4 + x3 − x2 + 1 = (x3 − 2x2 + 1)(x) + (2x2 − x− 2)

x3 − 2x2 + 1 = (2x2 − x− 2)(2x) + (x− 2)
2x2 − x− 2 = (x− 2)(2x) + 1.

Then gcd(x8 + 1, x6 − x5 − x3 + 1) = 1, and the criteria for having an inverse is satisfied.
Now, reverse the Euclidean algorithm, which yields the following inverse polynomial

1 = (2x2 − x− 2) − (x− 2)(2x)
= (2x2 − x− 2) − (x3 − 2x2 + 1 − (2x2 − x− 2)(2x))(2x)
= (2x2 − x− 2)(x2 + 1) − (2x)(x3 − 2x2 + 1)
= (x4 + x3 − x2 + 1 − (x3 − 2x2 + 1)(x))(x2 + 1) − (2x)(x3 − 2x2 + 1)
= (x2 + 1)(x4 + x3 − x2 + 1) − (x3 − 2x2 + 1)(x3)
= (x2 + 1)(x4 + x3 − x2 + 1) − (2x5 + x4 + x3 − x2 − x− (x4 + x3 − x2 + 1)(2x− 1))(x3)
= (x4 + x3 − x2 + 1)(2x4 − x3 + x2 + 1) − (x3)(2x5 + x4 + x3 − x2 − x)
= (x6 − x5 − x3 + 1 − (2x5 + x4 + x3 − x2 − x)(2x))(2x4 − x3 + x2 + 1) − (x3)(2x5 + x4 + x3 − x2 − x)
= (2x4 − x3 + x2 + 1)(x6 − x5 − x3 + 1) − (2x5 + x4 + x3 − x2 − x)(x5 − 2x4 + 2x)
= (2x4 − x3 + x2 + 1)(x6 − x5 − x3 + 1) − (x8 + 1 − (x6 − x5 − x3 + 1)(x2 + x+ 1))(x5 − 2x4 + 2x)
= (x6 − x5 − x3 + 1)(x7 − x6 − x5 + x3 + 2x+ 1) − (x8 + 1)(x5 − 2x4 + 2x)

9

Chapter 2. Lattice-Based Cryptography

By taking the last equation modulo (x8 + 1) we have

1 = (x6 − x5 − x3 + 1)(x7 − x6 − x5 + x3 + 2x+ 1).

This means that f(x) = x7 −x6 −x5 +x3 + 2x+ 1 is the inverse of a(x) = x6 −x5 −x3 + 1
in R3.

We can now describe the NTRU public key cryptosystem. Let Alice be the receiver
and let Bob be the one sending Alice a message. Alice start by choosing some public
parameters (n, p, q, d), where n is the degree of the minimal polynomial of the field
extension, p and q are two distinct primes and d is the number of coefficients for the
ternary polynomials. NTRU has three algorithms, key generator (KeyGen), encryption
(Enc) and decryption (Dec). Alice starts by computing a key set using the following
algorithm,

Algorithm 1 KeyGen
1: Input the public parameters (n, p, q, d).
2: Choose a polynomial f(x) ∈ T (d+ 1, d) that is invertible in Rq and Rp.
3: Choose a polynomial g(x) ∈ T (d, d).
4: Compute fq(x) ≡ f(x)−1 (mod q) ∈ Rq.
5: Compute fp(x) ≡ f(x)−1 (mod p) ∈ Rp.
6: Compute h(x) ≡ fq(x) · g(x) ∈ Rq

7: Return the secret key sk = (f(x),g(x)) and the public key pk = h(x)

For Bob to encrypt a message he uses,

Algorithm 2 Enc
1: Input a message m(x) ∈ Rp.
2: Choose a random polynomial r(x) ∈ T (d, d).
3: Compute c(x) ≡ ph(x) · r(x) + m(x) (mod q) ∈ Rq.
4: Return c(x).

The last algorithm for Alice to decrypt the message is

Algorithm 3 Dec
1: Input an encrypted message c(x) ∈ Rq.
2: Compute a(x) = f(x) · c(x) = pf(x) · h(x) · r(x) + f(x) · m(x) = pf(x) · fq(x) · g(x) ·

r(x) + f(x) · m(x) = pg(x) · r(x) + f(x) · m(x) (mod q).
3: Center lift a(x) ∈ Rq to R.
4: Compute fp(x) · a(x) = pfp(x) · g(x) · r(x) + fp(x) · f(x) · m(x) ≡ m(x) (mod q)
5: Return the message m(x).

The decryption works since fp(x),g(x) and r(x) are all polynomials with small
coefficients, hence zero or close to zero when computing modulo p. We have the following
proposition which makes sure the polynomials will disappear.

Proposition 2.14. If the public parameters (n, p, q, d) are chosen to satisfy

q > (6d+ 1)p,

then the decrypted polynomial b(x) is equal to the plaintext m(x).

10

2.2. Lattice-Based Cryptosystems

To connect this cryptosystem to lattice theory we have that the public key

h(x) = h0 + h1x+ h2x
2 + · · · + hn−1x

n−1

corresponds to the vector h = (h0, h1, ..., hn−1). This can be used to generate a lattice
Lh, which gives the following 2n-dimensional NTRU lattice spanned by the rows of the
matrix,

Mh =



1 0 · · · 0 h0 h1 · · · hn−1
0 1 · · · 0 hn−1 h0 · · · hn−2
...

...
...

...
0 0 · · · 1 h1 h2 · · · h0
0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
...

...
0 0 · · · 0 0 0 · · · q


=
(
I h
0 qI

)
,

and we have the following result from [8].

Proposition 2.15. Assuming f(x) · h(x) ≡ g(x) (mod q), let u(x) ∈ R be the polynomial
satisfying

f(x) · h(x) = g(x) + qu(x).
Then

(f(x),−u(x))Mh = (f(x), g(x)),
so the vector (f(x), g(x)) is in the NTRU lattice Lh.

2.2.2 LWE

The other well know lattice-based cryptosystem is Learning with errors (LWE). From the
description by Peikert [12], this cryptosystem was originally based on integer vectors and
classic linear algebra. There are now many improved versions, including a ring based
(RLWE), which is the adaptation we will use. Let m = 2n, for n ∈ Z, such that we have
the cyclotomic ring

R = Z[x]/(xn + 1),
and for a positive integer q let

Rq = R/qR = Zq[x]/(xn + 1).

RLWE is based on the Ring Short Integer Solution (ring-SIS) problem which is defined
as follows,

Definition 2.16. Given m uniformly random elements ai ∈ Rq defining a vector a ∈ Rm
q ,

the ring short integer solution problem is to find a nonzero vector z ∈ Rm of norm
∥z∥ ≤ β, such that

⟨a, z⟩ =
∑

i

ai · zi = 0 ∈ Rq.

Remark 2.17. There are some important assumption when choosing the parameters. We
have that β < q, otherwise z = (q, 0, ..., 0) ∈ Rm would be a trivial solution. Next, β and
m must be large enough such that a solution is guaranteed, i.e. β ≥ √

m0 and m ≥ m0
where m0 ≥ log(q).

11

Chapter 2. Lattice-Based Cryptography

To define the RLWE cryptosystem, let χ be the Gaussian error distribution over R of
width αq for an α < 1.

Definition 2.18. Let s ∈ Rq be an element defined as the secret. Let As,χ be the ring LWE
distribution over Rq ×Rq defined by

(a, b = a · s+ e (mod q))

where a ∈ Rq is chosen randomly form a uniform distribution and e is chosen from χ.

The RLWE cyptosystem has the secret s ∈ Rq as the secret key and (a, b) ∈ Rq ×Rq

as the public key. To encrypt a message m ∈ R2, corresponding to a bit string with n
elements, we compute

c = (u, v) ≈
(
a · r, b · r +m · ⌊q2⌉

)
∈ Rq ×Rq,

where r ∈ R is chosen uniformly at random.
To decrypt the message we use the secret s ∈ Rq and compute

v − s · u = b · r +m · ⌊q2⌉ − s · a · r

= s · a · r + e · r +m · ⌊q2⌉ − s · a · r

= e · r +m · ⌊q2⌉

≈ m · ⌊q2⌉ (mod q).

We assume e ·r ≈ 0 (mod q) since it is a polynomial with small coefficients. Furthermore,
we check each coefficient of m · ⌊ q

2⌉. If it is close to 0 we assume the bit is 0, if it is closer
to ⌊ q

2⌉ we assume it is 1.
In the same way as NTRU, RLWE can be interpreted as a lattice by embedding

an ideal I ⊆ R corresponding to a cyclic lattice in Zn. Let a ∈ Rq be a polynomial
generating an ideal I ⊂ R. Then by letting the coefficients of a correspond to a vector
in Zn, and to the first column of the circular matrix Aa ∈ Zn×n

q , we have a lattice
La ∈ Zn generated by the columns of Aa. We draw m random elements ai ∈ Rq,
defining a vector a ∈ Zm, and construct the matrix Aai ∈ Zn×n

q for each ai. Define the
matrix A = [Aa1 | · · · | Aam] ∈ Zn×nm

q and the vector bt = stA + et (mod q). Now, let
bt = [bt

1 | · · · | bt
m] for each bi ∈ Zn

q . Then from the relation bt
i = stAai + et

i, we get

b̄t
i = bt

iA−1
ai

= st + et
iA−1

ai

for each i = 1, ...,m. We use this to find an error ei by combining different relations on
the form b̄t

i − b̄t
j = et

iA−1
ai

− et
jA−1

ai
for i ̸= j. Hence, finding one error ei yields the secret

s by computing

(bt
i − et

i) · A−1
ai

= stAai · A−1
ai

+ et
iA−1

ai
− et

iA−1
ai

= st.

12

2.3. The Hard Mathematical Problems

2.3 The Hard Mathematical Problems

In cryptography a Hard mathematical problem is defined as a mathematical problem
that cannot be solved in polynomial time, i.e. there is no algorithm that solves the
problem with a running time upper bounded by a polynomial expression. In lattice-based
cryptography there are two such problems to analyze. Let L ⊂ Rn be a lattice and
v = (v1, ..., vn) an element in L. We define λ1(L) = minw∈L∥w∥ to be the smallest vector
in the lattice. Then we have the following two problems:

• The Shortest Vector Problem (SVP): Find a nonzero vector v ∈ L that satisfies
∥v∥ = λ1(L).

• The Closest Vector Problem (CVP): For a given vector w ∈ Rn, find a vector
v ∈ L that minimizes ||w − v||.

Since these are hard mathematical problems and we are working in high dimensional
lattices, it is most likely not possible to find the exact values as described above.
Therefore, we often rewrite these problems with an approximation factor. Let γ be the
approximation factor depending on the dimension n of the lattice. Then we have the
following problems.

• The Approximate Shortest Vector Problem (apprSVPγ): Find a nonzero
vector v ∈ L satisfying ∥v∥ ≤ γ · λ1(L).

• The Approximate Closest Vector Problem (apprCVPγ): For a given vector
w ∈ Rn, find a nonzero vector v ∈ L such that ∥v − w∥ ≤ γ · dist(w,L).

For NTRU the hard mathematical problem is to recover the secret key, by only knowing
the public parameters (n, p, q, d) and the public key h(x). From the hidden relationship

f(x) · h(x) ≡ g(x) (mod q),

where f(x) and g(x) have very small coefficients, it is possible to find a small vector in
the lattice Lh corresponding to the vector (f(x),g(x)).

Also for RLWE, the hard mathematical problems is to recover the secret s ∈ Rq. As
mentioned at the end of Section 2.2.2, elements of Rq corresponds to a circular lattice
La in Zn. From the public key (a, b = a · s + e (mod q)), we use the polynomial a to
construct the matrix Aa ∈ Zn×n

q generating La, and the polynomial b to obtain the
relation bt = stA + et (mod q) as a vector. Then, finding the secret s ∈ Rq corresponds
to solving SV P and CV P for La.

2.3.1 Bounds and Heuristics

We will now look at how we can estimate the length of short elements in a lattice.

Definition 2.19. For a given lattice L of dimension n the Hermite’s constant is defined as

γn = sup
L

λ1(L)2

det(L)2/n
.

In other words, the estimate for the smallest nonzero vector v ∈ L is

∥v∥2 ≤ γndet(L)2/n.

13

Chapter 2. Lattice-Based Cryptography

To improve Hermite’s constant we apply Theorem 2.8, but first an estimation on the
volume of a closed ball.

Definition 2.20. The Gamma function Γ(s) for s > 0 is the integral

Γ(s) =
∫ ∞

0
ts−1e−tdt.

Theorem 2.21. The volume of Br(a) is

Vol(Br(a)) = πn/2rn

Γ(1 + n/2) .

For large values of n we have the following approximation of the volume,

Vol(Br(a))1/n ≈
√

2πe
n

· r.

Proof. Proving the first part of the theorem is done by using basic integration techniques
with polar coordinates. The second part follows from applying the Stirling formula for
the gamma function, which gives us

Vol(Br(a))1/n = πn/2rn

Γ(1 + n/2) ≈ πn/2rn

(n/2e)1/2 =
√

2πe
n

· r

Now, let Br = Br(0) be a ball at center 0 with radius r. By Theorem 2.8 we want a
radius to satisfy,

Vol(Br) ≥ 2ndet(L),

such that Br contains a nonzero lattice point. Using the approximation of the volume
above we get a ball with radius

r ⪆

√
2n
πe

· det(L)1/n.

This means there exists a nonzero vector v ∈ L satisfying,

∥v∥ ⪅

√
2n
πe

· det(L)1/n.

Lastly, we need the approximation, |Br ∩ L| ≈ Vol(Br)/Vol(L), of how many copies of F
that fits into the ball Br. This is not very useful when n is large and the radius r small,
so assume the ratio Vol(Br)/Vol(F) is close to 1. Then for a large value of n we have

(2πe
n

)n/2
· rn ≈ Vol(Br) = Vol(F) = det(L)

⇒ r ≈
√

2n
πe

· det(L)1/n.

We have come to the following definition for the smallest vector in a lattice.

14

2.4. The LLL Reduction Algorithm

Definition 2.22. Let L be a lattice of dimension n. The Gaussian expected shortest length
is

σ(L) =
√

n

2πe · det(L)1/n.

The Gaussian heuristics says that a length of a shortest nonzero vector in a random
lattice L will satisfy

λ1(L) ≈ σ(L).

More precisely, for a fixed ϵ > 0, a randomly chosen lattice L will satisfy,

(1 − ϵ)σ(L) ≤ λ1(L) ≤ (1 + ϵ)σ(L).

This estimate increases with the dimension of the lattice, and the bounds for the estimated
size of the smallest element will become too large. Therefore, it provides an ambiguous
result when attempting to find a small vector.

2.4 The LLL Reduction Algorithm

We describe the well known Lenstra–Lenstra–Lovász (LLL) algorithm for lattice reduction
to present the main idea of how to solve the hard mathematical problems. The LLL
algorithm solves both apprSVPγ and apprCVPγ within a factor depending on the
dimension of the lattice. The algorithm does very well for small dimension lattices, but
as shown in Section 2.3.1 the approximation factor have a tendency to become too large
and imprecise for high dimensions.

To describe the LLL algorithm we first introduce the Gaussian lattice reduction
algorithm, a reduction algorithm for 2-dimensional lattices. The LLL algorithm builds on
the same concept, but for higher dimension lattices. The idea of the Gaussian algorithm
is to find a good basis for a given lattice, i.e. to find basis vectors that are as short and
as orthogonal as possible to each other. Since we are working in a lattice, the coordinates
of the basis vectors are integers, and fully orthogonal basis vectors may not exist.

Assume L ⊂ R2 is a 2-dimensional lattice with the basis vectors v1 and v2. If
∥v1∥ > ∥v2∥, we swap the vectors. Otherwise, we make v2 smaller by subtracting a
multiple of v1. From linear algebra

v∗
2 = v2 − v1 · v2

∥v1∥2 · v1

is the projection of v2 onto the orthogonal complement of v1. Since v1·v2
∥v1∥2 is most likely

not an integer, v∗
2 may not be in the lattice. Therefore, we subtract with the closest

round off to an integer instead,

v∗
2 = v2 −m · v1 where m =

⌊
v1·v2
∥v1∥2

⌉
and set v2 = v∗

2. If ∥v1∥ < ∥v2∥, we are done and we return the reduced basis vectors. If
∥v1∥ > ∥v2∥, we swap v1 and v2, and do the same processes until ∥v1∥ < ∥v2∥. This can
be summed up with the following algorithm from Silverman [8].

15

Chapter 2. Lattice-Based Cryptography

Algorithm 4 Gaussian Lattice Reduction Algorithm
Input: Lattice L with basis v1, v2.
Output: A reduced basis v1 and v2.

1: If ∥v1∥ > ∥v2∥ swap v1 and v2
2: Compute m = ⌊ va·v2

∥v1∥2 ⌉
3: if m = 0 then
4: return v1 and v2.
5: else
6: Replace v2 with v2 −mv1.
7: end if
8: Repeat from step 1.

Now, assume L ⊂ Rn is a lattice with a basis B = {v1, ..., vn}. To find a good basis for L
we need the following inequality,

det(L) = Vol(F) ≤ ∥v1∥ · · · ∥vn∥,

where Vol(F) is the volume of the fundamental domain of L. When the vectors are
orthogonal this inequality becomes an equality. From the basis B, we compute a set with
Gram-Schmidt orthogonal basis vectors B∗ = {v∗

1, ..., v
∗
n}, by the following algorithm

Algorithm 5 Gram-Schmidt Algorithm
Input: A basis v1, ..., vn for a vector space v ⊂ Rn.
Output: Orthogonal basis v∗

1, ..., v
∗
n for V .

1: Set: v∗
1 = v1

2: for i = 2, 3, ..., n do
3: Compute: µi,j = vi·v∗

j

∥v∗
j ∥2 for 1 ≤ j ≤ i− 1

4: Set: v∗
i = vi −

∑i−1
j=1 µi,j · v∗

j

5: end for

The vectors in B∗ are most likely not in L, and therefore not a basis for the lattice, but

det(L) =
n∏

i=1
∥v∗

i ∥.

This follows from Section 2.1. Let MB be the matrix for the basis vectors in B and
MB∗ be the matrix for B∗. Let A be the change of basis matrix such that we have
AMB∗ = MB. Then,

det(L) = | det(MB)| = | det(AMB∗)| = | det(A) det(MB∗)| = | det(MB∗)| =
n∏

i=1
∥v∗

i ∥,

since det(A) = ±1. Thus, the orthogonal basis B∗ defines when a lattice is LLL-reduced.

Definition 2.23. Let B = {v1, ..., vn} be a basis for a lattice L and let B∗ = {v∗
1, ..., v

∗
n} be

the associated Gram-Schmidt orthogonal basis. The basis B is said to be LLL-reduced if
it satisfies the following conditions,

Size condition: µi,j = vi·v∗
j

∥v∗
j ∥2 ≤ 1

2 for all 1 ≤ j < i ≤ n.

Lovász condition: ∥v∗
i ∥2 ≥

(
3
4 − µ2

j,i−1

)
∥v∗

i−1∥2 for all 1 < i ≤ n.

16

2.4. The LLL Reduction Algorithm

Theorem 2.24 (Silverman [8]). Let L be a lattice of dimension n. Any LLL-reduced basis
B for L has the following properties,

∏n
i=1 ∥vi∥ ≤ 2n(n−1)/4 det(L) and ∥vj∥ ≤ 2(i−1)/2∥v∗

i ∥

for all 1 ≤ j < i ≤ n. Further, the initial vector in a LLL-reduced basis satisfies

∥v1∥ ≤ 2(n−1)/4| det(L)|1/n and ∥v1∥ ≤ 2(n−1)/2 min
0̸=v∈L

∥v∥.

Thus an LLL-reduced basis solves apprSVP within a factor of 2(n−1)/2.

The LLL reduction algorithm can be summarized with the following algorithm from
Silverman [8].

Algorithm 6 LLL Lattice Reduction Algorithm
Input: A basis v1, ..., vn for lattice L.
Output: LLL-reduced basis v1, ..., vn.

1: Set: k = 2
2: Set: v∗

1 = v1
3: while k ≤ n do
4: for j = k − 1, ..., 1 do
5: Set : vk = vk − ⌊µk,j⌉vj

6: end for
7: if ∥v∗

k∥2 ≥ (3
4 − µ2

k,k−1)∥v∗
k−1∥2 then

8: Set: k = k + 1
9: else

10: Swap: vk−1 and vk

11: Set: k = max{k − 1, 2}
12: end if
13: end while

Remark 2.25. Every time we find a new representative for vk we need to update the
values of the Gram-Schmidt vectors v∗

1, ..., v
∗
n for the rest of the calculations.

The LLL algorithm solves apprSVPγ , but if we combine it with Babai’s algorithm we
can also solve apprCVPγ .

Theorem 2.26 (Silverman [8]). There is a constant C such that for any lattice L of
dimension n given by a basis v1, ..., vn the following solves apprCVP within a factor of
Cn.

1. Use LLL to reduce the basis v1, ..., vn.
2. Use Babai’s algorithm on the LLL-reduced basis.

Where Babai’s algorithm is as follows,

17

Chapter 2. Lattice-Based Cryptography

Algorithm 7 Babais Round-off Algorithm
Input: Lattice L with basis v1, ..., vr and a vector y ∈ Rr.
Output: A vector y′ ∈ L close to y.

1: Find a vector t = (t1, ..., tr) ∈ Rr by solving t ·MU = y.
2: Round of each coordinate by setting t = (⌊t1⌉, ..., ⌊tr⌉).
3: Write y′ = t1v1 + ...+ trvr.

We end this section with an example where we solve both SVP and CVP for a given
lattice.

Example 2.27. Let L ⊂ R4 be a lattice of dimension 4. Let B = {v1, v2, v3, v4} be a basis
with the following coordinates

v1 = (10, 194,−118, 22)
v2 = (66, 163,−122, 15)
v3 = (−28, 63, 155, 65)
v4 = (−158,−39,−149, 146).

We start by solving SVP. The smallest vector is v3, with the size ∥v3∥ = 181.667. For the
Hadamard ratio, we have det(L) = 431738302 and ∏4

i=1 ∥vi∥ = 2354905381, which gives

H(B) =
(det(L)

∥v1∥ . . . ∥v4∥

)1/n

=
(431738302

2354905381

)1/4
= 0.65.

Algorithm 6 reduces the basis vectors to

v1 = (56,−31,−4,−7)
v2 = (28, 32, 151, 58)
v3 = (66, 163,−122, 15)
v4 = (−18,−69,−6, 190).

For detailed step by step calculations see Appendix A.1. Now, the smallest vector is v1,
with the size ∥v1∥ = 64.513. The product of the vectors are ∏4

i=1 ∥vi∥ = 470023074 and
the Hadamard ratio is

H(B) =
(431738302

470023074

)1/4
= 0.98.

Hence, the new basis vectors are almost orthogonal to each other and the smallest vector
is much smaller.

To solve CVP, assume we have the vector

y = (52.43,−32.51,−2.39, 132.48) ∈ R4,

which is not in the lattice. We want to find the closest vector to y in L. First we apply
Algorithm 7 with the original basis, and then with the reduced basis. Let M1 denote the
matrix with the original basis and M2 denote the matrix with the reduced basis. From
Algorithm 7 the equation t1 ·M1 = y gives the vector

t = (−2.97, 3.17, 0.84, 0.65) ≈ (−3, 3, 1, 1)

corresponding to the closest vector

y1 = −3 · v1 + 3 · v2 + v3 + v4 = (−18,−69,−6, 190) ∈ L.

18

2.4. The LLL Reduction Algorithm

For the new and reduced basis, the equation t2 ·M2 = y gives the vector

t = (0.82, 0.19, 0.20, 0.65) ≈ (1, 0, 0, 1)

corresponding to the closest vector

y2 = v1 + v4 = (38,−100,−10, 183) ∈ L.

By comparing the size difference for both of these vectors

∥y − y1∥ = 98.05 > 85.87 = ∥y − y2∥,

we observe that the reduced basis gives us a vector that is closer to the original vector y.

2.4.1 Applying LLL to NTRU

We end the chapter by applying the LLL algorithm to find the secret key for the NTRU
cryptosystem. This algorithm solves SVP for the NTRU lattice. Recall from Section
2.2.1 that we have the public parameters (n, p, q, d) and the cyclotomic rings on the form

R = Z[x]/(xn + 1), Rp = Zp[x]/(xn + 1) and Rq = Zq[x]/(xn + 1).

The secret key is on the form sk = (f(x), g(x)), for two ternary polynomials f(x), g(x) ∈
R. The public key is the polynomial pk = h(x) ∈ Rq, with the relation h(x) = fq(x) ·g(x)
(mod q).

For this example, let the public parameters be (n, p, q, d) = (8, 3, 41, 2) and let the
secret key consist of the polynomials,

f(x) = x6 − x4 + x3 + x2 − 1 and g(x) = x6 + x4 − x2 − x.

We use Sage to compute the public key

h(x) = 34x7 + 31x6 + 5x5 + 5x4 − 21x3 − 19x2 − 38x− 12.

See Appendix B.2 for the calculations done by Sage. Form the public parameters and
the public key we construct the NTRU lattice which is generated by the rows of the
2n× 2n = 16 × 16-dimensional matrix,

Mh =



1 0 0 0 0 0 0 0 −12 −38 −19 −21 5 5 31 34
0 1 0 0 0 0 0 0 −34 −12 −38 −19 −21 5 5 31
0 0 1 0 0 0 0 0 −31 −34 −12 −38 −19 −21 5 5
0 0 0 1 0 0 0 0 −5 −31 −34 −12 −38 −19 −21 5
0 0 0 0 1 0 0 0 −5 −5 −31 −34 −12 −38 −19 −21
0 0 0 0 0 1 0 0 21 −5 −5 −31 −34 −12 −38 −19
0 0 0 0 0 0 1 0 19 21 −5 −5 −31 −34 −12 −38
0 0 0 0 0 0 0 1 38 19 21 −5 −5 −31 −34 −12
0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41


19

Chapter 2. Lattice-Based Cryptography

We recover the secret key by finding the polynomials f(x) and g(x) in the reduced matrix
of Mh. We reduce Mh by using the LLL algorithm. We use Sage to reduce Mh, see
Appendix B.3, and we get the following reduced matrix,

M red
h =



−1 0 1 0 1 0 −1 −1 1 0 1 0 0 1 1 0
1 1 −1 0 1 0 1 0 −1 0 1 0 1 0 0 1
1 −1 0 1 0 1 0 −1 0 1 0 1 0 0 1 1
0 1 1 −1 0 1 0 1 −1 −1 0 1 0 1 0 0

−1 0 1 1 −1 0 1 0 0 −1 −1 0 1 0 1 0
−1 0 −1 0 1 1 −1 0 −1 0 0 −1 −1 0 1 0
0 1 0 −1 −1 1 0 −1 0 0 1 1 0 −1 0 −1
0 1 0 1 0 −1 −1 1 0 1 0 0 1 1 0 −1

−3 −4 −2 0 −6 2 −5 3 −3 −3 5 −2 5 1 −4 6
2 0 6 −2 5 −3 −3 −4 −5 2 −5 −1 4 −6 −3 −3
4 2 0 6 −2 5 −3 −3 3 −5 2 −5 −1 4 −6 −3

−3 −3 −4 −2 0 −6 2 −5 −6 −3 −3 5 −2 5 1 −4
0 6 −2 5 −3 −3 −4 −2 2 −5 −1 4 −6 −3 −3 5
2 −5 3 3 4 2 0 6 1 −4 6 3 3 −5 2 −5

−6 2 4 4 1 0 5 −2 −3 6 2 3 −6 2 −5 −2
5 −2 6 −2 −4 −4 −1 0 −5 −2 3 −6 −2 −3 6 −2


To recover the polynomials f(x) and g(x) from M red

h , we find the smallest vector and
divide it in the middle into two vectors. If the two vectors corresponds to two nonzero
polynomials with small coefficients, we are satisfied. In this case, the first eight rows all
have length

√
9. We choose the first row corresponding to the vector

v1 = (−1, 0, 1, 0, 1, 0,−1,−1, 1, 0, 1, 0, 0, 1, 1, 0)

and divide it into the two vectors

w1 = (−1, 0, 1, 0, 1, 0,−1,−1) and w2 = (1, 0, 1, 0, 0, 1, 1, 0).

Then each entry will be the coefficient for the two polynomials representing the secret
key. The leftmost entry represents the constant term and the rightmost entry represents
the coefficient for x7. From the public parameter d = 2, we know that f(x) should have
5 coefficients and g(x) should have 4, so let w1 be a representative for f(x) and w2 for
g(x). The secret key is then,

f̃(x) = −1 + x2 + x4 − x6 − x7 and g̃(x) = 1 + x2 + x5 + x6.

If we multiply these polynomials with x4, we recover the exact same secret key as we
had in the beginning,

f(x) = x4 · f̃(x) = x6 − x4 + x3 + x2 − 1 and g(x) = x4 · g̃(x) = x6 + x4 − x2 − x.

Hence, it is the same polynomials up to units, and sk = (f̃(x), g̃(x)) works just as fine
for decryption as the original secret key sk = (f(x), g(x)).

In this example the LLL algorithm worked perfectly, in fact we recovered precisely
the key set that we wanted.

20

Chapter 3

Cyclotomic Rings

The mathematical theory needed for S-unit attacks lies within cyclotomic fields and
p-adic numbers. With this chapter we present the most important mathematical theory
that can be used against lattice-based cryptography. We introduce the concept of S-units
and demonstrate how to find them for a given cyclotomic ring.

A cyclotomic ring is the ring of integers in the cyclotomic field of the field
extension K/Q. For the most part we will be looking at cyclotomic rings on the
form R = Z[x]/(xn + 1). S-units are elements in the cyclotomic ring on the form

a =
∏

i

ani
i ,

where ai are generators for the S-unit group, consisting of cyclotomic units and generators
of prime ideals in R.

3.1 Cyclotomic Fields

3.1.1 Basics

Lattice-based cryptography are often based on polynomial rings, where the ring comes
form various field extensions. In our case it comes form cyclotomic fields, so it is necessary
to understand the mathematical theory of such fields when considering a attack against
them.

Definition 3.1. The mth roots of unity are all the roots ζm = e2πi/m of the equation
xm − 1 = 0. It is called primitive if m is the smallest integer such that xk − 1 = 0 for
k < m.

Definition 3.2. A cyclotomic field of mth roots of unity is the splitting field of the
polynomial Xm − 1 over the rational field Q, written as Q(ζm) or K = Q(x)/Φm(x),
where Φm(x) is the minimal polynomial.

Let K = Q(ζm) be a cyclotomic field where m = q = pa for a prime p ∈ Z and integer
a > 0. The Euler function at q is ϕ(q) = pa−1(p− 1) and Φm(x) is the polynomial

Φm(x) =
∏

(m,j)=1
(x− ζj

m) = xpa − 1
xpa−1 − 1

= tp−1 + tp−2 + ...+ t+ 1,

where t = xpa−1 . We have the following properties for a cyclotomic field.

21

Chapter 3. Cyclotomic Rings

Properties 3.3.

1. [Q(ζm) : Q] = ϕ(q) = pa−1(p− 1) is the degree of the field extension.
2. Φm(x) is irreducible over Q and is the minimal polynomial of ζm.
3. The cyclotomic ring is R = Z[ζm].
4. The discriminant of K/Q is ∆K = ±ppa−1(ap−a−1).
5. The prime p ∈ Z is the only prime that ramifies in R with ramification index
e = Φm(q) > 1.

6. Gal(Q(ζm)/Q) ≃ (Z/mZ)∗.
7. The element α = 1 − ζm generates a prime ideal αR ⊂ R and pR = (αR)ϕ(m) for the

prime element p ∈ Z, where p|m.

Remark 3.4. We will be working with cyclotomic fields where m = 2n and n = 2k. Then
the minimal polynomial is Φm(x) = xn + 1 and the cyclotomic field can be written on
the form K = Q(x)/(xn + 1) with the corresponding cyclotomic ring R = Z[x]/(xn + 1).

From Property 6 in 3.3 we define the following embedding.

Definition 3.5. Let G = Gal(Q(ζm)/Q) be the Galois group such that σj ∈ G is an
embedding of K into C defined as,

σj : K −→ C
x 7−→ ζj

for all j ∈ (Z/mZ)∗.

Since cyclotomic fields are separable field extensions, the Galois group and the
embedding defined above, can be used to calculate the norm and trace for elements in K.

Theorem 3.6 (Janusz [6]). For an element a ∈ K we have

• The trace of K over Q is TK/Q(a) = ∑n
i σi(a),

• The norm of K over Q is NK/Q(a) = ∏n
i σi(a).

An important part of S-unit attacks is the prime ideals. Therefore, we need to know
how the prime ideals behave and how to find them for a cyclotomic ring. We use the
following two theorems to identify the prime ideals, which we later use in Section 3.2.1
to find a generator for the same prime ideals.

Theorem 3.7 (Washington [15]). Let p be a prime such that p ∤ m and let f be the smallest
positive integer such that pf ≡ 1 (mod m). Then p splits into g = ϕ(m)/f distinct primes
in Q(ζm) each with residue class degree f . In particular, p splits completely ⇔ p ≡ 1
(mod m).

Theorem 3.8 (Kummers Theorem [15]). Let A be a Dedekind domain with quotient field
K, let L/K be a finite separable extension, and let B be the integral closure of A in L.
Suppose B = A[α] for some α ∈ L and let f(x) the irreducible polynomial for α over K.
Let p be a prime ideal of A and f(x) denote reduction modulo p. Suppose

f(x) = ge1
1 . . . get

t

is the factorization of f(x) mod p into powers of distinct monic irreducible polynomials
over (A/p)[x]. Let gi(x) ∈ A[x] be a monic polynomial which reduces mod p to gi(x). Let

22

3.1. Cyclotomic Fields

Pi be the ideal of B generated by p and gi(α). Then Pi is a prime ideal of B lying over
p, et is the ramification index, the Pi’s are distinct, and

pB = P e1
1 · · ·P et

t

is the factorization of p in B.

Again, since a cyclotomic field is a splitting field over Q, i.e. K/Q is a finite separable
extension, we can apply this theorem by factoring the minimal polynomial Φm(x) mod p
as

Φm(x) = g1(x)e1 . . . gt(x)et .

Then Pi = (p, gi(ζm)) is a prime ideal in R. Furthermore, by Remark 3.4 the minimal
polynomial is on the form

Φm(x) = xn + 1 =
∏

(m,j)=1
(x− ζj

m),

and whenever p ≡ 1 (mod m) we have that there exists an integer a such that
Φm(a) = ∏

(m,j)=1(a − ζj
m) ≡ 0 (mod p). Hence, Pi = (p, a − ζm) will be a prime

ideal in R.
Lastly, we need to introduce the maximal real embedding of a cyclotomic field. For

any embedding of Q(ζm) into C, the complex conjugate acts as an automorphism by
sending ζm 7−→ ζ−1

m . This can be used to define the maximal real embedding of Q(ζm).

Definition 3.9. The maximal real embedding of Q(ζm) is

Q(ζm)+ = Q(ζm + ζ−1
m) = Q(cos(2π/m)).

The extension Q(ζm)/Q(ζm + ζ−1
m) is of degree 2, i.e. ζm is a root of the polynomial

x2 − (ζm + ζ−1
m)x+ 1, and the associated ring is R+ = Z(ζm + ζ−1

m).

3.1.2 Class Group

The theory of class groups is important when considering attack against lattice-based
cryptography. We give a brief overview of the theory, and for the rest of the thesis we
only focus on the part pertaining to principal ideal domains (PIDs).

Definition 3.10. A fractional ideal of R is a finitely generated R-submodule I ⊆ K such
that there exists a nonzero element r ∈ R where rI ⊆ R. Each fractional ideal I has an
inverse I−1 = {a ∈ K | aI ⊆ R}.

The set of fractional ideals of R forms an abelian group, where R = (1) is the identity,
the product of two fractional ideals I, J is defined as IJ = {

∑
i aibi | ai ∈ I, bi ∈ J} and

I is invertible if there exists a fractional ideal I−1 such that II−1 = R.
From this we define the class group, which can be used as a measure of how far an

ring of algebraic integers R is from being a PID.

Definition 3.11. Let I(R) be the collection of all fractional ideals of R, the ideal group, and
P(R) the collection of all the principal ideals. Then the class group of R is defined as

C(R) = I(R)/P(R).

The order of C(R) is the class number of K, denoted hK . Notice that if C(R) = 1, then
R is a PID.

23

Chapter 3. Cyclotomic Rings

The class group can be seen as the set of equivalence classes of nonzero fractional ideals
of R. Two nonzero ideals α and β are equivalent if α = βc for some nonzero c ∈ K. Then
the equivalence class of α is denoted by [α].

In lattice-based cryptography the cyclotomic rings are of high dimensions, which
makes them more likely to not be PIDs. If that is the case we would first need to find
the principal representations of the ideals in the ring, called an S-generator, and then
perform an S-unit attack. Whenever m is a power of 2 it is conjectured [10] that all
cyclotomic rings have class number 1 in the maximal real subfield. This means that for
sufficiently large values of m, we can first map the elements to the maximal real subfield,
and then find a short generator using S-unit attacks. For cyclotomic rings where m is
not a power of 2, Jean-François Biasse and Fang Song [7], [3] have described quantum
algorithms for finding S-generators. However, in our case we choose small values for m
such that the cyclotomic rings are PIDs.

3.1.3 Cyclotomic Units

In a general algebraic number field it can be hard to determine all the units in the ring
of integers. However, for cyclotomic rings we have something called cyclotomic units,
which can be given explicitly with finite index in the full group of units.

An element a ∈ R is a unit if there exists an element b ∈ R such that ab = 1 in R.
Moreover, a unit will always have norm equal to 1 and vice versa, i.e. u ∈ R is a unit
⇔ N (u) = 1. Let r1 be the number of real embeddings of K and r2 be the number of
complex embeddings of K. We have the following theorem describing the full group of
units.

Theorem 3.12 (Dirichlet Unit Theorem [6]). The group of units UK in the ring of algebraic
integers R of an algebraic number field K can be written as the direct product of a finite
cyclic group and a free abelian group of rank r1 + r2 − 1,

UK = µ(K) × Zr1+r2−1

where µ(K) is the group generatet by the roots of unity. Equivalently, there exists units
u1, ..., ur1+r2−1 ∈ R such that every u ∈ R can be written as

u = wub1
1 · · · ubr1+r2−1

r1+r2−1

for some root of unity w and integer bj.

This states that the unit group can be infinite, which is hard to work with, so we
introduce the cyclotomic units to make it is possible to define the units to use for an
S-unit attack.

Definition 3.13. Let UK be the group of units of Z[ζm] and VK be the multiplicative group
generated by {±ζm, 1 − ζa

m | 1 ≤ a ≤ m− 1}, then

CK := UK ∩ VK

is the group of cyclotomic units of Z[ζm].

First of all, the roots of unity ζa
m for odd a < m are units, because for each ζa

m there
exists a nonzero b such that a · b ≡ 0 (mod m) and ζab

m = 1. Next, we need some results
to understand how we can determine the group of cyclotomic units CK more explicit.

24

3.1. Cyclotomic Fields

Lemma 3.14 (Washington [15]). If α is an algebraic integer where all of its conjugates
have absolute value 1, then α is a root of unity.

Proof. Let α be an algebraic integer, then α is a root of an irreducible polynomial with
coefficients in Z. Since the coefficients are bounded by the degree of α over Q, there can
only be finitely many irreducible polynomials that has a power of α as a root. Hence,
there are only finitely many distinct powers of α, and therefore a root of unity.

Theorem 3.15 (Washington [15]). Let u be a unit of Z[ζm]. Then there exists a unit
u1 ∈ Z[ζm + ζ−1

m] and r ∈ Z such that u = ζr
mu1.

Proof. Let ζm = ζ and α = u/u. Then α ∈ R since u is a unit and α is a root of
unity by Lemma 3.14. So we can write α = ±ζa for some a. If α = −ζa = u/u, write
u = b0 + b1ζ + ...+ bm−2ζ

m−2. Then

u ≡ b0 + b1 + ...+ bm−2 (mod (1 − ζ)),

and

u = b0 + b1ζ
−1 + ...+ bm−2ζ

m−2

≡ b0 + b1ζ + ...+ bm−2ζ
m−2 (mod (1 − ζ))

= u = −ζau = −u.

This implies that 2u ≡ 0 (mod (1− ζ)), but 2 /∈ (1− ζ) and (1− ζ) is a prime ideal, so we
also have that u /∈ (1 − ζ) since u is a unit. Hence, we can conclude that α = u/u = ζa.

Now, let 2r ≡ a (mod m) and u1 = ζ−ru, then u = ζru1 and u1 = u1, which is what
we wanted since, u/u = ζa = ζ2r ⇒ u = ζ2ru = ζ2rζ−ru1 = ζru1 = ζru1.

We can now explicitly describe the cyclotomic units in a cyclotomic ring and justify
the choice of the cyclotomic units we will be using for S-unit attacks.

Theorem 3.16 (Washington [15]). Let m = pn for prime p and n ≥ 1.

1. The cyclotomic units u of Z[ζm]+ are generated as a multiplicative group by {−1} and
the units ua = ζ

(1−a)/2
m · 1−ζa

m
1−ζm

, where 1 < a < m/2 and gcd(a, p) = 1.

2. The cyclotomic units of Z[ζm] are generated by ζm and the cyclotomic units u ∈ Z[ζm]+.

Theorem 3.17 (Washington [15]). Let m = pa and g be a primitive root mod m. Then

ζ(1−g)/2
m

1 − ζg
m

1 − ζm

generates C+
K/{±1} as a module over Z[Gal(Q(ζm)+/Q)].

Proof. Let gcd(a, p) = 1, then a ≡ gr mod m for some r > 0 and

ζ(1−a)/2
m

1 − ζa
m

1 − ζm
= ζ(1−gr)/2

m

1 − ζgr

m

1 − ζm
=

r−1∏
i=0

ζ(gi−gi+1)/2
m

1 − ζgi+1
m

1 − ζi
m

=
r−1∏
i=0

σi

(
ζ(1−g)/2

m

1 − ζg
m

1 − ζm

)
.

The rest follows from Theorem 3.16.

25

Chapter 3. Cyclotomic Rings

Notice that we are working with p = 2, so by letting g = −3 we have that a ≡ (−3)r or
−a ≡ (−3)r mod 2a. This gives us the cyclotomic units on the form 1 + ζc

m + ζ−c
m for

odd c < m as follows,

ζ(1−a)/2
m

1 − ζa
m

1 − ζm
= ζ(1−(−3)r)/2

m

1 − ζ
(−3)r

m

1 − ζm
=

r−1∏
i=0

ζ((−3)i−(−3)i+1)/2
m

1 − ζ
(−3)i+1
m

1 − ζi
m

=
r−1∏
i=0

σi

(
ζ(1+3)/2

m

1 − ζ−3
m

1 − ζm

)
=

r−1∏
i=0

σi

(
ζ2

m

−ζ2
m − ζm − 1
ζ3

m

)

=
r−1∏
i=0

σi

(
ζ−1

m (−ζ2
m − ζm − 1)

)
=

r−1∏
i=0

σi

(
(−1)(1 + ζm + ζ−1

m)
)
.

By the following lemma, these cyclotomic units generate a subgroup of finite index in
the full group of units.

Lemma 3.18 (Washington [15]). Let K/Q be a finite Galois extension. If K is real let
σ1, ..., σr+1 be the elements of Gal(K/Q). If K is complex let σ1, ..., σr+1, σ1, ..., σr+1
be elements of Gal(K/Q). There exists a unit u ∈ R such that the set of units
{σi(u) | 1 ≤ i ≤ r} is multiplicative independent, hence generates a subgroup of finite
index in the full group of units, called a Minkowski unit.

In conclusion, let x = ζm such that the cyclotomic units can be written on the form

u0 = x and uc = 1 + xc + x−c,

for odd c < m. In the cyclotomic ring R = Z[x]/(xn + 1) we have that xn = −1, which
implies that xc = xnxc−n = −xc−n for c > n and x−c = −xn−c for c < n. Therefore, we
have m/2 cyclotomic units on the form

1 + x+ x−1, 1 + x3 + x−3, ..., 1 + xn−1 + x−(n−1).

Because of the relation u1u3 · · ·un−1 = ±1, and by Dirichlets unit theorem, we have
m/2 − 1 multiplicative independent units

1 + x+ x−1, 1 + x3 + x−3, ..., 1 + xn−3 + x−(n−3),

with finite index in the full group of units UK . These are the generators we will use for
the group of cyclotomic units CK and the units we will use for S-unit attacks.

3.1.4 Embeddings

Now that we have some basic knowledge about cyclotomic fields, we review the theory
that connects them to lattices and see how they relate to lattice-based cryptography.
There are two important embeddings, the Minkowski and the logarithmic embedding.

Let m = 2n and K = Q(x)/(xn + 1) be the cyclotomic field with the cyclotomic ring
R = Z[x]/(xn + 1). Let G = Gal(K/Q) be the Galois group such that σj ∈ G are all the
embeddings of K into C. Let r1 be the number of embeddings into R and r2 be the pairs
of conjugate embeddings into C, where σj ̸= σj and σj(a) = σj(a). First, define the map
v : K → Rr1 × Cr2 as

v(a) = (σ1(a), ..., σr1(a), ..., σr1+r2(a)).

26

3.1. Cyclotomic Fields

Since C has a structure as a two-dimensional R-vector space, we can view V = Rr1 ×Cr2

as an t = r1 + 2r2-dimensional R-vector space, and we can define the embedding v as

v(a) = (σ1(a), ...,σr1(a),
Re(σr1+1(a)), Im(σr1+1(a)), ...,Re(σr1+r2(a)), Im(σr1+r2(a))).

Then v(a) is a vector in Rt for t = r1 + 2r2, and we have the following theorem, which is
useful when estimating the size of the smallest element for a given ideal.

Theorem 3.19 (Modified theorem from Janusz [6]). Let α ⊆ R be a nonzero ideal, then

1. v(α) is a full lattice in Rt with volume Vol(v(α)) = 2−r2N (α)|∆R|1/2,
2. There exists a nonzero element a ∈ α such that

|NK/Q(a)| ≤ t!
tt

(4
π

)r2

N (α)|∆R|1/2,

3. For any nonzero fractional ideal β of R there is an α ∈ [β] such that α ⊆ R and

N (α) ≤ t!
tt

(4
π

)r2

|∆(R/Z)|1/2.

The logarithmic embedding is mostly used for units, and is the embedding we
utilize for S-unit attacks. Let UK be the group of units in R and define the function
Log : K∗ → Rr1+r2 as

Log(a) = (log |σ1(a)|, ..., log |σr1(a)|, 2 log |σr1+1(a)|, ..., 2 log |σr1+r2(a)|).

Notice that for a unit u ∈ R we have the norm N (u) = ∏
i σi(u) = 1, which implies that

log |N (u)| = log |
∏

i σi(u)| = ∑
i log |σi(u)| = 0. The following theorem embedding the

unit group as a lattice.

Theorem 3.20 (Janusz [6]). The homomorphism Log maps the unit group UK of R onto a
lattice in the r1 + r2 − 1 dimensional subspace of V0 = Rr1+r2 consisting of all vectors

{v = (v1, ..., vr1+r2) ∈ Rr1+r2 |
∑

vi = 0}.

Proof. For u ∈ UK we have that N (u) = ±1, which gives the following relation of the
coordinates of log(u),

Log(u) = (log |σ1(u)|, ..., log |σr1(u)|, 2 log |σr1+1(u)|, ..., 2 log |σr1+r2(u)|)

⇒
r1∑

i=1
log |σi(u)| +

r1+r2∑
i=r1+1

2 log |σi(u)| = log |σ1(u) . . . σr1(u)σr1+1(u)2 . . . σr1+r2(u)2|

= log |N (u)| = log | ± 1| = 0.

Hence, Log(UK) lies in the hyperplane of V0. To prove that it is a lattice we need to
show that every cube in V0 contains a finite number of points in Log(UK). Let δi = 1
for 1 ≤ i ≤ r1 and δi = 2 for r1 + 1 ≤ i ≤ r1 + r2, and define logi(u) = δi log |σi(u)|. Let
UK,a be the set of all u ∈ UK such that | logi(u)| ≤ a for a positive constant a. Then
Log(u) is in the cube with center at the origin and sides of length 2a. Further,

| logi(u)| = |δi log |σi(u)|| ≤ a ⇒ |σi(u)| ≤ ea/δi ,

and by the Minkowski embedding v : K → Rr1+2r2 we can conclude that v(UK,a) lies in
a bounded subset of v(R). Further, we know that v(R) is a lattice hence v(UK,a) is a
finite set. Then UK,a is also a finite set because v is injective, so Log(UK,a) is finite and
we have that Log(UK) is a lattice.

27

Chapter 3. Cyclotomic Rings

3.1.5 Characters

For an S-unit attack we want to work with principal ideals such that we can find a
generator. As discussed in Section 3.1.2 we are working in a PID, so this should be
possible, but it gets harder and harder as the dimension for the cyclotomic ring grows.
Therefore, we will present a somewhat easier way to find the prime ideal factorization for
a prime element p and a generator for those prime ideals. To do so we need to introduce
two types of characters, namely multiplicative and additive.

Definition 3.21. Multiplicative character

1. A multiplicative character χ is the group homomorphism

χ : F∗
p −→ C∗.

2. The trivial multiplicative character is denoted by ϵ, and ϵ(a) = 1 for all a ∈ F∗
p.

3. We can extend χ to Fp by letting χ(0) = 0 and ϵ(0) = 1 for the trivial character.
4. If χ is defined with an order m, it is the smallest m such that χ is periodic, i.e.
χ(a+m) = χ(a) for a ∈ Z.

Definition 3.22. Additive character

1. An additive character ψ is a group homomorphism

ψ : Fp −→ C∗.

2. The trivial additive character is denoted by ψ0, and ψ0(a) = 0 for all a ∈ Fp.

Remark 3.23. In addition to the definitions above there are some important notations to
remark.

• We will denote the additive character by ψ(a) = ζa
p , for a ∈ Fp.

• The order m of the multiplicative character χ is co-prime to p and divides |F∗
p| = p−1.

• The additive character ψ have order p.
• The inverses are χ(a) = χ−1(a) = χ(a−1) and ψ(a) = ψ−1(a) = ψ(−a) = ζ−a

p .

3.1.6 Gauss Sum and Jacobi Sum

Let p ∈ Z be a prime number, we want to find the prime ideals in the cyclotomic ring
R = Z[x]/(xn + 1) containing p, by using characters.

Definition 3.24. Let χ be a multiplicative character and ψ a nontrivial additive character
of Fp. The Gauss sum for these characters is defined as

τ(χ) = τ(χ, ψ) =
∑

a∈F∗
p

χ(a)ψ(a) =
∑

a∈F∗
p

χ(a)ζa
p .

Notice that if χ has order m, then τ(χ) ∈ Q(ζmp) since χ ∈ Q(ζm) and ψ ∈ Q(ζp).
The following lemma shows that the Gauss sum τ(χ) will contain exactly the prime ideals
in R that lies above p.

28

3.1. Cyclotomic Fields

Lemma 3.25 (Washington [15]). If χ ̸= 1, then |τ(χ)|2 = τ(χ)τ(χ) = p.

Proof. For a, b ∈ Fp we get,

τ(χ)τ(χ) =
∑

a,b̸=0
χ(a)ζa

pχ(b)ζb
p

=
∑

a,b̸=0
χ(a)ζa

pχ(b−1)ζ−b
p

=
∑

a,b̸=0
χ(ab−1)ζa−b

p Let c = ab−1

=
∑

b,c̸=0
χ(c)ζb(c−1)

p

=
∑
b̸=0

χ(1)ζ0
p +

∑
c ̸=0,1

χ(c)
∑
b ̸=0

ζb(c−1)
p

= (p− 1) +
∑

c̸=0,1
χ(c)(−1) = p.

The last part comes from the fact that χ(1) = 1 and b ∈ F∗
p, which means

∑
b ̸=0

χ(1)ζ0
p =

∑
b ̸=0

1 = p− 1

and

1 + ζ(c−1)
p + ζ2(c−1)

p + ...+ ζ(p−1)(c−1)
p = 0

⇒ 1 +
∑
b̸=0

ζb(c−1)
p = 0

⇒
∑
b̸=0

ζb(c−1)
p = −1.

Likewise ∑c ̸=0,1 −χ(c) = 1, since ∑c ̸=0 χ(c) = 0 in the same manner as above.

Definition 3.26. Let χ1 and χ2 be two multiplicative characters on Fp. The Jacobi sum is
defined as

J(χ1, χ2) =
∑

ai∈Fp

a1+a2=1

χ1(a1)χ2(a2) =
∑

a∈Fp

χ1(a)χ2(1 − a).

Now, if we combine the Gauss and Jacobi sum, we get a very useful result which tells
us that the Jacobi sum can be written by Gauss sums, it is integral and it eliminates ζp.

Corollary 3.27 (Washington [15]). Let χ1, χ2 have orders dividing m, where m is an integer
not dividing p, and χ1χ2 ̸= 1. Then

J(χ1, χ2) = τ(χ1)τ(χ2)/τ(χ1χ2) ∈ Z[ζm]

and
J(χb, χ) = τ(χ)bτ(χ)/τ(χb+1)

for b ∈ Z.

29

Chapter 3. Cyclotomic Rings

For S-unit attacks we use Jacobi sums on the following form. Let n be the degree of
the minimal polynomial of the cyclotomic ring R and let p ∈ 1 + 2nZ be a prime element.
For J(χ1, χ2) define χ1 = χi for some i ∈ Z and χ2 = χ, such that we have the Jacobi
sum

J(χ1, χ2) = J(χi, χ) =
∑

a∈Fp∗−1

χi(a)χ(1 − a).

Then by Corollary 3.27 we have that

J(χi, χ) = τ(χ)iτ(χ)/τ(χi+1) ∈ R,

and by Lemma 3.25 we have that

|J(χ1, χ2)|2 = |τ(χ1)τ(χ2)/τ(χ1χ2)|2 = |τ(χ1)|2|τ(χ2)|2/|τ(χ1χ2)|2 = p2/p = p.

Hence, the Jacobi sum is an element in R acting as a generator for an ideal. Also, the
prime ideal factorization of the ideal contains only prime ideals that lies above p. To end
this section we give an example that verifies this theory.

Example 3.28. In this example we show that the Gauss and Jacobi sum produce the same
element for a character of order m relatively prime to p. We also show that this element
is in the cyclotomic ring R with the prime ideal factorization of prime ideals lying above
p. Most of the computations are done in Sage, see appendix B.1 for the Sage code.

Let n = 2 and m = 2n = 4 such that R = Z[x]/(x2 + 1). Define the multiplicative
character to be χ(2) = ζ4. Since m is relatively prime to p, χ is defining a group for
p = 1 + 2n · 3 = 13. We get the following group elements,

χ(2) = χ(2) = ζ4 χ(27) = χ(11) = ζ7
4

χ(22) = χ(4) = ζ2
4 χ(28) = χ(9) = ζ8

4
χ(23) = χ(8) = ζ3

4 χ(29) = χ(5) = ζ9
4

χ(24) = χ(3) = ζ4
4 χ(210) = χ(10) = ζ10

4
χ(25) = χ(6) = ζ5

4 χ(211) = χ(7) = ζ11
4

χ(26) = χ(12) = ζ6
4 χ(212) = χ(1) = ζ12

4 .

From this we calculate the Gauss sum for p = 13, as follows

τ(χ) =
∑

a∈F13∗

χ(a)ζa
13 = χ(1)ζ1

13 + χ(2)ζ2
13 + χ(3)ζ3

13 + ...+ χ(12)ζ12
13

= 1 · ζ1
13 + i · ζ2

13 + 1 · ζ3
13 + ...+ (−1) · ζ12

13 .

Notice that ζ4 = e2πi/4 = i such that χ(2b) = ζb
4 = ib. Now, let x = ζ13. Then the Gauss

sum is

τ(χ) = x+ ix2 + x3 − x4 + ix5 + ix6 − ix7 − ix8 + x9 − x10 − ix11 − x12.

From this we get the Gauss sums

τ(χ2) = x− x2 + x3 + x4 − x5 − x6 − x7 − x8 + x9 + x10 − x11 + x12

and

τ(χ)2 = (3 − 2i) · (x− x2 + x3 + x4 − x5 − x6 − x7 − x8 + x9 + x10 − x11 + x12).

30

3.2. S-units

By corollary 3.27 we get τ(χ)2/τ(χ2) = 3 − 2i ∈ R, which is in fact a prime ideal in R,
(3 − 2i)(3 + 2i) = 13 and

|τ(χ)|2 = τ(χ)τ(χ) = 13.

The Gauss sum computations increases in complexity for higher values of m, but
computing the Jacobi sum directly give the same element with fewer computations. Let
χ1 = χ = χ2. By Definition 3.26 we get

J(χ1, χ2) = J(χ, χ) =
∑

a∈F13∗−1

χ(a)χ(1 − a)

= χ(2)χ(1 − 2) + χ(3)χ(1 − 3) + ...+ χ(12)χ(1 − 12)
= i · (−1) + 1 · (−i) + (−1) · (−1) + i · 1 + i · (−i)+
(−i) · (−i) + (−i) · 1 + 1 · i+ (−1) · (−1) + (−i) · 1 + (−1) · i
= 3 − 2i = τ(χ)2/τ(χ2).

Hence, the prime ideals in R lying above p = 13 are P1 = (3 − 2i) and P2 = (3 + 2i).

3.2 S-units

Now that we have established which units and prime ideals to use in an S-unit attack,
we can define the S-unit group and the logarithmic embedding for these elements. At
the end we provide a method for finding the generators for the S-unit group.

Let n = 2k and m = 2n such that we have the cyclotomic ring R = Z[x]/(xn + 1).
Recall that the Galois group Gal(K/Q) gives us the ring homomorphism

σc :K −→ C
x 7−→ ζc

m

for each odd c < m. To define the S-units we need some notion about p-adic valuations
and two norms, namely the infinite and the finite norm for cyclotomic fields.

Definition 3.29. Let K be a number field. The map vp : K∗ −→ Z is defined as the p-adic
valuation of nonzero elements in K where vp satisfy the following,

1. vp(a) ∈ Z for each nonzero a ∈ K and vp(0) = ∞,
2. vp(ab) = vp(a) + vp(b),
3. vp(a+ b) ≥ min{vp(a), vp(b)}.

Let I ⊂ K be a nonzero fractional ideal. The p-adic valuation of I is the exponent of the
highest power of the prime ideal p that appears in the prime ideal factorization of I. Let
I = ∏

i p
ai
i , then the pi-adic valuation is

vpi(I) = ai.

If I ⊂ R, then ai ≤ 0.

Definition 3.30. A function | · | : K → R is an absolute value or norm on K if it satisfies
the following

1. |a| ≥ 0 for every a ∈ K and |a| = 0 if and only if a = 0.

31

Chapter 3. Cyclotomic Rings

2. |a||b| = |ab| for all a, b ∈ K.
3. |a+ b| ≤ C max{|a|, |b|} for all a, b ∈ K and some a positive constant C.

It is nonarchimedean if C = 1, and archimedean otherwise.

Definition 3.31. Let a be a nonzero element in R. The p−adic norm, or finite norm, of K
is a nonarchimedean absolute value defined as

|a|p = NK/Q(p)−vp(a)

for each nonzero prime ideal p ⊂ R.

Next, the usual absolute value, or the infinite norm, for an element a ∈ Q is defined
as

|a|∞ =
{
a if x > 0
−a if x ≤ 0.

We are now in a field extension of Q, so we need to define the infinite norm differently.
First, let K be the field extension of Q and let (p)R = ∏c

i=1 P
ei
i be the prime ideal

factorization of the prime element p ∈ Z.

Lemma 3.32 (Specialized version from Janusz [6]). For an absolute value | · |p in Q, the
extensions to the field K may be replaced by suitable powers to obtain a set of absolute
values | · |i on K, for 1 ≤ i ≤ c, such that for every a ∈ K we have∏

i

|a|i = |NK/Q(a)|p.

Let |a|p = |a|C, where | · |C = | · |2 is the usual absolute value on C. Let K be the
field extension of Q such that we have all the embeddings σ1, ..., σc of K into C. Let
|a|i = |σi(a)|C, then by Lemma 3.32 we have∏

i

|a|i =
∏

i

|σi(a)|C = |σ(NL/K(a))|C = |NL/K(a)|p.

We can now define the infinite norm of K.

Definition 3.33. The infinite norm of K is an achimedean absolute value defined as

|a|c = |σc(a)|2 = σc(a)σ−c(a),

for a ∈ K and for odd c < m.

By combining the finite and infinite norm we have the following theorem.

Theorem 3.34 (The product formula [6]). Let K be an algebraic number field and p a
prime number of K. Then there is an absolute value such that for each nonzero element
a ∈ K we have the formula ∏

p prime
|a|p = 1,

where the product is taken over all prime numbers in K.

Proof. Let p be any prime in Q and let | · |p be the normalized norm, consisting of the
infinite and finite norm. Let P1, ..., Pc be the distinct prime ideals lying above p in K,
then by lemma 3.32 we have that we can find an absolute value | · |Pi such that

c∏
i=1

|a|Pi = |NK/Q(a)|p.

32

3.2. S-units

Further we have that∏
P

|a|P =
∏
p

∏
Pi over p

|a|Pi =
∏
p

|NK/Q(a)|p = 1.

The last equation follows from the product formula for Q, where we have that∏
p

|p|p = |p|∞|p|p = p · 1
p
.

Now, let S be a finite set in R where {∞} ⊂ S and for each prime ideal P ⊆ R we
have

S = {∞} ∪ {P ∈ R | N (P) ≤ y}

for a chosen parameter y and P ∩Z ̸= (2). The elements in S defines the finite and infinite
norms that will be used for an S-unit attack. We exclude the prime 2 as a consequence
from Proposition 3.3. Since [K : Q] = n = 2k, the prime p = 2 ramifies completely in R
as (2)R = (1 +x)n. It is the only prime that ramifies, and as a result the 2-adic valuation
differs from all the other valuations. In Section 4.2 we discuss in more detail how to
handle the prime ideal P2 = (1 + x).

Definition 3.35. The S-units are elements of the S-unit group US , generated by the units
of R and the prime ideals P ∈ S such that

US = {u ∈ R∗ | |u|P = 1 ∀ P /∈ S}.

Since the S-unit group is a finitely generated group with rank r + s− 1, where r − 1 is
the rank of the unit group UK and s is the number of prime ideals in S, Dirichlet unit
theorem also holds for S-units.

Let r + s be the number of elements in S, where r is the number of cyclotomic units
corresponding to the infinite norm and s be the number of prime ideals corresponding to
the finite norm. For an element a ∈ R the logarithmic embedding for the set S is defined
as

log(a) = (log |a|1, ..., log |a|r, log |a|P1 , ..., log |a|Ps).

From Theorem 3.34 the sum of these coordinates are 0, so by Theorem 3.20 this will
generate a lattice in Rr+s−1 and we have the following definition.

Definition 3.36. The S-unit lattice is the logarithmic embedding of the S-unit group,
LS = Log(US), where the generators for the lattice are the logarithmic embedding of
each generator for US .

We end the section with an example that demonstrates how to construct the S-unit
lattice.

Example 3.37. Let n = 4 and m = 2n = 8 such that the cyclotomic ring is
R = Z[x]/(x4 + 1). The cyclotomic units are u0 = x, u1 = 1 + x1 + x−1 and
u3 = 1 + x3 + x−3, where the unit group CK is generated by {u0, u1}. If we start
with S = {∞}, the logarithmic embedding is defined as

Log(a) = (log |a|1, log |a|3),

and the unit lattice LU = Log(CK) is generated by

Log(u1) = (log |u1|1, log |u1|3) = (1.763,−1.763).

33

Chapter 3. Cyclotomic Rings

Now, choose the parameter for S to be y = 10. We want to find the prime ideals in
R lying above all the prime numbers p less than 10, except 2. As described in Example
5.2.1 we get the prime ideals

P3,1 = (x2 + x− 1) and P3,2 = (−x3 − x2 − 1).

This gives the following generators for the S-unit lattice LS

Log(u1) = (log |u1|1, log |u1|3, log |u1|5, log |u1|P3,1 , log |u1|P3,2)
= (1.763,−1.763, 0, 0),

Log(P3,1) = (log |P3,1|1, log |P3,1|3, log |P3,1|5, log |P3,1|P3,1 , log |P3,1|P3,2)
= (1.099, 1.099,−2.197, 0),

Log(P3,2) = (log |P3,2|1, log |P3,2|3, log |P3,2|5, log |P3,2|P3,1 , log |P3,2|P3,2)
= (1.099, 1.099, 0,−2.197),

with the corresponding matrix

MU =

1.763 −1.763 0 0
1.099 1.099 −2.197 0
1.099 1.099 0 −2.197

 .
3.2.1 Finding S-units

The last part needed to perform an S-unit attack are the generators for the prime ideals in
S. This is one of the main concepts that differentiate S-unit attacks from other reduction
algorithms. By applying the mathematical theory from Section 3.1, we present a method
for finding elements to use in the attack. This grants S-unit attacks the potential of
being more effective and precise when reducing elements. Recall that

S = {∞} ∪ {P ∈ R | N (P) ≤ y}

for a chosen parameter y. By Theorem 3.8 we find the non-principal prime ideals by
factoring the minimal polynomial of K. By Section 3.1.5 and 3.1.6 we find a generator
for ideals in R, where the prime ideal factorization contains the same prime ideals as in
S. In this section we provide a concrete method for finding a generator for the prime
ideals in S. These are also the generators for the S-unit group. We end the section by
giving two detailed examples.

We use the following concepts to find the generators for the S-unit group:

1. Cyclotomic units (Units),

2. Jacobi sums (S-units: prime ideal factorizations),

3. Generators of PcP−c (S-units: principal ideals),

4. Square roots (S-units: prime ideals).

First we define the cyclotomic units as described in Section 3.1.3, which are generated
by u0 = ζm and uc = {1 + ζc

m + ζ−c
m } for odd c < n. Then we define the set

S = {∞} ∪ {P ⊂ R | N (P) ≤ y} for a chosen parameter y. Let p ∈ 1 + 2nZ be a

34

3.2. S-units

prime number less than or equal y. We want to find the prime ideals P ∈ R such that
P ∩ Z = p. We start by factorizing the minimal polynomial modulo p,

xn + 1 =
∏

i

gi(x)ei (mod p),

where gi(x) ∈ R and reduces to gi(x) mod p. By Theorem 3.8, Pi = (p, gi(ζm)) is a prime
ideal in R lying above p. Since p ∈ 1 + 2nZ = 1 +mZ, we have that p ≡ 1 (mod m) and
by Theorem 3.7 Pi splits completely. Thus, we can write the prime ideals on the form
Pi = (p, a− ζi

m), where a (mod p) is of order m. There could be many choices for the
integer a, but we choose the the smallest a such that an + 1 ≡ 0 (mod p).

These prime ideals are not principal, but with the help of Jacobi sums we can find a
generator for them. See Appendix B.1 for the calculations done in Sage. Recall that for
a given prime number p we have,

|J(χ)|2 = p and J(χ1, χ2) = J(χi, χ) = ∑
a∈Fp∗−1

χi(a)χ(1 − a).

Let Pc = (p, a− ζc
m) = (p, a− xc) and P−c = (p, a− ζ−c

m) = (p, a− x−c) = (p, a+ xn−c)
for odd c < n. Then,

PcP−c = (p2, p(a− xc), p(a− x−c), a2 − a(xc + x−c) + 1),

is an ideal in the maximal real subfield R+, and by Section 3.1.2 it is a principal ideal.
For the remaining part we use the following steps:

1. For i = 1, ..., n, find the Jacobi sums J(χi, χ) for a character χ of order p, with the
corresponding prime ideal factorization, as described in Section 3.1.6.

2. Look at the prime ideal factorization of the Jacobi sums and choose two Jacobi
sums where the factorization differ by Pc and P−c for only one c.

3. Divide the chosen Jacobi sums such that we end up with the fractional ideal Pc/P−c

and a corresponding polynomial.

4. Multiply this polynomial with the polynomial gc, corresponding to the generator
for the principal ideal PcP−c. This gives a new polynomial corresponding to the
square of the prime ideal Pc.

5. Find a unit u ∈ CK to multiply the polynomial with, such that the square root of
the polynomial is still an element in R. This element will be a generator for the
prime ideal Pc.

Remark 3.38. When we have found a generator for Pc we automatically find a generator
for P−c by taking the complex conjugate, σ−1(Pc) = P−c.

This creates the S-unit group, namely the generators for the group of cyclotomic
units and the generators for the prime ideals in S. If we want to expand S, by adding
more prime ideals, we repeat the same procedure as above. We round of this section with
two examples, showcasing how this can be constructed in the cyclotomic rings of degree
n = 4 and n = 8.

35

Chapter 3. Cyclotomic Rings

3.2.2 First Example

In this example we demonstrate how to calculate the generators for the prime ideals in
S. First directly by using Sage, then by following the approach in Section 3.2.1. At the
end we compare the two results. See Appendix B.1 for the calculations done by Sage.

Let n = 4 and m = 2n = 8 such that the cyclotomic ring is R = Z[x]/(x4 + 1). For
S = {∞}, we have the cyclotomic units

{1 + x+ x−1, 1 + x3 + x−3},

and from Theorem 3.12 the group of cyclotomic units CK is generated by u0 = x and
u1 = 1 + x+ x−1. To expand S we add prime ideals from R, containing a prime number
on the form p ∈ 1 + 2nZ. For this case, the first prime number is p = 1 + 8 · 2 = 17.
Hence, we want to find the prime ideals in R containing p = 17.

We compute the prime ideal factorization directly using Sage,

17 = (−x3 − 2x2)(−2x+ 1)(−x3 + 2)(x3 − 2x2).

Each factor is a prime ideal and they are all principal. Now, assume that we do not have
these prime ideals and we want to find them by using the approach described in Section
3.2.1. We start by factoring the minimal polynomial of R modulo 17. The minimal
polynomial can be written as

x4 + 1 =
∏

odd c < m

(x− ζc
8) = (x− ζ8)(x− ζ3

8)(x− ζ5
8)(x− ζ7

8)

= (x− ζ8)(x− ζ3
8)(x− ζ−3

8)(x− ζ−1
8)

= (x− ζ8)(x− ζ3
8)(x+ ζ8)(x+ ζ3

8).

Let x = 2 be the smallest integer such that,

24 + 1 = 17 = (2 − ζ8)(2 − ζ3
8)(2 + ζ8)(2 + ζ3

8) ≡ 0 (mod 17).

Pulled back to R = Z[x]/(x4 + 1), i.e. set x = ζ8, we have the factorization

17 = (2 − x)(2 − x3)(2 + x)(2 + x3). (3.1)

Then by Theorem 3.8 the prime ideals in R containing p = 17 are

P1 = (17, 2 − x) P−1 = (17, 2 + x3)
P3 = (17, 2 − x3) P−3 = (17, 2 + x).

We have found four non-principal prime ideals in R containing p = 17. To continue, we
use Sage to find generators for the ideals P1P−1 and P3P−3. We get that

P1P−1 = (172, 17(2 − x), 17(2 + x3), (2 − x)(2 + x3))

and
P3P−3 = (172, 17(2 − x3), 17(2 + x), (2 − x3)(2 + x))

corresponds to the polynomials

g1 = 3x3 − 3x− 1 and g3 = −3x2 + x− 3

36

3.2. S-units

as generators. To calculate the Jacobi sums we define a character forming a group of
order 17. Let χ(3) = ζ8, then for p = 17 we get the following Jacobi sum

J1 = J(χ, χ) =
∑

a∈F∗
17−1

χ(a)χ(1 − a) = τ(χ)2/τ(χ2)

= χ(2)χ(1 − 2) + χ(3)χ(1 − 3) + ...+ χ(16)χ(1 − 16)
= x14 · x8 + x · x6 + x12 · x9 + x5 · x4 + x15 · x13 + x11 · x7 + x10 · x3 + x2 · x2

+ x3 · x10 + x7 · x11 + x13 · x15 + x4 · x5 + x9 · x12 + x6 · x+ x8 · x14

= −2x3 − 2x− 3 ∈ R.

By using Sage this factors into the prime ideals P−3P−1. The next Jacobi sum is

J2 = J(χ2, χ) =
∑

a∈F17∗ −1
χ(a)2χ(1 − a) = τ(χ2)τ(χ)/τ(χ3)

= χ(2)2χ(1 − 2) + χ(3)2χ(1 − 3) + ...+ χ(16)2χ(1 − 16)
= x28 · x8 + x2 · x6 + x24 · x9 + x10 · x4 + x30 · x13 + x22 · x7 + x20 · x3 + x4 · x2

+ x6 · x10 + x14 · x11 + x26 · x15 + x8 · x5 + x18 · x12 + x12 · x+ x16 · x14

= 1 − 4x2 ∈ R.

Again, by using Sage this factors into P3P−1. The remaining Jacobi sums, with the
corresponding prime ideal factorization, are as follows

J3 = J(χ3, χ) =
∑

a∈F17∗ −1
χ(a)3χ(1 − a) = τ(χ)3 · τ(χ)/τ(χ4)

= 2x3 + 2x+ 3,

corresponding to the factorization P−3P−1.

J4 = J(χ4, χ) =
∑

a∈F17∗ −1
χ(a)4χ(1 − a) = τ(χ)4τ(χ)/τ(χ5)

= 2x3 + 2x+ 3,

corresponding to the factorization P−3P−1.

J5 = J(χ5, χ) =
∑

a∈F17∗ −1
χ(a)5χ(1 − a) = τ(χ)5τ(χ)/τ(χ6)

= −4x2 + 1,

corresponding to the factorization P3P−1.

J6 = J(χ6, χ) =
∑

a∈F17∗ −1
χ(a)6χ(1 − a) = τ(χ)6τ(χ)/τ(χ7)

= −2x3 − 2x− 3,

corresponding to the factorization P−3P−1.

J7 = J(χ7, χ) =
∑

a∈F17∗ −1
χ(a)7χ(1 − a) = τ(χ)7τ(χ)/τ(χ8)

= −1 ⇒ (1).

37

Chapter 3. Cyclotomic Rings

After the Jacobi sums J1 and J2, we do not get any new prime ideals in the factorization,
so for further calculations we only need these two. The prime ideal factorization of the
ideals, that J1 and J2 generates, differ with the prime ideals P3 and P−3. So, by dividing
these Jacobi sums we get the following polynomial

J2/J1 = −6/17x3 + 12/17x2 + 10/17x− 3/17

which corresponds to the prime ideals P3/P−3. Then, by multiplying with the generator
g3 of P3P−3, we get the polynomial

g3 · J2/J1 = (−3x2 + x− 3)(−6/17x3 + 12/17x2 + 10/17x− 3/17)
= −x2 − 3x+ 3,

corresponding to P 2
3 . Now, find a unit u ∈ CK to multiply the polynomial with, such

that if we take the square root, we get an element in R. We find that the unit u = u0u1
gives us the polynomial

u0u1 · g3 · J2/J1 = x(1 + x+ x−1)(−x2 − 3x+ 3)
= −4x3 − x2 + 4 = x6 − 4x3 + 4
= (x3 − 2)(x3 − 2) = (x3 − 2)2,

and by taking the square root we have a generator√
u0u1 · g3 · J2/J1 = x3 − 2

for P3. We see that P3 = (x3 − 2) is the same, up to units, as one of the factors in the
factorization done in Equation 3.1. To find the generator of P−3 we take the complex
conjugate

σ−1(x3 − 2) = x−3 − 2 = −x− 2,

and P−3 = (x+ 2). This is also a factor in Equation 3.1.
Since the Jacobi sums only generated ideals with the prime ideal P−1, and not P1,

the approach for finding a generator for P1 is slightly different. By looking at the prime
ideal factorization of the ideals we already have, we combine their generators as follows,

g2
1 · g3
J1 · J2

= 3x2 + 3x− 1

which corresponds to the prime ideal factorization

P 2
1P

2
−1P3P−3

P3P−3P 2
−1

= P 2
1 .

Then we find a unit u ∈ CK to multiply the polynomial with,

u0u3 · g
2
1 · g3
J1 · J2

= x2 − 4x+ 4 = (x− 2)(x− 2) = (x− 2)2

⇒
√
u0u3(3x2 + 3x− 1) = x− 2,

and we have found the prime ideal P1 = (x− 2). Lastly, we have the following generator
for P−1,

σ−1(x− 2) = x−1 − 2 = −x3 − 2.

38

3.2. S-units

Again, these are also the same up to units as the factors in Equation 3.1. We can now
compare the generators we have found with the generators from Sage,

P1 = (x− 2) = −x2(x3 − 2x2)
P−1 = (x3 + 2) = x3(−2x+ 1)
P3 = (x3 − 2) = −(−x3 + 2)
P−3 = (x+ 1) = x2(−x3 − 2x2).

In conclusion, the approach described in Section 3.2.1 gives the same generators as
Sage. Further, the set S consists of the elements {u1, u3, P1, P−1, P3, P−3} corresponding
to the infinite and finite norms, and the S-unit group is generated by the elements
{u0, u1, P1, P−1, P3, P−3}.

3.2.3 Second Example

This example demonstrates how much more complicated it gets to find generators in a
cyclotomic ring by solely increasing the dimension of the ring by 2. See Appendix B.1
for the calculations done in Sage.

Let n = 8 and m = 2n = 16 such that we have the cyclotomic ring R = Z[x]/(x8 + 1).
The cyclotomic units in S are

{1 + x+ x−1, 1 + x3 + x−3, 1 + x5 + x−5, 1 + x7 + x−7},

corresponding to the infinite norms. By Theorem 3.12, the unit group CK is generated
by the cyclotomic units

{x, 1 + x+ x−1, 1 + x3 + x−3, 1 + x5 + x−5}.

Next, we have the prime element p = 1 + 2 · 8 = 17 and we want to find the prime ideals
in R containing p = 17. From Sage, we have the factorization

17 = (17, x− 3)(17, x+ 3)(17, x− 5)(17, x+ 5)(17, x− 6)(17, x+ 6)(17, x− 7)(17, x+ 7),

where none of the factors are principal. By following the approach in Section 3.2.1 we
attempt to find the generators. The minimal polynomial of R factors as

x8 + 1 =
∏

c odd
(x− ζc

16)

= (x− ζ16)(x− ζ3
16)(x− ζ5

16)(x− ζ7
16)(x− ζ−7

16)(x− ζ−5
16)(x− ζ−3

16)(x− ζ−1
16)

= (x− ζ16)(x− ζ3
16)(x− ζ5

16)(x− ζ7
16)(x+ ζ16)(x+ ζ3

16)(x+ ζ5
16)(x+ ζ7

16).

Let x = 3 be the smallest integer such that

38 + 1 = 2 · 17 · 193
= (3 − ζ16)(3 − ζ3

16)(3 − ζ5
16)(3 − ζ7

16)(3 − ζ−7
16)(3 − ζ−5

16)(3 − ζ−3
16)(3 − ζ−1

16)
≡ 0 (mod 17).

Set ζ16 = x and we have the factorization

2 · 17 · 193 = (3 − x)(3 − x3)(3 − x5)(3 − x7)(3 + x)(3 + x3)(3 + x5)(3 + x7).

39

Chapter 3. Cyclotomic Rings

The factorization from Sage yields,

(3 − x) = (2, x+ 1)(17, x− 3)(193, x− 3)
(3 − x3) = (2, x+ 1)(17, x− 7)(193, x+ 27)
(3 − x5) = (2, x+ 1)(17, x+ 5)(193, x+ 50)
(3 − x7) = (2, x+ 1)(17, x+ 6)(193, x− 64)
(3 + x) = (2, x+ 1)(17, x+ 3)(193, x+ 3)

(3 + x3) = (2, x+ 1)(17, x+ 7)(193, x− 27)
(3 + x5) = (2, x+ 1)(17, x− 5)(193, x− 50)
(3 + x7) = (2, x+ 1)(17, x− 6)(193, x+ 64).

Now, define the prime ideals in R that contains p = 17 as
P1 = (17, 3 − x) = (17, x− 3) P−1 = (17, 3 + x7) = (17, x− 6)
P3 = (17, 3 − x3) = (17, x− 7) P−3 = (17, 3 + x5) = (17, x− 5)
P5 = (17, 3 − x5) = (17, x+ 5) P−5 = (17, 3 + x3) = (17, x+ 7)
P7 = (17, 3 − x7) = (17, x+ 6) P−7 = (17, 3 + x) = (17, x+ 3).

We have eight non-principal prime ideals we need to find generators for. By using Sage,
the principal ideals

P7P−7 = (172, 17(3 − x7), 17(3 + x), (3 − x7)(3 + x))
P5P−5 = (172, 17(3 − x5), 17(3 + x3), (3 − x5)(3 + x3))
P3P−3 = (172, 17(3 − x3), 17(3 + x5), (3 − x3)(3 + x5))
P1P−1 = (172, 17(3 − x), 17(3 + x7), (3 − x)(3 + x7))

have the following generators

g7 = (x7 − x5 + x4 + x2 + 1)
g5 = (−x7 − x6 + x5 − x+ 1)
g3 = (x7 + x6 − x2 − x+ 1)
g1 = (−x6 − x4 − x3 + x+ 1).

Next, with help from Sage, we find the following Jacobi sums with the corresponding
prime ideal factorization

J1 = 2x7 + 2x6 − x4 + 2x2 − 2x P7P−5P−3P1
J2 = x7 − 2x6 − 3x5 + x4 − x3 − x P−7P−5P−3P1
J3 = x7 + 2x6 − x5 + 3x3 + x− 1 P7P−5P3P1
J4 = x7 + x5 + x3 − 2x2 − 3x+ 1 P−7P−5P−3P1
J5 = −x7 − 2x6 + x5 − x4 − x3 − 3x P7P5P−3P1
J6 = −2x6 − 3x4 + 2x2 P−7P−5P3P1
J7 = 2x6 − 2x5 − 2x3 − 2x2 + 1 P7P−5P−3P1.

The Jacobi sums after J7 do not give any new factorization, so we only need the ones
listed above for finding the square roots. Let the polynomial for the Jacobi sum be on
the left and the corresponding prime ideal factorization on the right. First, we find the
generators for P7 and P−7

J1/J2 = 1
17(−3x7 − 8x6 + 7x5 − 4x4 − 5x3 − 2x2 − 11x− 1) P7/P−7

g7 · J1/J2 = −x4 − x3 + x2 − x+ 1 P 2
7

(u5 · g7 · J1/J2)1/2 = x6 − x2 + x P7

40

3.2. S-units

and for P−7 the complex conjugate gives the generator

σ−1(x6 − x2 + x) = x−6 − x−2 + x−1 = −x2 + x4 − x7 = −x2(x5 − x4 + 1).

Next, we find the generators for P5 and P−5.

J5/J1 = 1
17(7x7 + 2x6 + 3x5 − 4x4 + 11x3 + 8x2 − 5x+ 1) P5/P−5

g5 · J5/J1 = x7 + x5 − x4 + x2 + x P 2
5

(u0 · u1 · g5 · J1/J5)1/2 = x7 − x4 − x3 P5

and the complex conjugate gives the generator for P−5,

σ−1(x7 − x4 − x3) = x−7 − x−4 − x−3 = −x+ x4 + x5.

The last generators we can find using this method is for P3 and P−3. For P3 we have

J3/J1 = 1
17(−3x7 + 2x6 − 7x5 − x4 − 5x3 − 8x2 + 11x+ 4) P3/P−3

g3 · J3/J1 = x7 + x6 + x4 − x2 + x P 2
3

(u7 · g3 · J3/J1)1/2 = x7 + x3 − x2 P3

and for P−3 we have

σ−1(x7 + x3 − x2) = x−7 + x−3 − x−2 = −x− x5 + x6.

The remaining prime ideals are P1 and P−1. The ideals generated by the Jacobi sums
only contains P1, hence we find the generators for P1 and P−1 by looking at the prime
ideal factorization of the ideals we already have. For P−1 have the following,

(g2
1 · g3 · g5 · g7)/(J5 · J6) P 2

1 P 2
−1P3P−3P5P−5P7P−7

P 2
1 P3P−3P5P−5P7P−7

= P 2
−1

(u0 · u3 · g2
1 ·g3·g5·g7

J5·J6
)1/2 = x7 + x4 − 1 P−1

and for P1 we take the complex conjugate,

P1 = σ−1(P−1) = σ−1((x7 + x4 − 1)) = (x−7 + x−4 − 1) = (−x− x4 − 1).

After reducing the generators by units, we have that the set S contains the elements

u1 = 1 + x+ x−1 P1 = (x4 + x+ 1) P−1 = (x7 + x4 − 1)
u3 = 1 + x3 + x−3 P3 = (x5 + x− 1) P−3 = (x5 − x4 − 1)
u5 = 1 + x5 + x−5 P5 = (x5 − x− 1) P−5 = (x4 + x3 − 1)
u7 = 1 + x7 + x−7 P7 = (x5 − x+ 1) P−7 = (x4 − x+ 1),

representing the infinite and finite norm. The S-unit group is generated by the elements

u0 = x P1 = (x4 + x+ 1) P−1 = (x7 + x4 − 1)
u1 = 1 + x+ x−1 P3 = (x5 + x− 1) P−3 = (x5 − x4 − 1)
u3 = 1 + x3 + x−3 P5 = (x5 − x− 1) P−5 = (x4 + x3 − 1)
u5 = 1 + x5 + x−5 P7 = (x5 − x+ 1) P−7 = (x4 − x+ 1).

41

Chapter 3. Cyclotomic Rings

42

Chapter 4

S-unit Attacks in Cryptography

From the mathematical theory of cyclotomic fields and S-units, we describe the algorithms
that attempts to solve the hard mathematical problems in lattice-based cryptography.
Recall from Section 2.3 that we are interested in solving the following problems for a
lattice L ⊂ Rn:

• The Approximate Shortest Vector Problem (apprSVPγ): Find a nonzero
vector v ∈ L satisfying ∥v∥ ≤ γ · λ1(L).

• The Approximate Closest Vector Problem (apprCVPγ): For a given vector
w ∈ Rn, find a nonzero vector v ∈ L such that ∥v − w∥ ≤ γ · dist(w,L).

We start by presenting a step by step procedure for a unit attack. Then we do the same
for an S-unit attack, along with some commentary to the most essential aspects to the
algorithm.

4.1 Unit Attacks

For unit attacks, we have S = {∞}. This means we are only working with the group of
cyclotomic units CK in the cyclotomic ring R. The goal of this attack is to find a short
nonzero generator of an known ideal I ⊂ R.

We start with a high level description of the algorithm. Consider an ideal I ⊂ R with
a generator α ∈ R such that (α) = I. We want to find a unit u ∈ CK which outputs α/u
where ∥α/u∥ < ∥α∥. We can do this because multiplying a generator by units still gives
an element that generates the same ideal. The algorithm can be summarized with the
following steps.

Unit attack:

1. Compute the r − 1 generators for the group of cyclotomic units CK , as described
in Section 3.1.3.

2. Define the set S with r = r1 + r2 elements corresponding to the infinite
norms, such that Theorem 3.34 holds, and define the Log-embedding, Log(a) =
(log|a|1, ..., log|a|r).

3. Compute the unit lattice LU = Log(UK) = (Log(u1), ...,Log(ur−1)) and its
corresponding matrix, MU = (Log(ui,j))i,j , with Log(ui) = (log |ui|1, ..., log |ui|r)
as rows.

43

Chapter 4. S-unit Attacks in Cryptography

4. Embed the known generator α of the ideal I as a vector y = Log(α).

5. Use Algorithm 7 to find a vector t ∈ Rr, such that y′ = ∑r
i=1 tiLog(ui), and ∥y−y′∥

is minimized.

6. Pull y′ back to R corresponding to a unit u = ∏
i u

ti
i ∈ CK . Divide by this unit

such that α′ = α/u is the new candidate for the generator for the ideal I.

7. Check that ∥α′∥ < ∥α∥ . If so, replace α with α′ and repeat the process until
∥α′∥ ≥ ∥α∥.

Remark 4.1. In Step 3, we have a over-determined system of r equations, but only
r − 1 unknown elements. This is because of the requirement form Theorem 3.34. The
coordinates must sum to 0 and the unit lattice is a hyperplane in Rr. Consequently,
we use the unit normal vector to the hyperplane y0 = (1, 1, ..., 1) and parameterize y as
y′ = y + λy0. Then λ is the constant needed for the sum of the coordinates of y to be
zero. This gives us the following system of equations,

y + λy0 = t ·M
y = t ·M − λy0

y = (t1, ..., tr−1,−λ) ·


Log(u1)

...
Log(ur−1)

y0

 .

This is now a system with r equations and r unknown elements. For later, when we write
t ·MU = y, it is implied that we have already done this parameterization.

4.2 S-unit Attack

We now describe the main steps for an S-unit attack. The approach is similar to unit
attacks, but we expand S by including prime ideals P ⊂ R. The goal of the attack is to
find a smaller element in a known ideal I ⊂ R.

We have the following high-level description of the algorithm. For a chosen parameter
y, we define the set S = {∞} ∪ {P | N (P) ≤ y} and the S-unit group US . The choice of
y depends on the size of the element we want to reduce, see Remark 4.2. For a known
ideal I ⊆ R as input, choose an element α ∈ I, and find an S-unit u ∈ US such that
∥α/u∥ < ∥α∥.

S-unit attack:

1. Compute the group of cyclotomic units CK , with r − 1 elements.

2. For an element α ∈ I, compute the size ∥α∥ and choose the parameter y. Find
all the prime ideals P ⊂ R, with norm N (P) ≤ y, and add them to S, such that
S = {∞} ∪ {P ⊂ R | N (P) ≤ y}.

3. Define the Log-embedding, Log(a) = (log |a|1, ..., log |a|r, log |a|P1 , ..., log |a|Ps),
according to the elements in S, with r elements corresponding to the infinite
norm and s elements corresponding to the finite norm.

44

4.2. S-unit Attack

4. Compute the S-unit lattice LS = Log(US) = (Log(u1), ...,Log(ur+s−1)), and the
corresponding matrix MS , with Log(ui) as rows.

5. Embed α ∈ I as a vector y = Log(α) and solve t ·MS = y by using Algorithm 7.
Remark 4.1 applies here.

6. Pull y ∈ LS back to R, corresponding to a S-unit u ∈ US . Divide α by this S-unit
such that α′ = α/u is a new element in I.

7. Check if ∥α′∥ < ∥α∥. If so, replace α with α′.

8. If the size of α′ is still very large, increase the parameter y and try to reduce the
new element with a larger set S.

9. For the prime ideal P2 = (x+ 1) /∈ S, divide α′ by (x+ 1)k starting at k = 1 and
gradually increase k. For each k, check if the size get smaller and if the element is
in the ideal I.

10. Sometimes it is necessary to preform an additional unit attack to get an even
smaller element.

Remark 4.2. The choice of the parameter y depends on the size of α, the element we
want to reduce. We start by choosing a small y compared to the size of α, check if we can
reduce the element, and slowly increase the value. However, y should always be smaller
than the size of the element we want to reduce.
Remark 4.3. An important difference for S-unit attacks is that we might divide by prime
ideals from the generator of the ideal, such that the new element is no longer in the
ideal. Therefore, we always have to check if α/u ∈ I. If vP (α/u) < vP (I) for some P ,
then α/u /∈ I and we need to multiply α/u with a generator of the prime ideal P , until
vP (α/u) ≥ vP (I) and α/u ∈ I. Otherwise, vP (α/u) ≥ vP (I) for all the prime ideals
P ∈ S and α/u ∈ I.

If we know the algebraic norm of the ideal, we can choose the parameter y accordingly.
By letting y be strictly smaller than the norm of I, the S-unit group do not contain any
of the same prime ideals as the generator of I, and we cannot divide out by the generator
of I.

In conclusion, Remark 4.2 and 4.3 are the most interesting aspects when analyzing
S-unit attacks. These are the elements of the algorithm that yields the potential of
it being more effective and precise than other reduction algorithms, such as the LLL
algorithm from Section 2.4. Because it consider the cyclotomic ring directly, rather than
looking at the problem as a lattice, it has the potential of providing more information of
the cryptosystem. As a result we can choose which elements to reduce more adequately.
Although, the mathematical theory indicates this to be the case, it is still uncertain how
well the actual performance will be. In Chapter 6, we provide different aspects that could
be interesting to study further. In the next chapter, we consider examples of both unit
and S-unit attacks, where these elements are taken into consideration.

45

Chapter 4. S-unit Attacks in Cryptography

46

Chapter 5

Examples of S-unit Attacks

We now compile the theoretic foundations from Chapter 3 and 4 to construct examples
of different attacks against lattice-based cryptography. We start by applying unit and
S-unit attacks for general ideals. Then we provide an example with one possible method
of applying S-units for break the lattice-based cryptosystem, NTRU.

For the remainder of this chapter, let m = 2n and n = 2k for a positive integer k. Let
R = Z[x]/(xn + 1) be the cyclotomic ring with the m’th root of unity x = ζm = e2πi/m.
Let S = {∞} ∪ {P ⊂ R | N (P) ≤ y} for a chosen parameter y, corresponding to the
infinite and finite norms, and let US = {u ⊂ R∗ | |u|P = 1 ∀P /∈ S} be the S-unit group.

5.1 Applying Unit Attacks to a General Ideal

For preparation to the more complex examples of S-unit attacks, we present an example
of a unit attack for a general ideal in a cyclotomic ring.

5.1.1 Unit Attack for n = 8

Let R = Z[x]/(x8 + 1) be the cyclotomic ring. We start by finding the cyclotomic units
as described in Section 3.16. The set S consists of the cyclotomic units

u1 = 1 + x+ x−1

u3 = 1 + x3 + x−3

u5 = 1 + x5 + x−5

u7 = 1 + x7 + x−7,

where u7 = 1/(u1u3u5) = 1 + x7 + x−7 and u1u3u5u7 = −1, corresponding to the infinite
norms. The unit group CK is generated by the cyclotomic units

u0 = x

u1 = 1 + x+ x−1

u3 = 1 + x3 + x−3

u5 = 1 + x5 + x−5.

From S we define the following Log-embedding

Log(a) = (log|a|1, log|a|3, log|a|5), log|a|7),

47

Chapter 5. Examples of S-unit Attacks

where the numbers 1, 3, 5 and 7 represent the infinite norms in the ring R. Compute the
unit lattice LU = Log(CK) which is generated by the vectors

v1 = Log(u1) = (2.093, 1.137,−2.899,−0.330)
v2 = Log(u3) = (1.137,−0.330, 2.093,−2.899)
v3 = Log(u5) = (−2.899, 2.093,−0.330, 1.137).

By adding the unit vector (1, 1, 1, 1) we have the corresponding matrix,

MU =


2.093 1.137 −2.899 −0.330
1.137 −0.330 2.093 −2.899

−2.899 2.093 −0.330 1.137
1 1 1 1

 .

Now, take a random element from R

α = −11x7 − 3x6 + 3x5 + 3x4 − 2x3 − 6x2 + x+ 7,

with the size ∥α∥ = 15.43 and define the ideal I = (α). We want to find a shorter
generator for I by dividing with units from CK . To find such a unit, we compute the
vector y = Log(α) = (5.467, 6.546,−2.597, 2.926), using the same Log-embedding. Then,
to find an element u ∈ CK close to α, we solve the linear system t ·MU = y. We get

(t1, t2, t3, λ) ·


2.093 1.137 −2.899 −0.330
1.137 −0.330 2.093 −2.899

−2.899 2.093 −0.330 1.137
1 1 1 1

 = (5.467, 6.546,−2.597, 2.926),

which gives the vector t = (1.943, 0.073, 0.610, 3.085) ≈ (2, 0, 1, 3). We omit the last
coordinate since it is the parameter for y. The closest element to y in LU , is the vector
w = 2 · v1 + 0 · v2 + 1 · v3 = 2v1 + v3, corresponding to the unit u = u2

1u5 ∈ CK . We
divide α by this unit,

α′ = α/u = −2x7 − 2x6 − 2x5 + x4 − 2x2 + 3x+ 2.

By comparing the sizes

∥α′∥ = 5, 48 < 15, 43 = ∥α∥,

we see that the new element is much smaller and we let α′ be the new generator for
I. If we now try to repeat the same process with the new generator, we get that
t = (−0.057, 0.073,−0.390) ≈ (0, 0, 0), and there is no further reduction. This is expected
since the algorithm is supposed to find the closest unit in CK , so there should not exist
any other after we have divided by the unit. In conclusion, we have found a smaller
generator for the ideal, I = (α′) = (−2x7 − 2x6 − 2x5 + x4 − 2x2 + 3x+ 2), and we are
done.

As a result, we see that only reducing with units have the potential of being very
effective. In spite of the dimension being low for the cyclotomic ring, compared to an
actual cryptosystem, finding the cyclotomic units does not require much work because
of the properties discussed in Chapter 3. Therefore, it suggests that the complexity of
computing the units should not be an obstacle for this type of attack. However, unit
attacks might not be as effective when the element to reduce is far from being the element
to recover, and consisting of large prime ideals. This is where S-unit attacks could be the
solution.

48

5.2. Applying S-unit Attacks to a General Ideal

5.2 Applying S-unit Attacks to a General Ideal

We now turn to the examples of S-unit attacks on general ideals. We start with the
cyclotomic ring of degree 4, where we showcase a more detailed approach on how to apply
an S-unit attack for reducing an element from an ideal. Then, for the cyclotomic ring of
degree 8, we analyze different outcomes when attempting to reduce different elements
from the same ideal using S-units.

5.2.1 S-unit Attack for n = 4

Let R = Z[x]/(x4 + 1) be the cyclotomic ring. Let I ⊂ R be the known ideal, with the
unknown generator g = −5x2 − 3x+ 5. Our goal is to find g, or an element close to g.

We start by choosing a random element α = −5x3 + 115x2 + 5x ∈ I, with the size
∥α∥ = 115.22. There are many prime elements below 115, so by choosing the parameter
for S to be small compared to the size of α, we hope to reduce α. The cyclotomic units
in S are

u1 = 1 + x+ x−1 and u3 = 1 + x3 + x−3.

The unit group CK is generated by u0 = x and u1 = 1 + x + x−1, since 1/u1 = −u3.
Next, let y = 17 and extend S with prime ideals in R. To find such prime ideals, we take
every prime number 2 < p ≤ 17 and find the prime ideal factorization in R. If the norm
of these prime ideals are less than or equal 17, we add them to S. We use Sage and the
same approach as in Example 3.2.3 to find the factorization and norm. See Appendix
B.5 for the computations done in Sage.

p = 3 :p = 3 :p = 3 :
(3)R = (x2 + x− 1)(−x3 − x2 − 1) mod 3
P3,1 = (x2 + x− 1) N (P3,1) = 9 ≤ 17
P3,2 = (−x3 − x2 − 1) N (P3,2) = 9 ≤ 17,

p = 5 :p = 5 :p = 5 :
(5)R = (x2 + 2)(x2 − 2) mod 5
P5,1 = (x2 + 2) N (P5,1) = 25 > 17
P5,2 = (x2 − 2) N (P5,2) = 25 > 17,

p = 7 :p = 7 :p = 7 :
(7)R = (2x2 + x+ 2)(−2x2 + x− 2) mod 7
P7,1 = (2x2 + x+ 2) N (P7,1) = 49 > 17
P7,2 = (−2x2 + x− 2) N (P7,2) = 49 > 17,

p = 11 :p = 11 :p = 11 :
(11)R = (x3 + x+ 3)(x3 − 3x2 − x) mod 11
P11,1 = (x3 + x+ 3) N (P11,1) = 121 > 17
P11,2 = (x3 − 3x2 − x) N (P11,2) = 121 > 17,

p = 13 :p = 13 :p = 13 :
(13)R = (−3x2 − 2)(2x2 + 3) mod 13
P13,1 = (−3x2 − 2) N (P13,1) = 169 > 17
P13,2 = (2x2 + 3) N (P13,2) = 169 > 17,

49

Chapter 5. Examples of S-unit Attacks

p = 17 :p = 17 :p = 17 :
(17)R = (2 − x)(2 − x3)(2 + x)(2 + x3) mod 17
P17,1 = (2 − x) N (P17,1) = 17 ≤ 17
P17,3 = (2 − x3) N (P17,3) = 17 ≤ 17
P17,−1 = (2 + x3) N (P17,−1) = 17 ≤ 17
P17,−3 = (2 + x) N (P17,−3) = 17 ≤ 17.

Hence, we extend S with the primes ideals {P3,1, P3,2, P17,1, P17,3, P17,−1, P17,−3} and S
contains the elements

u1 = 1 + x+ x−1 u3 = 1 + x3 + x−3

P3,1 = x2 + x− 1 P3,2 = x3 + x2 + 1
P17,3 = 2 − x3 P17,−3 = 2 + x
P17,1 = 2 − x P17,−1 = 2 + x3,

corresponding to the infinite and finite norms. This gives us the Log-embedding,

Log(a) = (log|a|1, log|a|3, log|a|P3,1 , log|a|P3,2 ,

log|a|P17,1 , log|a|P17,3 , log|a|P17,−1 , log|a|P17,−3).

Further, the S-unit group is generated by

u0 = x u1 = 1 + x+ x−1

P3,1 = x2 + x− 1 P3,2 = x3 + x2 + 1
P17,3 = 2 − x3 P17,−3 = 2 + x
P17,1 = 2 − x P17,−1 = 2 + x3,

and by computing the Log-embedding for each generator we get the following generators
for the S-unit lattice LS = Log(US),

Log(u1) = (log|u1|1, log|u1|3, log|u1|P3,1 , log|u1|P3,2 ,

log|u1|P17,1 , log|u1|P17,3 , log|u1|P17,−1 , log|u1|P17,−3)
= (1.763, 1.763, 0, 0, 0, 0, 0, 0),

Log(P3,1) = (log|P3,1|1, log|P3,1|3, log|P3,1|P3,1 , log|P3,1|P3,2 ,

log|P3,1|P17,1 , log|P3,1|P17,3 , log|P3,1|P17,−1 , log|P3,1|P17,−3)
= (1.099, 1.099,−2.197, 0, 0, 0, 0, 0),

Log(P3,2) = (log|P3,2|1, log|P3,2|3, log|P3,2|P3,1 , log|P3,2|P3,2 ,

log|P3,2|P17,1 , log|P3,2|P17,3 , log|P3,2|P17,−1 , log|P3,2|P17,−3)
= (1.099, 1.099, 0,−2.197, 0, 0, 0, 0),

Log(P17,1) = (log|P17,1|1, log|P17,1|3, log|P17,1|P3,1 , log|P17,1|P3,2 ,

log|P17,1|P17,1 , log|P17,1|P17,3 , log|P17,1|P17,−1 , log|P17,1|P17,−3)
= (0.775, 2.058, 0, 0,−2.833, 0, 0, 0),

Log(P17,3) = (log|P17,3|1, log|P17,3|3, log|P17,3|P3,1 , log|P17,3|P3,2 ,

50

5.2. Applying S-unit Attacks to a General Ideal

log|P17,3|P17,1 , log|P17,3|P17,3 , log|P17,3|P17,−1 , log|P17,3|P17,−3)
= (2.058, 0.775, 0, 0, 0,−2.833, 0, 0),

Log(P17,−1) = (log|P17,−1|1, log|P17,−1|3, log|P17,−1|P3,1 , log|P17,−1|P3,2 ,

log|P17,−1|P17,1 , log|P17,−1|P17,3 , log|P17,−1|P17,−1 , log|P17,−1|P17,−3)
= (0.775, 2.058, 0, 0, 0, 0,−2.833, 0),

Log(P17,−3) = (log|P17,−3|1, log|P17,−3|3, log|P17,−3|P3,1 , log|P17,−3|P3,2 ,

log|P17,−3|P17,1 , log|P17,−3|P17,3 , log|P17,−3|P17,−1 , log|P17,−3|P17,−3)
= (2.058, 0.775, 0, 0, 0, 0, 0,−2.833).

Define the generators for the S-unit lattice LS as the vectors

v1 = Log(u1) v5 = Log(P17,3)
v2 = Log(P3,1) v6 = Log(P17,−1)
v3 = Log(P3,2) v7 = Log(P17,−3).
v4 = Log(P17,1)

Let these be the rows for the 8×8-matrix MS , with the unit vector y0 = (1, 1, 1, 1, 1, 1, 1, 1)
as the last row,

MS =



1.763 1.763 0 0 0 0 0 0
1.099 1.099 −2.197 0 0 0 0 0
1.099 1.099 0 −2.197 0 0 0 0
0.775 2.058 0 0 −2.833 0 0 0
2.058 0.775 0 0 0 −2.833 0 0
0.775 2.058 0 0 0 0 −2.833 0
2.058 0.775 0 0 0 0 0 −2.833

1 1 1 1 1 1 1 1


.

We can now try to reduce α = −5x3 + 115x2 + 5x ∈ I with the S-unit group. Embed α
as a vector using the Log-embedding,

y = Log(α) = (9.49, 9.49,−4.39, 0.0, 0, 0, 0, 0).

Then use the S-unit matrix to solve t · MS = y, for the unknown vector t =
(t1, ..., tn−1,−λ). We get t = (0, 2, 0, 0, 0, 0, 0, 1). By omitting the last coordinate,
we get the S-unit lattice vector v = 2v1, corresponding to the S-unit u = P 2

3,1. If we
divide α by this S-unit, we get

β = α/u = −25x3 − 25x− 15 ∈ I.

By comparing the sizes
∥β∥ = 38.41 < 115.22 = ∥α∥,

we see that α has been reduced significantly. Since ∥β∥ = 38.41 and y = 17, it looks like
we can attempt to reduce the element even further, by choosing a larger value for y.

Let y = 25, such that we have S = {∞} ∪ {P | N (P) ≤ 25}. By looking at the prime
elements above, this gives us at least two new prime ideals, namely P5,1 = (x2 − 2) and
P5,2 = (x2 + 2). The remaining prime elements p < 25, are p = 19 and p = 23, and by

51

Chapter 5. Examples of S-unit Attacks

using Sage the corresponding prime ideals in R have the norm 361 and 529, respectively.
The new S contains the elements

{u1, u3, P3,1, P3,2, P5,1, P5,2, P17,1, P17,3, P17,−1, P17,−3},

which gives the Log-embedding

Log(a) = (log|a|1, log|a|3, log|a|P3,1 , log|a|P3,2 , log|a|P5,1 , log|a|P5,2 ,

log|a|P17,1 , log|a|P17,3 , log|a|P17,−1 , log|a|P17,−3).

The new S-unit group is now generated by

US = {u0, u1, P3,1, P3,2, P5,1, P5,2, P17,1, P17,3, P17,−1, P17,−3},

which gives us two new vectors for the S-unit lattice,

v5 = Log(P5,1) = (1.609, 1.609, 0, 0,−3.219, 0, 0, 0, 0, 0)
v6 = Log(P5,2) = (1.609, 1.609, 0, 0, 0,−3.219, 0, 0, 0, 0).

In conclusion, we have the following generators for LS ,

v1 = Log(u1) v5 = Log(P5,1) v8 = Log(P17,3)
v3 = Log(P3,1) v6 = Log(P5,2) v9 = Log(P17,−1)
v4 = Log(P3,2) v7 = Log(P17,1) v10 = Log(P17,−3),

corresponding to the matrix MS by including the unit vector y0. Now, with a larger
group of S-units, we try to further reduce the element β = −25x3 − 25x − 15. The
Log-embedding of β is,

y = Log(β) = (7.296, 0, 0, 0,−3.219,−3.219, 0, 0, 0, 0).

Then by solving the equation t ·MS = y, we get the vector t = (0, 0, 0, 0, 1, 1, 0, 0, 0, 0),
corresponding to the lattice element v = v5 + v6 ∈ LS and the S-unit u = P5,1P5,2 ∈ US .
If we divide by this S-unit we get

γ = β/u = 5x3 + 5x+ 3 ∈ I,

and by comparing the sizes

∥γ∥ = 7.68 < 38.41 = ∥β∥,

we have managed to reduce the element even more. Also, ∥γ∥ is much smaller than
the parameter y = 25, so the element will most likely not be reduced any further by
increasing S. In fact, we have found the exact same polynomial as the unknown generator
we started with, and we are done.

5.2.2 S-unit Attack for n = 8
In the previous example we looked at a case where an S-unit attack worked perfectly.
Now, for a slightly larger cyclotomic ring, we showcase how much more complicated
the computation of the S-unit group gets and we acknowledge different outcomes when
performing an S-unit attack on the same ideal.

Let R = Z[x]/(x8 + 1) be the cyclotomic ring. Let I = (x6 + x4 − x2 + x− 1) be the
given ideal, where the generator g = x6 + x4 − x2 + x − 1 is unknown. The goal is to

52

5.2. Applying S-unit Attacks to a General Ideal

find the generator or an element close to it, by using S-units. First of all, we have the
cyclotomic units

u0 = x
u1 = 1 + x+ x−1 u3 = 1 + x3 + x−3

u5 = 1 + x5 + x−5 u7 = 1 + x7 + x−7,

where 1/(u1u3u5) = −u7 and the unit group CK is generated by u0, u1, u3 and u5. Assume
that we choose the first random element to be α = −x6+3x5+x4−8x3+2x2−x+199 ∈ I,
where ∥α∥ = 199.20. We want to choose the parameter y to be less than 199. Let
y = 1 + 2 · 8 · 6 = 97, which is the second prime element after 17, on the form p ∈ 1 + 2nZ.
We use Sage to find the prime ideals in R bounded by 97, which gives the prime ideals
lying above the prime elements 3, 7, 17 and 97. See Appendix B.5 for Sage code and
Appendix A.2 for a more comprehensive computation for finding these prime elements.

For the prime elements 3 and 7, we use Sage to find their prime ideal factorization in
R and the corresponding generators. We get the following prime ideals,

P3,1 = (x4 + x2 − 1) P3,−1 = (x4 − x2 − 1)
P7,1 = (x2 + x− 1) P7,−1 = (x2 − x− 1)
P7,3 = (x5 + x3 + 1) P7,−3 = (x5 + x3 − 1).

From Example 3.2.3 we have that the generators for the prime ideals lying above 17 are

P17,1 = (−x4 − x− 1) P17,−1 = (x7 + x4 − 1)
P17,3 = (x7 + x3 − x2) P17,−3 = (x6 − x5 − x)
P17,5 = (x7 − x4 − x3) P17,−5 = (x5 + x4 − x)
P17,7 = (x6 − x2 + x) P17,−7 = (x4 − x+ 1).

Lastly, we need the prime ideals lying above 97. By choosing the smallest integer for x
such that x8 + 1 ≡ 0 (mod 97), we get the following factorization

x8 + 1 =
∏

odd i<m

(x− ζi
8),

88 + 1 = 97 · 257 · 673 =
∏

odd i<m

(8 − ζi
8) ≡ 0 (mod 97).

Then by Theorem 3.8 and by letting x = ζ8, we have the non-principle prime ideals,

P97,1 = (97, 8 − x) P97,−1 = (97, 8 − x15) = (97, 8 − x−1) = (97, 8 + x7)
P97,3 = (97, 8 − x3) P97,−3 = (97, 8 − x13) = (97, 8 − x−3) = (97, 8 + x5)
P97,5 = (97, 8 − x5) P97,−5 = (97, 8 − x11) = (97, 8 − x−5) = (97, 8 + x3)
P97,7 = (97, 8 − x7) P97,−7 = (97, 8 − x9) = (97, 8 − x−7) = (97, 8 + x).

By following the same procedure as we used in Example 3.2.3, with Theorem 3.8 and the
the Jacobi sums, we find the generators

P97,1 = (x4 + x3 + 2x2 + 2x+ 1) P97,−1 = (x4 + 2x3 + 2x2 + x+ 1)
P97,3 = (x3 − x2 + 2x− 1) P97,−3 = (x3 − 2x2 + x− 1)
P97,5 = (x6 + x5 − 2x3 − x2 + 2) P97,−5 = (x6 + 2x5 − x3 − x2 + 2)
P97,7 = (x5 − x3 − x2 + 2) P97,−7 = (−2x5 + x3 + x2 − 1).

53

Chapter 5. Examples of S-unit Attacks

See Appendix A.2 for a more detailed computation. We have the following generators for
the S-unit group US :

u0 = x u3 = 1 + x3 + x−3

u1 = 1 + x+ x−1 u5 = 1 + x5 + x−5

P3,1 = (x4 + x2 − 1) P3,−1 = (x4 − x2 − 1)
P7,1 = (x2 + x− 1) P7,−1 = (x2 − x− 1)
P7,3 = (x5 + x3 + 1) P7,−3 = (x5 + x3 − 1)
P17,1 = (−x4 − x− 1) P17,−1 = (x7 + x4 − 1)
P17,3 = (x7 + x3 − x2) P17,−3 = (x6 − x5 − x)
P17,5 = (x7 − x4 − x3) P17,−5 = (x5 + x4 − x)
P17,7 = (x6 − x2 + x) P17,−7 = (x4 − x+ 1)
P97,1 = (x4 + x3 + 2x2 + 2x+ 1) P97,−1 = (x4 + 2x3 + 2x2 + x+ 1)
P97,3 = (x3 − x2 + 2x− 1) P97,−3 = (x3 − 2x2 + x− 1)
P97,5 = (x6 + x5 − 2x3 − x2 + 2) P97,−5 = (x6 + 2x5 − x3 − x2 + 2)
P97,7 = (x5 − x3 − x2 + 2) P97,−7 = (−2x5 + x3 + x2 − 1).

Now, define the Log-embedding as,

Log(a) = (log|a|1, log|a|3, log|a|5, log|a|7, log|a|P3,1 , log|a|P3,−1 ,

log|a|P7,1 , log|a|P7,−1 , log|a|P7,3 , log|a|P7,−3 , log|a|P17,1 , log|a|P17,3 ,

log|a|P17,5 , log|a|P17,7 , log|a|P17,−1 , log|a|P17,−3 , log|a|P17,−5 , log|a|P17,−7 ,

log|a|P97,1 , log|a|P97,3 , log|a|P97,5 , log|a|P97,7 , log|a|P97,−1 , log|a|P97,−3 ,

log|a|P97,−5 , log|a|P97,−7).

From the Log-embedding we compute the generators for the S-unit lattice LS , by
embedding each generator of the S-unit group US . Then, by letting these vectors be the
rows, with the last row being the unit vector y0, we have the corresponding matrix MS .

We now go back to the random element α = −x6 + 3x5 +x4 − 8x3 + 2x2 −x+ 199 ∈ I
and see if there is any S-units in US that will reduce the element. Again, we start by
embedding α as

y = Log(α) = (10.56, 10.66, 10.46, 10.66, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Then, by solving t ·MS = y we get

t = (−1, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

which corresponds to the S-unit u = u−1
1 u−1

5 . If we divide α by this S-unit we get

α′ = α/u = −203x7 + 207x6 + 208x5 − 4x4 − 205x3 − 210x2 + 206x+ 206.

Immediately, this element is much larger than what we started with. Hence, we cannot
reduce the element with the current S-unit group. From ∥α∥ = 199 and the next prime
element being 1+2 ·8 ·7 = 113, which is still smaller than ∥α∥, we expand S with y = 113.
Let P113,c denote the prime ideals in R lying above 113, for c ∈ {±1,±3,±5,±7}. By
adding these to the S-unit group and by preforming another S-unit attack, we find the
S-unit u = P113,−5u1u3u5. This gives a new element

α′ = α/u = 88x7 − 65x6 − 28x5 + 40x4 − 46x3 − 4x2 − 29x+ 11.

54

5.2. Applying S-unit Attacks to a General Ideal

Now, the size is ∥α′∥ = 132 and we managed to slightly reduce α. However, α′ /∈ I and
the prime ideal P113,−5 must be in the generator of the ideal. This brings us back to the
original element α. Lastly, we try to divide by the prime ideal P2 = (x+ 1), as described
in Section 4.2. We get

α/P2 = (−x6 + 3x5 + x4 − 8x3 + 2x2 − x+ 199)/(x+ 1)

= 1
2(−207x7 + 207x6 − 209x5 + 215x4 − 213x3 + 197x2 − 193x+ 191).

This means α does not contain P2 and we cannot reduce by it. Also, from the prime
ideal factorization of α′ we have two large prime ideals remaining,

α′ = (13981313, x+ 6367574)(1548446177, x+ 75120017),

which confirms that we cannot reduce it any further. In conclusion, we cannot find any
smaller element in I from α.

We try to reduce another random element from I. Let β = 3x7 +x5 −x3 +x+ 94 ∈ I,
with ∥β∥ = 94.06. This indicates that we can try to reduce β by choosing the parameter
y = 17 for S. Then we have the elements

u1 = 1 + x+ x−1 u5 = 1 + x5 + x−5

u3 = 1 + x3 + x−3 u7 = 1 + x7 + x−7

P3,1 = (x4 + x2 − 1) P3,−1 = (x4 − x2 − 1)
P7,1 = (x2 + x− 1) P7,−1 = (x2 − x− 1)
P7,3 = (x5 + x3 + 1) P7,−3 = (x5 + x3 − 1)
P17,1 = (−x4 − x− 1) P17,−1 = (x7 + x4 − 1)
P17,3 = (x7 + x3 − x2) P17,−3 = (x6 − x5 − x)
P17,5 = (x7 − x4 − x3) P17,−5 = (x5 + x4 − x)
P17,7 = (x6 − x2 + x) P17,−7 = (x4 − x+ 1),

in S defining the infinite and finite norms, with the Log-embedding

Log(a) = (log|a|1, log|a|3, log|a|5, log|a|7, log|a|P3,1 , log|a|P3,−1 ,

log|a|P7,1 , log|a|P7,−1 , log|a|P7,3 , log|a|P7,−3 , log|a|P17,1 , log|a|P17,3 ,

log|a|P17,5 , log|a|P17,7 , log|a|P17,−1 , log|a|P17,−3 , log|a|P17,−5 , log|a|P17,−7).

The S-unit group US is generated by,

u0 = x u3 = 1 + x3 + x−3

u1 = 1 + x+ x−1 u5 = 1 + x5 + x−5

P3,1 = (x4 + x2 − 1) P3,−1 = (x4 − x2 − 1)
P7,1 = (x2 + x− 1) P7,−1 = (x2 − x− 1)
P7,3 = (x5 + x3 + 1) P7,−3 = (x5 + x3 − 1)
P17,1 = (−x4 − x− 1) P17,−1 = (x7 + x4 − 1)
P17,3 = (x7 + x3 − x2) P17,−3 = (x6 − x5 − x)
P17,5 = (x7 − x4 − x3) P17,−5 = (x5 + x4 − x)
P17,7 = (x6 − x2 + x) P17,−7 = (x4 − x+ 1),

and we compute the generator for the S-unit lattice LS . Embed β as a vector,

y = Log(β) = (9.03, 9.11, 9.07, 9.14, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,−2.83, 0,−2.83, 0),

55

Chapter 5. Examples of S-unit Attacks

and solve t ·MS = y, such that we get

t = (−1, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0).

This corresponds to the S-unit u = u−1
1 u−1

5 P17,5P17,7. Divide by this S-unit to get

β′ = β/u = −22x7 − 33x6 − 4x5 + 23x4 + 16x3 − x2 − 28x+ 23.

which has the size
∥β′∥ = 60.73 < 94.06 = ∥β∥.

The new element is smaller, and since the next prime ideals to include in S are the prime
ideals above p = 97, we cannot reduce β′ any further by expanding S. Instead we try to
reduce β′ with P2 = (x+ 1),

β′/P2 = −25x7 + 3x6 − 36x5 + 32x4 − 9x3 + 25x2 − 26x− 2
...

β′/P 6
2 = −2529x7 + 3041x6 − 3086x5 + 2658x4 − 1828x3 + 719x2 + 497x− 1635

β′/P 7
2 = 1

2(−11729x7 + 6671x6 − 589x5 − 5583x4 + 10899x3 − 14555x2 + 15993x− 14999).

Hence, we divide β′ by P 6
2 . However, the new element β′′ = β′/P 6

2 is significantly larger
than β′, but if we preform a unit attack on β′′, we get

γ = β′′/(u−2
1 u−4

3 u−1
5) = −14x7 + 9x6 − 6x5 − 22x3 + 9x2 + 8x− 11,

with ∥γ∥ = 32.60. We managed to further reduce β, and if we look at the prime ideal
factorization of γ

γ = (113, x− 48)(2921814977, x− 636425943),

we cannot reduce it any further. Because, from the first element α we know that the prime
ideal above p = 113 is in the generator for I, and the other prime ideal is too large. Hence,
we have reduced β = 3x7 +x5 −x3 +x+94 to γ = −14x7 +9x6 −6x5 −22x3 +9x2 +8x−11,
where

∥β∥ = 94.06 > 32.60 = ∥γ∥.

We end this example by choosing an element from I where we manage to reduce it
perfectly. Let δ = −136x7 − 397x6 − 206x5 + 181x4 + 435x3 + 174x2 − 104x− 158 be the
element from I with ∥δ∥ = 711.75. Because of the large size, we start by choosing the
parameter y = 97 for S. We use the same S-unit group and Log-embedding as the first
element α. The following Log-embedding and the solution to t ·MS = y give us

y = Log(δ) = (12.58, 14.36, 7.08, 9.22,−8.79, 0,−3.89, 0, 0,−11.68,
0, 0, 0, 0,−2.83,−8.50, 0,−2.83, 0, 0, 0, 0, 0, 0, 0, 0)

and

t = (−1, 1, 0, 2, 0, 1, 0, 0, 3, 0, 0, 0, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

which corresponds to the S-unit u = u−1
1 u3P

2
3,1P

2
7,1P

3
7,4P17,5P

3
17,−5P17,−7. If we reduce by

this, we get
δ′ = δ/u = x7 + x3 + x2 − x− 1,

56

5.3. Applying S-unit Attacks to NTRU

with ∥δ′∥ = 2.23. This is significantly smaller than our initial δ. Further, we can see that
δ′ is the same up to units as the unknown generator g = x6 + x4 − x2 + x − 1 for the
ideal I, i.e. δ′ = −u7 · g.

In conclusion, if we choose the right element from the known ideal we find a very
small element, in fact even the generator for the ideal. But, in most cases we only manage
to choose elements that slightly reduces, and in some cases not at all. This might not be
the case when we are working with an actual cryptosystem and not just random elements
from a general ideal. We discuss this further in Chapter 6. We should also mention the
complexity of computing the generators for the prime ideals. As shown in this example it
became a lot more complicated to find the generators, merely by doubling the dimension
of the cyclotomic ring. This indicates that it only gets harder and harder for higher
dimensional cyclotomic rings, and maybe not even possible.

5.3 Applying S-unit Attacks to NTRU

To end this chapter we study one method of using S-units for a key recovery attack
against NTRU. We provide one case where we manage to fully recover the keys and
two cases where it does not work. Since the secret key consists of polynomials with
coefficients equal to −1, 0 or 1, they are be small and possibly S-units. This is because
we choose S-units depending on the size of the public key, which is much larger than the
secret key. They also have the relation described in Section 2.2.1.

5.3.1 An Example Where it Works

For this example, the S-unit attack will work perfectly. Let (n, p, q, d) = (8, 3, 41, 2) and
let R = Z[x]/(x8 + 1) be the cyclotomic ring for the NTRU cryptosystem. Let the secret
key be

f(x) = x6 − x4 + x3 + x2 − 1 and g(x) = x6 + x4 − x2 − x

which gives the public key

h(x) = −7x7 − 10x6 + 5x5 + 5x4 + 20x3 − 19x2 + 3x− 12.

Observe that ∥h(x)∥ = 33.36 and we choose the parameter y = 30 for S. We have that S
consists of the cyclotomic units

u1 = 1 + x+ x−1 u5 = 1 + x5 + x−5

u3 = 1 + x3 + x−3 u7 = 1 + x7 + x−7.

From Example 5.2.2 we have the prime ideals with norm less than 33,

P3,1 = (x4 + x2 − 1) P3,−1 = (x4 − x2 − 1)
P7,1 = (x2 + x− 1) P7,−1 = (x2 − x− 1)
P7,3 = (x5 + x3 + 1) P7,−3 = (x5 + x3 − 1)
P17,1 = (−x4 − x− 1) P17,−1 = (x7 + x4 − 1)
P17,3 = (x7 + x3 − x2) P17,−3 = (x6 − x5 − x)
P17,5 = (x7 − x4 − x3) P17,−5 = (x5 + x4 − x)
P17,7 = (x6 − x2 + x) P17,−7 = (x4 − x+ 1).

57

Chapter 5. Examples of S-unit Attacks

The S-unit group US is generated by

u0 = x u3 = 1 + x3 + x−3

u1 = 1 + x+ x−1 u5 = 1 + x5 + x−5

P3,1 = (x4 + x2 − 1) P3,−1 = (x4 − x2 − 1)
P7,1 = (x2 + x− 1) P7,−1 = (x2 − x− 1)
P7,3 = (x5 + x3 + 1) P7,−3 = (x5 + x3 − 1)
P17,1 = (−x4 − x− 1) P17,−1 = (x7 + x4 − 1)
P17,3 = (x7 + x3 − x2) P17,−3 = (x6 − x5 − x)
P17,5 = (x7 − x4 − x3) P17,−5 = (x5 + x4 − x)
P17,7 = (x6 − x2 + x) P17,−7 = (x4 − x+ 1).

As before we have the lattice LS = Log(US) with the corresponding matrix MS . By
embedding the public key h(x) as y = Log(h(x)) and solving the linear system t ·MS = y,
we get the S-unit u = u−1

3 P17,2P17,8. This S-unit is a representative for f(x),

f̃(x) = u = −2x7 + x6 − x5 + 2x4 − x3 − x2 − 1.

Some of the coefficients are bigger than ±1 and 0, so by performing a unit attack, we get
the unit u = u−1

3 and the following representative for f(x),

f̃(x) · u3 ≡ x7 − x5 − x3 + x− 1 ≡ −x3 · f(x) (mod 41).

If we now multiply this representative with h(x) modulo 41, we get

f̃(x) · h(x) = g̃(x) ≡ −x7 − x6 − x3 − x ≡ −x3 · g(x) (mod 41)

as a representative for g(x). Hence, we have recovered both of the polynomials for the
secret key.
Remark 5.1. It is not obvious that this method of an S-unit attack will work for arbitrary
instances of NTRU. This example works because the prime ideals in f(x) was also in
h(x), i.e. f(x) was an S-unit. Also, g(x) did not contain the same prime ideals as f(x)
and it was not an S-unit.
Remark 5.2. We should also mention that after finding the S-unit representing the secret
key f(x), we had to preform an additional unit attack. Does this mean it would be easier
to look at one S-unit factor at a time, for the representative of f(x), instead of first
calculating the representative with all the factors from the S-unit group and then reduce
it? For this example, we only had to reduce f̃(x) by a cyclotomic unit consisitng of only
one factor. Thus, the approach done in the example gives less computations and is more
effective.

5.3.2 Two Examples Where it Does Not Work

By using a more realistic approach, we give two examples where this method of S-unit
attack against NTRU does not work. We do this by not checking the factorization of the
secret and public keys beforehand. Instead, we generate an arbitrary key set.

Example 5.3. Let (n, p, q, d) = (8, 3, 41, 3) and let R = Z[x]/(x8 + 1) be the cyclotomic
ring for the NTRU cryptosystem. Let the secret key be

f(x) = x7 − x6 − x4 + x3 + x2 − x+ 1 and g(x) = x6 − x5 − x4 − x3 + x2 + 1

58

5.3. Applying S-unit Attacks to NTRU

with the public key

h(x) = −8x7 + 2x6 + 9x5 + 17x4 − 12x3 − 10x2 + 2x+ 15.

The public key has the size ∥h(x)∥ = 30.18, and we use the same S-unit group as the
previous example. By computing the Log-embedding for h(x) and solving t ·MS = y, we
get the S-unit u = u1u3P17,2P17,2. This corresponds to the polynomial

f̃(x) = −x7 + x6 − x4 − x3 − x2 + x+ 1.

The coefficients for this polynomials looks similar to f(x), but it is not the same polynomial
up to units. By looking at the prime ideal factorization of f(x), it contains the prime
ideals P17,1 and P17,5, whereas f̃(x) contains the prime ideals P17,−1 and P17,3. Moreover,
if we use f̃(x) to find a representative for g(x), we get

g̃(x) = f̃(x) · h(x) ≡ 8x7 − 18x6 + 15x5 + 5x4 + 2x3 − 17x2 − 19x− 19 (mod 41),

which is far from the polynomial g(x). Also, by performing a unit attack we do not find
any units that reduces it.

Example 5.4. Let (n, p, q, d) = (8, 3, 41, 2) and let R = Z[x]/(x8 + 1) be the cyclotomic
ring for the NTRU cryptosystem. Let the secret key be

f(x) = x6 + x5 + x4 − x− 1 and g(x) = x6 − x3 + x2 − x,

with the public key

h(x) = 17x7 − 6x6 + 3x5 + 17x4 − 15x3 + 2x2 − 17x+ 13,

with ∥h(x)∥ = 36.19. This means we use the same S-unit group once again. By embedding
h(x) and solving t ·MS = y, we get the S-unit

f̃(x) = u−1
3 = x7 − x6 + x2 − x+ 1

representing f(x). Again, the coefficients are as wanted, but by looking at the prime ideal
factorization for f(x) and f̃(x) we get P97 = (97, x + 8) and (1), respectively. Hence,
they are not the same polynomial up to units. We also get the polynomial

g̃(x) = f̃(x) · h(x) ≡ 15x7 + 19x6 − 6x5 − 16x4 − 7x3 − 18x2 + 18x+ 14 (mod 41),

representing g(x), with no further reduction from a unit attack.

From these three examples, we can draw the conclusion that this method of S-unit
attack against NTRU, is not very effective. It only worked when we carefully chose the
right polynomials for the secret key, which gave us the right polynomial for the public
key. The main issue with this approach is that we are working with modulo q in NTRU.
Even thought we have the relations fq(x) = f−1(x) (mod q) and h(x) = fq(x) · g(x)
(mod q), which indicates that h(x), fq(x) and g(x) would contain the same prime ideal
factors, the modulo will most likely change the factorization and we cannot find the same
S-units in the secret key and the public key.

59

Chapter 5. Examples of S-unit Attacks

60

Chapter 6

Conclusion

In post-quantum cryptography the goal is to develop cryptographic schemes that are both
secure on classical and quantum computers. The most promising candidate to obtain
this, is lattice-based cryptography, and for this reason very interesting to analyze. By
NIST suggestion to use it as the new standard for public key encryption, it is important
to consider all the potential attacks, whereas S-unit attacks is one of them.

As studied in this thesis, S-unit attacks acquire a very different approach than other
well known reduction algorithms. By considering the properties of the cyclotomic ring,
rather than only considering the lattice, it proposes some compelling aspects that are
worth studying. For this thesis, the most important aspects to consider, lies within the
assumptions we have made.

First of all, it is worth mentioning that we have not taken into consideration the
time estimate nor the storage capacity needed for performing an S-unit attack, two
important elements when analyzing attacks against a cryptosystem. However, Example
5.2.2 indicates how the complexity of computing the S-unit group increases with the
dimension of the cyclotomic ring.

By the assumption of working in a principal ideal domain, it is easier to find the
generators for the S-unit group and the generators are more precise than the non-principal
case. This is because each prime ideal have a generator which again generate the S-unit
group, instead of the group being generated by S-generators for arbitrary ideals. Also, we
assumed that the degree of the cyclotomic ring is a power of 2, which makes them even
more likely to be a PID. For a cryptosystem, we have cyclotomic rings of high dimensions
and the dimension is not necessarily a power of 2. Therefore, as discussed in Section
3.1.2, they are most likely not a PID. To solve this problem we can use the power of
quantum computers. As mentioned in Section 3.1.2, finding a principal representative
in the non-principal case, have an additional quantum algorithm to consider. Because
of this algorithm, finding a such representative and performing an S-unit attack can
be considered as to separate problems. Although, it is still uncertain of how much the
non-principal case will influence the performance of an S-unit attack.

Another assumption we made is how to determine the parameter y for the prime
ideals in S. The best way to do so is still unclear. In Section 4.2, we made the decision
to choose y depending on size of the element we want to reduce. Start with a small value
for y, compared to the size of the element. Then gradually increase y until no further
reduction is possible, or until we no longer have an element in the ideal. As discussed
in Remark 4.3, this choice of y makes it more likely for the element to stay in the ideal
after the reduction. It also provides better control for which prime ideals to include and

61

Chapter 6. Conclusion

not include in S.
The decision of excluding the prime ideal P2 = (x+ 1) from the S-unit group is also

an important aspect to consider. We decided to handle it as an isolated case at the end
of the attack, because 2 is the only prime number that ramifies in the ring. Likewise,
with the remark about units after Example 5.3.1. From our study, it suggest that these
choices are the most effective.

We should also discuss the choice of the elements to reduce for a given ideal. The
best way on how to do so is still unclear. From this thesis, we can conclude that an
S-unit attack worked best for a general ideal in a cyclotomic ring. When we tried to
reduce elements chosen from a general ideal, we managed for the most part to reduce the
elements, and in some cases even fully.

In conclusion, we see that S-unit attacks can work very well for finding small elements
in a general ideal. With more help from quantum algorithms, S-unit attacks seems
plausible. It is much more prone to find small elements than the LLL-algorithm, or other
similar lattice reduction algorithms for that matter. Which is discussed in more detail by
Bernstein and Lange [4]. However, as seen in Section 5.3, our method for using S-units
for a key recovery attack against NTRU did not execute very well. Either way, this thesis
as compiled the most essential mathematical theory to consider when analyzing S-unit
attacks. Which is the most important part for determining if it actually works and if it is
a potential threat to lattice-based cryptography. We have also constructed new examples
showcasing the computational details to S-unit attacks. At last, we have highlighted the
most important aspects to consider and that could be interesting to analyze further.

As a continuation of this thesis, it would be interesting to investigate what happens
in the non-principal case. How will the quantum algorithm for this affect the S-unit
attack? Also, is it possible to find a quantum algorithm for computing the generators for
the S-unit group? Bernstein also discusses [1] a potential of an algorithm for finding the
norm for an arbitrary ideal. This will likely make the S-unit attacks even more precise,
as noted in Section 4.3. Lastly, it would be interesting to analyze other methods for
utilizing S-units for a key recovery, such as described by Stehlé [9].

62

References

[1] Bernstein, Daniel J. Fast Norm Computation in Smooth-Degree Abelian Number
Fields. 2022. url: https://s-unit.attacks.cr.yp.to/abeliannorms-20220731.pdf.

[2] Bernstein, Daniel J. S-unit attacks. 2021. url: https://cr.yp.to/talks/2021.08.20/slides-
djb-20210820-sunitattacks-4x3.pdf.

[3] Biasse, Jean-François. Subexponential algorithms for finding a short generator of a
principal ideal and solving γ-SVP in Q(ζps). 2017. url: https://arxiv.org/pdf/1503.
03107.pdf.

[4] Daniel J. Bernstein, Tanja Lange. Non-randomness of S-unit lattices. 2021. url:
https://eprint.iacr.org/2021/1428.pdf.

[5] Ellis, James H. Possibility of Non-Secret Encryption. 1970. url: https://cryptocellar.
org/cesg/possnse.pdf.

[6] Janusz, Gerald J. Algebraic Number Fields. 2nd ed. Graduate Studies in
Mathematics, Vol. 7. American Mathematical Society, 1996. isbn: 0-8218-0429-4.

[7] Jean-François Biasse, Fang Song. Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number fields.
2016. url: https://fangsong.info/files/pubs/BS_SODA16.pdf.

[8] Jeffrey Hoffstein Jill Pipher, Joseph H. Silverman. An Introduction to Mathematical
Cryptography. 2nd ed. Springer New York Heidelberg Dordrecht London, 2014.
isbn: 978-1-4939-1710-5.

[9] Jöel Felderhoff, Alice Pellet-Mary and Stehlé, Damien. On Module Unique-SVP
and NTRU. 2022. url: https://eprint.iacr.org/2022/1203.pdf.

[10] Miller, John C. Class Numbers of Totally Real Fields and Applications to the Weber
Class Number Problem. 2014. url: https://arxiv.org/pdf/1405.1094.pdf.

[11] NIST, Computer Security Resource Center. NIST Announces First Four Quantum-
Resistant Cryptographic Algorithms. 2022. url: https://www.nist.gov/news-events/
news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
(visited on 07/07/2022).

[12] Peikert, Chris. A Decade of Lattice Cryptography. 2016. url: https://eprint.iacr.org/
2015/939.pdf.

[13] Shor, Peter W. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. 1996. url: https : / / arxiv.org /pdf /quant -
ph/9508027.pdf.

[14] Stein, William. SageMath, Open-Source Mathematical Software System. 2005. url:
https://www.sagemath.org/.

63

https://s-unit.attacks.cr.yp.to/abeliannorms-20220731.pdf
https://cr.yp.to/talks/2021.08.20/slides-djb-20210820-sunitattacks-4x3.pdf
https://cr.yp.to/talks/2021.08.20/slides-djb-20210820-sunitattacks-4x3.pdf
https://arxiv.org/pdf/1503.03107.pdf
https://arxiv.org/pdf/1503.03107.pdf
https://eprint.iacr.org/2021/1428.pdf
https://cryptocellar.org/cesg/possnse.pdf
https://cryptocellar.org/cesg/possnse.pdf
https://fangsong.info/files/pubs/BS_SODA16.pdf
https://eprint.iacr.org/2022/1203.pdf
https://arxiv.org/pdf/1405.1094.pdf
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://eprint.iacr.org/2015/939.pdf
https://eprint.iacr.org/2015/939.pdf
https://arxiv.org/pdf/quant-ph/9508027.pdf
https://arxiv.org/pdf/quant-ph/9508027.pdf
https://www.sagemath.org/

References

[15] Washington, Lawrence C. Introduction to Cyclotomic Fields. 2nd ed. Graduate Texts
in Mathematics, No. 83. Springer-Verlag New York, Inc., 1997. isbn: 0-387-94762-0.

64

Appendix A

Computations

A.1 Computations for Example 2.27

A step by step computation of the LLL algorithm where most of the calculations are
done by using Sage B.3.

1. Set k = 2 and set v∗
1 = v1 = (10, 194,−118, 22).

2. Then for k = 2 ≤ 4, we have j = 1 and we calculate

v2 = v2 − ⌊µ2,1⌉ · v1 = (56,−31,−4,−7) and
v∗

2 = v2 − µ2,1 · v∗
1 = (56.985,−11.8912,−15.623,−4.833),

where
µ2,1 = v2 · v∗

1
∥v∗

1∥2 = 0.902 ⇒ ⌊µ2,1⌉ = 1.

3. Now we have v∗
1 = (10, 194,−118, 22), v∗

2 = (56.985,−11.8912,−15.623,−4.833)
and v2 = (56,−31,−4,−7), and we need to check if ∥v∗

2∥2 ≥ (3
4 −µ2

2,1)∥v∗
1∥2 (Lovász

condition 2.23). We get

∥v∗
2∥2 = 3656.122 < 38602.122 = (3

4 − µ2
2,1)∥v∗

1∥2,

and we need to swap v1 and v2.

4. Now v1 = v∗
1 = (56,−31,−4,−7) and v2 = (10, 194,−118, 22). For k = 2 ≤ 4, we

have j = 1 and we calculate

v2 = v2 − ⌊µ2,1⌉ · v1 = (66, 163,−122, 15) and
v∗

2 = v2 − µ2,1 · v∗
1 = (79.105, 155.745,−122.936, 13.362),

where
µ2,1 = v2 · v∗

1
∥v∗

1∥2 = −1.23 ⇒ ⌊µ2,1⌉ = −1.

5. We check if ∥v∗
2∥2 ≥ (3

4 − µ2
2,1)∥v∗

1∥2 (Lovász condition 2.23), and we get

∥v∗
2∥2 = 45806.062 > 2893.562 = (3

4 − µ2
2,1)∥v∗

1∥2.

We do not need to swap.

65

Appendix A. Computations

6. Now set k = 3 and try to reduce v3.
For j = 2 we set

v3 = v3 − ⌊µ3,2⌉v2 = (−28, 63, 155, 65),

where
µ3,2 = v3 · v∗

2
∥v∗

2∥2 = −0.231 ⇒ ⌊µ2,1⌉ = 0.

For v3 = (−28, 63, 155, 65) and j = 1 we compute

v3 = v3 = v3 − ⌊µ3,1⌉v1 = (28, 32, 151, 58) and
v∗

3 = v3 − µ3,1 · v∗
1 − µ3,2 · v∗

2 = (47.480, 62.455, 125.369, 60.370)

where
µ3,1 = v3 · v∗

1
∥v∗

1∥2 = −1.104 ⇒ ⌊µ2,1⌉ = −1.

7. We need to check the Lovász condition 2.23,

∥v∗
3∥2 = 25479.620 < 31906.423 = (3

4 − µ2
3,2)∥v∗

2∥2.

We need to swap v2 and v3.

8. Set k = 3 and try to reduce v3 again. Now v1 = (56,−31,−4,−7), v2 =
(28, 32, 151, 58) and v3 = (66, 163,−122, 15)
For j = 2 we set

v3 = v3 − ⌊µ3,2⌉v2 = (66, 163,−122, 15),

where
µ3,2 = v3 · v∗

2
∥v∗

2∥2 = −0.379 ⇒ ⌊µ3,2⌉ = 0.

For j = 1 we set

v3 = v3 − ⌊µ3,1⌉v1 = (66, 163,−122, 15) and
v∗

3 = v3 − µ3,1 · v∗
1 − µ3,2 · v∗

2 = (89.722, 167.879,−65.680, 35.354)

where
µ3,1 = v3 · v∗

1
∥v∗

1∥2 = −0.234 ⇒ ⌊µ3,1⌉ = 0.

9. We need to check if ∥v∗
3∥2 ≥ (3

4 − µ2
3,2)∥v∗

2∥2 (Lovász condition 2.23). We have

∥v∗
3∥2 = 46034 > 16930.485 = (3

4 − µ2
3,2)∥v∗

2∥2,

so we do not need to swap.

10. We set k = 4 and try to reduce v4 for j = 3, 2, 1.
For j = 3 we compute

v4 = v4 − ⌊µ4,3⌉v3 = (−158,−39,−149, 146),

66

A.2. Computations for Example 5.2.2

where

µ4,3 = v4 · v∗
3

∥v∗
3∥2 = −0.138 ⇒ ⌊µ4,3⌉ = 0.

For j = 2 we compute

v4 = v4 − ⌊µ4,2⌉v2 = (−130,−7, 2, 204),

where

µ4,2 = v4 · v∗
2

∥v∗
2∥2 = −0.735 ⇒ ⌊µ4,2⌉ = −1.

For j = 1 we compute

v4 = v4 − ⌊µ4,1⌉v1 = (−18,−69,−6, 190) and
v∗

4 = v4 − µ4,1 · v∗
1 − µ4,2 · v∗

2 − µ4,3 · v∗
3 = (−13.956,−56.308,−62.898, 176.438),

where

µ4,1 = v4 · v∗
1

∥v∗
1∥2 = −2.04 ⇒ ⌊µ4,1⌉ = −2.

11. Lastly, we check Lovász condition 2.23 and we have

∥v∗
4∥2 = 41221 > 33549.094 = (3

4 − µ2
4,3)∥v∗

3∥2.

12. We are done and we have the reduce basis

v1 = (56,−31,−4,−7)
v2 = (28, 32, 151, 58)
v3 = (66, 163,−122, 15)
v4 = (−18,−69,−6, 190).

A.2 Computations for Example 5.2.2

Here we showcase the computation for finding the prime ideals in R with norm less than
or equal to 97. We have written out the computation for the primes 3 to 29, and in a

67

Appendix A. Computations

similar manner we find the prime ideals for the primes above 31 to 97.

p = 3 :p = 3 :p = 3 :
P3,1 = (x4 + x2 − 1) N (P3,1) = 81 ≤ 97
P3,−1 = (x4 − x2 − 1) N (P3,−1) = 81 ≤ 97,

p = 5 :p = 5 :p = 5 :
P5,1 = (x4 + 2) N (P5,1) = 625 > 97
P5,−1 = (x4 − 2) N (P5,−1) = 625 > 97,

p = 7 :p = 7 :p = 7 :
P7,1 = (x2 + x− 1) N (P7,1) = 49 ≤ 97
P7,3 = (x5 + x3 + 1) N (P7,3) = 49 ≤ 97,
P7,−1 = (x2 − x− 1) N (P7,−1) = 49 ≤ 97
P7,−3 = (x5 + x3 − 1) N (P7,3) = 49 ≤ 97,

p = 11 :p = 11 :p = 11 :
P11,1 = (x6 + x2 + 3) N (P11,1) = 14641 > 97
P11,2 = (x6 − 3x4 − x2) N (P11,2) = 14641 > 97,

p = 13 :p = 13 :p = 13 :
P13,1 = (2x4 + 3) N (P13,1) = 28561 > 97
P13,−1 = (−2x4 + 3) N (P13,−1) = 28561 > 97,

p = 17 :p = 17 :p = 17 :
P17,1 = (−x4 − x− 1) N (P17,1) = 17 ≤ 97
P17,3 = (x7 + x3 − x2) N (P17,3) = 17 ≤ 97
P17,5 = (x7 − x4 − x3) N (P17,5) = 17 ≤ 97
P17,7 = (x6 − x2 + x) N (P17,7) = 17 ≤ 97
P17,−1 = (x7 + x4 − 1) N (P17,−1) = 17 ≤ 97
P17,−3 = (x6 − x5 − x) N (P17,−3) = 17 ≤ 97
P17,−5 = (x5 + x4 − x) N (P17,−5) = 17 ≤ 97
P17,−7 = (x4 − x+ 1) N (P17,−7) = 17 ≤ 97,

p = 19 :p = 19 :p = 19 :
P19,1 = (−3x4 + x2 + 3) N (P19,1) = 130321 > 97
P19,−1 = (3x4 + x2 − 3) N (P19,−1) = 130321 > 97,

p = 23 :p = 23 :p = 23 :
P23,1 = (x4 − x3 + x2 + x+ 1) N (P23,1) = 529 > 97
P23,2 = (x6 − x4 − x3 − x+ 1) N (P23,−1) = 529 > 97,
P23,2 = (x6 − x4 + x3 + x+ 1) N (P23,−1) = 529 > 97,
P23,2 = (x4 + x3 + x2 − x+ 1) N (P23,−1) = 529 > 97,

p = 29 :p = 29 :p = 29 :
P29,1 = (2x4 + 5) N (P29,1) = 707281 > 97
P29,−1 = (−2x4 + 5) N (P29,−1) = 707281 > 97,

68

A.2. Computations for Example 5.2.2

For finding the generators for the prime ideals lying above 97, we start by choosing the
smallest integer for x such that x8 + 1 ≡ 0 (mod 97). We get the following factorization
of the minimal polynomial,

x8 + 1 =
∏

odd i<m

(x− ζi
8),

88 + 1 = 97 · 257 · 673 =
∏

odd i<m

(8 − ζi
8) ≡ 0 (mod 97).

Then by Kummers theorem 3.8 and by letting x = ζ8, we have the following non principle
prime ideals,

P97,1 = (97, 8 − x) P97,−1 = (97, 8 − x15) = (97, 8 − x−1) = (97, 8 + x7)
P97,3 = (97, 8 − x3) P97,−3 = (97, 8 − x13) = (97, 8 − x−3) = (97, 8 + x5)
P97,5 = (97, 8 − x5) P97,−5 = (97, 8 − x11) = (97, 8 − x−5) = (97, 8 + x3)
P97,7 = (97, 8 − x7) P97,−7 = (97, 8 − x9) = (97, 8 − x−7) = (97, 8 + x).

From Sage B.5 we get the following generators for the principle ideals,

P97,1P97,−1 ⇒ g1 = x7 + 2x6 + x5 + 2x4 + x3 + 2x2 − 2
P97,3P97,−3 ⇒ g3 = 2x7 + x6 + 2x5 + 2x3 − 2x
P97,5P97,−5 ⇒ g5 = x7 + 2x6 − 2x4 − x3 + 2x2 + x+ 2
P97,7P97,−7 ⇒ g7 = 3x7 + x6 − 2x4 + 2x2 − 1.

Again, by using Sage B.1, we get the following Jacobi sums with the corresponding prime
ideal factorization,

J1 = 4x7 + 2x6 + 2x5 − 7x4 − 2x3 + 2x2 − 4x P97,7P97,−5P97,−3P97,1
J2 = −5x7 + 6x6 + x5 + x4 − x3 + 4x2 + x+ 4 P97,−7P97,−5P97,−3P97,1
J3 = x7 + 6x6 + x5 + 4x4 + x3 − 4x2 + 5x+ 1 P97,7P97,−5P97,3P97,1
J4 = x7 − 4x6 − x5 − 4x4 − 5x3 + 6x2 + x+ 1 P97,−7P97,−5P97,−3P97,1
J5 = x7 − 6x6 + x5 + x4 − 5x3 − 4x2 − x+ 4 P97,7P97,5P97,−3P97,1
J6 = −6x6 + 5x4 + 6x2 P97,−7P97,−5P97,3P97,1
J7 = −2x7 + 2x6 − 4x5 − 4x3 − 2x2 − 2x+ 7 P97,7P97,−5P97,−3P97,1.

Now we can find the generators for the prime ideals by looking at the prime ideal
factorizations of the Jacobi sums, divide them and take the square root. We start by
finding the generator for P97,7

J1/J2 = 1
97(41x7 + 60x6 + 5x5 − 40x4 + 29x3 − 38x2 + 13x− 7) P97,7/P97,−7

g7 · J1/J2 = −x7 − 2x6 − 2x5 − x4 + 2x3 + x2 − 2 P 2
97,7

(u0u5 · g7 · J1/J2)1/2 = x7 − x5 − x4 + 2x2 P97,7.

And for P97,−7 we get the generator

σ−1(x7 − x5 − x4 + 2x2) = x−7 − x−5 − x−4 + 2x−2 = −x+ x3 + x4 − 2x6.

Next, we find the generator for P97,5,

J5/J1 = 1
97(−5x7 − 38x6 + 41x5 + 40x4 + 13x3 + 60x2 − 29x− 7) P97,5/P97,−5

g5 · J5/J1 = −x7 − x6 + 2x5 + 3x4 − x3 − x2 − x+ 1 P 2
97,5

(u0u1u5 · g5 · J5/J1)1/2 = x6 + x5 − 2x3 − x2 + 2 P97,5.

69

Appendix A. Computations

Which also gives the following generator for P97,−5,

σ−1(x6 + x5 − 2x3 − x2 + 2) = −x2 − x3 + 2x5 + x6 + 2.

For P97,3 we get,

J3/J1 = 1
97(−41x7 − 38x6 + 5x5 + 7x4 − 29x3 − 60x2 + 13x− 40) P97,3/P97,−3

g3 · J3/J1 = −x7 − x5 + 2x4 + x3 + x2 + 3x P 2
97,3

(u5u7 · g3 · J3/J1)1/2 = x5 − x4 + 2x3 − x2 P97,3.

And for P97,−3 we get,

σ−1(x5 − x4 + 2x3 − x2) = −x3 + x4 − 2x5 + x6

Lastly, we need to find the generators for P97,1 and P97,−1, by using the following elements,

(g2
1 · g3 · g5 · g7)/(J5 · J6) P 2

97,−1

(u3 · g2
1 ·g3·g5·g7

J5·J6
)1/2 = x7 + 2x6 + 2x5 + x4 + x3 P97,−1

and for P97,1 we get,

σ−1(x7 + 2x6 + 2x5 + x4 + x3) = −x− 2x2 − 2x3 − x4 − x5.

70

Appendix B

Sage documentation

B.1 Prime Ideal Generators

1 K.<x> = CyclotomicField (8)
2 UK = UnitGroup (K)
3 S = K.ideal (17). prime_factors ()
4 US = UnitGroup (K,S=tuple(S))
5

6 # Finding all the prime ideals bounded by 17
7 K. primes_of_bounded_norm (17)
8

9 # Finding a generator for the prime ideals
10 US. gens_values ()

Listing B.1: Prime ideal generators

1 m=4
2 p = 13
3

4 K.<x> = CyclotomicField (m)
5

6 G = DirichletGroup (p, CyclotomicField (m))
7 e = G([x]) # defining the conductor to be the root of unity
8

9 e. gauss_sum (1) # calculating the Gauss sum with expinent 1 for the
additative character

10 abs(e. gauss_sum (1))^2 # checking the absolute avlue

Listing B.2: Gauss sum

1 m = 8 # Degree of cyclotomic field
2 p = 17 #Prime ideal for Gauss/ Jacobi sum
3

4 K.<x> = CyclotomicField (m) # Defining the cyclotomic field
5

6 # Defining the character for given prime p
7 G = DirichletGroup (p, CyclotomicField (m)).0
8

9 n=1 # Setting the exponent for the Jacobi sum
10 J_n = G. jacobi_sum (G^n) # Calculating the Jacobi sum over the character
11

12

13 J_n # Printing the Jacobi sum

Listing B.3: Jacobi sum

71

Appendix B. Sage documentation

1 K.<x> = CyclotomicField (16)
2

3 # listing the Jacobi sums
4 zeta16 = x
5 J1 = 2* zeta16 ^7 + 2* zeta16 ^6 - zeta16 ^4 + 2* zeta16 ^2 - 2* zeta16
6 J2 = zeta16 ^7 - 2* zeta16 ^6 - 3* zeta16 ^5 + zeta16 ^4 - zeta16 ^3 - zeta16
7 J3 = zeta16 ^7 + 2* zeta16 ^6 - zeta16 ^5 + 3* zeta16 ^3 + zeta16 - 1
8 J4 = zeta16 ^7 + zeta16 ^5 + zeta16 ^3 - 2* zeta16 ^2 - 3* zeta16 + 1
9 J5 = -zeta16 ^7 - 2* zeta16 ^6 + zeta16 ^5 - zeta16 ^4 - zeta16 ^3 - 3* zeta16

10 J6 = -2* zeta16 ^6 - 3* zeta16 ^4 + 2* zeta16 ^2
11 J7 = 2* zeta16 ^6 - 2* zeta16 ^5 - 2* zeta16 ^3 - 2* zeta16 ^2 + 1
12

13 # listing the generetors for P_cP_ -c
14 g7 = (x^7 - x^5 + x^4 + x^2 + 1)
15 g5 = (-x^7 - x^6 + x^5 - x + 1)
16 g3 = (x^7 + x^6 - x^2 - x + 1)
17 g1 = (-x^6 - x^4 - x^3 + x + 1)
18

19 # listing the units
20 u0 = x
21 u1 = 1+x+x^(-1)
22 u3 = 1+x^3+x^(-3)
23 u5 = 1+x^5+x^(-5)
24 u7 = 1+x^7+x^(-7)
25

26

27 K.ideal ((17^2 ,17*(3 -x^(-1)) ,17*(3 -x^(1)) ,(3-x^(1))*(3-x^(-1)))).
gens_reduced () # finding generators for P_cP_ -c

28

29 K.ideal(J1). factors () # finding the prime ideal factorization of the
polynomials of the Jacobi sums

30

31 sqrt ((u5*g7*J1)/(J2)) # finding the square roots

Listing B.4: Finding prime ideal generators

B.2 Key Generator for NTRU

1 K.<x> = CyclotomicField (16)
2 q = 41
3

4 # computing the secret key
5 f = x^6-x^4+x^3+x^2 - 1
6 fq = inverse_mod (f, q) # finding inverse of f(x) mod q
7 g = x^7-x^5+x^3- x
8

9 # computing the public key
10 h = (fq*g).mod(q)
11

12 # checking their factorization
13 K.ideal(f). factor (), K.ideal(fq). factor (), K.ideal(g). factor (), K.ideal(h

). factor ()

Listing B.5: Key generator for NTRU

72

B.3. LLL-algorithm

B.3 LLL-algorithm

1 #The start basis
2 w1 = vector ([56 , -31 , -4 , -7])
3 w2 = vector ([28.0 , 32.0 , 151.0 , 58.0])
4 w3 = vector ([66 , 163, -122, 15])
5 w4 = vector ([-18, -69, -6, 190])
6

7 #The new basis
8 v1 = vector ([56 , -31 , -4 , -7])
9 v2 = vector ([28 , 32, 151, 58])

10 v3 = vector ([66 , 163, -122, 15])
11 v4 = vector ([-18, -69, -6, 190])
12

13 y = vector ([52.43 , -32.51 , -2.39 ,132.48])
14

15 # Matrix for solving CVP
16 M = matrix ([v1 ,v2 ,v3 ,v4])
17 t = M. solve_left (y)
18

19 # Calculating the Gram - Schmidt basis
20 vv2 = w2 - ((w2*w1)/float(w1.norm () ^2))*w1
21 vv3 = w3 - ((w3*w1)/float(w1.norm () ^2))*w1 - ((w3*vv2)/float(vv2.norm ()

^2))*w2
22 vv4 = w4 - ((w4*w1)/float(w1.norm () ^2))*w1 - ((w4*vv2)/float(vv2.norm ()

^2))*w2 - ((w4*vv3)/float(vv3.norm () ^2))*w3
23

24 # Calculating the projection factor
25 my21 = (w2*w1)/float(w1.norm () ^2)
26 my31 = (w3*w1)/float(w1.norm () ^2)
27 my32 = (w3*vv2)/float(vv2.norm () ^2)
28 my41 = (w4*w1)/float(w1.norm () ^2)
29 my42 = (w4*vv2)/float(vv2.norm () ^2)
30 my43 = (w4*vv3)/float(vv3.norm () ^2)
31

32 # Calculating the new basis
33 v21 = w2 - round(my21 ,0)*w1
34 v31 = w3 - round(my31 ,0)*w1
35 v32 = w3 - round(my32 ,0)*w2
36 v41 = w4 - round(my41 ,0)*w1
37 v42 = w4 - round(my42 ,0)*w2
38 v43 = w4 - round(my43 ,0)*w3
39

40 # Checing the size
41 w2.norm ()^2, (3/4 - my21 ^2)*w1.norm ()^2
42 w3.norm ()^2, (3/4 - my32 ^2)*vv2.norm ()^2
43 w4.norm ()^2, (3/4 - my43 ^2)*w3.norm ()^2
44

45 #The closest vector
46 y2 = v1 + v4

Listing B.6: Example 4.2.1 for SVP and CVP

73

Appendix B. Sage documentation

1 from sage. modules . free_module_integer import IntegerLattice
2

3 # public key h(x)
4 h = -7*x^7 - 10*x^6 + 5*x^5 + 5*x^4 + 20*x^3 - 19*x^2 + 3*x - 12
5 #row vectors for the NTRU matrix
6 v1 = vector ([1, 0, 0, 0, 0, 0, 0, 0, -12, 3, -19, 20, 5, 5, -10, -7])
7 v2 = vector ([0, 1, 0, 0, 0, 0, 0, 0, 7, -12, 3, -19, 20, 5, 5, -10])
8 v3 = vector ([0, 0, 1, 0, 0, 0, 0, 0, 10, 7, -12, 3, -19, 20, 5, 5])
9 v4 = vector ([0, 0, 0, 1, 0, 0, 0, 0, -5, 10, 7, -12, 3, -19, 20, 5])

10 v5 = vector ([0, 0, 0, 0, 1, 0, 0, 0, -5, -5, 10, 7, -12, 3, -19, 20])
11 v6 = vector ([0, 0, 0, 0, 0, 1, 0, 0, -20, -5, -5, 10, 7, -12, 3, -19])
12 v7 = vector ([0, 0, 0, 0, 0, 0, 1, 0, 19, -20, -5, -5, 10, 7, -12, 3])
13 v8 = vector ([0, 0, 0, 0, 0, 0, 0, 1, -3, 19, -20, -5, -5, 10, 7, -12])
14 v9 = vector ([0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,41 ,0 ,0 ,0 ,0 ,0 ,0 ,0])
15 v10 = vector ([0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,41 ,0 ,0 ,0 ,0 ,0 ,0])
16 v11 = vector ([0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,41 ,0 ,0 ,0 ,0 ,0])
17 v12 = vector ([0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,41 ,0 ,0 ,0 ,0])
18 v13 = vector ([0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,41 ,0 ,0 ,0])
19 v14 = vector ([0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,41 ,0 ,0])
20 v15 = vector ([0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,41 ,0])
21 v16 = vector ([0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,41])
22

23 # making the NTRU matrix
24 B = matrix ([v1 ,v2 ,v3 ,v4 ,v5 ,v6 ,v7 ,v8 ,v9 ,v10 ,v11 ,v12 ,v13 ,v14 ,v15 ,v16])
25

26 L = IntegerLattice (B, lll_reduce =False) #row reduction on the matrix
27

28 L.LLL ().str () # printing the reduced row vectors
29 L. shortest_vector (algorithm ="pari") # printing the vector with the

smallest size

Listing B.7: Example of applying LLL algorithm to NTRU

B.4 Unit Attack

1 K.<x> = CyclotomicField (16)
2 R = K. ring_of_integers ()
3 E = R. random_element ()
4 G = K. galois_group () #The Galois group used in the Log - embedding
5

6 # Listing up the multiplicative independent units
7 u1 = (1+x+x^(-1))
8 u3 = (1+x^3+x^(-3))
9 u5 = (1+x^5+x^(-5))

10 u7 = (1+x^7+x^(-7))
11

12 #The element to embedd
13 a = -11*x^7 - 3*x^6 + 3*x^5 + 3*x^4 - 2*x^3 - 6*x^2 + x + 7
14

15 # Defining the different coordinates in the embedding
16 v0 = float(log(abs(a* conjugate (a))))
17 v1 = float(log(abs(G[3](a)* conjugate (G[3](a)))))
18 v2 = float(log(abs(G[1](a)* conjugate (G[1](a)))))
19 v3 = float(log(abs(G[2](a)* conjugate (G[2](a)))))
20

21 b = vector ([v0 ,v1 ,v2 ,v3]) #The general embedding of an element
22

23 # Defining the embeddings for the Log -unit lattice

74

B.5. S-unit Attack

24 b1 = vector ([2.093064784031127 , 1.1367170483150637 , -2.8994642223541525 ,
-0.33031760999204085])

25 b2 = vector ([1.1367170483150637 , -0.33031760999204085 , 2.093064784031127 ,
-2.8994642223541525])

26 b3 = vector ([-2.8994642223541525 , 2.093064784031127 ,
-0.33031760999204085 , 1.1367170483150637])

27 b4 = vector ([1 ,1 ,1 ,1])
28

29

30 M = matrix ([b1 ,b2 ,b3 ,b4]) #Log -unit matrix
31 t = M. solve_left (b) # Equation to find a unit close to generator
32

33 # Making the elements as vectors to calculate the size
34 v = vector ([-11*x^7,-3*x^6 ,3*x^5, 3*x^4,-2*x^3,-6*x^2,x ,7])
35 w = vector ([-2*x^7,-2*x^6,-2*x^5, x^4,-2*x^2 ,3*x ,2])
36

37 # Listing the results
38 g1 = -11*x^7 - 3*x^6 + 3*x^5 + 3*x^4 - 2*x^3 - 6*x^2 + x + 7
39 t1 = (2 ,0 ,1)
40 g2 = g1/(u1 ^2* u5)
41

42 v.norm (), w.norm () # Checking the size

Listing B.8: Unit attack for example 5.2.1

B.5 S-unit Attack

1 # defining the cyclotomic field
2 K.<x> = CyclotomicField (8)
3

4 # calculating the prime ideal factorization
5 A3 = K.ideal (3). factor ()
6 A5 = K.ideal (5). factor ()
7 A7 = K.ideal (7). factor ()
8 A11 = K.ideal (11). factor ()
9 A13 = K.ideal (13). factor ()

10 A17 = K.ideal (17). factor ()
11

12 # checking the norm of each prime ideal
13 A3 [0][0]. norm (), A3 [1][0]. norm ()
14 A5 [0][0]. norm (), A5 [1][0]. norm ()
15 A7 [0][0]. norm (), A7 [1][0]. norm ()
16 A11 [0][0]. norm (), A11 [1][0]. norm ()
17 A13 [0][0]. norm (), A13 [1][0]. norm ()
18 A17 [0][0]. norm (), A17 [1][0]. norm (), A17 [2][0]. norm (), A17 [3][0]. norm ()

Listing B.9: finding prime ideals for example 5.3.1

1 K.<x> = CyclotomicField (8)
2 R = K. ring_of_integers ()
3 E = R. random_element ()
4 G = K. galois_group () #The Galois group used in the Log - embedding
5

6 # Listing up the multiplicative independent units
7 u1 = (1+x+x^(-1))
8 u3 = (1+x^3+x^(-3))
9 P31 = x^2+x-1

10 P32 = -x^3-x^2-1
11 P51 = (x^2 -2)

75

Appendix B. Sage documentation

12 P52 = (x^2+2)
13 P171 = 2-x
14 P172 = 2-x^3
15 P173 = 2+x^3
16 P174 = 2+x
17

18 a = -25*x^3 - 25*x - 15 #The element to embedd
19

20 # Defining the different coordinates in the embedding
21 v1 = float(log(abs(a* conjugate (a))))
22 v2 = float(log(abs(G[3](a)* conjugate (G[3](a)))))
23 v3 = float(log(P31.norm ()^(-(K. valuation (P31)(a)))))
24 v4 = float(log(P32.norm ()^(-(K. valuation (P32)(a)))))
25 v5 = float(log(P51.norm ()^(-(K. valuation (P51)(a)))))
26 v6 = float(log(P52.norm ()^(-(K. valuation (P52)(a)))))
27 v7 = float(log(P171.norm ()^(-(K. valuation (P171)(a)))))
28 v8 = float(log(P172.norm ()^(-(K. valuation (P172)(a)))))
29 v9 = float(log(P173.norm ()^(-(K. valuation (P173)(a)))))
30 v10 = float(log(P174.norm ()^(-(K. valuation (P174)(a)))))
31

32

33 b = vector ([v1 ,v2 ,v3 ,v4 ,v5 ,v6 ,v7 ,v8 ,v9 ,v10]) #The general embedding of an
element

34

35 # Defining the embeddings for the Log -unit lattice
36 b1 = vector ([1.762747174039086 , -1.7627471740390845 , 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0])
37 b2 = vector ([1.0986122886681098 , 1.0986122886681098 , -2.1972245773362196 ,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
38 b3 = vector ([1.0986122886681098 , 1.0986122886681098 , 0.0,

-2.1972245773362196 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
39 b4 = vector ([1.6094379124341003 , 1.6094379124341003 , 0.0, 0.0,

-3.2188758248682006 , 0.0, 0.0, 0.0, 0.0, 0.0])
40 b5 = vector ([1.6094379124341003 , 1.6094379124341003 , 0.0, 0.0, 0.0,

-3.2188758248682006 , 0.0, 0.0, 0.0, 0.0])
41 b6 = vector ([0.7754517322978262 , 2.05776161175839 , 0.0, 0.0, 0.0, 0.0,

-2.833213344056216 , 0.0, 0.0, 0.0])
42 b7 = vector ([2.05776161175839 , 0.7754517322978262 , 0.0, 0.0, 0.0, 0.0,

0.0, -2.833213344056216 , 0.0, 0.0])
43 b8 = vector ([0.7754517322978262 , 2.05776161175839 , 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, -2.833213344056216 , 0.0])
44 b9 = vector ([2.05776161175839 , 0.7754517322978262 , 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, -2.833213344056216])
45 b10 = vector ([1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1])
46

47

48 M = matrix ([b1 ,b2 ,b3 ,b4 ,b5 ,b6 ,b7 ,b8 ,b9 ,b10]) #Log -unit matrix
49 t = M. solve_left (b) # Equation to find a unit close to generator
50

51 # Making the elements as vectors to calculate the size
52 w0 = vector ([-5*x^2, -3*x, 5])
53 w1 = vector ([-5*x^3, 115*x^2, 5*x])
54 w2 = vector ([-25*x^3, - 25*x, - 15])
55

56

57 A = R.ideal (-5*x^2 -3*x+5)
58 # Choosing a random element form the ideal
59 R. random_element ()
60 #The random element we want to reduce
61 g1 = -5*x^3 + 115*x^2 + 5*x
62

76

B.5. S-unit Attack

63 # Listing the results
64 t1 = (0 ,2 ,0 ,0 ,0 ,0 ,0)
65 g2 = g1/(P31 ^2)
66 t2 = (0 ,0 ,0 ,1 ,1 ,0 ,0 ,0 ,0)
67 g3 = g2/(P51*P52)
68

69 w0.norm (), w1.norm (), w2.norm () # Checking the size

Listing B.10: S-unit attack for example 5.3.1

1

2 # Defining the cyclotomic field
3 K.<x> = CyclotomicField (16)
4

5 # Defining the unit and S-unit group
6 UK = UnitGroup (K)
7 S = K.ideal (21). prime_factors ()
8 US = UnitGroup (K,S=tuple(S))
9

10 # Listing all the prime ideals with norm less than or equal to 97
11 K. primes_of_bounded_norm (97)
12

13 # Finding generators for small prime ideals
14 US. gens_values ()
15

16 # Listing the non - principle prime ideals
17 A1 = K.ideal (97,8-x)
18 A2 = K.ideal (97 ,8+x^7)
19

20 A3 = K.ideal (97,8-x^3)
21 A4 = K.ideal (97 ,8+x^5)
22

23 A5 = K.ideal (97,8-x^5)
24 A6 = K.ideal (97 ,8+x^3)
25

26 A7 = K.ideal (97,8-x^7)
27 A8 = K.ideal (97 ,8+x)
28

29 # Finding generators for the principle ideals
30 K.ideal(A1*A2). gens_reduced ()

Listing B.11: Finding the prime ideals for example 5.3.2

1 K.<x> = CyclotomicField (16)
2 R = K. ring_of_integers ()
3 E = R. random_element ()
4 G = K. galois_group () #The Galois group used in the Log - embedding
5

6

7 # Listing the generators for the S-unit group
8 u1 = (1+x+x^(-1))
9 u3 = (1+x^3+x^(-3))

10 u5 = (1+x^5+x^(-5))
11 u7 = (1+x^7+x^(-7))
12 P21 = (x+1)
13 P31 = (x^4 + x^2 - 1)
14 P32 = (x^4 - x^2 - 1)
15 P71 = x^2 + x - 1
16 P72 = x^2 - x - 1
17 P73 = x^5 + x^3 + 1
18 P74 = x^5 + x^3 - 1

77

Appendix B. Sage documentation

19 P171 = (- x^4 - x - 1)
20 P172 = (x^7 + x^4 - 1)
21 P173 = (x^7 + x^3 - x^2)
22 P174 = (x^6-x^5-x)
23 P175 = (x^7-x^4-x^3)
24 P176 = (x^5+x^4-x)
25 P177 = (x^6-x^2+x)
26 P178 = (x^4-x+1)
27 P971 = x^4+x^3+2*x^2+2*x+1
28 P972 = x^4+2*x^3+2*x^2+x+1
29 P973 = x^3 - x^2 + 2*x - 1
30 P974 = x^3 -2*x^2+x-1
31 P975 = x^6 + x^5 - 2*x^3 - x^2 + 2
32 P976 = x^6+2*x^5-x^3-x^2+2
33 P977 = x^5 - x^3 - x^2 + 2
34 P978 = -2*x^5+x^3+x^2-1
35

36 #The element to embedd
37 a = 17*x^7 - 6*x^6 + 3*x^5 + 17*x^4 - 15*x^3 + 2*x^2 - 17*x + 13
38

39 # Defining the different coordinates in the embedding
40 v1 = float(log(abs(a* conjugate (a))))
41 v2 = float(log(abs(G[3](a)* conjugate (G[3](a)))))
42 v3 = float(log(abs(G[1](a)* conjugate (G[1](a)))))
43 v4 = float(log(abs(G[2](a)* conjugate (G[2](a)))))
44 v5 = float(log(P31.norm ()^(-(K. valuation (P31)(a)))))
45 v6 = float(log(P32.norm ()^(-(K. valuation (P32)(a)))))
46 v7 = float(log(P71.norm ()^(-(K. valuation (P71)(a)))))
47 v8 = float(log(P72.norm ()^(-(K. valuation (P72)(a)))))
48 v9 = float(log(P73.norm ()^(-(K. valuation (P73)(a)))))
49 v10 = float(log(P74.norm ()^(-(K. valuation (P74)(a)))))
50 v11 = float(log(P171.norm ()^(-(K. valuation (P171)(a)))))
51 v12 = float(log(P172.norm ()^(-(K. valuation (P172)(a)))))
52 v13 = float(log(P173.norm ()^(-(K. valuation (P173)(a)))))
53 v14 = float(log(P174.norm ()^(-(K. valuation (P174)(a)))))
54 v15 = float(log(P175.norm ()^(-(K. valuation (P175)(a)))))
55 v16 = float(log(P176.norm ()^(-(K. valuation (P176)(a)))))
56 v17 = float(log(P177.norm ()^(-(K. valuation (P177)(a)))))
57 v18 = float(log(P178.norm ()^(-(K. valuation (P178)(a)))))
58 v19 = float(log(P971.norm ()^(-(K. valuation (P971)(a)))))
59 v20 = float(log(P972.norm ()^(-(K. valuation (P972)(a)))))
60 v21 = float(log(P973.norm ()^(-(K. valuation (P973)(a)))))
61 v22 = float(log(P974.norm ()^(-(K. valuation (P974)(a)))))
62 v23 = float(log(P975.norm ()^(-(K. valuation (P975)(a)))))
63 v24 = float(log(P976.norm ()^(-(K. valuation (P976)(a)))))
64 v25 = float(log(P977.norm ()^(-(K. valuation (P977)(a)))))
65 v26 = float(log(P978.norm ()^(-(K. valuation (P978)(a)))))
66

67 #The general embedding of an element
68 b = vector ([v1 ,v2 ,v3 ,v4 ,v5 ,v6 ,v7 ,v8 ,v9 ,v10 ,v11 ,v12 ,v13 ,v14 ,v15 ,v16 ,v17 ,

v18 ,v19 ,v20 ,v21 ,v22 ,v23 ,v24 ,v25 ,v26])
69

70 # Defining the embeddings for the Log -unit lattice
71 b1 = vector ([2.093064784031127 , 1.1367170483150637 , -2.8994642223541525 ,

-0.33031760999204085 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

72 b2 = vector ([1.1367170483150637 , -0.33031760999204085 , 2.093064784031127 ,
-2.8994642223541525 , 0.0 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
73 b3 = vector ([-2.8994642223541525 , 2.093064784031127 ,

-0.33031760999204085 , 1.1367170483150637 , 0.0, 0.0, 0.0, 0.0, 0.0,

78

B.5. S-unit Attack

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0])

74 b4 = vector ([1.0986122886681098 , 1.0986122886681098 , 1.0986122886681098 ,
1.0986122886681098 , -4.394449154672439 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0])

75 b5 = vector ([1.0986122886681098 , 1.0986122886681098 , 1.0986122886681098 ,
1.0986122886681098 , 0.0, -4.394449154672439 , 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0])

76 b6 = vector ([0.4610804594339829 , 1.4848296896213304 , 1.4848296896213304 ,
0.4610804594339829 , 0.0, 0.0, -3.891820298110627 , 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0])

77 b7 = vector ([0.4610804594339829 , 1.4848296896213304 , 1.4848296896213304 ,
0.4610804594339829 , 0.0, 0.0, 0.0, -3.891820298110627 , 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0])

78 b8 = vector ([1.4848296896213304 , 0.4610804594339829 , 0.4610804594339829 ,
1.4848296896213304 , 0.0, 0.0, 0.0, 0.0, -3.891820298110627 , 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0])

79 b9 = vector ([1.4848296896213304 , 0.4610804594339829 , 0.4610804594339829 ,
1.4848296896213304 , 0.0, 0.0, 0.0, 0.0, 0.0, -3.891820298110627 , 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0])

80 b10 = vector ([1.7251077710821243 , 0.6510784715617671 , 1.4066831401966229 ,
-0.9496560387842973 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

-2.833213344056216 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0])

81 b11 = vector ([1.7251077710821243 , 0.6510784715617671 , 1.4066831401966229 ,
-0.9496560387842973 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

-2.833213344056216 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0])

82 b12 = vector ([0.6510784715617671 , -0.9496560387842973 ,
1.7251077710821243 , 1.4066831401966229 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, -2.833213344056216 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0])

83 b13 = vector ([0.6510784715617671 , -0.9496560387842973 ,
1.7251077710821243 , 1.4066831401966229 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, -2.833213344056216 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0])

84 b14 = vector ([1.4066831401966229 , 1.7251077710821243 ,
-0.9496560387842973 , 0.6510784715617671 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, -2.833213344056216 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0])

85 b15 = vector ([1.4066831401966229 , 1.7251077710821243 ,
-0.9496560387842973 , 0.6510784715617671 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, -2.833213344056216 , 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0])

86 b16 = vector ([-0.9496560387842973 , 1.4066831401966229 ,
0.6510784715617671 , 1.7251077710821243 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.833213344056216 , 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0])

87 b17 = vector ([-0.9496560387842973 , 1.4066831401966229 ,
0.6510784715617671 , 1.7251077710821243 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.833213344056216 , 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0])

88 b18 = vector ([3.6483494365900895 , 1.350600656203053 , 0.15674220884828047 ,
-0.5809813231380389 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, -4.574710978503383 , 0.0, 0.0, 0.0, 0.0, 0.0,

79

Appendix B. Sage documentation

0.0, 0.0])
89 b19 = vector ([3.6483494365900895 , 1.350600656203053 , 0.15674220884828047 ,

-0.5809813231380389 , 0.0 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.574710978503383 , 0.0, 0.0, 0.0, 0.0,
0.0, 0.0])

90 b20 = vector ([0.21388360788798957 , -0.2506637131459986 ,
1.555284652558963 , 3.0562064312024293 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -4.574710978503383 ,
0.0, 0.0, 0.0, 0.0, 0.0])

91 b21 = vector ([0.21388360788798957 , -0.2506637131459986 ,
1.555284652558963 , 3.0562064312024293 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
-4.574710978503383 , 0.0, 0.0, 0.0, 0.0])

92 b22 = vector ([0.15674220884828047 , 3.6483494365900895 ,
-0.5809813231380389 , 1.350600656203053 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
-4.574710978503383 , 0.0, 0.0, 0.0])

93 b23 = vector ([0.15674220884828047 , 3.6483494365900895 ,
-0.5809813231380389 , 1.350600656203053 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
-4.574710978503383 , 0.0, 0.0])

94 b24 = vector ([-0.2506637131459986 , 3.0562064312024293 ,
0.21388360788798957 , 1.555284652558963 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
-4.574710978503383 , 0.0])

95 b25 = vector ([-0.2506637131459986 , 3.0562064312024293 ,
0.21388360788798957 , 1.555284652558963 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, -4.574710978503383])

96 b26 = vector ([1 ,1])
97

98

99 M = matrix ([b1 ,b2 ,b3 ,b4 ,b5 ,b6 ,b7 ,b8 ,b9 ,b10 ,b11 ,b12 ,b13 ,b14 ,b15 ,b16 ,b17 ,
b18 ,b19 ,b20 ,b21 ,b22 ,b23 ,b24 ,b25 ,b26]) #The S-unit matrix

100 t = M. solve_left (b) # Equation to find a S-unit close to generator
101

102 # Defining the general ideal with the unknown generator
103 A = K.ideal(x^6 + x^4 - x^2 + x - 1)
104 R = A. random_element () # Picking elements from the ideal at random
105

106 # Defining the elements as vectors to check the size
107 w1 = vector ([x^6, + 3*x^5, + x^4, - 8*x^3, + 2*x^2, - x, + 199])
108 w2 = vector ([3*x^7, + x^5, - x^3, + x, + 94])
109 w3 = vector ([-136*x^7, - 397*x^6, - 206*x^5, + 181*x^4, + 435*x^3, + 174*

x^2, - 104*x, - 158])
110

111 # Listing the random elements from the ideal
112 a1 = -x^6 + 3*x^5 + x^4 - 8*x^3 + 2*x^2 - x + 199
113 a2 = 3*x^7 + x^5 - x^3 + x + 94
114 a3 = -136*x^7 - 397*x^6 - 206*x^5 + 181*x^4 + 435*x^3 + 174*x^2 - 104*x -

158
115

116 # Listing the results
117 t1 = (-1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0)
118 g1 = a1/(u1 ^(-1)*u5 ^(-1))
119 t2 = (-1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 0)
120 g2 = a2/(u1 ^(-1)*u5 ^(-1)*P175*P177)
121 t3 = (-1, 1, 0, 2, 0, 1, 0, 0, 3, 0, 0, 0, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0,

0, 0, 0)

80

B.5. S-unit Attack

122 g3 = a3/(u1 ^(-1)*u3*P31*P71*P74 ^3* P175*P176 ^3* P178)
123

124 K.ideal(a1). factor () # Checking the factorization of the elements
125

126 w1.norm (), w2.norm (), w3.norm () # Cheking the sizes

Listing B.12: S-unit attack for example 5.3.2

1

2 K.<x> = CyclotomicField (16)
3 R = K. ring_of_integers ()
4 E = R. random_element ()
5 G = K. galois_group () #The Galois group used in the Log - embedding
6

7

8 # Listing up the generators for the S-unit group
9 u1 = (1+x+x^(-1))

10 u3 = (1+x^3+x^(-3))
11 u5 = (1+x^5+x^(-5))
12 u7 = (1+x^7+x^(-7))
13 P171 = (- x^4 - x - 1)
14 P172 = (x^7 + x^4 - 1)
15 P173 = (x^7 + x^3 - x^2)
16 P174 = (x^6-x^5-x)
17 P175 = (x^7-x^4-x^3)
18 P176 = (x^5+x^4-x)
19 P177 = (x^6-x^2+x)
20 P178 = (x^4-x+1)
21

22 #The element to embedd
23 a = -7*x^7 - 10*x^6 + 5*x^5 + 5*x^4 + 20*x^3 - 19*x^2 + 3*x - 12
24

25 # Defining the different coordinates in the embedding
26 v1 = float(log(abs(a* conjugate (a))))
27 v2 = float(log(abs(G[3](a)* conjugate (G[3](a)))))
28 v3 = float(log(abs(G[1](a)* conjugate (G[1](a)))))
29 v4 = float(log(abs(G[2](a)* conjugate (G[2](a)))))
30 v5 = float(log(P171.norm ()^(-(K. valuation (P171)(a)))))
31 v6 = float(log(P172.norm ()^(-(K. valuation (P172)(a)))))
32 v7 = float(log(P173.norm ()^(-(K. valuation (P173)(a)))))
33 v8 = float(log(P174.norm ()^(-(K. valuation (P174)(a)))))
34 v9 = float(log(P175.norm ()^(-(K. valuation (P175)(a)))))
35 v10 = float(log(P176.norm ()^(-(K. valuation (P176)(a)))))
36 v11 = float(log(P177.norm ()^(-(K. valuation (P177)(a)))))
37 v12 = float(log(P178.norm ()^(-(K. valuation (P178)(a)))))
38

39 #The general embedding of an element
40 b = vector ([v1 ,v2 ,v3 ,v4 ,v5 ,v6 ,v7 ,v8 ,v9 ,v10 ,v11 ,v12])
41

42 # Defining the embeddings for the Log -unit lattice
43 b1 = vector ([2.093064784031127 , 1.1367170483150637 , -2.8994642223541525 ,

-0.33031760999204085 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
44 b2 = vector ([1.1367170483150637 , -0.33031760999204085 , 2.093064784031127 ,

-2.8994642223541525 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
45 b3 = vector ([-2.8994642223541525 , 2.093064784031127 ,

-0.33031760999204085 , 1.1367170483150637 , 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0])

46 b4 = vector ([1.7251077710821243 , 0.6510784715617671 , 1.4066831401966229 ,
-0.9496560387842973 , -2.833213344056216 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0])

47 b5 = vector ([1.7251077710821243 , 0.6510784715617671 , 1.4066831401966229 ,

81

Appendix B. Sage documentation

-0.9496560387842973 , 0.0, -2.833213344056216 , 0.0, 0.0, 0.0, 0.0, 0.0,
0.0])

48 b6 = vector ([0.6510784715617671 , -0.9496560387842973 , 1.7251077710821243 ,
1.4066831401966229 , 0.0, 0.0, -2.833213344056216 , 0.0, 0.0, 0.0, 0.0,
0.0])

49 b7 = vector ([0.6510784715617671 , -0.9496560387842973 , 1.7251077710821243 ,
1.4066831401966229 , 0.0, 0.0, 0.0, -2.833213344056216 , 0.0, 0.0, 0.0,
0.0])

50 b8 = vector ([1.4066831401966229 , 1.7251077710821243 , -0.9496560387842973 ,
0.6510784715617671 , 0.0, 0.0, 0.0, 0.0, -2.833213344056216 , 0.0, 0.0,
0.0])

51 b9 = vector ([1.4066831401966229 , 1.7251077710821243 , -0.9496560387842973 ,
0.6510784715617671 , 0.0, 0.0, 0.0, 0.0, 0.0, -2.833213344056216 , 0.0,
0.0])

52 b10 = vector ([-0.9496560387842973 , 1.4066831401966229 ,
0.6510784715617671 , 1.7251077710821243 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
-2.833213344056216 , 0.0])

53 b11 = vector ([-0.9496560387842973 , 1.4066831401966229 ,
0.6510784715617671 , 1.7251077710821243 , 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, -2.833213344056216])

54 b12 = vector ([1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1])
55

56

57 M = matrix ([b1 ,b2 ,b3 ,b4 ,b5 ,b6 ,b7 ,b8 ,b9 ,b10 ,b11 ,b12]) #S-unit matrix
58 t = M. solve_left (b) # Equation to S-find a unit close to generator
59

60

61 f = x^6-x^4+x^3+x^2 - 1
62 fp = inverse_mod (f, 3)
63 g = x^6+x^4-x^2- x
64

65 h = -7*x^7 - 10*x^6 + 5*x^5 + 5*x^4 + 20*x^3 - 19*x^2 + 3*x - 12
66

67 f1 = (u3 ^(-1)*P172*P178).mod (41)
68 f2 = (P172*P178).mod (41)
69

70 g1 = (f2*h).mod (41)
71

72 K.ideal(h). factor ()

Listing B.13: S-unit attack on NTRU example 5.4.1

82

	Acknowledgements
	Introduction
	Outline
	Notation

	Lattice-Based Cryptography
	Lattice Theory
	Lattice-Based Cryptosystems
	The Hard Mathematical Problems
	The LLL Reduction Algorithm

	Cyclotomic Rings
	Cyclotomic Fields
	S-units

	S-unit Attacks in Cryptography
	Unit Attacks
	S-unit Attack

	Examples of S-unit Attacks
	Applying Unit Attacks to a General Ideal
	Applying S-unit Attacks to a General Ideal
	Applying S-unit Attacks to NTRU

	Conclusion
	References
	Computations
	Computations for Example 2.27
	Computations for Example 5.2.2

	Sage documentation
	Prime Ideal Generators
	Key Generator for NTRU
	LLL-algorithm
	Unit Attack
	S-unit Attack

