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Abstract

We begin with a treatment of classical algebraic number theory and
algebraic K-theory. After introducing the notion of a (Steinberg) symbol,
we use Tate’s result on the structure ofK2(Q) to prove quadratic reciprocity.
In a similar manner we give an explicit computation of K2(Q(

√
−2)) and

derive an analogous reciprocity law. We then shift our focus to exploring
the relationship between three reciprocity laws: Artin reciprocity, Weil
reciprocity and quadratic reciprocity, and show how the global Artin map
can be used to derive both quadratic and Weil reciprocity. Finally, we show
how one can use Weil reciprocity to prove quadratic reciprocity as well.
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Introduction

The archetypal reciprocity law

In algebraic number theory, a common question to ask is whether, for a prime p,
a polynomial f(x), when reduced modulo p, splits into (distinct) linear factors.
This question helps us determine how primes factorise in certain field extensions
and can give us an insight into the arithmetic of the field. If we take the simplest
case of a quadratic polynomial f(x) = x2 − q, for some fixed prime q, we see that
f splits modulo an odd prime p into the product of two distinct linear factors if
and only if q is a square modulo p. With this in mind, we define the Legendre
symbol as

(
q

p

)
=
1 if q is a square modulo p;
−1 otherwise.

Now, the problem of evaluating these symbols as p varies over infinitely many
primes is not particularly easy. An easier problem is to evaluate

(
p
q

)
. Here, all

we need to know is the value of p modulo our fixed prime q. That is to say, we
only need to calculate q different symbols corresponding to the q residue classes.
This gives us the notion, in some sense, of what we mean when we talk about
reciprocity.

In fact, one of the most well-known results in algebraic number theory, the law
of quadratic reciprocity, solves this problem completely. First formulated in full
by Legendre, it was actually Gauss that provided the first proof1.

With the notation above, we get the rather simple formulation of quadratic
reciprocity as follows:

Theorem 0.1 (Quadratic reciprocity, [8, §5, Theorem 1]). Let p and q be distinct
odd primes. Then (

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Moreover, we have the following supplementary laws(
−1
p

)
= (−1)

p−1
2 ,

(
2
p

)
= (−1)

p2−1
8 .

1Milne’s notes on Class Field Theory [14] provide a insight into the key characters in the
world of algebraic number theory and class field theory.
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Ireland and Rosen provide two different proofs in [8]: first, following
Eisenstein’s method and then using Gauss sums. One of the aims of this thesis
is to provide two alternative proofs. First, we provide a proof from algebraic K-
theory that follows Tate’s computation of K2(Q). Second, we will demonstrate
the power of the Artin map to provide a proof from class field theory.

Another aim of this thesis is to derive a reciprocity law for a quadratic extension
of Q using algebraic K-theory. In establishing the isomorphism

K2(Q) ∼= {±1} ⊕
⊕
p

(Z/pZ)∗

Tate employed the Euclidean algorithm. Thus, in order to replicate his results
for other number fields, their rings of integers must be Euclidean domains. We
therefore choose Q(

√
−2) as our quadratic extension and prove that

K2(Q(
√
−2)) ∼=

⊕
v

k(v)∗ ∼=
⊕

p prime
p≡1,3(mod 8)

(F∗p)2 ⊕
⊕

p prime
p≡5,7(mod 8)

F∗p2 .

Using the universal property of the K2 functor, and a generalised reciprocity
result (Theorem 3.10), we are then able to derive the reciprocity result

(
x

y

)
2

(
y

x

)−1

2
=
∏
v-2

(
x, y

v

)
.

Finally, we make a seemingly unexpected connection between Weil reciprocity
(a statement, that in essence is about the poles and zeros of a function) and
quadratic reciprocity. In the more general form presented in Theorem 2.34, Weil
reciprocity is as follows:

Theorem 0.2. For any f, g ∈ F (t)∗, we have that
∏
v

Nmk(v)/F (f, g)v = 1, (1)

where the product is taken over all discrete valuations on F (t) that are trivial on
F .

We will use this statement to prove a quadratic reciprocity-like result for
polynomials over a finite field:

Theorem 0.3. Let p be an odd prime, and F,G ∈ Fp[t] be two nonzero, irreducible,
relatively prime, monic polynomials of degree m and n respectively. Then

(
F

G

)
·
(
G

F

)
· (−1)mn(p−1)/2 = 1.
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Outline

Chapter 1 provides the reader with the necessary background material from al-
gebraic number theory. Assuming very little, this chapter attempts to motivate
the study of number fields and their rings of integers. It introduces the discrimin-
ant, provides an insight into primes that ramify, split or remain inert in extensions
of a number field F and lists results specifically related to quadratic extensions
of Q. These are particularly useful in chapter 3 when calculating K2(Q(

√
−2)).

The second half of chapter 1 is dedicated to class field theory. Both the local and
global Artin maps are introduced, with the idèlic approach being favoured over the
more classical ideal-theoretic construction. We finish the chapter with the Hasse
product, which plays a role in chapter 3 and also in the proof that Artin reciprocity
implies quadratic reciprocity in chapter 4.

Chapter 2 gives an insight into algebraic K-theory, specifically the functors K1
and K2. While we begin by defining these functors in terms of elementary matrices
and Steinberg groups of order n, we are mostly interested in K2(F ) for a field F .
With that in mind, we invoke Matsumoto’s Theorem, give some examples of sym-
bols (most notably the tame symbol associated to a prime), and introduce the
definition of Milnor K-theory. There are two big results in this chapter. First, a
theorem due to Kato that helps us generalise our notion of Weil reciprocity as a
special case (which we prove). Second, an exploration of Tate’s construction of
K2(Q) and how it is used to prove quadratic reciprocity.

Chapter 3 attempts to mimic Tate’s construction of K2(Q) from chapter 2 on
the field Q(

√
−2). We are able to compute K2(Q(

√
−2) using our understanding

of the structure of the residue fields at different primes, and derive a reciprocity
result after generalising the quadratic Hilbert symbol mentioned in chapter 2.

Chapter 4 turns our attention to the second aim of this thesis. Namely, to explore
the relationship between three reciprocity laws: Artin reciprocity, Weil reciprocity
and quadratic reciprocity. We first prove that the generalised formulation of Weil
reciprocity from chapter 2 follows from the global Artin map, where instead of a
number field, we use the function field of a smooth, projective, irreducible curve
over a finite field. This requires some background material on finite étale algebras
that is introduced in the beginning of the chapter. Next, we prove the more well-
known result that Artin reciprocity implies quadratic reciprocity and we finish off
the thesis by proving that Weil reciprocity also implies quadratic reciprocity.

A Brief Note on Notation

As mentioned above, we will be looking at some problems in algebraic number
theory through the lens of algebraic K-theory. When introducing the necessary
results from classical algebraic number theory it seems most natural to follow
established authors like Milne [13] and Neukirch [19] and denote fields by the

3
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letter K. However, when transitioning to algebraic K-theory, we hope the reader
agrees that, for example, the notation K2(K) just doesn’t feel right. With K2(F )
looking more satisfactory, we have made the decision throughout the entire thesis
to let F denote a field2.

We have also made the, somewhat arbitrary, decision to use prime instead of
place3 to denote an equivalence class of non-trivial valuations on F .
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the residue fields of L and F respectively. We hope that the reader agrees that f seems wrong
here, and the normal notation for a residue field k seems acceptable in its place.

3The use of place in the previous footnote is not an attempt at a pun, I promise.
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Chapter 1

Algebraic Number Theory

Perhaps one of the first motivations for studying algebraic number theory was
to prove Fermat’s Last Theorem. In 1847, the French mathematician, Gabriel
Lamé, announced a proof at the Paris Academy. His proof relied on factorising
the polynomial Xp + Y p, for some prime p using p-th roots of unity. If ζ denotes
a primitive p-th root of unity, then we have

Xp + Y p = (X + Y )(X + ζY ) . . . (X + ζp−1Y )

in the ring Z[ζ].
Therefore, a solution (a, b, c) to Fermat’s equation would satisfy

p−1∏
i=0

(a+ ζ ib) = cp.

Lamé then showed that all the terms a + ζ ib are relatively prime. Since the
product is a p-th power, this then implies that each individual term is a p-th power.
Lamé was then able to derive a contradiction, thus proving, in his mind, Fermat’s
Last Theorem1.

However, the issue with this proof was that it relied on the rather subtle
assumption that Z[ζ] is a unique factorisation domain. Already for p = 23 this
is not the case2. This leads to a very natural question about which rings do have
unique factorisation.

The first three sections of this chapter are dedicated to some of the preliminary
algebraic number theory used as motivation for the remarks above. This leads us
to think about the factorisation of prime ideals in extensions of number fields,
which then leads naturally into class field theory. We introduce both the local and
global Artin maps in the final section of this chapter.

1For a more detailed account, see, for example [5].
2In fact, it is known that we only have unique factorisation for primes p ≤ 19. See, for

example [13, §6].
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Chapter 1. Algebraic Number Theory

1.1 Introductory Algebraic Number Theory

A number field is a finite field extension of Q, and the integral closure of Z in a
number field F is called the ring of integers, denoted by OF ⊂ F .

Let d be a squarefree integer and let F = Q(
√
d). Recall the following result,

the proof of which can be found in, for example, [8, Proposition 13.1.1].

Proposition 1.1. The ring of integers OF in F = Q(
√
d) is

OF =
Z[
√
d] if d ≡ 2, 3 (mod 4)

Z[1+
√
d

2 ] if d ≡ 1 (mod 4).

To illustrate when unique factorisation goes wrong, we state the following
example.

Example 1.2. Consider F = Q(
√
−14). By Proposition 1.1, we have that

OF = Z[
√
−14] and that OF is not a unique factorisation domain. In fact,

15 = 3× 5 = (1 +
√
−14)(1−

√
−14).

Using an argument involving norms, it is possible to verify that 3, 5, 1 +
√
−14

and 1 −
√
−14 are all irreducible in OF and hence give rise to two distinct

factorisations of 15 in OF .

Remark 1.3. The failure of unique factorisation in general paved the way for
mathematicians like Kummer and Dedekind to shift away from factorisations of
an integral element of a ring towards the possibility of unique factorisation of an
ideal of that ring.

Consider the example above. While 15 does not factorise uniquely as an element
of OF , we have that

(15) = (3)(5) = (1 +
√
−14)(1−

√
−14). (1.1)

If we let p = (3, 1 +
√
−14) and q = (5, 1 +

√
−14), then eq. (1.1) becomes

(15) = ppqq = pqpq,

and our issue of unique factorisation is resolved in this case.

More generally, unique factorisation of ideals exists in Dedekind domains
(defined below) and the ring of integers OF for a number field F is a Dedekind
domain. The proofs of these statements can be found in [13, §3].

Definition 1.4. A Dedekind domain is an integral domain A such that

1. A is noetherian,

2. A is integrally closed, and

3. every nonzero prime ideal is maximal.
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1.2. The class group of F

Theorem 1.5 ([13, Theorem 3.29]). Let A be a Dedekind domain with field of
fractions F , and let B be the integral closure of A in a finite separable extension
L of F . Then B is a Dedekind domain.

Remark 1.6. Since Z is a Dedekind domain, it follows immediately that the ring
of integers OF for a number field F is a Dedekind domain.

Theorem 1.7 ([13, Theorem 3.7]). Let A be a Dedekind domain. Every proper,
nonzero ideal a ⊂ A can be written uniquely in the form

a = pr1
1 . . . prn

n ,

where the pi are distinct prime ideals and each ri > 0.

Remark 1.8. It is well-known that any principal ideal domain is a unique
factorisation domain. In general, the converse is false. For example, given a field
k, the polynomial ring k[x, y] is a unique factorisation domain, but (x, y) is not a
principal ideal. However, for a Dedekind domain, the converse is indeed true3.

1.2 The class group of F

In the course of proving Theorem 1.7, one shows how to invert a nonzero prime
ideal. The inverse is an OF -module that lies in F , but not in OF . For example,
in Q, the inverse of 2Z is (1/2)Z. This leads to the definition of fractional ideals,
and it turns out that these ideals form a group.

Definition 1.9. Let A be a Dedekind domain. A fractional ideal of A is a nonzero
A-submodule a of F such that

ca = {ca : a ∈ a}

is contained in A for some nonzero c ∈ A.

Theorem 1.10 ([13, Theorem 3.20]). The set Id(A) of fractional ideals is a group;
in fact, it is the free abelian group on the set of nonzero prime ideals.

To get a sense of how far away a ring is from being a unique factorisation
domain, we can define the ideal class group as follows:

Definition 1.11. For a Dedekind domain A, the ideal class group of A, Cl(A), is
given by

Cl(A) = Id(A)/P(A),
where P(A) ⊂ Cl(A) is the subgroup of principal ideals.

We now state two important results in the search for unique factorisation. Let
a be a nonzero ideal in OF . Recall that the numerical norm N(a) := (OF : a) is
defined to be the index of a in OF .

3For a proof of this statement, see, for example [13, Proposition 3.18].
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Chapter 1. Algebraic Number Theory

Theorem 1.12 ([13, Theorem 4.3]). Let F be a degree n field extension of Q.
Let ∆F denote the discriminant of F/Q. Let 2s be the number of nonreal complex
embeddings of F . Then, there exists a set of representatives for the ideal class
group of F consisting of ideals a with

N(a) ≤ n!
nn

(
4
π

)s
|∆F |

1
2 .

Remark 1.13. The bound above is commonly referred to as the Minkowski bound.

Definition 1.14. The class number of A is the order of Cl(A).

Remark 1.15. In the case that A is the ring of integers OF for a number field F ,
it is common to refer to Cl(OF ) as the ideal class group of F , and its order as the
class number of F , denoted hF .

Theorem 1.16 ([13, Theorem 4.4]). The class number of F is finite.

Example 1.17. Let F = Q(i). More elementary methods can be used to show
that Z[i] is a principal ideal domain, but we apply Theorem 1.12 to prove this
result. Note that there is one pair of complex embeddings, namely the identity
and complex conjugation, giving s = 1. Furthermore, the discriminant ∆F = −4
and so the Minkowski bound becomes

N(a) ≤ 2
4

(
4
π

)
| − 4| 12 < 1.27.

Since there are no such ideals other than Z[i] satisfying this bound, Z[i] is a
principal ideal domain, and hence a unique factorisation domain.

Example 1.18. Motivated by the example above, we can find quadratic extensions
F of Q for which the class group is trivial by checking when the Minkowski bound
is less than 2. For a real quadratic extension, this is the case when |∆F | < 16. For
an imaginary quadratic extension, this happens when |∆F | < π2.

This tells us that the class number ofQ(
√
d) is 1 when d = 2, 3, 5, 13,−1,−2,−3

and −7. There are other quadratic extensions of Q for which the class number is
1, but the Minkowski bound is not less than 2, and so more work is required to
prove that the class group is trivial.

Example 1.19. We now look at an example when the class group is not trivial.
Let F = Q(

√
−5). Here, N(a) ≤ 2

4

(
4
π

)√
20 < 3. Now, every ideal satisfying

this bound must divide (2). In fact, (2) = p2, where p = (2, 1 +
√
−5), and

N(p2) = N(2) = 4, so that N(p) = 2. If p were a principal ideal, then there would
exist an element α = m + n

√
−5 such that Nm(α) = m2 + 5n2 = 2. Since no

such m and n exist, the ideals Z[
√
−5] and p form a set of representatives for

Cl(Z[
√
−5]) and Cl(Z[

√
−5]) has order 2.

8



1.3. Factorising prime ideals in extensions

1.3 Factorising prime ideals in extensions

Throughout this section, we take F to be a number field and OF be the ring of
integers of F . By Theorem 1.7, any prime ideal p factors in an extension L of F
as

pOL = Pe1
1 . . .Peg

g ,

where ei ≥ 1, and P1, . . . ,Pg are the prime ideals of OL lying above p.

If any of the ei are strictly greater than 1, then we say that Pi is ramified in
L. The number ei is called the ramification index. We write fi for the degree of
the field extension [OL/Pi : OF/p] and call this the residue class degree. A prime
p splits in L if ei = fi = 1 for all i, and is inert in L if pOL is a prime ideal (that
is, g = e = 1).

Here, we let k(p) := OF/p denote the residue field at p.

Example 1.20. Take F = Q and L = Q(
√
−2). Then, in Z[

√
−2], (2) = (

√
−2)2,

so (2) is ramified with ramification index 2. The ideal (3) splits as the product
of two prime ideals (3) = (1 +

√
−2)(1 −

√
−2), while the ideal (5) is inert with

residue field Z[
√
−2]/(5) and residue class degree 2.

We state two results that are useful in determining which primes ramify. For
proofs of these statements, see [13, §3].

Theorem 1.21 ([13, Theorem 3.34]). Let n be the degree of a field extension L
over a number field F and let P1, . . . ,Pg be the prime ideals dividing p. Then,

g∑
i=1

eifi = n.

Furthermore, if L is Galois over F , then all the ramification numbers are equal
and all of the residue class degrees are equal, so that

efg = n.

Theorem 1.22 ([13, Theorem 3.35]). A prime ideal p = (p) in Z ramifies in OF if
and only if p | ∆F , where, as in the previous section, ∆F denotes the discriminant
of F .

From this, we have the useful result that:

Corollary 1.23. Only a finite number of primes p ∈ Z ramify in OF .

While it is useful to know which primes ramify, it may also be useful to
know when a prime splits or is inert. The following theorem provides us with
an approach.

9



Chapter 1. Algebraic Number Theory

Theorem 1.24 ([13, Theorem 3.41]). Let L be a finite field extension of F and
let p be a prime in OF . Choose α ∈ OL such that OL/pOL = (OF/p)[ᾱ], where ᾱ
denotes the image of α mod p. Let f(X) ∈ OF [X] be the minimal polynomial of
α and assume that

f(X) =
g∏
i=1

gi(X)ei (mod pOF [X]),

where ei ≥ 1 and the gi(X) are distinct monic polynomials whose images are
irreducible in (OF/p)[X]. Then we have the prime decomposition

pOL =
g∏
i=1

(p, gi(α))ei .

Moreover, the residue class degree fi is equal to the degree of gi.

We will spend time in the later chapters considering quadratic extensions and so
it will be of particular use to reformulate the above results for quadratic extensions.
In doing so, we also characterise when primes are split and inert and describe the
residue fields in each case.

Proposition 1.25. Let d be a squarefree integer and consider F = Q(
√
d). Let

p ∈ Z be an odd prime. Then

• p ramifies ⇐⇒ p | d ;

• p is inert ⇐⇒
(
d
p

)
= −1;

• p splits ⇐⇒
(
d
p

)
= 1.

If p = 2, then

• 2 ramifies ⇐⇒ d ≡ 2, 3 (mod 4);

• 2 is inert ⇐⇒ d ≡ 5 (mod 8);

• 2 splits ⇐⇒ d ≡ 1 (mod 8).

Proof. Let OF = Z[α], where, by Proposition 1.1, α is
√
d or 1+

√
d

2 depending on
whether d ≡ 2, 3 (mod 4) or d ≡ 1 (mod 4). The minimal polynomial f of α is
therefore either x2 − d or x2 − x− d−1

4 , and so the discriminant ∆F is either 4d or
d. By Theorem 1.22, it follows that an odd prime p ramifies if and only if p | d.

Now, if p - d, we use Theorem 1.24 to see that p splits if and only if f has
distinct roots modulo p. If f(x) = (x − a)(x − b) for some distinct a, b ∈ Z/pZ,
then ∆F = (a− b)2 (mod p), which is equivalent4 to saying d is a square modulo
p, i.e.

(
d
p

)
= 1. Conversely, if

(
d
p

)
= 1, then we can write d ≡ m2 (mod p), where

p - m. Then, if d ≡ 1 (mod 4), it is easy to see that (1 ±m)/2 are two distinct
roots of f and so p splits. In the case d ≡ 2, 3 (mod 4), the distinct roots are ±m.

4This works for both ∆F = d and ∆F = 4d.
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1.3. Factorising prime ideals in extensions

If p = 2, then Proposition 1.1 says that p ramifies if and only if d ≡ 2, 3 (mod 4).
In the case d ≡ 1 (mod 4), it is easy to check that f(x) = x2−x− d−1

4 has distinct
roots modulo 2, i.e. 2 splits, if and only if d−1

4 ≡ 0 (mod 2) and this happens if
and only if d ≡ 1 (mod 8). Similarly, one can check that 2 is inert if and only if
d−1

4 = 1 (mod 2) which happens if and only if d ≡ 5 (mod 4).

The results above give us an indication of what the residue fields of a quadratic
number field look like at different prime ideals.

Proposition 1.26. Let d be a squarefree integer and let F = Q(
√
d) be a quadratic

number field. Then, for a prime p, we have the following:

1. If p ramifies, then k(p) ∼= Fp;

2. If p splits, then k(p) ∼= Fp;

3. If p is inert, then k(p) ∼= Fp2;

Proof. Let p be a prime number and suppose we have the decomposition pOF =
Pe1

1 . . .Peg
g , where each Pi is a prime ideal of OF lying above p. Then, by

Theorem 1.21, we have

g∑
i=1

eifi = 2.

1. If p ramifies, then g = 1 and e1 = 2, giving f1 = 1. Hence k(p) is a degree 1
extension of Fp, i.e. it is isomorphic to Fp.

2. If p splits, then g = 2 and fi = ei = 1 for i = 1, 2. Again, this implies that
k(p) ∼= Fp.

3. Finally, if p is inert, then g = 1, e1 = 1 and so f1 = 2. That is to say, k(p)
is a degree 2 extension of Fp, i.e. k(p) ∼= Fp2 .

We end this section with one final result that will be used later on.

Proposition 1.27 ([13, Proposition 4.1]). Let A be a Dedekind domain with field
of fractions F and let B be the integral closure of A in a finite separable extension
L. Suppose that L is Galois over F and let P be a nonzero prime ideal of B lying
above p ⊂ A. Then

NmL/FP ·B =
∏

σ∈Gal(L/F )
σb.

11



Chapter 1. Algebraic Number Theory

1.4 Local and global class field theory

The main goal of class field theory is to describe the Galois extensions of a local
or global field in terms of the arithmetic of the field itself5. By 1930, the theory
had been developed for abelian extensions6 by Hilbert, Furtwängler, Takagi and
others. In 1967, a letter from Langlands to Weil gave an indication of how the
theory for nonabelian extensions should progress. We shall focus only on abelian
extensions and in this section introduce the notion of symbols over number fields
which serve as one of the links between number theory and algebraic K-theory.
In our treatment of global class field theory, rather than using ideals, we take the
more modern idèlic approach, which has the advantage of making the connection
to local class field theory more transparent7.

We begin by fixing some notation, for the most part following [13] and [14].
Let F be a field, either local or global. By a prime8, we mean an equivalence class
of non-trivial valuations on F . By Ostrowski’s Theorem [13, Theorem 7.14], there
is exactly one prime for each nonzero prime ideal in OF , for each real embedding
F ↪→ R and for each conjugate pair of nonreal embeddings F ↪→ C. We call these
primes finite, real infinite and complex infinite respectively. A real prime is said to
split in an extension L/F if every prime lying over it is real, otherwise it ramifies
in L.

Example 1.28. Let F = Q and L = Q[
√
−5]. Then the primes that ramify in L

are precisely (2) = (2, 1 +
√
−5)2, (5) = (

√
−5)2 and the real embedding, which

we denote by ∞.

Definition 1.29. Let v be a prime of F . We will denote by9:

• F ab the union of all finite abelian extensions of F in some fixed algebraic
closure of F ;

• Fv the completion of F at v, with valuation ring10 Ov;

• πv a uniformizer of Fv, that is, a generator of the maximal ideal pv of Ov for
v finite;

• k(v) := Ov/pv the residue field, for v finite;

• qv := #k(v);

• Uv := O∗v the unit group, where we set Uv := R>0 when v is real infinite;

• U1
v := 1 + pv, for v finite;

5For a Galois extension L of F , this typically means studying the primes in OF that split in
OL.

6By abelian extensions, we mean that the Galois group Gal(L/F ) is abelian.
7In fact, we shall see the global Artin map defined as a product of local Artin maps.
8As mentioned in the introduction, some authors use the terminology place instead.
9Similar notation follows naturally for an extension L of F with a prime w lying over v.

10Here, we only have that it is a ring when v is a finite prime.
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1.4. Local and global class field theory

• m := µ(F ),mv := µ(Fv) the groups of roots of unity of F and Fv respectively;

• iv : F ↪→ Fv the embedding of F into its completion Fv at v.

Definition 1.30. Let v be a prime of F . We denote by ordv the corresponding
valuation, which takes the following forms:

• if v is a finite prime, ordv : F ∗ → Z is the pv-adic valuation.

• if v is a real infinite prime, the valuation ordv : F ∗ → Z/2 is defined as:

ordv(x) :=
{

0 if iv(x) > 0
1 if iv(x) < 0.

• if v is a complex infinite prime, we set ordv := 0.

Before defining the local and global Artin maps, we give a brief introduction
to idèles.

The restricted product ∏′i∈I Gi of a family of locally compact topological groups
{Gi}i∈I is, by definition, the subset of ∏i∈I Gi consisting of all elements (gi)i∈I for
which gi ∈ Fi for almost all i, where Fi is some compact subgroup of Gi. Thus,
the restricted product is a locally compact group, and it is given a topology whose
basis elements are of the form ∏

iAi, where Ai ⊂ Gi is open in Gi for all i and
Ai = Fi for almost all i.

Definition 1.31. For a number field F , the group of idèles is

IF =
∏′

v

F ∗v

=
{

(av)v ∈
∏
v

F ∗v : av ∈ Uv for almost all v
}
.

Remark 1.32. For a finite set of primes S, which contain the infinite primes, one
may also define IF as the colimit

IF = lim−→
S

IS.

Here, we have that IS = ∏
v∈S F

∗
v ×

∏
v 6∈S Uv.

Remark 1.33. There is a natural ‘diagonal’ embedding

i : F ∗ −→ IF
a 7−→ (iv(a))v.

It is worth noting that this is a well defined map since a is a unit almost everywhere.
For the sake of brevity, we will often write F ∗ instead of i(F ∗) and g instead of
i(g).
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Chapter 1. Algebraic Number Theory

For each prime v, we can also embed the local field Fv into the idèle group IF
via the map

F ∗v −→ IF
a 7−→ (1, 1, . . . , 1, a, 1, 1, . . .).

where a appears at the vth coordinate.

For the remainder of this section, we assume that L/F is an abelian extension
of F , i.e. that G = Gal(L/F ) is abelian. Let v be a prime of F and w|v a prime
of L lying above v.

As proved in [13, Proposition 7.50], if L is unramified over F , then the action
of Gal(L/F ) on OL gives an isomorphism Gal(L/F ) ∼= Gal(l/k), where l and k are
the residue fields of L and F respectively. Therefore, Gal(L/F ) is cyclic, generated
by the unique element σ such that for all x ∈ OL, σ(x) = xqv (mod pw). This
element σ is called the Frobenius element of Gal(L/F ) and is denoted by FrobL/F .

Theorem 1.34 ([14, Theorem 1.1]). For every nonarchimedean local field F , there
exists a unique homomorphism

φF : F ∗ −→ Gal(F ab/F )

such that:

1. For every prime element π ∈ F and every finite unramified extension L of
F , φF (π) acts on L as FrobL/F .

2. For every finite abelian extension L of F , NmL/F (L∗) is contained in the
kernel of the restriction φF |L. Furthermore, φF induces an isomorphism

φL/F : F ∗/NmL/F (L∗) −→ Gal(L/F ).

In particular,

(F ∗ : NmL/F (L∗)) = [L : F ].

Remark 1.35. The second statement in Theorem 1.34 says that, for every finite
abelian extension L of F , the following diagram commutes:

F ∗ Gal(F ab/F )

F ∗/NmL/F (L∗) Gal(L/F ).

φF

τ 7→τ |L
φL/F

We call φL/F the local Artin map.
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1.4. Local and global class field theory

Remark 1.36. To make the connection later on to global class field theory more
clear, we simplify the above diagram slightly. Let ΦF denote the composition of
φF followed by the map τ 7→ τ |L. Then the commutative diagram becomes

F ∗ Gal(L/F )

F ∗/NmL/F (L∗).

ΦF

φL/F

Corollary 1.37 ([14, Corollary 1.2]). Let F be a nonarchimedean local field,
and assume there exists a homomorphism φ : F → Gal(F ab/F ) satisfying the two
conditions of Theorem 1.34. Then

1. The map L 7→ NmL/F (L∗) is a bijection from the set of finite abelian
extensions of F onto the set of norm groups in F ∗;

2. L ⊂ L′ ⇐⇒ NmL/F (L∗) ⊃ NmL/F (L′∗);

3. NmL/F ((L · L′)∗) = NmL/F (L∗) ∩ NmL/F (L′∗);

4. NmL/F ((L ∩ L′)∗) = NmL/F (L∗) · NmL/F (L′∗);

5. Every subgroup of F ∗ containing a norm group is itself a norm group.

We state one final result which provides a useful application of the local Artin
map.

Theorem 1.38 ([14, Theorem 1.4]). The norm groups in F ∗ are precisely the open
subgroups of finite index.

Example 1.39. Let p be an odd prime11. By Theorem 1.38 and Corollary 1.37, we
have a one-to-one correspondence between quadratic extensions of Qp and index
2 subgroups of Q∗p.

It is a well-known fact12 that

Q∗p ∼= 〈p〉 ⊕ 〈ζ〉 ⊕ U1
p ,

where 〈ζ〉 = µp−1 is the group of (p− 1)-th roots of unity and U1
p = (1 + pZp). It

follows13 that

Q∗p/Q∗p
2 ∼= Z/2Z⊕ Z/2Z,

with representatives {1, p, ζ, ζp}. Thus, the quadratic extensions of Qp are

Qp(
√
p), Qp(

√
ζ), Qp(

√
ζp).

11A similar computation can be done for the case p = 2. See, for example, [7, Exercise 1.6.5].
12The argument here relies on applying Hensel’s Lemma ([6, Theorem 3.4.1] to the polynomial

f(x) = xp−1 − 1. We note here that it is also possible to generalise this statement to arbitrary
global number fields F . Indeed, Proposition 1.35 in [10] says that F ∗

v
∼= πZ

v ⊕ µqv−1 ⊕ U1
v .

13See, for example, [6, Corollary 3.4.4] for another application of Hensel’s Lemma to compute
squares in Q∗

p.
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Chapter 1. Algebraic Number Theory

Now, it is not too hard to see that the index 2 subgroups of Q∗p are given by

N1 := 〈p2〉 ⊕ 〈ζ〉 ⊕ U1
p ,

N2 := 〈p〉 ⊕ 〈ζ2〉 ⊕ U1
p ,

N3 := 〈ζp〉 ⊕ 〈ζ2〉 ⊕ U1
p .

Since N1 contains the group of units Z∗p, it corresponds to the unramified
extension14, Q(

√
ζ). Before we associate N2 and N3 to quadratic extensions, we

note that p is a norm in Qp(
√
−p) and ζp is a norm in Qp(

√
−ζp). Therefore,

it seems almost more natural to write the remaining two quadratic extensions as
Qp(
√
−p) and Qp(

√
−ζp). In doing this, it becomes clear that they correspond to

N2 and N3 respectively. A small calculation15 shows that, for p ≡ 1 (mod 4),

Qp(
√
−p) = Qp(

√
p) and Qp(

√
−ζp) = Qp(

√
ζp).

If, however, p ≡ 3 (mod 4), then the extensions on the right must be swapped
with one another.

Remark 1.40. In the archimedean case, there is also a local Artin map. The
abelian extensions of F = R are R and C and their norm groups are R∗ and R>0
respectively. In the case L = R, the map φL/F is trivial, while for L = C we have

φR : R∗/R>0 −→ Gal(C/R)
x 7−→ σord∞(x)

where, as in Definition 1.30,

ord∞(x) :=
{

0 if x > 0
1 if x < 0

and σ acts as complex conjugation. Since NmC/R(C∗) = R>0, we have a natural
isomorphism

R∗/R>0 ∼= Z/2Z ∼= Gal(C/R).

As mentioned at the beginning of this section, it is possible to define a global
Artin map in terms of idèles. There are two main benefits over the more classical
ideal-theoretic construction. First, we shall see the global Artin map defined as a
product of the local maps. Second, we get a unified treatment of the embeddings
of F into its completion at all primes, including the infinite ones.

Proposition 1.41 ([14, Proposition 5.2]). For a global field F , there exists a
unique continuous homomorphism ρF : IF → Gal(F ab/F ) such that the following
diagram commutes

14More generally, for an unramified extension L/F , the group of units O∗
F is contained in

kerφL/F = NmL/F (L∗). An explanation of this is given in paragraph 1.8 of [13].
15Essentially, this boils down to showing that i =

√
−1 ∈ µp−1 if and only if p ≡ 1 (mod 4),

which is straightforward.
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1.4. Local and global class field theory

IF Gal(L/F )

F ∗v Gal(Lw/Fv).

ρ̂F

ΦFv

Here, as in Remark 1.36, ρ̂F is given by the composition of ρF followed by the
map τ 7→ τ |L for some element τ ∈ Gal(F ab/F ). Furthermore, for an element
a = (av)v ∈ IF , we have that ρ̂F (a) = ∏

v ΦFv(av).

As in the local case, we expect an isomorphism between the Galois group
Gal(L/F ) and a quotient of the group of idèles by some norm group, which we
must first define. We recall from [13, Proposition 8.2] the isomorphism

L⊗F Fv
∼=−→

∏
w|v
Lw.

It follows for any α ∈ L that

NmL/F (α) =
∏
w|v

NmLw/Fv(α).

For an idèle a = (aw)w ∈ IL, we can define NmL/F (a) to be the idèle b ∈ IF such
that bv = ∏

w|v NmLw/Fv(aw). This gives us the following commutative diagram

L∗ IL

F ∗ IF .

NmL/F NmL/F

The following theorem gives us a global Artin map, in a similar manner to the
local case.

Theorem 1.42 ([14, Theorem 5.3]). The map ρF : IF → Gal(F ab/F ) is surjective
and satisfies the following properties:

1. F ∗ ⊆ ker ρF ;

2. for every finite abelian extension L of F , ρ̂F defines an isomorphism

ρL/F : IF/F ∗ · NmL/F (IL) −→ Gal(L/F ).

Remark 1.43. The local and global Artin maps are also commonly referred to as
local and global reciprocity maps.
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Chapter 1. Algebraic Number Theory

We state here one final result which will be used to prove quadratic reciprocity
in chapter 3. In fact, it is one of the main results in class field theory and is
considered to be the generalisation of quadratic reciprocity to arbitrary abelian
extensions of number fields. The theorem below follows immediately from
Theorem 1.42.

Definition 1.44. For a prime v, the Hasse symbols
(
−,L/F
v

)
are defined on F ∗ as

(−, L/F
v

)
: F ∗ −→ Gal(L/F )

x 7−→ [ΦFv(x)],

where [ΦFv(x)] denotes the image of ΦFv(x) in Gal(L/F ).

Theorem 1.45. For any x ∈ F ∗,

∏
v

(x, L/F
v

)
= 1.
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Chapter 2

Algebraic and Milnor K-theory

The aim of this chapter is to formulate and prove Weil Reciprocity using Milnor
K-theory. We motivate our study with a simpler formulation of Weil Reciprocity
and then introduce the necessary tools from algebraic K-theory to generalise the
statement in terms of the norm map on Milnor K-groups.

2.1 First formulation of Weil Reciprocity

To begin with, let X be a connected, compact Riemann surface and let C(X)
denote the field of meromorphic functions on X. Let C(X)∗ = C(X) \ {0}. We
denote by (f) the set of zeroes and poles of f ∈ C(X)∗ and we let vP (h) be the
order of h ∈ C(X)∗ at P ∈ X. This will be positive if P is a zero, negative if P
is a pole and 0 if P is neither a zero, nor a pole. Then Weil Reciprocity can be
formulated as:

Theorem 2.1. Let f, g ∈ C(X)∗ be two meromorphic functions such that
(f) ∩ (g) = ∅. Then

∏
P∈X

f(P )vP (g) =
∏
P∈X

g(P )vP (f).

In fact, a stronger version, which removes the requirement that (f) and (g) are
disjoint, is:

Theorem 2.2. Let f, g ∈ C(X)∗ be two meromorphic functions. Then

∏
P∈X

(f, g)P = 1

where (f, g)P := (−1)vP (f)vP (g)f vP (g)(P )g−vP (f)(P ).

The proofs of these statements can be found in [18].
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Chapter 2. Algebraic and Milnor K-theory

2.2 K1 of a ring A

In order to generalise the statement above, we need to introduce algebraic K-
theory. We begin with a classical treatment of the functors K1 and K2 of a ring
A, then look at the special case when A = F is a field, before turning to Milnor
K-theory. A key result in what follows will be Matsumoto’s theorem, which allows
us to view K2(F ) as the universal object with respect to the Steinberg symbols.
A more thorough treatment of the following can be found in [12] and [22].

Let A be a ring. We recall the definition of GL(A), the general linear group,
as the colimit of the directed system

GL1(A) ↪−→ GL2(A) ↪−→ . . .

where the inclusion of GLn(A) into GLn+1(A) is given by M 7→
(
M 0
0 1

)
. Let

ei,j(a) denote the matrix which differs from the identity matrix only by having a
in the (i, j)-th position, where i 6= j. We call this an elementary matrix and note
that the elementary n × n matrices generate a subgroup En(A) ⊂ GLn(A). Just
as above, we have inclusions En(A) ↪−→ En+1(A) and the colimit of this directed
system is denoted by E(A). We also recall that the commutator subgroup of a
group G is generated by its commutators [g, h] = ghg−1h−1.

Lemma 2.3 ([12, Lemma 9.7]). The group E(A) is the commutator subgroup of
GL(A).

Definition 2.4. The first algebraic K-group of a ring A is:

K1(A) := GL(A)/E(A).

Now, a ring map A → B naturally induces a map GL(A) → GL(B) which
preserves elementary matrices, and hence a map K1(A) → K1(B). This means
that K1 is a covariant functor on the category of rings.

There is also a determinant map det : GL(A) → A∗, which induces a map
K1(A) → A∗. Let SL(A) denote the kernel of the determinant map and let
SK1(A) := SL(A)/E(A). Writing GL1(A) as A∗, which maps into A, we obtain a
split exact sequence

1 −→ SK1(A) −→ K1(A) −→ A∗ −→ 1.

Example 2.5. It is known that SK1(A) is trivial when A is a local ring [22,
Lemma 1.4] or the ring of integers in a number field [2]. Hence, in this case,

K1(A) ∼= A∗.

2.3 K2 of a ring A

We turn our focus briefly to central extensions and perfect groups.
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2.3. K2 of a ring A

Definition 2.6. A central extension of a group G by an abelian group A is a short
exact sequence

1 −→ A −→ E
φ−→ G −→ 1,

where E is a group containing A as a central subgroup. A central extension is
denoted by (E, φ).

The central extensions of a group G form a category, where a morphism
ψ : (E, φ) → (E ′, φ′) is a homomorphism ψ : E → E ′ over G, giving the fol-
lowing commutative diagram

E E ′

G

ψ

φ
φ′

Thus, we can define a central extension (E, φ) to be universal if it is initial in
the category of central extensions of G.

Recall that a group is perfect if it equals its commutator subgroup.
In order to define K2(A), we return to our study of elementary matrices. There

are two immediate properties that are worth stating. First, for any i, j ∈ N,

eij(a)eij(b) = eij(a+ b).

Second, for any i, j, k, l ∈ N, the commutator of two elementary matrices
satisfies

[eij(a), ekl(b)] =


1 if j 6= k, i 6= l

eil(ab) if j = k, i 6= l

ekj(−ab) if j 6= k, i = l.

Using these properties as motivation, we make the following definition:

Definition 2.7. Let A be a ring. For n ≥ 3, we define Stn(A), the Steinberg
group of order n over A, to be the free group generated by symbols xij(a), i 6= j,
1 ≤ i, j ≤ n, a ∈ A, subject to the following relations

1. xij(a)xij(b) = xij(a+ b);

2. [xij(a), xkl(b)] = xil(ab) if i 6= l;

3. [xij(a), xkl(b)] = 1 if j 6= k, i 6= l.
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Chapter 2. Algebraic and Milnor K-theory

For every n, there are natural maps Stn(A) → Stn+1(A), and we let St(A)
denote the colimit of the directed system. Given a ring map f : A→ B, we get an
induced map on the free groups generated by {xij(a) : a ∈ A} and {xij : b ∈ B}
by mapping xij(a) to xij(f(a)). This is compatible with the relations in St(A) and
so factors through a map St(A) → St(B), giving us a well-defined functor St(−)
on the category of rings. There are also natural maps φn : Stn(A) → GLn(A) for
any n, given by xij(a) 7→ eij(a). We note that the image of this map is precisely
the group En(A). Passing to the colimit, we get a map φ : St(A)→ E(A).

Definition 2.8. The second algebraic K-group, K2(A) of a ring A is defined as
the kernel of the map φ : St(A)→ E(A).

We note that the functoriality of St(−) and E(−) tell us that K2 is a functor.
Following the definition of K2, we have the exact sequence

1 −→ K2(A) −→ St(A) φ−→ E(A) −→ 1.
The following theorem shows that the exact sequence above is in fact a central

extension of the group E(A). Thus, in particular, K2(A) is an abelian group.

Theorem 2.9 ([20, Theorem 4.2.4]). The group K2(A) is the center of the
Steinberg group St(A).

Before moving on to studying K2 of a field, it is worth mentioning one example
that will play a role later on.

Example 2.10. Let A be any ring and let

x = (x12(1)x21(−1)x12(1))4.

Then,

φ(x) =
((

1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

))4

=
(

1 1
0 1

)4

=
(

1 0
0 1

)
.

Thus x ∈ K2(A). This element x appears later in Example 2.13 as the only
non-trivial element of K2(Z).

2.4 K2 of a field F

As we shall see later on, for a number field F , K2(F ) contains information about
the arithmetic of F . By this, we mean that K2(F ) reveals the structure of the
residue fields and how primes in F split or ramify. In order to explicitly calculate
anything about K2(F ) we use a simplification in our definition due to Matsumoto
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2.4. K2 of a field F

[17, §12]. To formulate Matsumoto’s theorem, we first look at the general case
involving rings and specialise to fields later on.

We can explicitly construct elements of K2(A) for a given ring A. Let a, b ∈
E(A) such that the commutator [a, b] = 1. Let x and y denote representatives for
φ−1(a) and φ−1(b) respectively. Then [x, y] = xyx−1y−1 ∈ St(A) and φ([x, y]) = 1,
so that [x, y] ∈ K2(A).

We must check that the element [x, y] is well-defined. Suppose x′ is another
representative for φ−1(a). Then x′ and x differ by an element of ker(φ) = K2(A).
But the theorem above tells us that K2(A) is the center of St(A), so we can write
x′ = xz for some z in the center of St(A). Then, upon noting that z commutes
with every element of St(A), we see that

[x′, y] = x′yx′−1y−1

= xzyz−1x−1y−1

= xyx−1y−1

= [x, y].

We therefore let [φ−1(a), φ−1(b)] denote the element [x, y] ∈ K2(A), where x
and y are representatives for φ−1(a) and φ−1(b) respectively.

Definition 2.11. Let A be a ring and u, v ∈ A∗. We define1 the Steinberg symbol
{u, v} to be the element [φ−1(d12(u)), φ−1(d13(v))] ∈ K2(A), where

d12(u) =

u 0 0
0 u−1 0
0 0 1

 , d13(v) =

v 0 0
0 1 0
0 0 v−1

 .
The following result, found in [20, Lemmas 4.2.14 and 4.2.17] is straightforward

to prove but requires keeping rigorous track of symbols and commutators.

Lemma 2.12. The Steinberg symbol map

{−,−} : A∗ × A∗ → K2(A)

satisfies

(1) {u, v} = {v, u}−1 (antisymmetry);

(2) {u1u2, v} = {u1, v}{u2, v} (bilinearity);

(3) {u,−u} = 1 for u ∈ A∗;

(4) {u, 1− u} = 1 for u, 1− u ∈ A∗.
1We hope that, from context, it is sufficiently clear when we use {a, b} to denote the symbol

in K2(A) and when we use it to denote the set containing elements a and b.
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Example 2.13. If A = Z, then Z∗ = {±1} has only two elements. Milnor
proves in chapter 10 of [17] that {−1,−1} has order 2 and is therefore the only
non-trivial symbol2 on K2(Z). It is also possible to show3 that the element
x = (x12(1)x21(−1)x12(1))4, from Example 2.10, must be {−1,−1}.

Let F be a field. The following result allows us to view K2(F ) in terms of the
symbols {u, v}.

Theorem 2.14 (Matsumoto’s Theorem, [17, §12]). The group K2(F ) is the abelian
group generated by the set of Steinberg symbols {u, v}, where u, v ∈ F ∗, subject to
the relations

(1) {u1u2, v} = {u1, v}{u2, v};

(2) {u, v1v2} = {u, v1}{u, v2};

(3) {u, 1− u} = 1 for any u 6= 1.

Property (3) is commonly referred to as the Steinberg identity.

Since a field is a local ring, Lemma 2.12 and Example 2.5 give us:

Theorem 2.15. There is an antisymmetric, bilinear map

K1(F )×K1(F ) −→ K2(F )

mapping (a, b) ∈ K1(F )×K1(F ) ∼= F ∗ × F ∗ to {a, b} ∈ K2(F ).

It turns out that K2(F ) satisfies a certain universal property which we will take
advantage of later on to derive some well known reciprocity laws. To describe this
universal property, we require a definition. Our definition of the Steinberg symbol
{−,−} above should generalise in the following sense:

Definition 2.16. Let F be a field and G be an abelian group, written
multiplicatively. A (G-valued Steinberg) symbol on F is a bilinear map

(−,−) : F ∗ × F ∗ −→ G

such that (x, 1− x) = 1 whenever x ∈ F ∗ \ {1}.

Now, Matsumoto’s theorem tells us that any symbol (−,−) : F ∗ × F ∗ → G
gives rise to a commutative diagram

F ∗ × F ∗ K2(F )

G

{−,−}

(−,−)
∃!

2This is clear by the lemma above, since {1,−1} = {−1, 1} = {1, 1} = 1.
3This calculation is not too difficult, but it relies on introducing new notation and probably

takes up more space than is necessary. For details, see, for example, Example 4.2.19 in [20].
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Put differently, K2(F ) is the universal object with respect to symbols on F
with values in an abelian group G, and the corresponding symbol {−,−} is the
universal symbol on F .

We prove a result for symbols with values in an abelian group, similar to that
of Lemma 2.12.

Lemma 2.17. Let (−,−) : F ∗×F ∗ → G be a symbol on F . Then, for all x, y ∈ F ∗,
we have

(1) (x,−x) = 1;

(2) (x, y)−1 = (y, x);

(3) (x, 1) = (1, x) = 1;

(4) (x, x) = (x,−1).

Proof. (1) We start by writing −x = (1 − x)/(1 − x−1) for x 6= 1. Then, using
bilinearity,

(x,−x) = (x, 1− x) · (x, (1− x−1)−1)
= (x, 1− x−1)−1

= (x−1, 1− x−1)
= 1,

where in the second and final equalities we use the Steinberg identity.
To finish the proof of (1), we need to consider the case x = 1. But, in that
case, bilinearity gives us (1,−1) = (1,−1) · (1,−1) and so (1,−1) = 1 after
cancelling4.

(2) Antisymmetry follows because

(x, y) · (y, x) = (x,−x) · (x, y) · (y, x) · (y,−y)
= (x,−xy) · (y,−xy)
= (xy,−xy)
= 1.

(3) This follows immediately from the bilinearity of a symbol. Indeed, (x, 1) =
(x, 1 · 1) = (x, 1)(x, 1). Antisymmetry then gives (1, x) = 1.

(4) Finally,
(x, x) = (x,−x) · (x,−1) = (x,−1).

4In fact, this same argument shows that (x, 1) = 1 for any x ∈ F ∗
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Theorem 2.18. For a finite field F , K2(F ) is the trivial group.

Proof. Suppose F = Fq is a finite field with q elements. Let ζ denote a generator
of the cyclic group F∗q. For any elements x, y ∈ F∗q, write x = ζm, y = ζn. Then
{x, y} = {ζm, ζn} = {ζ, ζ}mn, so it suffices to show that {ζ, ζ} = 1.

By antisymmetry, {ζ, ζ} = {ζ, ζ}−1 and so {ζ, ζ} has order at most 2. If
q is a power of 2, then char(F ) = 2 which implies that −1 = 1 in Fq and so
{ζ, ζ} = {ζ,−ζ} = 1. If, however, q is odd, then bilinearity, together with (1)
from Lemma 2.17 gives us

{ζ, ζ} = {ζ,−ζ} · {ζ,−1} = {ζ,−1} = {ζ, ζ
q−1

2 } = {ζ, ζ}
q−1

2 .

So if (q − 1)/2 is even5, we can see that {ζ, ζ} = 1. If (q − 1)/2 is odd, then, in
Fq, −1 is not a perfect square6. Suppose we can choose u ∈ Fq such that neither
u nor 1 − u is a perfect square in Fq. Recalling that {u, 1 − u} = 1, and noting
that u and 1− u are both odd powers of ζ, we see that {u, 1− u} is an odd power
of {ζ, ζ}. Thus {ζ, ζ} = 1.

It therefore remains to show that such a u exists. Since −1 is not a perfect
square in Fq, showing such a u exists is the same as showing that there exists a
u, not a perfect square, such that u − 1 = −1(1 − u) is a perfect square. But
this must be true, otherwise adding 1 to a perfect square would always give us
a perfect square. Thus, every element of F∗q would be a perfect square, clearly a
contradiction.

Before moving on to Milnor K-theory, we briefly discuss some symbols that
will appear later on.

Example 2.19. Let F = R and G = {±1}. Let

(x, y)∞ =
−1 if and only if x, y < 0;

1 otherwise.

Then, it is straightforward to verify that this is indeed a symbol.

Example 2.20. Let p be an odd prime and take F = Qp, G = F∗p. If we let
vp : Q∗p → Z denote the p-adic valuation, then it is clear that the element

(−1)vp(x)vp(y)xvp(y)y−vp(x)

belongs to Z∗p for every x, y ∈ Q∗p. Fairly routine calculations show that its image in
F∗p is indeed a symbol, which is commonly referred to as the tame symbol associated
to vp. This will be generalised in the next section.

5If the order of {ζ, ζ} was in fact 2 and not 1, then it would divide q−1
2 leading to a

contradiction.
6To see this, argue by contradiction and show that −1 = 1.
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2.5. Milnor K-theory

2.5 Milnor K-theory

Motivated by Matsumoto’s characterisation of K2(F ), in this section we introduce
the Milnor K-groups of a field F and state some basic properties. We mention the
transfer, or norm map, associated to finite field extensions of F and the split exact
sequence that will help us prove quadratic recirpocity and establish an equivalence
between the transfer map, and Weil Reciprocity.

Let F be a field and for any n ≥ 0, let (F ∗)⊗n := F ∗⊗Z . . .⊗Z︸ ︷︷ ︸
n-times

F ∗ be the n-fold

tensor product of F ∗. Here, we define (F ∗)⊗0 := Z.

Definition 2.21. Let n ≥ 0. The n-th Milnor K-group KM
n (F ) of a field F is the

group

KM
n (F ) := (F ∗)⊗n/(x1 ⊗ . . .⊗ xn : xi ∈ F ∗, xi + xi+1 = 1 for some i).

We write {x1, . . . , xn} for the image of x1 ⊗ . . .⊗ xn ∈ (F ∗)⊗n in KM
n (F ).

The Milnor K-theory KM
∗ (F ) of F is the graded ring KM

∗ (F ) := ⊕
n≥0K

M
n (F ),

where KM
n (F ) consists of the homogeneous elements of degree n.

Remark 2.22. By Example 2.5 and Matsumoto’s Theorem (Theorem 2.14), we
see that KM

n (F ) and Kn(F ) agree for n = 1, 2. While we have not mentioned
the functor K0 here, it turns out7 that K0(F ) = Z , so the two groups also agree
for n = 0. We also note here, out of interest, that Theorem 2.18 tells us that
KM
n (F ) = 0 for any finite field F and any n ≥ 2.

In what follows, as in chapter 1, if v is a discrete valuation on a field F , with
valuation ring Ov and maximal ideal pv, we let k(v) = Ov/pv denote the residue
field of F .

Definition 2.23. Suppose v is a discrete valuation on a field F . The tame symbol
associated to v is the map

τv : F ∗ × F ∗ −→ k(v)∗

(x, y) 7−→ (−1)v(x)v(y)xv(y)y−v(x) (mod pv).

This gives an (induced) tame symbol8

τv : KM
2 (F ) −→ k(v)∗

{x, y} 7−→ τv(x, y).

We can use the tame symbol to describe KM
2 (Q).

7See, for example, chapter 2, section 2 of [22].
8We will drop the use of induced when mentioning the more commonly used tame symbol τv

rather than τv.
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Example 2.24. Suppose p is a prime and v = vp is the p-adic valuation on Q.
We have that k(v) ∼= Z/pZ. So, if x is a non-zero integer such that |x| < p, we
can follow the map τv by this isomorphism to get a map

τp : KM
2 (Q) −→ (Z/pZ)∗

{x, p} 7−→ x (mod p).

We can then define a group homomorphism

τ : KM
2 (Q) −→

⊕
p

(Z/pZ)∗

α 7−→ (τ2(α), τ3(α), τ5(α), . . .),

and Tate [12, Theorem 14.56] was able to show that there exists a split exact
sequence

1 −→ {±1} i∞−→ KM
2 (Q) τ−→

⊕
p

(Z/pZ)∗ −→ 1. (2.1)

Thus,

KM
2 (Q) ∼= {±1} ⊕

⊕
p

(Z/pZ)∗.

Remark 2.25. We note here that the map i∞ : {±1} → KM
2 (Q), which sends −1

to {−1,−1}, has left inverse given by the real symbol (−,−)∞. We could just as
easily have used something called the 2-adic symbol to get a similar left inverse.
In fact, that is how Tate originally described KM

2 (Q) and we will define and use
this variation in the next section to prove quadratic reciprocity.

Motivated by the exact sequence in (2.1), Milnor [12, Definition 14.58] defines
an extension of the tame symbol τv : KM

2 (F )→ k(v)∗ ∼= KM
1 (k(v)) to a map

∂v : KM
n (F ) −→ KM

n−1(k(v))

for each n ≥ 1.

Theorem 2.26 ([16, Lemma 2.1]). Let F be a field. For every n ≥ 1 and any
discrete valuation v on F , there exists a unique homomorphism

∂v : KM
n (F ) −→ KM

n−1(k(v)).

For all units u1, . . . , un−1 ∈ O∗v,

∂v({u1, . . . , un−1, x}) = v(x){u1, . . . , un} ∈ KM
n−1(k(v)),

where ui is the class of ui in k(v)∗.

Remark 2.27. We call the map ∂v the extended tame symbol on v.
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2.5. Milnor K-theory

Remark 2.28. As a special case, we note that ∂v : KM
1 (F ) → KM

0 (k(v)) ∼= Z
maps {x} to v(x). It is also not too difficult to see that ∂v : KM

2 (F )→ KM
1 (k(v))

maps {x, y} to {τv({x, y})}.

In a similar manner to proving the split exactness of the sequence in (2.1),
Milnor was able to prove the following:

Theorem 2.29 ([16, Theorem 2.3]). Let F be a field. The extended tame symbols
∂v, for the p-adic valuations v = vp on F (t), combine to give a map ∂ in a split
exact sequence

0 −→ KM
n (F ) −→ KM

n (F (t)) ∂−→
⊕
p

KM
n−1(k(vp)) −→ 0,

where p ranges over all monic irreducibles in F [t].

Example 2.30. Imitating the proof of Theorem 2.29, we can get a split exact
sequence

0 −→ KM
n (Z) −→ KM

n (Q) −→
⊕
p

KM
n−1(Z/pZ) −→ 0, (2.2)

where p ranges over all primes in Z.
Since Z/pZ is a finite field, Theorem 2.18 implies that KM

n−1(Z/pZ) = 0 for
n > 2. So (2.2) gives us an isomorphism KM

n (Z) ∼= KM
n (Q) for n > 2. One

can then show that KM
n (Q) ∼= Z/2Z, generated by the element {−1, . . . ,−1}, for

n > 2.

We state one last result, due to Kato [9, Theorem 3], which characterises
the norm maps associated to a field extension. Let F (t) be the field of rational
functions in one variable over a field F . Then

v∞(f) = −deg(f)

is a discrete valuation on F (t) that is trivial on F and for which x−1 is a generator
of the maximal ideal pv∞ . Every other discrete valuation v on F (t) that is trivial
on F is determined by a monic irreducible polynomial pv ∈ F [t] that is a generator
of the maximal ideal pv, and the residue field, k(v) ∼= F [t]/(pv).

Theorem 2.31 ([9, Theorem 3]). There exists a unique family of homomorphisms

NF ′/F : KM
n (F ′) −→ KM

n (F ) (2.3)

associated with finite field extensions F ′/F such that both NF/F = id and∑
vNk(v)/F ◦ ∂v = 0, where the sum ranges over all discrete valuations v of F (t)

that are trivial on F .

Remark 2.32. The norm map above is sometimes also referred to as the transfer
map.
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Remark 2.33. In the case n = 0, we must define NF ′/F as multiplication by the
index [F ′ : F ]. Recall that F [t] is a unique factorisation domain with quotient
field F (t). Therefore, every element f ∈ F (t)∗ can be written as

f = lead(f) ·
∏
v 6=v∞

pv(f)
v ,

where lead(f) ∈ F is the leading coefficient of f . Therefore,
∑
v 6=v∞

[k(v) : F ] · v(f) =
∑
v 6=v∞

deg(pv) · v(f) = deg(f),

and since v∞(f) = −deg(f) we see that
∑
v

[k(v) : F ] · v(f) = 0.

In the case n = 1, we must take NF ′/F ({x}) = {NmF ′/F (x)}, where on the
right-hand side, NmF ′/F is the usual norm map. This makes the following diagram
commute:

KM
1 (F ′) KM

1 (F )

F ′∗ F ∗

NF ′/F

∼= ∼=
NmF ′/F

The theorem below, which is also called Weil reciprocity, is a generalisation of
Theorem 2.2 and it is, in fact, precisely the summation formula in Theorem 2.31,
written multiplicatively. In proving Weil reciprocity, we establish Theorem 2.31
for the case n = 1.

We will use (−,−)v to denote the tame symbol on F (t)∗, rather than τv.

Theorem 2.34 (Weil Reciprocity generalisation, [3, Theorem 5.6]). For any
f, g ∈ F (t)∗, we have that ∏

v

Nmk(v)/F (f, g)v = 1, (2.4)

where the product is taken over all discrete valuations on F (t) that are trivial on
F .

Proof. Since (f, g)v is a symbol, the left-hand side of (2.4) is easily seen to be
bilinear in (f, g) and we also have (f, f)v = (f,−1)v. Thus, it suffices only to verify
(2.4) for f and g relatively prime polynomials in F [t]. In this case, (f, g)v = 1
whenever v(f) = v(g) = 0, and so the left-hand side of (2.4) can be split up as∏

v

Nmk(v)/F (f, g)v = (f, g)v∞ ·
∏

v(g)>0
Nmk(v)/F ((f, g)v) ·

∏
v(f)>0

Nmk(v)/F ((f, g)v)

= (f, g)v∞
(
f

g

)(
g

f

)−1

, (2.5)
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2.6. Quadratic Hilbert symbols and quadratic reciprocity

where (
f

g

)
=

∏
v(g)>0

Nmk(v)/F ((f, g)v) =
∏

g(αv)=0
Nmk(v)/F (f(αv)v(g)).

Here, the second inequality following immediately from the definition of the tame
symbol.

Now, let F be an algebraic closure of F . In F [t], we can write

f(t) = a(t− α1) . . . (t− αn) and g(t) = b(t− β1) . . . (t− βm).

We then show that (
f

g

)
=

m∏
j=1

f(βj) = am
m∏
j=1

n∏
i=1

(βj − αi). (2.6)

The second equality follows immediately. For the first equality, we consider two
cases. In the first case, we assume g is constant, in which case both the left
and right-hand side of (2.6) are equal to 1. In the second case, g = pv for some
irreducible p associated to a valuation v. Here,(

f

pv

)
= Nmk(αv)/F (f(αv)),

where αv is the image of t in k(v) = F [t]/(pv). Note that the images of αv under
the different embeddings of k(v) in F are precisely β1, . . . , βm. This gives us the
required result upon nothing that, for general g,

(
f
g

)
defined above is multiplicative

in the denominator.
It then follows from (2.6) that(

f

g

)
·
(
g

f

)−1

= (−1)mna
m

bn
.

Since v∞(f) = −n and v∞(g) = −m, we also have that

(f, g)v∞ = (−1)mna
−m

b−n
,

which, together with (2.5), proves Weil Reciprocity.

2.6 Quadratic Hilbert symbols and quadratic recipro-
city

In this section, we aim to prove quadratic reciprocity using the variation on the
exact sequence (2.1), mentioned in Remark 2.25. In order to do this, we need to
define the quadratic Hilbert symbol on a field F , which is done using norms. We
introduce some preliminary results to motivate the definition. Recall the norm

NmC/R : C −→ R
a+ bi 7−→ (a+ bi)(a− bi) = a2 + b2.
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We can express the real symbol

(x, y)∞ =
−1 if and only if x, y < 0;

1 otherwise,

in terms of this norm as follows:

Lemma 2.35. For any a, b ∈ R∗, (a, b)∞ = 1 if, and only if, b is a norm from
R(
√
a).

Proof. Suppose a > 0. Then (a, b)∞ = 1, and R(
√
a) = R, so that b = NmR/R(b).

If, however, a < 0, then R(
√
a) = C and b is a norm from C if and only if b > 0,

in which case (a, b)∞ = 1.

We can actually express this norm condition in terms of quadratic forms.

Lemma 2.36. Suppose F is a field and a, b ∈ F ∗. Then b is a norm from F (
√
a)

if, and only if, ax2 + by2 = z2 has a non-zero solution (x, y, z) ∈ F 3.

Proof. We start by choosing a root
√
a of x2 − a in an algebraic closure of F , and

we let E = F (
√
a).

If a = c2, for some c ∈ F , then
√
a = ±c and so E = F . In this case, we

obviously have b = NmE/F (b) and also a · (c−1)2 + b · 02 = 12.
On the other hand, suppose that a is not a square in F . If b is a norm from

F (
√
a), then we can write b = NmE/F (c + d

√
a) = c2 − ad2, for some c, d ∈ F .

Then, a · d2 + b · 12 = c2 giving us a non-zero solution (d, 1, c). For the converse,
assume that there exists a non-zero solution (x, y, z) ∈ F 3 to ax2 + by2 = z2.
Since a is not a square, we must have y 6= 0. Therefore, after rearranging,
b = (z/y)2 − a(x/y)2 = NmE/F ((z/y) + (x/y)

√
a).

Hilbert generalised the real symbol to other fields F by defining a map
(−,−)F : F ∗ × F ∗ −→ Z∗ which sends a pair (a, b) to9

(a, b)F =
{1 if b ∈ NmF (

√
a)/F (F (

√
a)∗);

−1 otherwise.
If we take x = y = z = 1 in Lemma 2.36, then (a, b)F = 1 whenever

a + b = 1. Also, (a, b)F = (b, a)F , so (a, b)F is multiplicative in a if and only
if it is multiplicative in b. Now, suppose that N = NmF (

√
a)/F (F (

√
a)∗) has index

1 or 2 in F ∗. Then, b1b2 ∈ N if, and only if, b1 and b2 are both in N or both not
in N . Therefore, for all a, b1, b2 ∈ F ∗ we have that

(a, b1b2)F = (a, b1)F · (a, b2)F .

If, however, we suppose that N has index greater than 2, we can find cosets
b1N 6= N , b2N 6= N so that (a, b1b2)F = (a, b1)F = (a, b2)F = −1. This gives us
the following result:

9By Lemma 2.36, we could also send the pair (a, b) to 1 or −1 subject to there being a non-
zero solution (x, y, z) ∈ F 3 to the equation ax2 + by2 = z2. This is a common equivalent way of
defining the quadratic Hilbert symbol.
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Proposition 2.37. Suppose F is a field. The following are equivalent:

1. For a ∈ F and E = F (
√
a), the subgroup N = NmE/F (E∗) has index 1 or 2

in F ∗.

2. The map (−,−)F : F ∗ × F ∗ −→ {±1} is bilinear.

3. The map (−,−)F : F ∗ × F ∗ −→ {±1} is a symbol, which induces a
homomorphism K2(F )→ {±1}, sending {a, b} to (a, b)F .

Remark 2.38. If (−,−)F is a symbol map, then we call it a quadratic Hilbert
symbol on F . It is worth noting here that the real symbol (−,−)∞ is a quadratic
Hilbert symbol relies on the fact that NmC/R(C∗) has index 2 in R∗.

Remark 2.39. There is also a quadratic Hilbert symbol on each algebraically
closed field F , since then F (

√
a) = F and NmF/F (F ∗) has index 1 in F ∗. But in

this case, (a, b)F = 1 for all a, b and the induced homomorphism is trivial, so this
doesn’t tell us much.

Example 2.40. There is no quadratic Hilbert symbol on Q. By Proposition 2.37,
we need only show that the index of NmQ(i)/Q(Q(i)∗) is not 1 or 2, but our proof will
actually show that the index is infinite. To see why10, recall that the primes p ∈ Z
which remain prime in Z[i] are precisely those which are congruent to 3 (mod 4).
For any such prime p and any a+ bi ∈ Z[i], we have that11 vp(a+ bi) = vp(a− bi).
This implies that vp(a2 + b2) = vp(NmQ(i)/Q(a + bi)) must be even. If q is any
integer not divisible by p, then there do not exist a, b, c ∈ Z such that

p

q
= NmQ(i)/Q

(
a

c
+ b

c
i

)
= a2 + b2

c2 ,

since vp(pc2) is odd and vp(q(a2+b2)) is even. Thus, no two primes p, q ≡ (mod 3)
are congruent modulo norms from Q(i)∗. Since there are infinitely many primes
which are congruent to 3 (mod 4), this shows that NmQ(i)/Q(Q(i)∗) has infinite
index in Q∗.

In order to reformulate quadratic reciprocity, we need quadratic Hilbert
symbols on Qp for primes p. When p is an odd prime, this is done by following
the tame symbol map Q∗p×Q∗p → (Z/pZ)∗ by the map a 7→ a(p−1)/2. When p = 2,
the problem of (Z/2Z)∗ being the trivial group arises, and so a quadratic Hilbert
symbol must be constructed directly. We are interested in how Tate’s description
of K2(Q) leads to quadratic reciprocity and as a result, omit the proofs for the
constructions of these symbols. For a full proof, see, for example, [12, §15].

Proposition 2.41.
10See, for example [13, Example 3.44]
11A simple argument proceeds as follows: If vp(a + bi) = k, then a + bi = pk · α for some

α ∈ Z[i]. Taking conjugates yields a − bi = pk · α and so vp(a − bi) = k. The other direction is
identical.
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1. Let p be an odd prime and a, b ∈ Q∗p. Then, there is a quadratic Hilbert
symbol (−,−)p on Qp, given by

(a, b)p = τp(a, b)(p−1)/2, (2.7)

where τp : Q∗p × Q∗p → k(v)∗ ∼= (Z/pZ)∗ is the tame symbol defined in
Definition 2.23.

2. Let a, b ∈ Q∗2. Then a, b can be written in the form a = 2i · (−1)j · 5k · s and
b = 2I · (−1)J · 5K · t, where s, t ∈ 1 + 8Z2. Furthermore, there is a quadratic
Hilbert symbol (−,−)2 on Q2, given by

(a, b)2 = (−1)iK+jJ+kI . (2.8)

While there is no quadratic Hilbert symbol on Q, for each prime p, we can
restrict the p-adic symbol (−,−)p to a map

(−,−)p : Q∗ ×Q∗ −→ Z∗

which is bilinear and satisfies (a, b)p = 1 for all a, b ∈ Q∗ such that a + b = 1.
Hence, for each prime p, we get an induced map

K2(Q)→ Z∗, {a, b} 7→ (a, b)p.

For the rest of this section let P denote the set of odd primes.

Remark 2.42. In Remark 2.25, we mentioned that Tate originally described
KM

2 (Q) slightly differently. While he kept the tame symbols at odd primes, he
used the 2-adic symbol (−,−)2 instead of (−,−)∞ to get a split exact sequence

1 −→ {±1} i2−→ KM
2 (Q) τ−→

⊕
p∈P

(Z/pZ)∗ −→ 1. (2.9)

Here, the map i2 is the same map as i∞. Noting that (−1,−1)2 = −1, we see
that the 2-adic symbol (−,−)2, also induces a left inverse (which we denote by h2
below), hence the minor change of notation.

As before, this gives us an isomorphism

K2(Q) ∼= {±1} ⊕
⊕
p∈P

(
Z/pZ

)∗
{a, b} 7→ ((a, b)2, τ3(a, b), τ5(a, b), . . .)

this time involving the 2-adic symbol instead. The question guiding us towards
quadratic reciprocity is, how does the real symbol fit into this description?

If we compose the above isomorphism with projection and inclusion maps, we
see that there are homomorphisms

K2(Q)
h2
�
i2
{±1} and K2(Q)

τp

�
ip

(Z/pZ)∗
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Written multiplicatively, the map i2 ◦ h2 ·
∏(ip ◦ τp) acts as the identity on K2(Q).

If r : K2(Q)→ {±1} is induced by the real symbol, then we see that

r = r ◦
(
i2 ◦ h2 ·

∏
(ip ◦ τp)

)
= (r ◦ i2) ◦ h2 ·

∏
(r ◦ ip) ◦ τp.

It is straightforward to see that r ◦ i2 : {±1} → {±1} is the identity map. In
addition, each homomorphism r ◦ ip : (Z/pZ)∗ → {±1} is completely determined
by where it maps a generator of (Z/pZ)∗. It is therefore12 given by the map that
sends an element x to xn(p), where n(p) = (p − 1)/2 or p − 1. Therefore, for
a, b ∈ Q∗, we have

(a, b)∞ = (a, b)2
∏
p∈P

(a, b)m(p)
p , (2.10)

where m(p) is either 1 or 2.

In proving quadratic reciprocity follows from the formula above, we require a
result due to Gauss.

Lemma 2.43 ([12, Lemma 15.33]). If p is a prime such that p ≡ 1 (mod 8), then
there is a prime q < √p such that p is not a square modulo q.

Theorem 2.44 (Quadratic reciprocity). For all a, b ∈ Q∗,

(a, b)∞ = (a, b)2
∏
p∈P

(a, b)p. (2.11)

Therefore, for all odd primes p 6= q,

1 = (−1)
p−1

2 ·
q−1

2 ·
(
p

q

)
·
(
q

p

)
.

Proof. Let p and q be two distinct odd primes. Before we begin, we note three
things that will help to prove both statements of the theorem. Namely, that
(p, q)∞ = 1 and for any prime r 6= p, q, we have that (p, q)r = 1. Also, working
modulo 8, we can write p ≡ (−1)j5k (mod 8) and q ≡ (−1)J5K (mod 8).

To prove (2.11) we must show that m(p) = 1 for all primes p ∈ P in (2.10).
To do this, we consider a few different cases.

1. Suppose first that p ∈ P and p ≡ −1,−5 (mod 8). Then Proposition 2.41,
combined with the note made at the beginning of the proof, says that
(p, p)2 = −1. Letting a = b = p in (2.10) gives

1 = (−1) · (p, p)m(p)
p

and so m(p) = 1.
12While this is a well-known result, a proof will be given in Lemma 3.19.
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2. Next, suppose that p ∈ P and p ≡ 5 (mod 8). Then, using the same
reasoning as above, we can see that (2, p)2 = −1. Taking a = 2, b = p
in (2.10) gives

1 = (−1) · (2, p)m(p)
p

and so we conclude, again, that m(p) = 1.

3. The final case, p ≡ 1 (mod 8), is slightly more involved. The problem here
is that (p, a)2 = 1 for all a ∈ Q∗. Therefore, suppose, for contradiction, that
the theorem is not true. Let p be the smallest prime such that m(p) = 2.
For each odd prime q < p, we have that m(q) = 1. Substituting a = p, b = q
in (2.10) gives

1 = (p, q)q · (p, q)2
p

= (p, q)q
= p(q−1)/2 (mod q)

=
(p
q

)
,

where in the final line we have used Euler’s criterion. This tells us that p is
a square modulo all primes q < p, which contradicts Lemma 2.43.

Having verified that m(p) = 1 for all primes p, we have established (2.11).

For the second statement, we substitute odd primes p, q into (2.11). Using the
statement made at the beginning of the proof, it is straightforward to verify that

(p, q)2 =
1 if p or q ≡ 1 (mod 4)
−1 if p ≡ q ≡ 3 (mod 4).

= (−1)
p−1

2 ·
q−1

2 .

Therefore, the only contributions to the right-hand side of (2.11) come from
the two primes p and q and the 2-adic symbol (p, q)2. Using the tame symbol
definition, we have that

(p, q)p =
(
(−1)0·1 · p0 · q1

) p−1
2 ≡ q

p−1
2 (mod p)

Recalling that
(
a
p

)
≡ a(p−1)/2 (mod p), for any prime p and a ∈ Z, we have

that

1 = (p, q)2 · (p, q)p · (p, q)q

= (−1)
p−1

2 ·
q−1

2 ·
(
q

p

)
·
(
p

q

)
,

as required.
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Chapter 3

Further Symbols and Their Relation-
ship to K2(Q(

√
−2))

In the previous chapter we saw how Tate’s computation of K2(Q) led to a rather
neat derivation of quadratic reciprocity. To see this, we had to introduce quadratic
Hilbert symbols and, for a, b ∈ Q∗, derive the product formula

(a, b)∞ = (a, b)2
∏
p∈P

(a, b)p.

Our aim in this chapter is to generalise quadratic Hilbert symbols and mimic
Tate’s construction of K2(Q)) to get a similar reciprocity result for K2(Q(

√
−2).

It is worth noting that in proving the split exactness of the sequence

1 −→ {±1} −→ K2(Q) −→
⊕
p

(Z/pZ)∗ −→ 1

Tate used the Euclidean algorithm. Thus, to have any hope of replicating
this construction, the ring of integers of our quadratic number field must be a
Euclidean domain. It is well-known1 that OQ(

√
−d) is a Euclidean domain for

d ∈ {1, 2, 3, 7, 11}. The cases d = 1, 3 have been discussed in [10], and so it seems
only natural to consider the case when d = 2.

We take the opportunity in this chapter to generalise the quadratic Hilbert
symbol to Hilbert symbols of order m and make a connection between them and
the so-called n-th power residue symbols. We will prove a product formula and
state a powerful result due to Moore that says such a relation between Hilbert
symbols is unique. This combines to give a reciprocity law for K2(Q(

√
−2)).

3.1 Generalising the quadratic Hilbert symbol

Throughout this section, we let F be a field and v be a prime. Recall that we
defined the quadratic Hilbert symbol to be the symbol (−,−)F : F ∗ × F ∗ −→ Z∗
that sends a pair (a, b) to

(a, b)F =
{1 if b ∈ NmF (

√
a)/F (F (

√
a)∗);

−1 otherwise.
1See, for example, page 432 in [3].
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Also recall from Definition 1.44 the Hasse symbol on F ∗ for some field extension
L of a global field F is defined as

(−, L/F
v

)
: F ∗ −→ Gal(L/F )

x 7−→ [ΦFv(x)],

where [ΦFv(x)] denotes the image of ΦFv(x) in Gal(L/F ).

Definition 3.1. For x, y ∈ F ∗, the Hilbert symbol of order m = #µ(F ) at v is
defined as (

x, y

v

)
:= σv( m

√
x)

m
√
x
∈ µ(F ),

where, to simplify notation, we let

σv =
(
y, F ( m

√
x)/F

v

)

denote the Hasse symbol on F ∗ at v.
For any divisor n of m, we also define the Hilbert symbol of order n as

(
−,−
v

)
n

:=
(
−,−
v

)m
n

.

Remark 3.2. If we replace F by Fv, m by mv and instead let σv = φFv( mv
√
x)/Fv

denote the local Artin map in the definition above we get the local Hilbert symbol
at v of order mv.

We make note of this here as it will come in use later when defining the map
used in Moore’s Theorem.

Remark 3.3. Taking m = n = 2, we see that the Hilbert symbol of order 2 is
given by (

x, y

v

)
= σv(

√
x)√
x
∈ {±1}.

This takes value +1 if and only if σv(
√
x) =

√
x, which is equivalent to saying

that y lies in the kernel of the local Artin map. By Theorem 1.34, this happens
if and only if y ∈ NmF (

√
x)/F (F (

√
x)∗), which is precisely the definition of the

quadratic symbol given above.
More specifically, let p be a prime number and v be the associated valuation.

For F = Qp, Proposition 2.41 then tells us that(
x, y

v

)
= (x, y)p.

Now, in order to prove the product formula for Hilbert symbols, we need the
following result:
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Lemma 3.4. Let L be a finite abelian extension of F containing an n-th root z
of an element x ∈ F ∗. Let {σi}Mi=1 be a finite set of automorphisms in the Galois
group Gal(L/F ). Then (∏M

i=1 σi
)
(z)

z
=

M∏
i=1

σi(z)
z
∈ µ(F ).

Proof. We prove this statement by induction. Let σ, τ ∈ Gal(L/F ). Then

(στ)(z)
z

= (σ(τ(z))
z

· τ(z)
z

= τ(σ(z))
τ(z) · τ(z)

z

= τ

(
σ(z)
z

)
· τ(z)
z

= σ(z)
z
· τ(z)
z
.

Here, the second equality follows from the fact that the extension is abelian
and then final equality follows from the fact that τ acts trivially on µ(F ) ⊂ F .
The lemma then follows by induction.

Theorem 3.5. For any x, y ∈ F ∗ and any n dividing m = #µ(F ), we have the
following product formula: ∏

v

(
x, y

v

)
n

= 1.

Proof. The product formula follows immediately using Lemma 3.4 and The-
orem 1.45.

Definition 3.6. Let n > 1 be a natural number, x ∈ F ∗ and v a finite prime that
is not ramified in F ( n

√
x)/F . We define the n-th power residue symbol as(

x

v

)
n

:=

(
F ( n√x)/F

v

)
( n
√
x)

n
√
x

,

where we use
(
F ( n√x)/F

v

)
to denote the Frobenius element in Gal(F ( n

√
x)/F ).

If p is the prime ideal corresponding to v, we also write(
x

p

)
n

:=
(
x

v

)
n

.

Finally, for y ∈ F ∗ such that all v|y are unramified in F ( n
√
x)/F , we define(

x

y

)
n

:=
∏
v

(
x

v

)ordv(y)

n

,

where the product runs over all primes v dividing y and all real infinite places.
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Remark 3.7. In a similar style to the notation above, we will write σ =
(
F ( n√x)/F

v

)
for the Frobenius element at the prime v, and we let p be the prime corresponding
to v. Recalling that the Frobenius acts as raising elements to the power qv = Nm(p)
modulo p, we see that (

x

p

)
n

= σ( n
√
x)

n
√
x
≡ x

qv−1
n (mod p).

Thus, we see that the n-th power reciprocity symbol is a generalisation of the
Legendre symbol.

The following proposition is used to prove an n-th power reciprocity law.

Proposition 3.8 ([7, Proposition 7.4.3]). The n-th power residue symbols satisfy
the following properties:

1.
(
x
v

)
n

= 1 if and only if iv(x) is an n-th power in F ∗v ;

2.
(
x
v

)
n

(
y
v

)
n

=
(
xy
v

)
n
;

3.
(
x,y
v

)
n

=
(
x
v

)ordv(y)

n
.

Remark 3.9. We note that, in particular, the last result of the proposition above
implies that

(
x, πv
v

)
n

=
(
x

v

)
n

.

Theorem 3.10 (The n-th power reciprocity law [7, Theorem 7.4.4]). Let n
be a divisor of m = #µ(F ). Let x, y ∈ F ∗ such that for any prime v we
have ordv(x) = 0 or ordv(y) = 0, and for any prime v dividing n we have
ordv(x) = ordv(y) = 0. Then(

x

y

)
n

(
y

x

)−1

n

=
∏
v|n

(
y, x

v

)
n

.

Proof. By definition(
x

y

)
n

(
y

x

)−1

n

=
∏
v-n

(
x

v

)ordv(y)

n

∏
v-n

(
y

v

)−ordv(x)

n

,

since ordn(x) = ordn(y) = 0 for all v|n. Hence, using Proposition 3.8 we see that(
x

y

)
n

(
y

x

)−1

n

=
∏
v-n

(
x, y

v

)
n

∏
v-n

(
y, x

v

)−1

n

=
∏
v-n

(
x, y

n

)
n

.

40



3.2. Calculating K2(Q(
√
−2))

In the last equality, we use the antisymmetry property of a symbol. Now, Hilbert’s
product formula in Theorem 3.5 says that

∏
v-n

(
x, y

n

)
n

=
∏
v|n

(
x, y

n

)−1

n

=
∏
v|n

(
y, x

n

)
n

,

where we once again have used the antisymmetry property in the final equality.
Putting this all together, we arrive at the required result.

Remark 3.11. The case n = m = 2 and F = Q corresponds to quadratic
reciprocity and the reader can compare the equivalence between this formulation
and the one made in Theorem 2.44.

3.2 Calculating K2(Q(
√
−2))

Throughout this section, we consider F = Q(
√
−2). Recall from Proposition 1.1

that the ring of integers OF = Z[
√
−2] and the discriminant, ∆F , of F/Q is −8.

Thus, Theorem 1.22 tells us that the only prime that ramifies in OF is 2. To
find the primes that split, Proposition 1.25 tells us that we can look for those
that satisfy

(
−2
p

)
= 1. Using the multiplicativity of the Legendre symbol, this is

equivalent to finding the primes that satisfy
(

2
p

)(
−1
p

)
= 1.

The supplementary laws of quadratic reciprocity from Theorem 2.44 tell us
that (

−1
p

)
= (−1)

p−1
2 =

1 if p ≡ 1 (mod 4);
−1 if p ≡ 3 (mod 4),

and that (
2
p

)
= (−1)

p2−1
8 =

1 if p ≡ 1, 7 (mod 8);
−1 if p ≡ 3, 5 (mod 8).

Thus, a prime splits precisely when p ≡ 1, 3 (mod 8), leaving p ≡ 5, 7 (mod 8) as
the inert primes.

Our aim in this section is to establish, for non-complex primes v, the
isomorphism2

K2(Q(
√
−2)) ∼=

⊕
v

k(v)∗ ∼=
⊕

p prime
p≡1,3(mod 8)

(F∗p)2 ⊕
⊕

p prime
p≡5,7(mod 8)

F∗p2 .

Here the terms in the direct sum come from the residue fields (see Proposition 1.26)
at each prime p, according to its residue class modulo 8. It is worth highlighting
that the residue field for the prime 2 does not appear explicitly since it is trivial.

2Notice the similarity between the isomorphism given here and that used in Tate’s
computation of K2(Q) in Example 2.24.
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In constructing K2(Q), Tate used a filtration

M2 ⊂M3 ⊂M5 ⊂ . . . ⊂Mp ⊂ . . . ⊂ K2(Q),

where, for each prime p,

Mp := 〈{x, y} : x, y ∈ Z \ {0}, 1 ≤ |x|, |y| ≤ p〉.

We aim to do something similar, with some minor changes, that require a few
preliminary results. In the lemma below, |a| is the standard absolute value that
satisfies |a|2 = Nm(a).

Lemma 3.12. For any finite prime v of Q(
√
−2), there is a complete system of

representatives {αj}j=1,...,Nm(πv) for k(v) such that |αj| ≤
√

3
2 |πv| for each j.

Proof. Let π be a prime element and α ∈ Z[
√
−2] \ {0}. Geometrically, what one

should picture is the lattice spanned by integer multiples of π. Then α lies in one
of the rectangles of the lattice with distance at most

√
3

2 |π| away from a corner γπ.
If we let β = α− γπ then β ≡ α (mod π) and |β| ≤

√
3

2 |π|.

Lemma 3.13. The group K2(Q(
√
−2)) is generated by elements {a, b} where

a, b ∈ Z[
√
−2] \ {0}.

Proof. Let {x, y} ∈ K2(Q(
√
−2)). We can write x = a/b and y = a′/b′ where

a, a′, b, b′ ∈ Z[
√
−2] \ {0}. Using bilinearity and the properties in Lemma 2.17, we

see that

{x, y} = {ab−1, a′b′−1}
= {a, a′}{a, b′−1}{b−1, a′}{b−1, b′−1}
= {a, a′}{b′, a}{a′, b}{b, b′}.

Lemma 3.14. In K2(Q(
√
−2)), the symbols {−1,−1} and {

√
−2,
√
−2} are both

trivial.

Proof. We begin by recalling here, for ease of use, the necessary properties of
symbols3:

(a) For all x 6= 1, the Steinberg relation says that {x, 1− x} = 1;

(b) {x, y}−1 = {y, x};

(c) {x, x} = {x,−1};

(d) {x, 1} = {1, x} = 1.

(e) {x, x}2 = {x,−1}2 = {x, 1} = 1.
3These come from Definition 2.16 and Lemma 2.17.
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We shall prove the triviality of both symbols in four steps.

1. Since (−1) + (−1)(
√
−2)2 = 1, the Steinberg relation implies that

1 = {−1, (−1)(
√
−2)2}

= {−1,−1}{−1,
√
−2}2

= {−1,−1},

where the second equality uses bilinearity, and the final equality uses (e).

2. Since (−1)(
√
−2) + (1 +

√
−2) = 1, the Steinberg relation also implies that

1 = {(−1)(
√
−2), 1 +

√
−2}

= {−1, 1 +
√
−2}{

√
−2, 1 +

√
−2}

= {1 +
√
−2, 1 +

√
−2}{

√
−2, 1 +

√
−2},

where the second equality follows from bilinearity and the final equality
follows from (c).
This implies that {1 +

√
−2, 1 +

√
−2}−1 = {

√
−2, 1 +

√
−2}, which, by (b)

gives

{1 +
√
−2, 1 +

√
−2} = {

√
−2, 1 +

√
−2}.

3. Once again, since (−1)(1+
√
−2)

(
√
−2)2 + (−1)(1−

√
−2)

(
√
−2)2 = 1, the Steinberg relation implies

that

1 =
{

(−1)(1 +
√
−2)

(
√
−2)2 ,

(−1)(1−
√
−2)

(
√
−2)2

}
= {−1,−1}{−1, 1−

√
−2}{−1,

√
−2}−2{1 +

√
−2,−1}{1 +

√
−2, 1−

√
−2}

{1 +
√
−2,
√
−2}−2{

√
−2,−1}−2{

√
−2, 1−

√
−2}−2{

√
−2,
√
−2}4

= {−1, 1−
√
−2}{1 +

√
−2,−1}{1 +

√
−2, 1−

√
−2}{

√
−2, 1 +

√
−2}2

= {1−
√
−2, 1−

√
−2}{1 +

√
−2, 1 +

√
−2}{1 +

√
−2, 1−

√
−2}{1 +

√
−2, 1 +

√
−2}2

= {1−
√
−2, 1−

√
−2}{1 +

√
−2, 1 +

√
−2}{1 +

√
−2, 1−

√
−2}.

In this rather long and daunting calculation, the third equality uses 1. to
eliminate {−1,−1}, bilinearity and (d) to eliminate the third and seventh
symbols, the Steinberg relation to eliminate the eighth symbol, and (c) to
eliminate the ninth symbol. The fourth equality uses (c) and 2. The final
equality uses (e).
Rearranging this equation gives us

{1−
√
−2, 1−

√
−2}{1 +

√
−2, 1 +

√
−2} = {1−

√
−2, 1 +

√
−2}.
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4. We invoke the Steinberg relation one last time. Note that (−1)(1−
√
−2) +

(−1)(
√
−2)(1 +

√
−2) = 1, so

1 = {(−1)(1−
√
−2), (−1)(

√
−2)(1 +

√
−2)}

= {−1,−1}{−1,
√
−2}{−1, 1 +

√
−2}{1−

√
−2,−1}

{1−
√
−2,
√
−2}{1−

√
−2, 1 +

√
−2}

= {−1,
√
−2}{−1, 1 +

√
−2}{1−

√
−2,−1}{1−

√
−2, 1 +

√
−2}.

But, using the result from 3. together with (c), we see that

1 = {
√
−2,
√
−2}{1 +

√
−2, 1 +

√
−2}2{1−

√
−2, 1−

√
−2}2

= {
√
−2,
√
−2},

where the last equality uses (e).

Now, to define our filtration ofK2(Q(
√
−2)) we list the finite primes ofQ(

√
−2)

in order of increasing norm:

P0 = {v1, v2, . . . : Nm(πvn) ≤ Nm(πvn+1) for all n ∈ N}.

Definition 3.15. Let P0 be defined as above. For all n ≥ 1, let

Sn := {v1, v2, . . . , vn} ⊂ P0.

Using the notation of Tate in [3], we define, as a subgroup of K2(Q(
√
−2)),

KSn
2 (Q(

√
−2)) := 〈{α, β} ∈ K2(Q(

√
−2)) : α, β ∈ Z[

√
−2]∗Sn

〉,

where

Z[
√
−2]Sn = Z

[√
−2, 1

πv1

, . . . ,
1
πvn

]
.

The groups KSn
2 (Q(

√
−2)) form a filtered system, and passing to the colimit,

we see that K2(Q(
√
−2)) = lim−→n

KSn
2 (Q(

√
−2)).

Lemma 3.16. For any n ≥ 3, the quotient group KSn+1
2 (Q(

√
−2))/KSn

2 (Q(
√
−2))

is isomorphic to k(vn+1)∗.

Proof. For π := πvn+1 , we define a map

φ : k(vn+1)∗ −→ K
Sn+1
2 (Q(

√
−2))/KSn

2 (Q(
√
−2))

by

ᾱ 7−→ {α, π} (mod KSn
2 (Q(

√
−2))).
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By Lemma 3.12, we may assume that Nm(α) ≤ 3
4Nm(π). We must show that

φ is a well-defined homomorphism. To this end, assume that αβ ≡ γ (mod π).
That is to say, write αβ = γ + δπ, where |α|, |β|, |γ| ≤

√
3

2 |π|. Then

|δπ| ≤ |αβ|+ |γ| ≤ 3
4 |π|

2 +
√

3
2 |π|,

and so

|δ| ≤ 3
4 |π|+

√
3

2 .

Since n ≥ 3, one readily checks that this is less than |π|. This, in turn, implies
that Nm(δ) < Nm(π) and so δ̄ ∈ k(vn+1)∗. Now, using the Steinberg relation we
see that

1 = { γ
αβ

, 1− γ

αβ
}

= { γ
αβ

,
δπ

αβ
}

= {γ, δ}{γ, π}{αβ, γ}{δ, αβ}{π, αβ}{αβ, αβ}
≡ {γ, π}{π, αβ} (mod KSn

2 (Q(
√
−2))).

Here, the last equality since all of α, β, γ and δ have norms less than Nm(π)
and thus belong to KSn

2 (Q(
√
−2)). Modulo KSn

2 (Q(
√
−2)), the above working

out shows that {αβ, π} = {γ, π}, which proves both that φ is multiplicative and
well-defined by taking β = 1.

To prove that φ is surjective, we note that the group K
Sn+1
2 (Q(

√
−2)) is

generated by the elements of KSn
2 (Q(

√
−2)) together with symbols4 of the form

{α, π}, where α ∈ Z[
√
−2]∗Sn

. This means that ᾱ ∈ k(vn+1)∗ and φ(ᾱ) = {α, π}
and so φ is surjective and also #(KSn+1

2 (Q(
√
−2))/KSn

2 (Q(
√
−2))) ≤ Nm(π)− 1.

Now, let ζ̄ be a generator of the cyclic group k(vn+1)∗. Recalling the definition
of the tame symbol in Definition 2.23, we have that

τ vn+1(ζ, π) = ζ̄ ∈ k(vn+1)∗.

But, by the universal property of K2 mentioned in Definition 2.16, there exists
a unique map ψ : K2(Q(

√
−2))→ k(vn+1)∗ such that

τ vn+1(ζ, π) = ψ({ζ, π}),

and so {ζ, π} has order Nm(π)−1. Thus, the groupKSn+1
2 (Q(

√
−2))/KSn

2 (Q(
√
−2))

has order at least Nm(π)− 1. By the inequality above, this means that the order
is exactly Nm(π)− 1, and so φ is an isomorphism.

4By bilinearity, we are reduced to considering symbols of the form {α, β}, {π, π} and {α, π}.
However, the first is an element of KSn

2 (Q(
√
−2)) and {π, π} = {−1, π}, so neither of these need

be considered as separate cases.
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Remark 3.17. In [10], a similar result to the lemma above is established for
K2(Q(i)) and n ≥ 1. Unfortunately, the bound given in Lemma 3.12 only allows
us to establish the result for n ≥ 3. This leads to the somewhat problematic primes
with 3 or 11 as their norm5. Our aim is to prove the theorem below by induction
and the base case, as we shall see, follows quite easily from Lemma 3.14. However,
we must ‘skip’ over the cases n = 2, 3 if we wish make use of Lemma 3.16, which
may seem dubious at first glance. We won’t include the details here, as it takes us
too far away from our main goal, but rest assured, this issue has been dealt with
in [3] - see Proposition 1 and Lemma 2 of the Appendix.
Theorem 3.18. For non-complex primes v, we have the following isomorphism

Φ: K2(Q(
√
−2))

∼=−→
⊕
v

k(v)∗ ∼=
⊕

p prime
p≡1,3 (mod 8)

(F∗p)2 ⊕
⊕

p prime
p≡5,7 (mod 8)

F∗p2 .

Proof. Our aim, similar to [10, Theorem 3.7], is to prove that the restriction of Φ to
the subgroups KSn

2 (Q(
√
−2)) gives an isomorphism KSn

2 (Q(
√
−2)) ∼=

⊕n
i=1 k(vi)∗.

The result will then follow after passing to the colimit.
We begin by considering the base case n = 1. Here, S1 = {v1} where v1 is

the prime above 2 ∈ Z, and Z[
√
−2]∗S1 comprises a torsion part µ2 and a free part

generated by
√
−2. Using bilinearity and the relation {x, x} = {x,−1}, we need

only consider the symbols {−1,−1} and {
√
−2,
√
−2}. But Lemma 3.14 shows

that both of these are trivial and so KS1
2 (Q(

√
−2)) is trivial, and hence isomorphic

to k(v1)∗ as required.
As mentioned in Remark 3.17, the cases n = 2, 3 have been proved in [3]. So,

for n ≥ 3, we assume, by induction that KSn
2 (Q(

√
−2)) ∼=

⊕n
i=1 k(vi)∗ via Φ. We

want to show that Φ induces an isomorphism

K
Sn+1
2 (Q(

√
−2)) ∼=

n+1⊕
i=1

k(vi)∗.

By Lemma 3.16, if Φ maps an element x ∈ K
Sn+1
2 (Q(

√
−2)) to 1, then

x ∈ KSn
2 (Q(

√
−2)), and, arguing inductively yields x = 1. This establishes the

injectivity of Φ. Now, if u = (ui)n+1
i=1 ∈

⊕n+1
i=1 k(vi)∗, then Lemma 3.16 gives us

an element from K
Sn+1
2 (Q(

√
−2)) that maps to un+1. By the inductive hypothesis

above, there is an element inKSn
2 (Q(

√
−2)) that maps to (ui)ni=1 and so the product

of these elements gives us the relevant preimage of u, establishing the surjectivity
of Φ.

3.3 Deriving a reciprocity result

In this section we show how K2(Q(
√
−2)) gives a product formula in a similar

manner to the derivation of quadratic reciprocity in Theorem 2.44. We let
τ = ⊕

v τ v be the map defined by the tame symbols at each prime v.
5Note that the norm of an element a+b

√
−2 in Z[

√
−2] is given by a2 +2b2 and so the primes

5 and 7 are inert. This means that, in the context of Sn ⊂ P0, the primes in order of increasing
norm start 2, 3, 11 . . ..
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For all v - 2, Theorem 3.18 says that there exist maps ψv : k(v)∗ → µ2 such
that the following diagram commutes:

Q(
√
−2)∗ ×Q(

√
−2)∗ ⊕

v-2 k(v)∗

µ2

τ

(
−,−√
−2

) ∏
ψv

Simply put, this says that for all x, y ∈ Q(
√
−2)∗,(

x, y√
−2

)
=
∏
v-2
ψv(τ v(x, y)).

Lemma 3.19. Let v be a finite prime of Q(
√
−2) not lying above 2 and let

qv = Nm(pv). Suppose f : k(v)∗ −→ µ2 is a homomorphism. Then f satisfies

f(x) ≡ x
qv−1

2 δ (mod pv)

where δ ∈ {0, 1}.

Proof. In what follows, we simplify notation by writing q = qv, and we identify
elements x with their image in k(v)∗, hopefully without causing confusion.

The map f is completely determined by where it sends a generator, ζ of the
cyclic group k(v)∗. For ζ to be a generator, we note that ζ q−1

2 = −1, otherwise ζ
would be a square. There are then two cases to consider:

1. if f(ζ) = 1, then f ≡ 1 and so f(x) ≡ x
q−1

2 ·0 (mod pv);

2. if f(ζ) = −1, then f(x) ≡ x
q−1

2 ·1 (mod pv), since their action on the
generator agrees.

Applying the above lemma, we see that6:(
x, y√
−2

)
=
∏
v-2
ψv(τ v(x, y)) =

∏
v-2
τ v(x, y)

qv−1
2 δv =

∏
v-2

(
x, y

v

)δv

,

where δv ∈ {0, 1} for all v - 2, and x, y ∈ Q(
√
−2)∗.

To obtain a reciprocity law, we’d like to show that δv = 1 for all primes v. We
will invoke a theorem, due to Moore, which says that the relation among Hilbert
symbols given in Theorem 3.5 is unique. Before stating the theorem, we make two
remarks. In both cases, and in Moore’s theorem, the direct sum is taken over all
non-complex primes.

6Here, the final equality follows from a result which essentially generalises Proposition 2.41 to
an arbitrary number field F . In doing so, it uses the notion of regular local Hilbert symbols and
it goes somewhat beyond the requirements of this chapter to introduce these concepts purely to
establish the necessary result. We instead refer the reader to [7, II. §7] for further reading.
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1. Let x, y ∈ F ∗ and let v be a non-complex prime. After embedding x and y
into the completion Fv of F with respect to v, and applying the local Hilbert
symbol from Remark 3.2, we get a map

F ∗ × F ∗ −→ µ(Fv).

Taking a direct sum over all non-complex primes v then gives us a symbol7,

F ∗ × F ∗ −→
⊕
v

µ(Fv).

It is worth noting that this map is well-defined, since the local Hilbert symbol
will take the value 1 for almost all v. Now, applying the universal property
of K2, gives us an induced map

h : K2(F ) −→
⊕
v

µ(Fv).

2. If ζv ∈ µ(Fv), then ζmv/m
v is an m-th root of unity, and thus an element of

µ(F ). This gives a map

φ :
⊕
v

µ(Fv) −→ µ(F )

(ζv)v 7−→
∏
v

ζmv/m
v .

Theorem 3.20 (Moore’s Theorem, [4]). The sequence

K2(F ) h−→
⊕
v

µ(Fv)
φ−→ µ(F ) −→ 1,

is exact.

Now, invoking Moore’s theorem, which says that there is only one relation
of Hilbert symbols, we must have δv = 1 for all primes v. This yields, for all
x, y ∈ Q(

√
−2)∗, (

x, y√
−2

)
=
∏
v-2

(
x, y

v

)
.

Finally, using Theorem 3.10 and noting that the only prime v dividing n = 2
is v =

√
−2, we see that

(
x

y

)
2

(
y

x

)−1

2
=
∏
v-2

(
x, y

v

)
,

giving a reciprocity law for Q(
√
−2).

7This map is often called the global Hilbert symbol.
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Chapter 4

The Relationship Between Some Well-
Known Reciprocity Laws

Written in the introduction to Milne’s Class Field Theory [14] is a quote from Emil
Artin about the power of (what is now called) the Artin map:

I will tell you about the Reciprocity Law. After my thesis, I had the
idea to define L-series for non-abelian extensions. But for them to
agree with the L-series for abelian extensions, a certain ismorphism
had to be true. I could show it implied all the standard reciprocity
laws. So I called it the General Reciprocity Law and tried to prove
it but couldn’t, even after many tries [...] Then one afternoon I had
nothing special to do, so I said, “Well, I try to prove the Reciprocity
Law again.” So I went out and sat down in the garden. You see, from
the very beginning I had the idea to use the cyclotomic fields, but they
never worked, and now I suddenly saw that all this time I had been
using them in the wrong way - and in half an hour I had it.
- Emil Artin, as recalled by Mattuck (in Recountings: Conversations
with MIT Mathematicians 2009).

In explicitly demonstrating the power of the Artin map, the main goal of this
thesis, which will be achieved in this chapter, is to prove that the Weil reciprocity
generalisation follows from Artin reciprocity. As an added bonus, we will further
explore the relationship between Artin, Weil and quadratic reciprocity by proving
Artin implies quadratic and Weil implies quadratic.

4.1 Artin implies Weil

Our setup now will be slightly different to most other treatments of class field
theory - instead of using an algebraic number field as our global field, we instead
need to consider the case where we have a function field in one variable over a
finite field1.

1This can take one into the world of geometric (abelian) class field theory. Instead of mapping
into Gal(F ab/F ), one must consider the étale fundamental group of a scheme X. We choose not
to go down this pathway - but the curious reader will find both [11] and [21] valuable resources.
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4.1.1 Finite étale algebras and a categorical anti-equivalence

Before we begin our proof, we require a few preliminary results. We will introduce
the notion of (finite) étale F -algebras and give a criterion to help classify them.
We then give a categorical anti-equivalence between finite étale F -algebras and a
category involving the absolute Galois group (defined below).

Definition 4.1. Let F be a field. A (finite) étale F-algebra2 is an F -algebra that
is isomorphic to a (finite) product of finite, separable3 field extensions of F .

Proposition 4.2. Let F be a field and let f ∈ F [X]. Then A = F [X]/(f) is a
finite étale algebra if and only if f is separable.

Proof. Let f = ∏
fmi
i , where the fi are irreducible and distinct. By the Chinese

Remainder Theorem we have

A ∼=
∏
F [X]/(fmi

i ).

Now, the F -algebra F [X]/(fmi
i ) is a field if and only if mi = 1, and so it is a

separable extension of F if and only if each fi is separable.

In order to establish the separability of a polynomial we recall the following
well-known result:

Proposition 4.3. [15, Proposition 2.21] Let F be a field and f ∈ F [X] a nonzero
polynomial. Then, the following are equivalent:

1. f is separable;

2. gcd(f, f ′) = 1 in F [X].

With F -algebra homorphisms as the morphisms between finite étale F -
algebras, we can define the category of finite étale F -algebras, EAlgF . To establish
the other category we will use in our categorical anti-equivalence, we need the
notion of an absolute Galois group, G, and a corresponding G-set.

Definition 4.4. Let F be a field and F̄ be some fixed algebraic closure of F .
Then, the separable closure Fs of F is given by:

Fs = {x ∈ F̄ : x is separable over F}.

The extension Fs/F is Galois, and we call the Galois group Gal(Fs/F ) the
absolute Galois group of F .

2This is also commonly referred to as a separable F -algebra.
3Recall that f ∈ F [X] is a separable polynomial if and only if it has no repeated roots in

every extension of F .
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4.1. Artin implies Weil

Definition 4.5. Let G be the absolute Galois group of a field F , given a fixed
separable closure Fs. A G-set is a set E equipped with a continuous action of G
on E, where G has the Krull topology and E has the discrete topology4.

Definition 4.6. A morphism from a G-set E to a G-set E ′ is a map f : E → E ′

such that f(σe) = σf(e) for all σ ∈ G and e ∈ E.

Remark 4.7. The notion of a morphism of G-sets allows us to speak of the
category of G-sets, which we denote G-sets.

The following result will enable us to use the Artin map to prove Weil
reciprocity:

Theorem 4.8 ([11, Theorem 2.9]). Let F be a field and G its absolute Galois
group. Then, the categories EAlgF of finite étale F -algebras, and G-sets of finite
sets with a continuous action of G are anti-equivalent.

4.1.2 Proof that Artin implies Weil

We begin by recalling the statements of Weil reciprocity, Theorem 2.34, and global
Artin reciprocity, Theorem 1.42.

The more generalised formulation of Weil reciprocity says that, for any f, g ∈
F (t)∗, we have ∏

v

Nmk(v)/F (f, g)v = 1,

where the product is taken over all discrete valuations on F (t) that are trivial on
F .

Recall also that global Artin reciprocity says that the map

ρF : IF → Gal(F ab/F )

is surjective and satisfies the following properties:

1. F ∗ ⊆ ker ρF ;

2. for every finite abelian extension L of F , ρ̂F defines an isomorphism

ρL/F : IF/F ∗ · NmL/F (IL) −→ Gal(L/F ).

Since Artin reciprocity holds for global fields, the connection to Weil reciprocity
happens in the setting of a function field over a finite field.

Let X be a smooth, projective, irreducible curve over a finite field k = Fq.
Let F = k(X) be its function field and denote by X(1) the set of closed points
of X. Let f ∈ F ∗ and consider Lf = F [t]/(tq−1 − f). Using Proposition 4.2
and Proposition 4.3, we see that this is indeed a finite étale F -algebra5. By the
categorical anti-equivalence in Theorem 4.8, we can apply the global Artin map

4See, for example, chapter 8 of [15] for more detail.
5While this is somewhat implicitly done, the reader should be thinking of Definition 4.1 and

how Lf can be written as a finite product of finite field extensions of F - all of which are separable.
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from Theorem 1.42 to Lf . We will use the notation ρLf/F for the Artin map
corresponding to the étale F -algebra Lf .

Letting g ∈ F ∗, we seek to prove, as in the statement at the beginning of this
section, that ∏

x∈X(1)

Nmk(x)/k(f, g)x = 1,

where we make the more natural choice to use k(x) for the residue field instead of
k(v) from Theorem 2.34.

Since g ∈ F ∗, Theorem 1.42 tells us that ρLf/F (g) = 1. However, we also know
that

ρLf/F (g) =
∏

x∈X(1)

Frobvx(g)
x .

So, we require to show that6

Frobvx(g)
x = Nmk(x)/k(f, g)x.

By weak approximation7, we may assume that f(x) 6= 0. Then, (f, g)x = f vx(g),
and our aim simplifies to showing

Frobx = Nmk(x)/k(f).

If we let d denote the degree of k(x) over k, then, Proposition 1.27 tells us that

Nmk(x)/k(f) =
∏

σ∈Gal(k(x)/k)
σ · f

= f 1+q+...+qd−1
.

Therefore, we calculate that

Frobx(t) = tq
d

= tq
d−1 · t

= (tq−1)1+q+...+qd−1 · t
= f 1+q+...+qd−1 · t
= Nmk(x)/k(f) · t

as required.
6In a slight abuse of notation, we mean that we seek to prove that the Frobenius map applied

vx(g) times acts as multiplication by the norm Nmk(x)/k(f, g)x.
7For reference, see Dustin Clausen’s post in [1].
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4.2. Artin implies quadratic

4.2 Artin implies quadratic

Recall the setup from chapter 1: for a finite abelian extension of number fields
L/F and any x ∈ F ∗, global Artin reciprocity gave us the product formula

∏
v

(x, L/F
v

)
= 1. (4.1)

To prove quadratic reciprocity follows from this, we consider the special case
F = Q. Let p, q be distinct odd primes and L = Q(√p∗), where p∗ = (−1) p−1

2 p.
We make this choice so that p∗ ≡ 1 (mod 4) and thus L/F is ramified only at p
by Theorem 1.22. The aim is to show that

(
q
p

)
=
(
p∗

q

)
by computing the various

Hasse symbols
(
q,L/Q
v

)
.

We begin by noting that if v is unramified and ordv(q) = 0, then
(
q,L/Q
v

)
= 1.

Thus,
(
q,L/Q
v

)
= 1 unless possibly v ∈ {p, q,∞}. Let us consider each of these

three cases:

• Let v =∞. Then

Lw/Qv = R(
√
p∗)/R.

If p ≡ 1 (mod 4), then p∗ = p and the extension is trivial, giving
(
q,L/Q
∞

)
= 1.

If, however, p ≡ 3 (mod 4), then the extension becomes C/R. But then, by
Definition 1.30, we have

(
q,L/Q
∞

)
= qord∞(q) = q0 = 1. In either case, we

conclude that v =∞ adds nothing nontrivial to (4.1).

• Let v = q. Then

Lw/Qv = Qq(
√
p∗)/Qq.

This extension is unramified so
(
q,L/Q
q

)
= Frobq. Note that Frobq is trivial if

and only if the extension Qq(
√
p∗)/Qq is trivial, which happens if and only

if p∗ is a square modulo q. That is to say,

(q, L/Q
q

)
=
(p∗
q

)
.

• Finally, let v = p. Then

Lw/Qv = Qp(
√
p∗)/Qp.

This extension is ramified and, using the notation of Remark 1.36, we note
that ΦFv(q) = 1 if and only if q ∈ NmLp/Qp(L∗p). Now, q ∈ Z∗p so ΦFv(q) = 1 if
and only if q is an element of the index 2 subgroup of Z∗p, which is precisely8

8The reader may find it helpful to recall the calculations done in Example 1.39.
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the squares in Z∗p. Thus,

ΦFv(q) = 1 ⇐⇒ q is a square in Z∗p
⇐⇒ q is a square in (Z/pZ)∗

⇐⇒
(q
p

)
= 1.

This gives us that:

(q, L/Q
p

)
=
(q
p

)
.

Combining the above with (4.1), we see that(
p∗

q

)(
q

p

)
= 1. (4.2)

Remark 4.9. We can use Euler’s criterion and the multiplicativity of the Legendre
symbol to make (4.2) look like quadratic reciprocity as it is most commonly
formulated. Indeed,

(
p∗

q

)
·
(
q

p

)
=
(

(−1)(p−1)/2 · p
q

)
·
(
q

p

)

=
(

(−1)(p−1)/2

q

)
·
(
p

q

)
·
(
q

p

)

= (−1)
p−1

2
q−1

2 ·
(
p

q

)
·
(
q

p

)
.

Putting it all together, we see that

(−1)
p−1

2
q−1

2 ·
(
p

q

)
·
(
q

p

)
= 1,

as required.

4.3 Weil implies quadratic

Let p be an odd prime, and F,G ∈ Fp[t] be two nonzero, irreducible, relatively
prime, monic polynomials of degree m and n respectively. To demonstrate a
quadratic reciprocity-like result, we aim to prove that(

F

G

)
·
(
G

F

)
· (−1)mn(p−1)/2 = 1.

Before we embark on our proof, we require a result that generalises Euler’s criterion
for determining whether or not an integer is a square modulo p, for some odd prime
p. We also introduce a Legendre-like symbol on Fp[t].
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Lemma 4.10. Let u ∈ F∗pr for some positive integer r. Then

u(pr−1)/2 =
1 if u is a square in Fpr ;
−1 if u is not a square in Fpr .

Proof. If u 6= 0, then 0 = xp
r−1 − 1 = (x(pr−1)/2 − 1)(x(pr−1)/2 + 1). The map

F∗pr → F∗pr given by x 7→ x2 is a homomorphism with kernel {±1}. Thus, the
image has order (pr − 1)/2 and so there are exactly (pr − 1)/2 squares - which are
precisely the solutions to x(pr−1)/2 − 1 = 0.

Definition 4.11. Let p be an odd prime and let f, g ∈ Fp[t]∗ be two irreducible
polynomials with deg(g) = n. We define the Legendre symbol for Fp[t] by9

(
f

g

)
=
1 if f is a square in Fp[t]/(g) ∼= Fpn ;
−1 if f is not a square in Fp[t]/(g) ∼= Fpn .

Lemma 4.12. Let p be an odd prime, c ∈ F∗p, and let f ∈ Fp[t] be irreducible of
degree n. Then (

c

f

)
=
(
c

p

)n
. (4.3)

Proof. Using Lemma 4.10 and Definition 4.11, we see that

(
c

f

)
= c(pn−1)/2

= c(p−1)(1+p+...+pn−1)/2

= (c(p−1)/2)1+p+...+pn−1
.

Now, Euler’s criterion tells us that c(p−1)/2 = ±1, so the n-term expression
1 + p+ . . .+ pn−1 only matters modulo 2. Therefore, is it entirely determined by
whether or not n is even or odd and it is straightforward to check that (4.3) holds
in both cases.

Proof that Weil implies quadratic reciprocity: For a field F and f, g ∈ F (t)∗, we
recall that the generalisation of Weil reciprocity (Theorem 2.34) states that

∏
v

Nmk(v)/F (f, g)v = 1. (4.4)

To prove quadratic reciprocity, we let p be an odd prime and F = Fp be the
finite field of order p. We also let f, g ∈ F [t] be two nonzero, irreducible, relatively
prime polynomials of degreem and n respectively. Suppose further that the leading
coefficients of f and g are a and b respectively. There are only three non-trivial
valuations to consider:

9We choose to use the same notation as the Legendre symbol to illustrate the (surprising)
connection with Weil reciprocity. In what follows, we hope it is clear from context when we are
using the standard Legendre symbol and when we are using our newly defined extension to Fp[t].
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(a) The valuation v∞, where we recall that v∞(h) = − deg(h) for any h ∈ F (t).

(b) The valuation vf , which has associated residue field k(vf ) = F [t]/(f) ∼= Fpm .
Note that vf (f) = 1 and vf (g) = 0.

(c) The valuation vg, which has associated residue field k(vg) = F [t]/(g) ∼= Fpn .
Note that vg(g) = 1 and vg(f) = 0.

Using (b) and (c), we see10 that (f, g)vf
= (−1)vf (f)·vf (g)f vf (g)g−vf (f) = g−1. In

a similar manner, we calculate that (f, g)vg = f . Now, for any r ∈ Z+, the norm
map F∗pr → F∗p is given by x 7→ x(pr−1)/(p−1). Thus, (4.4) becomes

f (pn−1)/(p−1) · g−(pm−1)/(p−1) · (−1)mna−n · bm = 1.
Raising both sides to the power (p− 1)/2, this implies that

f (pn−1)/2 · g−(pm−1)/2 · (−1)mn(p−1)/2a−n(p−1)/2 · bm(p−1)/2 = 1. (4.5)
Then (4.5) becomes

(f
g

)
·
( g
f

)
· (−1)mn(p−1)/2a−n(p−1)/2 · bm(p−1)/2 = 1. (4.6)

Write f = aF and g = bG, so that F and G are monic. Then, using the
multiplicativity of the Legendre symbol for Fp[t] together with Lemma 4.12 yields

(F
G

)
·
(G
F

)
· (−1)mn(p−1)/2 = 1.

Remark 4.13. In demonstrating how one can arrive at something resembling
quadratic reciprocity, we could have ended our proof at (4.6) with the additional
terms still in there. However, much like when quadratic reciprocity for the Jacobi
symbol is written using coprime positive integers, we chose to write our final
statement using monic, irreducible polynomials.

10A slight abuse of notation sees us writing f and g when we really mean f modulo g and g
modulo f respectively.
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Final Remarks

While not usually included in written mathematics, it seems like a missed
opportunity not to discuss the things that did not quite work out. In deriving
the reciprocity result of section 3.3, the initial aim was to mimic the proof of
Theorem 2.44 to show directly that δv = 1 for all v, without having to rely on
Moore’s Theorem. One of the main barriers was trying to calculate the values
of the symbol

(
x,y√
−2

)
. An attempt was made to employ the techniques found in

chapter 1 of [10].
In that case, the author considered the field F = Q(i). Defining the higher unit

groups Un
v := 1+pnv for n ≥ 1, the author was able to establish that (U1+i)4 ∼= U7

1+i
and that

U1+i/(U1+i)4 ∼= µ4 ⊕ 〈3 + 2i〉 ⊕ 〈5̄〉,

where (U1+i)4 denotes the 4th powers in U1+i.
They were able then to prove that

(
π, τ

1 + i

)
4

=
1 if π or τ ≡ 5 (mod (Uv)4)
−1 if π ≡ τ ≡ 3 + 2i (mod (Uv)4).

This was all done in order to prove biquadratic reciprocity (hence the use of
(U1+i)4 and the Hilbert symbol of order 4).

For F = Q(
√
−2), we would need to consider the set of squaresv (Uv)2 for the

prime v corresponding to
√
−2. Lemmas 1.33 and 1.34 of [10] tell us that we can

only hope for a result like (Uv)2 ∼= U4
v . Simply checking that (1 +

√
−2)2 6∈ U4

v is
enough to show that no such result analogous to that of Q(i) exists.

An unsuccessful attempt was made at trying to directly find generators for
Uv/(Uv)2, in the hope that evaluating the right hand side of(

x, y√
−2

)
=
∏
v-2

(
x, y

v

)

on these generators would imply that each δv = 1.
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Chapter 4. The Relationship Between Some Well-Known Reciprocity Laws
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