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Abstract

In this thesis we investigate power sum decomposition of ternary sextic forms
by using apolarity. We find and classify all Betti tables for the resolution of
an apolar ideal of a ternary sextic form. By using the Betti tables, we find a
generalized notion of rank, the cactus rank, for every ternary sextic form and
find the configuration of points that gives the cactus rank. Further, we use
this results to give a stratification of the space of ternary sextic forms. Finally,
we do explicit computations on double cubic forms and prove that every such
sextic will have a cubic forms in the apolar ideal.
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1 | Introduction

Decomposition of homogeneous polynomials into power sums of linear forms has been studied
for centuries, [AH95], [Syl04] and [Muk09]. A large amount of the research has been centralized
around the question of finding the rank, that is the minimal number of linear forms needed to
decompose a homogeneous polynomial F' € S = Clxy, ..., z,] into sums of powers of linear forms.
Finding an explicit minimal decomposition of F' is in general very hard. Finding the rank is
easier, at least with some generalization of the notion of rank. Our approach to power sum
decomposition is to use the so called cactus rank, which we will find for any ternary sextic form.

To find the cactus rank, we will use apolarity. We can associate to F' a homogeneous ideal
F+ c T = Clyy,...,yn], referred to as the apolar ideal of F. The minimal length of a finite
scheme I' whose ideal is It is a subideal of F, will be the cactus rank of F. To find the cactus
rank for each F, we give a classification of the possible Betti tables of the resolution of T/F*
for a ternary sextic form, see Section 2.2, and compute the cactus rank associated to each table.
Further, we use the classification to give a stratification of the space of ternary sextic forms.

Our work and methods are inspired by [[<ap 21|, where the same approach is used for power
sum decomposition of quaternary quartic forms.

1.1 Methods and Results

A homogeneous polynomial of degree d can be considered both as an element F' € Sy, written as
F= agwg + alxg_la?l + -+ aNx;‘-i,

where N = (":d) —1 and a; € C, and as a point [F] € P(Sy) = PV. Given the Veronese
embedding
Vg - P(Sl) — P(Sd)
[L] = [L],

we have that F' = L + ... + L% if and only if [F] € (vg([L1],...,[Ls])).
There is a duality between P(Sy) and P(Ty) given by differentiation. That is, y;(z;) = B‘Zi xj

and z;(y;) = 6%1% Consider the homogeneous annihilator ideal
Ft={GeT:GF)=0},

called the apolar ideal of F-. Our main tool in this thesis is the following lemma:

Lemma 1.1.1 (Lemma 2.1.5 Apolarity lemma). Let I' C P(S1) be a scheme and let F € Sy.
Then [F] € (vg(T)) if and only if F+ D I.

As a consequence, if I' = {[L1],...,[Ls]}, we have that [F] € (vg([L1],...,[Ls])), and hence
F=1L¢+...+ L% if and only if Ir C F*.



1.1. Methods and Results

Definition 1.1.2.

The rank of F € Sy, denoted r(F), is the minimal s such that F = L{ +--- + L%, and
The cactus rank of F' € Sy, denoted cr(F'), is the minimal length of T" such that It C Ft.

The length of a finite scheme I' is the Hilbert polynomial of 7'/Ir. Observe that cr(F) < r(F),
where we have equality if we can find a subscheme of minimal length consisting of distinct points.

In some cases we can find several subideals Ir C F- of minimal length. This corresponds to
finding several decompositions of F' into a power sum of linear forms. The possible decompositions
of a homogeneous polynomial into power sums of linear forms, are formalized in the following
definition:

Definition 1.1.3. The variety of sums of powers of F' € Sy is

VSP(F,s) = {([L1], .., |Ls]) € Hilbs(P(S1)) : 3\ € C such that F = A L% + ... \,L4}.

When s is equal to the rank of F', VSP(F,1(F)) is a variety in Hilb,(IP(S1)), where each
point corresponds to a way of representing F' as a power sum of r(F') linear forms.

Let F € S = C[zo,21,22]. Then F* is an Artinian Gorenstein ideal since T/F* is and
Artinian Gorenstein ring, by [Mac72]. A structure theorem for Gorenstein ideals I of codimension
3 proved by [BE77], gives that I is generated by the (n — 1)th order pfaffians, the minors obtained
by deleting the same row and column, of a skew symmetric matrix M, see Theorem 2.3.3. By
the correspondence between ideals of finite schemes and matrices given by the Hilbert—Burch
theorem, Theorem 5.1.1, our strategy for finding zero-dimensional ideals I+ € F* is to search for
submatrices of M. We will use the following terminology:

e If ! is minimally generated by the (n — 1)th order pfaffians of a matrix M, we say that
M is a Buchsbaum-Eisenbud matriz of F-. If F is not specified, we say that M is a
Buchsbaum—FEisenbud matriz.

e If I is minimally generated by the maximal minors of a matrix H, we say that H is a
Hilbert—Burch matriz of Iv. If It is not specified, we say that H is a Hilbert—Burch matriz.

We give an example of our strategy for finding a decomposition.

Example 1.1.4. Let F' € Sg be the Fermat sextic, F' = 1:8 + a:? + :I:g. Then, by computation,
F+ = (your, yoyg,ylyg,yg — 8, yg —98). The following matrix M is a Buchsbaum-Eisenbud
matrix of F-, where we have chosen a basis such that the M is skew symmetric:

0 -y ¥ v -
w0 -y —; 0
M=|-y v 0 0
Y2 N 0 0 0
Yo 0 -y O 0

Firstly, we see that the 4th order pfaffians are the generators of F-. Secondly, we see that we
have a submatrix
H = <_y2 n 0 >
y2 0 —yo

whose 2 x 2 minors gives three of the generators of F-. This is the subideal Ir. Indeed, the
points in I' is the common zeros of yoy1,yoy2 and y1y2, which is (1 : 0 : 0),(0 : 1 : 0) and
(0:0:1). By Lemma 1.1.1, we can write F' as a power sum of the points in P(S7) corresponding
to (1:0:0),(0:1:0) and (0:0:1). The corresponding points in P(S7) are g, x; and x2, thus
F =8 + 28 + a§.



1.1. Methods and Results

The first result in this thesis is a classification of the Betti tables of the apolar ideals of a
non-degenerate ternary sextic form F, for which there are no linear forms in F-+. In Theorem 3.0.4,
we prove that there exists 16 different Betti tables for the apolar ideal of a ternary sextic form,
summarized in Figure 3.3. From Theorem 3.0.4 we get the following corollary.

Corollary 1.1.5 (Corollary 3.0.5). The Betti table for the apolar ideal of a ternary sextic form
F is determined by the number of quadratic, cubic and quartic generators of F*.

The number of quadratic, cubic and quartic generators of F- are equal to the Betti numbers
b12,b13 and b1y, respectively. Due to this, we write B[b12b13b14] to denote a Betti table that is
determined by these numbers. We also give the following definition of the Betti strata:

Definition 1.1.6. Fp, = {F € P(Sg) : T/F* has Betti table Bj,,p,,6,,]}-

When the Betti table is not fixed, we write Betti strata Fp. In Chapter 6 we prove that
each Fp is irreducible. We also compute the rank and VSP(F,r(F)) of a general element of
each Fp. Further, we compute the configuration of points in I'. We get the same results for
every element in a fixed Fp, except in two cases. Of this reason, we define Fg164), Flo16s]s F[016¢]s
and Fia3q]; Flo23) and Foa3,- Our results are reproduced in Figure 1.1, where we include the
dimension of each Fg.

b12b13b14]

Betti table By 500, | T(F) VSP(F,r) r dim(Fp)
[300] 3 one point three points 8
[210] 4 one point four points, three on a line 10
[200] 4 one point four points 11
[202] 5 P! five points, four on a line 11
[120] 5 one point five points 14
[112] 6 P! six points, four on a line 14
[111] 6 one point six points on a conic 16
[104] 7 P! seven points on a conic 17

one point six points
[040] 6 i ix poi 17
[032] 7 P! seven points, four on a line 17
[031] 7 one point seven points 20
[023¢] 8 P! eight points, four on a line 20
[024] 8 P! eight points, seven on a conic 20
[0230] 8 one point eight points 23
[030] 9 P2 nine points in a CI 21
[016b] 9 P! nine points, four on a line 23
[016¢] 9 P! nine points, seven on a conic 23
[023a] 9 one point nine points in a CI 24
[016a] 9 two points nine points 26
[009] 10 K3 surface ten points 27

Figure 1.1: Rank and VSP for the Betti strata

In Chapter 7 we investigate the closure relation between the subsets Fp and our main results
are in Proposition 7.2.4, Proposition 7.2.5 and Proposition 7.2.7. A picture of the closure relations
is in Figure 1.2 on page 5, where each arrow depicts an inclusion in the closure. The Fermat
sextic is of type [300], which is included in the closure of every Fp. Since the Fermat sextic is
smooth, this shows that a general element in every Fp is smooth.

In Chapter 8, we do explicit computations on the apolar ideal on ternary sextic forms that
can be written as a double cubic form and prove the following theorem.

Theorem 1.1.7 (Theorem 8.0.8). Let Q be a irreducible ternary cubic form and let F = Q2.
Then F* contains at least one cubic form.



1.2. Outline

An F with cr(F) = s lies in the sth secant variety to the Veronese variety. In Chapter 9 we
use our results to prove Theorem 9.1.1, which describes relations between the secant varieties and
catalecticant matrices.

1.2 Outline

The rest of the thesis is organised as follows:

In Chapter 2 we first present the apolarity construction and prove the apolarity lemma. Then
we describe the structure theorem for Gorenstein ideals of codimension 3 and explain how the
theorem apply for ternary sextic forms.

In Chapter 3 we classify the 16 Betti tables of the resolution of the apolar ideal of a non-
degenerate ternary sextic form.

In Chapter 4 we introduce some theory about Grassmannians that we need in order to find
isotropic subspaces of a skew symmetric matrix. First, we use the equation for the Grassmannian
G(2,4) to find the 2-dimensional isotropic subspaces of a 4 x 4 skew symmetric matrix with linear
entries. Thereafter, we use the Chow ring and Chern classes of G(3,6) and G(4,9) to find the 3-
and 4-dimensional isotropic subspaces of a 6 x 6 and a 9 x 9 skew symmetric matrix with linear
entries, respectively. The isotropic subspaces we find correspond to Hilbert—Burch matrices of
subideals of F*.

In Chapter 5 we first give a description of the Hilbert—Burch matrices of the schemes that will
appear as minimal subschemes of F-. Then we prove that a Hilbert-Burch matrix of minimal
subscheme will be a submatrix of a Buchsbaum—Eisenbud matrix M of F. At last we prove that
the Hilbert—Burch matrices described actually appear as submatrices of M.

In Chapter 6 we first prove some results concerning the case when Ir C F- and T is contained
in a line or a conic. Thereafter, we use these results to compute the rank and power sum
representation of a non-degenerate ternary sextic form.

In Chapter 7 we first prove some containment relations between the schemes described in
Chapter 5. Then, we use these relations to give a stratification of the space of non-degenerate
ternary sextic forms. Lastly, we explain how the degenerate forms fits into the stratification.

In Chapter 8 we do explicit computations on the apolar ideal ternary sextic forms that can
be written as a double cubic.

In Chapter 9 we compare our results to the secant varieties of the Veronese surface to
catalecticant matrices. In addition, we raise some further questions related to power sum
decomposition of homogeneous ternary forms.

We will use Macaulay2 [GS] in some of our computations. The Macaulay2 code can be found
in Chapter 10.
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2 | Preliminaries

In this chapter we introduce three concepts which form the foundation of the rest of the thesis.
First, in Section 2.1, we explain what an apolar ideal is and how it can be used to find a power
sum decomposition of a homogeneous polynomial. Then, in Section 2.2, we describe what a Betti
table is and some of the properties it has in our case. Lastly, in Section 2.3, we introduce a
structure theorem that gives a correspondence between a skew symmetric matrix and an apolar
ideal.

2.1 Apolarity

Let S = C[xog,...,zn] and T = Clyo, ..., yn]. There is a duality between Sy and T, given by
differentiation, where y;(z;) = 8%1-%' and z;(y;) = (%_yj. Indeed, let

F= Z a,-xéo Lz e Sy and G= Z bz-yéo Lyl e Ty,
where i = (ig,...,i,) and a;,b; € C. Then
G(F)=F(G) = Z iol .. inlagb;.

Fixing G € Ty, we get the hyperplane Hg = {[F] : G(F) = 0} C P(S;) = PV, where
N = ("F9) — 1. Hence P(Sy)Y = P(T).

Definition 2.1.1. The ideal F* = {G € T : G(F) = 0} C T is called the apolar ideal of F € S.

We define Hp = {[G] : [F] € Hg} C P(Ty) and observe that Hp = P(F7). In the following,
we will use the duality between S; and Ty and the Veronese embedding, vg, to investigate the
relation between apolarity and power sum decomposition. Recall that

vg : P(S1) — P(Sy)
(L] — [L7].
We prove three lemmas before we state and prove the apolarity lemma.

Lemma 2.1.2. Let L = A\ozg+ -+ A\pxy, € S1 and G € Ty. Then differentiation and evaluation
coincide, that is G(L?) = 0 if and only if G(Xo, ..., ) = 0.

Proof. We have

d! ; »
d __ d __ K1 in
L® = (/\0$0+"'+>\n55n) = A E ‘ 710'%1'()\0%0) 0 ()\nxn) y
19+ +in=d

and
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=d > (M) ()"

io+--in=d
On the other hand, we have that

G(/\(), ey )\n) = Z bi()\O)iO s (/\n)ln
Z0++ln:d

Thus G(Ag, - .- An) = 0 if and only if G(L?) = 0. [ |

Lemma 2.1.3. Let I' C P(S1) be a scheme and Ir the corresponding ideal. Then (vg(I')) =
P(Iﬁd) C P(Sa).

Proof. Let T be a finite scheme and pick G € Ty such that Hg D v4(T"). By definition of Hg, we
have that G(F') = 0 for all [F] € v4(T"), which by Lemma 2.1.2, holds if and only if G € It 4. For
an arbitrary I', we get in the same way that Hg D vg(I') if and only if G € It 4. In summary, we
have that I, = {G : Hg D vg(I')}. Since (vq(I")) is the intersection of all hyperplanes containing
vg(T"), we get that

(va(I')) =A{[F] : [F] € Hg for all G € It 4}
={[F]:G(F)=0for all G € It 4}
={[F]: F(G) =0 for all G € I 4}
= P(If,)

Lemma 2.1.4. Let ' C P(S1) be scheme and let F € Sy. Then [F| € (vg(T)) if and only if
Fj‘ D) IF,d-

Proof. Let [F] € P(Sy) and G € Ir,. By Lemma 2.1.3, [F] € (v4(T")) if and only if F' € Iﬁ-d.
Hence F(G) = G(F) =0, thus G € Fj. [ ]

There is a stronger version of Lemma 2.1.4 that we now can prove.

Lemma 2.1.5 (Apolarity lemma). Let I' C P(S1) be a scheme and let F € Sy. Then [F] € (vq(T"))
if and only if F+ > Ir.

Proof. Because of Lemma 2.1.4, we only need to prove that F- O Ir if and only if Fj D Irg.
That F- O It implies Fel D It for all e, so the first implication is obvious. For the second,
assume FdL D I g4 and let G € It .. We want to show that G € Ft ie. G(F)=0. If e = d, then
G € F; C F by assumption. If e > d, then G € F+ because G(F) = 0 for any G € T.. Let
e < d. Since F € Sy and G € T,, G(F) has degree d — e. Pick any H € Ty, and consider the
product HG. Since G € It ., we have HG € It 4. By assumption It 4 C Fj-, hence HG € Fj-.
We have that

HG(F)=H(G(F))=0 (2.1)
for all H € T;_.. Since both H and G(F') has degree d — e we have that Equation (2.1) holds if
and only if G(F) = 0. Thus G € F*, which was what we wanted to prove. |
Corollary 2.1.6. Let I' = {[L1],...,[Ls])} C P(S1) and let F € S4. Then we can choose

L; € [Li] such that F = LY+ -+ L4 if and only if F+ D Ir.

Proof. Notice that [F] € (vg(T)) if and only if F = L{ + ...+ L2 [ ]
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2.2 Betti Tables

Let I ¢ T = Clyo,...,yn] be a homogeneous ideal. A graded free resolution F of T'/I is an exact
sequence of the form

s Fy s Iy Foy » T/ —— 0,

where F; ~ @, T(— —j)% is a free T-module. If there is an [ such that Fj o = Fjy3 =--- =0,
but Fj 1 # 0, we say that the resolution is finite of length | + 1. For a minimal finite free
resolution of 7'/, the exponents b; ; is called the Betti numbers. They form a Betti table

0: oo b1 bao ... bnt1,n+1
1: bo b1 2 bas ... bni1n+2

. . . . . . )
m: bom bimi1 bami2 o0 bufingigm

where m is such that b; ;,4, = 1 for one p and b; ;1 = 0 for all other p, and b; ;1 ; = 0 for j > m.
We denote b; ; = 0 with a —.

Definition-Proposition 2.2.1. [Fis95, Theorem 21.6] Let I be a homogeneous ideal of
T = Clyo, - .-, Yn). Then I is an Artinian Gorenstem ideal if and only if I = F'* for a homogeneous
Febs.

Let T = Clyo,y1,y2]. Assume I C T is an Artinian Gorenstein ideal of codimension 3 and
that F is minimal. Then F has length 3 by [Eis95, Corollary 21.16], thus we have the following
free resolution F:

0 —— @per T(—F)"* —— @y T(—K)"2¥ —— Bpey T(—K")W —— T,

where we have chosen by = 1, and have that by ; = 0 for j > 0 since F is a resolution of an
ideal. We now dualize with Hom(—,T") and get

Hom( @T bis T
JEZ

&P Hom(T/(—j)",T) ~
JEZ
P i)

JEZ
We get the following resolution FV:

T —— @y TE) " —— @y T)2H —— @y Tk

By [Fis95, Corollary 21.16], F ~ F" as complexes, which means that

@kez ( )ka - eak’EZ ( k,)bQ’kl E— @kﬂez T(_k//)bl’k” — T

2 2 2 2
by [
Dy T ——— By T(K)2Y ——— By T(k)O5.

Let [ be such that b3; = 1 and b3, = 0 for k # I. To get the same grading on F and FV, we shift
FV with —I. This gives that

P T(—K)2r = @ T(—1+ K")'rr.

k'€l k"€l

T
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In other words,
b?,k’ = bl,k” When k” + k/ = l (22)

By the definition of the Betti table, I = m + 3, so we get the following symmetric Betti table:

.1 S
1: - b172 bl,m -
2: - by bime1 -
m—2: - bypm_1 b1z -
m—1: - b1,m b1,2
m: - - - 1

When I is Artinian Gorenstein, that is I = F* for an F' € Sy, then m = deg F' = d, [[is95,
p. 505] and [lar99, Proposition C.22 and p. 48] . We have proven the following lemma.

Lemma 2.2.2. Let S = Clzg,x1,22] and T = Clyo,y1,ys]. Let F € Sq and F+ C T. Then the
Betti table of the minimal free resolution of T/F* is

0: 1 - - -

1: - bLQ de -

2: - bz big-1 -
d—2: - biga1 bz -
d—1: - b17d bLQ

d: - - - 1

2.3 Buchsbaum—Eisenbud Matrix

Let T = C[yo, y1,y2]. In this section we explain how we can relate the generators of an apolar
ideal £+ C T to a matrix. The relation follows from a general structure theorem. In order
to state the theorem and to explain its consequences in our case, we give some definitions and
lemmas.

Let A be an n x n matrix. Then A is skew symmetric if A = —AT. The pfaffian of A, Pf(A),
is the square root of the determinant of A, that is (Pf(A4))? = det A, [Cay09]. The (n — 1)th
order pfaffian of A is the square root of the determinant of the matrix obtained by deleting one
row and the corresponding column of A. We denote by Pf,,_1(A) the ideal generated by the
(n — 1)th order pfaffians of A. If P = (Fy,,..., P,—1) is an ordered tuple and a = (ag, ..., an_1)
is a ordered tuple such that agFPy + -+ - + an—1Pr—1 = 0, then a is called a syzygy of P. We have
the following two lemmas about skew symmetric matrices and syzygies.

Lemma 2.3.1. Let n > 3 be an odd integer and let A be an n X n skew symmetric matriz. Then
det A =0.

Proof. Since A is skew symmetric, we have that AT = —A. Then
det A = det AT = det(—A) = (—1)" det A.
Since n is odd, we get that

det A = —det A=0.
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Lemma 2.3.2. Let n > 3 be an odd integer and let A be an n X n skew symmetric matriz. Then
the columns of A are syzygies of the (n — 1)th order pfaffians of A ordered in the natural way.

Proof. Let A = (aij)?j_:lo and let M;; be the (n — 1) x (n — 1) minor obtained by deleting the ith
row and jth column and let P; = M;; be the (n — 1)th order pfaffian obtained by deleting the ith
row and ith column. By [Cay09], we have the following relation:

My = (=1)™ " Ry,

We now compute det A by expanding along the ith row. This gives

det A = Z z+]+1am ij

3 h

_ H—]-i—l 1)+, . P P.
S AP ) P,
7=0
n—1
:PZ aiij
J=0

Since det A = 0 by Lemma 2.3.1, we get the following relation between the (n — 1)th order
pfaffians:

aioPo +anPri+--+ain1Pp-1=0

Since a;; = —a;;, have showed that the ith column of A is a syzygy of the (n — 1)th order pfaffians
of A. |

Let R be a ring and R an R-module. If f: RV — R, we say that f is an alternating map if
there exists a basis such that the matrix A of f is skew symmetric. We denote by Pf,,_1(f) the
ideal generated by the (n — 1)th order pfaffian of A. We are now ready to state the structure
theorem in full generality.

Theorem 2.3.3 (Buchsbaum-Eisenbud). Let R be a Noetherian local ring with mazimal ideal J.

. Let n > 3 be an odd integer and let R be a free R-module of rank n. Let f : RY = R be an
alternating map whose image is contained in JR. Suppose Pf,_1(f) has codimension 3. Then
Pf,—1(f) is a Gorenstein ideal, minimally generated by n elements.

. Bvery Gorenstein ideal of codimension 3 arises as above.
In particular this theorem holds in the polynomial ring with standard grading and a
homogeneous ideal I. We will use the following graded version.
Corollary 2.3.4. Let n > 3 be an odd integer and T = Clyo, y1, y2] with the usual grading.
. Let A = (a;j) be a skew symmetric matriz of dimension n, where a;; are homogeneous polynomials

such that all (n — 1)th order pfaffians are homogeneous. Assume Pf,,_1(A) has codimension 3.
Then Pf,,_1(A) is the apolar ideal of a homogeneous F € S minimally generated by n elements.

. Let I C T be a homogeneous Gorenstein ideal of codimension 3 generated by n elements. Then
I is minimally generated by Pf,_1(A), where A is a skew symmetric matriz with homogeneous
entries whose columns are a minimal basis for the syzygies of I.

10



2.3. Buchsbaum-Eisenbud Matrix

Proof. (1) Let f:T™ — T™ be the alternating map given by A. Since every entry in A is a non
constant homogeneous polynomial, the image of f is in JT™ and Pf,,_1(A) = I is a homogeneous
ideal. By Theorem 2.3.3, Pf,,_1(A) is a Gorenstein ideal minimally generated by n elements.
Since dim 7T = 3 and codim I = 3, I is Artinian. By Definition-Proposition 2.2.1, I = F* for a
homogeneous F € S.

(2) By Theorem 2.3.3, every Gorenstein ideal of codimension 3 is generated by the (n — 1)th
order pfaffians of an n x n skew symmetric matrix A. By Lemma 2.3.2, the columns of A are
syzygies of the (n — 1)th order pfaffians. The minimality follows from Theorem 2.3.3. |
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3 | Classification of Betti Tables

In this chapter we find and classify all Betti tables for the resolution of T'/F* for a ternary sextic
form F. First, we find restrictions for the Betti numbers given by the Buchsbaum—Eisenbud
matrix. Then we introduce the Hilbert function of 7'/F* use it to find more restrictions on the
Betti numbers. Lastly, we state and prove our theorem that gives the classification.

Let S = C[zg, 21, 22| and T' = Clyo, y1,y2]. Let F € Sg. By Lemma 2.2.2 the Betti table of
the resolution of T/F+ is

0: 1 - - -
1. - 1)172 b176 -
2: - 5173 51,5 -
3 - big bia -
4: - b175 51,3 -
5 - b176 1)172 -
6: - - - 1.

Moreover, by Equation (2.2) on page 9, by ¢ = b3 and by 5 = by 4. We choose to work with these
numbers, therefore we write the Betti table as

0: 1 - - -
1. - 5172 52,3 -
2: - 5173 b274 -
3 - 5174 51,4 -
4. - b274 b173 -
5. - 5273 51,2 -
6: - - - 1.

The by js are the number of minimal generators of F of degree j, and the by j are the number of
syzygies between the generators of degree less than j. The syzygy represented by b ; are linear
for the generators of degree j — 1.

Now, we prove a lemma about the determinant of a matrix which we will use to prove a
limitation of the Betti numbers.

Lemma 3.0.1. Let n > 3 and let M be an n x n matriz. Assume m < 5 andl>m. If M has
an | X (n — m)-submatriz where all the entries are zero, then det M = 0.

Proof. Write M as a block matrix with an (n —m) x m matrix A, an (n —m) X (n —m) matrix
B, an m x m matrix C' and an m x (n —m) block D where all the entries are zero, see Figure 3.1.
Since M is a 2 x 2 upper triangular block matrix det M = det B - det C'. Because M has an
[ x (n —m) zero block and | > m, at least one of the rows of B is zero, which gives det B = 0.
We then have det M = det B - det C' = 0 and the lemma holds.

12



Figure 3.1: The block matrix in Lemma 3.0.1.
|

Lemma 3.0.2. Let F+ C T = Clyo, y1,y2] and let b; ; be the Betti numbers of the resolution of
T/FJ‘. Let k = 5172 + 1)173 and | = b273 + b274, then l < k.

Proof. Let M be an n x n matrix and assume M is a Buchsbaums-Eisenbud matrix of F-. By
Theorem 2.3.3 F* is minimally generated by the (n — 1)th order pfaffians of M. We will prove
that if [ > k, then at least one of the n generators are zero, contradicting the fact that n is
minimal.

Assume for contradiction that [ > k. Recall that k is the number of quadratic and cubic
forms in F-, b1,4 the number of quartic forms and [ the number of syzygies between the quadratic
and the cubic forms. By symmetry, [ is also the number of quintic and sextic forms in the
ideal. Since the I syzygies are not syzygies between the by 4 + [ quartic, quintic and sextic forms,
M will have an [ x (b1 4 + [) zero block. One of the pfaffians is obtained by computing the
determinant of the matrix we get by deleting the first row and first column of M. We then have
a(k—1+b4+1)x(k—14 b4+ 1) matrix with determinant equal to zero, by Lemma 3.0.1.
Indeed, since k <[, we get kK —1 < < [+ by 4, see Figure 3.2. Both assumptions in Lemma 3.0.1
are satisfied, so the determinant is zero, and we have a contradiction. |

k l+0big
Figure 3.2: The matrix M in the proof of Lemma 3.0.2.

To compute more limitations of the Betti numbers, we introduce the Hilbert function. Let
A =P A, be a graded module. Then the Hilbert function H 4, = dimc A;, that is the dimension
of A; as a vector space of C. We will use the following relation:

HTi = HFiL + HT/FZ.L' (3.1)
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We find H7, be computing the number of monomials of total degree 7 in T', that is Hy, = (Z+2)
The first values are

H ;
& Hy, = 10,

HT1 — 9,
Hyp, =15

HTQ =0,

Now, we express Hp. ; in terms of the Betti numbers. Since F L is a proper ideal, we obviously

have Hp. = 0, and since we have assume that there are no linear forms in F*, also H =0
We claim that we have the following relations:

Hpy = b1,
Hpy =b13+3b1a — bas,
HFZIL = 1)174 + 6()1,2 + 36173 — 36273 — b24
Indeed, Hp. ; is the number of generators of degree ¢ and the number of forms of degree i obtained

from the generators of lower degree, minus the number of forms of degree i obtained from the
syzygies between the generators of lower degree. By combining the values of Hr, and Hp. with

Hyp) g1 by using Equation (3.1), we get
b172 =6— h2,
b13=10—hg —3-b12+ba3,
big=15—hg—6-b12—3-b13+3-ba3+bay,

where hi = HT/FZ.J-'

Now, we find some limitation for H = (hg,...,h;,...). Because HFOL = HFIL = 0, we get
that hop = 1 and hy = 3, by Equation (2.2). Since F' is ternary sextic forms, Hp. ; = Hr, for
i > 7. This gives that h; = 0 for ¢ > 7. Since the Betti numbers are positive, Equation (2.2) also
gives that hy < 6 and hz < 10. By [[ar99, Lemma 2.14], H is symmetric, that is

H = (hg, h1, ha, h3, ha, hs, he)
= (ho, h1, ha, ha, ha, h1, ho)
= (1737 h27h37h2737 1)

We get a last limitation by the following lemma of Macaulay.

Lemma 3.0.3 (Macaulay). Set H = (ho,...,h;,...), where h; are non-negative integers and

write
hi = <a> + <.a“) ... and
) 1 —1
i i +1 i—1+1
h§>—<a,+ >+(a 1,+ >—|—...,
141 )

with a; > a;—1 > .... If H is a Hilbert function for a graded module, then hjy; < hzw.

As a consequence of Lemma 3.0.3, we get the following limitations.

H = (1,3,5,hs,5,3,1), hs <10,
H = (1,3,5,hs,5,3,1), hs <7,
H = (1,3,4,hs3,4,3,1), hs <5,
H=(1,3,3,hs,3,3,1), hs <4
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H = (173727h372737 1)7 h3 < 27
H = (1737 17h37 1737 1)7 h3 < 17
H=(1,3,0,h30,31), hs<0.

We are now ready to state and prove our theorem.

Theorem 3.0.4. Let F' be a ternary sextic form. Assume that there is no linear form apolar to
F. Then T/F* has one of the 16 Betti tables in Figure 3.3. We also give the Hilbert polynomial
of T/F*L.

Before we prove the theorem, we state a corollary of the theorem.

Corollary 3.0.5. The Betti table for the apolar ideal of a ternary sextic form F is determined by
the number of quadratic, cubic and quartic generators of F-.

Proof of Theorem 3.0.4. We recall the relations between the Betti numbers and the Hilbert
function of T/F*.

6172 =6 — ha,
b13=10—hg —3-b12+ b2,
big=15—hgy —6-b12—3-b13+3-ba3+bay,

In the proof, we will use these relations together with the limitation for the Betti numbers and
the Hilbert function of 7/F* from Lemma 3.0.2 and Lemma 3.0.3. Since the Betti numbers and
the h;s are positive, we get that 0 < by 2 < 6. We go through each of these cases.

Case b1 = 0:

Since by 2 = 0, ba 3 = 0, indeed by 3 represents the number of syzygies between the quadratic
forms in F-, and there are no quadratic forms in the ideal. The number of quartic generators in
the ideal is by 4 = 15 — 6 — 3b1,3 +ba4 = 9 — 3b1 3 + b2 4. The shape of the Betti table in this case
is:

0: 1 - - -
1. - 0 0 -
2: - b13 b2 4 -
3 - 9- 3b173 + b274 9 — 3b173 + 5274 -
4: - b2 4 b13 -
5 - 0 0 -
6: - - - 1

When b; 3 € {0,1}, ba 4 = 0 because of Lemma 3.0.2. We have the two Betti tables in Figure 3.3
and they correspond to the Hilbert functions (1,3,6,10,6,3,1) and (1,3,6,9,6,3,1). When
b1 3 = 2, Lemma 3.0.2 gives by 4 € {0,1}. We have both of the Betti tables in Figure 3.3 and
they correspond to the Hilbert function (1,3,6,8,6,3,1). For by 3 = 3 the possible values for
ba4 € {0,1,2} by Lemma 3.0.2. We have the three Betti tables in Figure 3.3, which correspond
to the Hilbert function (1,3,6,7,6,3,1). When by 3 =4 Lemma 3.0.2 gives that by 4 € {0, 1,2, 3}.
Only case by 4 = 3 is possible, indeed b1 4 =9 — 3 -4+ b4 = ba 4 — 3, s0 ba 4 > 3. We have the
Betti table in Figure 3.3 and the corresponding Hilbert function is (1,3,6,6,6,3,1).

The cases b3 > 5 are not realizable, indeed Lemma 3.0.2 gives that b4 < b1 3, but
b1a=9—3-b13+bya <9 — 2013 which gives by 4 < 0 when b1 3 > 5.
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1 - _ 1 - - - 1 - - - 1 - - -
-3 2 - -2 - 21 - 21 -
. o1 - 11 - Sl L
- L oo L - L - 92 9
- § o1 - - 11 - .
-2 3 - - -2 - -1 2 - 12 -
| | | |
(173a3a3a37371) (17334747473>1) (173747474a3’1) (1’3a475747371)
1 - - - 1 - - - 1 - - - 1 - - -
I . -1 - - -1 - - .
-2 2 - D . .
. 11 - -2 2 - -4 4 -
_ 2 2 - o1 - o1 - Sl L
. 1 - -1 - -1 - o1 -
| | | |
(1,3,5,5,5,3,1) (1,3,5,6,5,3,1) (1,3,5,6,5,3,1) (1,3,5,7,5,3,1)
1 - - - 1 - - - 1 - - - 1 - - -
-4 03 - -3 - - -3 1 - -3 2 -
. . 11 - ~ 2 2 -
-3 4 - - -3 - -1 3 - -2 3 -
| | | |
(1,3,6,6,6,3,1) (1,3,6,7,6,3,1) (1,3,6,7,6,3,1) (1,3,6,7,6,3,1)
1 - - - 1 - - - 1 - - - 1 - - -
R - 21 - -1 - - - -
-3 3 - -4 4 - -6 6 - -9 9 -
- -2 -1 2 - -1 - R
| | - 1 |
(1,3,6,8,6,3,1) (1,3,6,8,6,3,1) (1,3,6,9,6,3,1) (1,3,6,10,6,3,1)

Figure 3.3: The 16 Betti tables of the resolution of T'/F+
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Case b1 =1:

Since b2 = 1, b3 = 0, indeed there are no syzygies between the quadratic forms when
there are just one quadratic generator in F-. The number of quartic generators of the ideal is
b1a=15—-5—-6-1—-3b13+byg =4 —3b1 3+ baa. The shape of the Betti table in this case is:

0: 1 - - -
1. - 1 0 -
2 - b1,3 b2.4 -
3: - 4-— 3()173 + 5274 4 — 3b173 + b274 -
4: - ba 4 b13 -
o9 - 0 1 -
6: - - - 1

When b1 3 =0, b 4 = 0 by Lemma 3.0.2. We have the Betti table in Figure 3.3 and it corresponds
to the Hilbert function (1, 3,5,7,5,3,1). For by 3 = 1 we get that by 4 € {0, 1} and we have the Betti
tables in Figure 3.3. They correspond to the Hilbert function (1,3,5,6,5,3,1). When by 3 = 2,
Lemma 3.0.2 gives that b 4 < 2. Only by 4 = 2 is realizable, indeed by 4 =4 —3-2+4bg 4 = ba 4 — 2.
We have this Betti table in Figure 3.3 and it corresponds to the Hilbert function (1,3,5,5,5,3,1).

The cases b3 > 3 are not realizable. Lemma 3.0.2 gives that byy4 < b1 3 and b1y =
4 —3b1 3+ baa <4 —2b; 3 is negative when by 3 > 3.

Case by 2 = 2: The only possible values for by 3 is 0 and 1. Indeed, assume for contradiction
that bs 3 = 2. Then we have that

pboZxo = p121, (3~2)

/ /
Poxy = P12y,

where the p;s are quadratic generators of the ideal and x;, ) are linear forms where no two are
equal. Since T is a unique factorization domain and zg # 1, po = z12( and p; = zoz}. In the
same way we get that pg = 2z and p; = z{z]’, where all z" are linear forms. Substituting this

into Equation (3.3), we get that

! VA //
T1Lgxy = Loy Ly,

and z(; = z{". Denote z{ and z/" by x. Then we get that

T1xry — x'ox:nl,

where we have substituted pg = z1z and p; = z{x into Equation (3.2). This gives that z¢ = zj,
a contradiction. In summary, we have bg 3 = {0, 1} and work through each case.

Subcase by 3 = 0:

The number of cubic generators in Flis b3 =10—2-3 — h3 = 4 — h3 and the number of quartic
generators is by 4 =15 -4 —6-2 —3b1 3 + ba g = ba 4 — 3b1 3 — 1. We have the following shape of
the Betti table of this case:

0: 1 - - -
1. - 2 0 -
2: - 4 — hg bo 4 -
3 - b2,4 — 3[)173 -1 b274 — 3b173 -1 -
4: - b2,4 4— h3 -
o5 - 0 2 -
6: - - - 1
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We see that hs < 4. If we let hz = 4, we get by 3 = 0 and, by Lemma 3.0.2, by 4 € {0,1}. We also
get that by 4 =b24 —1—3-0=1024 — 1, so by 2 = 1. We have the Betti table in Figure 3.3 and
the corresponding Hilbert function is (1, 3,4,4,4,3,1).

The cases h3 < 3 are not realizable. Indeed, we get b1 3 =4 — hg and by 4 < 6 — hz. Then
51,4 = b2,4 —1- 3()173 < 2h3 — 7, which is negative for h3 < 3.

Subcase by 3 = 1:

The number of cubic generators in the ideal is by 3 =10 —2-3 — h3 +1 = 5 — h3 and the number
of quartic generators is by g =15—4—6-2—3b13+bos +3 -1 = by — 3b1 3+ 2. In this case we
have the following shape of the Betti table:

0: 1 - - -
1. - 2 1 -
2: - 5— hs ba 4 -
3 - 6274 — 3()173 + 2 b2,4 - 3b1,3 +2 -
4: - bo 4 5— hs -
o - 1 2 -
6: - - - 1

We see that hz < 5. If we let h3 = 5 we get that by 3 = 0 and bg 4 = 0 by Lemma 3.0.2. We have the
Betti table in Figure 3.3 and the corresponding Hilbert function is (1,3,4,5,4,3,1). When h3 = 4,
b1,3 = 1. From Lemma 3.0.2, we get that by 4 < 1. We also have that by 4 = b4 +2—3-1 = by 4—1,
so ba 4 = 1. We have this Betti table in Figure 3.3 which corresponds to the Hilbert function
(1,3,4,4,4,3,1).

The cases hg < 3 are not realizable. Indeed, we get that by 3 = 5 — h3 and ba 4 < 6 — hg. Then
bi.4 =ba 4+ 2 — 3b1 3 < 2hz — 10 which is negative for hz < 3.

Case b1 = 3:

We get that by 3 < 3 because there cannot be more that three linearly independent linear
syzygies when we work with three variables. We will show that by 3 # 3. Indeed, if b3 = 3 we
have three linear syzygies between three quadratic forms and get the following equations:

a1q1 + azq2 + azqsz = 0,
biq1 + baga + b3gs = 0,
c1q1 + c2q2 + c3q3 = 0,

where a;, b;, ¢; are linear forms and ¢; are quadratic forms. This system can be written in matrix
form,

a1 a2 a3 q1 0
by by b3 -] =1(0],
c1 ¢ c3 q3 0

For this matrix equation to have a non-trivial solution, the (3 x 3) matrix must have determinant
equal to zero, i.e. there must be a linear relation between the rows. This linear relation is linear
secondary syzygy between the quadratic forms, and can be found in the Betti table as b3 4 = 1,
but b3 4 = 0 in our case, so we have contradiction. The only possible values for b2 3 is 0,1 and 2.
We go through each case.
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Subcase by 3 = 0:

The number of cubic generators in the ideal is by 3 =10 — 3 -3 — h3 = 1 — hz and the number of
quartic generators is by 4 = 15 —3 — 6 -3 — 3b1 3 + ba 4 = ba 4 — 3b1 3 — 6. In this case the Betti
table has the following shape:

0: 1 - -

1. - 3 0 -
2: - 1— hs 6274 -
3: - b274 - 3()173 —6 b274 - 3b173 —6 -
4: - b2’4 1-— h3 -
o - 0 3 -
6: - - - 1

We get that h3 <1 and, by Lemma 3.0.2, by 4 < 4 — hg. Then by 4 = bayg — 3b1 3 —6 < 2h3z —5
which is negative for hg < 1. There are no Betti table for by 3 = 0.

Subcase by 3 = 1:

The number of cubic generators in the ideal is by 3 =10 —3 -3 — h3 + 1 = 2 — h3 and the number
of quartic generators is by 4 = 15—-3—-6-3 —3b1 3+ b2 4 +3-1=0bg4 —3b1 3 — 3. In this case the
Betti table has the following shape:

0: 1 - - -
1. - 3 1 -
2: - 2 — hg b2’4 -
30 - bya—3bi13—3 byg—3b13—3 -
4: - b2’4 2 — h3 -
5 - 1 3 -
6: - - - 1

We get that hs < 2 and, by Lemma 3.0.2, 6274 < 4 — hs. Then b1,4 = b274 — 3b173 —3<2hg—5
which is negative for hg < 2. There are no Betti table for by 3 = 1.

Subcase by 3 = 2:

The number of cubic generators in the ideal is by 3 = 10 — 3 -3 — h3 + 2 = 3 — h3 and the number
of quartic generators is by 4 =15 -3 —6-3 —3b13+bag +3-2 = by 4 — 3b1 3. In this case the
Betti table has the following shape:

0: 1 - - -
1. - 3 2 -
2: - 3— hs 62’4 -
3: - bag—3b13 boy—3b13 -
4: - b2,4 3—hs -
5 - 2 3 -
6: - - - 1

We see that hy < 3. Let hz = 3. Then by 3 = 0 and bz 4 = 0 by Lemma 3.0.2. We have the Betti
table in Figure 3.3 and the corresponding Hilbert function is (1,3,3,3,3,3,1).

If we let hg < 2 we get, by Lemma 3.0.2, that b274 <4 —hs. Then 1)174 = b274 - 3b173 < 2hg—5
which is negative for hs < 2.

Case b1 = 4:

We still have bp 3 < 3. The number of cubic forms in the ideal is b1 3 =10 —h3 —4-3 4+ by 3 =
b3z —2 — hs. We have hg = 6 — b2 = 2. From Lemma 3.0.3 we know that hz < 2 for the
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sequence (1,3,2, h3,2,3,1). If hg = 2 we get that by 3 = b3 — 4, so we must have by 3 > 4 for by 3
to be positive. Since ba 3 < 3, this doesn’t work. If h3 =1 we get by 3 = ba 3 — 3. We check what
happens when bg 3 = 3. The number of quartic generators is 15 =2 —6-4+3-34+bo s = bog — 2,
50 by 4 > 2. From Lemma 3.0.2 we get that by 4 = 0. This doesn’t work. The same happens for
hz = 0. There are no Betti tables with by o = 4.

Case by = 5:

We still have bg 3 < 3. The number of cubic generators in the ideal is by 3 = 10—h3—5-3+ba 3 =
ba 3 —5—h3. We have hg = 6 —0b; 2 = 1. From Lemma 3.0.3 we know that hg < 1 for the sequence
(1,3,1,h3,1,3,1). We get that b; 3 is negative for b3 < 3 and hz < 1. There are no Betti tables
with b1,2 = 5.

Case b2 = 6:

We still have bg 3 < 3. The number of cubic generators in the ideal is by 3 = 10—h3—6-3+ba 3 =
by 3 —8—h3. We have hg = 6 —b1 2 = 0. From Lemma 3.0.3 we know that hz = 0 for the sequence
(1,3,0,h3,0,3,1). We get that b; 3 is negative for by 3 < 3 and hz = 0. There are no Betti tables
with b1’2 = 6. |
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4 | Grassmannians and
Skew Symmetric Matrices

In this chapter we will use Grassmannians to find isotropic subspaces to some skew symmetric
matrices. We will see in Chapter 5, that the isotropic subspaces correspond to finite schemes I'
such that It ¢ F+.

This chapter is organized as follows. First, in Section 4.1, we introduce the concept of
Grassmannians. Then, in Section 4.2, we use the Grassmannian G(2,4) to find 2-dimensional
isotropic subspaces to a skew symmetric matrix of dimension 4. Then, in Section 4.3 we introduce
the Chow ring of a Grassmannian and the Chern classes of vector bundles of a Grassmannian
and explain how these concepts are related to isotropic subspaces of skew symmetric matrices.
Finally, in Section 4.4, we use the Chern classes related to the Grassmannians G(3,6) and G(4,9)
to find 3- and 4-dimensional isotropic subspaces to skew symmetric matrix of dimension 6 and 9,
respectively.

4.1 Grassmannians

In projective space P we have coordinates (xg : - : xy,), where (xg: -+ :@p) = Ao : -+ 1 @y)
for A € C*. A linear subspace of P is defined as the set of points satisfying a set of linear
equations. When these points satisfy n — d linear independent equations, we say that the linear
space is d-dimensional. The set of all d-dimensional linear spaces in P™ is called the Grassmannian
of d-planes in n-space and denoted G(d,n). The set of (d + 1)-dimensional linear subspaces of a
(n 4 1)-dimensional vector space is equivalent to G(d,n) and is denoted G(d + 1,n + 1). We will
also use the notation G(d + 1,V'), where V is a given vector space.

We will now show that G(d,n) can be represented by a certain smooth subvariety of PN,
where N = (nﬂ) — 1. Let L be a d-plane in P™ and pick d + 1 points x; = (zg1 : - - - : Tp;) that

d+1
span L and form the (d + 1)(n + 1) matrix

oo --- IOn

Tdo --- Tdn

Pick (d+1) integers jo, . .., jq, where 0 < jo < -+ < jg < n, and let pj,.;, be the (d+1) x (d+1)-

minor of the submatrix consisting of the j;th columns for ¢ = 0,...,d. There are (Zﬁ) choices
of picking the j;s. Since the points x; are assumed to span L, at least one of pj,. ;, has to be
different from zero. In this way, the pj, ;, defines a point (---: pjy 4, :...) in PV, where we

order the coordinates by lexicographic ordering. The pj, . j,s are called the Pliicker coordinates of
L.

Example 4.1.1. Let d = 1 and n = 3. Then X = G(2,4) is the Grassmannian of lines in P3.
Given a line L and two points = = (zg : x1 : 22 : x3) and 2’ = (x : 2] : 2, : 2%) on L, the Pliicker
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4.1. Grassmannians

coordinates of L is the 2 x 2-minors of

ro T T2 I3
my @y wy w3)

We get
/ / / /
Po1 = ToTy — TpT1 P12 = T1Tg — T X2
/ / / /
Po2 = TpTg — TpT2 P13 = T1T3 — T X3
/ / / /
Po3 = Toxz — Tpx3 P23 = T2X3 — ToX3

By computation, we have the that Pliicker coordinates of L satisfy the following relation:

P12P34 — P13P24 + p1ap23 = 0. (4.1)

We want to show that the points in G(2,4) are exactly the points in P° that fulfill the
relation in 4.1. Indeed, let p = (po1 : Po2 : Po3 : P12 : P13 : P23) € P° be a point such that
Po1P23 — Po2P13 + P12po3 = 0. Since the p;;s are projective coordinates, one of them has to be
non-zero. Assume pg; = 1. We want to show that the p;;s are Pliicker coordinates of a line
L € P3, and we claim that L is the line spanned by (1:0: —p12 : —p13) and (0 : 1 : poa : po3)-

Indeed, the minors of
10 —Pp13
A=
<0 1 P03 >

gives that the Pliicker coordinates of L is (1 : po2 : po3 : P12 : P13

—P12
Po2

: —p12po3 + po2p13). Since
—p12P03 + Po2p13 = Po1p2s and pg1 = 1 by assumption, the Pliicker coordinates can be written
(Po1 : Po2 : Po3 : P12 : P13 : p23), thus the p;;s are Pliicker coordinates of L, which was what we
wanted to show.

We will show that a similar relation as 4.1 between the Pliicker coordinates of a d-plane in P™
holds in general.

Proposition 4.1.2. Let 0 < jg < -+ < jg—1 <nand 0 < kg < -+ < kgr1 < n be two sequences
of integers. Then
d+1

A
> (1) Djor s kaPho ki
A=0

=0,

where kY means that ky is not in the sequence ko, ..., kqy1.

Proof. First we write the relation we are going to prove in terms of determinants.

%
Z0,j0 L0,jq_1  T0.ky| |T0,ko Lo,k L0,kgy1
d+1 : : :
A *
> (=D |z, Tijos  Tiky | |Tiko T ko Tikapr | =0
A=0 . . .
Zd,jo Tdja_y  Tdkx||Zdko T ke Td kg
We now expand the first determinants along the last column and get
~ 7 *
20,50 20,54 L0,ko Lo,k L0,kg 41
d+1 d : : :
A d+i | . * ) . * ) _
E (-1 E (=1) L jo Lija | Tisky | |Tisko Tk Tikgr, | =0
A=0 i=0 . .
L Ld,jo Ld,jq 1 1Td ko 952,1@ Ld,kay1

22



We rearrange the terms and get the relation

4.2. Skew Symmetric Matrices of Dimension 4

. _

20,50 0,54 L0,ko Lo ks, L0,kqi1
d : : d+1 : :

d+i * * AL . * . _
Z(—l) Li do Lijg Z(—l) Liygy |Tiko T ky Tikger || =0
i=0 . . A=0 .
*
Ld,jo Ldjal| L Ld,ko L ko Tdkgyq]]

This relation is obtained from expanding the second determinant in the following relation along

the first row.

Lj ko L ky Ti kg1
0,jo Z0jq| | .. ’ ’
. 5507k0 $07k)\ xo,de
d .
d+i | . * _
D (DT, ia | | g . . = 0.
i—0 . . i,ko (15N t,kat1
Ld,jo Ld,jq
’ 7 Ld,ko Ld,ky Ldkqi1
The second determinant is zero since two rows are equal, so we are done. |

Conversely, every point in PV that fulfill the relation in Proposition 4.1.2 corresponds to a
d-plane in P"| [KL.72, Theorem 1]. We now show that G(d,n) is smooth. In the same way as we
did in Example 4.1.1 we can assume that for at least one choice of jo, ..., jq we have p;; ;, = 1.
To simplify computation, we assume that pg1. 4 = 1. This means that the submatrix given by the
columns 0,1, ...,d is the (d + 1)(d + 1)-identity matrix. Every d-plane in P" that has pg;. 4 =1

can be represented by a matrix of the form

1 0 0 l‘O,d—f—l Ton
0 1 0 :
0 ... ... 1 mggn Tan,

The set of all such matrices corresponds to an affine space of dimension (d + 1)(n —d), [[KL72,
Proposition 2]. Since this holds for any choice of jo, ..., jq we have that G(d,n) represented as a
subvariety of PV is covered by (N + 1) copies of the affine space of dimension (d + 1)(n — d).
This shows that G(d,n) is a smooth variety of dimension (d + 1)(n — d).

4.2 Skew Symmetric Matrices of Dimension 4

In this section we will prove a theorem about 2-dimensional isotropic subspaces of 4 x 4 skew
symmetric matrices. First, we introduce some properties of a skew symmetric matrix and how
such a matrix can be related to G(2,4). Then we state and prove our the theorem in this section.
Lastly, we discuss some geometric interpretation of our results.

Let A be an n x n skew symmetric matrix. Recall that the pfaffian of A, Pf(A) is the
square root of the determinant of A, that is (Pf(A))? = det A. If n is odd, then det A = 0,
by Lemma 2.3.1, thus Pf(A) = 0. When n is even, we get that Pf(A) is a polynomial in the
entries of A. We observe that if n = 2r, then the pfaffian has degree r. A minor obtained from a
submatrix where the indices of the rows and columns are the same, are called a principal minor.
The even submatrices that form the principal minors of a skew symmetric matrix will again be
skew symmetric and the principal minors will therefore also be the square of a pfaffian. By the
order of a minor we mean the dimension of the corresponding submatrix.

Now, we give two lemmas about skew symmetric matrices that we will use to prove a
correspondence between skew symmetric matrices of rank 2 ad points in G(2,n).
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4.2. Skew Symmetric Matrices of Dimension 4

Lemma 4.2.1. [Hey69, Equation (3.42)-(3.45)] Let A be an n x n skew symmetric matriz. Then

a minor of even order 2r is a quadratic form in pfaffians of order r, and

a minor of odd order 2r — 1 is a quadratic form in pfaffians of order r and r — 1.

Lemma 4.2.2. Let A be an n X n skew symmetric matriz. If all the pfaffians of order r vanishes,
then the matriz has rank at most 2r — 2.

Proof. Let A be nxn skew symmetric matrix and assume that all the pfaffians of order » vanishes.
Then, by Lemma 4.2.1, the 2r x 2r minors and the (2r — 1) x (2r — 1) minors vanishes. Since all
the (2r — 1) x (2r — 1) minors vanishes, A has rank at most 2r — 2. [ |

The space of n x n skew symmetric matrices are in correspondence with the space of the
Pliicker coordinates of G(2,n). That is, a matrix can be identified with a point in PV, where
N = (Z) = @ Indeed, counting the entries in the lower triangle of an n x n skew symmetric
matrix gives Z?;lli = w entries. Further, we have that the subspace of the n x n skew
symmetric matrices consisting of rank 2 matrices corresponds to points on G(2,n). We show this

first for 4 x 4 skew symmetric matrices and then for a general n.

Lemma 4.2.3. The 4 x 4 skew symmetric matrices of rank 2 are in 1 — 1 correspondence with
points in G(2,4).

Proof. For the first implication, let L be a line in P? and P = (po1 : po2 : Po3 : P12 : P13 : p23) the
corresponding point in P°. The Pliicker coordinates fulfill the relation pgipas — po2pi3 +pi2pos = O.
If we set

0  por  Po2 Po3
A - | TP 0 P12 P13
—po2 —Pp12 0 pog

—po3 —pi3 —p23 O

we get that

det A = (po1p2s — Po2p13 + P12p03)>

Since

Po1P23 — Po2P13 + P12po3 = 0,

we have det A = 0. Since det A = 0, rank A < 3, but since all the principle 3 x 3 minors are
skew symmetric, they are zero by Lemma 2.3.1. Therefore, rank A < 2. Since none of the 2 x 2
principle minors of A are zero, rank A = 2.

For the other implication, let p = (po1 : Po2 : Po3 : P12 : P13 : P23) € P°, and let A be the
corresponding rank 2 skew symmetric matrix. This means that det A = 0, thus the entries fulfill
the relation pg1p23 — po2p13 + pi2poz = 0. Since the p;js are projective coordinates, one of them
has to be non zero. Assume pg; = 1. We want to show that the p;;s are Pliicker coordinates of a
line L € P?, and we claim that L is the line spanned by (1:0: —p12 : —p13) and (0 : 1 : po2 : po3)-
Indeed, the minors of

A:<1 0 —pi2 —p13>
0 1 po2 pos

gives that the Pliicker coordinates of L is (1 : po2 : po3 : pi2 : P13 : —P12P03 + Po2pP13)-

Since —p12po3 + po2pis = poip2s and pgr = 1, the Pliicker coordinates can be written
(Po1 : Po2 : Po3 : P12 : P13 : p23), thus the p;;s are Pliicker coordinates of L, which was what we
wanted to show. |
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4.2. Skew Symmetric Matrices of Dimension 4

Now, we show the correspondence for a general n. We have from Lemma 4.2.2 that if the
all the pfaffians of order 2 of an n x n skew symmetric matrix vanishes, then the matrix has
rank at most 2. On the other hand, if A has rank at most 2, then all the pfaffians of order 2
vanishes. Since the square of a pfaffian of order 2 is the determinant of a 4 x 4 skew symmetric
submatrix of A, we will get a relation between the Pliicker coordinates for each pfaffian of order
2. In summary, we will get the relations in Proposition 4.1.2. Thus an n x n skew symmetric
matrix of rank 2 will indeed correspond to a point in G(2,n). Now, we introduce the notion of
an isotropic subspace and prove a lemma that we will use in the proof of our theorem.

Definition 4.2.4. Let A be an n X n skew symmetric matrix. An isotropic subspace to A is
a subspace of C", such that for every u,v € U we have uAvT = 0. If V is a space of n x n
skew symmetric matrices and U is isotropic to every matrix in V', we say that U is an isotropic
subspace to V.

Lemma 4.2.5. Let A be a 4 x 4 skew symmetric matriz and H 4 be the set of all 2-dimensional
isotropic subspaces to A. Then H, defines a hyperplane in P° that intersects G(2,4).

Proof. First we prove that given an U € Hy, then U corresponds to a point in P that lies on a
hyperplane that intersects G(2,4). Let u = (ug, u1, u2,us) and v = (v, vy, ve, v3), where u,v € U.
Let

0 apr  Go2 Qo3
A | o 0 a2 a3
—ag2 —aiz 0 a3

—ag3 —aiz —azz 0

We get that

uAvT = ag1po1 + ao2po2 + aospos + a1api2 + a13p1z + azzpos, (4.2)

where p;; are the Pliicker coordinates of the line through u and v when considered as points in
P3. When uAv? = 0, we get an equation in the Pliicker coordinates, i.e. a hyperplane in P> that
intersects G(2,4). We need to show that given s,t € U, we get the same equation. Indeed, since
U is 2-dimensional, s = au + bv and t = cu + dv. We get that

sAtT = (au + bw)A(cu + dv)T,
= aduAv’ + bevAu”,
= (ad — be)udvT,

where we have used the linearity and that uAv” = —vAu”. Thus, we get the same equation with
different choices of representatives for U.

Now, we prove that given a point in P? that satisfies Equation (4.2), we can find a corresponding
U€ Ha. Let p= (po1:po2 : Po3 : P12 : p13 : p23) € P° and assume that p satisfies Equation (4.2).
Let A be the skew symmetric matrix with entries given by the a;js in Equation (4.2). Since
the p;js are projective coordinates, one of them has to be non-zero. Assume pg; = 1. We want
to show that u = (1,0, —p12, —p13) and v = (0, 1, pp2, po3) generates an U. From the proof of
Lemma 4.2.9 we have that the Pliicker coordinates of the line through u and v is given by the
coefficients of p. We need to show that uAv” = 0. Indeed, we get that

uAvT = ag; + ap2po2 + aozpos + a12pi2 + a13p13 + a2z (Po2piz — Po3pi2)
= ap1 + ap2Po2 + ap3po3 + a12p12 + a13pP13 + A23P01P23
=0,

where we have used that pg; = 1, that the Pliicker coordinates satisfies the relation pgipag =
Po2P13 — PosP12, and the we assumed that Equation (4.2) was satisfied. |
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4.2. Skew Symmetric Matrices of Dimension 4

We are now ready to state and prove the theorem of this section.

Theorem 4.2.6. Let W be a 3-dimensional vector space of 4 x 4 skew symmetric matrices. Then
there exists a conic of 2-dimensional isotropic subspaces to W.

Proof. We want to prove that there is a common 2-dimensional isotropic subspace for a basis of
matrices in W. Let Ay, ,Aq, and Ag, be such a basis and let Hy, H and H3 be the corresponding
hypersurfaces in P? we get from Lemma 4.2.5. The basis matrices Ag,, Ay, and Ay, has a common
isotropic subspace if the intersection

G(2,4) N HyNHyN H;

is non-empty, which is the case. Indeed, G(2,4) is a 4-dimensional quadric, and the intersection
with each H; reduces the dimension by 1. We get that we have a conic of common 2-dimensional
isotropic subspaces for V. |

When we have an isotropic subspace of a 4 x 4 skew symmetric matrix, we can choose a row
basis such that ass = 0. We prove this in the following lemma.

Lemma 4.2.7. Let W be a vector space of 4 x 4 skew symmetric matrices and let U be an isotropic
subspace for W. Then we can choose a row basis for W such that ass = 0 for all matrices in W.

Proof. Let the row basis be such that for u,v € U we have u = (0,0,1,0) and v = (0,0,0,1).
Then the Pliicker coordinates of L through v and v are zero for i # 2,j # 3, and pog = 1. If
uAvT = 0, then ass = 0, by Equation (4.2). [ |

4.2.1 Geometric Interpretation

We will now use the correspondence between 4 x 4 skew symmetric matrices of rank 2 and lines
in P3 to get a geometric interpretation of 2-dimensional isotropic subspaces to a vector space of
4 x 4 skew symmetric matrices.

Lemma 4.2.8. Let W be a general 3-dimensional vector space of 4 X 4 skew symmetric matrices.
Then there is a basis for W given by rank 2 matrices.

Proof. Since W is a 3-dimensional vector space, W is spanned by three points in P?, by
Lemma 4.2.3, which forms a P? € P°. Let W’ be the space of 4 x 4 skew symmetric matrices of
rank 2. If W C W’ the lemma is obviously true. Assume W ¢ W’. As shown in Lemma 4.2.9,
the entries of a matrix A € W’ satisfies the Pliicker relation

Po1P23 — Po2p13 + p12po3 = 0,

so the points in P° that corresponds to a matrix of rank 2 lies on the quadric G(2,4) C P°. The
skew symmetric matrices of rank 2 in W lies in the intersection of G(2,4) and P2, which is a
conic or two lines when W is general. Since three points on a conic or two lines span a P?, we
can choose a basis for W given by three rank 2 matrices. |

When W is not general, the intersection between G(2,4) and P? in the proof of Lemma 4.2.8
might be a double line. Then we will not get a basis of rank 2 matrices.

Now, we can show that for a general W, the problem of finding an isotropic subspace to W
is equivalent to finding a line that intersect the three lines i P? that corresponds to three basis
matrices for W of rank 2. We state a lemma that we will use to describe this equivalence.

Lemma 4.2.9. Two lines in P3 intersect if and only if

P01923 — P02913 + Po3q12 + P12903 — P13902 + P23qo1 = 0, (4.3)

where p;j,qi; are the Pliicker coordinates of the two lines.
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4.2. Skew Symmetric Matrices of Dimension 4

Proof. Assume L1, Ly € P3 and x4, x) € Ly and xg, xh, € Ly. Considering the points as vectors in
C*, they span a plane if and only if the lines intersect. Then the two lines intersect if and only if
the determinant of the following matrix is zero:

10 T11 Ti2 13
/ / / /
Tio T11 T2 T13
To0 T21 T2 T23
/ / / /
Too L1 Loz Ta3
where the rows are the coordinates of z1, ), z9, 5. The determinant in terms of the Pliicker

coordinates p;; of L1 and ¢;; of Lo is po1g23 — po2q13 + Po3qi2 + P12Go3 — P13Go2 + P23qo1- n

From the lemma we get that when A is of rank 2, the points in hyperplane of 2-dimensional
isotropic subspaces from Lemma 4.2.5 corresponds to lines intersecting the line corresponding to

A. Indeed, let

0 qo1 Qo2 qo3
A | o 0 Q12 @13
—qo2 —q12 0  qo3

—qo3 —q13 —q23 O

We have from Lemma 4.2.5 that H4 consists of the points p € P5 such that

qo1po1 + qo2po2 + qo3Po3 + qi12p12 + q13p13 + G23pez = 0 (4.4)

Let p = (po1 : o2 : Po3 : P12 : P13 : p23) be a point that satisfies 4.4. Let r = (ro1 : 792 : 703 : r12 :
T13 : T23), where

To1 = P23, 12 = Po3,
ro2 = —P13, 13 = —Po2,
T0o3 = P12, 23 = Po1-

First, we have that r satisfies the Pliicker relation. Indeed

T01723 — T02713 + T03r12 = P23po1 — (—p13)(—Poz2) + P12p03
= Po1P23 — Po2P13 + Po3pP12
=0.

Then, we have that r corresponds to a line that intersect the line that corresponds to A. Indeed,

701923 — 702q13 + 703912 + 712403 — 713902 + 72301 =
p23q23 — (—p13)qi3 + p12qi2 + Po3qos — (—Po2)qo2 + Po1go1 =
qo1Po1 + qo2po2 + qo3pPos + q12p12 + q13P13 + q23pas = 0.

This shows that a rank 2 matrix A has an isotropic subspace if and only there exits a line that
intersect the corresponding line. To have a common isotropic subspace for three basis matrices
then implies that there must exists a line that intersects all three lines.

Now, we show that there indeed exists a pencil of lines that intersects L, Ly and L3. Indeed,
given L1, Ly and Lg, take any point p on L and consider the plane spanned by p and Lo. This
plane will intersect Ls. Let L be the line through p in this plane such that L intersect Ls. Since
we can choose any point on L1, there is a pencil of lines L that intersect the three lines.

The conic of 4 x 4 skew symmetric matrices of rank 2 and the conic of 2-dimensional isotropic
subspaces are related. The points on each conic corresponds to the two families of lines on the
quadric in P3. We show this below, but first we need a lemma.
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Figure 4.1: The points of each conic correspond to lines on the quadric in P3.

Lemma 4.2.10. Let Cy be a conic in G(2,4) CP5, p1,ps € C1, and Ly and Ly the lines in P>
corresponding to p1 and py. Then Ly N Lo = (.

Proof. Assume for contradiction that L; N Ly # () and let P € P? be the intersection point. The
lines through P that lie in the plane spanned by L; and Ls corresponds to points on the line
in G(2,4) through p; and ps. Since C7 does not contain the line through p; and pe, we have a
contradiction. |

Let C € P° be the conic of skew symmetric matrices of rank 2 from the proof of Lemma 4.2.8.
Let @ be the union of the lines in P3 that correspond to points on Cj. Then @ is a surface in P3.
We want to show that the degree of @ is two. Indeed, let L € P3 be a general line that intersects
). We want to find the number of intersection points, i. e. the number of lines on () that intersect
L. From Lemma 4.2.9, we have that to lines intersect if and only if their Pliicker coordinates
satisfy Equation (4.3), i.e. the lines that intersect L correspond to points in a hyperplane in P°.
The number of lines on @) that intersect L is equal to the number of intersection points between
the hyperplane and the conic in P, which is two.

Now, let (s be the conic that parameterize the lines intersecting every line parameterized
by Cy. By the same arguments as above, the union of the lines parameterized by C5 is a degree
two surface in P3. We want to show that this is Q. Indeed, since no two lines parameterized by
C intersect, but are intersecting all the lines parameterized by Cs, the two family of lines have
to lie on the same surface. We get that Q has degree two and is the quadric in P? where one
family of lines corresponds to lines parameterized by C7 and the other family corresponds to lines
parameterized by Co, see Figure 4.1.

4.3 More on Grassmannians and Skew Symmetric Matrices

We will prove that there exists similar isotropic subspaces for skew symmetric matrices of
dimension 6 and 9. In these dimensions, there are difficult to compute directly as we did for skew
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symmetric matrices of dimension 4. We therefore need more theory about Grassmannians and
skew symmetric matrices. First, in Section 4.3.1, we introduce the Chow ring of a Grassmannian
and the Schubert cycles. Then, in Section 4.3.2, we introduce the Chern classes of some vector
bundles on the Grassmannian. In Section 4.3.3, generalize the relation between isotropic subspaces
and a Grassmannian. Lastly, in Section 4.3.4 we do computations on the Chern classes that we
will use to prove our theorems in the last section of this chapter.

4.3.1 Chow Ring of a Grassmannian

In this section, we will describe the Chow ring of a Grassmannian, following [Ful98] and [Eis16].
We start with the general definition of the Chow ring. Let X be an algebraic variety of dimension
n. A k-cycle is a finite formal sum

ZniY;7
Y;

where n; € Z and Y; is a k-dimensional subvariety of X. The group of k-cycles of a variety X is
denoted Z;(X) and the group of cycles on X is Z(X) = @ Zx(X). Two cycles Y7 and Y; are
rationally equivalent if there exists a cycle on P! x X whose restrictions to two fibers tg x X
and t; x X is Yy and Y;. The cycles that are rationally equivalent form a subgroup of Zx(X)
denoted Raty(X), and we can form the quotient group Ai(X) = Zi(X)/Ratg(X) of k-cycles
modulo rational equivalence. We call A,(X) = @ Ax(X) the Chow group of X. We denote the
equivalence class of a subvariety Y C X as [Y] € A.(X).

For a smooth variety X there also exists a product on A, (X) which in special cases corresponds
to taking the intersection of two subvarieties of X. Let Y1,Ys C X be subvarieties of a
smooth variety X such that every irreducible component Z of the intersection Y; N Y, satisfies
codimZ = codimY;j + codim Y. If Y7 and Y3 intersect transversely, then [Y; NY3] = > [Z].
Generally, for each such component Z there is a positive integer mz(Y1, Y2) called the intersection
multiplicity of Y1 and Ys along Z, such that

[Yl ﬂYVQ} = ZmZ(YhYQ)HZ]

Theorem 4.3.1. [Ful98, Proposition 8.1.1] Let X be a smooth variety of dimension n and
let Y1,Yo C X be subvarieties of X. There is a unique product structure on A.(X), i.e. for
V1] € Ap_k,(X) and [Ya] € Ap_,(X), then [Y1][Ya] € Ap_p,—k,(X). If every irreducible
component Z of the intersection Y1 NYs has codimension codim Z = codim Y7 + codim Ys, then

W][Ya] = [Y1 N Ya].

The product makes A.(X) into an associative, commutative ring, called the Chow ring of X .

Now, we describe the Chow ring of a Grassmannian. First, we note that the Grassmannian is
indeed a smooth variety as seen in Section 4.1. Let V be an (n + 1)-dimensional vector space.
We will describe the Chow ring of the Grassmannian X = G(d + 1, V') by describing a special
kind of subvarieties whose equivalence classes generate A,(X) under addition. Let W C V be
a (d + 1)-dimensional vector space, and let [W] be the corresponding point in X. Fix a flag
Uy C -+ CUpg1 =V of vector spaces, where dimU; = i. Choose d + 1 integers i; such that
0<ig<---<ig<n-—d. Wedefine

w(id,--.,%0) ={[W] e X :dim(W NUpt1-k—i,) >d+ 1 — k for all k such that 0 <k < d}.
(4.5)

The subset w(ig,...,ip) is a subvariety of G(d + 1,V) by [KL72, Corollary 5|, and we call it
a Schubert cycle. The equivalence class [w(ig, .. .,%0)] depends solely on the choice of the i;s
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and not on the choice of the flag U;, [[K1.72, p. 1070]. We therefore denote the equivalence
class [w(ig,...,10)] = Qig,...,90) € A(X). With addition as binary operation, A.(X) is a free
abelian group and Q(ig,...,%o) form a basis, [KL.72, p. 1071|. The element Q(ig4, . ..,7p) is called
a Schubert class.

For X = G(2,4), we fix a flag Uy C Uy C Us C Uy = V and let W be a 2-dimensional
subspace of V. Then, the Schubert cycles are

w(il,io) = {[W] e X: dim(W N U4_i0) ZQ,dim(W N U3—i1) > 1},

where 0 <ig <i; < 2. We describe the Schubert cycles of G(2,4) in more detail.

Example 4.3.2. Let X = G(2,4), W be a 2-dimensional vector space and fix a flag Uy C Uy C
Us C Uy. The Schubert cycles in G(2,4) correspond to the following sets:

w(0,0) = {[W] € m(W N Uy) > 2,dim(W N Us) > 1}
w(1,0) ={[W] € X : dim(W NU,) > 2,dim(W NUz) > 1}
w(l,1) ={[W] e X :dim(W NUs) >2,dim(W NnUy) > 1}
w(2,0) ={[W] e dim(W NUy) > 2,dim(W N Uy) > 1}
w(2,1) ={[W] e dim(W NUs) > 2,dim(W N U) > 1}
w(2,2) ={[W] e m(W NUy) > 2,dim(WnNU;) > 1}

First, we describe the lines in P? that fulfill the conditions in each Schubert cycle and then
we describe the corresponding Schubert class. We note that P(U;) is isomorphic to Pi~! so
projectively we have the fixed flag p C P! ¢ P2 C P3.

w(0,0) = {[W] € X : Iy intersects P? and is contained in P3}
={W] e X},

since both conditions are satisfied for all lines in P3. This shows that (0, 0) is the equivalence
class of X.

w(1,0) = {[W] € X : ly intersects P! and is contained in P3}
= {[W] € X : lyy intersects P!},

since the second condition is satisfied for all lines in P3. The set of lines intersecting a line [ in
P3 corresponds to a hyperplane in X € P5. Indeed, let pi; be the Pliicker coordinates of [. By
Lemma 4.2.9, we have that a line I intersects [ if and only if

P01923 — P02913 + Po3q12 + P12903 — P13902 + P23qo1 = 0, (4.6)

where ¢;; are the Pliicker coordinates of I. The set of points in X satisfying 4.6 is a hyperplane.
This shows that ©(1,0) is the equivalence class of a hyperplane.

w(1,1) = {[W] € X : Iy intersects P! and is contained in P?}
= {[W] € X : lyy is contained in P?},

since two lines in P? always intersect. The set of lines contained in a P? corresponds to a plane in
X € P5. Indeed, a line in P? is determined by two points in P? up to scalar multiplication, thus
the dimension of the parameter space of lines in a P? is 2+ 2 — 1 — 1 = 2. This plane is called an
a-plane. This shows that ©(2,0) is the equivalence class of an a-plane.

w(2,0) = {[W] € X : lyy intersects p and is contained in P3}
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={[W] € X : lyy intersects p},

since the second condition is satisfied for all lines in P3. The set of lines through a point in P?3 is
a plane in X € P°. Indeed, a line through a point p is determined by p and another point in P3
up to scalar multiplication, thus the dimension of the parameter space of lines through p € P3
is 3 — 1 = 2. We call this plane a S-plane. This shows that (2,0) is the equivalence class of a
B-plane. Later, we will show that an a-plane and a -plane does not intersect.

w(2,1) = {[W] € X : Iy intersects p and is contained in P?}.

The set of lines that intersects a point p in a P? is a line in X € P5. Indeed, a line through a
point in a P? is determined by p and another point in P? up to scalar multiplication, thus the
dimension of the parameter space is 2 — 1 = 1. This shows that (2, 1) is the equivalence class of
a line.

w(2,2) = {[W] € X : lyy intersects p and is contained in P*}
={[W] € X :ly =P},

because P! is the only line containing P*. This shows that €(2,2) is the equivalence class of a
point.

The example shows that codimw(iy,i9) = 41 + i9. This equality holds in general for a
Grassmannian G(n + 1,d + 1). That is codimw(ig, ..., i) = ig + -+ + d0, [KL72, p. 1071].
We prove the results for G(2,4) in another way. The proof can be generalized to a general
Grassmannian.

Lemma 4.3.3. Let X = G(2,4). Then codimw(iy,ig) = i1 + io.

Proof. We will prove the lemma in two parts. First, we construct subvariaties Sj, ;, of X where
codim S(i1,49) = i1 + 9. Then, we prove that S;, ;, is an open subset of w(i1,ip). Thereafter, we
show that S;, ;, = w(i1,%0), which gives that codimw(iy,ig) = codim S;, ;, = i1 + io-

Let S;, i, be the subvariety of X given by the minors of the 2 x 4 matrix A;, ;, constructed in
the following way. Let aq = iq + d for d = 0,1. The agth column of A;, ;, is a pivot column with
the pivot element in the (1 — d)th row. The two remaining columns, denoted the c;th and the
coth columns, have entries in C, except when ¢; < a4 for some d. Then the dth entry of ¢; is
zero. We denote variable elements by % and get the following matrices.

1 0 *x x 1 x x 0
AO’O_<O 1 *> A2’0_<0 00 1)’

1 = 0 = 01 %« 0
A1,0—<0 01 *> A2,1—<0 00 1)’

010 = 0010
A“_(oo 1 *> A2’2_<0001)'

The minors of A; ;, is indeed a subvariety of X by construction. Furthermore, we have
Sivio ~ At We show that S, ;, is an open subset of a Schubert cycle w(iy,ip). Fix
the variables in A;, ;, and let U;, ;, be the corresponding point in X. Let V' be a vector space
with the basis given by

el =

— o O O
o= O O
O O = O
o O O
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Let U; = Span(ey,...,e;) and consider the flag Uy C Uy C Us C Uy = V. We will show that
dim(U;, io NUs—4y) > 2 and dim(U;, i, NUs—;,) > 1. Indeed, by construction, U, ;, is contained in
Uiy, since the first row of A;, ;, has a pivot element in the igth column. In the same way, U;, i,
intersects Us—_;, in a 1-dimensional subspace, since the second row of A;, ;, has a pivot element
in the (iy + 1)th column. This shows that S;, ;, satisfies the conditions for the Schubert cycle
w(i1,%0), which gives that S;, ;, C w(i1,40). For each S;, ;,, the Pliicker coordinate pgyq, = 1.
Indeed, the 2 x 2-minor obtained from the agth and a;th column is 1. This gives that S;, ;, is an
affine open subset of w(iy, ip), thus S;, ;, = w(i1,ip). [ |

In the following, we show some of the intersection products between Schubert cycles. In order
to compute the intersection we need two flags. Let F and G be two flags. We say that F and G
are generally transversely if each component of the flags intersect in intersect transversely. This
means that either codim Zx N codim Zg = codim Zr 4 codim Zg — n or Zr N Zg = (), where Zr
and Zg are subsets of the flags F and G, respectively.

Proposition 4.3.4.

Q(1,1) NQ(1, 1) = Q(2,2) (4.7)
Q(2,0) N Q(2,0) = Q(2,2) (4.8)
Q(2,1) NQ(1,0) = Q(2,2) (4.9)

Proof. Let F and G be two general flags, that is pr C P C P% C P? and pg C P}; - IP’(QJ c P

4.7 The points in wr(1,1) Nwg(1,1) are the points corresponding to the lines in P? that are
contained in ]P’%_- and ]P’é. There is only one line satisfying this, that is the line in the intersection.

4.8 The points in wr(2,0) Nwg(2,0) are the points corresponding to the lines in P3 that
intersects pr and pg. There is only one such line, that is the unique line through the points.

4.9 The points in wz(2,1)Nwg(1,0) are the points corresponding to the lines i P? that intersect
pF C ]P’%_- and IE%. There is only one such line. Indeed, IP%_- and Pé intersect in a point p, and the
line through p and pr satisfies the conditions.

The three cases are summarized in the following figure.

bF
Pg
P3 P3 br P3
]P>2
G pg
P P
|
Proposition 4.3.5.

2(2,0)NN2(1,0) =Q(2,1) (4.10)
Q(1,1)NN(1,0) =Q(2,1) (4.11)
Q(1,1)NN(2,0)=0 (4.12)
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Proof. Let F and G be two general flags, that is pr C ]P’}E C ]P’%E C P3 and pg C }P’é C ]P’é c P3.

4.10 The points in wr(2,0) Nwg(1,0) are the points corresponding to the lines that intersect
pr and ]P%. The lines intersecting pr correspond to a B-plane PP} C X and the lines that

intersect ]P% correspond to a hyperplane H[P% C X. Since X C P5, Pp; and ”HIF% intersect in a
line £. Since €2(2,1) is the equivalence class of a line, we are done.

4.11 The points in wr(1,1) Nwg(1,0) are the points corresponding to the lines that are
contained in ]P’Q}- and that intersect ]P’é. The lines contained in IP’%_- correspond to an a-plane
szf C X, and the lines that intersect IE% correspond to a hyperplane H[p% C X. Since X C P°,

Pﬂmzf and H[P% intersect in a line £. Since (2, 1) is the equivalence class of a line, we are done.

4.12 The points in wr(1,1) Nwg(2,0) are the points corresponding to lines that are contained
in IP’Qf and that intersect pg. A general point in P? is not contained in a given P2, so there is no
line satisfying the condition. |

We will now use the previous propositions to intersect two, three and four hyperplanes,
respectively. First, we have that

Q(1,0) N Q(1,0) = aQ(1,1) + b2, 0), (4.13)

for a,b € Z. Indeed, codim(w(1,0)) = 1, thus codim(w(1,0) Nw(1,0)) = 2, by Theorem 4.3.1.
This gives that Q(1,0) N (1,0) € A2(X) and is therefore a sum of the two generators of As(X).
To find a and b, we intersect Equation (4.13) with ©(2,0) and €2(1,1) in turn. On one hand we
get
2(2,0) N [2(1,0) N Q(1,0)] = Q2(2,0) N [af2(1,1) + bQ2(2,0)]
=af2(2,0)NQ(1,1) +b62(2,0) N Q(2,0)
=0,
Q2(1,1)N[2(1,0) N Q(1,0)[ = 1,1) N [af2(1,1) + b1, 1)]
=af2(1,1)NQ(1,1) +b6Q(1,1) N Q(2,0)

= a7
where we have used the previous results. On the other hand we get

Q(2,0) N [Q2(1,0) N Q(1,0)] = [2(2,0) N (1,0)] N Q(1,0)
=Q(2,1)NQ(1,0)
=Q(2,2)
= one point

Q(1,1)N[2(1,0)NQ(1,0)] = [2(1,1) NnQ(1,0)] N Q(1,0)
=Q(2,1)NQ(1,0)
=Q(2,2)
= one point

To summarize, we get that a = b = 1, which was what we were going to show.

We observe that the intersection of two hyperplanes are the sum of the two generators for
Aa(X). Intersecting three hyperplanes, we get

Q(1,0) N 2(1,0) N Q(1,0) = Q(1,0) N [Q2(1,1) + 2(2,0)]
=Q(1,0)NnQ(1,1) +Q2(1,0) N Q(2,0)
=0(2,1)+Q(2,1)
=20(2,1),
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a multiple of the generator for A;(X). Intersecting four hyperplanes gives

Q(1,0) N Q(1,0) N Q(1,0) N Q(1L,0) = Q(1,0) N 2602, 1)
=20(2,2).

To conclude, the intersection of four hyperplane is two points. Since X is of dimension 4 we
get that the degree of X is 2, which we need from the alternative proof of Theorem 4.2.6. The
intersection of hyperplanes can be visualized by coloring of boxes of dimension 2 x 2. Each box
corresponds to a Schubert class €(i1,79), where the number of colored boxes in the first and
second column is i1 and ig, respectively. We organize the boxes such that the ith row of boxes
(counted from zero) corresponds to the Schubert classes in A4—;. We also put a number next
to each box such that the sum of the Schubert classes in the ith row is the intersection of ¢
hyperplanes. We get the following boxes.

m

1 1

m I
a
a

For a general G(d+1,n+1), the boxes are of dimension d(n—d). In the proofs of Theorem 4.4.1
and Theorem 4.4.7 we will use a subvariety of G(3,6) and G(4,9). Therefore, we calculate the
similar scheme of boxes for G(3,6) and G(4,9). In this calculation, we will need a general result
about intersection of hyperplanes. Let Q, = Q(aq, ..., a0), where ag + - - + ag = a. We have the
following

Proposition 4.3.6. [KL72, p. 1073](Pieri’s formula) Let X = G(d+ 1,n+ 1). Then for any
Schubert class Qg € Ay (X) we have

QeNu= > Q
le|=la|+1
aj<cj<a;j-1Vj
The proposition says that the intersection between a general Schubert cycle 2, and a
hyperplane €2y is the sum of all Schubert cycles that can appear by coloring the box of €2, in
all ways such that the number of colored boxes in the left box is greater than or equal to the
number of colored boxes to the right. We get the following boxes for G(3,6).
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-,
FCeEr
EEFE

S
)
EM
—

42

We observe that the degree of G(3,6) is 42.
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Lastly, we compute the boxes for G = G(4,9).
1

o
1 1
l T
1 2 1
[]
L:: [ |
1 3 2 3 1

-
F::

L
LLs

kEE

70 90 o6

ik

84 216 168

] ]

525 42 252 300 768

EEEEE
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330 990 1155 660 2310 825 462 1320 1188 1320 462

| B E Y S g

i

1320 1485 2112 5775 4158 4455 462 2970 2640 2970 462

HE g

3432 8580 2574 15015 12870 11583 3432 8580 3432

6006 27027 21450 21021 48048 15015 12012 12012

6006 54054 96525 81081 75075 24024

60060 231660 171600 180180 24024

291720 583440 204204

875160 787644

1662804

1662804

We observe that the degree of G(4,9) is 1662804.
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4.3.2 Chern Classes of Vector Bundles on Grassmannians

Some of the Q(ig,...,ip) are special in the sense that they generate A,(X) under multiplication.
We will see that this will be the ones that correspond to the so called Chern classes of some
vector bundles on X. Before we investigate this relationship, we need the definition of a general
vector bundle on a variety X.

Definition 4.3.7. Let X be a variety and V' an n-dimensional vector space over C. A wvector
bundle Vx on X of rank n is a variety together with a morphism f : Vx — X such that for an
open affine covering X = (J;c; U; then f~1(U;) ~ U; x V. In addition, for

UiNUj) x V <2 - U:nUy) 2 (U0 U) x V

pjod (U;NU) x V — (UiNUj) x V
(x7v) = ($7wij(v))a

1;; has to be a linear map.

A global section on X is a morphism s : X — Vx such that f os =idx. Explicitly, for all
z € X, s(x) = (z,v) for a fixed v € V. We say that s;(z) = (z,v1) and s2(x) = (z,v2) are
linearly dependent if vy,vy € V are linearly dependent. We are now ready to define the Chern
classes of a vector bundle on X.

Definition 4.3.8. Let X be a variety of dimension N = (n —d)(d+ 1), Vx a vector bundle on X
of rank n and s; : X — Vx for i € {1,...,n} general global sections on X. We define the Chern
classes of Vx, denoted ¢;(Vx) for i € {1,...,n}, as

a(Vx) =[{z € X : si1(x),..., sp(x) are linearly dependent}],
co(Vx) =[{z € X : s1(x), ..., sp—1(x) are linearly dependent}],

¢i(Vx)=[{z € X :s1(z),..., Sn—it1(x) are linearly dependent}],

cn(Vx) =[{zr € X : s1(x) = 0}].
For i > n, we set ¢;(Vx) = 0. We also set ¢o(Vx) = 1.

Let V be a vector space and let G = G(d + 1,V). We will construct three vector bundles on
G. Firstly, we define the trivial vector bundle Vg =V x G = {(v,[U]) : v € V,U C V}. It is
called the trivial vector bundle since the fiber over every point [U] € G is V. Next, we define
the sub-bundle U = {(v,[U]) : v € U C V'} C Vi. Since the fiber over a point [U] € G is U, the
rank of U is d + 1. The sub-bundle is indeed a vector bundle, [Fis16, Proposition 3.3|. Third,
we have the quotient bundle @ = Vi /U of rank n — d. Since both Vi and U are vector bundles,
Q is obviously also a vector bundle. By construction, these vector bundles fit in a short exact
sequence:

0 > U Ve Q > 0.

Dualizing, we also get the vector bundles Q*, V3 and U*. Since the dualizing is exact on vector
bundles, we have the following short exact sequence:

0 o % u*

Vv
e
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We are going to prove that there is a correspondence between the Chern classes of Q and U* and
the Schubert cycles of G. In order to do this, we look at the global sections on G.

Let s : G — Vg be a global section and let ¢ : Vo — Q be the quotient map. We set
¢(v) = [v]. Since s([U]) = (v, [U]) for a fixed v € V', we get that pos: G — Q is a global section.
Indeed, ¢ o s([U]) = ([v], [U]). The argument is summarized in the following diagram.

Vo —2> 0
1
G

Now, let s : G — V{3 be a global section and let v : V3 — U™ be the quotient map. By abuse
of notation we say that s([U]) = ([U], s), where s : V' — C is a linear map. The composition 1) o s

is a global section. Indeed, ¥ o s([U]) = ([U], s|;;), where s|;; : U — C is the restriction of s to U.
The argument is summarized in the following diagram.

vy — u
T
G

We are now ready to prove the relationship between the Chern classes of U* and Q and the
Schubert classes of G. We begin with the Chern classes of U*.

0 >y U

~
e

~
e

0 o

Proposition 4.3.9. Let V' be an (n+ 1)-dimensional vector space and let G = G(d+1,V'). Then

1) canU) =9(1,....1) € A(Q),
2) cal*) = Q(1,...1,0) € A(G),
(3) cl(U*) = Q(1,0,...,0) € A (G).

Proof. Let s; : G — V& and s3], =vos;: G —U* fori € {1,...,d+1} be general global section
as described above. By Definition 4.3.8, we have that

ce(U*) =[[Ul€G: sl‘U([U}), . .,sd_e+2|U([U]) are linearly dependent] .

The global sections are linearly dependent if the linear maps s;;; : U — C are linearly dependent.
Therefore, we get that

ce(U*)=[[U] G Sl}U’ cee Sd_€+2|U are linearly dependent] (4.14)

where s;|;; are linear maps. Given s1 : V' — C, the kernel of s; is a n-dimensional subspace of V.
Generally, n + 1 linear maps s; : V — C induce a flag U; C --- C Up_1 C U, C V, where U; is
the i-dimensional subspace of V' that disappears on s;, s;—1, ..., 1. Assume we have n 4 1 such
linear maps and the corresponding flag.

(1) Let e = d + 1. From Equation (4.14) we get that
cap1(U") =[{[U] € G: Sl‘U =0}].

In other words, cgy1(U*) is the equivalence class of the points [U] € G such that for all u € U we
have s;(u) = 0, i.e. the set of points [U] € G such that U C kers; = U,,. We have established
that

camU) =[{[U] € G U C U}
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Now, we want want to show that the set of [U] € G such that U € U, is a Schubert cycle
w(1,...,1). Indeed, we get from Equation (4.5) on page 29 that

w(l,...,1)={[U] € G:dim(UNU,_x) >d+1—k for all ksuch that 0 <k <d}.

For k = 0 we get the requirement dim(U NU,,) > d + 1, which is fulfilled when U C U,. For
k > 1 the requirement is is trivially fulfilled. Indeed, since U C U,, we get that the intersection of
a d + 1-dimensional subspace U and a subspace of U, of dimension n — k£ has dimension at least
(d+1)+(n—k)—n=d+1—k. Tosummarize, w(1,...,1) is the points [U] € G such that
U C Uy, which was what we were going to show. Consequently, cgy1 = Q(1,...,1).

(2) Let e = d. From Equation (4.14) we get that
Cd(u*) = [{[U} e G 81|U = )\SQ}U, AE C}] .
Let (as1,...,a;4+1), a;j € C, be the matrix representation of s;|;; and let
A— <6111 al,d+1> '
a1 ... Q2441
Assume U C V such that s1|; = As2|;;. We then have that dim(ker A) > d. Since ker A C U and
ker A C U,,—1, this means that dim(U N U,—1) > d. We have now proved that
cU*)=[{[U] € G:dimUNU,_1) > d}].

Now, we want to show that the set of points [U] € G such that U € U,_; is a Schubert cycle
w(l1,...,1,0). Indeed, we get from Equation (4.5) on page 29 that

w(l,...,1,0) ={[U] € G :dim(U NUp41) > d+1 and
dim(UNU,_x) >d+1—k for all ksuch that 1 <k < d}.

The condition that dim(UNUp+1) > d+1 is obviously fulfilled since U is assumed to be a subspace
of V.=Up41. For k =1, we get the condition that dim(U NU,—1) > d. For k > 2, we get the
condition that dim(U NU,_x) > d — 1 — k, which is trivially fulfilled when dim(U N U, —1) > d.
Indeed, the dimension of the intersection between U and U,,_; C U,_1 of dimension n — k is at
least d+ (n — k) — (n—1) =d+ 1 — k. In summary, w(1,...,1,0) is the set of points [U] € G
such that dim(U NU,,—1) > d. Consequently, we get that cq(U*) = Q(1,...,1,0).

(3) Let e = 1. From Equation (4.14) we get that

aU)=[{U]eG: Sl‘U’ e ,sdH‘Uare linearly dependent}] .

As above, we let (a1, ...,a;4+1), ai; € C be the matrix representation of s;|;; and let
a1l .. Q1d+1
A= :
ad+1,1 ---  Qd4+1,d+1

Assume U C V such that sq|;,. .., Sqr1|y are linearly dependent. Then dim(ker A) > 1. Since
ker A C U and ker A C U,,_g4, this means that dim(U N U,_q > 1). We have proved that

aU) = [{[U] € G : dim(U N Up_g) > 1}].

Now, we want to show that the set of points [U] € G such that dimU NU,,_q) > 1} is a Schubert
cycle w(1,0,...,0). Indeed, from Equation (4.5) on page 29, we get that

w(1,0,...,0) ={[U] € G :dim(U NU,_4) > 1 and
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dim(UNUpy1-k) > d+ 1 —k for all k such that 0 < k < d}.

For k > d, the requirement is fulfilled. Indeed, the dimension of the intersection of a d 4 1-
dimensional subspace U and a subspace of dimension n+1—k is at least d+1+(n+1—k)—(n+1) =
d+1—Fk. The requirement for k = d is that dim(UNU,,_4) > 1. Therefore, we get that w(1,0,...,0)
is the set of points [U] € G such that dim(U NU,,_q) > 1, which was what we were going to show.
As a consequence, ¢1(U*) = Q(1,0,...,0). [ ]

Now, we prove the relationship between the Chern classes of Q and the Schubert cycles of G.
Proposition 4.3.10. Let V' be an (n + 1)-dimensional vector space and let G = G(d+ 1,V).
Then

(1) en—d(Q) = Q(n—d,0,...,0) € A.(G),
(2) n-d-1(Q) =Q(n—-d—1,0,...,0) € A(G),
(3) c1(Q) = Q(1,0,...,0) € A.(G).

Proof. Let s;: G — Vg and ¢pos; : G — Q fori € {1,...,n — d} be general global sections as
described above. By Definition 4.3.8, we have that

ce(Q)=[{[U] € G:¢osi([U]),...,1¥08n—g—et1([U]) are linearly dependent}].

Recall that ¢ o s;([U]) = ([v:], [U]) for v; € V. We have that 1 o s;([U]) are linearly dependent if
[v;] are linearly dependent. Therefore, we get that

ce(Q) =[{[U] € G: [v1],..., [Un—d—e+1] are linearly dependent}|. (4.15)

Given v; € V. Then vy span a 1-dimensional subspace U;. Generally, n+ 1 vectors v; € V induce
aflag Uy C ...Uy_1 C U, =V, where U; the span of vy,...v;.

(1) Let e = n — d. From Equation (4.15) we get that
en-d(Q) = [{[U] € G : [n] = 0}].

In other words, ¢,—4(Q) is the equivalence class of the set of points [U] € G such that U; € U.
We have established that

cn-a(Q)=[{[U] € G:U; CU}.

We want to show that the set of [U] € G such that U; C U is a Schubert cycle w(n —d,0,...,0).
Indeed, from Equation (4.5) on page 29, we get that

w(n —d,0,...,0) ={[U] € G:dim(UNU;) > land
dim(UNUpy1-k) >d+1—Fk for all kst.0<k<d}.
The requirement for k = d is that dim(U NU;y) > 1, i.e. U contains U;. The requirement for
k < d is trivially fulfilled. Indeed, since U C U,1 by assumption, we get that the intersection
of a d 4+ 1-dimensional subspace U and a subspace U,,11_ of dimension (n 4+ 1 — k) is at least
d+1)+(n+1—-k)—(n+1) =d+1—k. Tosummarize, w(n —d,0,...,0) is the set of

points [U] € G such that Uy C U, which was what we were going to show. Consequently,
Q(n—d,0,...,0) =c,—q(9Q).

(2) Let e =n —d — 1. From Equation (4.15), we get that

cn-a-1(Q) = [{[U] € G : [v1], [v2] are linearly dependent}].
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In other words, ¢,_4—1(Q) is the equivalence class of the set of points [U] € G such that there
exists an A € C such that [v1] + A[va] = 0. This is equivalent to require that v; + Avy € U. This
show that ¢,—4-1(Q) is the equivalence class of the set of U such that dim(U NUz) > 1. We have
established that

Cn—d—l(Q) = [{[U] eG: dlm(Uﬂ UQ) > 1}] .

We want to show that the set of points [U] such that dim(U N Usz) > 1 is a Schubert cycle
w(n —d—1,0,...,0). Indeed, from Equation (4.5) on page 29, we get that
wn—d—1,0,...,0) ={[U] € G:dim(U NUz) > 1 and
dim(UNUyy1-k) > d+1—k for all ks.t.0<k<d}.

The requirement for &k > d is as above trivially fulfilled. The requirement for k£ = d is that
dim(U NUz) > 1. Consequently, Q(n —d —1,0,...,0) = ¢,—q-1(Q).

(3) Let e = 1. From Equation (4.15), we get that We have by definition that
c1(Q)=[{[U] € G:[vi],...,[vn—q] are linearly dependent}]

In other words, ¢1(Q) is the equivalence class of the set of points [U] € G such that there exists
Ai € C such that Aj[v1] + Aafv2] + -+ + An—alvn—a) = 0. This is equivalent to require that
A1v1 4 Agva + -+ - 4+ A—qvn—q € U. This shows that ¢;(Q) is the equivalence class of the set of U
such that dim(U NU,,_4) > 1. We have established that

c1(Q) = [{[U] € G : dim(U NUp—q) = 1}].

We want to show that the set of points such that dim(U N U,_4) > 1 is a Schubert cycle
w(1,0,...,0). Indeed, we showed in the proof of Proposition 4.3.9 that w(1,0,...,0) is the set of
points [U] € G such that dim(U NU,_4 > 1. Consequently, 2(1,0,...,0) = ¢1(Q). [ |

Corollary 4.3.11. ¢, ¢(Q)™*' =Q(n —d,...,n—d) = cg (U*)"
Proof. For the first equality, we use that
cn—d(Q)=Q(n—d,0...,0),

which is the equivalence class of the points [U] € G such that U contains a given 1-dimensional

subspace of V. Then ¢,_4(Q)%*! is the equivalence class of the points [U] € G such that U

contains d + 1 general 1-dimensional subspaces. There is only one d + 1-dimensional subspace U

that fulfills this condition, that is the vector space spanned by the 1-dimensional subspaces.
For the second equality, we use that

can(U) = Q(1,...,1),

which is the equivalence class of the points [U] € G such that U is contained in a n-dimensional
subspace. Then cqy1(U)"~? is the equivalence class of the points [U] € G such that U is contained
in n — d n-dimensional subspaces. There is only one such d + 1-dimensional U, that is the vector
space in the intersection of the n-dimensional vector spaces. |
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4.3.3 The set of Isotropic Subspaces as a Subvariety of a Grassmannian

In the proof of Theorem 4.2.6 we used that the set of 2-dimensional isotropic subspaces of a 4 x 4
skew symmetric matrix corresponds to a hyperplane in G(2,4). Now, we will show the general
correspondence between the set of k-dimensional isotropic subspaces of an (n + 1) x (n + 1) skew
symmetric matrix and G(k,n + 1).

To describe the set of isotropic subspaces as a subvariety of a Grassmannian we need the
concept of the second wedge product. Let V be a vector space of dimension n + 1. Then the
second wedge product of V is

NV =VeV/iew+weu,

for v,w € V. We have further that dim(A%V) = (n'gl)n. Indeed, we have that V @ V =
Sym V @ A%V, where Sym V is the symmetric algebra over V, i.e. SymV =V aV/vw—wdv.

We have that dim(V @ V) = (n + 1)? and dim(Sym V) = w Then

dim(A?V) = dim(V ®@ V) — dim(Sym V)

IO Gl ) il G
2
(n+1)n.

2

We have the following correspondence between skew symmetric matrices and A%(V).
Lemma 4.3.12. Let V' be a vector space of dimension n+1. Then there is a 1 — 1 correspondence

between (n+ 1) x (n+ 1) skew symmetric matrices and elements in A2(V*).

Proof. Let A be an (n+ 1) x (n+ 1) skew symmetric matrix and consider

¢: NV = C

(v, w) — vAw?

This shows that ¢ € A%(V*). Consider now ¢ € A2(V*). Then v is a bilinear map, which indeed
is represented by a unique matrix. Further we have that ¢ (v, w) = —¢(w,v). This gives that
vAwT = —wAvT. On the other hand we also have that

vAw! = (vAwh)T

= wATyT.

In summary, we get that wATv?T = —wAv”,| which is fulfilled if and only if A = —AT. This
shows that A is skew symmetric. [ |

We will prove that the set of isotropic subspaces corresponds to one of the Chern classes of
AZ(U*). In order to do this, we first look at the global sections s : G — A2(U*). In the same
way as a global section sy : G — U* is induced by a global section s : G — V3, a global section
sy : G — A2U* is induced by a global section s : G — /\QVC*,. Indeed, we have that the following
sequence is exact.

0 —— U@ Q") ®A2Q* —— A2V y AN2U* 0 (4.16)

Let s : G — A2(V{) be a the global section such that s([U]) = ([U],s), where s : A>Vg — C.
Let ¢ : A2V} — A?U* be the quotient map we get from Equation (4.16). Then ¢ o s is a global
section. Indeed, ¢ o s([U]) = ([U], s|;), where s|; : A2U — C.

We are now ready to prove the following
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Proposition 4.3.13. Let V be an (n + 1)-dimensional vector space, A be an (n+1) x (n+1)
skew symmetric matriz, HZH the set of (d + 1)-dimensional isotropic subspaces to A and let

G = G(d+1,V). Then [HE] = cpu(A2U*), where m = @ and HE™ is the subset of G
corresponding to Hfﬁ'l .

Proof. Let s : G — /\QVC*, be a section as described above, where s : /\QVG* is represented by A
and let s|;; = ¢ os. Then

em(NUY) = {[U]eqG: S‘U = 0}]
= [{[U] €G- A‘U =0}].

Since {[U] € G : A|; = 0} is the set of (d + 1)-dimensional isotropic subspaces to A, we are
done. -

4.3.4 Computation with Chern Classes

The Chern classes of A2(U*) corresponds to the Chern classes of U*. In the this section, we show
how we can find the explicit correspondence. We will also describe how to compute with Chern
classes.

Let Vx be a vector bundle of rank n. We then define the Chern polynomial as the polynomial

n

a(Vx) = a(Vx)th € AJ(X)[t.
1=0

When n = 1 we call Vx a line bundle, denoted £, and we have ¢;(£) = 1+ ¢1(£)t. When € is a
direct sum of line bundles £; we have that

(&) = HCt(ﬁz’), (4.17)

[Ful98, p. 51]. This relation will give a way of computing with Chern classes. The vector bundles
we are considering are however not direct sums of line bundles, but because of the splitting
principle introduced below we can use the same techniques for computing as we have for a direct
sum of line bundles.

Theorem 4.3.14. [Ful98, p. 51](Splitting principle) Any identity among Chern classes of bundles
that is true for bundles that are direct sums of line bundles is true in general.

Before we use the splitting principle to compute the relations between a vector bundle £ and
A2E we need the following.

Lemma 4.3.15. Let E = @ L;. Then N6 =@,_; Li ® L;.

1<J,
Proof. Given & = @]_, L; we have that EQE = Po<; j<, Li © Lj. Let u = (ln,...,l,) and
u = (l4,...,1,). Then -

w@u = (Wl Ll Il

W @u= (lllll, .. .,l;lj, R ,l;ln>
Then u®u'+u'®@u = 0 gives that [;l’ +1jl; = 0 for 0 <4, j < n. Assume i = j. Then [;[;+1}l; = 0

for every 0 < ¢ < n, which is fulfilled if and only if £; & £; = 0. Assume ¢ # j. Then we have
that lil; +1}l; = 0. This is fulfilled if and only if £; & £; = —L; & L;. We therefore have that

NE=ERENDw+wDdv=EDLi®L;.

1<g,
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Let now &€ be a vector bundle of rank n. By the splitting we can assume the £ splits into a
direct sum of n line bundles. We write the line bundles as Og(«;), where «; is called the Chern
root. The Chern roots are used to compute relation between Chern classes. When £ is a sum of
line bundles, then a; = ¢1(L£;), but when £ is not a sum of line bundles, then the Chern roots has
no geometric origin.

E=0¢(a1)® Oc(az) @ - @ Og(ay).
By 4.17 and the splitting principle we have that

() =1+ at)(1+agt)...(1+ ant),
which gives

1 =a1t+ag+ -+ ap,

Co =10 + - F oo+ apo1Q,

Cp — 109 ...0,
By Lemma 4.3.15 we have that

AN(E)=0g(ar +a2) @ ®Og(a; + ;) @ @ Oglan—1 + o),

and
dt(/\2(€)) =1+ (a+at)... A+ (vi+aj)t)...(1+ (an-—1+ an)t).
This gives
di = (ai+a))
1<J
do = Z (ai + Oéj)(O[k + ozl)
1<j,k<l
dm = H(al + Oéj),
1<j
where m = % We have now expressed both ¢; and d; in terms of the Chern roots of £. From

these equations we can express d; in terms of ¢;. We give an example in the following

Lemma 4.3.16. Let £ be a rank 2 vector bundle. Let c; be the Chern classes for £ and d; the
Chern classes for N2°E. Then ¢y = d.

Proof. By the splitting principle we can assume that £ splits into a direct sum of two line bundles,
that is,

&= 0¢(a) & Oc(B).
We then have that

(&) = (1+at)(1 + pt),
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which gives

cp=a+f

co = af
We have further that

N(E) = Ogla+ B)
and
(N (€)) = (1 + (a+ B)t).

This shows that dy = a+ 8 = ¢;. [ |

We observe that c¢; is the same hyperplane that we found in the proof of Lemma 4.2.5 on
page 25.

We now explain how we can find relations among the Chern classes of U*. First we need a
proposition.

Proposition 4.3.17. [Ful98, Theorem 3.2 e)| If

0 >(€1 >(€2 >83

~
o

is a short exact sequence of vector bundles, then c;(E2) = ci(E1)ci(Es).

Corollary 4.3.18. ¢;(U*)c:(Q*) = 1.

Proof. Since

is exact, we have c;(U*)ci(Q*) = ¢;:(V4). We have to prove that c.(V%) = 0 for all e # 0. Indeed,
let s; : G — V& be general global sections, where s;([U]) = ([U], s;) for s; : V.— C. Then

ce(VE) =[[U] € G: s1([U)]),...Sn—et+2([U]) are linearly dependent]
=[[U] € G : s1,...8p—et2 are linearly dependent]

There are no subsets [U] where n — e + 2 general linear maps on an n + 1-dimensional vector
space is linearly dependent. This gives that c.(V%) = 0 for e # 0. |

We show how we can use this correspondence to compute relations between the Chern classes
of U*.

Example 4.3.19. We use the technique on G(2,4). We want to find the relations between the
Chern classes of U*.

ct(QF)er(U*) = (14 dit + dot?) (1 + c1t + cot?)
=1+ (dy + 1)t + (do + c1dy + o)t + (crd + cod))t® + (codo)t*
=1.

This equality is fulfilled if and only if

di+c=0
dy+crdi +c2 =0
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ci1dog +cod; =0
ngg =0

The first equation gives d; = —c;. Using this relation in the second equation gives ds = ¢? — ¢a.
The two last equation then gives
c:f' —2ci1c5 =0

C%CQ — cg = 0.
Multiplying the first of the relation with ¢; gives that
cil = 20%02 = 203,
and using that ¢ = 1 by Corollary 4.3.11 we get back the relations

&t =0(1,0" =2,
ey = Q1,002 N0Q(1,1) = 1.

4.4 Application to Skew Symmetric Matrices of Dimension 4, 6
and 9

We are now ready to prove two theorems about skew symmetric matrices of dimension 6 and 9
and give another proof of Theorem 4.2.6. We will prove the theorems separately, but in all cases
we will use the techniques developed in the previous section.

4.4.1 Skew Symmetric Matrices of Dimension 4 - revisited

We use the same strategy that we used in the alternative proof of Theorem 4.2.6 in Section 4.2
on page 26, that is we want to show that there exists a common 2-dimensional isotropic subspace
for a basis for a 3-dimensional vector space W of 4 x 4 skew symmetric matrices.

Alternative proof of Theorem 4.2.6. Let W be a 4-dimensional vector space and let W be a 3-
dimensional vector space of 4 x 4 skew symmetric matrices. Let Ay, As and A3 be a basis for W
and let X = G(2,V). We have that 4;|; € A2U*. Since dim A?U* = 1, the isotropic subspaces
U CV to Ay is c1(A*U*). We have from Lemma 4.3.16 that ¢ (A*U*) = ¢1(U*). We have a
common isotropic subspace we for A1, Ay and Ajz is ¢ (U*)? is non empty. Indeed, we have that

c1 (L{*)3 = c:%
= 20(2,1).

Since cic; = 2, we have that there exists a conic of common isotropic subspaces for Ay, Ay and

As. ]

4.4.2 Skew Symmetric Matrices of Dimension 6
The result in dimension 6 is the following

Theorem 4.4.1. Let W be a 3-dimensional vector space of 6 x 6 skew symmetric matrices. Then
there exists two 3-dimensional isotropic subspaces to W.

We will now prove this theorem, but first we need four lemmas.

Lemma 4.4.2. Let W be a 3-dimensional vector space of 6 X 6 skew symmetric matrixz and let U
be a 3-dimensional isotropic subspace for W. Then we can choose a row basis for W such that
as4 = ags = a4 = 0 for every matriz in W.
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Proof. Let the row basis be such that for u,v,w € U we have that

u=(0,0,0,1,0,0),
U = (07 07 07 07 17 0)7
w = (0,0,0,0,0,1).

Pick A € W. Then

wAvT = asy,
wAw? = ass,

UAU]T = Q45.

As a consequence, agq = ass = ass = 0 if uAv? =0 for all u,v € U. [ |

By Proposition 4.3.13, the equivalence class of the set of all 3-dimensional isotropic subspaces
to a 6 x 6 skew symmetric matrix is c3(A2U*). We now express c3(A%U*) in terms of the Chern
classes of U* by using the following

Lemma 4.4.3. Let £ be a rank 3 vector bundle. Let c; be the Chern classes for € and d; the

Chern classes for A2E. Then d3 = ci1co — c3.

Proof. We use the strategy we used in Lemma 4.3.16. Since £ is a rank 3 vector bundle, we get
that

61204—1—5—{—'}/,
CQZQB+Q7+B’Y,
CSZQﬁrY?

where a, 3,7 are the Chern roots of £. We then have that

d3 = (a+B)(a+7)(B+7)
= (a+B)(af +ay+ By +17)
= a(af + ay + B7) + B(af + ay + By) + y(af + ay + By) — afy
= (a+B+7)(aB+ay+ By) — apy
= C1Cy — C3

Lemma 4.4.4. Let G = G(3,6) and let c1,ca,c3 be the Chern classes for U*. We then have the
following relations.

3ccy — 2c1c3 — c‘ll —3=0

20103 — c?cz — 2cac3 + 0%03 =0
2c1c9c3 — c‘;’03 — c§ =0
Proof. We use the strategy described above and get:
ca(Q)er(U™) =1+ (1 +di)t
+(d2 4+ c1dy + ¢ t2

)

)
+(ds + c1da + cady + c3)t
+(c1d3 + cada + c3dy)t

w

4
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+(02d3 + ngg)t5

+63d37f6 =

where d; are the Chern classes of Q. The equality holds if and only if the following equalities

hold:

c1 +dy =0,

do + c1dy +c2 =0,
c1dy + cady + c3 = 0,
c1ds + cady + c3d; = 0,
cads + c3da = 0,

c3ds = 0.

Solving these equation recursively gives the relations in the lemma.

Proposition 4.4.5. Let G = G(3,6) and let c1,co,c3 be the Chern classes for U*.

the following number of intersection points.

cf =42 .
6102 —
CICQ =21
Ak =
16263 =
c?c% =11 s
6 €163 =
0103 = 3
33 _ CoC3 =
€16y = 2
4 C1C2C3
cicec3 =3

=1

We then have

Proof. Consider the relations given in Lemma 4.4.4. The first relations we multiply with the five
monomials of degree three, i.e. c?, c‘?cz, clcg, 0%03, cocs. The second and third relation we multiply
with the monomials of degree four, ci,c?cs,c3, cic3, and three, c3, c1co and c3, respectively. We

get the following equations.

30{02 —2c8¢c3 — ] —jc3

=0

30102 2010203 CICQ — c‘;’cg =

36162 — 2616203 — C?cg — 6163 =

3cieacs — 26?6% —Ses — Acdez =

3cicies — 2c1c005 — c‘llch;:, — ez =

20102 — CICQ — 20110263 + c(fc?, =

5

20102 0102 2010203 + 010203 =

3

201c2 — ey —2c3c3 + Aches =

2

2610203 — c‘llczc;g — 2010263 + 0103 =

26%6203 — C?Cg - c:{’c% =

2 2 4 2
2cicye3 — cjcacs — creacy =

2 3 .2 3

2ci1c9c5 — cjc3 — 3 =
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-1 3 -1 -2 0 0 0 0 0 0O 0 ©0 e
0O -1 3 0 -1 -2 0 0 O 0 0 O cleo
o 0 -1 0 3 0 -1 -2 0 0 0 0 cycs
o 0 0 -1 0 3 0 -1 -2 0 0 O Ses
o 0 0o 0o 0 -1 0 3 0 -1 -2 0 cics
o -1 2 1 0 -2 0 0 0 0 0 O cleses | 0
o 0 -1 0 2 1 0 -2 0 0 0 O cicy |
o 0 0 0O -1 0 2 1 0 -2 0 0 cicdes
o 0 0 0O O -1 0 2 1 0 -2 0 cics
o 0 0 -1 0 2 0 0 -1 0 0 O cies
o 0 0 0 0 -1 0 2 0 0 -1 0 c1cacs
o 0 o 0o 0 0 0 0 -1 0 2 -1 s
Row reduction gives
9 3
cy = 42¢c

. ! 2 clcg‘ = 30§

cica = 21cy 9 9 3

5 9 3 cicyes = 2c3

0102 = 11C3 32 3

6 3 €163 = €3

cic3 = 9¢3 3 3

3 3 3 6263 == 63

cicy = 6c3 cene? —

1€2 -
cleaes = 3c§ s s
Since ¢3 = 1 by Corollary 4.3.11 we have the relations in the lemma. ]

We are now ready to give a proof of Theorem 4.4.1 on page 47.

Proof of Theorem 4.4.1. We want to prove that there is a common 3-dimensional isotropic
subspace for a basis of matrices in W. Let Ay, Ao and Ag be a basis for W. The basis matrices
A1, Ay and Az has a common isotropic subspace if the intersection

(N2 (U))?
is non empty, which is the case. Indeed,
(crca — ¢3)° = iy — 3cicses + 3eieach — ¢
=6¢3—3-2¢3+3c -3
= 20%
= 2.
This means that A;, As and A3 have two common 3-dimensional isotropic subspaces. |

Remark 4.4.6. Let I be the ideal generated by the relations in Lemma 4.4.4. Then [ is the is the
apolar ideal of a homogeneous polynomial f in c¢1, co and c3 of degree 6. We want to show this by
finding the polynomial f. Our strategy is to use the relations in Lemma 4.4.4 as a differentiation
operator on a polynomial with unknown coefficients. We then get a linear system of relations
between the coefficients of the polynomial which we solve using row reduction. Let

9 7 6 5 2 4 3.3 32 2 2 4 2 3 3
[ = apci+aicicatarcicstascicitascicacstascicytascicst+arcicacatagcicytagcicacz+aipcycs+a11cy

be a polynomial, where a; € Z. We will now differentiate f with respect to each of the relations
in Lemma 4.4.4. We consider the relations as polynomials in Z[d;, da, d3]. We start with the first
relation.
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Let g1 = 3didy — 2d1ds — df — d3. Then

f(g1) =126a;¢; + 120a3c;ca + 36ascics + bdascics + 12azcacs
— 12agc‘;’ — 8a4c:{’cQ — 12a60%03 — 4a7clcg — 4dagcocs
— 3024&00? — 840(116?02 — 360a20%03 — 120a30103 — 24aycocs
— 2a30“;’ — 6a5ci’02 — 2@70?03 — 12agclc§ — bajgcacs

Gathering the coefficients of each of the monomials c?, ci’cz, 0%03, clcg and cocg gives the following
relations between the coefficients for g; to be apolar to f.

—3024ag + 126a; — 12a9 — 2a3 = 0, ( )
—840a; + 120a3 — 8ay — 6as = 0, ( )
—360a2 + 36a4 — 12a6 — 2a7 = 0, (4.20)
—120a3 + 54as — 4a7 — 12ag = 0, ( )

—24a4 + 12a7 — 4ag — 6a19 = 0. (4.22)

Let now go = dld% - di{’dg — 2dayds + d%d;g. Then

f(g2) :20agc‘11 + 36@50%02 + 8arcics + 24agc%
- 210@10‘11 — 120&36%62 — 24a4c1c3 — 18a5c§
— 2(],46111 — 4a7c%02 - 4a96163 — 6(1106%
+ 30@201l + 120,40%62 + 12agcic3 + 2a7c§

Gathering the coefficients of each of the monomials cf, cZco, c1c3 and c3 gives the following relations
between the coeflicients for go to be apolar to f.

—210a1 + +30as + 20ag — 2a4 = 0, (4.23)
—120a3 + 12a4 + 36as — 4a7 = 0, (4.24)
—24a4 + 12ag + 8a7 — 4ag = 0, (4.25)
—18as + 2a7 + 24ag — 6a19 = 0. (4.26)

Let now g3 = 2d1dads — d?dg — d%. Then

f(9g3) :86140:{’ + 8arcica + 4ages
— 120(126? — 24a4c1c0 — 12agc3
— 20,66:1') — 2@90162 — 6a1103

Gathering the coefficients of each of the monomials ¢$, c1co and c3 gives the following relations
between the coeflicients for g3 to be apolar to f.

—120a2 + 8a4 — 2a¢ =0 (4.27)
—24a4 + 8a7 — 2a9 =0 (4.28)
—12a¢ + 4a9 — 6a11 =0 (429)
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We make the coefficient matrix of the system of equations from from the relations 4.18-4.29.

-3024 126 12 -2 0 0 0 0 0 0O 0 O ao
0 —840 0 120 -8 —6 0 0 0 0 0 0 a1
0 0 —360 0 36 0o -12 -2 0 0 0 O a2
0 0 0 —-120 O o4 0o -4 -12 0 0 O as
0 0 0 0 -24 0 0 12 0 -4 -6 0 a4
0 —210 30 20 -2 0 0 0 0 0 0 O as | _
0 0 0 —-120 12 36 0 -4 0 0 0 O ae '
0 0 0 0 -24 0 12 8 0O -4 0 O ar
0 0 0 0 0 -18 0 2 24 0 -6 0 ag
0 0 —120 0 8 0 -2 0 0 0 0 O ag
0 0 0 0 -24 0 0 8 0O -2 0 O aio
0 0 0 0 0 0 =12 0 0 4 0 -6 ar

Row reducing this matrix and setting ay; = % gives the solutions

42
aoza 1
21 a6 = 3191
alzﬁ 2
5 a7 = 9191
agza 3
11 a8 =
(Igzﬁ 1
3 a4 =5
a4:a 1
6 al():g
a5:ﬁ

We recognize the numerator of the coefficients as the number of points we get when intersecting
the given Chern classes, and the denominator as the factorial of the degree of each variable ¢;. This
means that differentiating the polynomial with respect to a variable czicgclg where ¢ +j + k =9,
gives the number of intersection points of cllc%clg’“

4.4.3 Skew Symmetric Matrices of Dimension 9
The result in dimension 9 is the following

Theorem 4.4.7. Let W be a 3-dimensional vector space of 9 x 9 skew symmetric matrices. Then
there exists a surface of degree 38 of 4-dimensional isotropic subspaces to W.

We will now prove this theorem, but first we need four lemmas.

Lemma 4.4.8. Let W be a 3-dimensional vector space of 9 X 9 skew symmetric matriz and
let U be an isotropic subspace for W. Then we can choose a row basis for W such that
agr = ags = Agg = a7y = arg = agg = 0 for every matriz i W.

Proof. Let the row basis be such that for u,v,w,t € U we have that

u=(0,0,0,0,0,1,0,0,0
v =(0,0,0,0,0,0,1,0,0
w = (0,0,0,0,0,0,0,1,0
t=1(0,0,0,0,0,0,0,0, 1

)

)

)

~—_ — — ~—
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Pick A € W. Then

wAv” = agr,
wAw” = ags,
uAtT = ag9,

vAw! = arg,

’UAtT = aro9,
’wAtT = asg.
As a consequence, agr = agg = Ggg = a8 = 79 = agg = 0 if wAvT =0 for all u,v € U. [ |

By Proposition 4.3.13, the equivalence class of the set of all 4-dimensional isotropic subspaces
to a 9 x 9 skew symmetric matrix is cg(A2U*). We now express cg(A%U*) in terms of the Chern
classes of U* by using the following

Lemma 4.4.9. Let £ be a rank 4 vector bundle. Let c; be the Chern classes for £ and d; the
Chern classes for A2E. Then dg = cicacs — cicy — cg.

Proof. We use the strategy we used in Lemma 4.3.16. Since U is a rank 4 vector bundle, we get
that

ca=a+pB+v+9,
co=af+ay+ad+ By+ [0+~
c3 = afy + afd + Bv9,

c4 = afyo,

where «, 3,7, 6 are the Chern roots of . We have that

de = (a+ B)(a+7)(a+0)(B+7)(B+3)(v+9).

We have used Macaulay2 to check that dg and cjcecs — cf04 — cg are equal. |

Next we compute the number of points the O-dimensional. First we prove a lemma about the
relation between the Chern classes of U*.

Lemma 4.4.10. Let G = G(4,9) and let ¢y, ca,c3,cq be the Chern classes for U*. We then have
the following relations.

30%04 — 2c9c4 + 6cicacy — 4651)’03 — c% — 66%63 + c% + 56%02 — cff =0

4 3 2 2 2 6 2 3 2 4 3 3 4 3 2 5 _ 0
C1C2C4 — CiCq — 2C3C4 + 2C1C3 — OCiCacs + 3CoC3 + C{C3 — 3C1C5 + 4cjcy; — e =

A 2 _ 3.2 2 4 3e2¢2 1 2e0c2 — 3¢1c2 A3 5 — 0
C1C3C4 — Cy — 3CICaC4 + C5C4 + C{C4 — 3CIC3 + 2CaC3 — 3C1C5C3 + 4Cjcacs — CiC3 =

20103 — 3cic3c4 + 2c0c3¢4 — 3010304 + 40?6264 — 6?64 =0
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Proof. We use the strategy described above and get:

c(Q)er(U™) =1+ (c1 + di)t
+(dg + crdy + co)t?
+(d3 + e1ds + cady + c3)t?
+(dy + c1ds + cada + c3dy + cq)t?
+(d5 + c1dy + cads + c3da + c4dq )t
+(c1ds + cady + c3ds + cado)t®
+(cads + c3dy + cqd3 )t
+(c3ds + cqdy)t®
+eadst? =1,
where d; are the Chern classes of Q. The equality holds if and only if the following equalities
hold:
c1+d =0,
dy + c1dy +c2 =0,
ds + c1da + cady +¢c3 =0,
d4 4 c1d3 + cada + c3dy +c4 = 0,
ds + c1dy + cads + c3da + c4dy = 0,
c1ds + cady + c3d3 + cada = 0,
cads + c3dy + cy4d3 = 0,
c3ds + cady = 0,
cyds = 0.
Solving these equation recursively gives the relations in the lemma. |

Proposition 4.4.11. Let G = G(4,9) and let c1,ca,c3,cq be the Chern classes for U*. We then
have the following number of intersection points.

At =14 C?CQC%C;; =99
CICQCgCZ =49 Sc3cd =19
0?030304 =164 c:{’chg =59

ci’cgcg =539 041103104 =24
c‘llcgcg =175 c%cg =19

Proof. We follow the same strategy as in the proof of Proposition 4.4.5, that is we multiply the
relations in Lemma 4.4.10 with all monomials of degree 14,13,12 and 11, respectively. We use
the program in Listing 10.1. There are 47 monomials of degree 14, 38 of degree 13, 34 of degree
12 and 27 of degree 11. This gives 146 relations. There are 134 monomials of degree 20, so in
summary we get a matrix of dimension 146 x 134. After row reducing this matrix we pick out
the relations

dct =140 C?CQC§C4 = 59¢]
0162030421 =49¢; c(fc%ci =19¢;
c(fcgcgczl = 164c] ci{’czcg = 59¢]
c?cgcg = 539¢) c‘llc§04 = 24c;
c‘fc%cé = 175¢) cic =19¢;
Since ¢} = 1 by Corollary 4.3.11 we get the relations in the propositions. |
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We are now ready to give a proof of Theorem 4.4.7 on page 52.

Proof of Theorem 4.4.1. We want to prove that there is a common 3-dimensional isotropic
subspace for a basis of matrices in W. Let Ay, Ay and Ag be a basis for W. The basis matrices
A1, As and Ag has a common isotropic subspace if the intersection

c3(N(U))?

is non empty, which is the case. Indeed,

(creac3 — clPcy — 3)% =clcies — 3011030304 + 3cieacscs — e — BC%cgcé

+ 6ci’020§04 — 304110%03 + 3clcgc§ - SC%C§C4 — cg

The degree is

ci(creacs — clcq — c3)® =cices — 3c8c3cies + 30{02030421 — e} — 3c%c§c§

+ 66?020364 — 3C?C§CZ + 30{’0203 - 3cilc§04 — C%cg
=539 -3-1644+3-49—-14-3.175

+6-59—3 -19+3-59 — 324 — 19
=38

This means that Ay, As and As have a surface of degree 38 of common 4-dimensional isotropic
subspaces. |
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5 | Finite Schemes in P?

In this chapter we explain how we can relate a zero-dimensional ideal It to the apolar ideal F-
of a ternary sextic form F. To find the cactus rank of F', we are looking for minimal schemes
I' such that Ir ¢ F*. In particular, we are interested in the ideals It that are generated by a
subset of the generators of F'L.

The chapter is organized as follows. First, in Section 5.1, we introduce a structure theorem for
zero-dimensional ideals I+ of schemes I' P? and investigate some properties of the set of schemes.
Then we use the structure theorem to associate a degree matriz to some specially chosen schemes.
Lastly, in Section 5.2, we go through each of the Betti strata Fp (recall Definition 1.1.6 on page 3)
and prove which type of It that will appear as a subideal of F* for an [F] € Fp. In Chapter 6,
we prove that the subideal we find, actually will by a minimal subideal of F- for an F.

5.1 Hilbert—Burch Matrices of some Finite Schemes in P?

We have the following structure theorem for finite schemes in P2,

Theorem 5.1.1. [Lis06, Theorem 20.15 and p. 503] Let T C P? be a finite scheme. Then
Ir ¢ T = Clyo,y1,y2] is generated by the (8 — 1) x (8 — 1) minors of a (8 — 1) x 8 matriz, Ar.
The resolution of It is

Ar

0 — 781 T8 Ir 0.

If Ap is a (B — 1) x B matriz where the (8 — 1) x (8 — 1) minors have no common factor, then
the minors generate the ideal of a finite scheme.

The finite schemes of length d in P? are parameterized by the Hilbert scheme
Hilby P? = {T' € P? : T has length d},

[Gro61]. Now, we describe a subscheme of Hilbg P2. Let P = (p;;) be a (8 — 1) x 8 matrix where
Pij € Clyo, y1,y2] is a homogeneous polynomial. Let the degree matriz be the matrix M¢c = (my;),
where m;; = degp;;. Since the Hilbert polynomial of It is determined by the degree matrix of
Ar, every scheme I' of an ideal It that is generated by a matrix P with degree matrix Mo has
the same length. Therefore, we define

Hilb§ = {T" € Hilby P? : Ap has degree matrix M¢} C Hilby P2.

We will prove that Hilb§ is irreducible. In order to do that we need some definitions and results.

Let o = (a,...,ay), where |a] = ag + -+ + a, and 2% = z3°...20". We write
F;, = Z‘ a|=d; Ci,a@® for a homogeneous polynomial of degree d;. Given a polynomial P € Clui o] we
let P(F1,...,F,) denote the number obtained by replacing the variable u; o by the corresponding
coefficient ¢; ,. We say that P is a polynomial in the coefficients of the Fj.
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Theorem 5.1.2. [C'LO05, (2.83) Theorem| Let Fy,...,F, € Clxg,...,x,] be homogeneous
polynomials. Then the exists a unique polynomial Res € Z[u; o] such that Fy = --- = F,, =0 has
a nontrivial solution over C if and only if Res(Fy, ..., F,) =0.

Lemma 5.1.3. Fiz a degree matrix Mo and let Vo be the vector space of (8 — 1) x B matrices
P = (pij), where p;j € T = Clyo, v1,y2] are homogeneous, with degree matriz Mc. Let V{ be the
subset of Vo consisting of the matrices where the (8 — 1) x (8 — 1) minors has no common factor.
Then VCO 1s irreducible.

Proof. Since the degree of the polynomials in the entries of P € Vi are fixed, the total number
N of coefficients of the polynomials are also fixed. Then there is a 1 — 1-correspondence between
points in AN and matrices in V. We will prove that VCO is open subset, and thus irreducible, by
proving that the complement is closed.

Fix P and let Ip be the ideal of the (8 — 1) x (8 — 1) minors of P. If there is a common
factor between the (8 — 1) x (8 — 1) minors, there is also a common factor between the generators
of every 2-dimensional subspace of Ip. Let L be a general linear form and let F} and F5 be
generators for a 2-dimensional subspace of Ip. Then F} = F» = L = 0 has a non-trivial solution
if and only if 7 and F5 has a common factor. By Theorem 5.1.2, this is fulfilled if and only if
Res(Fy, Fo, L) = 0. Since Res(Fy, Fy, L) is a polynomial in the coefficients of F; and L, and F;
are determined by the coefficients of p;;, we get one polynomial R in the coefficients of p;; for
each 2-dimensional subspace and for each linear form. There is a common factor between the
generators of Ip if and only if the ideal spanned by the polynomials R vanish. The subset of V¢
where the coeflicients satisfies this condition is closed. This shows that the complement, VCO, is
open. Since an open subset of A! is irreducible, and VCO C Vo~ Al VCO is irreducible. |

Proposition 5.1.4. The subscheme Hilb§ C HilbyP? is irreducible.

Proof. Consider the surjective map ¢ given by

¢ : V8 — Hilb§
P— FP,

where I'p is the scheme corresponding to Ip generated by the (8 —1) x (8 — 1) minors of P. The
map is well-defined since, by assumption, the (8 — 1) x (8 — 1) minors have no common factor,
and by Theorem 5.1.1, Ip is the ideal of a finite scheme. The map is indeed surjective, since
every finite scheme has a corresponding Hilbert Burch matrix, Theorem 5.1.1. Since Hilbg is the
image under a map and VCO is irreducible, then Hilbdc is irreducible. |

5.1.1 Finite Schemes in P? of Length 4 and 5

In this section we describe and classify all matrices that is a degree matrix of a Hilbert—Burch
matrix of It where I' is of length four or five.
We recall a special case of Bezout’s theorem.

Theorem 5.1.5. [BE77, Corollary 7.8] Let F1,F> C T = Clyo, y1,y2] and let C1 = V(F1) and
Cy = V(Fy) be two curves in P? degree d and d', where Fy and Fy have no common factor.
Assume that Cy and Cy intersect transversely. Then the Hilbert polynomial of T /(Fy, Fy) is dd'.

When two curves fulfill the condition in Bezout’s theorem we say that they intersect in a
complete intersection (CI).

Now, we state and prove some lemmas about ideal of finite schemes that we will use to prove
the main result about the degree matrices.

Let I and J be two ideals. Then the set (I : J) ={r e T :rs e [ for all s € J} is called the
colon ideal of I and J. The scheme defined by the colon ideal is called the residual scheme.
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Lemma 5.1.6. Let Iy, C Ir; be ideals of schemes of length i and j, respectively. Then
(Ir, : Ir;) = Ir,_,. If Supp(Ir,_, N Ir,) = 0, then Ir,_, is the ideal of a subscheme of T,
not containing I';.

Proof. Let p € Ir;_, and q € Ir,. Then pq € Ir,. For the other implication, let r € T" be such
that r € (Ir; : Ir,) and s € Ir;, while s ¢ Ir,_,. Then rs € Ir,, thus r € Ip,_,. [ |

Lemma 5.1.7. Let I, be an ideal of a scheme of length four generated by two quadratic forms with
a common linear factor, L, and one cubic form that does not has L as a factor. Then there exists
linear forms L1 and Lo and quadratic forms Q1 and Q2 such that I, = (LLy, LLa, Q2L1+ LaQ1).

Proof. Pick a quadratic form LL; € Iy, and a cubic form K € I, such that LL; and K has no
common factor. Consider I, = (LL1, K), which is the ideal of a scheme of length six containing
I'y. Then there exists a scheme I'y C I'g of length two not containing I'y generated by L; and
a quadratic form @1, i.e. (L1,Q1) = Ir,. Since I, C Ip,, we can find a linear form Lo and a
quadratic form )2 such that K = QQ3L1 + Lo@)1. Consider the matrix

L; 0 —Ly

Q1 L Q)
The minors of the matrix generate It,. Indeed, two of the minors are LL; € Iy, and K € I, and
the last minor is LLy. We want to show that LLy € (It : It,) = Ir,. We show this by direct

computations on the generators L and Q. Indeed, we have that (LL2)L; = (LLy)Ly € Ity. For
the product (LL3)Q1, consider the determinant of the following matrix:

Q1 L Q2
Ly 0 —Lo
Q1 L Q2

Since two rows are equal, the determinant equals zero. We get that

Q\LLy — LK + QoLL; = 0
Q1LLy = LK — Q2LLy,

which gives that (LL2)Q1 € Ity and LLy € (It : It,). Since (LLy, LLy, Q2L1 + L2Q1) is the
ideal of a scheme of length four, we have that (LLq, LLs, Q2L1 + L2Q1) = Ip,. [ |

Lemma 5.1.8. Let Iy, be an ideal of a scheme of length five generated by one quadratic form
and two cubic forms that have no common factor. Then there exists linear forms Ly, Lo, Ly and
Ly and quadratic forms Q1 and Q2 such that It, = (L1Ls + LoL4, Q1L1 + Q2L2, L3Q2 — L4Q1).

Proof. Pick a quadratic form ) € It, and a cubic form K € Ir, such that @) and K has no
common factor. Consider I, = (@, K), which is the ideal of a scheme of length six containing
I's. Then there exists a scheme I'y C I'g of length one not containing I's generated by two linear
forms L; and Lo, i.e. (L1, Ls) = Ir,. Since It, C Ir,, we can find linear forms L3 and Ly, and
quadratic forms ()1 and ()9 such that

Q = L3L1 + L4Lo,
K =Q1Li + Q2Lo.

(Ll —Ly —Q2>
Ly Ly Q1)

Consider the matrix
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The minors of the matrix generate Ir,. Indeed, two of the minors are ) € Ir, and K € Ir, and
the last minor is L3Q2 — L4Q1. We want to show that L3Q2 — L4sQ1 € (Ir, : Ir,) = Ir,. Indeed,

Q2Q — LK = Qo(LsLy + LyLo) — Lay(Q1L1 + Q2L2),
= Q2L3Ly — LyQ1 Ly,
= (Q2L3 — L4Q1) L1,

so (Q2Ls — L4Q1)L; € It,. To show that (Q2Ls — L4Q1)L2 € Ir,, consider the determinant of
the following matrix:

Ly Lz
Ly —Ly —Q2
Ly Lz

Since two rows are equal, the determinant equals zero. We get that

La(Q2L3 — Q1Ly) — L3K +Q1Q =0
Lo(Q2L3 — Q1Ly) = L3K — Q1Q,

which giVGS that (Q2L3 — Q1L4)L2 S IF@ and (Q2L3 — Q1L4) € (IFG : Ipl). Since
(L1Ls + LoLg,Q1L1 + Q2L2, L3Q2 — L4Q1) is the ideal of a scheme of length five, we have
that (LiL3 + LoL4, Q1 L1 + Q2L2, L3Q2 — L4Q1) = Ir,. u

Lemma 5.1.9. Let It be an ideal of a scheme of length five generated by two quadratic forms with
a common linear factor L and one quartic form which does not has L as a factor. Then there exists
linear forms Ly and Ly and cubic forms K1 and Ko such that Iv, = (LLy1, LLy, K1Lo + KoLy).

Proof. Pick a quadratic form LL; € Ir, and a cubic form P € I, such that LL; and P has no
common factor. Consider Ity = (LLj, P), which is the ideal of a scheme of length eight containing
I's. Then there exists a scheme I's C I'g of length three not containing I's generated by L; and a
cubic form Kj, i.e. (L, K1) = Ip,. Since Ity C Ir,, we can find a linear form Lo and a cubic
form K5 such that P = KL + LoK;. Consider the matrix

Ly 0 —Lo

Ky L Ky /)
Now, we show that the minors of the matrix generate Ir,. Two of the minors are LL € I,
and K € I, and the last minor is LLy. We want to show that LLy € (Iry : Ir,) = Ir,.
We show this by direct computations on the generators L; and K;. Indeed, we have that

(LL2)Ly = (LLy)Ls € Irg. For the product (LL2) K, consider the determinant of the following
matrix

Ky L Ky
Ly 0 —Ly
Ki L Ky

Since two rows are equal, the determinant equals zero. We get that

K{LLy — LP+ KoLL; =0
KiLL, =LP — KsLLy,

which giVGS that (LLQ)Kl S Irg and LL2 S (I[‘8 : IF3). Since <LL1,LL2,K2L1 + L2K1> is the
ideal of a scheme of length five, we have that (LLi, LLy, KoLy + L2 K;) = I,. [ |

Now, we are ready to state the two results where we classify every degree matrix of a
Hilbert—Burch matrix of an ideal of a finite scheme of length four and five.
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Proposition 5.1.10. A Hilbert-Burch matriz of an ideal of a scheme of length four in P? has
one of the following degree matrices

i) (2 2) i) G f é) iii) (4 1)

Proof. A scheme I' of length four gives four linear conditions on the coordinates of the quadratic
forms, thus the dimension of the vector space of quadratic forms in the ideal of the scheme is at
least 6 — 4 = 2. Assume first that there are two quadratic forms with no common factor. Then,
by Theorem 5.1.1, the two quadratic forms generate a complete intersection, the ideal of a scheme
of length four that contain I', thus they generate the ideal of I'. The degree matrix of a Hilbert
Burch matrix in this case is (2 2). Assume now that the two quadratic forms have a common
factor, i.e. they have a common linear factor. The number of cubic forms in the ideal is then
at least 10 —4 —2-3 4+ 1 = 1. Assume first that there is no common factor between the two
quadratic forms and the cubic form. Then, by Lemma 5.1.7, the degree matrix of a Hilbert—Burch

matrix for this ideal is
2 21
11 0/°

Now, we assume that there is a common factor between the two quadratic forms and the cubic
form. The number of quartic forms in the ideal is then at least 15—-4—-2-6—-1-34+1-6—1=1.
Thus, the ideal of the scheme is generated by a quartic form and a linear form. We get the degree
matrix (4 1) . |

Corollary 5.1.11. The ideal of a scheme of length four in P? has one of the following Betti
tables.

1 1 -

-1 1

Proposition 5.1.12. A Hilbert-Burch matriz of an ideal of a scheme of length five in P? has
one of the following degree matrices.

)G 1) (51 1) i (11 o)

Proof. A scheme of length five gives five linear conditions on the coordinates of the quadratic
forms and the cubic forms, thus the dimension of the vector space of quadratic forms is at least
6 — 5 = 1 and the dimension of the vector space of cubic forms is at least 10 — 5 —1-3 = 2.
Assume first that there is no common factor between the quadratic form and the two cubic forms.
Then, by Lemma 5.1.8 the degree matrix of a Hilbert—Burch matrix of this ideal is

2 11
21 1)°
Assume now that there is a common factor between the quadratic form and the two cubic
forms. The common factor is a linear form, and if the corresponding line is contained in the
scheme, then this linear form is in the ideal and the ideal is generated by a linear form and a

quintic form. The degree matrix is then (5 1) . If the line is not contained in the scheme, the
ideal of the scheme is generated by two quadratic forms both having the linear form as a factor
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and a quartic form not having the linear form as a factor. Then, by Lemma 5.1.9 the degree
matrix of a Hilbert—Burch matrix of this ideal is

3 3 1
1 1 0)°

Corollary 5.1.13. The ideal of a scheme of length five in P? has one of the following Betti tables.

5.1.2 Other Finite Schemes in P?

In this section we describe the degree matrices of the Hilbert—Burch matrices that will appear as
submatrix of a Buchsbaum—Eisenbud matrix. Our results are summarized in Figure 5.1 on the
following page. When we say that a scheme I' consists of d general points, we mean that I" a
point in an open subset of Hilb, P2.

Lemma 5.1.14. Let each of the (8 — 1) x B matrices in Figure 5.1 be a degree matriz Mc.
Assume P is a matriz with Mc as degree matriz and such that the (8 — 1) x (8 — 1) minors have
no common factor. Then the (5 — 1) x (8 — 1) minors of P generate the ideal of scheme I' of the
length given in the table and a general element in Hilbdc is smooth. If " is a set of distinct points,
the configuration of points is given i the table. For each set of points we describe the dimension of
the family.

Proof. For the dimension, we will use the same strategy in all cases, expect in case (10). The
dimension of the family of points in P? is 2, so the dimension of the family of n points in P? is
2n. Since a line agxg + a1x1 + agxs is determined by a point (ag : a1 : ag) € P2, the dimension
of the family of lines in P? is 2. The dimension of a family of n points, m contained in a line
is therefore 2(n — m) + 2 + m. Since a conic aom% + a1x0x1 + asxoTo + agq:% + agx120 + a5:c% is
determined by a point (ag : ay : az : a3 : aq : as) € P°, the dimension of the family of conics in P?
is 5. The dimension of a family of n points, m contained in a conic is then 2(n —m) + 5 + m.
In case (10), we use that the dimension of the family of cubics in P? are ten, thus two cubics is
determined by eight points. Therefore, the dimension of the family of a complete intersection of
two cubic is 28 = 16.

If It is the ideal of I, the length of I' can be found by computing the Hilbert polynomial of
T/Ip. In this proof, we will find the length directly by computation on the Hilbert—Burch matrix.

Since being smooth is an open condition, we prove that a general element in Hilbdc i smooth
for every C' by finding one examples of a matrix P that is the Hilbert-Burch matrix of an ideal
of a smooth scheme.

Let L;,Q;, K;, R; € Clzg,x1,x2] be general linear, quadratic, cubic and quartic forms,
respectively. We will also use the same letters without subscript in some cases. By abuse
of notation, we use the same notation for the zero set of the forms.

For almost every case, we have included a picture of curves that intersect in the given
configuration of points.

We work through each case:
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1 11
1 11

1) Three general points, dim 6

(22)

2) Four points in a CI, dim 8

2 21
110

3) Four points, three on a line, dim 7

3 31
110

4) Five points, four on a line, dim 8

2 11
2 11

5) Five general points, dim 10

(23)

6) Six points on a conic, dim 11

3 21
210

7) Six points, four on a line, dim 10

311
311

8) Seven points on a conic, dim 12

[
— = =
— =
— = =

9) Six general points, dim 12

(3 3)

10) Nine points in CI, dim 16

2 2 2
1 11

11) Seven general points, dim 14

2 2 21
1110
1110

12) Seven points, four on a line, dim 12

2 21
2 21

13a) Eight general points, dim 16

13b) Eight points, four on a line, dim 14

2 211
2 211
1100

14) Eight points, seven on a conic, dim 14

2111
2111
2111

15a) Nine general points, dim 18

15b) Nine general points, four on a line, dim 16
15¢) Nine general points, seven on a conic, dim 16

—_ = =
—_ = = =

11
11
11
11

— =

16) Ten points, dim 20

Figure 5.1: Degree matrices of Hilbert—Burch matrices of ideal of finite schemes
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(1) Let L; € C[xo, x1, z2] be general linear forms and consider the matrix
L, Ly Ls
Ly Ls Lg)°

Then this is the Hilbert—Burch matrix of an ideal of a scheme consisting of three general points.
Indeed, from the three 2 x 2 minors we get the quadratic forms

Q1 =L1L¢ — L3Ly4
Q2 = LoLeg — L3Ls
Q3 =L1Ls — LoLy

Let p € P? be a point on Q;. This means that when L1, Lg, L3 and L4 are evaluated in p, then
LiLg — L3L4 = 0. In other words,

Ly Ls
det — 0, 5.1
et (7' LG)p (5.)

where the subscript p means that L; are evaluated in p. In the same we get that if p’ € P? is a
point on @2, then

Ly L3>
det =0. 5.2
<L5 Le/ (52)

We have from Bezout’s theorem that Q1 and ()2 intersect in four points. We see from 5.1 and
5.2 that one intersection point is where L3 = Lg = 0. We want to show that the three other
points are intersection points of QJ1, Q2 and Q)3. Indeed, we first observe that the point where
Ls = Lg = 0 is not on Q3. Second, let p” € Q1 N Q2, where p” ¢ L3N Lg. Since the rows of a
2 X 2 matrix are proportional the determinant of a is zero, we get the relations

/

L4p// = )\Llp//7 L5p// =A L2p//7
/

Lﬁp// = )\L3p//7 L6p// = A L3p//7

where A\, ' € C. Since we have assumed L3p,,,L6p,, # 0 we get A\ = X. This gives the relations

L4p// = )‘Llp/m
Lﬁp// = )‘L3p//7
L5p// = )\L2PN’

This gives that

Ly Lo _ Ly Lo _
det <L4 L5)p” = det <AL1 )\L2>p// =0

This show that p” € C3 and in particular that p” € Q1 N Q2 N Q3.
A special case of this type is when the following matrix.

Ly 0 —Lo
—Li1 L3 O
Then we get Q1 = L1Lo, Q2 = LoLs and Q3 = Ly L3. This is three degenerate quadratic forms

where each pair of share a common linear factor.
The computation of a smooth scheme can be found in Listing 10.2.
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(2) Two general quadrics intersect in four points in a complete intersection by Bezout’s theorem.
The computation of a smooth scheme can be found in Listing 10.3.

D

(3) As described in Lemma 5.1.7, the ideal is of the form (LLy, LL2, Q2L1 + L2@Q1). The two
quadratic forms has a common linear form L. Further the quadrics intersect in the intersection
point p of L1 and L. The cubic intersect the two quadrics in three points on L and in p. We
therefore get four points, three on the line L.

The computation of a smooth scheme can be found in Listing 10.4.

\

(4) As described in Lemma 5.1.9, the ideal is of the form (LLq, LLg, K1La + KoL1). The two
quadric forms has a common line L. Further the quadrics intersect in the intersection point p of
Ly and Ls. The quartic intersect the two quadrics in four points on L and in p. We therefore get
five points, four on the line L.

The computation of a smooth scheme can be found in Listing 10.5.

\

(5) As described in Lemma 5.1.8, the ideal is of the form (L1 Ls+ LaLy, Q1 L1+ Q2La, L3Q2 —
L4Q1). Since there are no common components between any pair of the quadric and the cubics,
they intersect in five general points. We observe that if Lo =0 we get Q = L1L3, K1 = Q1L and
Ky = L))o — LyQ1. Then () and K; has a common line L1 and intersect in two points outside
the line. Since K5 does not contain L1, K intersect () and K7 in L; in three points and in two
points in the intersection points of L3 and Q.
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Ly —Ly —Q2
Ly Ly
intersect in five points. Since the are no common components the, the scheme consist of five

general points.
The computation of a smooth scheme can be found in Listing 10.6.

(6) A general quadric and a general cubic intersects in six points in a complete intersection
by Bezout’s theorem.
The computation of a smooth scheme can be found in Listing 10.7.

(7) Consider the matrix

<K1 Q1 L1>
Q2 Ly O

We follow the strategy from (1). From the 2 x 2 minors we get

R =KLy — Q:1Q2
K = Q2L
Q=L1L

Then Bezout’s theorem gives that R and K intersect in 12 points. In other words, there are 12
points p € P2 such that

K1 Ky Ly
det =0 d det =0. .
e <Q2 L2>p an e <Q2 0 >p (5.3)

We see that six of the points are when K = Q2 = 0 and that these points is not on ). We want
to show that the remaining six points is on Q. Indeed, let p’ € RN K such that Ky, Q2 # 0.
Since the rows in a 2 matrix are proportional when the determinant is zero, we get in particular
that Ly , = 0. This shows that p' € Q= LiLs.

We now show that four of the points are on the line L; and that the two remaining points
are the intersection points of Q2 and Lo. Indeed, since L; is not a component of R all six points
cannot lie on Ly. Further, since R and L; has no common component they intersect in four
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points by Bezout’s theorem. Since both K and @ has L as a component, these four points are
in the intersection of R, K and @. For the last two points, we have that Q2 and Lo intersect in
a complete intersection. To get a total of six points in RN K N @, R has to intersect the two
points in Q2 N Lo.

The computation of a smooth scheme can be found in Listing 10.8.

(8) Consider the matrix
Ky Ly L
Ky Ls Ly

Ry = K L3 — KyLq,
Ry = K1Ly — Ko Lo,
Q= L,L, — LyLs.

From the 2 x 2 minors we get

Bezout’s theorem gives that R; and Rs intersect in 16 points. In other words, there are 16 points
p € P? such that

Ky L\ Ky Lo\
det <K2 L3>p_0 and det <K2 L4>p—0. (5,4)

Wee see that 9 of these points are when K; = K9 = 0 and that these points are not on . We
want to show that the remaining 7 points also lie on Q. Indeed, let p’ € Ry N Ry such that
K1, K9 # 0. Since the rows in a 2 matrix are proportional when the determinant is zero, we get
the relations

K2p/ = )\Klp/v
L3p/ = )\Llpm
L4p/ = )\sz,,

where A\ € C and we have used that K 1 Kg/p = 0. This gives that

L1 L2 . Ll L2 _
det <L3 L4> ,—det </\L1 )\L2> /—0.
p p
This shows that p’ € Q and in particular that p’ € Ry N Ro N Q. Since the Q is general, we get

seven points on the conic Q).
The computation of a smooth scheme can be found in Listing 10.9.
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(9) Consider the matrix

Li Ly L3 Ly
Ly L¢ L7 Lg
Ly Ly Li1 Li2

Let Ky and K5 be the cubics obtained from the 3 x 3 minors of

Ll Lg L4 L2 LS L4
L5 L7 Lg and L6 L7 Lg 5 (55)
Ly Ly Lo Ly Li1 Lio

respectively. From Bezout’s theorem we have that K; and K5 intersect in 9 points. From 5.5 we
see that three of the points are the points p € P? such that each 2 x 2 minor of

Ly L7 Ln
<L4 Ls L2/, (56)
vanish. Indeed, if every 2 x 2 minor of 5.6 vanish, then the 3 x 3 minor of each matrix in 5.5
vanish when evaluated in p. We have from (1) that there exists three points that vanish on every

2 x 2 minor of 5.6.
Let now K3 and K4 be the cubics obtained from the 3 x 3 minor of

L, Ly, Ls L, Ly L,
L5 LG L7 and L5 L6 Lg s (57)
Ly Lip L1 Ly Lip Lo

respectively. We see that the points three points p do not lie on K3 and Ky, since the fact that
the 2 x 2 minors of 5.6 vanish does not imply that the 3 x 3 minors of the matrices in 5.7 vanish
when evaluated in p. We want to show that the remaining six points in the intersection of K;
and K> also lie on K3 and K. Indeed, let p’ € K7 N K5 such that p’ # p. Then there exists
AN NN € C such that

Llp/ = )‘L5p/ + )‘/L9p/7 L2p/ = )‘//Lﬁp/ + )‘/,/Llopl)
L3p/ = )\L7p/ + )\/Lllpm L3p/ = )\”L7p/ + )\///Lllp/a
Ly, =ALg, +NLiz,, Ly, =N'Lg, +\"Lia .

Since we assumed p’ # p we must have A = X’ and X = M. This gives
Ly, =ALs, +NLy,,
L3p/ = )\L7p, + /\/Lllpm
Ly, =ALs, +\NLiz,,
Ly, = ALg, +NLig,.

This gives that

Ly Ly Lg ALs + )\/Lg ALg + >\/L10 AL7 + NLqq
det | Ly L¢ L7 = det Ls Lg Ly =0
Lo Lo L/, Ly Lo L1y o
and
Li Ly Ly ALs+NLg MLg+ NLiyg MLg+ NLio
det L5 L6 Lg = det L5 L6 Lg =0.
Lo Lo Li2/ , Ly Lo Ly2 o
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This shows that p’ lie on K3 and K. In particular, we have that p’ € K1 N Ko N K3 N K4. Since
there are no common components between the cubics, the six points in the intersection are in
general position.

The computation of a smooth scheme can be found in Listing 10.10.

(10) We have from Bezout’s theorem that two cubics with no common component intersect in 9
points.
The computation of a smooth scheme can be found in Listing 10.11.

(11) Consider the matrix

(Ql Q2 Q3>
Ly Ly Lg

From the 2 x 2 minors we get

Ky =Q1L2 — Q2L,
Ky =Q1L3 — Q3L1,
K3 = Q2L3 — Q3Lo.

Bezout’s theorem gives that K; and K» intersect in 9 points. In other words, there are 9 points
p € P? such that

Q1 Q2\ Q1 Qs3) _
det <L1 L2>p =0 and det (Ll L3)p =0. (5.8)

Two of the points are the intersection between )1 and L1, and these two points do not lie on K3.
We want to show that the remaining 7 points also lie on K3. By same arguments as in (1), there
exists a A € C such that

Llp/ = )\lem
LQP/ = )\Q2p/7
L3p/ = )‘Q?)p/v
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where p’ # p and p € K1 N Ky. This gives that

Q2 Q3\ _ Q2 Q3 _
det <L2 Lg)p,‘det </\Q2 AQ3>p,_0'

This show that p’ € K7 N Ky N K3. Since there are no common components between the cubics,
the seven points in the intersection are in general position.
The computation of a smooth scheme can be found in Listing 10.12.

(12) Consider the matrix

Q1 Q2 Q3 Iy
Ly Ls Ly 0
Ls L¢ L7 O

Let R and K7 be the two cubics obtained from the 3 x 3 minors of

Q1 Q2 Q3 Q1 Q2 Ly
L2 L3 L4 and L2 Lg 0 5 (59)
Ls Le¢ Lo Ly Lg O

respectively. From Bezout’s theorem we have that R and K7 intersects in 12 points. By the same
arguments as in (9), five of the points are points p € P? such that each 2 x 2 minor of

(Ql Lo L5>
Q2 Lz Lo/,

vanish. Let now K5 and K3 be the cubics obtained from the 3 x 3 minors of

Q1 Q3 Ly Q2 Q3 Ly
Ly Li 0 and Ly Li 0|, (5.10)
Ls L7 O L¢ L7 O

respectively. By the same arguments as in (9) we get that the five points p do not lie on K9 and
K3 and that the remaining seven points lie on Ky and K.

We now show that of the seven points, four is on the line L; and the rest are three general
points. Indeed, we get from the matrices in 5.9 and 5.10 that L is a common line of K7, K9 and
K3, and that the other component of each cubic is one of the 2 x 2 minors of

Ly Lz Ly
<L5 Lo Lr) (5.11)
We have from (1) that the three quadrics obtained from the 2 x 2 minors of 5.11 intersect in three
general points. In summary, the quartic R intersect K7, Ko, K3 on the line Ly in four points and

in the three intersection points of their quadric components.
The computation of a smooth scheme can be found in Listing 10.13.
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(13) Consider the matrix
(Ql Q2 L1>
Qs Qi Lo

R=Q1Q4— Q2Q3
Ky = Q1L — Q3L
Ky = QaLy — Q41

From the 2 x 2 minors we get

Bezout’s theorem gives that R and K intersect in 12 points, where four points are the intersection
between @ and Q3. Let p € P? be the eight remaining points in the intersection between R and
K. By the same arguments as above, there exists a A € C such that

Qs3, = \Q1,,
Q4, = A\Q2,,
Ly, = ALy,

This gives that

Q2 L1> < Q2 Ly >
det = det =0.
(Q4 L), AQa AL/
This shows that p € RN K1 N Ks. Since there are no common component between R, Ky and
K>, the eight points are in general position.
If L; =1, then K7 and Ko will have Ly as a common component. Then )1 and () intersect

in four point in a complete intersection and R intersect K7 and K» in these four points and in
four point on the line L.

& &

The computation of a smooth scheme can be found in Listing 10.14 and Listing 10.15.

(14) Consider the matrix
Q1 Q2 Li Ly

Qs Qi Lz Ly
Ls Lg O 0
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Let Ry and Ry be the quartics obtained from the 3 x 3 minors of

Q1 Q2 L Q1 Q2 Lo
Q3 Q4 L3 and Qg Q4 L4 R (5.12)
Ly Lg O Ls Lg O

respectively. From Bezout’s therem we have that R; and Rs intersect in 16 points. By the same
arguments as in (9), eight of the points are points p € P? such that each 2 x 2 minor of

<Q1 Q3 Ls)
Q2 Qs L/,

vanish. Let now K7 and K3 be the cubics obtained from the 3 x 3 minors of

Q1 Ly Lo Q2 Ly Lo
Q3 Lz Ly and Qs Lz Ly, (5.13)
Ly 0 O L¢ 0 O

respectively. By the same arguments as in (9) we get that the eight points p do not lie on K;
and Ko and that the remaining eight points lie on K; and K.

We now show that of the eight points, seven lie on a conic. We see from 5.13 that K7 and
K> has the quadric L1L4 — LoL3 as a common component. The other component is the line Lj
and Lg, respectively. Since the quartics Ry and Ry are irreducible, that is, they do not contain
Li1Ly — LoLg, they have seven point on L1L4 — LoL3 and intersect Ls and Lg in one point.

The computation of a smooth scheme can be found in Listing 10.16.

(15) Consider the matrix

Q1 L1 Ly L3
Q2 Ly Ls Lg
Q3 Ly Lg Lg

Let Ry and Ry the quartics obtained from the 3 x 3 minors of

Q1 L1 Lo Q1 L1 Ls
Q2 Ly Ls and Q2 Ls Lg|,
Q3 L7 Lg Q3 L7 Ly

respectively. From Bezout’s theorem we have that R; and Ry intersect in 16 points. By the same
arguments as in (9), seven of the points are points p € P? such that each 2 x 2 minor of

(Ql Q2 Q3>
Ly Li L),

vanish. Let now R3 and K7 be the quartic and the cubic obtained from the 3 x 3 minors of

Q1 Ly L3 Ly Ly Ls
Q2 Ls Lg and Ly Ls Lg|,
Q3 Ls Lo L, Lg Lo
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respectively. By the same arguments as in (9) we get that the seven points p do not lie on Rj
or K1, and that the remaining nine points lie on R3 and K. Since Ry, Ro, R3 and K; has no
common component, the nine points are in general position.

If L = Lg = 0 we get

Q1(L4Lg — L5L7) — Q2(L1Lg — LaL7) + Q3(L1Ls — LaLy),
L3(Q2L7 — Q3Ly),
L3(Q2Ls — Q3Ls),
= L3(L4Lsg — LsL7),

that is, Ro, R3 and K7 share the line Ls. This gives nine points, four on the line Ls.
If Lg = Lg = 0 we get

R1 = Q1LsL7 — LoLy — Q3(L1Ls — LaLy),

Ry = —Q1LeL7 + Q2LeL7 + Q3(L1Le — L3Ly),
Rz = Q3(L2Le — L3Ls),

Ky = L7(LoLg — L3Ls),

that is, R3 and K share the quadric (LgLg— L3Ls). This gives nine points, seven on (Lo Lg— L3Ls)
and the two last in the intersection of (J3 and L+.

The computation of a smooth scheme can be found in Listing 10.17, Listing 10.18 and
Listing 10.19.

(16) Consider the matrix

Ly Ly Ly Ly Ls
L¢ L7 Ls L9 Ly
Liy Lia L1z Lis Lis
Ly Li7 Lis Lig Lo

(5.14)

Let Ry and Ry be the quartics obtained form the 4 x 4 minors of

Ly Ly L3 Ly Ly Ly L3 Ls
L¢ L7 Ls Lo and L¢ L7 Lsg Ly
Ly Lia L1z Ly Ly Liz Lz Lis |’
Li¢ L1z Lig Lig Li¢ Li7 Lig Lo

respectively. From Bezout’s theorem we have that R; and Rp intersect in 16 points. By the same
arguments as in (9), six of the points are points p € P? such that each 2 x 2 minor of

L1 Le¢ Li1 Lig
Lo L7 Li2 Li7
L3 Lg Li3 Lig

vanish. By the same arguments as in (9) we get that the six points do not lie on the three quartics
obtained from the remaining 3 x 3 minors of 5.14 R3, R4 or R5 and that the remaining ten points
do lie on all five quartics. Since the quartics have no common component, the ten points are in

general position.
The computation of a smooth scheme can be found in Listing 10.20. ]
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5.2 Zero-Dimensional Subideals of F-+

In this section we describe which ideals of finite schemes I' that appear as subideal of F'*-. First,
we prove that if It is generated by some of the generators of F-, then a Hilbert-Burch matrix of
It is a submatrix of a Buchsbaum Eisenbud matrix of F--. We are specially interested in the
subideals It that are generated by some of the generators of F-, because the minimal subideals
of F- will be ones that are generated by some of the generators of F+. Furthermore, we prove
which submatrices of a Buchsbaum-Eisenbud matrix of F- that are Hilbert-Burch matrices that
actually generates a subideal of F-. Lastly, we go through each of the Betti strata Fp, and prove
that for each [F] € Fp there exists a subideal It with a Hilbert-Burch matrix such that the
degree matrix is the same for every [F] € Fp. In Chapter 6, we prove that the ideals we find
actually are minimal subideal F* for some F.

Let P’ = (p;;) be an n x n matrix where p;; € Clyo, y1,y2] is a homogeneous polynomial. Let
the degree matrix Mp = (m;;), where m;; = deg p;;.

Lemma 5.2.1. Let F- C T and let T be a finite scheme. Let the (8 — 1) x 8 matriz P be a
Hilbert-Burch matriz of Ir and let the n x n matriz P’ be a Buchsbaum-FEisenbud matriz of F*.
If It is generated by some of the generators of F*, then P is a submatriz of P'.

Proof. If Ir C F-, there exists maps ¢ and 1) such that the following diagram commutes.

0 y A1 L, 16 y It > 0
ool
0 y T N N rt y 0

If the generators of It is a linear combination of the generators of F-, ¢ : T% — T takes the
generators of It to this linear combination in 7". The map 1 : T?~1 — T™ does the same for
the syzygies, thus ¢ and v are inclusion maps. Since the columns of P’ and P are generators
for the syzygies of F- and Ir, by Theorem 2.3.3 and Theorem 5.1.1, respectively, P has to be a
submatrix of P’. [ |

Lemma 5.2.2. Let F+ C T and Assume F* is minimally generated by n = 2k + 1 elements. Let
the n x n matriz P’ be a Buchsbaum-FEisenbud matriz of F-. If there exists a basis such that

0 cor .- Cok Cok+1 -+ COn—1
e 0 . . .
P = .
= —Cok e e 0 Ckk+1 -+ Ckn—1|>
—Cok+1 .- cee —Ck k+1 0 cee 0
—Con—1 --- e —Ckn—1 0 cee 0

then the ideal generated by the k x k minors of the k x (k + 1)-submatriz

—C0k+1 -+ oo+ TChkt1
p— . .

—Con—-1 --- PN —Ckn—1

is a subideal of F.
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Proof. Indeed, we observe that P’ consists of four blocks, that is P, —(P)T, the k x k zero
block and the last (k + 1) x (k 4+ 1) skew symmetric block. To compute the first (n — 1)th
order pfaffian we delete the first row and first column of P’ and compute the determinant of the
remaining matrix. After deleting the first row and the first column the remaining submatrix of P’
consists of four block, each of dimension k£ x k. We use the rule for computing the determinant
of a block matrix consisting of square blocks, that is det M = det Adet D — det B det C, where

M = (A B>. We get the following computation.

¢ D
0 c12 ... Clk Clk+1 -+ Cln—1
e 0 . . .
det —Cilk cee e 0 Ckk+1 -+ Ckn—1
—Clk+1 --- ce —Ck.k+1 0 ce 0
—Cln-1 --- e *Ck,n—l 0 e 0
0 cl2 ... Cig
) 0 0
—c 0 :
=det 12 det :
1 R 0 0
—Clk - .- ce 0
Clk+1 --- Cln-1
—Clk+1 oo --r TChEk+1 . .
—det : : det
—Clpn—1 .- . —Ckn—1
Ckk+1 -+ Ckn-1
—Clk+1 --- ce —Ckk+1
=det : : ,
—Clpn—-1 --- e _Ck,n—l

where we have used that det A = det AT for a general matrix A. Since the pfaffian is the square
root of the determinant, we get that the first (n — 1)th order pfaffian is the determinant of the
submatrix of P obtained by deleting the first row. This is indeed the first & x k& minor of P’. The
case for the k — 1 next (n — 1)th order pfaffians are the same. [ |

Given an Fp, the Buchsbaum-Eisenbud matrix of F- for an [F] € Fp is given by the Betti
table By, ,p,55,,- Thus, the degree matrix is the same for every Buchsbaum-Eisenbud matrix of
F* for an [F] € Fp. Therefore, we find for each type Fp which degree matrix of Hilbert-Burch
matrices that is a submatrix of the degree matrix of a Buchsbaum Eisenbud of F* for an
[F] € Fp. By Lemma 5.2.2, we then have that there exists a subideal of F- generated by some
of the generators of F*.

Proposition 5.2.3. Let M3gq be the degree matriz of a Buchsbaum-Eisenbud matriz of FL for
an [F| € Fizo0- Then there is a subideal of F+ with a Hilbert-Burch matriz with degree matriz

111
111
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Proof. We have

0 5511
5 0 5 11
R R
11100

Proposition 5.2.4. Let My be the degree matriz of a Buchsbaum—Eisenbud matriz of FL for
an [F] € Fia00]- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matriz

(2 2)

Proof. We have

0 5 2
M[200] = 5 0 2
2 20
Then two of the generators of F- are the 1 x 1 minors of the submatrix. |

Proposition 5.2.5. Let My o) be the degree matriz of a Buchsbaum-Eisenbud matriz of FL for
an [F] € Fio10]- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matrix

2 21
110

Proof. We have

0 54 21
5 0 4 2 1
M[QIO} — 4 4 O 1 O
22100
110 00

Proposition 5.2.6. Let My be the degree matriz of a Buchsbaum-Eisenbud matriz of FL for
an [F] € Fi202)- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matrix

3 3 1
110

Proof. We have

05 3 31
5 0 3 3 1
M[QOQ] — 3 3 0 1 0
33100
110 00
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Proposition 5.2.7. Let Mjoq be the degree matriz of a Buchsbaum-Eisenbud matriz of FL for
an [F| € Fjia0)- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matrix

211
2 11

Proof. We have

M99 =

NN RO
— =W O
— = O W o
OO~ F N
O O = =N

Proposition 5.2.8. Let Mj11) be the degree matriz of a Buchsbaum-Eisenbud matriz of FL for
an [F] € Fii1)- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matriz

(3 2)

Proof. We have

My =

W =~ O
N O
S N W

Proposition 5.2.9. Let Mj19) be the degree matriz of a Buchsbaum—Eisenbud matriz of FL for
an [F] € Fi112)- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matriz

3 21
210

Proof. We have

0 4 3 3 2
4 0 2 2 1
M[112} — 3 2 0 1 0
3 2100
21 000

Proposition 5.2.10. Let Myo4) be the degree matriz of a Buchsbaum-—Eisenbud matriz of FL for
an [F] € Fli04)- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matrix

311
2 11

Proof. We have

0 3 3 3 3
30111
M[104} — 3 1 0 1 1
31101
21 1 10
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By Lemma 4.2.7 and Theorem 4.2.6, there exists a row basis such that the 4 x 4 submatrix

is of the form

— = = O

1
0
1
1

— = = O

1
0
1
1

S O = =
OO = =

1
1
0
1

O = ==

We use this row basis such that Mjjo4 is of the form

03 3 3 3
30111
31011
31100
21100

Proposition 5.2.11. Let My4) be the degree matriz of a Buchsbaum—Eisenbud matriz of FL for
an [F] € Floao]- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matriz
1 111
1 1 11
1 111

Proof. We have

Mips0) =

— =W W WO
== =W WO W
—= == WO WWw
_ == O W W W
O OO ===
OO O = = K

OO O

Proposition 5.2.12. Let Mg be the degree matriz of a Buchsbaum-—Eisenbud matriz of FL for
an [F] € Fi300]- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matrix

Proof. We have

Proposition 5.2.13. Let Mjy3y) be the degree matriz of a Buchsbaum-FEisenbud matriz of FL for
an [F] € Flo31]- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matriz

2 2 2
1 11

77



5.2. Zero-Dimensional Subideals of F+

Proof. We have

Moz =

— N W Ww o
N WO W
_— N O W Ww
S O NN
SO O = ==

Proposition 5.2.14. Let My3y) be the degree matriz of a Buchsbaum~—FEisenbud matriz of FL for
an [F] € Flo3z)- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matriz
2 2 21
1 1 10
1110

Proof. We have

Mipz9) =

— =D NN W WO
= NN WO W
= =N NN O WwWw
SO = O NN
S OO = NN
[l elelloll S
SO O OO = ==

Proposition 5.2.15. Let Mjya3) be the degree matriz of a Buchsbaum—FEisenbud matriz of FL for
an [F| € Fops)- Then F' is either of type [023a] and there is a subideal of F with a Hilbert-Burch
matrix with degree matriz

(3 3)

or F' is of type [023b] and there is a subideal of F* with a Hilbert-Burch matriz with degree matriz

2 21
2 21

or F' is of type [023c] and there is a subideal of F* with a Hilbert-Burch matriz with degree matriz

2 21
2 20

Proof. We have

Min23) = Mip23a) =

NN WO
NN O W
_= =0 NN
= O = NN
S = =N DN

Let K7 and K> be the two cubics in F+. Assume K; and K5 has none common component. Then
K7 and K5 intersect in a complete intersection where a corresponding Hilbert—Burch matrix has
degree matrix

(3 3)
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5.2. Zero-Dimensional Subideals of F+

Assume that the linear forms in the matrix are dependent. Then we say that F' is of type [023b]

and there exists a row basis such that

Miga3p) =

NN DN WO

Assume that the linear forms are proportional.

exists a row basis such that

Mip23q

NN NN WO

NN NO W

NN DN W
== O NN
S O = NN
S O = NN

Then we say that F' is of type [023b] and there

SO = O NN
OO = NN
SO OO NN

Proposition 5.2.16. Let Mgy be the degree matriz of a Buchsbaum—FEisenbud matriz of FL for
an [F] € Flo24)- Then there is a subideal of FL with a Hilbert-Burch matriz with degree matriz

2
2
1

Proof. We have

Migaq =

N NN DN WO

2

R NN DNDO W

11
11

0
2 2 2 21
2 2 2 21
01110
1 0110
11010
11100
00000

By Theorem 4.2.6 and Lemma 4.2.7, there exists a row basis such that the submatrix

e )

1
0
1
1

_ O = =
O = =

is of the form

e )

1
0
1
1

SO = =
S O ==

We use this row basis such that Mgy is of the form

Mo2q) =

NN DND DN WO

NN ND N O W

2 2 2 21
2 2 2 21
01110
10110
11000
11000
0 00O0O
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5.2. Zero-Dimensional Subideals of F+

Proposition 5.2.17. Let Mjg16) be the degree matriz of a Buchsbaum-FEisenbud matriz of Flperr]
for an [F] € Floig). Then F is either of type [016a] and there is a subideal of F+ with a
Hilbert—Burch matriz with degree matrix

2 111
2111
2 1 11
or F is of type [016b] and there is a subideal of F* with a Hilbert-Burch matriz with degree matriz
2 1 11
2111
2100
or F' is of type [016¢c] and there is a subideal of F* with a Hilbert-Burch matriz with degree matriz
2 1 11
2110
2110
Proof. We have
0222 2 2 2
2011111
2101111
Mpeg=|(2 110 1 11
2111011
2111101
2111110

By Theorem 4.4.1 there exists a row basis such that the submatrix

01 1 111 01 1 111
101111 101111
110111 . 110111
111011 is of the form 111000
111101 111000
111110 111000
We use this row basis such that My is of the form

0222 2 2 2

2011111

21 01 111

2110111

21 11000

2111000

21 11000

We say that F' is of type [016a] if the linear forms in general are not zero. If there exists are row
basis such that two of the linear form are zero, we say that F' is of type [016b] or [016¢]. We
distinguish the two types in the following way:

0

Mio165 =

—= === O N
— === O =N
SO = O =N
O OO == =N
O OO == =N
O OO = = =N

DN NN
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5.2. Zero-Dimensional Subideals of F+

Mip16e =

NN DN O
— === O N
O = = = O =N
SO = = O = DN
O OO == =N
OO O == =N
OO O - = =N

Proposition 5.2.18. Let Myg) be the degree matriz of a Buchsbaum-—Eisenbud matriz of FL for
an [F] € Floog)- Then there is a subideal of F with a Hilbert-Burch matriz with degree matrix

—_ = = =

1
1
1
1

—_ = = =

11
11
11
11

Proof. We have

Migog) =

el e e e e e e e =)
e el e e =
= = = = O
=== == O = =
[l e i e i i
_H ) ) O~~~
— —m O R R~ =~ = =
= R S
O = P P R PR

By Theorem 4.4.7 the exists a row basis such that Mjggg) can be written in the form

011111111
101111111
110111111
111011111
111101111
111110000
111110000
111110000
111110000

Observe that the results above show that for every Fp except for the types [030] and [023a], we
have found a unique degree matrix of a Hilbert—Burch matrix as a submatrix of the degree matrix
of a Buchsbaum—Eisenbud matrix. In the next chapter, we will prove that the Hilbert—Burch
matrix we have found indeed generated a minimal subideal of the apolar ideal of an F' with the
corresponding Buchsbaum—Eisenbud matrix. For this reason we make the following definition

Definition 5.2.19.
Ge={'C S :IrC F is minimal for some F € F}.

For the cases [030] and [023a] case we write Gjo30]/[0234]-
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6 | Rank and
Power Sum Representations

In this chapter we state and prove one of the main results in this thesis. For a general [F] in
each Fp, we find the rank and the VSP. The chapter is organized as follows. First, we state our
results. Then, we prove that every Betti strata Fpg is irreducible. Thereafter, we introduce some
theory about binary forms, before we finally prove our result.

Proposition 6.0.1. Let F' be a non-degenerate ternary sextic forms. Then F belongs to one of
the 20 irreducible sets in Figure 6.1 with the given dimension. For a general form F in each set,
the table give the v(F'), VSP(F,r(F)) and the minimal configuration of points in ' apolar to F.

Betti table By ,p50,, | T(F) VSP(F,r) r dim(Fp)
[300] 3 one point three points 8
[210] 4 one point four points, three on a line 10
[200] 4 one point four points 11
[202] 5 P! five points, four on a line 11
[120] 5 one point five points 14
[112] 6 P! six points, four on a line 14
[111] 6 one point six points on a conic 16
[104] 7 P! seven points on a conic 17
[040] 6 one point six points 17
[032] 7 P! seven points, four on a line 17
[031] 7 one point seven points 20
[023¢] 8 P! eight points, four on a line 20
[024] 8 P! eight points, seven on a conic 20
[023b] 8 one point eight points 23
[030] 9 P2 nine points in a CI 21
[0160] 9 P! nine points, four on a line 23
[016¢] 9 P! nine points, seven on a conic 23
[023a] 9 one point nine points in a CI 24
[016al] 9 two points nine points 26
[009] 10 K3 surface ten points 27

Figure 6.1: Rank and VSP for the Betti strata

To prove that each Betti strata in Figure 6.1 is irreducible, we prove the following lemma.

Lemma 6.0.2. Fiz a degree matrizc Mp = (m;;) and let Vg be the vector space of skew symmetric
n X n matrices P’ = (p;;) with homogeneous polynomials as entries, where the polynomial in the
entry p;; has degree m;j. Let Vg be the subset of Vg consisting of the matrices where the ideal I,
generated by the (n — 1)th order pfaffians of P’ is of codimension 3. Then VBQ 1s irreducible.

Proof. Since the degree of the polynomials in the entries of P’ € Vg are fixed, the total number
N of coefficients of the polynomials are also fixed. Then there is a 1 — 1-correspondence between
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points in AV and matrices in V. We prove that VBQ is open by proving that the complement
is closed. Indeed, fix P’ and consider Ip. If codim I, < 3, then every 3-dimensional subspace
I3 of I, has codimension less than 3. For every I3 C Ip we can find Fi, F», F3 such that
Is = (Fy, Fy, F3). By Theorem 5.1.2, Fy = F} = F5 = 0 if and only if Res(Fp, Fi, F») = 0. Since
Res(Fp, F1, F») is a polynomial in the coefficients of F;, and F; are determined by the coefficients
of p;;, we get one polynomial R in the coefficients of the p;; for each 3-dimensional subspace
of I,. Then every 3-dimensional subspace has codimension less than three if and only if the
ideal spanned by the polynomials R vanish. The subset of Vp where the coefficients satisfies this
condition is closed. This shows that Vg is open. Every open subset of A is irreducible, thus Vg
is irreducible. |

Proposition 6.0.3. The 20 Betti strata Fp in the table in Figure 6.1 are irreducible.

Proof. Consider the map

¢: Vg — Fp
P'— [Fp],

where F, is the polynomial with the apolar ideal FI’} generated by the (n — 1)th order pfaffians
of P'. Then map is well-defined since, by assumption, the (n — 1)th order pfaffians of P’ generates
an ideal I, of codimension 3, and by Theorem 2.3.3 I}, is Artinian Gorenstein. By Definition-
Proposition 2.2.1, I, = Fi5- for an F, and by [Fis95] Fp is unique up to scalar. To prove that
¢ is surjective, observe that to every F' there is a corresponding apolar ideal which is Artinian
Gorenstein by Definition-Proposition 2.2.1, and by Theorem 2.3.3 every Artinian Gorenstein ideal
of codimension 3 arises as (n — 1)th order pfaffians of a skew symmetric matrix. Since Fp is the
image under a map and Vg is irreducible, then Fp is irreducible. |

Now, we introduce some theory about binary forms of even degree that we will use to prove
Proposition 6.0.1.

Theorem 6.0.4 (Sylvester). Let d = 2k. For a general F € Clzg,x1]q, then v(F) =k + 1 and
VSP(F, k +1) = P,
Definition 6.0.5. We say that a scheme T is apolar to F if Iy C F*.

Lemma 6.0.6. Let F' € Clxg, x1, x2]¢. Assume I' is apolar to an F' and that T' is contained in a
curve C.

. If C is a line L, then (vg(C)) =P% and I can be considered as a general binary sextic form.

. If C is a conic Q, then (vs(C)) = P2 and F can be considered as a general binary form of degree
12.

Proof. (1) By Lemma 2.1.5, [F] € (vs(I')) C (vs(L)) C (vs(P?)). Let Hg = {[F] € P(S) :
G(F) = 0}. Then (v6(L)) = (gg,ov(r) He- Further, we have that vg(L) C Hg if and only if
G € I1, 6. The dimension of the space of ternary quintic forms is 21, thus Iy g is 21-dimensional.
Since Hg C P?7, we have that (vg(L)) = Nagover) He = PS. A point in P® can be considered
as a binary sextic, that is

4 4
(ao ta1:ag:ag;ag;as) aomg + alzchl + agxo:r% + ag:rg:vi{’ + aw%xl + a5x0:):? + aﬁx?.

Since [F] € (vg(C)), F can be considered as a general binary sextic form.

(2) By Lemma 2.1.5, [F] € (vs(I")) C (v6(Q)) C (vs(P?)). Let Hg = {[F] € P(Ss) : G(F) =
0}. Then (v6(Q)) = (Np,>ue(@) Ha- Further, we have that v6(Q) C Hg if and only if G € Ig .
The dimension of the space of ternary quartic forms is 15, thus Ig ¢ is 15-dimensional. Since
Hg C P27, we have that (vg(Q)) = Nee oo He = P!2. In the same way as above a point in
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P'2 can be considered as a general binary polynomial of degree 12. Since [F] € (vg(Q)), F can be
considered as a binary polynomial of degree 12. |

Lemma 6.0.7. Let F' € Clxg,x1,x2)6. Assume It C FL is the ideal of a scheme I' which is
contained in a curve C.

. If C is a line L containing a scheme of length 4 and F' is not apolar to a scheme of length less
than 4, then v(F) = 4 and VSP(F,4) = P..

. If C is a conic Q containing a scheme of length 7 and F' is not apolar to a scheme of length less
than 7, then v(F) = 7 and VSP(F,7) = P'.

Proof. (1) By Lemma 6.0.6, F' can be considered as a binary form of degree 6. By Theorem 6.0.4,
and since F is not apolar to a scheme of length less than 4, r(F) = 4 and VSP(F,4) = PL.

(2) By Lemma 6.0.6, F' can be considered as a binary form of degree 12. By Theorem 6.0.4,
and since F is not apolar to a scheme of length less than 7, r(F) = 7 and VSP(F,7) =P.. ®H

Now, give lemma about of the rank of a ternary sextic form F. Thereafter, we prove
Proposition 6.0.1.

Lemma 6.0.8. Let bis and bz be equal the number of, respectively, quadratic and cubic generators
of F+ for a ternary sextic form F. Let r(F) be the rank of F. Then r(F) > 6 — byy and, if
bia =0, then r(F) > 10 — by3.

Proof. Assume for contradiction that r(F) < 6 — by. Then there exists a Ir C F'* such that T
has length r(F'). Then the dimension of the space of quadratic forms in It is at least 6 — r(F).
Since 6 — r(F') > bia we have a contradiction. The proof for the second inequality is similar. W

Proof of Proposition 6.0.1. We go through each type:

[300] By Proposition 5.2.3 there exists a subideal It of F* which is the ideal of a scheme of
length three. For a general F', the scheme consists of three points, so r(F') < 3. Since the space
of quadratic forms in F* is 3-dimensional, r(F) > 3 by Lemma 6.0.8, thus r(F) = 3. The ideal
It is generated by a 3-dimensional space of quadratic forms, that is the whole space of quadratic
forms in F*, hence the VSP(F,3) is one point. The dimension of the family of 3-tuples in P? is
6, by Lemma 5.1.14. Three points in P27 span a P2, so the dimension of Fi300) 18 6+2=28.

[210] By Proposition 5.2.5 there exists a subideal It of F* which is the ideal of a scheme of
length four, with a subscheme of length three contained in a line. For a general F, the scheme
consists of four points, thus r(F) < 4. Since the space of quadratic forms in F is 2-dimensional,
r(F) > 4 by Lemma 6.0.8, thus r(F) = 4. The ideal It is generated by a 2-dimensional space of
quadratic forms and a 1-dimensional space of cubic forms, that is the whole space of quadratic
forms and cubic forms in F*, hence the VSP(F,4) is one point. The dimension of the family
of 4-tuples, three on a line in P? is 7, by Lemma 5.1.14. Each 4-tuple spans a P? in P?7, so the
dimension of F10) is 7+ 3 = 10.

[200] By Proposition 5.2.4 there exists a subideal Iy of F* which is the ideal of a scheme of
length four. For a general F, the scheme consists of four points, so r(F') < 4. Since the space of
quadratic forms in F is 2-dimensional, r(F) > 4 by Lemma 6.0.8, thus r(F) = 4. The ideal Ip
is generated by a 2-dimensional space of quadratic forms, that is the whole space of quadratic
forms in F-, hence the VSP(F,4) is one point. The dimension of the family of 4-tuples in P? is
8, by Lemma 5.1.14. Four points in P?7 span a P3, thus the dimension of Fl200) 18 8 +3 =11.

[202] By Proposition 5.2.6 there exists a subideal Iy of F* which is the ideal of a scheme
of length five, with a subscheme of length four contained in a line. For a general F', the scheme
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consists of five points, so r(F) < 5. By comparing the Betti tables for a the ideal of a scheme
of length four given in Corollary 5.1.11 with the Betti table for [202] we see that there are no
subideals of F- of a scheme of length four. Thus, r(F) = 5.

We claim that VSP(F,5) = P!. Indeed, let L be the line containing the subscheme of I' of
length four and Ty the remaining point. We have that (vs(L),vs(I'1)) = P7 and further that
(v6(L)) = P® and vg(I'y) = [F1]. Consider ([F],[F]) = P!. Since [F], [F1] € (vs(L),vs(I'1)) and
(v6(L)) C (v6(L), v6(T1))), dim({[F], [F]) N (wg(L))) = 0. Let

[F2] = (s (L)) O ([F1], [F1)-

Of this reason, [F»] € ([F],[F1]) and [F] € ([F1],[F2]). This shows that there exists a unique
decomposition F' = Fj + F5, where Fj is apolar to L and F} is apolar to a point. By Lemma 6.0.7,
r(Fy) = 4 and VSP(Fy,4) = P!, Since VSP(F7, 1) is one point, we get that VSP(F,5) = PL.
The dimension of the family of 5-tuples, four on a line in P? is 8, by Lemma 5.1.14. Each
5-tuple in P?7 span a P4, Since VSP(F,5) = P!, the dimension of Fro02) 18 8+4—-1=11

[120] By Proposition 5.2.7 there exists a subideal It of F- which is the ideal of a scheme of
length five. For a general F', the scheme consists of five points, so r(F') < 5. Since the space of
quadratic forms in F* is 1-dimensional, r(F) > 5 by Lemma 6.0.8, thus r(F) = 5. The ideal Ip
is generated by a 1-dimensional space of quadratic forms and a one 2-dimensional space of cubic
forms, that is the whole space of quadratic forms and cubic forms in F*, hence the VSP(F,5) is
one point. The dimension of the family of 5-tuples P? is 10, by Lemma 5.1.14. Five points in P?7
span a P*, so the dimension of Fri20) 18 10 + 4 = 14.

[111] By Proposition 5.2.8 there exists a subideal It of F which is the ideal of a scheme of
length six contained in a conic. For a general F', the scheme consists of six points, so r(F') < 6.
By comparing the Betti tables for a the ideal of a scheme of length five given in Corollary 5.1.13
with the Betti table for [111] we see that there are no subideals of F* of a scheme of length five.
Thus, r(F) = 6. The ideal Ip is generated by a 1-dimensional space of quadratic forms and a one
1-dimensional space of cubic forms, that is the whole space of quadratic forms and cubic forms in
F*, hence the VSP(F, 6) is one point. The dimension of the family of 6-tuples P2 on a conic is
11, by Lemma 5.1.14. Each 6-tuple in P?7 span a P°, so the dimension of Fi1yy is 11+ 5 = 16.

[112] By Proposition 5.2.9 there exists a subideal Iy of F- which is the ideal of a scheme
of length six, with a subscheme of length four contained in a line. For a general F', the scheme
consists of six points, so r(F) < 6. By comparing the Betti tables for a the ideal of a scheme
of length five given in Corollary 5.1.13 with the Betti table for [112] we see that there are no
subideals of F'* of a scheme of length five. Thus, r(F) = 6.

We claim that VSP(F, 6) = PL. Indeed, let I'y be the subscheme of T for length four contained
in a line and 'y the scheme of the remaining two points. We have that (vg(T')) = P® and further
that (v(I'4)) = P? and vg(I's) = PL. Consider (vg(I'2), [F]) = P2. Since [F],ve(I'2) € (vg(T)) and
(05(T's) © (t6(T))), dim({u6(2), [F]) O {op(Ta)}) = 0. Let

[F2] = (v6('a)) N (ve(I'2), [F]).
By the same arguments, there exists an
[F1] = (vs(T'), [F]) N (v6(I2)).

Of this reason, [Fi], [F],[F] € (vs(T4),v6(T'2)) = P! so [Fi],[Fe], [F] are colinear. As a
consequence, [F] € ([F1], [Fz]). This shows that there exists a decomposition F' = F} + F, where
Fy is apolar to a line and F} is apolar to two points. By Lemma 6.0.7 VSP(Fy,4) = P!. Since
VSP(F},2) is one point, we get that VSP(F,5) = P!. The dimension of the family of 6-tuples,
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four on a line in P? is 10, by Lemma 5.1.14. Each 6-tuple in P?7 span a P°. Since VSP(F,6) = P!,
the dimension of Fjj9 is 10 +5—1=14.

[104] By Proposition 5.2.10 there exists a subideal It of F* which is the ideal of a scheme
of length seven contained in a conic. For a general F', the scheme consists of seven points, so
r(F) < 7. By comparing the Betti tables for a the ideal of a scheme of length five given in
Corollary 5.1.13 with the Betti table for [112] we see that there are no subideals of F'* of a scheme
of length five. There are no subscheme of length six either. Indeed, assume for contradiction the
It is an ideal of a scheme of length six. If the quadric in F= is in Iy then we are in the cases
Q(G) and 9(8), but then It contained one cubic, which is a contradiction since there are no cubic
forms in F+. If the quadric is not in It, then there are at least two cubic forms in I, which also
is a contradiction. Thus, r(F) = 7. By the same arguments as in [112], VSP(F,7) = P!. The
dimension of the family of 7-tuples on a conic in P? is 12, by Lemma 5.1.14. Each 7-tuple in P?7
span a P®. Since VSP(F,7) = P!, the dimension of Fjjgq is 1246 —1 =17,

[040] By Proposition 5.2.11 there exists a subideal It of F- which is the ideal of a scheme
of length six. For a general F', the scheme consists of six points, so r(F') < 6. Since the space
of cubic forms in F* is 4-dimensional, r(F) > 6 by Lemma 6.0.8, thus r(F) = 6. The ideal It
is generated by a 4-dimensional space of cubic forms, that is the whole space of cubic forms
in F*, hence the VSP(F,6) is one point. The dimension of the family of 6-tuples P? is 12, by
Lemma 5.1.14. Six points in P?7 span a P?, so the dimension of Floao) 18 12 +5 =17,

[032] By Proposition 5.2.14 there exists a subideal It of F* which is the ideal of a scheme
of length seven, with a subscheme of length four contained in a line. For a general F', the
scheme consists of seven points, so r(F) < 7. Since the space of cubic forms in F' s 3-
dimensional, r(F') > 7 by Lemma 6.0.8, thus r(F') = 7. By the same arguments as is [112], we
have that VSP(F,7) = P!. The dimension of the family of 7-tuples, four on a line in P? is 12, by
Lemma 5.1.14. Each 7-tuple in P27 span a PS. Since VSP(F,7) = P!, the dimension of Flozz) 18
1246 —-1=17.

[031] By Proposition 5.2.11 there exists a subideal It of F* which is the ideal of a scheme
of length seven. For a general F', the scheme consists of seven points, so r(F) < 7. Since the
space of cubic forms in F is 3-dimensional, r(F) > 7 by Lemma 6.0.8, thus r(F) = 7. The
ideal I is generated a 3-dimensional space of cubic forms, that is the whole space of cubic forms
in F+, hence the VSP(F,7) is one point. The dimension of the family of 7-tuples P? is 14, by
Lemma 5.1.14. Seven points in P27 span a P%, so the dimension of Floz1) is 14 +6 = 20.

[023c] By Proposition 5.2.15 there exists a subideal It of F+ which is the ideal of a scheme
of length eight, with a subscheme of length four contained in a line. For a general F', the scheme
consists of eight points, so r(F) < 8. Since the space of cubic forms in F* is 2-dimensional,
r(F) > 8 by Lemma 6.0.8, thus r(F) = 8. By the same arguments as is [112], we have that
VSP(F,8) = P'. The dimension of the family of 8-tuples, four on a line in P? is 14, by
Lemma 5.1.14. Each 8-tuple in P27 span a P”. Since VSP(F,8) = P!, the dimension of Flo23d 18
14+7—-1=20.

[024] By Proposition 5.2.16 there exists a subideal It of F+ which is the ideal of a scheme of
length eight, with a subscheme of length seven contained in a conic. For a general F', the scheme
consists of eight points, so r(F) < 8. Since the space of cubic forms in F* is 2-dimensional,
r(F) > 8 by Lemma 6.0.8, thus r(F') = 8. By the same arguments as is [112], we have that
VSP(F,8) = P!. The dimension of the family of 8-tuples, seven on a conic in P? is 14, by
Lemma 5.1.14. Each 8-tuple in P?” span a P”. Since VSP(F,8) = P!, the dimension of Floz4 18
14+7—-1=20.
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[023b] By Proposition 5.2.15 there exists a subideal It of F* which is the ideal of a scheme
of length eight. For a general F', the scheme consists of eight points, so r(F') < 8. Since the space
of cubic forms in F'* is 2-dimensional, r(F) > 8 by Lemma 6.0.8, thus r(F) = 8. We see from the
degree matrix in Proposition 5.2.15 that there are only one row basis such that a Hilbert—Burch
matrix of Ir is a submatrix of M3y, hence the VSP(F)8) is one point. The dimension of the
family of 8-tuples P? is 16, by Lemma 5.1.14. Eight points in P?” span a P7, so the dimension of
—F[023b] is 16 + 7 = 23.

[030] By Proposition 5.2.12 there exists a subideal It of F+ which is the ideal of a scheme
of length nine. For a general F', the scheme consists of nine points, so r(F') < 9. We claim that
r(F) = 0. Indeed, F* is generated by a 3-dimension space of cubics forms, with no linear or
quadratic syzygies. Since F* is of codimension 3, the only subideals of finite scheme are therefore
generated by a 2-dimensional space of cubic forms that intersect in a CI. Thus, r(F') = 9. Since
the dimension of 2-dimensional subspaces of a 3-dimensional space is 2, VSP(F,9) = P2.

An [F] € Fp is determined by the 3-dimensional space of cubic forms in F+. Therefore, the
dimension of Fpg is equal to the dimension of 3-dimensional subspaces of the 10-dimensional space
of cubic forms, or dim G(3,10). We have that dim G(3,10) = 37 = 21, thus the dimension of
Foo) 1s 21.

[016b] By Proposition 5.2.17 there exists a subideal It of F* which is the ideal of a scheme
of length nine, with a subscheme of length four contained in a line. For a general F', the scheme
consists of nine points, so r(F) < 9. Since the space of cubic forms in F'* is 1-dimensional, r(F) > 9
by Lemma 6.0.8, thus r(F) = 9. By the same arguments as in [112], we have that VSP(F,9) = P*.
The dimension of the family of 9-tuples, four on a line in P? is 16, by Lemma 5.1.14. Each 9-tuple
in P27 span a P%. Since VSP(F,9) = P!, the dimension of Flogq) 18 16 +8 — 1 = 23.

[016¢] By Proposition 5.2.17 there exists a subideal I+ of F'* which is the ideal of a scheme of
length nine, with a subscheme of length seven contained in a conic. For a general F', the scheme
consists of nine points, so r(F) < 9. Since the space of cubic forms in F’ L is 1-dimensional,
r(F) > 9 by Lemma 6.0.8, thus r(F) = 9. By the same arguments as in [112], we have that
VSP(F,9) = P!. The dimension of the family of 9-tuples, seven on a conic in P? is 16, by
Lemma 5.1.14. Each 9-tuple in P27 span a P8. Since VSP(F,9) = P!, the dimension of Flooq) 18
16 +8—1=23.

[023a] By Proposition 5.2.15 there exists a subideal It of F* which is the ideal of a scheme
of length nine. For a general F', the scheme consists of nine points, so r(F) < 9. If the rank is
less than 9, then we are in one of the cases [023b] and [023¢]. Since we have assumed that we are
in case [023a], r(F') = 9. The ideal It is generated a 2-dimensional space of cubic forms, that is
the whole space of cubic forms in F*, hence the VSP(F,9) is one point. The dimension of the
family of 9-tuples P? in a complete intersection is 16, by Lemma 5.1.14. Nine points in P?7 span
a P8, so the dimension of Flo23a) 18 16 + 8 = 24.

[016a] By Proposition 5.2.17 there exists a subideal It of F- which is the ideal of a scheme
of length nine. For a general F, the scheme consists of nine points, so r(F) < 9. Since the
space of cubic forms in F! is 1-dimensional, r(F) > 9 by Lemma 6.0.8, thus r(F) = 9. From
Theorem 4.4.1 we have that there exists two row bases such that we get the zero block, hence
VSP(F,9) is two points. The dimension of the family of 9-tuples P? is 18, by Lemma 5.1.14.
Nine points in P?7 span a P®, so the dimension of Floie) s 18 + 8 = 26.

[009] By Proposition 5.2.17 there exists a subideal It of F* which is the ideal of a scheme

of length nine. For a general F', the scheme consists of nine points, so r(F) < 9. Since the
space of cubic forms in F* is 1-dimensional, r(F) > 9 by Lemma 6.0.8, thus r(F) = 9. From
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Theorem 4.4.7 we have that there exists a surface of row bases such that we get the zero block,
hence VSP(F, 10) is a surface. By [Muk09], the surface is a K3 surface. The dimension of the
family of 10-tuples P2 is 20, by Lemma 5.1.14. Ten points in P27 span a P?. Since VSP(F,10) is
a surface, the dimension of Fygg) is 20 +9 — 2 = 27. |
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7 | Stratification

In this chapter we give a stratification P?” = IP(Sg) in terms of the Betti strata
Fp = {F € P(Ss) : S/F has Betti table B}.

In other words, P?” = | | Fp and that Fg = ||z 7 Fp- Our approach is first, in Section 7.1, to
investigate two relations between the

Gg={l'C S :Ir C F is minimal for some F € FB}.

The first is a closure relation between the Gp consisting of schemes of equal length, and the
second is a containment relation between the Gp consisting of schemes of different length. Then,
in Section 7.2, we use the two relations between the Gp to prove relations between most of
the Fp. For the remaining relations between the Fp and prove the remaining relations with a
direct argument. We also prove some non-containments. Thereafter, we include some geometric
description of the relation between some of the Betti strata. Lastly, in Section 7.3, we include
the Betti strata such that there is a linear form in F'- and explain how these strata fit into our
stratification.

7.1 Relations Between the Ggs

7.1.1 Closure Relations Between some of the Ggs

In this section we will consider a closure relation between schemes of equal length. We will do
this by proving when G C @, by proving the existence of a deformation of subschemes from Gj
to Gp. X =J(T'4,t) is a deformation of Xy = (I'0,0).

Let X C P2 x Al and f: X — Al. We call f a deformation if f~1(t) has the same Hilbert
polynomial for every ¢t € A'. We are now ready to state the main result of this section.

Proposition 7.1.1. We have the following closure relations:

- Gpa10) (four points, three on a line) C % (four general points),

- Gpy (s points on a conic) C % (siz general points),

- Gl023a/030] (nine points in CI) C m (nine general points),

- Gpog) (five points, four in a line) C % (five general points) ,

- Gpig) (six points, four on a line) C Gao) (siz general points),

- Gnig) (siz points, four on a line) C % (six points on a conic),

- Gjosg) (seven points, four on a line) C Gjo31) (seven general points),
- Glio4) (seven points on a conic) C % (seven general points),

- Glooa) (eight points, seven on a conic) C Gjoay (eight general points),

89



7.1. Relations Between the Ggs

10. Gjoase) (eight points, four on a line) C Gyosy (eight general points),
11. Gjoi6¢) (nine points, seven on a conic) C Gioieq) (nine general points),

12. Gjoage) (nine points, four on a line) C Giiq) (nine general points).

Proof. Since each Gp is irreducible, we can show the relation for a general element. We will give
an explicit construction for (1) and (4). The remaining relations can be shown in a similar way.
(1) Let I' € Ga19)- Without loss of generality, assume that I' = {po, p1, p2,3 }, where

po=(1:1:0), p2=(0:1:0),
p1=(1:0:0), p3=(0:0:1).

That is, I' consists of four point, three contained in the line x5 = 0. Let further Ty = (p1, p2, p3).
Let Xo = ({p1,p2,p3,p0},0) and X; = ({p1, p2, p3, i}, 1), where p; = (1: 1 :¢). Then f: X — Al
is a deformation of Xy and I' is the limit of I'y = I" ® p;. Since every Iy is in Q[QOO], we are done.

For the next two inclusion, we do as above. That is, let Iy be the ideal of a scheme in 'y € G
and let I" be a subscheme of I'y of length d — 1, where the points in I' are general. Let pg be the
remaining point in I'g. Let I; be a family of ideals of schemes I'; € G’, where I'; = T" & p; such
that p; has pg as its limit.

(4) Let I' = (p07p0/aplap27p3)a where

po=(1:1:0),

p2=(0:1:0),
poy = (1:2:0),

p3=(0:0:1)
p1=(1:0:0),

That is, I' consists of five points, four contained in the line zo = 0, thus I' € Gpggg. Let
further T'o = (p1,p2,p3). Let Xo = ({p1,p2,P3,p0,p0 },0) and Xy = ({p1, p2, p3, pt, pr }, ), where
pr=(1:1:t)and py = (1:2:¢). Then f:P? x Al — Al is a deformation of X; to Xy and T is
the limit of I'y = I @ p; © py. Since every I'; is in Gji9q), we are done.

For the remaining inclusion, we do as in above. That is, let Iy be the ideal of a scheme in
I'g € G and let I be a subscheme of 'y of length d — 2, where the points in I' are general. Let
po and py be the remaining points in I'y. Let I; be a family of ideals of schemes I'; € G’, where
I'y =T @ p; @ pp such that p; has pg as its limit and py has py as its limit. |

7.1.2 Containment Relations Between some of the Gps

In this section we will prove a containment relation between Gp consisting of schemes of different
length.

Definition 7.1.2. We say that Gg, T Gp, if for a general I'y € Gp,, there exists a I'y C I'y such
that I'; € QBl.

We observe that if Gp, T Gp, then for each I'y € Gp,, we can find a I'y € Gp, such that
I'y C T'2 by adding an appropriate point p to I';. We show the strategy in an example.
We are now ready to state the first proposition in this section.

Proposition 7.1.3. We have the following relations of the kind C:
1. Gpaoo) (four points) T Gpag (five points) T Goag) (six points) T Gjoz1) (seven points) T Gioasy
(eight points) C Gioi6q) (nine points) C Gioog) (ten points)

2. Gpoa) (seven points on a conic) T Gogq) (eight points, seven on a conic) C G (nine points,
seven on a conic)
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7.1. Relations Between the Ggs

3. Gjzo0) (three points) T Gaiq) (four points, three on a line) C Gagg) (five points, four on a line)
C Gz (siz points, four on a line) T Gjogg) (seven points, four on a line) T Gjoasy (eight points,
four on a line) C Gioi6y (nine points, four on a line)

4. Gnao) (five general points) C Gyiy1) (siz points on a conic) C Gioq) (seven points on a comnic)
5. Glooay (eight points) T Goi6a/030) (nine points in CI)
Proof. Since each Gp is irreducible, we can show the relation for a general element.
For a given I' € G we can choose a point p € P? such that I' @ p € Gpr. For the first and
second case, we add a general point. For the third case we add a point on a line contained in the

scheme, the forth a point on a conic contained in the scheme and the fifth a point on two cubics
contained in the scheme. |

The relation from Proposition 7.1.1 and Proposition 7.1.3 are depicted in Figure 7.1. A dashed
arrow represents a containment relation C and a regular arrow represents a closure relation.
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Figure 7.1: Relations between the Gps. A dashed arrow represents a containment relation C and
a regular arrow represents a closure relation
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7.2. Relations between the Fgs

7.2 Relations between the Fgs

In this section we will prove the closure relations between the Fp. First, we prove how we can use

the relations between the Gg to get relations between most of the Fp. Since g[023a/ 030] consist

of schemes such that Ir is minimal for either Fjgp34] or Fjoz0], we need additional arguments

to prove the relation between Fg3, and Fg3g;. Thereafter, we prove the remaining relations

using the concept of catalecticants and secant varieties. Lastly, we prove some non-containments.

Recall that we say that I' is minimal for F' if the length of I is equal to the Cactus rank of F'.
Now, we are ready to explain how we use the relations between the Ggs to the Fps.

Lemma 7.2.1. Let Fp be one of the irreducible Betti strata. Let F' € Fp be general assume I’
minimal for F. Then (vs(T)) C Fp.

Proof. Let Fr = {F € P(S¢) : I is minimal for F'}. We obviously have Fr C (vs(I")), and we
claim that Fr = (vg(T')). Indeed, let n + 1 be the cardinality of points in I'. Since I" is minimal
for an F', then (vg(I")) = P". Further, we have that Fr is open in (vg(I")), hence Fr = (vg(T)).
To complete the proof, observe that Fr C Fg. Thus {vg(T')) = Fr C Fpg. [ |

Proposition 7.2.2. Assume F; € Fp, is apolar to a scheme I'; € Gp, and that I'; is minimal for
F; fori e {1,2}. If Gp, T GB,, then Fp, C Fi,.

Proof. Since the Betti strata Fp are irreducible we only need to prove the result for a general
F. Let Fy| € Fp, be general. By assumption, there exists an I'y € Gp, such that I'y C I';. Since
F1 € (vs(T'1)) C (v6(T'2)) C Fp, by Lemma 7.2.1, we are done. [ ]

Proposition 7.2.3. AssumLE- € Fp, is apolﬂto a scheme I'; € Gp, and that I'; is minimal for
F; forie {1,2}. If Gp, C Gp,, then Fp, C Fp,.

Proof. Since the Betti strata Fp are irreducible we only need to prove the result for a general F'.
Let Iy € Fp, be general. By assumption there exists (I'});ca1_o such that IS =Ty € Gp, is the
limit and T € Gp,. Then there exists Fy such that Iy i apolar to F; and F; € (v(I'y)) C Fg, by
Lemma 7.2.1. Since F; € (vg(I'1)), Fy is the limit of (F}); cp1_ and Fy € Fp,. [ |

By using Proposition 7.1.1 together with Proposition 7.2.3 and Proposition 7.1.3 together
with Proposition 7.2.2, we get the following

Proposition 7.2.4. There are 20 irreducible Betti strata of non-degenerate ternary quartic forms
and they satisfy the following closure relations:

Fia10] (four points, three on a line) C m (four general points),
Fhy) (siz points on a conic) C m (siz general points),

Fl023a/030] (nine points in CI) C m (nine general points),

Flaoz) (five points, four in a line) C m (five general points) ,
Flg) (siz points, four on a line) C m (siz general points),

Gpig) (six points, four on a line) C % (six points on a conic),
Fiosg] (seven points, four on a line) C Fiog1) (seven general points),
Fiioa] (seven points on a conic) C Figy) (seven general points),

Floza] (eight points, seven on a conic) C m (eight general points),
Flozsq (eight points, four on a line) C m (eight general points),
Floieq (nine points, seven on a conic) C m (nine general points),

Flo26b] (nine points, four on a line) C Flo16a] (nine general points).
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Faoo] (four points) C Fiiaq) (five points) C Fioao) (six points) C Fiosy (seven points) C Floay)
(eight points) C Fioieq) (nine points) C Floog) (ten points)

Fl104] (seven points on a conic) C Flo24] (eight points, seven on a conic) C Flo16¢] (nine points,
seven on a conic)

Fiso] (three points) C Fiaig) (four points, three on a line) C Fagg) (five points, four on a line)

C Flg) (siz points, four on a line) C Fiozg) (seven points, four on a line) C Figas, (eight points,
four on a line) C Fioiey (nmine points, four on a line)

Fli20) (five general points) C Fi11) (siz points on a conic) C Fjjoa) (seven points on a comnic)

Flozsy (eight points) C Fioiea/030] (nine points in CI)
Proposition 7.2.5. F[O?)l} C f[030} C f[ogga]

Proof. We let By = [030] and By = [023a]. Let I' € Gjo30)/[0234 be general. Then there exists
Fy € Fp, and F; € Fp, such that I' is minimal for F} and Fy. Let Fr, = {F € (vg(I")) : F € Fp,}
for i € {1,2}. We claim that 71, = (vg(T)). Indeed, since F+ for F € Fp, is generated by
three cubic forms, we have that each 3-dimensional subspace of the vector space of cubic forms
containing Ir gives a point F' € Fr,. Since the space of 3-dimensional subspaces of the vector
space of cubic forms is a P7, Fr, = P7. Further, we have that FT, is open in (vg(I')), hence
Fr, = {vs(T")). To complete the proof, observe that Fr, C (vg(T')) and Fr, C Fg,. Thus,
Fy 6.7:1“1 CJ’_"F2 C.FBZ. [ |

Lemma 7.2.6. Let hy; be the dimension of the space of forms of degree j in Ff- for F, € F;. If
F1 C Fa, then hi; > hy;.

Proof. Let F' € Fy be the limit of (F})ica—o where Fy € F. Since FtJ- contains a hoj-dimensional
space of forms of degree j, then also FOL contains a hgj-dimensional space of forms of degree j.
This shows that hi; > hoj; for every j. [ |

Proposition 7.2.7. We have the following non-containments

Fioza) & Floo)

Fio2sq € Fioso]

Fioree) & Fiozsal

Fiore) & Fiozsa)

Fioso) & Flotee)

Froso] & Fioree]

Proof. The first four cases follows directly from Lemma 7.2.6. For case (5), observe that a general

F € Foig, is apolar to a scheme of length nine with a subscheme of length seven contained

in a conic. This must also be the case for an F' € Fgi6,. Since an F' € Flggq) is apolar to a
scheme which is a complete intersection of two cubics, and there are no subscheme of seven points
contained in a conic in the complete intersection of two cubics, Fp3q) ¢ Floiee)- For case (6),
observe that, by similar arguments, an F' € Fgiy is apolar to a scheme of length nine containing
a subscheme of length four contained in a line. There are no subscheme of length four contained

in a line in a complete intersection of two cubics, hence Fg3q ¢ Flotet]- |

The relation from Proposition 7.2.4, Proposition 7.2.5 and Proposition 7.2.7 are depicted in
Figure 7.2. An arrow represents a closure relation.
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Figure 7.2: Stratification of P(Sg)
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7.2.1 Geometric Interpretation

The sth secant variety to the Veronese variety is

Secs(va(P(S1))) = {[F] € P(Sq) : F = L%+ --- + L4 for some Ly,...,Ls € S1}
Definition 7.2.8. Let F' € Sy = Clzo,...,z,] and G € Ty_, and consider the map

Tg—u — Sy
G — F(Q).
The matrix associated to the map is called the catalecticant and is written Cat(u,d —wu,n+1)(F).

We will use the case n = 1, d = 2k and u = k, so let F' = Z;.l;é (‘j.)ajxg_jaﬁil. Then, by
[Dol12, Example 1.4.1],

ap al ce ag

aj a9 oo Q4
Cat(k, k,2)(F) =

ar Qg+1 .- asgk

We have the following relationship between the catalecticant and the secant varieties.

Lemma 7.2.9. [lar99, Theorem 1.45] Let C =P be a curve and let F = vy4(C) C P(Sy). Let
I 1(Cat(k, k,2)(F)) be the ideal generated by the (s + 1) x (s+ 1)-minors of Cat(k, k,2)(F') and
let s > 1. Then

Is11(Cat(k, k,2)(F)) = I(Secs(F)).

We give give two examples. In the first example, C' is a line and in the second example, C' is
a conic.

Example 7.2.10. Let C be a line L. Then F = vg(L) C P?7 is a sextic. Recall that an
[F1] € (vs(L)) can be considered as a general binary form. By Theorem 6.0.4, r(F') = 4, thus we
have the following strict inclusions:

v6(L) € Seca(ve(L)) & Secg(vs(L)) & eqSeca(ve(L)) = (ve(L))-

We write F' = Z?:o (?) ajzng*jx(f and consider (ag : - - - : ag) as coordinates in (vg(L)) = PS. This
gives

ap ayp a2 as
ap a2 az a4
az az a4 as
a3 a4 a5 ae

Cat(3,3,2)(F) =

For an [F}] € PY, we have by Lemma 7.2.9, that [F}] € Secs(F) if and only if det(Cat(3,3,2)(F))
vanish in [F], [FL] € Seca(F) if and only if every 3 x 3 minor of Cat(3,3,2)(F') vanish in [F7],
and [Fr] € F if and only if every 2 x 2 minor of Cat(3,3,2)(F') vanish in [F].

Example 7.2.11. Let C be a line Q. Then F = v4(Q) C P?7 is a degree twelve polynomial.
Recall that an [Fg] € (vs(Q)) can be considered as a general binary form. By Theorem 6.0.4,
r(F') = 7, thus we have the following strict inclusions:

v6(Q) & Seca(vs(Q)) & Secs(vs(Q)) € Seca(vs(Q)) = (v6(Q))-
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We write F' = 2;1:0 (lf) ajx(l)Q_jx%z and consider (ag : --- : aj2) as coordinates in (vg(Q)) = P12
This gives

ap a1 a2 a3 a4 as ae
ap a2 az a4 a5 ag ar
az a3z a4 as ag a7 ag
Cat(6,6,2)(F)= a3 a4 as ag a7y ag ag
ag as ag ar ag ag aio
as ae ay ag ag aip ail
ag a7 ag ag aipp a1l a2

For an [Fy] € P2, we have by Lemma 7.2.9, that [F] € Secs(F) if and only if every (s—1) x (s—1)
minor of Cat(3,3,2)(F) vanish in [Fg] for 3 < s <7, and [Fg] € F if and only if every 2 x 2
minor of Cat(3,3,2)(F) vanish in [Fg].

Now, we introduce some lemmas we will use in the discussion below.

Lemma 7.2.12. Let A be an n X n matriz. Then A has rank r if and only if A can be written as
a minimal sum of r matrices of rank 1.

Proof. Let A = (v1,...,v,), that is v; are the columns of A. Since A has rank r, there exists a
basis {b1,...,b,} for the column space of A. In other word, there exists a;; such that

vy = a11by + - -+ + aiby,

Up = Ap1b1 + - -+ + ap,by.
This gives that

A= (allbl + -t abey, . anby +- -+ am"br)
= (aubl, - ,anlbl) + .+ (alrbr + -+ anTbT).

Since A; = (a1b;, . .., anib;) is a matrix where every column is a multiple of b;, A; has rank 1.
For the other implication, assume that

A= (allblv- . ~aan1b1) + 4+ (alrbr + - +am"br)
= (allbl + o+ aybe, ..o apby + -+ anrbr)-

Since r is minimal, {b;,...,b,} is linearly independent. Since the columns of A are spanned by
{b1,...,b}, the column space as dimension n, which implies that A has rank n. |

Let the multiplicity of p in det A be

mp(det A) = max{m : D(det A)(p) =0 for all D € C[afij]m_l}

Lemma 7.2.13. Let A = (ai;) be an n x n matriz and let p € P~ Assume m = mp(det A).
Then every (n —m+ 1) x (n —m+ 1) minors vanish in p.

Proof. Let A; ; be the (n — 1) x (n — 1) minor obtained by deleting the ¢th row and jth column,
Generally, let det A;, i, j1...jm_1 De the (n —m +1) x (n —m + 1) minor obtained by deleting

the rows i1,...,%4,_1 and columns ji,...,jm_1. Then det A = Z;:ol a;jdet A;j. Thus,

Odet A
8&1']'

= det AZJ
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In the same way, welet 0 <47 < -+ - <ip_1 <n—1land 0 < j; < -+ < jm—1 < n — 1 be given.
Then

0Mdet A

aa’il]’l tte aim—ljm—l

=det A

iln-im—lv.jl"v.jm—l N

Evaluating in p, we get

0™ det A

0a;,j, - Gipyjm

(p) = det Air it m (p)-

(p) = 0 by assumption, we are done. |

Lemma 7.2.14. Let Cat(k,k,2)(F) be given and consider the hypersurface H =
V (det(Cat(k, k,2)(F))). If p C Secs(F), but p € Secs_1(F'), then mp =k +1—s.

Proof. This follows from Lemma 7.2.13, Lemma 7.2.12 and Lemma 7.2.9. [ |
Proposition 7.2.15. Fjgi64 # Floiey)

Proof. Since dim Fjg16q = dim Flg1ep] it is enough to show that for a general element F' € Fjgy6y
then F' ¢ Fjgig,. Assume therefore F' € Fjgg), that is [ is apolar to a scheme I' where
a subscheme of length four is contained in a line L. Let @ be the conic containing the
remaining five points. We have that (vg(L)) = PS (v(Q)) = P2 Let p1,po € LN Q.
Then (ve(p1),v6(p2)) C (vs(L)) N (v6(Q)), which gives that (vs(L),v6(Q)) = P'7. Let

L = (vs(L)) N (v6(Q), F) = P?  PS,

Q = (v6(Q)) N (ve(L), F) = P? C P12,

A general point in L has rank 4 and a general point in Q has rank 7. If we prove that there exists
an Fj € L such that F1 has rank 2, then we can find a unique F» € Q such that F» € (F1, F ), so
F would be of type [016b]. We claim that such an F; does not exists. Indeed, let

H = V(I3(Cat(3,3,2)(vs(L)))),

and consider HN L. If there exists an F; € HNL, then F; € Secy(vg(L)). Since dim So(vg(L)) = 3
and both H,L C P, we have H N L = () in general. Consequently, there does not exists an
Fy € L of rank 2, so F' ¢ Flyi6¢- [ |

Remark 7.2.16. The relationship between the catalecticant and the secant varieties to a curve can
be used to give a geometric description of the VSP(F,9) for an F' € Fgi64)- Let F' € Figi6q) and
recall that VSP(F,9) is two points, that is F' can be written as a power sum representation of
nine linear forms in two ways. By apolarity, there exists a Ir C F* and we have shown that It
is generated by a cubic K and a 3-dimensional subset of quadrics. In particular, I' is contained
in K. Assume that K is the union of a line L and a quadric ). Then there exists a subscheme
I', C T of length three contained in L and a subscheme I'g C I of length six contained in Q.

Let p1,p2 € LNQ and let L' = (vg(p1),ve(p2)). By the same arguments as in the proof of
Proposition 7.2.15, we can find two planes

L = (vs(L)) N {v6(Q), F) = P> C PS,
Q = (v6(Q)) N (vs(L), F) = P> C P2,

Let

Hp, = V(det(Cat(3,3,2)(vs(L)))),
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7.3. Binary Forms

Hg = V(det(Cat(6,6,2) (v6(Q)))).

We first consider H; N L € PS. Since dim H;, = 5 and dim L = 2, dim(Hz N ﬁ) = 1. For
every p € L', we have that p € Seca(vg(L)), thus, by Lemma 7.2.14, L'2Q' = Hy, N L, where
@’ is a conic. Since vg(p1),ve(p2) € ve(L), the multiplicity of Hy N L in these point is 3, thus
ve(p1), v6(p2) € Q. Secondly, we consider Hg N Q € P'2. Since dim Hg =11 and dim@Q = 2,
dim(Hg N Q) = 1. For every p € L', we have that p € Seca(v6(Q)), thus, by Lemma 7.2.14
LPQ" = HgnN Q. where Q" is a conic. Since vg(p1), vs(p2) € v6(Q), the multiplicity of Hgn Q in
these points i 6, thus vg(p1),ve(p2) € Q”. To summarize, each point on @’ has rank 3 and each
point on Q" as rank 6.

We will show that there are two pairs of points on Q' and Q" such that F' lies in the span
of each pair. Pick a point Fj, € Q' and let Fy be the corresponding point in Q such that
F € (Fp,Fg). Let Fp, variate along Q" and consider the conic QQ in Q parameterizing the
corresponding Fg. Then QQ € Q =P? and Q" € Q = P? intersect in four points, where two
of the points are vg(p1), ve(p2). Let Fa, Fj be the remaining two points and let Fy, F| be the
corresponding points on @'. Then F € (Fy, Fy) and F € (F}, F}). See the figure.

v6(p1)

We now investigate how a general element of Fjgiey Or Fioi6, fits into the figure. Let
F € Flo16¢- Thus F is apolar to a scheme I' of length nine, where a subscheme of length two is

contained in a line L and the remaining supscheme of length seven in a conic Q. Let L/, {A/, Q, Hy,
and Hg be as above. We consider H, N L € PS. As in the case [016a], L'Q' = Hp, N L, where
Q' is a conic. By assumption, there exists an F9) € L of rank 2. Thus, mE, (Hp) =2,s0 Q' is
the union of two lines intersecting in F{y). A general point in ) has rank 7, thus we can find an
Fopy € Q of rank 7 such that F € (F(2), F(7y). Since VSP(F(7),7) = P!, there is pencil of ways F
can be decomposed as a sum of F{) and F{7). Consider now Hg N Q). The situation is an in the

case [016a], so L"*Q" = Hg N Q, where Q" in general is a non-degenerate conic. We use the same
strategy to find Fi, F» and FY, Fy such that F' € (I, F») and F € (F{, F}) and Fi, F| has rank 3
and Fy, FJ has rank 6. Since F} lies on the line spanned by vg(p1) and Floy and vg(p1), Fh lies on
the line spanned by vg(p2) and Fi7), the decomposition F' = Fy + F5 is one of the decompositions
of in VSP(F,7) = PL.

Let ' € Flpip- We can do a similar description as in the case [016¢], where we note that Q"

and not @’ is degenerate, since we assume that there exists a point of rank 5 in Q

7.3 Binary Forms

In this section we explain how the F' where F- contains a linear form fits into the stratification
just given. Recall that if F- contains a linear form, then F can be considered as a binary form.
The power sum decomposition of binary forms are completely understood and are stated in the
following
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7.3. Binary Forms

Theorem 7.3.1 (Sylvester). Let d = 2k and F € Clxg,z1]q. Then F*+ = (G1,G3), where
degG1 == d1 and degG2 = dg and d1 -+ d2 =d+ 2. Let d1 < dg. Then I‘(F) = dg VSP(F,I‘(F))

is one point for r(F) < k and VSP(F,k + 1) = PL.

Corollary 7.3.2. Let d =6 and F € Cxg, x1,x2]6 and assume that F is apolar to a line. Then

r(F) < 4 and VSP(F,r(F)) is one points for r(F) < 3 and VSP(F,4) = P!,

By the corollary we can find the Betti tables for each case.

1 2 1 - 11 - - 1 1 - - 1 -
.- -1 1 - - -
- - L -1 1 - -
- -o- -o- -9
.- - - - -1 1 - - -
- -1 1 - - -
-2 11 - o101 S 11 -

B [ 1(F) | VSP(F,r) T dim(Fp)
[000] | 1 one point one point 2
[100] | 2 one point two points 5
[010] | 3 one point | three points on a line 7
[002] | 4 P! four points on a line 8

Observe that the type [000] is vg(P2) C P?7. We show how these Betti strata fit into our

stratification in Figure 7.3.

points, four

on a line dim11

[120] Five general
points dim 14

} [202] Five

[200] Four general [2103 hFour pomnts, [002] Four on
points dim 11 ree onl a a line dim 8

line dim 10

{[300] Three generaﬂ ([010] Three points}

points dim 8 on a line dim 7

{ [100] Two }

points dim 5

point dim 2

{ [000] One J

Figure 7.3: Stratification including the binary forms
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8 | Double Cubic Forms

In this chapter we do explicit computation on the apolar ideal of double cubic forms. In particular,
we investigate the relation between a given form F = Q?, where @ is a ternary cubic, and a cubic
apolar to F.

We begin with a familiar characterization of ternary cubics. The family of ternary cubics of
the form Q = a3 + 23 + 23 + Azgz122 = 0 for A € Al is called the Hesse pencil.

Lemma 8.0.1. [AD08] Let Q =0 be a smooth ternary cubic. Then @Q =0 is a member of the
Hesse pencil. The only singular member of the Hesse pencil is the following

Torire =0

(o + o1 + 22)(z0 + €1 + 229) (w0 + €221 + €x2) = 0

(xo + ex1 + x2)(xo + €] + €5)(xo + 1 + €x2) =0

(w0 + €221 + 22) (20 + €21 + €x2) (w0 + 71 + €222) = 0, where €3 = 1.

A cubic of the form @ = :L'S + :U%azg — 33‘(2).7}2 =0 is called a nodal cubic and a cubic of the form

Q = 23 — 2329 = 0 is called a cuspidal cubic.

Lemma 8.0.2. Let Q = 0 med a non-degenerate ternary cubic not in the Hesse pencil. Then
@ = 0 is either a nodal cubic or a cuspidal cubic.

Now, we give a result that gives a correspondence between a double cubic form F' and a cubic
in the apolar ideal.

Proposition 8.0.3. Let Q = z3 + 23 + 23 + A\wox122 and let Q' = y3 + y3 + v3 + Nyoyrye. Let
Q> =F. If \N = —18, then Q' € F*.
Proof. We use the program in Listing 10.21 and get the following output:
Q(Q%) =(8\N + 144)x3

+ (8AN + 144) 3

+ (8AN 4 144) 3

+ (8)\)\, + 144))\([301’11’2
Since 18 - 8 = 144, we get that if AN = —18 then Q'(Q?) = 0. [ |
Corollary 8.0.4. Let Q = x3 + 23 + 23 + \wor122 and let Q' = y§ + 3 + v3 + Nyoy1y2 and
assume AN = —18. Then Q € (Q)* and Q' € (Q*)*
Remark 8.0.5. By, [F1i02, Proposition 2.16], we have that the j-invariant of a ternary cubic form
in Hesse form E) : 23 + 23 + o3 + Azoz122 is given by

A3(\3 —216)3

(A4 3)3(A + 3€)3 (A + 3€2)3

We use the program in Listing 10.25 to show that when A\ = —18, for A = 1, then j(E)) # j(E)),
which means that the two general curves Q = 0 and Q" = 0 in Corollary 8.0.4 are not isomorphic.

J(E)) =
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Proposition 8.0.6. Let Q = a3 — 2229. Let F = Q? and Q' = y3 and Q" = yoy3. Then
Q,Q" € Ft and Q',Q" are the only cubic forms in the ideal.

It is easy to check that @', Q" € F*. For the uniqueness, let

Q = boyp + b1y + boys + bsydyr + bayoy? + bsydyz + beyoys + bryPys + bsyrys + boyoy1ye

be a general cubic. Then, by the program in Listing 10.23, we have

Q(Q?) = (120by — 4b7)x
—(12by — 24b7)23 29
—12b9x%x1 — 12b5x0x%
+8b8$:1‘) — 12()4%(2):62
—24bsxorixo + 2451:61.%’%
We have that Q' € F* if every coefficient of each monomial is zero. We have immediately that
b1 = bg = by = bs = bg = by = 0. Further, we get the equations
12069 — 4b7 = 0, (8.1)
12bg — 24b7 = 0.

This system of equations is true only if by = by = 0. To summarize, we have that by and bg are
free variables, so Q' = y3 and Q" = yoy? are the only cubics in F*.

Proposition 8.0.7. Let Q = z} + 2329 — 239, Let F = Q* and Q' = y3. Then Q' € Ft and
Q' are the only cubic forms in the ideal.

Proof. Tt is easy to check that Q' € F*. For the uniqueness, let

Q = boys + biys + bays + bayayr + bayoyi + bsydys + beyoys + bryiys + bsy1ys + boyoyiye

be a general cubic. Then, by the program in Listing 10.24

Q(Q?) = (120by — 40b5 + 8bg + 4b7) ]
—(8bg — 12bg)xax1
+(12b5 — 8bg)xoz?

+8bg

—(120bg — 12by — 24b5 + 8by)xixs
+(24b3 — 16bg)zox122

+(12bg — 8bs + 24br) a3 2o

+(24by — 8by)xox3

(24by — 8b3) x5

We have that Q' € F1 if every coefficient of each monomial is zero. We first see that bg = 0,
which implies that bg = b3 = b; = 0. The remaining equations are:

120bg — 40bs + 8bg + 4by = 0
120by — 12by — 24bs + 8by = 0
12by — 8bs + 24b; = 0

24by — 8by = 0
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12b5 — 8bg = 0

The corresponding matrix equation is

120 0 —-40 8 4 bo
120 —-12 —-24 0 8 by
12 0 -8 0 24 bs
24 -8 0 0 0 bs

0 0 12 -8 0 by

By row reduction, we get that the only solution is by = by = b5 = bg = by = 0. To summarize,
bo = bl = bg = b4 = b5 = bﬁ = b7 = bg = bg = 0, and bQ is a free variable. This implies Q = bgyg’,
which shows that the only cubic in the apolar ideal of F is 3. |

Theorem 8.0.8. Let Q be a irreducible ternary cubic form and let F = Q*. Then F* contains
at least one cubic form.

Proof. By Lemma 8.0.1 and Lemma 8.0.2, the non-degenerate cubics are either in the Hesse
pencil or a nodal or a cuspidal cubic. By Proposition 8.0.3, an element in the Hesse pencil has at
least one cubic form in the apolar ideal, from Proposition 8.0.7 that a nodal cubic has exactly
one cubic form in the apolar ideal, and from Proposition 8.0.6 that a cuspidal cubic has exactly
two cubic forms in the apolar ideal. |

Remark 8.0.9. Since the irreducible ternary cubics are open in the space of ternary cubics, the
result holds for a reducible ternary cubic as well.

Now, we show that if @ is the Fermat cubic and F = Q2 then F- contains exactly one cubic
form.

Proposition 8.0.10. Let Q = 338 + a3+ 3. Let F = Q? and Q' = yoy1y2. Then Q € Ft and
Q' 1s the only cubic in the ideal.

Proof. We obviously have Q'(Q?) = 0. For the proof of uniqueness, let

Q" = boys + b1y + bays + bsygyr + bayoyt + bsydye + beyoys + bryiye + bsyiys + boyoyiye

be a general cubic. Then, by the program in Listing 10.22, we have

Q"(Q?) = (120bg + 1201 + 12b9)
+(12bg + 12b; + 120by)z3
+(12bg + 120by + 12b9) 3
+36byz3x + 36b3z077
+36bgrir2 + 36bga?ws
+36b5x0x% + 36b7x1x§
We have that Q' € F- if every coefficient of each monomial is zero. We have immediately that
b3 = by = bs = bg = by = bg = 0. Further, we have the following equations:

12by + 12b1 + 120b9 = 0
12bg + 12061 4+ 1265 =0
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To solve 8.3 - 8.5, we consider the coefficient matrix

120 12 12
1212 120
12 120 12

Row reducing gives the identity matrix, which implies that the only solution is by = by = by = 0.
To summarize, by = by = by = b3 = by = b5 = bg = by = bg = 0, and by is a free variable. This
implies Q" = boyoy1y2, which shows that the only cubic in the apolar ideal of F' is yoy1ys. |

Corollary 8.0.11. Let Q be a general ternary cubic and let F = Q*. Then F* contains exactly
one cubic form.

Proof. By Theorem 8.0.8, F'- contains at least one cubic form for a general Q. To contained
more than one cubic form in the ideal is a closed condition, so if we can find an element that
contain only one cubic, we are done. In Proposition 8.0.10 we showed that if @ is the Fermat
cubic has only one cubic, then F- contain only one cubic form. |

Now, we investigate the case when the cubic form in the apolar ideal of a double cubic is a
triple line.

Proposition 8.0.12. Assume F = Q? for a cubic Q such that y3 € FL. Then
Q= aoscg + alx‘i’ + agschl + a4x0x% + CL5:L‘%5L‘2 + am%acg + agxoT122.
In particular, @ is singular.

Proof. Let Q = apx3+a123+ass+asxdzi+aszori+aszdzetasrori+arrizatasrizi+agrorize
be a general cubic. Then
Y3 (Q*) = (12apaz + 12asa6)x]
+(12aga3 4+ 12asag + 12a6a9)x%x1
+(12a2a4 + 12aga7 + 12agag)zox?
+(12a1a + 12a7ag)x$
+(48agas + 24a3)wizs
+(48agag + 48agag)roriTe
+(48aza7 + 24a3)rixy
—|—120a2a5$0x§
+12Oa2a8x1x§
+120a%a:§’
We have that y3 is apolar to F if y3(Q). We get that az = 0, which implies that ag = ag = 0.
Since every term of y3(Q?) contains either as,ag or ag, we are done.
To show that @ is singular, let zo9 = 1. Then Q) = aoajf’) + alxif’ + (13l’%$1 + a4:130$% + a5:z:(2) +

aw;% + agxox1. The cubic @ is singular if there is a point on the curve where both partial
derivatives vanish.

2 2
Fpy = 3apxy + +2asx0w1 + asx] + 2a5x0 + a9y,

F, = 3(11:13% + (13:13(2) + 2a4x021 + 20721 + agxg.

When zy = 21 = 0 we get Fy, = F,, = 0. The corresponding projective coordinate (0:0: 1) is a
point on the ) and is therefore a singular point. |
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9 | Conclusion

9.1 Comparison of the Secant and the Catelecticant Varieties

In this section we compare the secant varieties and the catelecticant varieties to the Veronese
embedding. We have that Sec, (vg(P(S1))) C Cat,(vs(P(S1))). The equations defining the point in
Cat, (vg(P(S1))) are defined by the catalecticant matrix. The equations defining Sec, (vg(P(S1)))
are, however, not known in general. Therefore, we compare the catalecticant and secant varieties
by using our stratification. In the cases where they coincide, we have the equations for the secant
variety. We have that rank(Cat(F)) = 10 — dim(F=1)3.

Theorem 9.1.1. We have the following

Proof. We have that rank(Cat(F)) = 10 — dim(F+1)3. Since Sec,(vg(IP(S1))) is irreducible,
[Har92], we only need to compare the rank of a general element F' € Fp with the rank(vg(P(S1))).
We get that for r different from 8 and 9, then F' is the limit of an F}, where r(F;) = rank(Cat(F)).
We now consider the cases [030] and [023a].

For a general element F' € Fig3, dim(F+)3 = 3, thus F € Caty. The rank of a general
element in Fjp3o) is 9, so Flozq) C Secg(v(P(S1))) — Secs(ve(P(S1))). For a general element
F € Fiposq), dim(F+)3 = 2, thus F € Catg(vs(P(S1))). The rank of a general element in Fiasq)
is 9, 80 Floasa) C Secy(ve(P(S1))) — Secs(ve(P(S1)))- [ |

9.2 Further Questions

In this section we raise some open questions.

The first question is related to the results we found in Chapter 8. Since there are only two
ways to find a basis for a general F' of cactus rank 9, there might be difficult to find smooth
schemes that are apolar to F'. For the double cubics, we found explicit equations for the cubic
forms in the apolar ideal. Therefore, it should be possible investigate if there are some smooth
schemes at all. We raise the following question

Question 9.2.1. Is there a smooth scheme of length nine apolar to a double cubic?
The second question we raise is if our methods work for forms of higher degrees.

Question 9.2.2. Is it possible to use the same methods that we have used for ternary forms of
degree larger than six?
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10 | Appendix

10.1 Computation for Chapter 4

Listing 10.1: Chern classes for G(4,9)

R=QQ[cl1,c2,c3,c4]

g6=3%cl~2*xc4-2%xc2*c4+6*xcl*xc2*c3-4%cl1~3*%c3-c372-6%cl~2%c272+c2"3+5*xcl~4*c2-cl176
g7=4*clxc2*xcd-cl1”3*cd-2*xc3*cd+2xcl*xc372-6*%cl " 2xc2*c3+3*c272%c3

+cl174%c3-3*xcl*xc273+4*xcl173%c272-c175%c2
g8=4*clxc3*c4-c47"2-3*%cl~2%c2*cd+c2"2%cd+cl~4x*xc4d-

3xcl~2*xc372+2%c2*c3"2-3*%xcl*xc2"2*xc3+4*xcl~3*xc2*c3-cl~5*xc3

g9=2%cl*xcd~2-3*xcl " 2%c3*xcd+2*xc2*c3*cd-
3*%cl*c2"2%cd+4*cl~3*%c2*cd-cl~bxc4

el=g6*cl1~14, e2=gb*cl~12%c2,e3=gb*cl~11*xc3,ed=gb*xc1~10*c272,
e8=gb*cl~8*xc3"2

eb=gb6*cl1~10%c4,eb=gb*cl~9*c2*xc3, e7=gb*cl~8*c273,
e9=g6*cl~8*c2*xc4,el0=gb*xcl~7*xc3*c4d,

ell=g6*cl~7*xc2"2*xc3, el2=gb*xcl~6*xc2"4, el3=gb*xcl~6*xc2*c372,

elb=g6*cl~6*%xc4"2

el6=g6*cl1~5*xc37"3, el7=gb*cl"5*xc273*c3, el8=gbxcl~5*xc2*xc3*c4,

e20=g6*xcl~4*xc2"3*xc4, e2l=gb*xcl~4*xc2"2*xc3"2
e22=g6*cl~4*xc2xc4"2, e23=gbxcl~4*xc3"2%xc4,
e24=g6*cl1~3*c274*xc3, e25=gbxcl~3*c272*c3*c4,
e26=g6*cl1~3*%c2*xc3"3, e27=gb*xcl~3*xc3*c4"2
e28=gb*cl~2%c276,e29=gb*cl~2%xc2"4*xc4,
e30=g6*cl1~2*c273*%c372, e31l=gbxcl~2%c272*c4"2,
e32=g6*cl~2%xc2*xc3"2xc4, e33=gbxcl~2xc3"4
e34=g6*cl~2%xc4~3, e35=gb*xcl*xc2"5xc3,
e36=gb6*cl*xc2"2*%c3*c4, e37=gbxcl*xc2"2*xc3"3,
e38=gb*cl*xc2*xc3*c4~2, e39=gb*xcl*xc3"3*c4,
e40=g6*c2°7

ed1=g6*c27b*xcd, ed2=gb6*xc274*xc3"2,
e43=g6*c2"3%c4"2, e44=g6*c2"2*%xc3"2*c4,
e4b=g6*c2*xc374, e46=gb*xc2*xc4d~3, e47=gb6*c3"2%c4

bl=g7*c1~13, b2=g7*cl1~11*xc2, b3=g7*cl1~10%*c3,
bd=g7*cl~9%c272, bb=g7*cl~9%c4, b6=g7*xcl ~8*xc2%*c3,
b7=g7*cl~7+*c273, b8=g7*cl~7*c3"2

b9=g7*cl~T7*c2%*c4, bl0=g7*cl~6%c3*c4, bll=g7*cl~6*c2"2%c3,
bl12=g7xcl1~5xc274, bl3=g7x*cl~5xc2*c372, bld=gT7*cl~5*xc2"2%c4
b15=g7*c1°5*xc4~2, bl6=g7*c1~4*xc3"3, bl7=g7*cl1~4*xc2~3*c3,
b18=g7*cl~4*xc2*c3*cd4, bl8=g7*cl~3%c2"5, bl9=g7*cl~3*c2"3*c4

b20=g7*xc1"3*xc2"2%c372, b21=g7*cl~3*c2*c4"2,
b22=g7*c1°3*xc3"2%cd4, b23=g7*cl~2*c274*c3,
b24=g7*xcl1~2*xc2"2%c3*c4, b2b=gT7*cl”~2%c2*xc3"3

b26=g7*xcl1"2*xc3*c4"2, b27=gT7*cl*c2"6, b28=g7xcl*c2”4%*c4,

b29=g7*c1*c27°3*c372, b30=g7*cl*c2*xc4"2,
b31l=g7*cl*xc2*c3~2%c4,
b32=g7*xcl1*c3"4, b33=g7*xcl*xc4~3, b34=g7*xc2"5xc3,

b35=g7*c2"3*xc3*c4, b36=g7*c2"2*xc3°3, b37=g7*c2*c3*c4"2,

b38=g7*c3~3*xc4d

eld=g6*xcl~6*xc2"2*xc4,

el9=g6*cl1~4*c275,
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10.1. Computation for Chapter 4

dl=g8*c1~12, d2=g8%c1~10%*c2, d3=g8*cl~9*c3,
d4=g8*c1"8%xc2"2, db=g8*cl1"8%xc4, d6=g8*cl~7T*c2%*c3,
d7=g8*c1"6*xc2"3, d8=g8*cl~6*xc3"2

d9=g8*cl1~6*xc2*cd, d10=g8*cl1~5*xc3*cd, dll=g8*xcl~5*xc272%c3,
d12=g8*c1~4xc2"4, di13=g8*cl~4*xc2*c372, dl4=g8*cl~4*c2"2%c4
d15=g8*c1~4*xc4~2, d16=g8*c1~3*xc3"3, d17=g8*cl1~3*c273*c3,
d18=g8*c1~3*xc2*xc3*c4, d19=g8*cl1~2%c2°5, d20=g8%*cl1~2*c2"3*c4
d21=g8*c1~2*xc2"2%c372, d22=g8%cl~2%c2*c4"2,
d23=g8*c172*xc3"2%c4, d24=g8*cl*c274*c3,
d25=g8*cl*c2"2*xc3*cd4d, d26=g8*cl*c2*c3"3

d27=g8*cl*c3*c4"2, d28=g8*c2"6, d29=g8*xc2"4x*xc4,
d30=g8%c2"3*xc372, d31=g8%c2"2xc4~2, d32=g8%c2*xc3"2%*c4,
d33=g8*c3~4, d34=g8%c4"3

fl1=g9*c1711, £f2=g9*c179*c2, f3=g9*c1~8*c3,
f4=g9*xcl1~7xc272, f5=g9xcl1~7xcd4, £6=g9*xcl~6*c2*c3,
f7=g9*c1"5xc2"3, £8=g9*xcl1~5xc3"2

f9=g9*c17°5xc2*xc4, f10=g9*c1~4*xc3*cd, fll=g9*cl~4*xc272%*c3,
£f12=g9*%c1~3*%xc27"4, f13=g9*xc1~3*xc2*xc372, f14=g9xcl1~3*xc2"2%*c4
£f15=g9*c1~3%c4~2, f16=g9*c1~2*%xc3"3, f17=g9*cl1~2*xc2"3*c3,
£f18=g9*cl1~2*c2*c3*c4, f19=g9*xcl*c275, f20=g9*cl*xc2~3*c4
£21=g9*%cl*c2"2%c372, f22=g9*cl*c2xc4~2 ,f23=g9*cl*xc3"2*xc4,
£24=g9*%c2~4%*c3, f£25=g9%c272%c3*c4, £26=g9*c2*xc3"3,
f27=g9*c3*c4d"2

P=matrix{{el,e2,e3,e4,e5,e6,e7,e8,e9,el10,el11,e12,e13,e14,el
5,el16,e17,e18,e19,e20,e21,e22,e23,e24,e25,

e26 ,e27 ,e28,e29,e30,e31,e32,e33,e34,e35,e36,e37,e38,e39,e40
,edl ,ed2 ,e43,e44 ,e45,e46 ,e47 ,b1,b2,b3,b4,
b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,
b21,b22,b23,b24,b25,b26,b27 ,b28,b29,b30,
b31,b32,b33,b34,b35,b36,b37,b38,d1,d2,d3,d4,d45,d6,d7,d8,d9,
d10,d11,d12,d13,d14,d15,d16 ,d17,d18,d19,
d20,d21,d22,d23,d24,d25,d26 ,d27,d28,d29,d30,d31,d32,d33,d34
,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,

f13,f14 ,f15,f16 ,f17 ,f18,f19,£f20,f21,f22,f23,f24,f25,f26 ,f27}}
(M,C)=coefficients P

F = transpose (C)

R=QQ

G=1ift (F,R)

M

T=reducedRowEchelonForm G
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10.2 Computation for Chapter 5

Listing 10.2: Three points

i1 : R=QQ[x,y,z]
ol = R
ol : PolynomialRing

i2 : M = matrix{{random(1,R),random(1,R), random(1,R)},
{random(1,R),random(1,R) ,random(1,R)}}

02 = | 6/7x+6/5y+7/3z 2/3x+2y+7/4z 8x+5/2y+4/3z |
| 10/9x+4/5y+9/5z 3x+1/2y+1/2z 4x+10/7y+2/5z |

2 3
02 : Matrix R <--- R

i3 : I = minors(2,M);

03 : Ideal of R

i4 : J=minors (2, jacobian I);
04 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3
i6 : degree variety I
06 = 3

Listing 10.3: Four points

i1 : R=QQ[x,y,z]

ol R

ol : PolynomialRing
i2 : M = matrix{{random(2,R),random(2,R)}}
02 = | 1/4x2+7/9xy+3/2y2+4/7x2+3/8yz+1/222 8/3x2+1/4xy+7/9y2+8xz+yz+1/322 |

1 2
02 : Matrix R <--- R

i3 : I = minors(1,M);

03 : Ideal of R

i4 : J=minors (2, jacobian I);
04 : Ideal of R

i5 : codim variety ideal(I,J)
o5 = 3

i6 : degree variety I
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06 4
Listing 10.4: Four points, three on a line

it R=QQ[x,y,z]
ol R
ol PolynomialRing
i2 M = matrix{{(x+y)*y,(x+z)*(y+z),x},{z,y,0}}
02 | xy+y2 xy+xz+yz+z2 x |

| =z y 0 |

2 3
02 Matrix R <--- R
i3 I = minors(2,M);
03 Ideal of R
i4 J=minors (2, jacobian I);
o4 Ideal of R
ib5 codim variety ideal(I,J)
05 3
Listing 10.5: Five points, four on a line

it R=QQ[x,y,z]
ol R
ol PolynomialRing
i2 M = matrix{{(x+y)*y~2,(x+z)*(y+z)*z,x},{y,z,0}}
02 | xy2+y3 xyz+xz2+yz2+z3 x |

|y z 0 |

2 3
02 Matrix R <--- R
i3 I = minors(2,M);
03 Ideal of R
i4 J=minors (2, jacobian I);
o4 Ideal of R
ib5 codim variety ideal(I,J)
05 3
Listing 10.6: Five points

it R=QQ[x,y,z]
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ol R
ol PolynomialRing
i2 M = matrix{{x,x-y,x"2+y"2},{y,z,x"2+z"2}}
02 | x x-y x2+y2 |

| vy z x2+z2 |

2 3
02 Matrix R <--- R
i3 I = minors(2,M);
03 Ideal of R
i4 J=minors (2, jacobian I);
o4 Ideal of R
ib5 codim variety ideal(I,J)
05 3
Listing 10.7: Six points
it R=QQ[x,y,z]
ol R
ol PolynomialRing
i2 I = ideal(x~2+y~2+z72,x*z"2+x"2%y)
2 2 2 2 2
02 ideal (x +y + z , xy + x*xz )
02 Ideal of R
i3 J=minors (2, jacobian I);
03 Ideal of R
i4 codim variety ideal(I,J)
o4 3
Listing 10.8: Six points, four on a line

il R=QQ[x,y,z]
ol R
ol PolynomialRing
i2 M = matrix{{(y)*x(y-x)*(z-x),(x+2)*(y+z) ,x},{(y-z)*(x+z) ,z+y,0}}
02 | x2y-xy2-xyz+y2z xy+xz+yz+z2 x |

02

| xy-xz+yz-22 y+z 0 |

2 3
Matrix R <--- R
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i3 I = minors(2,M);
03 Ideal of R
id J=minors (2, jacobian I);
o4 Ideal of R
ib5 codim variety ideal(I,J)
05 3
Listing 10.9: Seven points on a conic
it R=QQ[x,y,z]
ol R
ol PolynomialRing
i2 M = matrix{{(y)*(y-x)*(z-x),(x+z),x},{(y-z)*(x+z)*(x+y) ,z+y,x-y}}
02 | x2y-xy2-xyz+y2z x+z X |

| x2y+xy2-x2z+y2z-x2z2-yz2 y+z x-y |

2 3
02 Matrix R <--- R
i3 I = minors(2,M);
03 Ideal of R
id J=minors (2, jacobian I);
o4 Ideal of R
i5 codim variety ideal(I,J)
o5 3
Listing 10.10: Six points
it R=QQ[x,y,z]
ol R
ol PolynomialRing
i2 M = matrix{{random(1,R),random(1,R),random(1,R),random(1,R)},
{random(1,R),random(1,R),random(1,R), random(1,R)},
{random(1,R) ,random(1,R),random(1,R),random(1,R)}}
02 | 7/9x+3/2y+5z x+3/10y+z 7/4x+1/3y+9/5z 10x+4/3y+5/2z |
| 3/10x+3/7y+3/5z 1/4x+1/2y+3z 3/8x+y+7/9z 1/3x+3/7y+5/2z |

02

i3

03

| 1/2x+7/9y+1/5z T7x+5/7y+10/7z 2/3x+1/10y+9/5z 7/9x+3/2y+5/7z |

3 4
Matrix R <--- R

I = minors(3,M);

Ideal of R
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id J=minors (2, jacobian I);
o4 Ideal of R
i5 codim variety ideal(I,J)
o5 3
i6 degree variety I
06 6
Listing 10.11: Nine points in a CI
it R=QQ[x,y,z]
ol R
ol PolynomialRing
i2 M = matrix{{x"3+y~3,z"3+x"2%xy}}
02 | x3+y3 x2y+z3 |

1 2
02 Matrix R <--- R
i3 I = minors(1,M);
03 Ideal of R
id J=minors (2, jacobian I);
o4 Ideal of R
i5 codim variety ideal(I,J)
o5 3
i6 degree variety I
06 9

Listing 10.12: Seven points

it R=QQ[x,y,z]
ol R
ol PolynomialRing
i2 M = matrix{{(y+x+z)*x, (x+z)*(y-x), (x+2)*x(x+y)},{(y-2),(x+z) ,z+y}}
02 | x2+xy+xz -x2+xy-xz+yz X2+xy+xz+yz |

02

i3

03

| y-z X+z

2 3
Matrix R <--- R

I = minors(2,M);

Ideal of R

ytz
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i4 : J=minors (2, jacobian I);
o4 : Ideal of R
i5 : codim variety ideal(I,J)

o5 = 3

Listing 10.13: Seven points, four on a line

i1 : R=QQ[x,y,z]
ol = R

ol : PolynomialRing

i2 : M = matrix{{random(2,R),random(2,R),random(2,R),random(1,R)},

{random(1,R),random(1,R), random(1,R),0},
{random(1,R),random(1,R),random(1,R) ,0}}

02 = | 5/8x2+10/9xy+4y2+5/2xz+5/2yz+7z2
7/9%x2+10xy+6/7y2+9/8x%x2+8/3yz+3/222
x2+9/8xy+7/8y2+1/4xz+2yz+22z2 3/2x+5/8y+3z |

| 5/9x+8y+7/2z 1/2x+7/6y+1/2z 2/5x+1/2y+3/5z
|
| 7/6x+5/4y+7/5z 3/7x+5/8y+7/3z 2x+y+5/8z
|
3 4
02 : Matrix R <--- R

i3 : I = minors(3,M);

03 : Ideal of R

i4 : J=minors(2, jacobian I);
04 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3
i6 : degree variety I
06 =7

Listing 10.14: Eight points

i1 : R=QQ[x,y,z]
ol = R
ol : PolynomialRing

i2 @ M = matrix{{(y+x+z)*x(x+y), (x+z)*(y-x)+x"2, (x+y-2)},
{(X+z)*(x+y)+z 2, (x+z+y) *(x-y) -y~2,z+y+x}}

02 = | xX2+2xy+y2+xz+yz Xy-XZz+yZ x+y-z |
| x2+xy+xz+yz+z2 x2-2y2+xz-yz xt+ty+z |
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2 3
02 Matrix R <--- R
i3 I = minors(2,M);
03 Ideal of R
id J=minors (2, jacobian I);
o4 Ideal of R
ib5 codim variety ideal(I,J)
o5 = 3
Listing 10.15: Eight points, four on a line

it R=QQ[x,y,z]
ol = R
ol PolynomialRing
i2 M = matrix{{(y+x+z)*(x+y),(x+z)*(y-x)+x"2,(x+y-2z)},

{(x+z)*(x+y)+z~2, (x+z+y) *(x-y)-y~2,0}}
02 = | x2+2xy+y2+xz+yz Xy-xz+yz x+y-z |

| x2+xy+xz+yz+z2 x2-2y2+xz-yz O |

2 3
02 Matrix R <--- R
i3 I = minors(2,M);
03 Ideal of R
id J=minors (2, jacobian I);
o4 Ideal of R
i5 codim variety ideal(I,J)
o5 = 3
Listing 10.16: Eight points, seven on a conic

i1 R=QQ[x,y,z]
ol = R
ol PolynomialRing
i2 M = matrix{{random(2,R),random(2,R),random(1,R),random(1,R)},

{random(2,R) ,random(2,R) ,random(1,R) ,random(1,R)},

{random(1,R),random(1,R),0,0}}
02 = | 1/4x2+4xy+3y2+1/3xz+7/4yz+1/522

3x2+4/7xy+y2+1/3x2+3/2yz+4/522
8x+7/9y+1/10z 1/2x+2y+3z |

| x2+1/5xy+2y2+4/3xz+4/5yz+2/522
x2+8/9xy+1/3y2+2/3xz+byz+z2
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1/3x+1/2y+2z 3/2x+4/9y+z |

| 2x+5/3y+1/7z 2x+5/8y+2z 0 0
3 4

02 Matrix R <--- R

i3 I = minors(3,M);

03 Ideal of R

il J=minors (2, jacobian I);

o4 Ideal of R

ib codim variety ideal(I,J)

o5 3

i6 degree variety I

06 8

Listing 10.17: Nine points

i1 R=QQ[x,y,z]

ol R

ol PolynomialRing

i2 M = matrix{{random(2,R),random(1,R),random(1,R),random(1,R)},
{random(2,R) ,random(1,R) ,random(1,R) ,random(1,R)},
{random(2,R) ,random(1,R) ,random(1,R),random(1,R)}}

02 | 3/8x2+5/2xy+1/2y2

+5/2xz+1/6yz+3/22z2 7/8x+3/5y+1/4z 5/4x+9/10y+2z 3/10x+1/10y+7/9z |
| 10/7x2+3/10xy
+2/3y2+7/8xz+yz+5/4z2 x+6/5y+5/4z 10x+10y+1/2z 10x+5/2y+9/2z
| 3/4x2+2/3xy
+2y2+3/2xz+yz+z2 x+9/10y+9/10z 7/5x+3y+1/9z 5x+9/4y+4/5z

3 4

02 Matrix R <--- R

i3 I = minors(3,M);

o3 Ideal of R

id J=minors (2, jacobian I);

o4 Ideal of R

ib5 codim variety ideal(I,J)

o5 3

i6 degree variety I

o6 9

Listing 10.18: Nine points, four on a line
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i1 : R=QQ[x,y,z]
ol = R
ol : PolynomialRing
i2 : M = matrix{{random(2,R),random(1,R), random(1,R),random(1,R)},

{random(2,R) ,random(1,R) ,random(1,R),0},
{random(2,R) ,random(1,R) ,random(1,R) ,0}}

02 = | 1/8x2+3/4xy+8/9y2

+8/3xz+yz+1/1022 3/10x+5/7y+3/7z 3/10x+3y+1/2z 3/4x+by+z |
| 1/7x2+xy+8/5y2
+xz+1/3yz+3/42z2 1/5x+7/2y+1/3z 6/5x+5/7y+9/7z O

| 8/5x2+8/9xy+10/3y2+5/8xz
+5/4yz+5/822 5/7x+9/7y+1/6z 7/6x+5/3y+2/7z 0O I

3 4
02 : Matrix R <--- R

i3 : I = minors(3,M);

03 : Ideal of R

i4 : J=minors (2, jacobian I);
04 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3
i6 : degree variety I
o6 = 9

Listing 10.19: Nine points, seven on a conic

i1 : R=QQ[x,y,z]
ol = R
ol : PolynomialRing
i2 : M = matrix{{random(2,R),random(1,R), random(1,R),random(1,R)},

{random(2,R) ,random(1,R),random(1,R),random(1,R)},
{random(2,R),random(1,R) ,0,0}}

02 = | 5/2x2+9/4xy
+y2+4xz+7/3yz+4/522 3x+8/9y+2/5z 9/5x+y+4/5z 3x+3/4y+5z |
| 1/2x2+2xy+9/2y2
+2/3xz+10/7yz+z2 x+1/2y+3/2z 5/3x+3/4y+1/2z 2/3x+1/3y+5z |
| 9/7x2+8/3xy+9/5y2+3/2xz+1/8yz+2/9z2 x+6/7y+2z 0 0
3 4
02 : Matrix R <--- R

i3 : I = minors(3,M);
03 : Ideal of R

i4 : J=minors (2, jacobian I);
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Ideal of R

codim variety ideal(I,J)
=3

degree variety I

=9

Listing 10.20: Ten points

i1 : R=QQ[x,y,z]
= R
PolynomialRing
M = matrix{{random(1,R),random(1,R),random(1,R), random(1,R), random(1,R)},
{random(1,R),random(1,R),random(1,R),random(1,R), random(1,R)},
{random(1,R),random(1,R),random(1,R), random(1,R),random(1,R)},
{random(1,R),random(1,R),random(1,R),random(1,R), random(1,R)}}
5/3x+2/5y+z 2/5x+4/3y+4/3z 3/2x+4/3y+5/8z 7/2x+9y+1/6z 7x+1/3y+4/5z
x+9/7y+3/2z 1/5x+5y+1/8z 4/7x+7/6y+4/7z x+2/3y+4/7z 2/7Tx+8y+8z

x+9/10y+1/5z 1/4x+1/5y+z 3/5x+2/9y+2z 5/4x+8/5y+4/7z 9/2x+9/5y+2/5z

|
|
|
| 10x+y+3/10z 2/3x+4/3y+2/5z 1/4x+9/2y+7/5z 1/4x+5/2y+2/3z 3x+1/6y+5/7z

4 5

Matrix R <--- R

I = minors(4,M);

Ideal of R
J=minors (2, jacobian I);
Ideal of R

codim variety ideal(I,J)

=3
degree variety I

= 10
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10.3 Computation for Chapter 8

Listing 10.21: Hesse pencil

i1 : A=QQ[1,1°]

ol = A

ol : PolynomialRing
i2 : R=A[x0,x1,x2]
o2 = R

02 : PolynomialRing

i3 @ Q = (x0°3+x1"3+x2"3+1*x0*x1%x2)"2

6 3 3 6 4 4 2 2 2 2 3 3

3 3 4 6
o3 = x0 + 2x0 x1 + x1 + 21*%x0 x1*x2 + 21*x0*x1 x2 + 1 x0 x1 x2 + 2x0 x2
+ 2x1 x2 + 21*x0*x1*x2 + x2

o3 : R
i4 : diff (x0~3+x1°3+x2"3,Q)+1’*xdiff (x0*xx1*xx2,Q)
3 3 2
3
o4 = (81x%1’ + 144)x0 + (81*1’ + 144)x1 + (81 1° + 1441)x0*x1*x2
+ (81*x1° + 144)x2

o4 : R

Listing 10.22: Fermat cubic

i1 : A=QQ[bO0,b1,b2,b3,b4,b5,b6,b7,b8,b9]
ol = A
ol : PolynomialRing
i2 : R=A[x0,x1,x2]
02 = R
02 : PolynomialRing
i3 : Q@ = (x0°3+x1"3+x2°3)"2

6 3 3 6 3 3 3 3 6
o3 = x0 + 2x0 x1 + x1 + 2x0 x2 + 2x1 x2 + x2

o3 : R
i4 : bO*diff(x0-3,Q)+bl*diff(x1-3,Q)+b2*diff(x2°3,Q)+b3*diff (x0~2*x1,Q)
+bd*xdiff (x0%x1-2,Q)+b5*xdiff (x0~"2%x2,Q)+b6*xdiff (x0*x2°2,Q)+b7*diff (x1-2*x2,Q)

+b8*diff (x1%x2°2,Q)+b9*diff (x0*xx1*x2,Q)

3 2 2
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04 = (120b0 + 12b1 + 12b2)x0 + 36b4*x0 x1 + 36b3*x0*x1 + (12b0 + 120b1l + 12b2)x1
+ 36b6*x0 x2 + 36b8xx1 x2 + 36b5*x0*x2 + 36b7*x1*x2 + (12b0 + 12b1 + 120b2)x2

o4 : R

Listing 10.23: Cuspidal cubic

i1 : A=QQ[b0,bl1,b2,b3,b4,b5,b6,b7,b8,b9]
ol = A

ol : PolynomialRing

i2 : R=A[x0,x1,x2]

02 = R

02 : PolynomialRing

i3 : Q@ = (x0°3-x1"2*%x2)"2

6 3 2 4 2
o3 = x0 - 2x0 x1 x2 + x1 x2

o3 : R

i4 : bO*diff (x0~3,Q)+bl1*diff (x1°3,Q)+b2*xdiff (x2°3,Q)+b3*diff (x0~2*x1,Q)
+b4xdiff (x0*x1°2,Q)+b5*diff (x0"2%x2,Q)+b6*diff (x0%x272,Q)+b7*diff (x1~2*x2,Q)
+b8*diff (x1%x2°2,Q)+b9*diff (x0*x1*x2,Q)

3 2 2 3 2
2 2
04 = (120b0 - 4b7)x0 - 12b9*x0 x1 - 12b5*x0*xx1 + 8b8*xl1l - 12b4*x0 x2
- 24b3*x0*x1*x2 + (- 12b0 + 24b7)x1 x2 + 24bl*x1%*x2

o4 : R

Listing 10.24: Nodal cubic
i1 : A=QQ[b0,b1,b2,b3,bd,b5,b6,b7,bs,b9]

ol = A

ol : PolynomialRing

i2 : R=A[x0,x1,x2]

02 = R

02 : PolynomialRing

i3 : Q@ = (x0°3+x1"2%x2-x0"2%x%x2)"2

6 5 3 2 4 2 2 2 2 4 2
03 = x0 - 2x0 x2 + 2x0 x1 x2 + x0 x2 - 2x0 x1 x2 + x1 x2

o3 : R
id : bO*diff(x0-°3,Q)+bl*diff(x1-3,Q)+b2*diff(x2°3,Q)+b3*diff (x0~2*x1,Q)

+bd*diff (x0%x1°2,Q)+b5*xdiff (x0~"2*x2,Q)+b6*xdiff (x0%x2"2,Q)+b7*xdiff (x1-2*x2,Q)
+b8*diff (x1%*x2°2,Q)+b9*xdiff (x0*xx1*x2,Q)
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10.3. Computation for Chapter 8

3 2
04 = (120b0 - 40b5 + 8b6 + 4b7)x0 +
(- 8b8 + 12b9)x0 x1 + (12b5 - 8b6)x0*x1 + 8b8*x1 +
(- 120b0 + 12b4 + 24b5 - 8b7)x0 x2
+ (24b3 - 16b9)x0*x1*x2
+ (12b0 - 8b5 +
2 2 2
24b7)x1 x2 + (24b0 - 8b4)x0%*x2 + (24bl - 8b3)x1#*x2

o4 : R

Listing 10.25: j-invariant

i1 : A=QQ[lambda,el/(e~2+e+1)

ol = A

ol : QuotientRing

i2 : R=A[x0,x1,x2]

o2 = R

02 : PolynomialRing

i3 : jE_lambda = (173%(1°3-216)"3)/((1+3)"3*%(1+3xe) " 3*x(1+3%xe~2)"3)
-9938375

03 = --------

o3 : frac A

i4 : jE_lambda’ = ((-18/1)"3%((-18/1)"3-216)"3)/(((-18/1)+3)"3
*((-18/1)+3%e)~3%((-18/1)+3*e~2)"3)

-65548320768
9938375

o4 : frac A
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