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Abstract
In this thesis we investigate power sum decomposition of ternary sextic forms
by using apolarity. We find and classify all Betti tables for the resolution of
an apolar ideal of a ternary sextic form. By using the Betti tables, we find a
generalized notion of rank, the cactus rank, for every ternary sextic form and
find the configuration of points that gives the cactus rank. Further, we use
this results to give a stratification of the space of ternary sextic forms. Finally,
we do explicit computations on double cubic forms and prove that every such
sextic will have a cubic forms in the apolar ideal.
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1 | Introduction

Decomposition of homogeneous polynomials into power sums of linear forms has been studied
for centuries, [AH95], [Syl04] and [Muk09]. A large amount of the research has been centralized
around the question of finding the rank, that is the minimal number of linear forms needed to
decompose a homogeneous polynomial F ∈ S = C[x0, . . . , xn] into sums of powers of linear forms.
Finding an explicit minimal decomposition of F is in general very hard. Finding the rank is
easier, at least with some generalization of the notion of rank. Our approach to power sum
decomposition is to use the so called cactus rank, which we will find for any ternary sextic form.

To find the cactus rank, we will use apolarity. We can associate to F a homogeneous ideal
F⊥ ⊂ T = C[y0, . . . , yn], referred to as the apolar ideal of F . The minimal length of a finite
scheme Γ whose ideal is IΓ is a subideal of F⊥, will be the cactus rank of F . To find the cactus
rank for each F , we give a classification of the possible Betti tables of the resolution of T/F⊥

for a ternary sextic form, see Section 2.2, and compute the cactus rank associated to each table.
Further, we use the classification to give a stratification of the space of ternary sextic forms.

Our work and methods are inspired by [Kap+21], where the same approach is used for power
sum decomposition of quaternary quartic forms.

1.1 Methods and Results

A homogeneous polynomial of degree d can be considered both as an element F ∈ Sd, written as

F = a0x
d
0 + a1x

d−1
0 x1 + · · ·+ aNx

d
n,

where N =
(
n+d
n

)
− 1 and ai ∈ C, and as a point [F ] ∈ P(Sd) = PN . Given the Veronese

embedding

vd : P(S1)→ P(Sd)
[L] 7→ [Ld],

we have that F = Ld1 + . . .+ Lds if and only if [F ] ∈ ⟨vd([L1], . . . , [Ls])⟩.
There is a duality between P(Sd) and P(Td) given by differentiation. That is, yi(xj) = ∂

∂xi
xj

and xi(yj) = ∂
∂yi
yj . Consider the homogeneous annihilator ideal

F⊥ = {G ∈ T : G(F ) = 0},

called the apolar ideal of F⊥. Our main tool in this thesis is the following lemma:

Lemma 1.1.1 (Lemma 2.1.5 Apolarity lemma). Let Γ ⊂ P(S1) be a scheme and let F ∈ Sd.
Then [F ] ∈ ⟨vd(Γ)⟩ if and only if F⊥ ⊃ IΓ.

As a consequence, if Γ = {[L1], . . . , [Ls]}, we have that [F ] ∈ ⟨vd([L1], . . . , [Ls])⟩, and hence
F = Ld1 + . . .+ Lds if and only if IΓ ⊂ F⊥.
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1.1. Methods and Results

Definition 1.1.2.

• The rank of F ∈ Sd, denoted r(F ), is the minimal s such that F = Ld1 + · · ·+ Lds , and

• The cactus rank of F ∈ Sd, denoted cr(F ), is the minimal length of Γ such that IΓ ⊂ F⊥.

The length of a finite scheme Γ is the Hilbert polynomial of T/IΓ. Observe that cr(F ) ≤ r(F ),
where we have equality if we can find a subscheme of minimal length consisting of distinct points.

In some cases we can find several subideals IΓ ⊂ F⊥ of minimal length. This corresponds to
finding several decompositions of F into a power sum of linear forms. The possible decompositions
of a homogeneous polynomial into power sums of linear forms, are formalized in the following
definition:

Definition 1.1.3. The variety of sums of powers of F ∈ Sd is

VSP(F, s) = {([L1], . . . , [Ls]) ∈ Hilbs(P(S1)) : ∃λi ∈ C such that F = λ1Ld1 + . . . λsLds}.

When s is equal to the rank of F , VSP(F, r(F )) is a variety in Hilbr(F )(P(S1)), where each
point corresponds to a way of representing F as a power sum of r(F ) linear forms.

Let F ∈ S = C[x0, x1, x2]. Then F⊥ is an Artinian Gorenstein ideal since T/F⊥ is and
Artinian Gorenstein ring, by [Mac72]. A structure theorem for Gorenstein ideals I of codimension
3 proved by [BE77], gives that I is generated by the (n− 1)th order pfaffians, the minors obtained
by deleting the same row and column, of a skew symmetric matrix M , see Theorem 2.3.3. By
the correspondence between ideals of finite schemes and matrices given by the Hilbert–Burch
theorem, Theorem 5.1.1, our strategy for finding zero-dimensional ideals IΓ ⊂ F⊥ is to search for
submatrices of M . We will use the following terminology:

• If F⊥ is minimally generated by the (n− 1)th order pfaffians of a matrix M , we say that
M is a Buchsbaum–Eisenbud matrix of F⊥. If F is not specified, we say that M is a
Buchsbaum–Eisenbud matrix.

• If IΓ is minimally generated by the maximal minors of a matrix H, we say that H is a
Hilbert–Burch matrix of IΓ. If IΓ is not specified, we say that H is a Hilbert–Burch matrix.

We give an example of our strategy for finding a decomposition.

Example 1.1.4. Let F ∈ S6 be the Fermat sextic, F = x60 + x61 + x62. Then, by computation,
F⊥ = ⟨y0y1, y0y2, y1y2, y60 − y61, y60 − y62⟩. The following matrix M is a Buchsbaum–Eisenbud
matrix of F⊥, where we have chosen a basis such that the M is skew symmetric:

M =


0 −y50 y51 y2 −y2
y50 0 −y52 −y1 0
−y51 y52 0 0 y0
−y2 y1 0 0 0
y2 0 −y0 0 0

 .

Firstly, we see that the 4th order pfaffians are the generators of F⊥. Secondly, we see that we
have a submatrix

H =

(
−y2 y1 0
y2 0 −y0

)
whose 2 × 2 minors gives three of the generators of F⊥. This is the subideal IΓ. Indeed, the
points in Γ is the common zeros of y0y1, y0y2 and y1y2, which is (1 : 0 : 0), (0 : 1 : 0) and
(0 : 0 : 1). By Lemma 1.1.1, we can write F as a power sum of the points in P(S1) corresponding
to (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1). The corresponding points in P(S1) are x0, x1 and x2, thus
F = x60 + x61 + x62.
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1.1. Methods and Results

The first result in this thesis is a classification of the Betti tables of the apolar ideals of a
non-degenerate ternary sextic form F , for which there are no linear forms in F⊥. In Theorem 3.0.4,
we prove that there exists 16 different Betti tables for the apolar ideal of a ternary sextic form,
summarized in Figure 3.3. From Theorem 3.0.4 we get the following corollary.

Corollary 1.1.5 (Corollary 3.0.5). The Betti table for the apolar ideal of a ternary sextic form
F is determined by the number of quadratic, cubic and quartic generators of F⊥.

The number of quadratic, cubic and quartic generators of F⊥ are equal to the Betti numbers
b12, b13 and b14, respectively. Due to this, we write B[b12b13b14] to denote a Betti table that is
determined by these numbers. We also give the following definition of the Betti strata:

Definition 1.1.6. FB[b12b13b14]
= {F ∈ P(S6) : T/F⊥ has Betti table B[b12b13b14]}.

When the Betti table is not fixed, we write Betti strata FB. In Chapter 6 we prove that
each FB is irreducible. We also compute the rank and VSP(F, r(F )) of a general element of
each FB. Further, we compute the configuration of points in Γ. We get the same results for
every element in a fixed FB , except in two cases. Of this reason, we define F[016a],F[016b], F[016c],
and F[023a],F[023b] and F[023c]. Our results are reproduced in Figure 1.1, where we include the
dimension of each FB.

Betti table B[b12b13b14] r(F ) VSP(F, r) Γ dim(FB)
[300] 3 one point three points 8
[210] 4 one point four points, three on a line 10
[200] 4 one point four points 11
[202] 5 P1 five points, four on a line 11
[120] 5 one point five points 14
[112] 6 P1 six points, four on a line 14
[111] 6 one point six points on a conic 16
[104] 7 P1 seven points on a conic 17
[040] 6 one point six points 17
[032] 7 P1 seven points, four on a line 17
[031] 7 one point seven points 20
[023c] 8 P1 eight points, four on a line 20
[024] 8 P1 eight points, seven on a conic 20
[023b] 8 one point eight points 23
[030] 9 P2 nine points in a CI 21
[016b] 9 P1 nine points, four on a line 23
[016c] 9 P1 nine points, seven on a conic 23
[023a] 9 one point nine points in a CI 24
[016a] 9 two points nine points 26
[009] 10 K3 surface ten points 27

Figure 1.1: Rank and VSP for the Betti strata

In Chapter 7 we investigate the closure relation between the subsets FB and our main results
are in Proposition 7.2.4, Proposition 7.2.5 and Proposition 7.2.7. A picture of the closure relations
is in Figure 1.2 on page 5, where each arrow depicts an inclusion in the closure. The Fermat
sextic is of type [300], which is included in the closure of every FB. Since the Fermat sextic is
smooth, this shows that a general element in every FB is smooth.

In Chapter 8, we do explicit computations on the apolar ideal on ternary sextic forms that
can be written as a double cubic form and prove the following theorem.

Theorem 1.1.7 (Theorem 8.0.8). Let Q be a irreducible ternary cubic form and let F = Q2.
Then F⊥ contains at least one cubic form.

3



1.2. Outline

An F with cr(F ) = s lies in the sth secant variety to the Veronese variety. In Chapter 9 we
use our results to prove Theorem 9.1.1, which describes relations between the secant varieties and
catalecticant matrices.

1.2 Outline

The rest of the thesis is organised as follows:
In Chapter 2 we first present the apolarity construction and prove the apolarity lemma. Then

we describe the structure theorem for Gorenstein ideals of codimension 3 and explain how the
theorem apply for ternary sextic forms.

In Chapter 3 we classify the 16 Betti tables of the resolution of the apolar ideal of a non-
degenerate ternary sextic form.

In Chapter 4 we introduce some theory about Grassmannians that we need in order to find
isotropic subspaces of a skew symmetric matrix. First, we use the equation for the Grassmannian
G(2, 4) to find the 2-dimensional isotropic subspaces of a 4× 4 skew symmetric matrix with linear
entries. Thereafter, we use the Chow ring and Chern classes of G(3, 6) and G(4, 9) to find the 3-
and 4-dimensional isotropic subspaces of a 6× 6 and a 9× 9 skew symmetric matrix with linear
entries, respectively. The isotropic subspaces we find correspond to Hilbert–Burch matrices of
subideals of F⊥.

In Chapter 5 we first give a description of the Hilbert–Burch matrices of the schemes that will
appear as minimal subschemes of F⊥. Then we prove that a Hilbert–Burch matrix of minimal
subscheme will be a submatrix of a Buchsbaum–Eisenbud matrix M of F . At last we prove that
the Hilbert–Burch matrices described actually appear as submatrices of M .

In Chapter 6 we first prove some results concerning the case when IΓ ⊂ F⊥ and Γ is contained
in a line or a conic. Thereafter, we use these results to compute the rank and power sum
representation of a non-degenerate ternary sextic form.

In Chapter 7 we first prove some containment relations between the schemes described in
Chapter 5. Then, we use these relations to give a stratification of the space of non-degenerate
ternary sextic forms. Lastly, we explain how the degenerate forms fits into the stratification.

In Chapter 8 we do explicit computations on the apolar ideal ternary sextic forms that can
be written as a double cubic.

In Chapter 9 we compare our results to the secant varieties of the Veronese surface to
catalecticant matrices. In addition, we raise some further questions related to power sum
decomposition of homogeneous ternary forms.

We will use Macaulay2 [GS] in some of our computations. The Macaulay2 code can be found
in Chapter 10.
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1.2. Outline

[009] Ten general
points dim27

[016a] Nine general
points dim26

[023a] Nine points
in CI dim24

[016b] Nine
points, four on
a line dim23

[023b] Eight
general

points dim23

[023c] Eight
points, four on
a line dim20

[031] Seven general
points dim20

[040] Six general
points dim17

[120] Five general
points dim14

[200] Four general
points dim11

[300] Three general
points dim8

[016c] Nine
points, seven on
a conic dim23

[024] Eight
points, seven on
a conic dim20

[030] Nine
points in CI

dim21

[104] Seven points
on a conic dim17

[111] Six points
on a conic dim16

[032] Seven
points, four on
a line dim17

[112] Six points,
four on a

line dim14

[202] Five
points, four

on a line dim11

[210] Four points,
three on a
line dim10

Figure 1.2: Stratification of P(S6) = P27. An arrow represents a closure relation.
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2 | Preliminaries

In this chapter we introduce three concepts which form the foundation of the rest of the thesis.
First, in Section 2.1, we explain what an apolar ideal is and how it can be used to find a power
sum decomposition of a homogeneous polynomial. Then, in Section 2.2, we describe what a Betti
table is and some of the properties it has in our case. Lastly, in Section 2.3, we introduce a
structure theorem that gives a correspondence between a skew symmetric matrix and an apolar
ideal.

2.1 Apolarity

Let S = C[x0, . . . , xn] and T = C[y0, . . . , yn]. There is a duality between Sd and Td given by
differentiation, where yi(xj) = ∂

∂xi
xj and xi(yj) = ∂

∂yi
yj . Indeed, let

F =
∑

i0+···+in=d
aix

i0
0 . . . x

in
n ∈ Sd and G =

∑
i0+···+in=d

biy
i0
0 . . . y

in
n ∈ Td,

where i = (i0, . . . , in) and ai, bi ∈ C. Then

G(F ) = F (G) =
∑

i0+···+in=d
i0! . . . in!aibi.

Fixing G ∈ Td, we get the hyperplane HG = {[F ] : G(F ) = 0} ⊂ P(Sd) = PN , where
N =

(
n+d
n

)
− 1. Hence P(Sd)∨ = P(Td).

Definition 2.1.1. The ideal F⊥ = {G ∈ T : G(F ) = 0} ⊂ T is called the apolar ideal of F ∈ S.

We define HF = {[G] : [F ] ∈ HG} ⊂ P(Td) and observe that HF = P(F⊥
d ). In the following,

we will use the duality between Sd and Td and the Veronese embedding, vd, to investigate the
relation between apolarity and power sum decomposition. Recall that

vd : P(S1)→ P(Sd)
[L] 7→ [Ld].

We prove three lemmas before we state and prove the apolarity lemma.

Lemma 2.1.2. Let L = λ0x0 + · · ·+ λnxn ∈ S1 and G ∈ Td. Then differentiation and evaluation
coincide, that is G(Ld) = 0 if and only if G(λ0, . . . , λn) = 0.

Proof. We have

Ld = (λ0x0 + · · ·+ λnxn)
d =

∑
i0+···+in=d

d!

i0! . . . in!
(λ0x0)

i0 . . . (λnxn)
in ,

and

G(Ld) =
∑

i0+···+in=d
bi

d!

i0! . . . in!
i0! . . . in!(λ0)

i0 . . . (λn)
in

6



2.1. Apolarity

= d!
∑

i0+···+in=d
bi(λ0)

i0 . . . (λn)
in .

On the other hand, we have that

G(λ0, . . . , λn) =
∑

i0+···+in=d
bi(λ0)

i0 . . . (λn)
in .

Thus G(λ0, . . . λn) = 0 if and only if G(Ld) = 0. ■

Lemma 2.1.3. Let Γ ⊂ P(S1) be a scheme and IΓ the corresponding ideal. Then ⟨vd(Γ)⟩ =
P(I⊥Γ,d) ⊂ P(Sd).

Proof. Let Γ be a finite scheme and pick G ∈ Td such that HG ⊃ vd(Γ). By definition of HG, we
have that G(F ) = 0 for all [F ] ∈ vd(Γ), which by Lemma 2.1.2, holds if and only if G ∈ IΓ,d. For
an arbitrary Γ, we get in the same way that HG ⊃ vd(Γ) if and only if G ∈ IΓ,d. In summary, we
have that IΓd

= {G : HG ⊃ vd(Γ)}. Since ⟨vd(Γ)⟩ is the intersection of all hyperplanes containing
vd(Γ), we get that

⟨vd(Γ)⟩ = {[F ] : [F ] ∈ HG for all G ∈ IΓ,d}
= {[F ] : G(F ) = 0 for all G ∈ IΓ,d}
= {[F ] : F (G) = 0 for all G ∈ IΓ,d}
= P(I⊥Γd

)

■

Lemma 2.1.4. Let Γ ⊂ P(S1) be scheme and let F ∈ Sd. Then [F ] ∈ ⟨vd(Γ)⟩ if and only if
F⊥
d ⊃ IΓ,d.

Proof. Let [F ] ∈ P(Sd) and G ∈ IΓd
. By Lemma 2.1.3, [F ] ∈ ⟨vd(Γ)⟩ if and only if F ∈ I⊥Γd

.
Hence F (G) = G(F ) = 0, thus G ∈ F⊥

d . ■

There is a stronger version of Lemma 2.1.4 that we now can prove.

Lemma 2.1.5 (Apolarity lemma). Let Γ ⊂ P(S1) be a scheme and let F ∈ Sd. Then [F ] ∈ ⟨vd(Γ)⟩
if and only if F⊥ ⊃ IΓ.

Proof. Because of Lemma 2.1.4, we only need to prove that F⊥ ⊃ IΓ if and only if F⊥
d ⊃ IΓ,d.

That F⊥ ⊃ IΓ implies F⊥
e ⊃ IΓ,e for all e, so the first implication is obvious. For the second,

assume F⊥
d ⊃ IΓ,d and let G ∈ IΓ,e. We want to show that G ∈ F⊥, i.e. G(F ) = 0. If e = d, then

G ∈ F⊥
d ⊂ F⊥ by assumption. If e > d, then G ∈ F⊥ because G(F ) = 0 for any G ∈ Te. Let

e < d. Since F ∈ Sd and G ∈ Te, G(F ) has degree d− e. Pick any H ∈ Td−e and consider the
product HG. Since G ∈ IΓ,e, we have HG ∈ IΓ,d. By assumption IΓ,d ⊂ F⊥

d , hence HG ∈ F⊥
d .

We have that

HG(F ) = H(G(F )) = 0 (2.1)

for all H ∈ Td−e. Since both H and G(F ) has degree d− e we have that Equation (2.1) holds if
and only if G(F ) = 0. Thus G ∈ F⊥, which was what we wanted to prove. ■

Corollary 2.1.6. Let Γ = {[L1], . . . , [Ls])} ⊂ P(S1) and let F ∈ Sd. Then we can choose
Li ∈ [Li] such that F = Ld1 + · · ·+ Lds if and only if F⊥ ⊃ IΓ.

Proof. Notice that [F ] ∈ ⟨vd(Γ)⟩ if and only if F = Ld1 + . . .+ Lds . ■
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2.2. Betti Tables

2.2 Betti Tables

Let I ⊂ T = C[y0, . . . , yn] be a homogeneous ideal. A graded free resolution F of T/I is an exact
sequence of the form

. . . F2 F1 F0 T/I 0,

where Fi ≃
⊕

j∈Z T (−j)bi,j is a free T -module. If there is an l such that Fl+2 = Fl+3 = · · · = 0,
but Fl+1 ̸= 0, we say that the resolution is finite of length l + 1. For a minimal finite free
resolution of T/I, the exponents bi,j is called the Betti numbers. They form a Betti table

0 : b0,0 b1,1 b2,2 . . . bn+1,n+1

1 : b0,1 b1,2 b2,3 . . . bn+1,n+2
...

...
...

...
...

...
m : b0,m b1,m+1 b2,m+2 . . . bn+1,n+1+m

,

where m is such that bi,m+p = 1 for one p and bi,m+p = 0 for all other p, and bi,i+j = 0 for j > m.
We denote bi,j = 0 with a −.

Definition-Proposition 2.2.1. [Eis95, Theorem 21.6] Let I be a homogeneous ideal of
T = C[y0, . . . , yn]. Then I is an Artinian Gorenstein ideal if and only if I = F⊥ for a homogeneous
F ∈ S.

Let T = C[y0, y1, y2]. Assume I ⊂ T is an Artinian Gorenstein ideal of codimension 3 and
that F is minimal. Then F has length 3 by [Eis95, Corollary 21.16], thus we have the following
free resolution F :

0
⊕

k∈Z T (−k)b3,k
⊕

k′∈Z T (−k′)
b2,k′

⊕
k′′∈Z T (−k′′)

b1,k′′ T,

where we have chosen b0,0 = 1, and have that b0,j = 0 for j > 0 since F is a resolution of an
ideal. We now dualize with Hom(−, T ) and get

Hom(
⊕
j∈Z

T (−j)bi,j , T ) ≃

⊕
j∈Z

Hom(T (−j)bi,j , T ) ≃

⊕
j∈Z

T (j)bi,j .

We get the following resolution F∨:

T
⊕

k′′∈Z T (k
′′)b1,k′′

⊕
k′∈Z T (k

′)b2,k′
⊕

k∈Z T (k)
b3,k .

By [Eis95, Corollary 21.16], F ≃ F∨ as complexes, which means that

⊕
k∈Z T (−k)b3,k

⊕
k′∈Z T (−k′)

b2,k′
⊕

k′′∈Z T (−k′′)
b1,k′′ T

T
⊕

k′′∈Z T (k
′′)b1,k′′

⊕
k′∈Z T (k

′)b2,k′
⊕

k∈Z T (k)
b3,k .

≃ ≃ ≃ ≃

Let l be such that b3,l = 1 and b3,k = 0 for k ̸= l. To get the same grading on F and F∨, we shift
F∨ with −l. This gives that⊕

k′∈Z
T (−k′)b2,k′ ≃

⊕
k′′∈Z

T (−l + k′′)b1,k′′ .

8



2.3. Buchsbaum–Eisenbud Matrix

In other words,

b2,k′ = b1,k′′ when k′′ + k′ = l (2.2)

By the definition of the Betti table, l = m+ 3, so we get the following symmetric Betti table:

0: 1 - - -
1: - b1,2 b1,m -
2: - b1,3 b1,m−1 -
...

...
...

...
...

m− 2: - b1,m−1 b1,3 -
m− 1: - b1,m b1,2 -
m: - - - 1

.

When I is Artinian Gorenstein, that is I = F⊥ for an F ∈ Sd, then m = degF = d, [Eis95,
p. 505] and [Iar99, Proposition C.22 and p. 48] . We have proven the following lemma.

Lemma 2.2.2. Let S = C[x0, x1, x2] and T = C[y0, y1, y2]. Let F ∈ Sd and F⊥ ⊂ T . Then the
Betti table of the minimal free resolution of T/F⊥ is

0 : 1 - - -
1 : - b1,2 b1,d -
2 : - b1,3 b1,d−1 -
...

...
...

...
...

d− 2: - b1,d−1 b1,3 -
d− 1: - b1,d b1,2 -
d: - - - 1

.

2.3 Buchsbaum–Eisenbud Matrix

Let T = C[y0, y1, y2]. In this section we explain how we can relate the generators of an apolar
ideal F⊥ ⊂ T to a matrix. The relation follows from a general structure theorem. In order
to state the theorem and to explain its consequences in our case, we give some definitions and
lemmas.

Let A be an n× n matrix. Then A is skew symmetric if A = −AT . The pfaffian of A, Pf(A),
is the square root of the determinant of A, that is (Pf(A))2 = detA, [Cay09]. The (n − 1)th
order pfaffian of A is the square root of the determinant of the matrix obtained by deleting one
row and the corresponding column of A. We denote by Pfn−1(A) the ideal generated by the
(n− 1)th order pfaffians of A. If P = (P0, , . . . , Pn−1) is an ordered tuple and a = (a0, . . . , an−1)
is a ordered tuple such that a0P0 + · · ·+ an−1Pn−1 = 0, then a is called a syzygy of P . We have
the following two lemmas about skew symmetric matrices and syzygies.

Lemma 2.3.1. Let n ≥ 3 be an odd integer and let A be an n× n skew symmetric matrix. Then
detA = 0.

Proof. Since A is skew symmetric, we have that AT = −A. Then

detA = detAT = det(−A) = (−1)n detA.

Since n is odd, we get that

detA = −detA = 0.

■
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2.3. Buchsbaum–Eisenbud Matrix

Lemma 2.3.2. Let n ≥ 3 be an odd integer and let A be an n× n skew symmetric matrix. Then
the columns of A are syzygies of the (n− 1)th order pfaffians of A ordered in the natural way.

Proof. Let A = (aij)
n−1
i,j=0 and let Mij be the (n− 1)× (n− 1) minor obtained by deleting the ith

row and jth column and let Pi =Mii be the (n− 1)th order pfaffian obtained by deleting the ith
row and ith column. By [Cay09], we have the following relation:

Mij = (−1)i+j+1PiPj .

We now compute detA by expanding along the ith row. This gives

detA =

n−1∑
j=0

(−1)i+j+1aijMij

=
n−1∑
j=0

(−1)i+j+1(−1)i+j+1aijPiPj

= Pi

n−1∑
j=0

aijPj

Since detA = 0 by Lemma 2.3.1, we get the following relation between the (n − 1)th order
pfaffians:

ai0P0 + ai1P1+ · · ·+ ai,n−1Pn−1 = 0

Since aij = −aji, have showed that the ith column of A is a syzygy of the (n−1)th order pfaffians
of A. ■

Let R be a ring and R̂ an R-module. If f : R̂∨ → R̂, we say that f is an alternating map if
there exists a basis such that the matrix A of f is skew symmetric. We denote by Pfn−1(f) the
ideal generated by the (n− 1)th order pfaffian of A. We are now ready to state the structure
theorem in full generality.

Theorem 2.3.3 (Buchsbaum–Eisenbud). Let R be a Noetherian local ring with maximal ideal J .

1. Let n ≥ 3 be an odd integer and let R̂ be a free R-module of rank n. Let f : R̂∨ → R̂ be an
alternating map whose image is contained in JR̂. Suppose Pfn−1(f) has codimension 3. Then
Pfn−1(f) is a Gorenstein ideal, minimally generated by n elements.

2. Every Gorenstein ideal of codimension 3 arises as above.

In particular this theorem holds in the polynomial ring with standard grading and a
homogeneous ideal I. We will use the following graded version.

Corollary 2.3.4. Let n ≥ 3 be an odd integer and T = C[y0, y1, y2] with the usual grading.

1. Let A = (aij) be a skew symmetric matrix of dimension n, where aij are homogeneous polynomials
such that all (n− 1)th order pfaffians are homogeneous. Assume Pfn−1(A) has codimension 3.
Then Pfn−1(A) is the apolar ideal of a homogeneous F ∈ S minimally generated by n elements.

2. Let I ⊂ T be a homogeneous Gorenstein ideal of codimension 3 generated by n elements. Then
I is minimally generated by Pfn−1(A), where A is a skew symmetric matrix with homogeneous
entries whose columns are a minimal basis for the syzygies of I.

10



2.3. Buchsbaum–Eisenbud Matrix

Proof. (1) Let f : Tn → Tn be the alternating map given by A. Since every entry in A is a non
constant homogeneous polynomial, the image of f is in JTn and Pfn−1(A) = I is a homogeneous
ideal. By Theorem 2.3.3, Pfn−1(A) is a Gorenstein ideal minimally generated by n elements.
Since dimT = 3 and codim I = 3, I is Artinian. By Definition-Proposition 2.2.1, I = F⊥ for a
homogeneous F ∈ S.

(2) By Theorem 2.3.3, every Gorenstein ideal of codimension 3 is generated by the (n− 1)th
order pfaffians of an n× n skew symmetric matrix A. By Lemma 2.3.2, the columns of A are
syzygies of the (n− 1)th order pfaffians. The minimality follows from Theorem 2.3.3. ■
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3 | Classification of Betti Tables

In this chapter we find and classify all Betti tables for the resolution of T/F⊥ for a ternary sextic
form F . First, we find restrictions for the Betti numbers given by the Buchsbaum–Eisenbud
matrix. Then we introduce the Hilbert function of T/F⊥ use it to find more restrictions on the
Betti numbers. Lastly, we state and prove our theorem that gives the classification.

Let S = C[x0, x1, x2] and T = C[y0, y1, y2]. Let F ∈ S6. By Lemma 2.2.2 the Betti table of
the resolution of T/F⊥ is

0: 1 - - -
1: - b1,2 b1,6 -
2: - b1,3 b1,5 -
3: - b1,4 b1,4 -
4: - b1,5 b1,3 -
5: - b1,6 b1,2 -
6: - - - 1.

Moreover, by Equation (2.2) on page 9, b1,6 = b2,3 and b1,5 = b2,4. We choose to work with these
numbers, therefore we write the Betti table as

0: 1 - - -
1: - b1,2 b2,3 -
2: - b1,3 b2,4 -
3: - b1,4 b1,4 -
4: - b2,4 b1,3 -
5: - b2,3 b1,2 -
6: - - - 1.

The b1,js are the number of minimal generators of F⊥ of degree j, and the b2,j are the number of
syzygies between the generators of degree less than j. The syzygy represented by b2,j are linear
for the generators of degree j − 1.

Now, we prove a lemma about the determinant of a matrix which we will use to prove a
limitation of the Betti numbers.

Lemma 3.0.1. Let n ≥ 3 and let M be an n× n matrix. Assume m < n
2 and l > m. If M has

an l × (n−m)-submatrix where all the entries are zero, then detM = 0.

Proof. Write M as a block matrix with an (n−m)×m matrix A, an (n−m)× (n−m) matrix
B, an m×m matrix C and an m× (n−m) block D where all the entries are zero, see Figure 3.1.
Since M is a 2 × 2 upper triangular block matrix detM = detB · detC. Because M has an
l × (n−m) zero block and l > m, at least one of the rows of B is zero, which gives detB = 0.
We then have detM = detB · detC = 0 and the lemma holds.
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l
C

A B

D{ 0 . . . . . . . . . . . . 0

Figure 3.1: The block matrix in Lemma 3.0.1.

■

Lemma 3.0.2. Let F⊥ ⊂ T = C[y0, y1, y2] and let bi,j be the Betti numbers of the resolution of
T/F⊥. Let k = b1,2 + b1,3 and l = b2,3 + b2,4, then l < k.

Proof. Let M be an n× n matrix and assume M is a Buchsbaums–Eisenbud matrix of F⊥. By
Theorem 2.3.3 F⊥ is minimally generated by the (n− 1)th order pfaffians of M . We will prove
that if l ≥ k, then at least one of the n generators are zero, contradicting the fact that n is
minimal.

Assume for contradiction that l ≥ k. Recall that k is the number of quadratic and cubic
forms in F⊥, b1,4 the number of quartic forms and l the number of syzygies between the quadratic
and the cubic forms. By symmetry, l is also the number of quintic and sextic forms in the
ideal. Since the l syzygies are not syzygies between the b1,4 + l quartic, quintic and sextic forms,
M will have an l × (b1,4 + l) zero block. One of the pfaffians is obtained by computing the
determinant of the matrix we get by deleting the first row and first column of M . We then have
a (k − 1 + b1,4 + l)× (k − 1 + b1,4 + l) matrix with determinant equal to zero, by Lemma 3.0.1.
Indeed, since k ≤ l, we get k− 1 < l ≤ l+ b1,4, see Figure 3.2. Both assumptions in Lemma 3.0.1
are satisfied, so the determinant is zero, and we have a contradiction. ■

l

k l + b14

Figure 3.2: The matrix M in the proof of Lemma 3.0.2.

To compute more limitations of the Betti numbers, we introduce the Hilbert function. Let
A =

⊕
Ai be a graded module. Then the Hilbert function HAi = dimCAi, that is the dimension

of Ai as a vector space of C. We will use the following relation:

HTi = HF⊥
i
+HT/F⊥

i
. (3.1)
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We find HTi be computing the number of monomials of total degree i in T , that is HTi =
(
i+2
2

)
.

The first values are

HT0 = 0,

HT1 = 3,

HT2 = 6,

HT3 = 10,

HT4 = 15

Now, we express HF⊥,i in terms of the Betti numbers. Since F⊥ is a proper ideal, we obviously
have HF⊥

0
= 0, and since we have assume that there are no linear forms in F⊥, also HF⊥

1
= 0.

We claim that we have the following relations:

HF⊥
2

= b1,2,

HF⊥
3

= b1,3 + 3b1,2 − b2,3,

HF⊥
4

= b1,4 + 6b1,2 + 3b1,3 − 3b2,3 − b24

Indeed, HF⊥,i is the number of generators of degree i and the number of forms of degree i obtained
from the generators of lower degree, minus the number of forms of degree i obtained from the
syzygies between the generators of lower degree. By combining the values of HTi and HF⊥

i
with

HT/F⊥
i

by using Equation (3.1), we get

b1,2 = 6− h2,
b1,3 = 10− h3 − 3 · b1,2 + b2,3,

b1,4 = 15− h4 − 6 · b1,2 − 3 · b1,3 + 3 · b2,3 + b2,4,

where hi = HT/F⊥
i

.
Now, we find some limitation for H = (h0, . . . , hi, . . . ). Because HF⊥

0
= HF⊥

1
= 0, we get

that h0 = 1 and h1 = 3, by Equation (2.2). Since F is ternary sextic forms, HF⊥,i = HTi for
i ≥ 7. This gives that hi = 0 for i ≥ 7. Since the Betti numbers are positive, Equation (2.2) also
gives that h2 ≤ 6 and h3 ≤ 10. By [Iar99, Lemma 2.14], H is symmetric, that is

H = (h0, h1, h2, h3, h4, h5, h6)

= (h0, h1, h2, h3, h2, h1, h0)

= (1, 3, h2, h3, h2, 3, 1).

We get a last limitation by the following lemma of Macaulay.

Lemma 3.0.3 (Macaulay). Set H = (h0, . . . , hi, . . . ), where hi are non-negative integers and
write

hi =

(
ai
i

)
+

(
ai−1

i− 1

)
+ . . . and

h
⟨i⟩
i =

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

i

)
+ . . . ,

with ai > ai−1 > . . . . If H is a Hilbert function for a graded module, then hi+1 ≤ h⟨i⟩i .

As a consequence of Lemma 3.0.3, we get the following limitations.

H = (1, 3, 5, h3, 5, 3, 1), h3 ≤ 10,

H = (1, 3, 5, h3, 5, 3, 1), h3 ≤ 7,

H = (1, 3, 4, h3, 4, 3, 1), h3 ≤ 5,

H = (1, 3, 3, h3, 3, 3, 1), h3 ≤ 4,
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H = (1, 3, 2, h3, 2, 3, 1), h3 ≤ 2,

H = (1, 3, 1, h3, 1, 3, 1), h3 ≤ 1,

H = (1, 3, 0, h3, 0, 3, 1), h3 ≤ 0.

We are now ready to state and prove our theorem.

Theorem 3.0.4. Let F be a ternary sextic form. Assume that there is no linear form apolar to
F . Then T/F⊥ has one of the 16 Betti tables in Figure 3.3. We also give the Hilbert polynomial
of T/F⊥.

Before we prove the theorem, we state a corollary of the theorem.

Corollary 3.0.5. The Betti table for the apolar ideal of a ternary sextic form F is determined by
the number of quadratic, cubic and quartic generators of F⊥.

Proof of Theorem 3.0.4. We recall the relations between the Betti numbers and the Hilbert
function of T/F⊥.

b1,2 = 6− h2,
b1,3 = 10− h3 − 3 · b1,2 + b2,3,

b1,4 = 15− h4 − 6 · b1,2 − 3 · b1,3 + 3 · b2,3 + b2,4,

In the proof, we will use these relations together with the limitation for the Betti numbers and
the Hilbert function of T/F⊥ from Lemma 3.0.2 and Lemma 3.0.3. Since the Betti numbers and
the his are positive, we get that 0 ≤ b1,2 ≤ 6. We go through each of these cases.

Case b1,2 = 0:

Since b1,2 = 0, b2,3 = 0, indeed b2,3 represents the number of syzygies between the quadratic
forms in F⊥, and there are no quadratic forms in the ideal. The number of quartic generators in
the ideal is b1,4 = 15− 6− 3b1,3 + b2,4 = 9− 3b1,3 + b2,4. The shape of the Betti table in this case
is:

0: 1 - - -
1: - 0 0 -
2: - b1,3 b2,4 -
3: - 9− 3b1,3 + b2,4 9− 3b1,3 + b2,4 -
4: - b2,4 b1,3 -
5: - 0 0 -
6: - - - 1

When b1,3 ∈ {0, 1}, b2,4 = 0 because of Lemma 3.0.2. We have the two Betti tables in Figure 3.3
and they correspond to the Hilbert functions (1, 3, 6, 10, 6, 3, 1) and (1, 3, 6, 9, 6, 3, 1). When
b1,3 = 2, Lemma 3.0.2 gives b2,4 ∈ {0, 1}. We have both of the Betti tables in Figure 3.3 and
they correspond to the Hilbert function (1, 3, 6, 8, 6, 3, 1). For b1,3 = 3 the possible values for
b2,4 ∈ {0, 1, 2} by Lemma 3.0.2. We have the three Betti tables in Figure 3.3, which correspond
to the Hilbert function (1, 3, 6, 7, 6, 3, 1). When b1,3 = 4 Lemma 3.0.2 gives that b2,4 ∈ {0, 1, 2, 3}.
Only case b2,4 = 3 is possible, indeed b1,4 = 9− 3 · 4 + b2,4 = b2,4 − 3, so b2,4 ≥ 3. We have the
Betti table in Figure 3.3 and the corresponding Hilbert function is (1, 3, 6, 6, 6, 3, 1).

The cases b1,3 ≥ 5 are not realizable, indeed Lemma 3.0.2 gives that b2,4 < b1,3, but
b1,4 = 9− 3 · b1,3 + b2,4 < 9− 2b1,3 which gives b1,4 < 0 when b1,3 ≥ 5.
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1 - - -
- 3 2 -
- - - -
- - - -
- - - -
- 2 3 -
- - - 1

1 - - -
- 2 - -
- - 1 -
- - - -
- 1 - -
- - 2 -
- - - 1

1 - - -
- 2 1 -
- 1 1 -
- - - -
- 1 1 -
- 1 2 -
- - - 1

1 - - -
- 2 1 -
- - - -
- 2 2 -
- - - -
- 1 2 -
- - - 1

(1, 3, 3, 3, 3, 3, 1) (1, 3, 4, 4, 4, 3, 1) (1, 3, 4, 4, 4, 3, 1) (1, 3, 4, 5, 4, 3, 1)

1 - - -
- 1 - -
- 2 2 -
- - - -
- 2 2 -
- - 1 -
- - - 1

1 - - -
- 1 - -
- 1 - -
- 1 1 -
- - 1 -
- - 1 -
- - - 1

1 - - -
- 1 - -
- 1 - -
- 2 2 -
- - 1 -
- - 1 -
- - - 1

1 - - -
- 1 - -
- - - -
- 4 4 -
- - - -
- - 1 -
- - - 1

(1, 3, 5, 5, 5, 3, 1) (1, 3, 5, 6, 5, 3, 1) (1, 3, 5, 6, 5, 3, 1) (1, 3, 5, 7, 5, 3, 1)

1 - - -
- - - -
- 4 3 -
- - - -
- 3 4 -
- - - -
- - - 1

1 - - -
- - - -
- 3 - -
- - - -
- - 3 -
- - - -
- - - 1

1 - - -
- - - -
- 3 1 -
- 1 1 -
- 1 3 -
- - - -
- - - 1

1 - - -
- - - -
- 3 2 -
- 2 2 -
- 2 3 -
- - - -
- - - 1

(1, 3, 6, 6, 6, 3, 1) (1, 3, 6, 7, 6, 3, 1) (1, 3, 6, 7, 6, 3, 1) (1, 3, 6, 7, 6, 3, 1)

1 - - -
- - - -
- 2 - -
- 3 3 -
- - 2 -
- - - -
- - - 1

1 - - -
- - - -
- 2 1 -
- 4 4 -
- 1 2 -
- - - -
- - - 1

1 - - -
- - - -
- 1 - -
- 6 6 -
- - 1 -
- - - -
- - - 1

1 - - -
- - - -
- - - -
- 9 9 -
- - - -
- - - -
- - - 1

(1, 3, 6, 8, 6, 3, 1) (1, 3, 6, 8, 6, 3, 1) (1, 3, 6, 9, 6, 3, 1) (1, 3, 6, 10, 6, 3, 1)

Figure 3.3: The 16 Betti tables of the resolution of T/F⊥
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Case b1,2 = 1:

Since b1,2 = 1, b2,3 = 0, indeed there are no syzygies between the quadratic forms when
there are just one quadratic generator in F⊥. The number of quartic generators of the ideal is
b1,4 = 15− 5− 6 · 1− 3b1,3 + b2,4 = 4− 3b1,3 + b2,4. The shape of the Betti table in this case is:

0: 1 - - -
1: - 1 0 -
2: - b1,3 b2,4 -
3: - 4− 3b1,3 + b2,4 4− 3b1,3 + b2,4 -
4: - b2,4 b1,3 -
5: - 0 1 -
6: - - - 1

When b1,3 = 0, b2,4 = 0 by Lemma 3.0.2. We have the Betti table in Figure 3.3 and it corresponds
to the Hilbert function (1, 3, 5, 7, 5, 3, 1). For b1,3 = 1 we get that b2,4 ∈ {0, 1} and we have the Betti
tables in Figure 3.3. They correspond to the Hilbert function (1, 3, 5, 6, 5, 3, 1). When b1,3 = 2,
Lemma 3.0.2 gives that b2,4 ≤ 2. Only b2,4 = 2 is realizable, indeed b1,4 = 4−3 ·2+ b2,4 = b2,4−2.
We have this Betti table in Figure 3.3 and it corresponds to the Hilbert function (1, 3, 5, 5, 5, 3, 1).

The cases b1,3 ≥ 3 are not realizable. Lemma 3.0.2 gives that b2,4 ≤ b1,3 and b1,4 =
4− 3b1,3 + b2,4 ≤ 4− 2b1,3 is negative when b1,3 ≥ 3.

Case b1,2 = 2: The only possible values for b2,3 is 0 and 1. Indeed, assume for contradiction

that b2,3 = 2. Then we have that

p0x0 = p1x1, (3.2)
p0x

′
0 = p1x

′
1, (3.3)

where the pis are quadratic generators of the ideal and xi, x′i are linear forms where no two are
equal. Since T is a unique factorization domain and x0 ̸= x1, p0 = x1x

′′
0 and p1 = x0x

′′
1. In the

same way we get that p0 = x′1x
′′′
0 and p1 = x′0x

′′′
1 , where all xpi are linear forms. Substituting this

into Equation (3.3), we get that

x1x
′′
0x

′
0 = x′0x

′′′
1 x

′
1,

and x′′0 = x′′′1 . Denote x′′0 and x′′′1 by x. Then we get that

x1xx0 = x′0xx1,

where we have substituted p0 = x1x and p1 = x′0x into Equation (3.2). This gives that x0 = x′0,
a contradiction. In summary, we have b2,3 = {0, 1} and work through each case.

Subcase b2,3 = 0:

The number of cubic generators in F⊥ is b1,3 = 10− 2 · 3−h3 = 4−h3 and the number of quartic
generators is b1,4 = 15− 4− 6 · 2− 3b1,3 + b2,4 = b2,4 − 3b1,3 − 1. We have the following shape of
the Betti table of this case:

0: 1 - - -
1: - 2 0 -
2: - 4− h3 b2,4 -
3: - b2,4 − 3b1,3 − 1 b2,4 − 3b1,3 − 1 -
4: - b2,4 4− h3 -
5: - 0 2 -
6: - - - 1
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We see that h3 ≤ 4. If we let h3 = 4, we get b1,3 = 0 and, by Lemma 3.0.2, b2,4 ∈ {0, 1}. We also
get that b1,4 = b2,4 − 1− 3 · 0 = b2,4 − 1, so b1,2 = 1. We have the Betti table in Figure 3.3 and
the corresponding Hilbert function is (1, 3, 4, 4, 4, 3, 1).

The cases h3 ≤ 3 are not realizable. Indeed, we get b1,3 = 4 − h3 and b2,4 < 6 − h3. Then
b1,4 = b2,4 − 1− 3b1,3 < 2h3 − 7, which is negative for h3 ≤ 3.

Subcase b2,3 = 1:

The number of cubic generators in the ideal is b1,3 = 10− 2 · 3− h3 + 1 = 5− h3 and the number
of quartic generators is b1,4 = 15− 4− 6 · 2− 3b1,3 + b2,4 + 3 · 1 = b2,4 − 3b1,3 + 2. In this case we
have the following shape of the Betti table:

0: 1 - - -
1: - 2 1 -
2: - 5− h3 b2,4 -
3: - b2,4 − 3b1,3 + 2 b2,4 − 3b1,3 + 2 -
4: - b2,4 5− h3 -
5: - 1 2 -
6: - - - 1

We see that h3 ≤ 5. If we let h3 = 5 we get that b1,3 = 0 and b2,4 = 0 by Lemma 3.0.2. We have the
Betti table in Figure 3.3 and the corresponding Hilbert function is (1, 3, 4, 5, 4, 3, 1). When h3 = 4,
b1,3 = 1. From Lemma 3.0.2, we get that b2,4 ≤ 1. We also have that b1,4 = b2,4+2−3·1 = b2,4−1,
so b2,4 = 1. We have this Betti table in Figure 3.3 which corresponds to the Hilbert function
(1, 3, 4, 4, 4, 3, 1).

The cases h3 ≤ 3 are not realizable. Indeed, we get that b1,3 = 5−h3 and b2,4 < 6−h3. Then
b1,4 = b2,4 + 2− 3b1,3 < 2h3 − 10 which is negative for h3 ≤ 3.

Case b1,2 = 3:

We get that b2,3 ≤ 3 because there cannot be more that three linearly independent linear
syzygies when we work with three variables. We will show that b2,3 ̸= 3. Indeed, if b2,3 = 3 we
have three linear syzygies between three quadratic forms and get the following equations:

a1q1 + a2q2 + a3q3 = 0,

b1q1 + b2q2 + b3q3 = 0,

c1q1 + c2q2 + c3q3 = 0,

where ai, bi, ci are linear forms and qi are quadratic forms. This system can be written in matrix
form, a1 a2 a3

b1 b2 b3
c1 c2 c3

 ·
q1q2
q3

 =

0
0
0

 ,

For this matrix equation to have a non-trivial solution, the (3× 3) matrix must have determinant
equal to zero, i.e. there must be a linear relation between the rows. This linear relation is linear
secondary syzygy between the quadratic forms, and can be found in the Betti table as b3,4 = 1,
but b3,4 = 0 in our case, so we have contradiction. The only possible values for b2,3 is 0, 1 and 2.
We go through each case.
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Subcase b2,3 = 0:

The number of cubic generators in the ideal is b1,3 = 10− 3 · 3− h3 = 1− h3 and the number of
quartic generators is b1,4 = 15− 3− 6 · 3− 3b1,3 + b2,4 = b2,4 − 3b1,3 − 6. In this case the Betti
table has the following shape:

0: 1 - -
1: - 3 0 -
2: - 1− h3 b2,4 -
3: - b2,4 − 3b1,3 − 6 b2,4 − 3b1,3 − 6 -
4: - b2,4 1− h3 -
5: - 0 3 -
6: - - - 1

We get that h3 ≤ 1 and, by Lemma 3.0.2, b2,4 < 4− h3. Then b1,4 = b2,4 − 3b1,3 − 6 < 2h3 − 5
which is negative for h3 ≤ 1. There are no Betti table for b2,3 = 0.

Subcase b2,3 = 1:

The number of cubic generators in the ideal is b1,3 = 10− 3 · 3− h3 + 1 = 2− h3 and the number
of quartic generators is b1,4 = 15− 3− 6 · 3− 3b1,3 + b2,4 + 3 · 1 = b2,4 − 3b1,3 − 3. In this case the
Betti table has the following shape:

0: 1 - - -
1: - 3 1 -
2: - 2− h3 b2,4 -
3: - b2,4 − 3b1,3 − 3 b2,4 − 3b1,3 − 3 -
4: - b2,4 2− h3 -
5: - 1 3 -
6: - - - 1

We get that h3 ≤ 2 and, by Lemma 3.0.2, b2,4 < 4− h3. Then b1,4 = b2,4 − 3b1,3 − 3 < 2h3 − 5
which is negative for h3 ≤ 2. There are no Betti table for b2,3 = 1.

Subcase b2,3 = 2:

The number of cubic generators in the ideal is b1,3 = 10− 3 · 3− h3 + 2 = 3− h3 and the number
of quartic generators is b1,4 = 15− 3− 6 · 3− 3b1,3 + b2,4 + 3 · 2 = b2,4 − 3b1,3. In this case the
Betti table has the following shape:

0: 1 - - -
1: - 3 2 -
2: - 3− h3 b2,4 -
3: - b2,4 − 3b1,3 b2,4 − 3b1,3 -
4: - b2,4 3− h3 -
5: - 2 3 -
6: - - - 1

We see that h3 ≤ 3. Let h3 = 3. Then b1,3 = 0 and b2,4 = 0 by Lemma 3.0.2. We have the Betti
table in Figure 3.3 and the corresponding Hilbert function is (1, 3, 3, 3, 3, 3, 1).

If we let h3 ≤ 2 we get, by Lemma 3.0.2, that b2,4 ≤ 4−h3. Then b1,4 = b2,4− 3b1,3 < 2h3− 5
which is negative for h3 ≤ 2.

Case b1,2 = 4:

We still have b2,3 ≤ 3. The number of cubic forms in the ideal is b1,3 = 10− h3− 4 · 3+ b2,3 =
b2,3 − 2 − h3. We have h2 = 6 − b1,2 = 2. From Lemma 3.0.3 we know that h3 ≤ 2 for the
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sequence (1, 3, 2, h3, 2, 3, 1). If h3 = 2 we get that b1,3 = b2,3− 4, so we must have b2,3 ≥ 4 for b1,3
to be positive. Since b2,3 ≤ 3, this doesn’t work. If h3 = 1 we get b1,3 = b2,3 − 3. We check what
happens when b2,3 = 3. The number of quartic generators is 15− 2− 6 · 4 + 3 · 3 + b2,4 = b2,4 − 2,
so b2,4 ≥ 2. From Lemma 3.0.2 we get that b2,4 = 0. This doesn’t work. The same happens for
h3 = 0. There are no Betti tables with b1,2 = 4.

Case b1,2 = 5:

We still have b2,3 ≤ 3. The number of cubic generators in the ideal is b1,3 = 10−h3−5·3+b2,3 =
b2,3−5−h3. We have h2 = 6− b1,2 = 1. From Lemma 3.0.3 we know that h3 ≤ 1 for the sequence
(1, 3, 1, h3, 1, 3, 1). We get that b1,3 is negative for b2,3 ≤ 3 and h3 ≤ 1. There are no Betti tables
with b1,2 = 5.

Case b1,2 = 6:

We still have b2,3 ≤ 3. The number of cubic generators in the ideal is b1,3 = 10−h3−6·3+b2,3 =
b2,3−8−h3. We have h2 = 6− b1,2 = 0. From Lemma 3.0.3 we know that h3 = 0 for the sequence
(1, 3, 0, h3, 0, 3, 1). We get that b1,3 is negative for b2,3 ≤ 3 and h3 = 0. There are no Betti tables
with b1,2 = 6. ■
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4 | Grassmannians and
Skew Symmetric Matrices

In this chapter we will use Grassmannians to find isotropic subspaces to some skew symmetric
matrices. We will see in Chapter 5, that the isotropic subspaces correspond to finite schemes Γ
such that IΓ ⊂ F⊥.

This chapter is organized as follows. First, in Section 4.1, we introduce the concept of
Grassmannians. Then, in Section 4.2, we use the Grassmannian G(2, 4) to find 2-dimensional
isotropic subspaces to a skew symmetric matrix of dimension 4. Then, in Section 4.3 we introduce
the Chow ring of a Grassmannian and the Chern classes of vector bundles of a Grassmannian
and explain how these concepts are related to isotropic subspaces of skew symmetric matrices.
Finally, in Section 4.4, we use the Chern classes related to the Grassmannians G(3, 6) and G(4, 9)
to find 3- and 4-dimensional isotropic subspaces to skew symmetric matrix of dimension 6 and 9,
respectively.

4.1 Grassmannians

In projective space Pn we have coordinates (x0 : · · · : xn), where (x0 : · · · : xn) = λ(x0 : · · · : xn)
for λ ∈ C∗. A linear subspace of Pn is defined as the set of points satisfying a set of linear
equations. When these points satisfy n− d linear independent equations, we say that the linear
space is d-dimensional. The set of all d-dimensional linear spaces in Pn is called the Grassmannian
of d-planes in n-space and denoted G(d, n). The set of (d+ 1)-dimensional linear subspaces of a
(n+ 1)-dimensional vector space is equivalent to G(d, n) and is denoted G(d+ 1, n+ 1). We will
also use the notation G(d+ 1, V ), where V is a given vector space.

We will now show that G(d, n) can be represented by a certain smooth subvariety of PN ,
where N =

(
n+1
d+1

)
− 1. Let L be a d-plane in Pn and pick d+ 1 points xi = (x01 : · · · : xni) that

span L and form the (d+ 1)(n+ 1) matrixx00 . . . x0n
...

. . .
...

xd0 . . . xdn

 .

Pick (d+1) integers j0, . . . , jd, where 0 ≤ j0 < · · · < jd ≤ n, and let pj0...jd be the (d+1)×(d+1)-
minor of the submatrix consisting of the jith columns for i = 0, . . . , d. There are

(
n+1
d+1

)
choices

of picking the jis. Since the points xi are assumed to span L, at least one of pj0...jd has to be
different from zero. In this way, the pj0...jd defines a point (· · · : pj0...jd : . . . ) in PN , where we
order the coordinates by lexicographic ordering. The pj0...jds are called the Plücker coordinates of
L.

Example 4.1.1. Let d = 1 and n = 3. Then X = G(2, 4) is the Grassmannian of lines in P3.
Given a line L and two points x = (x0 : x1 : x2 : x3) and x′ = (x′0 : x′1 : x′2 : x′3) on L, the Plücker
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coordinates of L is the 2× 2-minors of(
x0 x1 x2 x3
x′0 x′1 x′2 x′3

)
.

We get

p01 = x0x
′
1 − x′0x1

p02 = x0x
′
2 − x′0x2

p03 = x0x
′
3 − x′0x3

p12 = x1x
′
2 − x′1x2

p13 = x1x
′
3 − x′1x3

p23 = x2x
′
3 − x′2x3

By computation, we have the that Plücker coordinates of L satisfy the following relation:

p12p34 − p13p24 + p14p23 = 0. (4.1)

We want to show that the points in G(2, 4) are exactly the points in P5 that fulfill the
relation in 4.1. Indeed, let p = (p01 : p02 : p03 : p12 : p13 : p23) ∈ P5 be a point such that
p01p23 − p02p13 + p12p03 = 0. Since the pijs are projective coordinates, one of them has to be
non-zero. Assume p01 = 1. We want to show that the pijs are Plücker coordinates of a line
L ∈ P3, and we claim that L is the line spanned by (1 : 0 : −p12 : −p13) and (0 : 1 : p02 : p03).
Indeed, the minors of

A =

(
1 0 −p12 −p13
0 1 p02 p03

)
gives that the Plücker coordinates of L is (1 : p02 : p03 : p12 : p13 : −p12p03 + p02p13). Since
−p12p03 + p02p13 = p01p23 and p01 = 1 by assumption, the Plücker coordinates can be written
(p01 : p02 : p03 : p12 : p13 : p23), thus the pijs are Plücker coordinates of L, which was what we
wanted to show.

We will show that a similar relation as 4.1 between the Plücker coordinates of a d-plane in Pn
holds in general.

Proposition 4.1.2. Let 0 ≤ j0 < · · · < jd−1 ≤ n and 0 ≤ k0 < · · · < kd+1 ≤ n be two sequences
of integers. Then

d+1∑
λ=0

(−1)λpj0...jd−1kλpk0...k∗λ...kd+1
= 0,

where k∗λ means that kλ is not in the sequence k0, . . . , kd+1.

Proof. First we write the relation we are going to prove in terms of determinants.

d+1∑
λ=0

(−1)λ

∣∣∣∣∣∣∣∣∣∣∣∣

x0,j0 . . . x0,jd−1
x0,kλ

...
...

...
...

xi,j0 . . . xi,jd−1
xi,kλ

...
...

...
...

xd,j0 . . . xd,jd−1
xd,kλ

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

x0,k0 . . . x∗0,kλ . . . x0,kd+1

...
...

...
...

...
xi,k0 . . . x∗i,kλ . . . xi,kd+1

...
...

...
...

...
xd,k0 . . . x∗d,kλ . . . xd,kd+1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

We now expand the first determinants along the last column and get

d+1∑
λ=0

(−1)λ


d∑
i=0

(−1)d+i

∣∣∣∣∣∣∣∣∣∣∣∣

x0,j0 . . . x0,jd
...

...
...

x∗i,j0 . . . x∗i,jd
...

...
...

xd,j0 . . . xd,jd

∣∣∣∣∣∣∣∣∣∣∣∣
xi,kλ



∣∣∣∣∣∣∣∣∣∣∣∣

x0,k0 . . . x∗0,kλ . . . x0,kd+1

...
...

...
...

...
xi,k0 . . . x∗i,kλ . . . xi,kd+1

...
...

...
...

...
xd,k0 . . . x∗d,kλ . . . xd,kd+1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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4.2. Skew Symmetric Matrices of Dimension 4

We rearrange the terms and get the relation

d∑
i=0

(−1)d+i

∣∣∣∣∣∣∣∣∣∣∣∣

x0,j0 . . . x0,jd
...

...
...

x∗i,j0 . . . x∗i,jd
...

...
...

xd,j0 . . . xd,jd

∣∣∣∣∣∣∣∣∣∣∣∣


d+1∑
λ=0

(−1)λxi,kλ

∣∣∣∣∣∣∣∣∣∣∣∣

x0,k0 . . . x∗0,kλ . . . x0,kd+1

...
...

...
...

...
xi,k0 . . . x∗i,kλ . . . xi,kd+1

...
...

...
...

...
xd,k0 . . . x∗d,kλ . . . xd,kd+1

∣∣∣∣∣∣∣∣∣∣∣∣

 = 0

This relation is obtained from expanding the second determinant in the following relation along
the first row.

d∑
i=0

(−1)d+i

∣∣∣∣∣∣∣∣∣∣∣∣

x0,j0 . . . x0,jd
...

...
...

x∗i,j0 . . . x∗i,jd
...

...
...

xd,j0 . . . xd,jd

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi,k0 . . . xi,kλ . . . xi,kd+1

x0,k0 . . . x0,kλ . . . x0,kd+1

...
...

...
...

...
xi,k0 . . . xi,kλ . . . xi,kd+1

...
...

...
...

...
xd,k0 . . . xd,kλ . . . xd,kd+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The second determinant is zero since two rows are equal, so we are done. ■

Conversely, every point in PN that fulfill the relation in Proposition 4.1.2 corresponds to a
d-plane in Pn, [KL72, Theorem 1]. We now show that G(d, n) is smooth. In the same way as we
did in Example 4.1.1 we can assume that for at least one choice of j0, . . . , jd we have pj0...jd = 1.
To simplify computation, we assume that p01...d = 1. This means that the submatrix given by the
columns 0, 1, . . . , d is the (d+ 1)(d+ 1)-identity matrix. Every d-plane in Pn that has p01...d = 1
can be represented by a matrix of the form

1 0 . . . 0 x0,d+1 . . . x0n

0 1 0
...

...
...

...
...

...
. . .

...
...

...
...

0 . . . . . . 1 xd,d+1 . . . xdn

 .

The set of all such matrices corresponds to an affine space of dimension (d+ 1)(n− d), [KL72,
Proposition 2]. Since this holds for any choice of j0, . . . , jd we have that G(d, n) represented as a
subvariety of PN is covered by (N + 1) copies of the affine space of dimension (d+ 1)(n − d).
This shows that G(d, n) is a smooth variety of dimension (d+ 1)(n− d).

4.2 Skew Symmetric Matrices of Dimension 4

In this section we will prove a theorem about 2-dimensional isotropic subspaces of 4× 4 skew
symmetric matrices. First, we introduce some properties of a skew symmetric matrix and how
such a matrix can be related to G(2, 4). Then we state and prove our the theorem in this section.
Lastly, we discuss some geometric interpretation of our results.

Let A be an n × n skew symmetric matrix. Recall that the pfaffian of A, Pf(A) is the
square root of the determinant of A, that is (Pf(A))2 = detA. If n is odd, then detA = 0,
by Lemma 2.3.1, thus Pf(A) = 0. When n is even, we get that Pf(A) is a polynomial in the
entries of A. We observe that if n = 2r, then the pfaffian has degree r. A minor obtained from a
submatrix where the indices of the rows and columns are the same, are called a principal minor.
The even submatrices that form the principal minors of a skew symmetric matrix will again be
skew symmetric and the principal minors will therefore also be the square of a pfaffian. By the
order of a minor we mean the dimension of the corresponding submatrix.

Now, we give two lemmas about skew symmetric matrices that we will use to prove a
correspondence between skew symmetric matrices of rank 2 ad points in G(2, n).
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4.2. Skew Symmetric Matrices of Dimension 4

Lemma 4.2.1. [Hey69, Equation (3.42)-(3.45)] Let A be an n×n skew symmetric matrix. Then

• a minor of even order 2r is a quadratic form in pfaffians of order r, and

• a minor of odd order 2r − 1 is a quadratic form in pfaffians of order r and r − 1.

Lemma 4.2.2. Let A be an n×n skew symmetric matrix. If all the pfaffians of order r vanishes,
then the matrix has rank at most 2r − 2.

Proof. Let A be n×n skew symmetric matrix and assume that all the pfaffians of order r vanishes.
Then, by Lemma 4.2.1, the 2r × 2r minors and the (2r − 1)× (2r − 1) minors vanishes. Since all
the (2r − 1)× (2r − 1) minors vanishes, A has rank at most 2r − 2. ■

The space of n × n skew symmetric matrices are in correspondence with the space of the
Plücker coordinates of G(2, n). That is, a matrix can be identified with a point in PN , where
N =

(
n
2

)
= n(n−1)

2 . Indeed, counting the entries in the lower triangle of an n× n skew symmetric
matrix gives

∑n−1
i=1 i =

(n−1)n
2 entries. Further, we have that the subspace of the n × n skew

symmetric matrices consisting of rank 2 matrices corresponds to points on G(2, n). We show this
first for 4× 4 skew symmetric matrices and then for a general n.

Lemma 4.2.3. The 4× 4 skew symmetric matrices of rank 2 are in 1− 1 correspondence with
points in G(2, 4).

Proof. For the first implication, let L be a line in P3 and P = (p01 : p02 : p03 : p12 : p13 : p23) the
corresponding point in P5. The Plücker coordinates fulfill the relation p01p23−p02p13+p12p03 = 0.
If we set

A =


0 p01 p02 p03
−p01 0 p12 p13
−p02 −p12 0 p23
−p03 −p13 −p23 0

 ,

we get that

detA = (p01p23 − p02p13 + p12p03)
2.

Since

p01p23 − p02p13 + p12p03 = 0,

we have detA = 0. Since detA = 0, rankA ≤ 3, but since all the principle 3 × 3 minors are
skew symmetric, they are zero by Lemma 2.3.1. Therefore, rankA ≤ 2. Since none of the 2× 2
principle minors of A are zero, rankA = 2.

For the other implication, let p = (p01 : p02 : p03 : p12 : p13 : p23) ∈ P5, and let A be the
corresponding rank 2 skew symmetric matrix. This means that detA = 0, thus the entries fulfill
the relation p01p23 − p02p13 + p12p03 = 0. Since the pijs are projective coordinates, one of them
has to be non zero. Assume p01 = 1. We want to show that the pijs are Plücker coordinates of a
line L ∈ P3, and we claim that L is the line spanned by (1 : 0 : −p12 : −p13) and (0 : 1 : p02 : p03).
Indeed, the minors of

A =

(
1 0 −p12 −p13
0 1 p02 p03

)
gives that the Plücker coordinates of L is (1 : p02 : p03 : p12 : p13 : −p12p03 + p02p13).
Since −p12p03 + p02p13 = p01p23 and p01 = 1, the Plücker coordinates can be written
(p01 : p02 : p03 : p12 : p13 : p23), thus the pijs are Plücker coordinates of L, which was what we
wanted to show. ■
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Now, we show the correspondence for a general n. We have from Lemma 4.2.2 that if the
all the pfaffians of order 2 of an n × n skew symmetric matrix vanishes, then the matrix has
rank at most 2. On the other hand, if A has rank at most 2, then all the pfaffians of order 2
vanishes. Since the square of a pfaffian of order 2 is the determinant of a 4× 4 skew symmetric
submatrix of A, we will get a relation between the Plücker coordinates for each pfaffian of order
2. In summary, we will get the relations in Proposition 4.1.2. Thus an n × n skew symmetric
matrix of rank 2 will indeed correspond to a point in G(2, n). Now, we introduce the notion of
an isotropic subspace and prove a lemma that we will use in the proof of our theorem.

Definition 4.2.4. Let A be an n × n skew symmetric matrix. An isotropic subspace to A is
a subspace of Cn, such that for every u, v ∈ U we have uAvT = 0. If V is a space of n × n
skew symmetric matrices and U is isotropic to every matrix in V , we say that U is an isotropic
subspace to V .

Lemma 4.2.5. Let A be a 4× 4 skew symmetric matrix and HA be the set of all 2-dimensional
isotropic subspaces to A. Then HA defines a hyperplane in P5 that intersects G(2, 4).

Proof. First we prove that given an U ∈ HA, then U corresponds to a point in P5 that lies on a
hyperplane that intersects G(2, 4). Let u = (u0, u1, u2, u3) and v = (v0, v1, v2, v3), where u, v ∈ U .
Let

A =


0 a01 a02 a03
−a01 0 a12 a13
−a02 −a12 0 a23
−a03 −a13 −a23 0

 .

We get that

uAvT = a01p01 + a02p02 + a03p03 + a12p12 + a13p13 + a23p23, (4.2)

where pij are the Plücker coordinates of the line through u and v when considered as points in
P3. When uAvT = 0, we get an equation in the Plücker coordinates, i.e. a hyperplane in P5 that
intersects G(2, 4). We need to show that given s, t ∈ U , we get the same equation. Indeed, since
U is 2-dimensional, s = au+ bv and t = cu+ dv. We get that

sAtT = (au+ bv)A(cu+ dv)T ,

= aduAvT + bcvAuT ,

= (ad− bc)uAvT ,

where we have used the linearity and that uAvT = −vAuT . Thus, we get the same equation with
different choices of representatives for U .

Now, we prove that given a point in P5 that satisfies Equation (4.2), we can find a corresponding
U ∈ HA. Let p = (p01 : p02 : p03 : p12 : p13 : p23) ∈ P5 and assume that p satisfies Equation (4.2).
Let A be the skew symmetric matrix with entries given by the aijs in Equation (4.2). Since
the pijs are projective coordinates, one of them has to be non-zero. Assume p01 = 1. We want
to show that u = (1, 0,−p12,−p13) and v = (0, 1, p02, p03) generates an U . From the proof of
Lemma 4.2.9 we have that the Plücker coordinates of the line through u and v is given by the
coefficients of p. We need to show that uAvT = 0. Indeed, we get that

uAvT = a01 + a02p02 + a03p03 + a12p12 + a13p13 + a23(p02p13 − p03p12)
= a01 + a02p02 + a03p03 + a12p12 + a13p13 + a23p01p23

= 0,

where we have used that p01 = 1, that the Plücker coordinates satisfies the relation p01p23 =
p02p13 − p03p12, and the we assumed that Equation (4.2) was satisfied. ■
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We are now ready to state and prove the theorem of this section.

Theorem 4.2.6. Let W be a 3-dimensional vector space of 4× 4 skew symmetric matrices. Then
there exists a conic of 2-dimensional isotropic subspaces to W .

Proof. We want to prove that there is a common 2-dimensional isotropic subspace for a basis of
matrices in W . Let AH1 ,AH2 and AH3 be such a basis and let H1, H2 and H3 be the corresponding
hypersurfaces in P5 we get from Lemma 4.2.5. The basis matrices AH1 ,AH2 and AH3 has a common
isotropic subspace if the intersection

G(2, 4) ∩H1 ∩H2 ∩H3

is non-empty, which is the case. Indeed, G(2, 4) is a 4-dimensional quadric, and the intersection
with each Hi reduces the dimension by 1. We get that we have a conic of common 2-dimensional
isotropic subspaces for V . ■

When we have an isotropic subspace of a 4× 4 skew symmetric matrix, we can choose a row
basis such that a23 = 0. We prove this in the following lemma.

Lemma 4.2.7. Let W be a vector space of 4×4 skew symmetric matrices and let U be an isotropic
subspace for W . Then we can choose a row basis for W such that a23 = 0 for all matrices in W .

Proof. Let the row basis be such that for u, v ∈ U we have u = (0, 0, 1, 0) and v = (0, 0, 0, 1).
Then the Plücker coordinates of L through u and v are zero for i ≠ 2, j ̸= 3, and p23 = 1. If
uAvT = 0, then a23 = 0, by Equation (4.2). ■

4.2.1 Geometric Interpretation

We will now use the correspondence between 4× 4 skew symmetric matrices of rank 2 and lines
in P3 to get a geometric interpretation of 2-dimensional isotropic subspaces to a vector space of
4× 4 skew symmetric matrices.

Lemma 4.2.8. Let W be a general 3-dimensional vector space of 4× 4 skew symmetric matrices.
Then there is a basis for W given by rank 2 matrices.

Proof. Since W is a 3-dimensional vector space, W is spanned by three points in P5, by
Lemma 4.2.3, which forms a P2 ⊂ P5. Let W ′ be the space of 4× 4 skew symmetric matrices of
rank 2. If W ⊂W ′ the lemma is obviously true. Assume W ̸⊂W ′. As shown in Lemma 4.2.9,
the entries of a matrix A ∈W ′ satisfies the Plücker relation

p01p23 − p02p13 + p12p03 = 0,

so the points in P5 that corresponds to a matrix of rank 2 lies on the quadric G(2, 4) ⊂ P5. The
skew symmetric matrices of rank 2 in W lies in the intersection of G(2, 4) and P2, which is a
conic or two lines when W is general. Since three points on a conic or two lines span a P2, we
can choose a basis for W given by three rank 2 matrices. ■

When W is not general, the intersection between G(2, 4) and P2 in the proof of Lemma 4.2.8
might be a double line. Then we will not get a basis of rank 2 matrices.

Now, we can show that for a general W , the problem of finding an isotropic subspace to W
is equivalent to finding a line that intersect the three lines i P3 that corresponds to three basis
matrices for W of rank 2. We state a lemma that we will use to describe this equivalence.

Lemma 4.2.9. Two lines in P3 intersect if and only if

p01q23 − p02q13 + p03q12 + p12q03 − p13q02 + p23q01 = 0, (4.3)

where pij , qij are the Plücker coordinates of the two lines.
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Proof. Assume L1, L2 ∈ P3 and x1, x′1 ∈ L1 and x2, x′2 ∈ L2. Considering the points as vectors in
C4, they span a plane if and only if the lines intersect. Then the two lines intersect if and only if
the determinant of the following matrix is zero:

x10 x11 x12 x13
x′10 x′11 x′12 x′13
x20 x21 x22 x23
x′20 x′21 x′22 x′23

 ,

where the rows are the coordinates of x1, x′1, x2, x′2. The determinant in terms of the Plücker
coordinates pij of L1 and qij of L2 is p01q23 − p02q13 + p03q12 + p12q03 − p13q02 + p23q01. ■

From the lemma we get that when A is of rank 2, the points in hyperplane of 2-dimensional
isotropic subspaces from Lemma 4.2.5 corresponds to lines intersecting the line corresponding to
A. Indeed, let

A =


0 q01 q02 q03
−q01 0 q12 q13
−q02 −q12 0 q23
−q03 −q13 −q23 0

 .

We have from Lemma 4.2.5 that HA consists of the points p ∈ P5 such that

q01p01 + q02p02 + q03p03 + q12p12 + q13p13 + q23p23 = 0 (4.4)

Let p = (p01 : p02 : p03 : p12 : p13 : p23) be a point that satisfies 4.4. Let r = (r01 : r02 : r03 : r12 :
r13 : r23), where

r01 = p23,

r02 = −p13,
r03 = p12,

r12 = p03,

r13 = −p02,
r23 = p01.

First, we have that r satisfies the Plücker relation. Indeed

r01r23 − r02r13 + r03r12 = p23p01 − (−p13)(−p02) + p12p03

= p01p23 − p02p13 + p03p12

= 0.

Then, we have that r corresponds to a line that intersect the line that corresponds to A. Indeed,

r01q23 − r02q13 + r03q12 + r12q03 − r13q02 + r23q01 =

p23q23 − (−p13)q13 + p12q12 + p03q03 − (−p02)q02 + p01q01 =

q01p01 + q02p02 + q03p03 + q12p12 + q13p13 + q23p23 = 0.

This shows that a rank 2 matrix A has an isotropic subspace if and only there exits a line that
intersect the corresponding line. To have a common isotropic subspace for three basis matrices
then implies that there must exists a line that intersects all three lines.

Now, we show that there indeed exists a pencil of lines that intersects L1, L2 and L3. Indeed,
given L1, L2 and L3, take any point p on L1 and consider the plane spanned by p and L2. This
plane will intersect L3. Let L be the line through p in this plane such that L intersect L3. Since
we can choose any point on L1, there is a pencil of lines L that intersect the three lines.

The conic of 4× 4 skew symmetric matrices of rank 2 and the conic of 2-dimensional isotropic
subspaces are related. The points on each conic corresponds to the two families of lines on the
quadric in P3. We show this below, but first we need a lemma.
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Figure 4.1: The points of each conic correspond to lines on the quadric in P3.

Lemma 4.2.10. Let C1 be a conic in G(2, 4) ⊂ P5, p1, p2 ∈ C1, and L1 and L2 the lines in P3

corresponding to p1 and p2. Then L1 ∩ L2 = ∅.

Proof. Assume for contradiction that L1 ∩ L2 ̸= ∅ and let P ∈ P3 be the intersection point. The
lines through P that lie in the plane spanned by L1 and L2 corresponds to points on the line
in G(2, 4) through p1 and p2. Since C1 does not contain the line through p1 and p2, we have a
contradiction. ■

Let C1 ∈ P5 be the conic of skew symmetric matrices of rank 2 from the proof of Lemma 4.2.8.
Let Q be the union of the lines in P3 that correspond to points on C1. Then Q is a surface in P3.
We want to show that the degree of Q is two. Indeed, let L ∈ P3 be a general line that intersects
Q. We want to find the number of intersection points, i. e. the number of lines on Q that intersect
L. From Lemma 4.2.9, we have that to lines intersect if and only if their Plücker coordinates
satisfy Equation (4.3), i.e. the lines that intersect L correspond to points in a hyperplane in P5.
The number of lines on Q that intersect L is equal to the number of intersection points between
the hyperplane and the conic in P5, which is two.

Now, let C2 be the conic that parameterize the lines intersecting every line parameterized
by C1. By the same arguments as above, the union of the lines parameterized by C2 is a degree
two surface in P3. We want to show that this is Q. Indeed, since no two lines parameterized by
C1 intersect, but are intersecting all the lines parameterized by C2, the two family of lines have
to lie on the same surface. We get that Q has degree two and is the quadric in P3 where one
family of lines corresponds to lines parameterized by C1 and the other family corresponds to lines
parameterized by C2, see Figure 4.1.

4.3 More on Grassmannians and Skew Symmetric Matrices

We will prove that there exists similar isotropic subspaces for skew symmetric matrices of
dimension 6 and 9. In these dimensions, there are difficult to compute directly as we did for skew
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symmetric matrices of dimension 4. We therefore need more theory about Grassmannians and
skew symmetric matrices. First, in Section 4.3.1, we introduce the Chow ring of a Grassmannian
and the Schubert cycles. Then, in Section 4.3.2, we introduce the Chern classes of some vector
bundles on the Grassmannian. In Section 4.3.3, generalize the relation between isotropic subspaces
and a Grassmannian. Lastly, in Section 4.3.4 we do computations on the Chern classes that we
will use to prove our theorems in the last section of this chapter.

4.3.1 Chow Ring of a Grassmannian

In this section, we will describe the Chow ring of a Grassmannian, following [Ful98] and [Eis16].
We start with the general definition of the Chow ring. Let X be an algebraic variety of dimension
n. A k-cycle is a finite formal sum ∑

Yi

niYi,

where ni ∈ Z and Yi is a k-dimensional subvariety of X. The group of k-cycles of a variety X is
denoted Zk(X) and the group of cycles on X is Z(X) =

⊕
Zk(X). Two cycles Y1 and Y2 are

rationally equivalent if there exists a cycle on P1 × X whose restrictions to two fibers t0 × X
and t1 ×X is Y0 and Y1. The cycles that are rationally equivalent form a subgroup of Zk(X)
denoted Ratk(X), and we can form the quotient group Ak(X) = Zk(X)/Ratk(X) of k-cycles
modulo rational equivalence. We call A∗(X) =

⊕
Ak(X) the Chow group of X. We denote the

equivalence class of a subvariety Y ⊂ X as [Y ] ∈ A∗(X).
For a smooth variety X there also exists a product on A∗(X) which in special cases corresponds

to taking the intersection of two subvarieties of X. Let Y1, Y2 ⊂ X be subvarieties of a
smooth variety X such that every irreducible component Z of the intersection Y1 ∩ Y2 satisfies
codimZ = codimY1 + codimY2. If Y1 and Y2 intersect transversely, then [Y1 ∩ Y2] =

∑
[Z].

Generally, for each such component Z there is a positive integer mZ(Y1, Y2) called the intersection
multiplicity of Y1 and Y2 along Z, such that

[Y1 ∩ Y2] =
∑

mZ(Y1, Y2)][Z].

Theorem 4.3.1. [Ful98, Proposition 8.1.1] Let X be a smooth variety of dimension n and
let Y1, Y2 ⊂ X be subvarieties of X. There is a unique product structure on A∗(X), i.e. for
[Y1] ∈ An−k1(X) and [Y2] ∈ An−k2(X), then [Y1][Y2] ∈ An−k1−k2(X). If every irreducible
component Z of the intersection Y1 ∩ Y2 has codimension codimZ = codimY1 + codimY2, then

[Y1][Y2] = [Y1 ∩ Y2].

The product makes A∗(X) into an associative, commutative ring, called the Chow ring of X.

Now, we describe the Chow ring of a Grassmannian. First, we note that the Grassmannian is
indeed a smooth variety as seen in Section 4.1. Let V be an (n+ 1)-dimensional vector space.
We will describe the Chow ring of the Grassmannian X = G(d+ 1, V ) by describing a special
kind of subvarieties whose equivalence classes generate A∗(X) under addition. Let W ⊂ V be
a (d + 1)-dimensional vector space, and let [W ] be the corresponding point in X. Fix a flag
U1 ⊂ · · · ⊂ Un+1 = V of vector spaces, where dimUi = i. Choose d + 1 integers ij such that
0 ≤ i0 ≤ · · · ≤ id ≤ n− d. We define

ω(id, . . . , i0) = {[W ] ∈ X : dim(W ∩ Un+1−k−ik) ≥d+ 1− k for all k such that 0 ≤ k ≤ d}.
(4.5)

The subset ω(id, . . . , i0) is a subvariety of G(d + 1, V ) by [KL72, Corollary 5], and we call it
a Schubert cycle. The equivalence class [ω(id, . . . , i0)] depends solely on the choice of the ijs
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and not on the choice of the flag Ui, [KL72, p. 1070]. We therefore denote the equivalence
class [ω(id, . . . , i0)] = Ω(id, . . . , i0) ∈ A∗(X). With addition as binary operation, A∗(X) is a free
abelian group and Ω(id, . . . , i0) form a basis, [KL72, p. 1071]. The element Ω(id, . . . , i0) is called
a Schubert class.

For X = G(2, 4), we fix a flag U1 ⊂ U2 ⊂ U3 ⊂ U4 = V and let W be a 2-dimensional
subspace of V . Then, the Schubert cycles are

ω(i1, i0) = {[W ] ∈ X : dim(W ∩ U4−i0) ≥2,dim(W ∩ U3−i1) ≥ 1},

where 0 ≤ i0 ≤ i1 ≤ 2. We describe the Schubert cycles of G(2, 4) in more detail.

Example 4.3.2. Let X = G(2, 4), W be a 2-dimensional vector space and fix a flag U1 ⊂ U2 ⊂
U3 ⊂ U4. The Schubert cycles in G(2, 4) correspond to the following sets:

ω(0, 0) = {[W ] ∈ X : dim(W ∩ U4) ≥ 2,dim(W ∩ U3) ≥ 1}
ω(1, 0) = {[W ] ∈ X : dim(W ∩ U4) ≥ 2,dim(W ∩ U2) ≥ 1}
ω(1, 1) = {[W ] ∈ X : dim(W ∩ U3) ≥ 2,dim(W ∩ U2) ≥ 1}
ω(2, 0) = {[W ] ∈ X : dim(W ∩ U4) ≥ 2,dim(W ∩ U1) ≥ 1}
ω(2, 1) = {[W ] ∈ X : dim(W ∩ U3) ≥ 2,dim(W ∩ U1) ≥ 1}
ω(2, 2) = {[W ] ∈ X : dim(W ∩ U2) ≥ 2,dim(W ∩ U1) ≥ 1}

First, we describe the lines in P3 that fulfill the conditions in each Schubert cycle and then
we describe the corresponding Schubert class. We note that P(Ui) is isomorphic to Pi−1, so
projectively we have the fixed flag p ⊂ P1 ⊂ P2 ⊂ P3.

ω(0, 0) = {[W ] ∈ X : lW intersects P2 and is contained in P3}
= {[W ] ∈ X},

since both conditions are satisfied for all lines in P3. This shows that Ω(0, 0) is the equivalence
class of X.

ω(1, 0) = {[W ] ∈ X : lW intersects P1 and is contained in P3}
= {[W ] ∈ X : lW intersects P1},

since the second condition is satisfied for all lines in P3. The set of lines intersecting a line l in
P3 corresponds to a hyperplane in X ∈ P5. Indeed, let pij be the Plücker coordinates of l. By
Lemma 4.2.9, we have that a line l′ intersects l if and only if

p01q23 − p02q13 + p03q12 + p12q03 − p13q02 + p23q01 = 0, (4.6)

where qij are the Plücker coordinates of l′. The set of points in X satisfying 4.6 is a hyperplane.
This shows that Ω(1, 0) is the equivalence class of a hyperplane.

ω(1, 1) = {[W ] ∈ X : lW intersects P1 and is contained in P2}
= {[W ] ∈ X : lW is contained in P2},

since two lines in P2 always intersect. The set of lines contained in a P2 corresponds to a plane in
X ∈ P5. Indeed, a line in P2 is determined by two points in P2 up to scalar multiplication, thus
the dimension of the parameter space of lines in a P2 is 2 + 2− 1− 1 = 2. This plane is called an
α-plane. This shows that Ω(2, 0) is the equivalence class of an α-plane.

ω(2, 0) = {[W ] ∈ X : lW intersects p and is contained in P3}

30



4.3. More on Grassmannians and Skew Symmetric Matrices

= {[W ] ∈ X : lW intersects p},

since the second condition is satisfied for all lines in P3. The set of lines through a point in P3 is
a plane in X ∈ P5. Indeed, a line through a point p is determined by p and another point in P3

up to scalar multiplication, thus the dimension of the parameter space of lines through p ∈ P3

is 3− 1 = 2. We call this plane a β-plane. This shows that Ω(2, 0) is the equivalence class of a
β-plane. Later, we will show that an α-plane and a β-plane does not intersect.

ω(2, 1) = {[W ] ∈ X : lW intersects p and is contained in P2}.

The set of lines that intersects a point p in a P2 is a line in X ∈ P5. Indeed, a line through a
point in a P2 is determined by p and another point in P2 up to scalar multiplication, thus the
dimension of the parameter space is 2− 1 = 1. This shows that Ω(2, 1) is the equivalence class of
a line.

ω(2, 2) = {[W ] ∈ X : lW intersects p and is contained in P1}
= {[W ] ∈ X : lW = P1},

because P1 is the only line containing P1. This shows that Ω(2, 2) is the equivalence class of a
point.

The example shows that codimω(i1, i0) = i1 + i0. This equality holds in general for a
Grassmannian G(n + 1, d + 1). That is codimω(id, . . . , i0) = id + · · · + i0, [KL72, p. 1071].
We prove the results for G(2, 4) in another way. The proof can be generalized to a general
Grassmannian.

Lemma 4.3.3. Let X = G(2, 4). Then codimω(i1, i0) = i1 + i0.

Proof. We will prove the lemma in two parts. First, we construct subvariaties Si1,i0 of X where
codimS(i1, i0) = i1 + i0. Then, we prove that Si1,i0 is an open subset of ω(i1, i0). Thereafter, we
show that Si1,i0 = ω(i1, i0), which gives that codimω(i1, i0) = codimSi1,i0 = i1 + i0.

Let Si1,i0 be the subvariety of X given by the minors of the 2× 4 matrix Ai1,i0 constructed in
the following way. Let ad = id + d for d = 0, 1. The adth column of Ai1,i0 is a pivot column with
the pivot element in the (1− d)th row. The two remaining columns, denoted the c1th and the
c2th columns, have entries in C, except when cj < ad for some d. Then the dth entry of cj is
zero. We denote variable elements by ∗ and get the following matrices.

A0,0 =

(
1 0 ∗ ∗
0 1 ∗ ∗

)
,

A1,0 =

(
1 ∗ 0 ∗
0 0 1 ∗

)
,

A1,1 =

(
0 1 0 ∗
0 0 1 ∗

)
,

A2,0 =

(
1 ∗ ∗ 0
0 0 0 1

)
,

A2,1 =

(
0 1 ∗ 0
0 0 0 1

)
,

A2,2 =

(
0 0 1 0
0 0 0 1

)
.

The minors of Ai1,i0 is indeed a subvariety of X by construction. Furthermore, we have
Si1,i0 ≃ Ai1+i0 . We show that Si1,i0 is an open subset of a Schubert cycle ω(i1, i0). Fix
the variables in Ai1,i0 and let Ui1,i0 be the corresponding point in X. Let V be a vector space
with the basis given by

e1 =


0
0
0
1

 , e2 =


0
0
1
0

 , e3 =


0
1
0
0

 , e4 =


1
0
0
0

 .
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Let Ui = Span(e1, . . . , ei) and consider the flag U1 ⊂ U2 ⊂ U3 ⊂ U4 = V . We will show that
dim(Ui1,i0 ∩U4−i0) ≥ 2 and dim(Ui1,i0 ∩U3−i1) ≥ 1. Indeed, by construction, Ui1,i0 is contained in
U4−i0 , since the first row of Ai1,i0 has a pivot element in the i0th column. In the same way, Ui1,i0
intersects U3−i1 in a 1-dimensional subspace, since the second row of Ai1,i0 has a pivot element
in the (i1 + 1)th column. This shows that Si1,i0 satisfies the conditions for the Schubert cycle
ω(i1, i0), which gives that Si1,i0 ⊂ ω(i1, i0). For each Si1,i0 , the Plücker coordinate pa0a1 = 1.
Indeed, the 2× 2-minor obtained from the a0th and a1th column is 1. This gives that Si1,i0 is an
affine open subset of ω(i1, i0), thus Si1,i0 = ω(i1, i0). ■

In the following, we show some of the intersection products between Schubert cycles. In order
to compute the intersection we need two flags. Let F and G be two flags. We say that F and G
are generally transversely if each component of the flags intersect in intersect transversely. This
means that either codimZF ∩ codimZG = codimZF + codimZG − n or ZF ∩ ZG = ∅, where ZF
and ZG are subsets of the flags F and G, respectively.

Proposition 4.3.4.

Ω(1, 1) ∩ Ω(1, 1) = Ω(2, 2) (4.7)
Ω(2, 0) ∩ Ω(2, 0) = Ω(2, 2) (4.8)
Ω(2, 1) ∩ Ω(1, 0) = Ω(2, 2) (4.9)

Proof. Let F and G be two general flags, that is pF ⊂ P1
F ⊂ P2

F ⊂ P3 and pG ⊂ P1
G ⊂ P2

G ⊂ P3.

4.7 The points in ωF (1, 1) ∩ ωG(1, 1) are the points corresponding to the lines in P3 that are
contained in P2

F and P2
G . There is only one line satisfying this, that is the line in the intersection.

4.8 The points in ωF(2, 0) ∩ ωG(2, 0) are the points corresponding to the lines in P3 that
intersects pF and pG . There is only one such line, that is the unique line through the points.

4.9 The points in ωF (2, 1)∩ωG(1, 0) are the points corresponding to the lines i P3 that intersect
pF ⊂ P2

F and P1
G . There is only one such line. Indeed, P2

F and P1
G intersect in a point p, and the

line through p and pF satisfies the conditions.
The three cases are summarized in the following figure.

P2
F

P2
G

P3

P2
F

P1
G

P3

pF

P3

pG

pF

■

Proposition 4.3.5.

Ω(2, 0) ∩ Ω(1, 0) = Ω(2, 1) (4.10)
Ω(1, 1) ∩ Ω(1, 0) = Ω(2, 1) (4.11)
Ω(1, 1) ∩ Ω(2, 0) = ∅ (4.12)
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Proof. Let F and G be two general flags, that is pF ⊂ P1
F ⊂ P2

F ⊂ P3 and pG ⊂ P1
G ⊂ P2

G ⊂ P3.

4.10 The points in ωF (2, 0) ∩ ωG(1, 0) are the points corresponding to the lines that intersect
pF and P2

G . The lines intersecting pF correspond to a β-plane PP1
F
⊂ X and the lines that

intersect P2
G correspond to a hyperplane HP2

G
⊂ X. Since X ⊂ P5, PP1

F
and HP2

G
intersect in a

line L. Since Ω(2, 1) is the equivalence class of a line, we are done.

4.11 The points in ωF(1, 1) ∩ ωG(1, 0) are the points corresponding to the lines that are
contained in P2

F and that intersect P2
G . The lines contained in P2

F correspond to an α-plane
PP2

F
⊂ X, and the lines that intersect P2

G correspond to a hyperplane HP2
G
⊂ X. Since X ⊂ P5,

PP2
F

and HP2
G

intersect in a line L. Since Ω(2, 1) is the equivalence class of a line, we are done.

4.12 The points in ωF (1, 1)∩ ωG(2, 0) are the points corresponding to lines that are contained
in P2

F and that intersect pG . A general point in P3 is not contained in a given P2, so there is no
line satisfying the condition. ■

We will now use the previous propositions to intersect two, three and four hyperplanes,
respectively. First, we have that

Ω(1, 0) ∩ Ω(1, 0) = aΩ(1, 1) + bΩ(2, 0), (4.13)

for a, b ∈ Z. Indeed, codim(ω(1, 0)) = 1, thus codim(ω(1, 0) ∩ ω(1, 0)) = 2, by Theorem 4.3.1.
This gives that Ω(1, 0) ∩ Ω(1, 0) ∈ A2(X) and is therefore a sum of the two generators of A2(X).
To find a and b, we intersect Equation (4.13) with Ω(2, 0) and Ω(1, 1) in turn. On one hand we
get

Ω(2, 0) ∩ [Ω(1, 0) ∩ Ω(1, 0)] = Ω(2, 0) ∩ [aΩ(1, 1) + bΩ(2, 0)]

= aΩ(2, 0) ∩ Ω(1, 1) + bΩ(2, 0) ∩ Ω(2, 0)

= b,

Ω(1, 1) ∩ [Ω(1, 0) ∩ Ω(1, 0)[ = Ω(1, 1) ∩ [aΩ(1, 1) + bΩ(1, 1)]

= aΩ(1, 1) ∩ Ω(1, 1) + bΩ(1, 1) ∩ Ω(2, 0)

= a,

where we have used the previous results. On the other hand we get

Ω(2, 0) ∩ [Ω(1, 0) ∩ Ω(1, 0)] = [Ω(2, 0) ∩ Ω(1, 0)] ∩ Ω(1, 0)

= Ω(2, 1) ∩ Ω(1, 0)

= Ω(2, 2)

= one point
Ω(1, 1) ∩ [Ω(1, 0) ∩ Ω(1, 0)] = [Ω(1, 1) ∩ Ω(1, 0)] ∩ Ω(1, 0)

= Ω(2, 1) ∩ Ω(1, 0)

= Ω(2, 2)

= one point

To summarize, we get that a = b = 1, which was what we were going to show.
We observe that the intersection of two hyperplanes are the sum of the two generators for

A2(X). Intersecting three hyperplanes, we get

Ω(1, 0) ∩ Ω(1, 0) ∩ Ω(1, 0) = Ω(1, 0) ∩ [Ω(1, 1) + Ω(2, 0)]

= Ω(1, 0) ∩ Ω(1, 1) + Ω(1, 0) ∩ Ω(2, 0)

= Ω(2, 1) + Ω(2, 1)

= 2Ω(2, 1),
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a multiple of the generator for A1(X). Intersecting four hyperplanes gives

Ω(1, 0) ∩ Ω(1, 0) ∩ Ω(1, 0) ∩ Ω(1, 0) = Ω(1, 0) ∩ 2Ω(2, 1)

= 2Ω(2, 2).

To conclude, the intersection of four hyperplane is two points. Since X is of dimension 4 we
get that the degree of X is 2, which we need from the alternative proof of Theorem 4.2.6. The
intersection of hyperplanes can be visualized by coloring of boxes of dimension 2× 2. Each box
corresponds to a Schubert class Ω(i1, i0), where the number of colored boxes in the first and
second column is i1 and i0, respectively. We organize the boxes such that the ith row of boxes
(counted from zero) corresponds to the Schubert classes in A4−i. We also put a number next
to each box such that the sum of the Schubert classes in the ith row is the intersection of i
hyperplanes. We get the following boxes.

1

1

1 1

2

2

For a general G(d+1, n+1), the boxes are of dimension d(n−d). In the proofs of Theorem 4.4.1
and Theorem 4.4.7 we will use a subvariety of G(3, 6) and G(4, 9). Therefore, we calculate the
similar scheme of boxes for G(3, 6) and G(4, 9). In this calculation, we will need a general result
about intersection of hyperplanes. Let Ωa = Ω(ad, . . . , a0), where ad + · · ·+ a0 = a. We have the
following

Proposition 4.3.6. [KL72, p. 1073](Pieri’s formula) Let X = G(d+ 1, n+ 1). Then for any
Schubert class Ωa ∈ A∗(X) we have

Ωa ∩ Ω1 =
∑

|c|=|a|+1
aj≤cj≤aj−1∀j

Ωc

The proposition says that the intersection between a general Schubert cycle Ωa and a
hyperplane Ω1 is the sum of all Schubert cycles that can appear by coloring the box of Ωa in
all ways such that the number of colored boxes in the left box is greater than or equal to the
number of colored boxes to the right. We get the following boxes for G(3, 6).
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1

1

11

121

323

565

5165

2121

42

42

We observe that the degree of G(3, 6) is 42.
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Lastly, we compute the boxes for G = G(4, 9).

1

1

11

121

1 3 2 3 1

1 4 5 5 6 4

5 9 10 5 16 10 9 5

14 15 35 20 14 21 21 35 14

64 28 35 70 90 56 14 42 56 70 14

162 189 42 84 216 168 216 120 42 168 84

288 450 567 525 42 252 300 768 300 210 210 252
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330 990 1155 660 2310 825 462 1320 1188 1320 462

1320 1485 2112 5775 4158 4455 462 2970 2640 2970 462

3432 8580 2574 15015 12870 11583 3432 8580 3432

6006 27027 21450 21021 48048 15015 12012 12012

6006 54054 96525 81081 75075 24024

60060 231660 171600 180180 24024

291720 583440 204204

875160 787644

1662804

1662804

We observe that the degree of G(4, 9) is 1662804.
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4.3.2 Chern Classes of Vector Bundles on Grassmannians

Some of the Ω(id, . . . , i0) are special in the sense that they generate A∗(X) under multiplication.
We will see that this will be the ones that correspond to the so called Chern classes of some
vector bundles on X. Before we investigate this relationship, we need the definition of a general
vector bundle on a variety X.

Definition 4.3.7. Let X be a variety and V an n-dimensional vector space over C. A vector
bundle VX on X of rank n is a variety together with a morphism f : VX → X such that for an
open affine covering X =

⋃
i∈I Ui then f−1(Ui) ≃ Ui × V . In addition, for

(Ui ∩ Uj)× V f−1(Ui ∩ Uj) (Ui ∩ Uj)× V
ϕj ϕi

ϕj ◦ ϕ−1
i : (Ui ∩ Uj)× V → (Ui ∩ Uj)× V

(x, v) 7→ (x, ψij(v)),

ψij has to be a linear map.

A global section on X is a morphism s : X → VX such that f ◦ s = idX . Explicitly, for all
x ∈ X, s(x) = (x, v) for a fixed v ∈ V . We say that s1(x) = (x, v1) and s2(x) = (x, v2) are
linearly dependent if v1, v2 ∈ V are linearly dependent. We are now ready to define the Chern
classes of a vector bundle on X.

Definition 4.3.8. Let X be a variety of dimension N = (n− d)(d+1), VX a vector bundle on X
of rank n and si : X → VX for i ∈ {1, . . . , n} general global sections on X. We define the Chern
classes of VX , denoted ci(VX) for i ∈ {1, . . . , n}, as

c1(VX) = [{x ∈ X : s1(x), . . . , sn(x) are linearly dependent}],
c2(VX) = [{x ∈ X : s1(x), . . . , sn−1(x) are linearly dependent}],

...
ci(VX) = [{x ∈ X : s1(x), . . . , sn−i+1(x) are linearly dependent}],

...
cn(VX) = [{x ∈ X : s1(x) = 0}].

For i > n, we set ci(VX) = 0. We also set c0(VX) = 1.

Let V be a vector space and let G = G(d+ 1, V ). We will construct three vector bundles on
G. Firstly, we define the trivial vector bundle VG = V × G = {(v, [U ]) : v ∈ V,U ⊂ V }. It is
called the trivial vector bundle since the fiber over every point [U ] ∈ G is V . Next, we define
the sub-bundle U = {(v, [U ]) : v ∈ U ⊂ V } ⊂ VG. Since the fiber over a point [U ] ∈ G is U , the
rank of U is d+ 1. The sub-bundle is indeed a vector bundle, [Eis16, Proposition 3.3]. Third,
we have the quotient bundle Q = VG/U of rank n− d. Since both VG and U are vector bundles,
Q is obviously also a vector bundle. By construction, these vector bundles fit in a short exact
sequence:

0 U VG Q 0.

Dualizing, we also get the vector bundles Q∗, V ∗
G and U∗. Since the dualizing is exact on vector

bundles, we have the following short exact sequence:

0 Q∗ V ∗
G U∗ 0.

38



4.3. More on Grassmannians and Skew Symmetric Matrices

We are going to prove that there is a correspondence between the Chern classes of Q and U∗ and
the Schubert cycles of G. In order to do this, we look at the global sections on G.

Let s : G → VG be a global section and let ϕ : VG → Q be the quotient map. We set
ϕ(v) = [v]. Since s([U ]) = (v, [U ]) for a fixed v ∈ V , we get that ϕ ◦ s : G→ Q is a global section.
Indeed, ϕ ◦ s([U ]) = ([v], [U ]). The argument is summarized in the following diagram.

0 U VG Q 0.

G

ϕ

s
ϕ◦s

Now, let s : G→ V ∗
G be a global section and let ψ : V ∗

G → U∗ be the quotient map. By abuse
of notation we say that s([U ]) = ([U ], s), where s : V → C is a linear map. The composition ψ ◦ s
is a global section. Indeed, ψ ◦ s([U ]) = ([U ], s|U ), where s|U : U → C is the restriction of s to U .
The argument is summarized in the following diagram.

0 Q∗ V ∗
G U∗ 0.

G

ψ

s
ψ◦s

We are now ready to prove the relationship between the Chern classes of U∗ and Q and the
Schubert classes of G. We begin with the Chern classes of U∗.

Proposition 4.3.9. Let V be an (n+1)-dimensional vector space and let G = G(d+1, V ). Then

(1) cd+1(U∗) = Ω(1, . . . , 1) ∈ A∗(G),

(2) cd(U∗) = Ω(1, . . . 1, 0) ∈ A∗(G),

(3) c1(U∗) = Ω(1, 0, . . . , 0) ∈ A∗(G).

Proof. Let si : G→ V ∗
G and si|U = ψ ◦ si : G→ U∗ for i ∈ {1, . . . , d+1} be general global section

as described above. By Definition 4.3.8, we have that

ce(U∗) =
[
[U ] ∈ G : s1

∣∣
U
([U ]), . . . , sd−e+2

∣∣
U
([U ]) are linearly dependent

]
.

The global sections are linearly dependent if the linear maps si|U : U → C are linearly dependent.
Therefore, we get that

ce(U∗) =
[
[U ] ∈ G : s1

∣∣
U
, . . . , sd−e+2

∣∣
U

are linearly dependent
]
, (4.14)

where si|U are linear maps. Given s1 : V → C, the kernel of s1 is a n-dimensional subspace of V .
Generally, n+ 1 linear maps si : V → C induce a flag U1 ⊂ · · · ⊂ Un−1 ⊂ Un ⊂ V , where Ui is
the i-dimensional subspace of V that disappears on si, si−1, . . . , s1. Assume we have n+ 1 such
linear maps and the corresponding flag.

(1) Let e = d+ 1. From Equation (4.14) we get that

cd+1(U∗) =
[
{[U ] ∈ G : s1

∣∣
U
= 0}

]
.

In other words, cd+1(U∗) is the equivalence class of the points [U ] ∈ G such that for all u ∈ U we
have s1(u) = 0, i.e. the set of points [U ] ∈ G such that U ⊂ ker s1 = Un. We have established
that

cd+1(U∗) = [{[U ] ∈ G : U ⊂ Un}] .
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Now, we want want to show that the set of [U ] ∈ G such that U ∈ Un is a Schubert cycle
ω(1, . . . , 1). Indeed, we get from Equation (4.5) on page 29 that

ω(1, . . . , 1) = {[U ] ∈ G : dim(U ∩ Un−k) ≥ d+ 1− k for all k such that 0 ≤ k ≤ d}.

For k = 0 we get the requirement dim(U ∩ Un) ≥ d + 1, which is fulfilled when U ⊂ Un. For
k ≥ 1 the requirement is is trivially fulfilled. Indeed, since U ⊂ Un we get that the intersection of
a d+ 1-dimensional subspace U and a subspace of Un of dimension n− k has dimension at least
(d + 1) + (n − k) − n = d + 1 − k. To summarize, ω(1, . . . , 1) is the points [U ] ∈ G such that
U ⊂ Un, which was what we were going to show. Consequently, cd+1 = Ω(1, . . . , 1).

(2) Let e = d. From Equation (4.14) we get that

cd(U∗) =
[
{[U ] ∈ G : s1

∣∣
U
= λs2

∣∣
U
, λ ∈ C}

]
.

Let (ai1, . . . , ai,d+1), aij ∈ C, be the matrix representation of si|U and let

A =

(
a11 . . . a1,d+1

a21 . . . a2,d+1

)
.

Assume U ⊂ V such that s1|U = λs2|U . We then have that dim(kerA) ≥ d. Since kerA ⊂ U and
kerA ⊂ Un−1, this means that dim(U ∩ Un−1) ≥ d. We have now proved that

cd(U∗) = [{[U ] ∈ G : dimU ∩ Un−1) ≥ d}] .

Now, we want to show that the set of points [U ] ∈ G such that U ∈ Un−1 is a Schubert cycle
ω(1, . . . , 1, 0). Indeed, we get from Equation (4.5) on page 29 that

ω(1, . . . , 1, 0) = {[U ] ∈ G : dim(U ∩ Un+1) ≥ d+ 1 and
dim(U ∩ Un−k) ≥ d+ 1− k for all k such that 1 ≤ k ≤ d}.

The condition that dim(U∩Un+1) ≥ d+1 is obviously fulfilled since U is assumed to be a subspace
of V = Un+1. For k = 1, we get the condition that dim(U ∩ Un−1) ≥ d. For k ≥ 2, we get the
condition that dim(U ∩ Un−k) ≥ d− 1− k, which is trivially fulfilled when dim(U ∩ Un−1) ≥ d.
Indeed, the dimension of the intersection between U and Un−k ⊂ Un−1 of dimension n− k is at
least d+ (n− k)− (n− 1) = d+ 1− k. In summary, ω(1, . . . , 1, 0) is the set of points [U ] ∈ G
such that dim(U ∩ Un−1) ≥ d. Consequently, we get that cd(U∗) = Ω(1, . . . , 1, 0).

(3) Let e = 1. From Equation (4.14) we get that

c1(U∗) =
[
{[U ] ∈ G : s1

∣∣
U
, . . . , sd+1

∣∣
U

are linearly dependent}
]
.

As above, we let (ai1, . . . , ai,d+1), aij ∈ C be the matrix representation of si|U and let

A =

 a11 . . . a1,d+1
...

. . .
...

ad+1,1 . . . ad+1,d+1

 .

Assume U ⊂ V such that s1|U , . . . , sd+1|U are linearly dependent. Then dim(kerA) ≥ 1. Since
kerA ⊂ U and kerA ⊂ Un−d, this means that dim(U ∩ Un−d ≥ 1). We have proved that

c1(U∗) = [{[U ] ∈ G : dim(U ∩ Un−d) ≥ 1}] .

Now, we want to show that the set of points [U ] ∈ G such that dimU ∩Un−d) ≥ 1} is a Schubert
cycle ω(1, 0, . . . , 0). Indeed, from Equation (4.5) on page 29, we get that

ω(1, 0, . . . , 0) = {[U ] ∈ G : dim(U ∩ Un−d) ≥ 1 and
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dim(U ∩ Un+1−k) ≥ d+ 1− k for all k such that 0 ≤ k < d}.

For k > d, the requirement is fulfilled. Indeed, the dimension of the intersection of a d + 1-
dimensional subspace U and a subspace of dimension n+1−k is at least d+1+(n+1−k)−(n+1) =
d+1−k. The requirement for k = d is that dim(U∩Un−d) ≥ 1. Therefore, we get that ω(1, 0, . . . , 0)
is the set of points [U ] ∈ G such that dim(U ∩Un−d) ≥ 1, which was what we were going to show.
As a consequence, c1(U∗) = Ω(1, 0, . . . , 0). ■

Now, we prove the relationship between the Chern classes of Q and the Schubert cycles of G.

Proposition 4.3.10. Let V be an (n + 1)-dimensional vector space and let G = G(d + 1, V ).
Then

(1) cn−d(Q) = Ω(n− d, 0, . . . , 0) ∈ A∗(G),

(2) cn−d−1(Q) = Ω(n− d− 1, 0, . . . , 0) ∈ A∗(G),

(3) c1(Q) = Ω(1, 0, . . . , 0) ∈ A∗(G).

Proof. Let si : G→ VG and ψ ◦ si : G→ Q for i ∈ {1, . . . , n− d} be general global sections as
described above. By Definition 4.3.8, we have that

ce(Q) = [{[U ] ∈ G : ψ ◦ s1([U ]), . . . , ψ ◦ sn−d−e+1([U ]) are linearly dependent}] .

Recall that ψ ◦ si([U ]) = ([vi], [U ]) for vi ∈ V . We have that ψ ◦ si([U ]) are linearly dependent if
[vi] are linearly dependent. Therefore, we get that

ce(Q) = [{[U ] ∈ G : [v1], . . . , [vn−d−e+1] are linearly dependent}] . (4.15)

Given v1 ∈ V . Then v1 span a 1-dimensional subspace U1. Generally, n+1 vectors vi ∈ V induce
a flag U1 ⊂ . . . Un−1 ⊂ Un = V , where Ui the span of v1, . . . vi.

(1) Let e = n− d. From Equation (4.15) we get that

cn−d(Q) = [{[U ] ∈ G : [v1] = 0}] .

In other words, cn−d(Q) is the equivalence class of the set of points [U ] ∈ G such that U1 ∈ U .
We have established that

cn−d(Q) = [{[U ] ∈ G : U1 ⊂ U}] .

We want to show that the set of [U ] ∈ G such that U1 ⊂ U is a Schubert cycle ω(n− d, 0, . . . , 0).
Indeed, from Equation (4.5) on page 29, we get that

ω(n− d, 0, . . . , 0) = {[U ] ∈ G : dim(U ∩ U1) ≥ 1 and
dim(U ∩ Un+1−k) ≥ d+ 1− k for all k s.t. 0 ≤ k < d}.

The requirement for k = d is that dim(U ∩ U1) ≥ 1, i.e. U contains U1. The requirement for
k < d is trivially fulfilled. Indeed, since U ⊂ Un+1 by assumption, we get that the intersection
of a d+ 1-dimensional subspace U and a subspace Un+1−k of dimension (n+ 1− k) is at least
(d + 1) + (n + 1 − k) − (n + 1) = d + 1 − k. To summarize, ω(n − d, 0, . . . , 0) is the set of
points [U ] ∈ G such that U1 ⊂ U , which was what we were going to show. Consequently,
Ω(n− d, 0, . . . , 0) = cn−d(Q).

(2) Let e = n− d− 1. From Equation (4.15), we get that

cn−d−1(Q) = [{[U ] ∈ G : [v1], [v2] are linearly dependent}] .
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In other words, cn−d−1(Q) is the equivalence class of the set of points [U ] ∈ G such that there
exists an λ ∈ C such that [v1] + λ[v2] = 0. This is equivalent to require that v1 + λv2 ∈ U . This
show that cn−d−1(Q) is the equivalence class of the set of U such that dim(U ∩U2) ≥ 1. We have
established that

cn−d−1(Q) = [{[U ] ∈ G : dim(U ∩ U2) ≥ 1}] .

We want to show that the set of points [U ] such that dim(U ∩ U2) ≥ 1 is a Schubert cycle
ω(n− d− 1, 0, . . . , 0). Indeed, from Equation (4.5) on page 29, we get that

ω(n− d− 1, 0, . . . , 0) = {[U ] ∈ G : dim(U ∩ U2) ≥ 1 and
dim(U ∩ Un+1−k) ≥ d+ 1− k for all k s.t. 0 ≤ k < d}.

The requirement for k > d is as above trivially fulfilled. The requirement for k = d is that
dim(U ∩ U2) ≥ 1. Consequently, Ω(n− d− 1, 0, . . . , 0) = cn−d−1(Q).

(3) Let e = 1. From Equation (4.15), we get that We have by definition that

c1(Q) = [{[U ] ∈ G : [v1], . . . , [vn−d] are linearly dependent}]

In other words, c1(Q) is the equivalence class of the set of points [U ] ∈ G such that there exists
λi ∈ C such that λ1[v1] + λ2[v2] + · · · + λn−d[vn−d] = 0. This is equivalent to require that
λ1v1 + λ2v2 + · · ·+ λn−dvn−d ∈ U . This shows that c1(Q) is the equivalence class of the set of U
such that dim(U ∩ Un−d) ≥ 1. We have established that

c1(Q) = [{[U ] ∈ G : dim(U ∩ Un−d) ≥ 1}] .

We want to show that the set of points such that dim(U ∩ Un−d) ≥ 1 is a Schubert cycle
ω(1, 0, . . . , 0). Indeed, we showed in the proof of Proposition 4.3.9 that ω(1, 0, . . . , 0) is the set of
points [U ] ∈ G such that dim(U ∩ Un−d ≥ 1. Consequently, Ω(1, 0, . . . , 0) = c1(Q). ■

Corollary 4.3.11. cn−d(Q)d+1 = Ω(n− d, . . . , n− d) = cd+1(U∗)n−d.

Proof. For the first equality, we use that

cn−d(Q) = Ω(n− d, 0 . . . , 0),

which is the equivalence class of the points [U ] ∈ G such that U contains a given 1-dimensional
subspace of V . Then cn−d(Q)d+1 is the equivalence class of the points [U ] ∈ G such that U
contains d+ 1 general 1-dimensional subspaces. There is only one d+ 1-dimensional subspace U
that fulfills this condition, that is the vector space spanned by the 1-dimensional subspaces.

For the second equality, we use that

cd+1(U) = Ω(1, . . . , 1),

which is the equivalence class of the points [U ] ∈ G such that U is contained in a n-dimensional
subspace. Then cd+1(U)n−d is the equivalence class of the points [U ] ∈ G such that U is contained
in n− d n-dimensional subspaces. There is only one such d+ 1-dimensional U , that is the vector
space in the intersection of the n-dimensional vector spaces. ■
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4.3.3 The set of Isotropic Subspaces as a Subvariety of a Grassmannian

In the proof of Theorem 4.2.6 we used that the set of 2-dimensional isotropic subspaces of a 4× 4
skew symmetric matrix corresponds to a hyperplane in G(2, 4). Now, we will show the general
correspondence between the set of k-dimensional isotropic subspaces of an (n+ 1)× (n+ 1) skew
symmetric matrix and G(k, n+ 1).

To describe the set of isotropic subspaces as a subvariety of a Grassmannian we need the
concept of the second wedge product. Let V be a vector space of dimension n + 1. Then the
second wedge product of V is

∧2V = V ⊗ V/v ⊗ w + w ⊗ v,

for v, w ∈ V . We have further that dim(∧2V ) = (n+1)n
2 . Indeed, we have that V ⊗ V =

SymV ⊕∧2V , where SymV is the symmetric algebra over V , i.e. SymV = V ⊕V/v⊕w−w⊕ v.
We have that dim(V ⊕ V ) = (n+ 1)2 and dim(SymV ) = (n+1)2+(n+1)

2 . Then

dim(∧2V ) = dim(V ⊗ V )− dim(SymV )

= (n+ 1)2 − (n+ 1)2 + (n+ 1)

2

=
(n+ 1)n

2
.

We have the following correspondence between skew symmetric matrices and ∧2(V ).

Lemma 4.3.12. Let V be a vector space of dimension n+1. Then there is a 1−1 correspondence
between (n+ 1)× (n+ 1) skew symmetric matrices and elements in ∧2(V ∗).

Proof. Let A be an (n+ 1)× (n+ 1) skew symmetric matrix and consider

ϕ : ∧2V → C
(v, w) 7→ vAwT

This shows that ϕ ∈ ∧2(V ∗). Consider now ψ ∈ ∧2(V ∗). Then ψ is a bilinear map, which indeed
is represented by a unique matrix. Further we have that ψ(v, w) = −ψ(w, v). This gives that
vAwT = −wAvT . On the other hand we also have that

vAwT = (vAwT )T

= wAT vT .

In summary, we get that wAT vT = −wAvT , which is fulfilled if and only if A = −AT . This
shows that A is skew symmetric. ■

We will prove that the set of isotropic subspaces corresponds to one of the Chern classes of
∧2(U∗). In order to do this, we first look at the global sections s : G → ∧2(U∗). In the same
way as a global section sU : G→ U∗ is induced by a global section s : G→ V ∗

G, a global section
sU : G→ ∧2U∗ is induced by a global section s : G→ ∧2V ∗

G. Indeed, we have that the following
sequence is exact.

0 (U∗ ⊗Q∗)⊕ ∧2Q∗ ∧2V ∗
G ∧2U∗ 0 (4.16)

Let s : G → ∧2(V ∗
G) be a the global section such that s([U ]) = ([U ], s), where s : ∧2VG → C.

Let ϕ : ∧2V ∗
G → ∧2U∗ be the quotient map we get from Equation (4.16). Then ϕ ◦ s is a global

section. Indeed, ϕ ◦ s([U ]) = ([U ], s|U ), where s|U : ∧2U → C.
We are now ready to prove the following
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Proposition 4.3.13. Let V be an (n+ 1)-dimensional vector space, A be an (n+ 1)× (n+ 1)
skew symmetric matrix, Hd+1

A the set of (d + 1)-dimensional isotropic subspaces to A and let
G = G(d + 1, V ). Then [Hd+1

A ] = cm(∧2U∗), where m = n(n−1)
2 and Hd+1

A is the subset of G
corresponding to Hd+1

A .

Proof. Let s : G → ∧2V ∗
G be a section as described above, where s : ∧2V ∗

G is represented by A
and let s|U = ϕ ◦ s. Then

cm(∧2U∗) =
[
{[U ] ∈ G : s

∣∣
U
= 0}

]
=

[
{[U ] ∈ G : A

∣∣
U
= 0}

]
.

Since {[U ] ∈ G : A|U = 0} is the set of (d + 1)-dimensional isotropic subspaces to A, we are
done. ■

4.3.4 Computation with Chern Classes

The Chern classes of ∧2(U∗) corresponds to the Chern classes of U∗. In the this section, we show
how we can find the explicit correspondence. We will also describe how to compute with Chern
classes.

Let VX be a vector bundle of rank n. We then define the Chern polynomial as the polynomial

ct(VX) =

n∑
i=0

ci(VX)t
i ∈ A∗(X)[t].

When n = 1 we call VX a line bundle, denoted L, and we have ct(L) = 1 + c1(L)t. When E is a
direct sum of line bundles Li we have that

ct(E) =
∏

ct(Li), (4.17)

[Ful98, p. 51]. This relation will give a way of computing with Chern classes. The vector bundles
we are considering are however not direct sums of line bundles, but because of the splitting
principle introduced below we can use the same techniques for computing as we have for a direct
sum of line bundles.

Theorem 4.3.14. [Ful98, p. 51](Splitting principle) Any identity among Chern classes of bundles
that is true for bundles that are direct sums of line bundles is true in general.

Before we use the splitting principle to compute the relations between a vector bundle E and
∧2E we need the following.

Lemma 4.3.15. Let E =
⊕
Li. Then ∧2E =

⊕
i<j, Li ⊕ Lj.

Proof. Given E =
⊕n

i=0 Li we have that E
⊗
E =

⊕
0≤i,j≤n Li ⊕ Lj . Let u = (l1, . . . , ln) and

u′ = (l′1, . . . , l
′
n). Then

u⊗ u′ = (l1l
′
1, . . . , lil

′
j , . . . , lnl

′
n)

u′ ⊗ u = (l′1l1, . . . , l
′
ilj , . . . , l

′
nln)

Then u⊗u′+u′⊗u = 0 gives that lil′j+ l
′
ilj = 0 for 0 ≤ i, j ≤ n. Assume i = j. Then lil′i+ l

′
ili = 0

for every 0 ≤ i ≤ n, which is fulfilled if and only if Li ⊕ Li = 0. Assume i ≠ j. Then we have
that lil′j + l′ilj = 0. This is fulfilled if and only if Li ⊕ Lj = −Lj ⊕ Li. We therefore have that

∧2E = E ⊗ E/v ⊕ w + w ⊕ v =
⊕
i<j,

Li ⊕ Lj .

■
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Let now E be a vector bundle of rank n. By the splitting we can assume the E splits into a
direct sum of n line bundles. We write the line bundles as OG(αi), where αi is called the Chern
root. The Chern roots are used to compute relation between Chern classes. When E is a sum of
line bundles, then αi = c1(Li), but when E is not a sum of line bundles, then the Chern roots has
no geometric origin.

E = OG(α1)⊕OG(α2)⊕ · · · ⊕ OG(αn).

By 4.17 and the splitting principle we have that

ct(E) = (1 + α1t)(1 + α2t) . . . (1 + αnt),

which gives

c1 = α1 + α2 + · · ·+ αn,

c2 = α1α2 + · · ·+ αiαj + · · ·+ αn−1αn,

...
cn = α1α2 . . . αn

By Lemma 4.3.15 we have that

∧2(E) = OG(α1 + α2)⊕ · · · ⊕ OG(αi + αj)⊕ · · · ⊕ OG(αn−1 + αn),

and

dt(∧2(E)) = (1 + (α1 + α2)t) . . . (1 + (αi + αj)t) . . . (1 + (αn−1 + αn)t).

This gives

d1 =
∑
i<j

(αi + αj)

d2 =
∑

i<j,k<l

(αi + αj)(αk + αl)

...

dm =
∏
i<j

(αi + αj),

where m = n(n−1)
2 . We have now expressed both ci and di in terms of the Chern roots of E . From

these equations we can express di in terms of ci. We give an example in the following

Lemma 4.3.16. Let E be a rank 2 vector bundle. Let ci be the Chern classes for E and di the
Chern classes for ∧2E. Then c1 = d1.

Proof. By the splitting principle we can assume that E splits into a direct sum of two line bundles,
that is,

E = OG(α)⊕OG(β).

We then have that

ct(E) = (1 + αt)(1 + βt),
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which gives

c1 = α+ β

c2 = αβ

We have further that

∧2(E) = OG(α+ β)

and

dt(∧2(E)) = (1 + (α+ β)t).

This shows that d1 = α+ β = c1. ■

We observe that c1 is the same hyperplane that we found in the proof of Lemma 4.2.5 on
page 25.

We now explain how we can find relations among the Chern classes of U∗. First we need a
proposition.

Proposition 4.3.17. [Ful98, Theorem 3.2 e)] If

0 E1 E2 E3 0

is a short exact sequence of vector bundles, then ct(E2) = ct(E1)ct(E3).

Corollary 4.3.18. ct(U∗)ct(Q∗) = 1.

Proof. Since
0 Q∗ V ∗

G U∗ 0

is exact, we have ct(U∗)ct(Q∗) = ct(V
∗
G). We have to prove that ce(V ∗

G) = 0 for all e ̸= 0. Indeed,
let si : G→ V ∗

G be general global sections, where si([U ]) = ([U ], si) for si : V → C. Then

ce(V
∗
G) = [[U ] ∈ G : s1([U ]), . . . sn−e+2([U ]) are linearly dependent]

= [[U ] ∈ G : s1, . . . sn−e+2 are linearly dependent]

There are no subsets [U ] where n − e+ 2 general linear maps on an n+ 1-dimensional vector
space is linearly dependent. This gives that ce(V ∗

G) = 0 for e ̸= 0. ■

We show how we can use this correspondence to compute relations between the Chern classes
of U∗.

Example 4.3.19. We use the technique on G(2, 4). We want to find the relations between the
Chern classes of U∗.

ct(Q∗)ct(U∗) = (1 + d1t+ d2t
2)(1 + c1t+ c2t

2)

= 1 + (d1 + c1)t+ (d2 + c1d1 + c2)t
2 + (c1d2 + c2d1)t

3 + (c2d2)t
4

= 1.

This equality is fulfilled if and only if

d1 + c1 = 0

d2 + c1d1 + c2 = 0
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c1d2 + c2d1 = 0

c2d2 = 0

The first equation gives d1 = −c1. Using this relation in the second equation gives d2 = c21 − c2.
The two last equation then gives

c31 − 2c1c2 = 0

c21c2 − c22 = 0.

Multiplying the first of the relation with c1 gives that

c41 = 2c21c2 = 2c22,

and using that c22 = 1 by Corollary 4.3.11 we get back the relations

c41 = Ω(1, 0)4 = 2,

c21c2 = Ω(1, 0)2 ∩ Ω(1, 1) = 1.

4.4 Application to Skew Symmetric Matrices of Dimension 4, 6
and 9

We are now ready to prove two theorems about skew symmetric matrices of dimension 6 and 9
and give another proof of Theorem 4.2.6. We will prove the theorems separately, but in all cases
we will use the techniques developed in the previous section.

4.4.1 Skew Symmetric Matrices of Dimension 4 - revisited

We use the same strategy that we used in the alternative proof of Theorem 4.2.6 in Section 4.2
on page 26, that is we want to show that there exists a common 2-dimensional isotropic subspace
for a basis for a 3-dimensional vector space W of 4× 4 skew symmetric matrices.

Alternative proof of Theorem 4.2.6. Let W be a 4-dimensional vector space and let W be a 3-
dimensional vector space of 4× 4 skew symmetric matrices. Let A1, A2 and A3 be a basis for W
and let X = G(2, V ). We have that Ai|U ∈ ∧2U∗. Since dim∧2U∗ = 1, the isotropic subspaces
U ⊂ V to Ai|U is c1(∧2U∗). We have from Lemma 4.3.16 that c1(∧2U∗) = c1(U∗). We have a
common isotropic subspace we for A1, A2 and A3 is c1(U∗)3 is non empty. Indeed, we have that

c1(U∗)3 = c31

= 2Ω(2, 1).

Since c31c1 = 2, we have that there exists a conic of common isotropic subspaces for A1, A2 and
A3. ■

4.4.2 Skew Symmetric Matrices of Dimension 6

The result in dimension 6 is the following

Theorem 4.4.1. Let W be a 3-dimensional vector space of 6× 6 skew symmetric matrices. Then
there exists two 3-dimensional isotropic subspaces to W .

We will now prove this theorem, but first we need four lemmas.

Lemma 4.4.2. Let W be a 3-dimensional vector space of 6× 6 skew symmetric matrix and let U
be a 3-dimensional isotropic subspace for W . Then we can choose a row basis for W such that
a34 = a35 = a45 = 0 for every matrix in W .
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Proof. Let the row basis be such that for u, v, w ∈ U we have that

u = (0, 0, 0, 1, 0, 0),

v = (0, 0, 0, 0, 1, 0),

w = (0, 0, 0, 0, 0, 1).

Pick A ∈W . Then

uAvT = a34,

uAwT = a35,

vAwT = a45.

As a consequence, a34 = a35 = a45 = 0 if uAvT = 0 for all u, v ∈ U . ■

By Proposition 4.3.13, the equivalence class of the set of all 3-dimensional isotropic subspaces
to a 6× 6 skew symmetric matrix is c3(∧2U∗). We now express c3(∧2U∗) in terms of the Chern
classes of U∗ by using the following

Lemma 4.4.3. Let E be a rank 3 vector bundle. Let ci be the Chern classes for E and di the
Chern classes for ∧2E. Then d3 = c1c2 − c3.

Proof. We use the strategy we used in Lemma 4.3.16. Since E is a rank 3 vector bundle, we get
that

c1 = α+ β + γ,

c2 = αβ + αγ + βγ,

c3 = αβγ,

where α, β, γ are the Chern roots of E . We then have that

d3 = (α+ β)(α+ γ)(β + γ)

= (α+ β)(αβ + αγ + βγ + γγ)

= α(αβ + αγ + βγ) + β(αβ + αγ + βγ) + γ(αβ + αγ + βγ)− αβγ
= (α+ β + γ)(αβ + αγ + βγ)− αβγ
= c1c2 − c3

■

Lemma 4.4.4. Let G = G(3, 6) and let c1, c2, c3 be the Chern classes for U∗. We then have the
following relations.

3c21c2 − 2c1c3 − c41 − c22 = 0

2c1c
2
2 − c31c2 − 2c2c3 + c21c3 = 0

2c1c2c3 − c31c3 − c23 = 0

Proof. We use the strategy described above and get:

ct(Q)ct(U∗) = 1 + (c1 + d1)t

+(d2 + c1d1 + c2)t
2

+(d3 + c1d2 + c2d1 + c3)t
3

+(c1d3 + c2d2 + c3d1)t
4
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+(c2d3 + c3d2)t
5

+c3d3t
6 = 1,

where di are the Chern classes of Q. The equality holds if and only if the following equalities
hold:

c1 + d1 = 0,

d2 + c1d1 + c2 = 0,

c1d2 + c2d1 + c3 = 0,

c1d3 + c2d2 + c3d1 = 0,

c2d3 + c3d2 = 0,

c3d3 = 0.

Solving these equation recursively gives the relations in the lemma. ■

Proposition 4.4.5. Let G = G(3, 6) and let c1, c2, c3 be the Chern classes for U∗. We then have
the following number of intersection points.

c91 = 42

c71c2 = 21

c51c
2
2 = 11

c61c3 = 5

c31c
3
2 = 6

c41c2c3 = 3

c1c
4
2 = 3

c21c
2
2c3 = 2

c31c
2
3 = 1

c32c3 = 1

c1c2c
2
3 = 1

Proof. Consider the relations given in Lemma 4.4.4. The first relations we multiply with the five
monomials of degree three, i.e. c51, c31c2, c1c22, c21c3, c2c3. The second and third relation we multiply
with the monomials of degree four, c41, c21c2, c22, c1c3, and three, c31, c1c2 and c3, respectively. We
get the following equations.

3c71c2 − 2c61c3 − c91 − c51c22 = 0

3c51c
2
2 − 2c41c2c3 − c71c2 − c31c32 = 0

3c31c
3
2 − 2c21c

2
2c3 − c51c22 − c1c42 = 0

3c41c2c3 − 2c31c
2
3 − c61c3 − c21c22c3 = 0

3c21c
2
2c3 − 2c1c2c

2
3 − c41c2c3 − c32c3 = 0

2c51c
2
2 − c71c2 − 2c41c2c3 + c61c3 = 0

2c31c
3
2 − c51c22 − 2c21c

2
2c3 + c41c2c3 = 0

2c1c
4
2 − c31c32 − 2c32c3 + c21c

2
2c3 = 0

2c21c
2
2c3 − c41c2c3 − 2c1c2c

2
3 + c31c

2
3 = 0

2c41c2c3 − c61c3 − c31c23 = 0

2c21c
2
2c3 − c41c2c3 − c1c2c23 = 0

2c1c2c
2
3 − c31c23 − c33 = 0
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

−1 3 −1 −2 0 0 0 0 0 0 0 0
0 −1 3 0 −1 −2 0 0 0 0 0 0
0 0 −1 0 3 0 −1 −2 0 0 0 0
0 0 0 −1 0 3 0 −1 −2 0 0 0
0 0 0 0 0 −1 0 3 0 −1 −2 0
0 −1 2 1 0 −2 0 0 0 0 0 0
0 0 −1 0 2 1 0 −2 0 0 0 0
0 0 0 0 −1 0 2 1 0 −2 0 0
0 0 0 0 0 −1 0 2 1 0 −2 0
0 0 0 −1 0 2 0 0 −1 0 0 0
0 0 0 0 0 −1 0 2 0 0 −1 0
0 0 0 0 0 0 0 0 −1 0 2 −1





c91
c71c2
c51c

2
2

c61c3
c31c

3
2

c41c2c3
c1c

4
2

c21c
2
2c3

c31c
2
3

c32c3
c1c2c

2
3

c33



= 0.

Row reduction gives

c91 = 42c33

c71c2 = 21c33

c51c
2
2 = 11c33

c61c3 = 5c33

c31c
3
2 = 6c33

c41c2c3 = 3c33

c1c
4
2 = 3c33

c21c
2
2c3 = 2c33

c31c
2
3 = c33

c32c3 = c33

c1c2c
2
3 = c33

Since c33 = 1 by Corollary 4.3.11 we have the relations in the lemma. ■

We are now ready to give a proof of Theorem 4.4.1 on page 47.

Proof of Theorem 4.4.1. We want to prove that there is a common 3-dimensional isotropic
subspace for a basis of matrices in W . Let A1, A2 and A3 be a basis for W . The basis matrices
A1, A2 and A3 has a common isotropic subspace if the intersection

c3(∧2(U∗))3

is non empty, which is the case. Indeed,

(c1c2 − c3)3 = c31c
3
2 − 3c21c

2
2c3 + 3c1c2c

2
3 − c33

= 6c33 − 3 · 2c33 + 3c33 − c33
= 2c33

= 2.

This means that A1, A2 and A3 have two common 3-dimensional isotropic subspaces. ■

Remark 4.4.6. Let I be the ideal generated by the relations in Lemma 4.4.4. Then I is the is the
apolar ideal of a homogeneous polynomial f in c1, c2 and c3 of degree 6. We want to show this by
finding the polynomial f . Our strategy is to use the relations in Lemma 4.4.4 as a differentiation
operator on a polynomial with unknown coefficients. We then get a linear system of relations
between the coefficients of the polynomial which we solve using row reduction. Let

f = a0c
9
1+a1c

7
1c2+a2c

6
1c3+a3c

5
1c

2
2+a4c

4
1c2c3+a5c

3
1c

3
2+a6c

3
1c

2
3+a7c

2
1c

2
2c3+a8c1c

4
2+a9c1c2c

2
3+a10c

3
2c3+a11c

3
3

be a polynomial, where ai ∈ Z. We will now differentiate f with respect to each of the relations
in Lemma 4.4.4. We consider the relations as polynomials in Z[d1, d2, d3]. We start with the first
relation.
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Let g1 = 3d21d2 − 2d1d3 − d41 − d22. Then

f(g1) =126a1c
5
1 + 120a3c

3
1c2 + 36a4c

2
1c3 + 54a5c1c

2
2 + 12a7c2c3

− 12a2c
5
1 − 8a4c

3
1c2 − 12a6c

2
1c3 − 4a7c1c

2
2 − 4a9c2c3

− 3024a0c
5
1 − 840a1c

3
1c2 − 360a2c

2
1c3 − 120a3c1c

2
2 − 24a4c2c3

− 2a3c
5
1 − 6a5c

3
1c2 − 2a7c

2
1c3 − 12a8c1c

2
2 − 6a10c2c3

Gathering the coefficients of each of the monomials c51, c31c2, c21c3, c1c22 and c2c3 gives the following
relations between the coefficients for g1 to be apolar to f .

−3024a0 + 126a1 − 12a2 − 2a3 = 0, (4.18)
−840a1 + 120a3 − 8a4 − 6a5 = 0, (4.19)
−360a2 + 36a4 − 12a6 − 2a7 = 0, (4.20)
−120a3 + 54a5 − 4a7 − 12a8 = 0, (4.21)
−24a4 + 12a7 − 4a9 − 6a10 = 0. (4.22)

Let now g2 = d1d
2
2 − d31d2 − 2d2d3 + d21d3. Then

f(g2) =20a3c
4
1 + 36a5c

2
1c2 + 8a7c1c3 + 24a8c

2
2

− 210a1c
4
1 − 120a3c

2
1c2 − 24a4c1c3 − 18a5c

2
2

− 2a4c
4
1 − 4a7c

2
1c2 − 4a9c1c3 − 6a10c

2
2

+ 30a2c
4
1 + 12a4c

2
1c2 + 12a6c1c3 + 2a7c

2
2

Gathering the coefficients of each of the monomials c41, c21c2, c1c3 and c22 gives the following relations
between the coefficients for g2 to be apolar to f .

−210a1 ++30a2 + 20a3 − 2a4 = 0, (4.23)
−120a3 + 12a4 + 36a5 − 4a7 = 0, (4.24)
−24a4 + 12a6 + 8a7 − 4a9 = 0, (4.25)
−18a5 + 2a7 + 24a8 − 6a10 = 0. (4.26)

Let now g3 = 2d1d2d3 − d31d3 − d23. Then

f(g3) =8a4c
3
1 + 8a7c1c2 + 4a9c3

− 120a2c
3
1 − 24a4c1c2 − 12a6c3

− 2a6c
3
1 − 2a9c1c2 − 6a11c3

Gathering the coefficients of each of the monomials c31, c1c2 and c3 gives the following relations
between the coefficients for g3 to be apolar to f .

−120a2 + 8a4 − 2a6 = 0 (4.27)
−24a4 + 8a7 − 2a9 = 0 (4.28)
−12a6 + 4a9 − 6a11 = 0 (4.29)
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We make the coefficient matrix of the system of equations from from the relations 4.18-4.29.

−3024 126 −12 −2 0 0 0 0 0 0 0 0
0 −840 0 120 −8 −6 0 0 0 0 0 0
0 0 −360 0 36 0 −12 −2 0 0 0 0
0 0 0 −120 0 54 0 −4 −12 0 0 0
0 0 0 0 −24 0 0 12 0 −4 −6 0
0 −210 30 20 −2 0 0 0 0 0 0 0
0 0 0 −120 12 36 0 −4 0 0 0 0
0 0 0 0 −24 0 12 8 0 −4 0 0
0 0 0 0 0 −18 0 2 24 0 −6 0
0 0 −120 0 8 0 −2 0 0 0 0 0
0 0 0 0 −24 0 0 8 0 −2 0 0
0 0 0 0 0 0 −12 0 0 4 0 −6





a0
a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11



= 0.

Row reducing this matrix and setting a11 = 1
6 gives the solutions

a0 =
42

9!

a1 =
21

7!

a2 =
5

6!

a3 =
11

5!2!

a4 =
3

4!

a5 =
6

3!3!

a6 =
1

3!2!

a7 =
2

2!2!

a8 =
3

4!

a9 =
1

2!

a10 =
1

3!

We recognize the numerator of the coefficients as the number of points we get when intersecting
the given Chern classes, and the denominator as the factorial of the degree of each variable ci. This
means that differentiating the polynomial with respect to a variable ci1c

j
2c
k
3 where i+ j + k = 9,

gives the number of intersection points of ci1c
j
2c
k
3.

4.4.3 Skew Symmetric Matrices of Dimension 9

The result in dimension 9 is the following

Theorem 4.4.7. Let W be a 3-dimensional vector space of 9× 9 skew symmetric matrices. Then
there exists a surface of degree 38 of 4-dimensional isotropic subspaces to W .

We will now prove this theorem, but first we need four lemmas.

Lemma 4.4.8. Let W be a 3-dimensional vector space of 9 × 9 skew symmetric matrix and
let U be an isotropic subspace for W . Then we can choose a row basis for W such that
a67 = a68 = a69 = a78 = a79 = a89 = 0 for every matrix i W .

Proof. Let the row basis be such that for u, v, w, t ∈ U we have that

u = (0, 0, 0, 0, 0, 1, 0, 0, 0),

v = (0, 0, 0, 0, 0, 0, 1, 0, 0),

w = (0, 0, 0, 0, 0, 0, 0, 1, 0),

t = (0, 0, 0, 0, 0, 0, 0, 0, 1).
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Pick A ∈W . Then

uAvT = a67,

uAwT = a68,

uAtT = a69,

vAwT = a78,

vAtT = a79,

wAtT = a89.

As a consequence, a67 = a68 = a69 = a78 = a79 = a89 = 0 if uAvT = 0 for all u, v ∈ U . ■

By Proposition 4.3.13, the equivalence class of the set of all 4-dimensional isotropic subspaces
to a 9× 9 skew symmetric matrix is c6(∧2U∗). We now express c6(∧2U∗) in terms of the Chern
classes of U∗ by using the following

Lemma 4.4.9. Let E be a rank 4 vector bundle. Let ci be the Chern classes for E and di the
Chern classes for ∧2E. Then d6 = c1c2c3 − c21c4 − c23.

Proof. We use the strategy we used in Lemma 4.3.16. Since U is a rank 4 vector bundle, we get
that

c1 = α+ β + γ + δ,

c2 = αβ + αγ + αδ + βγ + βδ + γδ

c3 = αβγ + αβδ + βγδ,

c4 = αβγδ,

where α, β, γ, δ are the Chern roots of U . We have that

d6 = (α+ β)(α+ γ)(α+ δ)(β + γ)(β + δ)(γ + δ).

We have used Macaulay2 to check that d6 and c1c2c3 − c21c4 − c23 are equal. ■

Next we compute the number of points the 0-dimensional. First we prove a lemma about the
relation between the Chern classes of U∗.

Lemma 4.4.10. Let G = G(4, 9) and let c1, c2, c3, c4 be the Chern classes for U∗. We then have
the following relations.

3c21c4 − 2c2c4 + 6c1c2c3 − 4c31c3 − c23 − 6c21c
2
2 + c32 + 5c41c2 − c61 = 0

4c1c2c4 − c31c4 − 2c3c4 + 2c1c
2
3 − 6c21c2c3 + 3c22c3 + c41c3 − 3c1c

3
2 + 4c31c

2
2 − c51c2 = 0

4c1c3c4 − c24 − 3c21c2c4 + c22c4 + c41c4 − 3c21c
2
3 + 2c2c

2
3 − 3c1c

2
2c3 + 4c31c2c3 − c51c3 = 0

2c1c
2
4 − 3c1c3c4 + 2c2c3c4 − 3c1c

2
2c4 + 4c31c2c4 − c51c4 = 0
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Proof. We use the strategy described above and get:

ct(Q)ct(U∗) = 1 + (c1 + d1)t

+(d2 + c1d1 + c2)t
2

+(d3 + c1d2 + c2d1 + c3)t
3

+(d4 + c1d3 + c2d2 + c3d1 + c4)t
4

+(d5 + c1d4 + c2d3 + c3d2 + c4d1)t
5

+(c1d5 + c2d4 + c3d3 + c4d2)t
6

+(c2d5 + c3d4 + c4d3)t
7

+(c3d5 + c4d4)t
8

+c4d5t
9 = 1,

where di are the Chern classes of Q. The equality holds if and only if the following equalities
hold:

c1 + d1 = 0,

d2 + c1d1 + c2 = 0,

d3 + c1d2 + c2d1 + c3 = 0,

d4 + c1d3 + c2d2 + c3d1 + c4 = 0,

d5 + c1d4 + c2d3 + c3d2 + c4d1 = 0,

c1d5 + c2d4 + c3d3 + c4d2 = 0,

c2d5 + c3d4 + c4d3 = 0,

c3d5 + c4d4 = 0,

c4d5 = 0.

Solving these equation recursively gives the relations in the lemma. ■

Proposition 4.4.11. Let G = G(4, 9) and let c1, c2, c3, c4 be the Chern classes for U∗. We then
have the following number of intersection points.

c81c
3
4 = 14

c71c2c3c
2
4 = 49

c61c
2
2c

2
3c4 = 164

c51c
3
2c

3
3 = 539

c41c
2
2c

4
3 = 175

c51c2c
3
3c4 = 59

c61c
2
3c

2
4 = 19

c31c2c
5
3 = 59

c41c
4
3c4 = 24

c21c
6
3 = 19

Proof. We follow the same strategy as in the proof of Proposition 4.4.5, that is we multiply the
relations in Lemma 4.4.10 with all monomials of degree 14, 13, 12 and 11, respectively. We use
the program in Listing 10.1. There are 47 monomials of degree 14, 38 of degree 13, 34 of degree
12 and 27 of degree 11. This gives 146 relations. There are 134 monomials of degree 20, so in
summary we get a matrix of dimension 146× 134. After row reducing this matrix we pick out
the relations

c81c
3
4 = 14c54

c71c2c3c
2
4 = 49c54

c61c
2
2c

2
3c4 = 164c54

c51c
3
2c

3
3 = 539c54

c41c
2
2c

4
3 = 175c54

c51c2c
3
3c4 = 59c54

c61c
2
3c

2
4 = 19c54

c31c2c
5
3 = 59c54

c41c
4
3c4 = 24c54

c21c
6
3 = 19c54

Since c54 = 1 by Corollary 4.3.11 we get the relations in the propositions. ■
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We are now ready to give a proof of Theorem 4.4.7 on page 52.

Proof of Theorem 4.4.1. We want to prove that there is a common 3-dimensional isotropic
subspace for a basis of matrices in W . Let A1, A2 and A3 be a basis for W . The basis matrices
A1, A2 and A3 has a common isotropic subspace if the intersection

c3(∧2(U∗))3

is non empty, which is the case. Indeed,

(c1c2c3 − c12c4 − c23)3 =c31c32c33 − 3c41c
2
2c

2
3c4 + 3c51c2c3c

2
4 − c61c34 − 3c21c

2
2c

4
3

+ 6c31c2c
3
3c4 − 3c41c

2
3c

2
4 + 3c1c2c

5
3 − 3c21c

4
3c4 − c63

The degree is

c21(c1c2c3 − c12c4 − c23)3 =c51c32c33 − 3c61c
2
2c

2
3c4 + 3c71c2c3c

2
4 − c81c34 − 3c41c

2
2c

4
3

+ 6c51c2c
3
3c4 − 3c61c

2
3c

2
4 + 3c31c2c

5
3 − 3c41c

4
3c4 − c21c63

=539− 3 · 164 + 3 · 49− 14− 3 · 175
+ 6 · 59− 3 · 19 + 3 · 59− 32̇4− 19

=38

This means that A1, A2 and A3 have a surface of degree 38 of common 4-dimensional isotropic
subspaces. ■
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5 | Finite Schemes in P2

In this chapter we explain how we can relate a zero-dimensional ideal IΓ to the apolar ideal F⊥

of a ternary sextic form F . To find the cactus rank of F , we are looking for minimal schemes
Γ such that IΓ ⊂ F⊥. In particular, we are interested in the ideals IΓ that are generated by a
subset of the generators of F⊥.

The chapter is organized as follows. First, in Section 5.1, we introduce a structure theorem for
zero-dimensional ideals IΓ of schemes Γ P2 and investigate some properties of the set of schemes.
Then we use the structure theorem to associate a degree matrix to some specially chosen schemes.
Lastly, in Section 5.2, we go through each of the Betti strata FB (recall Definition 1.1.6 on page 3)
and prove which type of IΓ that will appear as a subideal of F⊥ for an [F ] ∈ FB. In Chapter 6,
we prove that the subideal we find, actually will by a minimal subideal of F⊥ for an F .

5.1 Hilbert–Burch Matrices of some Finite Schemes in P2

We have the following structure theorem for finite schemes in P2.

Theorem 5.1.1. [Eis06, Theorem 20.15 and p. 503] Let Γ ⊂ P2 be a finite scheme. Then
IΓ ⊂ T = C[y0, y1, y2] is generated by the (β − 1)× (β − 1) minors of a (β − 1)× β matrix, AΓ.
The resolution of IΓ is

0 T β−1 T β IΓ 0.
AΓ

If AΓ is a (β − 1)× β matrix where the (β − 1)× (β − 1) minors have no common factor, then
the minors generate the ideal of a finite scheme.

The finite schemes of length d in P2 are parameterized by the Hilbert scheme

Hilbd P2 = {Γ ⊂ P2 : Γ has length d},

[Gro61]. Now, we describe a subscheme of Hilbd P2. Let P = (pij) be a (β − 1)× β matrix where
pij ∈ C[y0, y1, y2] is a homogeneous polynomial. Let the degree matrix be the matrix MC = (mij),
where mij = deg pij . Since the Hilbert polynomial of IΓ is determined by the degree matrix of
AΓ, every scheme Γ of an ideal IΓ that is generated by a matrix P with degree matrix MC has
the same length. Therefore, we define

HilbCd = {Γ ∈ Hilbd P2 : AΓ has degree matrix MC} ⊂ Hilbd P2.

We will prove that HilbCd is irreducible. In order to do that we need some definitions and results.
Let α = (α0, . . . , αn), where |α| = α0 + · · · + αn and xα = xα0

0 . . . xαn
n . We write

Fi =
∑

|α|=di ci,αx
α for a homogeneous polynomial of degree di. Given a polynomial P ∈ C[ui,α] we

let P (F1, . . . , Fn) denote the number obtained by replacing the variable ui,α by the corresponding
coefficient ci,α. We say that P is a polynomial in the coefficients of the Fi.
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Theorem 5.1.2. [CLO05, (2.3) Theorem] Let F0, . . . , Fn ∈ C[x0, . . . , xn] be homogeneous
polynomials. Then the exists a unique polynomial Res ∈ Z[ui,α] such that F0 = · · · = Fn = 0 has
a nontrivial solution over C if and only if Res(F0, . . . , Fn) = 0.

Lemma 5.1.3. Fix a degree matrix MC and let VC be the vector space of (β − 1)× β matrices
P = (pij), where pij ∈ T = C[y0, y1, y2] are homogeneous, with degree matrix MC . Let V 0

C be the
subset of VC consisting of the matrices where the (β − 1)× (β − 1) minors has no common factor.
Then V 0

C is irreducible.

Proof. Since the degree of the polynomials in the entries of P ∈ VC are fixed, the total number
N of coefficients of the polynomials are also fixed. Then there is a 1− 1-correspondence between
points in AN and matrices in VC . We will prove that V 0

C is open subset, and thus irreducible, by
proving that the complement is closed.

Fix P and let IP be the ideal of the (β − 1) × (β − 1) minors of P . If there is a common
factor between the (β− 1)× (β− 1) minors, there is also a common factor between the generators
of every 2-dimensional subspace of IP . Let L be a general linear form and let F1 and F2 be
generators for a 2-dimensional subspace of IP . Then F1 = F2 = L = 0 has a non-trivial solution
if and only if F1 and F2 has a common factor. By Theorem 5.1.2, this is fulfilled if and only if
Res(F1, F2, L) = 0. Since Res(F1, F2, L) is a polynomial in the coefficients of Fi and L, and Fi
are determined by the coefficients of pij , we get one polynomial R in the coefficients of pij for
each 2-dimensional subspace and for each linear form. There is a common factor between the
generators of IP if and only if the ideal spanned by the polynomials R vanish. The subset of VC
where the coefficients satisfies this condition is closed. This shows that the complement, V 0

C , is
open. Since an open subset of A1 is irreducible, and V 0

C ⊂ VC ≃ A1, V 0
C is irreducible. ■

Proposition 5.1.4. The subscheme HilbCd ⊂ Hilbd P2 is irreducible.

Proof. Consider the surjective map ϕ given by

ϕ : V 0
C → HilbCd

P 7→ ΓP ,

where ΓP is the scheme corresponding to IP generated by the (β − 1)× (β − 1) minors of P . The
map is well-defined since, by assumption, the (β − 1)× (β − 1) minors have no common factor,
and by Theorem 5.1.1, IP is the ideal of a finite scheme. The map is indeed surjective, since
every finite scheme has a corresponding Hilbert Burch matrix, Theorem 5.1.1. Since HilbCd is the
image under a map and V 0

C is irreducible, then HilbCd is irreducible. ■

5.1.1 Finite Schemes in P2 of Length 4 and 5

In this section we describe and classify all matrices that is a degree matrix of a Hilbert–Burch
matrix of IΓ where Γ is of length four or five.

We recall a special case of Bezout’s theorem.

Theorem 5.1.5. [BE77, Corollary 7.8] Let F1, F2 ⊂ T = C[y0, y1, y2] and let C1 = V (F1) and
C2 = V (F2) be two curves in P2 degree d and d′, where F1 and F2 have no common factor.
Assume that C1 and C2 intersect transversely. Then the Hilbert polynomial of T/⟨F1, F2⟩ is dd′.

When two curves fulfill the condition in Bezout’s theorem we say that they intersect in a
complete intersection (CI).

Now, we state and prove some lemmas about ideal of finite schemes that we will use to prove
the main result about the degree matrices.

Let I and J be two ideals. Then the set (I : J) = {r ∈ T : rs ∈ I for all s ∈ J} is called the
colon ideal of I and J . The scheme defined by the colon ideal is called the residual scheme.
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Lemma 5.1.6. Let IΓj ⊂ IΓi be ideals of schemes of length i and j, respectively. Then
(IΓj : IΓi) = IΓj−i. If Supp(IΓj−i ∩ IΓi) = ∅, then IΓj−i is the ideal of a subscheme of Γj
not containing Γi.

Proof. Let p ∈ IΓj−i and q ∈ IΓi . Then pq ∈ IΓj . For the other implication, let r ∈ T be such
that r ∈ (IΓj : IΓi) and s ∈ IΓi , while s /∈ IΓj−i . Then rs ∈ IΓj , thus r ∈ IΓj−i . ■

Lemma 5.1.7. Let IΓ4 be an ideal of a scheme of length four generated by two quadratic forms with
a common linear factor, L, and one cubic form that does not has L as a factor. Then there exists
linear forms L1 and L2 and quadratic forms Q1 and Q2 such that IΓ4 = ⟨LL1, LL2, Q2L1+L2Q1⟩.

Proof. Pick a quadratic form LL1 ∈ IΓ4 and a cubic form K ∈ IΓ4 such that LL1 and K has no
common factor. Consider IΓ6 = ⟨LL1,K⟩, which is the ideal of a scheme of length six containing
Γ4. Then there exists a scheme Γ2 ⊂ Γ6 of length two not containing Γ4 generated by L1 and
a quadratic form Q1, i.e. ⟨L1, Q1⟩ = IΓ2 . Since IΓ6 ⊂ IΓ2 , we can find a linear form L2 and a
quadratic form Q2 such that K = Q2L1 + L2Q1. Consider the matrix(

L1 0 −L2

Q1 L Q2

)
.

The minors of the matrix generate IΓ4 . Indeed, two of the minors are LL1 ∈ IΓ4 and K ∈ IΓ4 and
the last minor is LL2. We want to show that LL2 ∈ (IΓ6 : IΓ2) = IΓ4 . We show this by direct
computations on the generators L1 and Q1. Indeed, we have that (LL2)L1 = (LL1)L2 ∈ IΓ6 . For
the product (LL2)Q1, consider the determinant of the following matrix:Q1 L Q2

L1 0 −L2

Q1 L Q2

 .

Since two rows are equal, the determinant equals zero. We get that

Q1LL2 − LK +Q2LL1 = 0

Q1LL2 = LK −Q2LL1,

which gives that (LL2)Q1 ∈ IΓ6 and LL2 ∈ (IΓ6 : IΓ2). Since ⟨LL1, LL2, Q2L1 + L2Q1⟩ is the
ideal of a scheme of length four, we have that ⟨LL1, LL2, Q2L1 + L2Q1⟩ = IΓ4 . ■

Lemma 5.1.8. Let IΓ5 be an ideal of a scheme of length five generated by one quadratic form
and two cubic forms that have no common factor. Then there exists linear forms L1, L2, L3 and
L4 and quadratic forms Q1 and Q2 such that IΓ5 = ⟨L1L3 + L2L4, Q1L1 +Q2L2, L3Q2 − L4Q1⟩.

Proof. Pick a quadratic form Q ∈ IΓ5 and a cubic form K ∈ IΓ5 such that Q and K has no
common factor. Consider IΓ6 = ⟨Q,K⟩, which is the ideal of a scheme of length six containing
Γ5. Then there exists a scheme Γ1 ⊂ Γ6 of length one not containing Γ5 generated by two linear
forms L1 and L2, i.e. ⟨L1, L2⟩ = IΓ1 . Since IΓ6 ⊂ IΓ1 , we can find linear forms L3 and L4, and
quadratic forms Q1 and Q2 such that

Q = L3L1 + L4L2,

K = Q1L1 +Q2L2.

Consider the matrix (
L1 −L4 −Q2

L2 L3 Q1

)
.
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The minors of the matrix generate IΓ5 . Indeed, two of the minors are Q ∈ IΓ5 and K ∈ IΓ5 and
the last minor is L3Q2 − L4Q1. We want to show that L3Q2 − L4Q1 ∈ (IΓ6 : IΓ1) = IΓ5 . Indeed,

Q2Q− L4K = Q2(L3L1 + L4L2)− L4(Q1L1 +Q2L2),

= Q2L3L1 − L4Q1L1,

= (Q2L3 − L4Q1)L1,

so (Q2L3 − L4Q1)L1 ∈ IΓ6 . To show that (Q2L3 − L4Q1)L2 ∈ IΓ6 , consider the determinant of
the following matrix: L2 L3 Q1

L1 −L4 −Q2

L2 L3 Q1

 .

Since two rows are equal, the determinant equals zero. We get that

L2(Q2L3 −Q1L4)− L3K +Q1Q = 0

L2(Q2L3 −Q1L4) = L3K −Q1Q,

which gives that (Q2L3 − Q1L4)L2 ∈ IΓ6 and (Q2L3 − Q1L4) ∈ (IΓ6 : IΓ1). Since
⟨L1L3 + L2L4, Q1L1 + Q2L2, L3Q2 − L4Q1⟩ is the ideal of a scheme of length five, we have
that ⟨L1L3 + L2L4, Q1L1 +Q2L2, L3Q2 − L4Q1⟩ = IΓ5 . ■

Lemma 5.1.9. Let IΓ5 be an ideal of a scheme of length five generated by two quadratic forms with
a common linear factor L and one quartic form which does not has L as a factor. Then there exists
linear forms L1 and L2 and cubic forms K1 and K2 such that IΓ5 = ⟨LL1, LL2,K1L2 +K2L1⟩.

Proof. Pick a quadratic form LL1 ∈ IΓ5 and a cubic form P ∈ IΓ5 such that LL1 and P has no
common factor. Consider IΓ8 = ⟨LL1, P ⟩, which is the ideal of a scheme of length eight containing
Γ5. Then there exists a scheme Γ3 ⊂ Γ8 of length three not containing Γ5 generated by L1 and a
cubic form K1, i.e. ⟨L1,K1⟩ = IΓ3 . Since IΓ8 ⊂ IΓ3 , we can find a linear form L2 and a cubic
form K2 such that P = K2L1 + L2K1. Consider the matrix(

L1 0 −L2

K1 L K2

)
.

Now, we show that the minors of the matrix generate IΓ5 . Two of the minors are LL1 ∈ IΓ5

and K ∈ IΓ5 and the last minor is LL2. We want to show that LL2 ∈ (IΓ8 : IΓ3) = IΓ5 .
We show this by direct computations on the generators L1 and K1. Indeed, we have that
(LL2)L1 = (LL1)L2 ∈ IΓ8 . For the product (LL2)K1, consider the determinant of the following
matrix K1 L K2

L1 0 −L2

K1 L K2

 .

Since two rows are equal, the determinant equals zero. We get that

K1LL2 − LP +K2LL1 = 0

K1LL2 = LP −K2LL1,

which gives that (LL2)K1 ∈ IΓ8 and LL2 ∈ (IΓ8 : IΓ3). Since ⟨LL1, LL2,K2L1 + L2K1⟩ is the
ideal of a scheme of length five, we have that ⟨LL1, LL2,K2L1 + L2K1⟩ = IΓ5 . ■

Now, we are ready to state the two results where we classify every degree matrix of a
Hilbert–Burch matrix of an ideal of a finite scheme of length four and five.
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Proposition 5.1.10. A Hilbert–Burch matrix of an ideal of a scheme of length four in P2 has
one of the following degree matrices

i)
(
2 2

)
ii)

(
2 2 1
1 1 0

)
iii)

(
4 1

)
Proof. A scheme Γ of length four gives four linear conditions on the coordinates of the quadratic
forms, thus the dimension of the vector space of quadratic forms in the ideal of the scheme is at
least 6− 4 = 2. Assume first that there are two quadratic forms with no common factor. Then,
by Theorem 5.1.1, the two quadratic forms generate a complete intersection, the ideal of a scheme
of length four that contain Γ, thus they generate the ideal of Γ. The degree matrix of a Hilbert
Burch matrix in this case is

(
2 2

)
. Assume now that the two quadratic forms have a common

factor, i.e. they have a common linear factor. The number of cubic forms in the ideal is then
at least 10 − 4 − 2 · 3 + 1 = 1. Assume first that there is no common factor between the two
quadratic forms and the cubic form. Then, by Lemma 5.1.7, the degree matrix of a Hilbert–Burch
matrix for this ideal is (

2 2 1
1 1 0

)
.

Now, we assume that there is a common factor between the two quadratic forms and the cubic
form. The number of quartic forms in the ideal is then at least 15− 4− 2 · 6− 1 · 3+ 1 · 6− 1 = 1.
Thus, the ideal of the scheme is generated by a quartic form and a linear form. We get the degree
matrix

(
4 1

)
. ■

Corollary 5.1.11. The ideal of a scheme of length four in P2 has one of the following Betti
tables.

1 - -
- 2 -
- - 1

1 - -
- 2 1
- 1 1

1 1 -
- - -
- - -
- 1 1

Proposition 5.1.12. A Hilbert–Burch matrix of an ideal of a scheme of length five in P2 has
one of the following degree matrices.

i)
(
5 1

)
ii)

(
2 1 1
2 1 1

)
iii)

(
3 3 1
1 1 0

)
Proof. A scheme of length five gives five linear conditions on the coordinates of the quadratic
forms and the cubic forms, thus the dimension of the vector space of quadratic forms is at least
6 − 5 = 1 and the dimension of the vector space of cubic forms is at least 10 − 5 − 1 · 3 = 2.
Assume first that there is no common factor between the quadratic form and the two cubic forms.
Then, by Lemma 5.1.8 the degree matrix of a Hilbert–Burch matrix of this ideal is(

2 1 1
2 1 1

)
.

Assume now that there is a common factor between the quadratic form and the two cubic
forms. The common factor is a linear form, and if the corresponding line is contained in the
scheme, then this linear form is in the ideal and the ideal is generated by a linear form and a
quintic form. The degree matrix is then

(
5 1

)
. If the line is not contained in the scheme, the

ideal of the scheme is generated by two quadratic forms both having the linear form as a factor
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and a quartic form not having the linear form as a factor. Then, by Lemma 5.1.9 the degree
matrix of a Hilbert–Burch matrix of this ideal is(

3 3 1
1 1 0

)
.

■

Corollary 5.1.13. The ideal of a scheme of length five in P2 has one of the following Betti tables.

1 - -
- 2 1
- - -
- 1 1

1 - -
- 1 -
- 2 2

1 1 -
- - -
- - -
- - -
- 1 1

5.1.2 Other Finite Schemes in P2

In this section we describe the degree matrices of the Hilbert–Burch matrices that will appear as
submatrix of a Buchsbaum–Eisenbud matrix. Our results are summarized in Figure 5.1 on the
following page. When we say that a scheme Γ consists of d general points, we mean that Γ a
point in an open subset of Hilbd P2.

Lemma 5.1.14. Let each of the (β − 1) × β matrices in Figure 5.1 be a degree matrix MC .
Assume P is a matrix with MC as degree matrix and such that the (β − 1)× (β − 1) minors have
no common factor. Then the (β − 1)× (β − 1) minors of P generate the ideal of scheme Γ of the
length given in the table and a general element in HilbCd is smooth. If Γ is a set of distinct points,
the configuration of points is given i the table. For each set of points we describe the dimension of
the family.

Proof. For the dimension, we will use the same strategy in all cases, expect in case (10). The
dimension of the family of points in P2 is 2, so the dimension of the family of n points in P2 is
2n. Since a line a0x0 + a1x1 + a2x2 is determined by a point (a0 : a1 : a2) ∈ P2, the dimension
of the family of lines in P2 is 2. The dimension of a family of n points, m contained in a line
is therefore 2(n−m) + 2 +m. Since a conic a0x20 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2 is

determined by a point (a0 : a1 : a2 : a3 : a4 : a5) ∈ P5, the dimension of the family of conics in P2

is 5. The dimension of a family of n points, m contained in a conic is then 2(n−m) + 5 +m.
In case (10), we use that the dimension of the family of cubics in P2 are ten, thus two cubics is
determined by eight points. Therefore, the dimension of the family of a complete intersection of
two cubic is 28̇ = 16.

If IΓ is the ideal of Γ, the length of Γ can be found by computing the Hilbert polynomial of
T/IΓ. In this proof, we will find the length directly by computation on the Hilbert–Burch matrix.

Since being smooth is an open condition, we prove that a general element in HilbCd i smooth
for every C by finding one examples of a matrix P that is the Hilbert–Burch matrix of an ideal
of a smooth scheme.

Let Li, Qi,Ki, Ri ∈ C[x0, x1, x2] be general linear, quadratic, cubic and quartic forms,
respectively. We will also use the same letters without subscript in some cases. By abuse
of notation, we use the same notation for the zero set of the forms.

For almost every case, we have included a picture of curves that intersect in the given
configuration of points.

We work through each case:
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(
1 1 1
1 1 1

) (
2 2

)
1) Three general points, dim6 2) Four points in a CI, dim8(

2 2 1
1 1 0

) (
3 3 1
1 1 0

)
3) Four points, three on a line, dim7 4) Five points, four on a line, dim8(

2 1 1
2 1 1

) (
2 3

)
5) Five general points, dim10 6) Six points on a conic, dim11(

3 2 1
2 1 0

) (
3 1 1
3 1 1

)
7) Six points, four on a line, dim10 8) Seven points on a conic, dim12 1 1 1 1

1 1 1 1
1 1 1 1

 (
3 3

)
9) Six general points, dim12 10) Nine points in CI, dim16

(
2 2 2
1 1 1

)  2 2 2 1
1 1 1 0
1 1 1 0


11) Seven general points, dim14 12) Seven points, four on a line, dim12

(
2 2 1
2 2 1

)  2 2 1 1
2 2 1 1
1 1 0 0


13a) Eight general points, dim16 14) Eight points, seven on a conic, dim14

13b) Eight points, four on a line, dim14

 2 1 1 1
2 1 1 1
2 1 1 1




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


15a) Nine general points, dim18 16) Ten points, dim20

15b) Nine general points, four on a line, dim16
15c) Nine general points, seven on a conic, dim16

Figure 5.1: Degree matrices of Hilbert–Burch matrices of ideal of finite schemes
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5.1. Hilbert–Burch Matrices of some Finite Schemes in P2

(1) Let Li ∈ C[x0, x1, x2] be general linear forms and consider the matrix(
L1 L2 L3

L4 L5 L6

)
.

Then this is the Hilbert–Burch matrix of an ideal of a scheme consisting of three general points.
Indeed, from the three 2× 2 minors we get the quadratic forms

Q1 = L1L6 − L3L4

Q2 = L2L6 − L3L5

Q3 = L1L5 − L2L4

Let p ∈ P2 be a point on Q1. This means that when L1, L6, L3 and L4 are evaluated in p, then
L1L6 − L3L4 = 0. In other words,

det

(
L1 L3

L4 L6

)
p

= 0, (5.1)

where the subscript p means that Li are evaluated in p. In the same we get that if p′ ∈ P2 is a
point on Q2, then

det

(
L2 L3

L5 L6

)
p′
= 0. (5.2)

We have from Bezout’s theorem that Q1 and Q2 intersect in four points. We see from 5.1 and
5.2 that one intersection point is where L3 = L6 = 0. We want to show that the three other
points are intersection points of Q1, Q2 and Q3. Indeed, we first observe that the point where
L3 = L6 = 0 is not on Q3. Second, let p′′ ∈ Q1 ∩Q2, where p′′ /∈ L3 ∩ L6. Since the rows of a
2× 2 matrix are proportional the determinant of a is zero, we get the relations

L4p′′ = λL1p′′ ,

L6p′′ = λL3p′′ ,

L5p′′ = λ′L2p′′ ,

L6p′′ = λ′L3p′′ ,

where λ, λ′ ∈ C. Since we have assumed L3p′′ , L6p′′ ̸= 0 we get λ = λ′. This gives the relations

L4p′′ = λL1p′′ ,

L6p′′ = λL3p′′ ,

L5p′′ = λL2p′′ .

This gives that

det

(
L1 L2

L4 L5

)
p′′

= det

(
L1 L2

λL1 λL2

)
p′′

= 0.

This show that p′′ ∈ C3 and in particular that p′′ ∈ Q1 ∩Q2 ∩Q3.
A special case of this type is when the following matrix.(

L1 0 −L2

−L1 L3 0

)
Then we get Q1 = L1L2, Q2 = L2L3 and Q3 = L1L3. This is three degenerate quadratic forms
where each pair of share a common linear factor.

The computation of a smooth scheme can be found in Listing 10.2.
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(2) Two general quadrics intersect in four points in a complete intersection by Bezout’s theorem.
The computation of a smooth scheme can be found in Listing 10.3.

(3) As described in Lemma 5.1.7, the ideal is of the form ⟨LL1, LL2, Q2L1 + L2Q1⟩. The two
quadratic forms has a common linear form L. Further the quadrics intersect in the intersection
point p of L1 and L2. The cubic intersect the two quadrics in three points on L and in p. We
therefore get four points, three on the line L.

The computation of a smooth scheme can be found in Listing 10.4.

(4) As described in Lemma 5.1.9, the ideal is of the form ⟨LL1, LL2,K1L2 +K2L1⟩. The two
quadric forms has a common line L. Further the quadrics intersect in the intersection point p of
L1 and L2. The quartic intersect the two quadrics in four points on L and in p. We therefore get
five points, four on the line L.

The computation of a smooth scheme can be found in Listing 10.5.

(5) As described in Lemma 5.1.8, the ideal is of the form ⟨L1L3+L2L4, Q1L1+Q2L2, L3Q2−
L4Q1⟩. Since there are no common components between any pair of the quadric and the cubics,
they intersect in five general points. We observe that if L2 = 0 we get Q = L1L3,K1 = Q1L1 and
K2 = L3Q2 − L4Q1. Then Q and K1 has a common line L1 and intersect in two points outside
the line. Since K2 does not contain L1, K2 intersect Q and K1 in L1 in three points and in two
points in the intersection points of L3 and Q1.
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(
L1 −L4 −Q2

L2 L3 Q1

)
intersect in five points. Since the are no common components the, the scheme consist of five
general points.

The computation of a smooth scheme can be found in Listing 10.6.

(6) A general quadric and a general cubic intersects in six points in a complete intersection
by Bezout’s theorem.

The computation of a smooth scheme can be found in Listing 10.7.

(7) Consider the matrix (
K1 Q1 L1

Q2 L2 0

)
We follow the strategy from (1). From the 2× 2 minors we get

R = K1L2 −Q1Q2

K = Q2L1

Q = L1L2

Then Bezout’s theorem gives that R and K intersect in 12 points. In other words, there are 12
points p ∈ P2 such that

det

(
K1 Q1

Q2 L2

)
p

= 0 and det

(
K1 L1

Q2 0

)
p

= 0. (5.3)

We see that six of the points are when K1 = Q2 = 0 and that these points is not on Q. We want
to show that the remaining six points is on Q. Indeed, let p′ ∈ R ∩K such that K1, Q2 ̸= 0.
Since the rows in a 2 matrix are proportional when the determinant is zero, we get in particular
that L1p′ = 0. This shows that p′ ∈ Q = L1L2.

We now show that four of the points are on the line L1 and that the two remaining points
are the intersection points of Q2 and L2. Indeed, since L1 is not a component of R all six points
cannot lie on L1. Further, since R and L1 has no common component they intersect in four
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points by Bezout’s theorem. Since both K and Q has L1 as a component, these four points are
in the intersection of R,K and Q. For the last two points, we have that Q2 and L2 intersect in
a complete intersection. To get a total of six points in R ∩K ∩Q, R has to intersect the two
points in Q2 ∩ L2.

The computation of a smooth scheme can be found in Listing 10.8.

(8) Consider the matrix (
K1 L1 L2

K2 L3 L4

)
From the 2× 2 minors we get

R1 = K1L3 −K2L1,

R2 = K1L4 −K2L2,

Q = L1L4 − L2L3.

Bezout’s theorem gives that R1 and R2 intersect in 16 points. In other words, there are 16 points
p ∈ P2 such that

det

(
K1 L1

K2 L3

)
p

= 0 and det

(
K1 L2

K2 L4

)
p

= 0. (5.4)

Wee see that 9 of these points are when K1 = K2 = 0 and that these points are not on Q. We
want to show that the remaining 7 points also lie on Q. Indeed, let p′ ∈ R1 ∩ R2 such that
K1,K2 ̸= 0. Since the rows in a 2 matrix are proportional when the determinant is zero, we get
the relations

K2p′ = λK1p′ ,

L3p′ = λL1p′ ,

L4p′ = λL2p′ ,

where λ ∈ C and we have used that K1′p ,K2′p ̸= 0. This gives that

det

(
L1 L2

L3 L4

)
p′
= det

(
L1 L2

λL1 λL2

)
p′
= 0.

This shows that p′ ∈ Q and in particular that p′ ∈ R1 ∩R2 ∩Q. Since the Q is general, we get
seven points on the conic Q.

The computation of a smooth scheme can be found in Listing 10.9.
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(9) Consider the matrix L1 L2 L3 L4

L5 L6 L7 L8

L9 L10 L11 L12

 .

Let K1 and K2 be the cubics obtained from the 3× 3 minors ofL1 L3 L4

L5 L7 L8

L9 L11 L12

 and

L2 L3 L4

L6 L7 L8

L10 L11 L12

, (5.5)

respectively. From Bezout’s theorem we have that K1 and K2 intersect in 9 points. From 5.5 we
see that three of the points are the points p ∈ P2 such that each 2× 2 minor of(

L3 L7 L11

L4 L8 L12

)
p

(5.6)

vanish. Indeed, if every 2 × 2 minor of 5.6 vanish, then the 3 × 3 minor of each matrix in 5.5
vanish when evaluated in p. We have from (1) that there exists three points that vanish on every
2× 2 minor of 5.6.

Let now K3 and K4 be the cubics obtained from the 3× 3 minor ofL1 L2 L3

L5 L6 L7

L9 L10 L11

 and

L1 L2 L4

L5 L6 L8

L9 L10 L12

, (5.7)

respectively. We see that the points three points p do not lie on K3 and K4, since the fact that
the 2× 2 minors of 5.6 vanish does not imply that the 3× 3 minors of the matrices in 5.7 vanish
when evaluated in p. We want to show that the remaining six points in the intersection of K1

and K2 also lie on K3 and K4. Indeed, let p′ ∈ K1 ∩K2 such that p′ ≠ p. Then there exists
λ, λ′, λ′′, λ′′′ ∈ C such that

L1p′ = λL5p′ + λ′L9p′ ,

L3p′ = λL7p′ + λ′L11p′ ,

L4p′ = λL8p′ + λ′L12p′ ,

L2p′ = λ′′L6p′ + λ′′′L10p′ ,

L3p′ = λ′′L7p′ + λ′′′L11p′ ,

L4p′ = λ′′L8p′ + λ′′′L12p′ .

Since we assumed p′ ̸= p we must have λ = λ′′ and λ′ = λ′′′. This gives

L1p′ = λL5p′ + λ′L9p′ ,

L3p′ = λL7p′ + λ′L11p′ ,

L4p′ = λL8p′ + λ′L12p′ ,

L2p′ = λL6p′ + λ′L10p′ .

This gives that

det

L1 L2 L3

L5 L6 L7

L9 L10 L11


p′

= det

λL5 + λ′L9 λL6 + λ′L10 λL7 + λ′L11

L5 L6 L7

L9 L10 L11


p′

= 0

and

det

L1 L2 L4

L5 L6 L8

L9 L10 L12


p′

= det

λL5 + λ′L9 λL6 + λ′L10 λL8 + λ′L12

L5 L6 L8

L9 L10 L12


p′

= 0.
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This shows that p′ lie on K3 and K4. In particular, we have that p′ ∈ K1 ∩K2 ∩K3 ∩K4. Since
there are no common components between the cubics, the six points in the intersection are in
general position.

The computation of a smooth scheme can be found in Listing 10.10.

(10) We have from Bezout’s theorem that two cubics with no common component intersect in 9
points.

The computation of a smooth scheme can be found in Listing 10.11.

(11) Consider the matrix (
Q1 Q2 Q3

L1 L2 L3

)
From the 2× 2 minors we get

K1 = Q1L2 −Q2L1,

K2 = Q1L3 −Q3L1,

K3 = Q2L3 −Q3L2.

Bezout’s theorem gives that K1 and K2 intersect in 9 points. In other words, there are 9 points
p ∈ P2 such that

det

(
Q1 Q2

L1 L2

)
p

= 0 and det

(
Q1 Q3

L1 L3

)
p

= 0. (5.8)

Two of the points are the intersection between Q1 and L1, and these two points do not lie on K3.
We want to show that the remaining 7 points also lie on K3. By same arguments as in (1), there
exists a λ ∈ C such that

L1p′ = λQ1p′ ,

L2p′ = λQ2p′ ,

L3p′ = λQ3p′ ,
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where p′ ̸= p and p ∈ K1 ∩K2. This gives that

det

(
Q2 Q3

L2 L3

)
p′
= det

(
Q2 Q3

λQ2 λQ3

)
p′
= 0.

This show that p′ ∈ K1 ∩K2 ∩K3. Since there are no common components between the cubics,
the seven points in the intersection are in general position.

The computation of a smooth scheme can be found in Listing 10.12.

(12) Consider the matrix Q1 Q2 Q3 L1

L2 L3 L4 0
L5 L6 L7 0


Let R and K1 be the two cubics obtained from the 3× 3 minors ofQ1 Q2 Q3

L2 L3 L4

L5 L6 L7

 and

Q1 Q2 L1

L2 L3 0
L5 L6 0

, (5.9)

respectively. From Bezout’s theorem we have that R and K1 intersects in 12 points. By the same
arguments as in (9), five of the points are points p ∈ P2 such that each 2× 2 minor of(

Q1 L2 L5

Q2 L3 L6

)
p

vanish. Let now K2 and K3 be the cubics obtained from the 3× 3 minors ofQ1 Q3 L1

L2 L4 0
L5 L7 0

 and

Q2 Q3 L1

L3 L4 0
L6 L7 0

, (5.10)

respectively. By the same arguments as in (9) we get that the five points p do not lie on K2 and
K3 and that the remaining seven points lie on K2 and K3.

We now show that of the seven points, four is on the line L1 and the rest are three general
points. Indeed, we get from the matrices in 5.9 and 5.10 that L1 is a common line of K1,K2 and
K3, and that the other component of each cubic is one of the 2× 2 minors of(

L2 L3 L4

L5 L6 L7

)
. (5.11)

We have from (1) that the three quadrics obtained from the 2× 2 minors of 5.11 intersect in three
general points. In summary, the quartic R intersect K1,K2,K3 on the line L1 in four points and
in the three intersection points of their quadric components.

The computation of a smooth scheme can be found in Listing 10.13.
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(13) Consider the matrix (
Q1 Q2 L1

Q3 Q4 L2

)
From the 2× 2 minors we get

R = Q1Q4 −Q2Q3

K1 = Q1L2 −Q3L1

K2 = Q2L2 −Q4L1

Bezout’s theorem gives that R and K1 intersect in 12 points, where four points are the intersection
between Q1 and Q3. Let p ∈ P2 be the eight remaining points in the intersection between R and
K1. By the same arguments as above, there exists a λ ∈ C such that

Q3p = λQ1p ,

Q4p = λQ2p ,

L2p = λL1p .

This gives that

det

(
Q2 L1

Q4 L2

)
p

= det

(
Q2 L1

λQ2 λL1

)
p

= 0.

This shows that p ∈ R ∩K1 ∩K2. Since there are no common component between R,K1 and
K2, the eight points are in general position.

If L1 = 1, then K1 and K2 will have L2 as a common component. Then Q1 and Q2 intersect
in four point in a complete intersection and R intersect K1 and K2 in these four points and in
four point on the line L2.

The computation of a smooth scheme can be found in Listing 10.14 and Listing 10.15.

(14) Consider the matrix Q1 Q2 L1 L2

Q3 Q4 L3 L4

L5 L6 0 0


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Let R1 and R2 be the quartics obtained from the 3× 3 minors ofQ1 Q2 L1

Q3 Q4 L3

L5 L6 0

 and

Q1 Q2 L2

Q3 Q4 L4

L5 L6 0

, (5.12)

respectively. From Bezout’s therem we have that R1 and R2 intersect in 16 points. By the same
arguments as in (9), eight of the points are points p ∈ P2 such that each 2× 2 minor of(

Q1 Q3 L5

Q2 Q4 L6

)
p

vanish. Let now K1 and K2 be the cubics obtained from the 3× 3 minors ofQ1 L1 L2

Q3 L3 L4

L5 0 0

 and

Q2 L1 L2

Q4 L3 L4

L6 0 0

, (5.13)

respectively. By the same arguments as in (9) we get that the eight points p do not lie on K1

and K2 and that the remaining eight points lie on K1 and K2.
We now show that of the eight points, seven lie on a conic. We see from 5.13 that K1 and

K2 has the quadric L1L4 − L2L3 as a common component. The other component is the line L5

and L6, respectively. Since the quartics R1 and R2 are irreducible, that is, they do not contain
L1L4 − L2L3, they have seven point on L1L4 − L2L3 and intersect L5 and L6 in one point.

The computation of a smooth scheme can be found in Listing 10.16.

(15) Consider the matrix Q1 L1 L2 L3

Q2 L4 L5 L6

Q3 L7 L8 L9


Let R1 and R2 the quartics obtained from the 3× 3 minors ofQ1 L1 L2

Q2 L4 L5

Q3 L7 L8

 and

Q1 L1 L3

Q2 L4 L6

Q3 L7 L9

,
respectively. From Bezout’s theorem we have that R1 and R2 intersect in 16 points. By the same
arguments as in (9), seven of the points are points p ∈ P2 such that each 2× 2 minor of(

Q1 Q2 Q3

L1 L4 L7

)
p

vanish. Let now R3 and K1 be the quartic and the cubic obtained from the 3× 3 minors ofQ1 L2 L3

Q2 L5 L6

Q3 L8 L9

 and

L1 L2 L3

L4 L5 L6

L7 L8 L9

,
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respectively. By the same arguments as in (9) we get that the seven points p do not lie on R3

or K1, and that the remaining nine points lie on R3 and K1. Since R1, R2, R3 and K1 has no
common component, the nine points are in general position.

If L6 = L9 = 0 we get

R1 = Q1(L4L8 − L5L7)−Q2(L1L8 − L2L7) +Q3(L1L5 − L2L4),

R2 = L3(Q2L7 −Q3L4),

R3 = L3(Q2L8 −Q3L5),

R4 = L3(L4L8 − L5L7),

that is, R2, R3 and K1 share the line L3. This gives nine points, four on the line L3.
If L8 = L9 = 0 we get

R1 = Q1L5L7 − L2L7 −Q3(L1L5 − L2L4),

R2 = −Q1L6L7 +Q2L6L7 +Q3(L1L6 − L3L4),

R3 = Q3(L2L6 − L3L5),

K1 = L7(L2L6 − L3L5),

that is, R3 andK1 share the quadric (L2L6−L3L5). This gives nine points, seven on (L2L6−L3L5)
and the two last in the intersection of Q3 and L7.

The computation of a smooth scheme can be found in Listing 10.17, Listing 10.18 and
Listing 10.19.

(16) Consider the matrix 
L1 L2 L3 L4 L5

L6 L7 L8 L9 L10

L11 L12 L13 L14 L15

L16 L17 L18 L19 L20

 (5.14)

Let R1 and R2 be the quartics obtained form the 4× 4 minors of
L1 L2 L3 L4

L6 L7 L8 L9

L11 L12 L13 L14

L16 L17 L18 L19

 and


L1 L2 L3 L5

L6 L7 L8 L10

L11 L12 L13 L15

L16 L17 L18 L20

,
respectively. From Bezout’s theorem we have that R1 and R2 intersect in 16 points. By the same
arguments as in (9), six of the points are points p ∈ P2 such that each 2× 2 minor ofL1 L6 L11 L16

L2 L7 L12 L17

L3 L8 L13 L18


p

vanish. By the same arguments as in (9) we get that the six points do not lie on the three quartics
obtained from the remaining 3× 3 minors of 5.14 R3, R4 or R5 and that the remaining ten points
do lie on all five quartics. Since the quartics have no common component, the ten points are in
general position.

The computation of a smooth scheme can be found in Listing 10.20. ■
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5.2 Zero-Dimensional Subideals of F⊥

In this section we describe which ideals of finite schemes Γ that appear as subideal of F⊥. First,
we prove that if IΓ is generated by some of the generators of F⊥, then a Hilbert–Burch matrix of
IΓ is a submatrix of a Buchsbaum–Eisenbud matrix of F⊥. We are specially interested in the
subideals IΓ that are generated by some of the generators of F⊥, because the minimal subideals
of F⊥ will be ones that are generated by some of the generators of F⊥. Furthermore, we prove
which submatrices of a Buchsbaum–Eisenbud matrix of F⊥ that are Hilbert–Burch matrices that
actually generates a subideal of F⊥. Lastly, we go through each of the Betti strata FB , and prove
that for each [F ] ∈ FB there exists a subideal IΓ with a Hilbert–Burch matrix such that the
degree matrix is the same for every [F ] ∈ FB. In Chapter 6, we prove that the ideals we find
actually are minimal subideal F⊥ for some F .

Let P ′ = (pij) be an n× n matrix where pij ∈ C[y0, y1, y2] is a homogeneous polynomial. Let
the degree matrix MB = (mij), where mij = deg pij .

Lemma 5.2.1. Let F⊥ ⊂ T and let Γ be a finite scheme. Let the (β − 1) × β matrix P be a
Hilbert–Burch matrix of IΓ and let the n× n matrix P ′ be a Buchsbaum–Eisenbud matrix of F⊥.
If IΓ is generated by some of the generators of F⊥, then P is a submatrix of P ′.

Proof. If IΓ ⊂ F⊥, there exists maps ϕ and ψ such that the following diagram commutes.

0 T β−1 T β IΓ 0

0 T Tn Tn F⊥ 0

ψ

P

ϕ

P ′

If the generators of IΓ is a linear combination of the generators of F⊥, ϕ : T β → Tα takes the
generators of IΓ to this linear combination in Tn. The map ψ : T β−1 → Tn does the same for
the syzygies, thus ϕ and ψ are inclusion maps. Since the columns of P ′ and P are generators
for the syzygies of F⊥ and IΓ, by Theorem 2.3.3 and Theorem 5.1.1, respectively, P has to be a
submatrix of P ′. ■

Lemma 5.2.2. Let F⊥ ⊂ T and Assume F⊥ is minimally generated by n = 2k+ 1 elements. Let
the n× n matrix P ′ be a Buchsbaum–Eisenbud matrix of F⊥. If there exists a basis such that

P ′ =



0 c01 . . . c0k c0,k+1 . . . c0,n−1

−c01 0
...

...
...

...
. . .

...
...

...
−c0k . . . . . . 0 ck,k+1 . . . ck,n−1

−c0,k+1 . . . . . . −ck,k+1 0 . . . 0
...

...
...

. . .
...

−c0,n−1 . . . . . . −ck,n−1 0 . . . 0


,

then the ideal generated by the k × k minors of the k × (k + 1)-submatrix

P =

−c0,k+1 . . . . . . −ck,k+1
...

...
−c0,n−1 . . . . . . −ck,n−1

 .

is a subideal of F⊥.
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Proof. Indeed, we observe that P ′ consists of four blocks, that is P , −(P )T , the k × k zero
block and the last (k + 1) × (k + 1) skew symmetric block. To compute the first (n − 1)th
order pfaffian we delete the first row and first column of P ′ and compute the determinant of the
remaining matrix. After deleting the first row and the first column the remaining submatrix of P ′

consists of four block, each of dimension k × k. We use the rule for computing the determinant
of a block matrix consisting of square blocks, that is detM = detAdetD − detB detC, where

M =

(
A B
C D

)
. We get the following computation.

det



0 c12 . . . c1k c1,k+1 . . . c1,n−1

−c12 0
...

...
...

...
. . .

...
...

...
−c1k . . . . . . 0 ck,k+1 . . . ck,n−1

−c1,k+1 . . . . . . −ck,k+1 0 . . . 0
...

...
...

. . .
...

−c1,n−1 . . . . . . −ck,n−1 0 . . . 0



=det


0 c12 . . . c1k

−c12 0
...

...
. . .

...
−c1k . . . . . . 0

det

0 . . . 0
...

. . .
...

0 . . . 0



− det

−c1,k+1 . . . . . . −ck,k+1
...

...
−c1,n−1 . . . . . . −ck,n−1

 det


c1,k+1 . . . c1,n−1

...
...

...
...

ck,k+1 . . . ck,n−1



=det

−c1,k+1 . . . . . . −ck,k+1
...

...
−c1,n−1 . . . . . . −ck,n−1


2

,

where we have used that detA = detAT for a general matrix A. Since the pfaffian is the square
root of the determinant, we get that the first (n− 1)th order pfaffian is the determinant of the
submatrix of P obtained by deleting the first row. This is indeed the first k× k minor of P ′. The
case for the k − 1 next (n− 1)th order pfaffians are the same. ■

Given an FB, the Buchsbaum–Eisenbud matrix of F⊥ for an [F ] ∈ FB is given by the Betti
table Bb12b13b14 . Thus, the degree matrix is the same for every Buchsbaum–Eisenbud matrix of
F⊥ for an [F ] ∈ FB. Therefore, we find for each type FB which degree matrix of Hilbert–Burch
matrices that is a submatrix of the degree matrix of a Buchsbaum–Eisenbud of F⊥ for an
[F ] ∈ FB. By Lemma 5.2.2, we then have that there exists a subideal of F⊥ generated by some
of the generators of F⊥.

Proposition 5.2.3. Let M[300] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[300]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

1 1 1
1 1 1

)
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Proof. We have

M[300] =


0 5 5 1 1
5 0 5 1 1
5 5 0 1 1
1 1 1 0 0
1 1 1 0 0


■

Proposition 5.2.4. Let M[200] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[200]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

2 2
)

Proof. We have

M[200] =

0 5 2
5 0 2
2 2 0


Then two of the generators of F⊥ are the 1× 1 minors of the submatrix. ■

Proposition 5.2.5. Let M[210] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[210]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

2 2 1
1 1 0

)
Proof. We have

M[210] =


0 5 4 2 1
5 0 4 2 1
4 4 0 1 0
2 2 1 0 0
1 1 0 0 0


■

Proposition 5.2.6. Let M[202] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[202]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

3 3 1
1 1 0

)
Proof. We have

M[202] =


0 5 3 3 1
5 0 3 3 1
3 3 0 1 0
3 3 1 0 0
1 1 0 0 0


■
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Proposition 5.2.7. Let M[120] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[120]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

2 1 1
2 1 1

)
Proof. We have

M[120] =


0 4 4 2 2
4 0 3 1 1
4 3 0 1 1
2 1 1 0 0
2 1 1 0 0


■

Proposition 5.2.8. Let M[111] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[111]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

3 2
)

Proof. We have

M[111] =

0 4 3
4 0 2
3 2 0


■

Proposition 5.2.9. Let M[112] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[112]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

3 2 1
2 1 0

)
Proof. We have

M[112] =


0 4 3 3 2
4 0 2 2 1
3 2 0 1 0
3 2 1 0 0
2 1 0 0 0


■

Proposition 5.2.10. Let M[104] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[104]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

3 1 1
2 1 1

)
Proof. We have

M[104] =


0 3 3 3 3
3 0 1 1 1
3 1 0 1 1
3 1 1 0 1
2 1 1 1 0


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By Lemma 4.2.7 and Theorem 4.2.6, there exists a row basis such that the 4× 4 submatrix
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 is of the form


0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 0

 .

We use this row basis such that M[104] is of the form
0 3 3 3 3
3 0 1 1 1
3 1 0 1 1
3 1 1 0 0
2 1 1 0 0

 .

■

Proposition 5.2.11. Let M[040] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[040]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix1 1 1 1

1 1 1 1
1 1 1 1


Proof. We have

M[040] =



0 3 3 3 1 1 1
3 0 3 3 1 1 1
3 3 0 3 1 1 1
3 3 3 0 1 1 1
1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 1 1 1 0 0 0


.

■

Proposition 5.2.12. Let M[300] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[300]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

3 3
)

Proof. We have

M[030] =

0 3 3
3 0 3
3 3 0

 .

■

Proposition 5.2.13. Let M[031] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[031]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

2 2 2
1 1 1

)
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Proof. We have

M[031] =


0 3 3 2 1
3 0 3 2 1
3 3 0 2 1
2 2 2 0 0
1 1 1 0 0

 .

■

Proposition 5.2.14. Let M[032] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[032]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix2 2 2 1

1 1 1 0
1 1 1 0


Proof. We have

M[032] =



0 3 3 2 2 1 1
3 0 3 2 2 1 1
3 3 0 2 2 1 1
2 2 2 0 1 0 0
2 2 2 1 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0


.

■

Proposition 5.2.15. Let M[023] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[023]. Then F is either of type [023a] and there is a subideal of F⊥ with a Hilbert–Burch
matrix with degree matrix (

3 3
)

or F is of type [023b] and there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(
2 2 1
2 2 1

)
or F is of type [023c] and there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix(

2 2 1
2 2 0

)
Proof. We have

M[023] =M[023a] =


0 3 2 2 2
3 0 2 2 2
2 2 0 1 1
2 2 1 0 1
2 2 1 1 0


Let K1 and K2 be the two cubics in F⊥. Assume K1 and K2 has none common component. Then
K1 and K2 intersect in a complete intersection where a corresponding Hilbert–Burch matrix has
degree matrix (

3 3
)
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Assume that the linear forms in the matrix are dependent. Then we say that F is of type [023b]
and there exists a row basis such that

M[023b] =


0 3 2 2 2
3 0 2 2 2
2 2 0 1 1
2 2 1 0 0
2 2 1 0 0

 .

Assume that the linear forms are proportional. Then we say that F is of type [023b] and there
exists a row basis such that

M[023c]


0 3 2 2 2
3 0 2 2 2
2 2 0 1 0
2 2 1 0 0
2 2 0 0 0

 ,

■

Proposition 5.2.16. Let M[024] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[024]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix2 2 1 1

2 2 1 1
1 1 0 0


Proof. We have

M[024] =



0 3 2 2 2 2 1
3 0 2 2 2 2 1
2 2 0 1 1 1 0
2 2 1 0 1 1 0
2 2 1 1 0 1 0
2 2 1 1 1 0 0
1 1 0 0 0 0 0


By Theorem 4.2.6 and Lemma 4.2.7, there exists a row basis such that the submatrix

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 is of the form


0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 0

 .

We use this row basis such that M[024] is of the form

M[024] =



0 3 2 2 2 2 1
3 0 2 2 2 2 1
2 2 0 1 1 1 0
2 2 1 0 1 1 0
2 2 1 1 0 0 0
2 2 1 1 0 0 0
1 1 0 0 0 0 0


■
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Proposition 5.2.17. Let M[016] be the degree matrix of a Buchsbaum–Eisenbud matrix of F [perp]

for an [F ] ∈ F[016]. Then F is either of type [016a] and there is a subideal of F⊥ with a
Hilbert–Burch matrix with degree matrix2 1 1 1

2 1 1 1
2 1 1 1


or F is of type [016b] and there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix2 1 1 1

2 1 1 1
2 1 0 0


or F is of type [016c] and there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix2 1 1 1

2 1 1 0
2 1 1 0


Proof. We have

M[016] =



0 2 2 2 2 2 2
2 0 1 1 1 1 1
2 1 0 1 1 1 1
2 1 1 0 1 1 1
2 1 1 1 0 1 1
2 1 1 1 1 0 1
2 1 1 1 1 1 0


By Theorem 4.4.1 there exists a row basis such that the submatrix

0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

 is of the form



0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

 .

We use this row basis such that M[016] is of the form

0 2 2 2 2 2 2
2 0 1 1 1 1 1
2 1 0 1 1 1 1
2 1 1 0 1 1 1
2 1 1 1 0 0 0
2 1 1 1 0 0 0
2 1 1 1 0 0 0


We say that F is of type [016a] if the linear forms in general are not zero. If there exists are row
basis such that two of the linear form are zero, we say that F is of type [016b] or [016c]. We
distinguish the two types in the following way:

M[016b] =



0 2 2 2 2 2 2
2 0 1 1 1 1 1
2 1 0 1 1 1 1
2 1 1 0 1 1 1
2 1 1 1 0 0 0
2 1 1 0 0 0 0
2 1 1 0 0 0 0


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M[016c] =



0 2 2 2 2 2 2
2 0 1 1 1 1 1
2 1 0 1 1 1 1
2 1 1 0 1 1 1
2 1 1 1 0 0 0
2 1 1 1 0 0 0
2 1 0 0 0 0 0


■

Proposition 5.2.18. Let M[009] be the degree matrix of a Buchsbaum–Eisenbud matrix of F⊥ for
an [F ] ∈ F[009]. Then there is a subideal of F⊥ with a Hilbert–Burch matrix with degree matrix

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


Proof. We have

M[009] =



0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 0


By Theorem 4.4.7 the exists a row basis such that M[009] can be written in the form

0 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0


■

Observe that the results above show that for every FB except for the types [030] and [023a], we
have found a unique degree matrix of a Hilbert–Burch matrix as a submatrix of the degree matrix
of a Buchsbaum–Eisenbud matrix. In the next chapter, we will prove that the Hilbert–Burch
matrix we have found indeed generated a minimal subideal of the apolar ideal of an F with the
corresponding Buchsbaum–Eisenbud matrix. For this reason we make the following definition

Definition 5.2.19.

GB = {Γ ⊂ S1 : IΓ ⊂ F⊥ is minimal for some F ∈ FB}.

For the cases [030] and [023a] case we write G[030]/[023a].
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6 | Rank and
Power Sum Representations

In this chapter we state and prove one of the main results in this thesis. For a general [F ] in
each FB, we find the rank and the VSP. The chapter is organized as follows. First, we state our
results. Then, we prove that every Betti strata FB is irreducible. Thereafter, we introduce some
theory about binary forms, before we finally prove our result.

Proposition 6.0.1. Let F be a non-degenerate ternary sextic forms. Then F belongs to one of
the 20 irreducible sets in Figure 6.1 with the given dimension. For a general form F in each set,
the table give the r(F ), VSP(F, r(F )) and the minimal configuration of points in Γ apolar to F .

Betti table B[b12b13b14] r(F ) VSP(F, r) Γ dim(FB)
[300] 3 one point three points 8
[210] 4 one point four points, three on a line 10
[200] 4 one point four points 11
[202] 5 P1 five points, four on a line 11
[120] 5 one point five points 14
[112] 6 P1 six points, four on a line 14
[111] 6 one point six points on a conic 16
[104] 7 P1 seven points on a conic 17
[040] 6 one point six points 17
[032] 7 P1 seven points, four on a line 17
[031] 7 one point seven points 20
[023c] 8 P1 eight points, four on a line 20
[024] 8 P1 eight points, seven on a conic 20
[023b] 8 one point eight points 23
[030] 9 P2 nine points in a CI 21
[016b] 9 P1 nine points, four on a line 23
[016c] 9 P1 nine points, seven on a conic 23
[023a] 9 one point nine points in a CI 24
[016a] 9 two points nine points 26
[009] 10 K3 surface ten points 27

Figure 6.1: Rank and VSP for the Betti strata

To prove that each Betti strata in Figure 6.1 is irreducible, we prove the following lemma.

Lemma 6.0.2. Fix a degree matrix MB = (mij) and let VB be the vector space of skew symmetric
n× n matrices P ′ = (pij) with homogeneous polynomials as entries, where the polynomial in the
entry pij has degree mij. Let V 0

B be the subset of VB consisting of the matrices where the ideal I ′P
generated by the (n− 1)th order pfaffians of P ′ is of codimension 3. Then V 0

B is irreducible.

Proof. Since the degree of the polynomials in the entries of P ′ ∈ VB are fixed, the total number
N of coefficients of the polynomials are also fixed. Then there is a 1− 1-correspondence between
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points in AN and matrices in VB. We prove that V 0
B is open by proving that the complement

is closed. Indeed, fix P ′ and consider I ′P . If codim I ′P < 3, then every 3-dimensional subspace
I3 of I ′P has codimension less than 3. For every I3 ⊂ IP we can find F1, F2, F3 such that
I3 = ⟨F1, F2, F3⟩. By Theorem 5.1.2, F0 = F1 = F2 = 0 if and only if Res(F0, F1, F2) = 0. Since
Res(F0, F1, F2) is a polynomial in the coefficients of Fi, and Fi are determined by the coefficients
of pij , we get one polynomial R in the coefficients of the pij for each 3-dimensional subspace
of I ′P . Then every 3-dimensional subspace has codimension less than three if and only if the
ideal spanned by the polynomials R vanish. The subset of VB where the coefficients satisfies this
condition is closed. This shows that V 0

B is open. Every open subset of AN is irreducible, thus V 0
B

is irreducible. ■

Proposition 6.0.3. The 20 Betti strata FB in the table in Figure 6.1 are irreducible.

Proof. Consider the map

ϕ : V 0
B → FB
P ′ 7→ [F ′

P ],

where F ′
P is the polynomial with the apolar ideal F ′⊥

P generated by the (n− 1)th order pfaffians
of P ′. Then map is well-defined since, by assumption, the (n−1)th order pfaffians of P ′ generates
an ideal I ′P of codimension 3, and by Theorem 2.3.3 I ′P is Artinian Gorenstein. By Definition-
Proposition 2.2.1, I ′P = F ′⊥

P for an F , and by [Eis95] F ′
P is unique up to scalar. To prove that

ϕ is surjective, observe that to every F there is a corresponding apolar ideal which is Artinian
Gorenstein by Definition-Proposition 2.2.1, and by Theorem 2.3.3 every Artinian Gorenstein ideal
of codimension 3 arises as (n− 1)th order pfaffians of a skew symmetric matrix. Since FB is the
image under a map and V 0

B is irreducible, then FB is irreducible. ■

Now, we introduce some theory about binary forms of even degree that we will use to prove
Proposition 6.0.1.

Theorem 6.0.4 (Sylvester). Let d = 2k. For a general F ∈ C[x0, x1]d, then r(F ) = k + 1 and
VSP(F, k + 1) = P1.

Definition 6.0.5. We say that a scheme Γ is apolar to F if IΓ ⊂ F⊥.

Lemma 6.0.6. Let F ∈ C[x0, x1, x2]6. Assume Γ is apolar to an F and that Γ is contained in a
curve C.

1. If C is a line L, then ⟨v6(C)⟩ = P6 and F can be considered as a general binary sextic form.

2. If C is a conic Q, then ⟨v6(C)⟩ = P12 and F can be considered as a general binary form of degree
12.

Proof. (1) By Lemma 2.1.5, [F ] ∈ ⟨v6(Γ)⟩ ⊂ ⟨v6(L)⟩ ⊂ ⟨v6(P2)⟩. Let HG = {[F ] ∈ P(S6) :
G(F ) = 0}. Then ⟨v6(L)⟩ =

⋂
HG⊃v6(L)HG. Further, we have that v6(L) ⊂ HG if and only if

G ∈ IL,6. The dimension of the space of ternary quintic forms is 21, thus IL,6 is 21-dimensional.
Since HG ⊂ P27, we have that ⟨v6(L)⟩ =

⋂
HG⊃v6(L)HG = P6. A point in P6 can be considered

as a binary sextic, that is

(a0 : a1 : a2 : a3 : a4 : a5)←→ a0x
6
0 + a1x

5
0x1 + a2x

4
0x

2
1 + a3x

3
0x

3
1 + a4x

2
0x

4
1 + a5x0x

5
1 + a6x

6
1.

Since [F ] ∈ ⟨v6(C)⟩, F can be considered as a general binary sextic form.
(2) By Lemma 2.1.5, [F ] ∈ ⟨v6(Γ)⟩ ⊂ ⟨v6(Q)⟩ ⊂ ⟨v6(P2)⟩. Let HG = {[F ] ∈ P(S6) : G(F ) =

0}. Then ⟨v6(Q)⟩ =
⋂
HG⊃v6(Q)HG. Further, we have that v6(Q) ⊂ HG if and only if G ∈ IQ,6.

The dimension of the space of ternary quartic forms is 15, thus IQ,6 is 15-dimensional. Since
HG ⊂ P27, we have that ⟨v6(Q)⟩ =

⋂
HG⊃v6(Q)HG = P12. In the same way as above a point in
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P12 can be considered as a general binary polynomial of degree 12. Since [F ] ∈ ⟨v6(Q)⟩, F can be
considered as a binary polynomial of degree 12. ■

Lemma 6.0.7. Let F ∈ C[x0, x1, x2]6. Assume IΓ ⊂ F⊥ is the ideal of a scheme Γ which is
contained in a curve C.

1. If C is a line L containing a scheme of length 4 and F is not apolar to a scheme of length less
than 4, then r(F ) = 4 and VSP(F, 4) = P1.

2. If C is a conic Q containing a scheme of length 7 and F is not apolar to a scheme of length less
than 7, then r(F ) = 7 and VSP(F, 7) = P1.

Proof. (1) By Lemma 6.0.6, F can be considered as a binary form of degree 6. By Theorem 6.0.4,
and since F is not apolar to a scheme of length less than 4, r(F ) = 4 and VSP(F, 4) = P1.

(2) By Lemma 6.0.6, F can be considered as a binary form of degree 12. By Theorem 6.0.4,
and since F is not apolar to a scheme of length less than 7, r(F ) = 7 and VSP(F, 7) = P1. ■

Now, give lemma about of the rank of a ternary sextic form F . Thereafter, we prove
Proposition 6.0.1.

Lemma 6.0.8. Let b12 and b13 be equal the number of, respectively, quadratic and cubic generators
of F⊥ for a ternary sextic form F . Let r(F ) be the rank of F . Then r(F ) ≥ 6 − b12 and, if
b12 = 0, then r(F ) ≥ 10− b13.

Proof. Assume for contradiction that r(F ) < 6− b12. Then there exists a IΓ ⊂ F⊥ such that Γ
has length r(F ). Then the dimension of the space of quadratic forms in IΓ is at least 6− r(F ).
Since 6− r(F ) > b12 we have a contradiction. The proof for the second inequality is similar. ■

Proof of Proposition 6.0.1. We go through each type:

[300] By Proposition 5.2.3 there exists a subideal IΓ of F⊥ which is the ideal of a scheme of
length three. For a general F , the scheme consists of three points, so r(F ) ≤ 3. Since the space
of quadratic forms in F⊥ is 3-dimensional, r(F ) ≥ 3 by Lemma 6.0.8, thus r(F ) = 3. The ideal
IΓ is generated by a 3-dimensional space of quadratic forms, that is the whole space of quadratic
forms in F⊥, hence the VSP(F, 3) is one point. The dimension of the family of 3-tuples in P2 is
6, by Lemma 5.1.14. Three points in P27 span a P2, so the dimension of F[300] is 6 + 2 = 8.

[210] By Proposition 5.2.5 there exists a subideal IΓ of F⊥ which is the ideal of a scheme of
length four, with a subscheme of length three contained in a line. For a general F , the scheme
consists of four points, thus r(F ) ≤ 4. Since the space of quadratic forms in F⊥ is 2-dimensional,
r(F ) ≥ 4 by Lemma 6.0.8, thus r(F ) = 4. The ideal IΓ is generated by a 2-dimensional space of
quadratic forms and a 1-dimensional space of cubic forms, that is the whole space of quadratic
forms and cubic forms in F⊥, hence the VSP(F, 4) is one point. The dimension of the family
of 4-tuples, three on a line in P2 is 7, by Lemma 5.1.14. Each 4-tuple spans a P3 in P27, so the
dimension of F[210] is 7 + 3 = 10.

[200] By Proposition 5.2.4 there exists a subideal IΓ of F⊥ which is the ideal of a scheme of
length four. For a general F , the scheme consists of four points, so r(F ) ≤ 4. Since the space of
quadratic forms in F⊥ is 2-dimensional, r(F ) ≥ 4 by Lemma 6.0.8, thus r(F ) = 4. The ideal IΓ
is generated by a 2-dimensional space of quadratic forms, that is the whole space of quadratic
forms in F⊥, hence the VSP(F, 4) is one point. The dimension of the family of 4-tuples in P2 is
8, by Lemma 5.1.14. Four points in P27 span a P3, thus the dimension of F[200] is 8 + 3 = 11.

[202] By Proposition 5.2.6 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length five, with a subscheme of length four contained in a line. For a general F , the scheme
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consists of five points, so r(F ) ≤ 5. By comparing the Betti tables for a the ideal of a scheme
of length four given in Corollary 5.1.11 with the Betti table for [202] we see that there are no
subideals of F⊥ of a scheme of length four. Thus, r(F ) = 5.

We claim that VSP(F, 5) = P1. Indeed, let L be the line containing the subscheme of Γ of
length four and Γ1 the remaining point. We have that ⟨v6(L), v6(Γ1)⟩ = P7 and further that
⟨v6(L)⟩ = P6 and v6(Γ1) = [F1]. Consider ⟨[F1], [F ]⟩ = P1. Since [F ], [F1] ∈ ⟨v6(L), v6(Γ1)⟩ and
⟨v6(L)⟩ ⊂ ⟨v6(L), v6(Γ1)⟩), dim(⟨[F1], [F ]⟩ ∩ ⟨v6(L)⟩) = 0. Let

[F2] = ⟨v6(L)⟩ ∩ ⟨[F1], [F ]⟩.

Of this reason, [F2] ∈ ⟨[F ], [F1]⟩ and [F ] ∈ ⟨[F1], [F2]⟩. This shows that there exists a unique
decomposition F = F1+F2, where F2 is apolar to L and F1 is apolar to a point. By Lemma 6.0.7,
r(F2) = 4 and VSP(F2, 4) = P1. Since VSP(F1, 1) is one point, we get that VSP(F, 5) = P1.

The dimension of the family of 5-tuples, four on a line in P2 is 8, by Lemma 5.1.14. Each
5-tuple in P27 span a P4. Since VSP(F, 5) = P1, the dimension of F[202] is 8 + 4− 1 = 11.

[120] By Proposition 5.2.7 there exists a subideal IΓ of F⊥ which is the ideal of a scheme of
length five. For a general F , the scheme consists of five points, so r(F ) ≤ 5. Since the space of
quadratic forms in F⊥ is 1-dimensional, r(F ) ≥ 5 by Lemma 6.0.8, thus r(F ) = 5. The ideal IΓ
is generated by a 1-dimensional space of quadratic forms and a one 2-dimensional space of cubic
forms, that is the whole space of quadratic forms and cubic forms in F⊥, hence the VSP(F, 5) is
one point. The dimension of the family of 5-tuples P2 is 10, by Lemma 5.1.14. Five points in P27

span a P4, so the dimension of F[120] is 10 + 4 = 14.

[111] By Proposition 5.2.8 there exists a subideal IΓ of F⊥ which is the ideal of a scheme of
length six contained in a conic. For a general F , the scheme consists of six points, so r(F ) ≤ 6.
By comparing the Betti tables for a the ideal of a scheme of length five given in Corollary 5.1.13
with the Betti table for [111] we see that there are no subideals of F⊥ of a scheme of length five.
Thus, r(F ) = 6. The ideal IΓ is generated by a 1-dimensional space of quadratic forms and a one
1-dimensional space of cubic forms, that is the whole space of quadratic forms and cubic forms in
F⊥, hence the VSP(F, 6) is one point. The dimension of the family of 6-tuples P2 on a conic is
11, by Lemma 5.1.14. Each 6-tuple in P27 span a P5, so the dimension of F[111] is 11 + 5 = 16.

[112] By Proposition 5.2.9 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length six, with a subscheme of length four contained in a line. For a general F , the scheme
consists of six points, so r(F ) ≤ 6. By comparing the Betti tables for a the ideal of a scheme
of length five given in Corollary 5.1.13 with the Betti table for [112] we see that there are no
subideals of F⊥ of a scheme of length five. Thus, r(F ) = 6.

We claim that VSP(F, 6) = P1. Indeed, let Γ4 be the subscheme of Γ for length four contained
in a line and Γ2 the scheme of the remaining two points. We have that ⟨v6(Γ)⟩ = P5 and further
that ⟨v6(Γ4)⟩ = P3 and v6(Γ2) = P1. Consider ⟨v6(Γ2), [F ]⟩ = P2. Since [F ], v6(Γ2) ∈ ⟨v6(Γ)⟩ and
⟨v6(Γ4⟩ ⊂ ⟨v6(Γ)⟩), dim(⟨v6(Γ2), [F ]⟩ ∩ ⟨v6(Γ4)⟩) = 0. Let

[F2] = ⟨v6(Γ4)⟩ ∩ ⟨v6(Γ2), [F ]⟩.

By the same arguments, there exists an

[F1] = ⟨v6(Γ4), [F ]⟩ ∩ ⟨v6(Γ2)⟩.

Of this reason, [F1], [F2], [F ] ∈ ⟨v6(Γ4), v6(Γ2)⟩ = P1 so [F1], [F2], [F ] are colinear. As a
consequence, [F ] ∈ ⟨[F1], [F2]⟩. This shows that there exists a decomposition F = F1 + F2, where
F2 is apolar to a line and F1 is apolar to two points. By Lemma 6.0.7 VSP(F2, 4) = P1. Since
VSP(F1, 2) is one point, we get that VSP(F, 5) = P1. The dimension of the family of 6-tuples,
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four on a line in P2 is 10, by Lemma 5.1.14. Each 6-tuple in P27 span a P5. Since VSP(F, 6) = P1,
the dimension of F[112] is 10 + 5− 1 = 14.

[104] By Proposition 5.2.10 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length seven contained in a conic. For a general F , the scheme consists of seven points, so
r(F ) ≤ 7. By comparing the Betti tables for a the ideal of a scheme of length five given in
Corollary 5.1.13 with the Betti table for [112] we see that there are no subideals of F⊥ of a scheme
of length five. There are no subscheme of length six either. Indeed, assume for contradiction the
IΓ is an ideal of a scheme of length six. If the quadric in F⊥ is in IΓ then we are in the cases
G(6) and G(8), but then IΓ contained one cubic, which is a contradiction since there are no cubic
forms in F⊥. If the quadric is not in IΓ, then there are at least two cubic forms in IΓ, which also
is a contradiction. Thus, r(F ) = 7. By the same arguments as in [112], VSP(F, 7) = P1. The
dimension of the family of 7-tuples on a conic in P2 is 12, by Lemma 5.1.14. Each 7-tuple in P27

span a P6. Since VSP(F, 7) = P1, the dimension of F[104] is 12 + 6− 1 = 17.

[040] By Proposition 5.2.11 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length six. For a general F , the scheme consists of six points, so r(F ) ≤ 6. Since the space
of cubic forms in F⊥ is 4-dimensional, r(F ) ≥ 6 by Lemma 6.0.8, thus r(F ) = 6. The ideal IΓ
is generated by a 4-dimensional space of cubic forms, that is the whole space of cubic forms
in F⊥, hence the VSP(F, 6) is one point. The dimension of the family of 6-tuples P2 is 12, by
Lemma 5.1.14. Six points in P27 span a P5, so the dimension of F[040] is 12 + 5 = 17.

[032] By Proposition 5.2.14 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length seven, with a subscheme of length four contained in a line. For a general F , the
scheme consists of seven points, so r(F ) ≤ 7. Since the space of cubic forms in F⊥ is 3-
dimensional, r(F ) ≥ 7 by Lemma 6.0.8, thus r(F ) = 7. By the same arguments as is [112], we
have that VSP(F, 7) = P1. The dimension of the family of 7-tuples, four on a line in P2 is 12, by
Lemma 5.1.14. Each 7-tuple in P27 span a P6. Since VSP(F, 7) = P1, the dimension of F[032] is
12 + 6− 1 = 17.

[031] By Proposition 5.2.11 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length seven. For a general F , the scheme consists of seven points, so r(F ) ≤ 7. Since the
space of cubic forms in F⊥ is 3-dimensional, r(F ) ≥ 7 by Lemma 6.0.8, thus r(F ) = 7. The
ideal IΓ is generated a 3-dimensional space of cubic forms, that is the whole space of cubic forms
in F⊥, hence the VSP(F, 7) is one point. The dimension of the family of 7-tuples P2 is 14, by
Lemma 5.1.14. Seven points in P27 span a P6, so the dimension of F[031] is 14 + 6 = 20.

[023c] By Proposition 5.2.15 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length eight, with a subscheme of length four contained in a line. For a general F , the scheme
consists of eight points, so r(F ) ≤ 8. Since the space of cubic forms in F⊥ is 2-dimensional,
r(F ) ≥ 8 by Lemma 6.0.8, thus r(F ) = 8. By the same arguments as is [112], we have that
VSP(F, 8) = P1. The dimension of the family of 8-tuples, four on a line in P2 is 14, by
Lemma 5.1.14. Each 8-tuple in P27 span a P7. Since VSP(F, 8) = P1, the dimension of F[023c] is
14 + 7− 1 = 20.

[024] By Proposition 5.2.16 there exists a subideal IΓ of F⊥ which is the ideal of a scheme of
length eight, with a subscheme of length seven contained in a conic. For a general F , the scheme
consists of eight points, so r(F ) ≤ 8. Since the space of cubic forms in F⊥ is 2-dimensional,
r(F ) ≥ 8 by Lemma 6.0.8, thus r(F ) = 8. By the same arguments as is [112], we have that
VSP(F, 8) = P1. The dimension of the family of 8-tuples, seven on a conic in P2 is 14, by
Lemma 5.1.14. Each 8-tuple in P27 span a P7. Since VSP(F, 8) = P1, the dimension of F[024] is
14 + 7− 1 = 20.
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[023b] By Proposition 5.2.15 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length eight. For a general F , the scheme consists of eight points, so r(F ) ≤ 8. Since the space
of cubic forms in F⊥ is 2-dimensional, r(F ) ≥ 8 by Lemma 6.0.8, thus r(F ) = 8. We see from the
degree matrix in Proposition 5.2.15 that there are only one row basis such that a Hilbert–Burch
matrix of IΓ is a submatrix of M[023b], hence the VSP(F, 8) is one point. The dimension of the
family of 8-tuples P2 is 16, by Lemma 5.1.14. Eight points in P27 span a P7, so the dimension of
F[023b] is 16 + 7 = 23.

[030] By Proposition 5.2.12 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length nine. For a general F , the scheme consists of nine points, so r(F ) ≤ 9. We claim that
r(F ) = 0. Indeed, F⊥ is generated by a 3-dimension space of cubics forms, with no linear or
quadratic syzygies. Since F⊥ is of codimension 3, the only subideals of finite scheme are therefore
generated by a 2-dimensional space of cubic forms that intersect in a CI. Thus, r(F ) = 9. Since
the dimension of 2-dimensional subspaces of a 3-dimensional space is 2, VSP(F, 9) = P2.

An [F ] ∈ FB is determined by the 3-dimensional space of cubic forms in F⊥. Therefore, the
dimension of FB is equal to the dimension of 3-dimensional subspaces of the 10-dimensional space
of cubic forms, or dimG(3, 10). We have that dimG(3, 10) = 37̇ = 21, thus the dimension of
F[030] is 21.

[016b] By Proposition 5.2.17 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length nine, with a subscheme of length four contained in a line. For a general F , the scheme
consists of nine points, so r(F ) ≤ 9. Since the space of cubic forms in F⊥ is 1-dimensional, r(F ) ≥ 9
by Lemma 6.0.8, thus r(F ) = 9. By the same arguments as in [112], we have that VSP(F, 9) = P1.
The dimension of the family of 9-tuples, four on a line in P2 is 16, by Lemma 5.1.14. Each 9-tuple
in P27 span a P8. Since VSP(F, 9) = P1, the dimension of F[024] is 16 + 8− 1 = 23.

[016c] By Proposition 5.2.17 there exists a subideal IΓ of F⊥ which is the ideal of a scheme of
length nine, with a subscheme of length seven contained in a conic. For a general F , the scheme
consists of nine points, so r(F ) ≤ 9. Since the space of cubic forms in F⊥ is 1-dimensional,
r(F ) ≥ 9 by Lemma 6.0.8, thus r(F ) = 9. By the same arguments as in [112], we have that
VSP(F, 9) = P1. The dimension of the family of 9-tuples, seven on a conic in P2 is 16, by
Lemma 5.1.14. Each 9-tuple in P27 span a P8. Since VSP(F, 9) = P1, the dimension of F[024] is
16 + 8− 1 = 23.

[023a] By Proposition 5.2.15 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length nine. For a general F , the scheme consists of nine points, so r(F ) ≤ 9. If the rank is
less than 9, then we are in one of the cases [023b] and [023c]. Since we have assumed that we are
in case [023a], r(F ) = 9. The ideal IΓ is generated a 2-dimensional space of cubic forms, that is
the whole space of cubic forms in F⊥, hence the VSP(F, 9) is one point. The dimension of the
family of 9-tuples P2 in a complete intersection is 16, by Lemma 5.1.14. Nine points in P27 span
a P8, so the dimension of F[023a] is 16 + 8 = 24.

[016a] By Proposition 5.2.17 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length nine. For a general F , the scheme consists of nine points, so r(F ) ≤ 9. Since the
space of cubic forms in F⊥ is 1-dimensional, r(F ) ≥ 9 by Lemma 6.0.8, thus r(F ) = 9. From
Theorem 4.4.1 we have that there exists two row bases such that we get the zero block, hence
VSP(F, 9) is two points. The dimension of the family of 9-tuples P2 is 18, by Lemma 5.1.14.
Nine points in P27 span a P8, so the dimension of F[016] is 18 + 8 = 26.

[009] By Proposition 5.2.17 there exists a subideal IΓ of F⊥ which is the ideal of a scheme
of length nine. For a general F , the scheme consists of nine points, so r(F ) ≤ 9. Since the
space of cubic forms in F⊥ is 1-dimensional, r(F ) ≥ 9 by Lemma 6.0.8, thus r(F ) = 9. From
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Theorem 4.4.7 we have that there exists a surface of row bases such that we get the zero block,
hence VSP(F, 10) is a surface. By [Muk09], the surface is a K3 surface. The dimension of the
family of 10-tuples P2 is 20, by Lemma 5.1.14. Ten points in P27 span a P9. Since VSP(F, 10) is
a surface, the dimension of F[009] is 20 + 9− 2 = 27. ■
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7 | Stratification

In this chapter we give a stratification P27 = P(S6) in terms of the Betti strata

FB = {F ∈ P(S6) : S/F⊥ has Betti table B}.

In other words, P27 =
⊔
FB and that FB =

⊔
F ′⊂F FB′ . Our approach is first, in Section 7.1, to

investigate two relations between the

GB = {Γ ⊂ S1 : IΓ ⊂ F⊥ is minimal for some F ∈ FB}.

The first is a closure relation between the GB consisting of schemes of equal length, and the
second is a containment relation between the GB consisting of schemes of different length. Then,
in Section 7.2, we use the two relations between the GB to prove relations between most of
the FB. For the remaining relations between the FB and prove the remaining relations with a
direct argument. We also prove some non-containments. Thereafter, we include some geometric
description of the relation between some of the Betti strata. Lastly, in Section 7.3, we include
the Betti strata such that there is a linear form in F⊥ and explain how these strata fit into our
stratification.

7.1 Relations Between the GBs

7.1.1 Closure Relations Between some of the GBs

In this section we will consider a closure relation between schemes of equal length. We will do
this by proving when GB ⊂ G′B , by proving the existence of a deformation of subschemes from G′B
to GB. X =

⋃
(Γt, t) is a deformation of X0 = (Γ0, 0).

Let X ⊂ P2 × A1 and f : X → A1. We call f a deformation if f−1(t) has the same Hilbert
polynomial for every t ∈ A1. We are now ready to state the main result of this section.

Proposition 7.1.1. We have the following closure relations:

1. G[210] (four points, three on a line) ⊂ G[200] (four general points),

2. G[111] (six points on a conic) ⊂ G[040] (six general points),

3. G[023a/030] (nine points in CI) ⊂ G[016a] (nine general points),

4. G[202] (five points, four in a line) ⊂ G[120] (five general points) ,

5. G[112] (six points, four on a line) ⊂ G[040] (six general points),

6. G[112] (six points, four on a line) ⊂ G[111] (six points on a conic),

7. G[032] (seven points, four on a line) ⊂ G[031] (seven general points),

8. G[104] (seven points on a conic) ⊂ G[031] (seven general points),

9. G[024] (eight points, seven on a conic) ⊂ G[023b] (eight general points),

89



7.1. Relations Between the GBs

10. G[023c] (eight points, four on a line) ⊂ G[023b] (eight general points),

11. G[016c] (nine points, seven on a conic) ⊂ G[016a] (nine general points),

12. G[026b] (nine points, four on a line) ⊂ G[016a] (nine general points).

Proof. Since each GB is irreducible, we can show the relation for a general element. We will give
an explicit construction for (1) and (4). The remaining relations can be shown in a similar way.

(1) Let Γ ∈ G[210]. Without loss of generality, assume that Γ = {p0, p1, p2,3 }, where

p0 = (1 : 1 : 0),

p1 = (1 : 0 : 0),

p2 = (0 : 1 : 0),

p3 = (0 : 0 : 1).

That is, Γ consists of four point, three contained in the line x2 = 0. Let further Γ0 = (p1, p2, p3).
Let X0 = ({p1, p2, p3, p0}, 0) and Xt = ({p1, p2, p3, pt}, t), where pt = (1 : 1 : t). Then f : X → A1

is a deformation of X0 and Γ is the limit of Γt = Γ⊕ pt. Since every Γt is in G[200], we are done.
For the next two inclusion, we do as above. That is, let I0 be the ideal of a scheme in Γ0 ∈ G

and let Γ be a subscheme of Γ0 of length d− 1, where the points in Γ are general. Let p0 be the
remaining point in Γ0. Let It be a family of ideals of schemes Γt ∈ G′, where Γt = Γ⊕ pt such
that pt has p0 as its limit.

(4) Let Γ = (p0, p0′ , p1, p2, p3), where

p0 = (1 : 1 : 0),

p0′ = (1 : 2 : 0),

p1 = (1 : 0 : 0),

p2 = (0 : 1 : 0),

p3 = (0 : 0 : 1)

That is, Γ consists of five points, four contained in the line x2 = 0, thus Γ ∈ G[202]. Let
further Γ0 = (p1, p2, p3). Let X0 = ({p1, p2, p3, p0, p0′}, 0) and Xt = ({p1, p2, p3, pt, pt′}, t), where
pt = (1 : 1 : t) and pt′ = (1 : 2 : t). Then f : P2 × A1 → A1 is a deformation of Xt to X0 and Γ is
the limit of Γt = Γ⊕ pt ⊕ pt′ . Since every Γt is in G[120], we are done.

For the remaining inclusion, we do as in above. That is, let I0 be the ideal of a scheme in
Γ0 ∈ G and let Γ be a subscheme of Γ0 of length d− 2, where the points in Γ are general. Let
p0 and p0′ be the remaining points in Γ0. Let It be a family of ideals of schemes Γt ∈ G′, where
Γt = Γ⊕ pt ⊕ pt′ such that pt has p0 as its limit and pt′ has p0′ as its limit. ■

7.1.2 Containment Relations Between some of the GBs

In this section we will prove a containment relation between GB consisting of schemes of different
length.

Definition 7.1.2. We say that GB1 ⊏ GB2 if for a general Γ2 ∈ GB2 , there exists a Γ1 ⊂ Γ2 such
that Γ1 ∈ GB1 .

We observe that if GB1 ⊏ GB2 then for each Γ1 ∈ GB1 , we can find a Γ2 ∈ GB2 such that
Γ1 ⊂ Γ2 by adding an appropriate point p to Γ1. We show the strategy in an example.

We are now ready to state the first proposition in this section.

Proposition 7.1.3. We have the following relations of the kind ⊏:

1. G[200] (four points) ⊏ G[120] (five points) ⊏ G[040] (six points) ⊏ G[031] (seven points) ⊏ G[023b]
(eight points) ⊏ G[016a] (nine points) ⊏ G[009] (ten points)

2. G[104] (seven points on a conic) ⊏ G[024] (eight points, seven on a conic) ⊏ G[016c] (nine points,
seven on a conic)
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3. G[300] (three points) ⊏ G[210] (four points, three on a line) ⊏ G[202] (five points, four on a line)
⊏ G[112] (six points, four on a line) ⊏ G[032] (seven points, four on a line) ⊏ G[023c] (eight points,
four on a line) ⊏ G[016b] (nine points, four on a line)

4. G[120] (five general points) ⊏ G[111] (six points on a conic) ⊏ G[104] (seven points on a conic)

5. G[023b] (eight points) ⊏ G[016a/030] (nine points in CI)

Proof. Since each GB is irreducible, we can show the relation for a general element.
For a given Γ ∈ GB we can choose a point p ∈ P2 such that Γ ⊕ p ∈ GB′ . For the first and

second case, we add a general point. For the third case we add a point on a line contained in the
scheme, the forth a point on a conic contained in the scheme and the fifth a point on two cubics
contained in the scheme. ■

The relation from Proposition 7.1.1 and Proposition 7.1.3 are depicted in Figure 7.1. A dashed
arrow represents a containment relation ⊏ and a regular arrow represents a closure relation.
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[009] Ten general
points dim20

[016a] Nine general
points, dim18

[023a/030]
Nine points
in CI, dim16

[016b] Nine
points, four on
a line, dim16

[023b] Eight
general

points, dim16

[023c] Eight
points, four on
a line, dim14

[031] Seven general
points, dim14

[040] Six general
points, dim12

[120] Five general
points, dim10

[200] Four general
points, dim8

[300] Three general
points, dim6

[016c] Nine
points, seven on
a conic, dim16

[024] Eight
points, seven on
a conic, dim14

[104] Seven points
on a conic dim12

[111] Six points
on a conic dim11

[032] Seven
points, four on
a line dim12

[112] Six points,
four on a

line dim10

[202] Five
points, four

on a line dim8

[210] Four
points, three

on a line dim7

Figure 7.1: Relations between the GBs. A dashed arrow represents a containment relation ⊏ and
a regular arrow represents a closure relation

92



7.2. Relations between the FBs

7.2 Relations between the FBs

In this section we will prove the closure relations between the FB . First, we prove how we can use
the relations between the GB to get relations between most of the FB. Since G[023a/030] consist
of schemes such that IΓ is minimal for either F[023a] or F[030], we need additional arguments
to prove the relation between F[023a] and F[030]. Thereafter, we prove the remaining relations
using the concept of catalecticants and secant varieties. Lastly, we prove some non-containments.
Recall that we say that Γ is minimal for F if the length of Γ is equal to the Cactus rank of F .

Now, we are ready to explain how we use the relations between the GBs to the FBs.

Lemma 7.2.1. Let FB be one of the irreducible Betti strata. Let F ∈ FB be general assume Γ
minimal for F . Then ⟨v6(Γ)⟩ ⊂ FB.

Proof. Let FΓ = {F ∈ P(S6) : Γ is minimal for F}. We obviously have FΓ ⊂ ⟨v6(Γ)⟩, and we
claim that FΓ = ⟨v6(Γ)⟩. Indeed, let n+ 1 be the cardinality of points in Γ. Since Γ is minimal
for an F , then ⟨v6(Γ)⟩ = Pn. Further, we have that FΓ is open in ⟨v6(Γ)⟩, hence FΓ = ⟨v6(Γ)⟩.
To complete the proof, observe that FΓ ⊂ FB. Thus ⟨v6(Γ)⟩ = FΓ ⊂ FB. ■

Proposition 7.2.2. Assume Fi ∈ FBi is apolar to a scheme Γi ∈ GBi and that Γi is minimal for
Fi for i ∈ {1, 2}. If GB1 ⊏ GB2, then FB1 ⊂ FB2.

Proof. Since the Betti strata FB are irreducible we only need to prove the result for a general
F . Let F1 ∈ FB1 be general. By assumption, there exists an Γ2 ∈ GB2 such that Γ1 ⊂ Γ2. Since
F1 ∈ ⟨v6(Γ1)⟩ ⊂ ⟨v6(Γ2)⟩ ⊂ FB2 by Lemma 7.2.1, we are done. ■

Proposition 7.2.3. Assume Fi ∈ FBi is apolar to a scheme Γi ∈ GBi and that Γi is minimal for
Fi for i ∈ {1, 2}. If GB1 ⊂ GB2, then FB1 ⊂ FB2.

Proof. Since the Betti strata FB are irreducible we only need to prove the result for a general F .
Let F1 ∈ FB1 be general. By assumption there exists (Γt2)t∈A1−0 such that Γ0

2 = Γ1 ∈ GB1 is the
limit and Γt2 ∈ GB2 . Then there exists Ft such that Γt2 i apolar to Ft and Ft ∈ ⟨v6(Γt2)⟩ ⊂ FB2 by
Lemma 7.2.1. Since F1 ∈ ⟨v6(Γ1)⟩, F1 is the limit of (Ft)t ∈A1−0 and F1 ∈ FB2 . ■

By using Proposition 7.1.1 together with Proposition 7.2.3 and Proposition 7.1.3 together
with Proposition 7.2.2, we get the following

Proposition 7.2.4. There are 20 irreducible Betti strata of non-degenerate ternary quartic forms
and they satisfy the following closure relations:

1. F[210] (four points, three on a line) ⊂ F[200] (four general points),

2. F[111] (six points on a conic) ⊂ F[040] (six general points),

3. F[023a/030] (nine points in CI) ⊂ F[016a] (nine general points),

4. F[202] (five points, four in a line) ⊂ F[120] (five general points) ,

5. F[112] (six points, four on a line) ⊂ F[040] (six general points),

6. G[112] (six points, four on a line) ⊂ G[111] (six points on a conic),

7. F[032] (seven points, four on a line) ⊂ F[031] (seven general points),

8. F[104] (seven points on a conic) ⊂ F[031] (seven general points),

9. F[024] (eight points, seven on a conic) ⊂ F[023b] (eight general points),

10. F[023c] (eight points, four on a line) ⊂ F[023b] (eight general points),

11. F[016c] (nine points, seven on a conic) ⊂ F[016a] (nine general points),

12. F[026b] (nine points, four on a line) ⊂ F[016a] (nine general points).
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13. F[200] (four points) ⊂ F[120] (five points) ⊂ F[040] (six points) ⊂ F[031] (seven points) ⊂ F[023b]

(eight points) ⊂ F[016a] (nine points) ⊂ F[009] (ten points)

14. F[104] (seven points on a conic) ⊂ F[024] (eight points, seven on a conic) ⊂ F[016c] (nine points,
seven on a conic)

15. F[300] (three points) ⊂ F[210] (four points, three on a line) ⊂ F[202] (five points, four on a line)
⊂ F[112] (six points, four on a line) ⊂ F[032] (seven points, four on a line) ⊂ F[023c] (eight points,
four on a line) ⊂ F[016b] (nine points, four on a line)

16. F[120] (five general points) ⊂ F[111] (six points on a conic) ⊂ F[104] (seven points on a conic)

17. F[023b] (eight points) ⊂ F[016a/030] (nine points in CI)

Proposition 7.2.5. F[031] ⊂ F[030] ⊂ F[023a]

Proof. We let B1 = [030] and B2 = [023a]. Let Γ ∈ G[030]/[023a] be general. Then there exists
F1 ∈ FB1 and F2 ∈ FB2 such that Γ is minimal for F1 and F2. Let FΓi = {F ∈ ⟨v6(Γ)⟩ : F ∈ FBi}
for i ∈ {1, 2}. We claim that FΓ2 = ⟨v6(Γ)⟩. Indeed, since F⊥ for F ∈ FB1 is generated by
three cubic forms, we have that each 3-dimensional subspace of the vector space of cubic forms
containing IΓ gives a point F ∈ FΓ1 . Since the space of 3-dimensional subspaces of the vector
space of cubic forms is a P7, FΓ1 = P7. Further, we have that FΓ2 is open in ⟨v6(Γ)⟩, hence
FΓ2 = ⟨v6(Γ)⟩. To complete the proof, observe that FΓ1 ⊂ ⟨v6(Γ)⟩ and FΓ2 ⊂ FB2 . Thus,
F1 ∈ FΓ1 ⊂ FΓ2 ⊂ FB2 . ■

Lemma 7.2.6. Let hij be the dimension of the space of forms of degree j in F⊥
i for Fi ∈ Fi. If

F1 ⊂ F2, then h1j ≥ h2j.

Proof. Let F ∈ F1 be the limit of (Ft)t∈A−0 where Ft ∈ F2. Since F⊥
t contains a h2j-dimensional

space of forms of degree j, then also F⊥
0 contains a h2j-dimensional space of forms of degree j.

This shows that h1j ≥ h2j for every j. ■

Proposition 7.2.7. We have the following non-containments

1. F[024] ⊈ F[030]

2. F[023c] ⊈ F[030]

3. F[016c] ⊈ F[023a]

4. F[016b] ⊈ F[023a]

5. F[030] ⊈ F[016c]

6. F[030] ⊈ F[016b]

Proof. The first four cases follows directly from Lemma 7.2.6. For case (5), observe that a general
F ∈ F[016c] is apolar to a scheme of length nine with a subscheme of length seven contained
in a conic. This must also be the case for an F ∈ F[016c]. Since an F ∈ F[030] is apolar to a
scheme which is a complete intersection of two cubics, and there are no subscheme of seven points
contained in a conic in the complete intersection of two cubics, F[030] ⊈ F[016c]. For case (6),
observe that, by similar arguments, an F ∈ F[016b] is apolar to a scheme of length nine containing
a subscheme of length four contained in a line. There are no subscheme of length four contained
in a line in a complete intersection of two cubics, hence F[030] ⊈ F[016b]. ■

The relation from Proposition 7.2.4, Proposition 7.2.5 and Proposition 7.2.7 are depicted in
Figure 7.2. An arrow represents a closure relation.
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[009] Ten general
points dim27

[016a] Nine general
points dim26

[023a] Nine points
in CI dim24

[016b] Nine
points, four on
a line dim23

[023b] Eight
general

points dim23

[023c] Eight
points, four on
a line dim20

[031] Seven general
points dim20

[040] Six general
points dim17

[120] Five general
points dim14

[200] Four general
points dim11

[300] Three general
points dim8

[016c] Nine
points, seven on
a conic dim23

[024] Eight
points, seven on
a conic dim20

[030] Nine
points in CI

dim21

[104] Seven points
on a conic dim17

[111] Six points
on a conic dim16

[032] Seven
points, four on
a line dim17

[112] Six points,
four on a

line dim14

[202] Five
points, four

on a line dim11

[210] Four points,
three on a
line dim10

Figure 7.2: Stratification of P(S6) = P27. An arrow represents a closure relation
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7.2.1 Geometric Interpretation

The sth secant variety to the Veronese variety is

Secs(vd(P(S1))) = {[F ] ∈ P(Sd) : F = Ld1 + · · ·+ Lds for some L1, . . . , Ls ∈ S1}

Definition 7.2.8. Let F ∈ Sd = C[x0, . . . , xn] and G ∈ Td−u and consider the map

Td−u → Su

G 7→ F (G).

The matrix associated to the map is called the catalecticant and is written Cat(u, d−u, n+1)(F ).

We will use the case n = 1, d = 2k and u = k, so let F =
∑d−1

j=0

(
d
j

)
ajx

d−j
0 xd1. Then, by

[Dol12, Example 1.4.1],

Cat(k, k, 2)(F ) =


a0 a1 . . . ak
a1 a2 . . . ak+1
...

...
. . .

...
ak ak+1 . . . a2k

 .

We have the following relationship between the catalecticant and the secant varieties.

Lemma 7.2.9. [Iar99, Theorem 1.45] Let C = P1 be a curve and let F = vd(C) ⊂ P(Sd). Let
Is+1(Cat(k, k, 2)(F )) be the ideal generated by the (s+ 1)× (s+ 1)-minors of Cat(k, k, 2)(F ) and
let s ≥ 1. Then

Is+1(Cat(k, k, 2)(F )) = I(Secs(F )).

We give give two examples. In the first example, C is a line and in the second example, C is
a conic.

Example 7.2.10. Let C be a line L. Then F = v6(L) ⊂ P27 is a sextic. Recall that an
[FL] ∈ ⟨v6(L)⟩ can be considered as a general binary form. By Theorem 6.0.4, r(F ) = 4, thus we
have the following strict inclusions:

v6(L) ⊊ Sec2(v6(L)) ⊊ Sec3(v6(L)) ⊊ eq Sec4(v6(L)) = ⟨v6(L)⟩.

We write F =
∑5

j=0

(
6
j

)
ajx

6−j
0 x61 and consider (a0 : · · · : a6) as coordinates in ⟨v6(L)⟩ = P6. This

gives

Cat(3, 3, 2)(F ) =


a0 a1 a2 a3
a1 a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 a6

 .

For an [FL] ∈ P6, we have by Lemma 7.2.9, that [FL] ∈ Sec3(F ) if and only if det(Cat(3, 3, 2)(F ))
vanish in [FL], [FL] ∈ Sec2(F ) if and only if every 3× 3 minor of Cat(3, 3, 2)(F ) vanish in [FL],
and [FL] ∈ F if and only if every 2× 2 minor of Cat(3, 3, 2)(F ) vanish in [FL].

Example 7.2.11. Let C be a line Q. Then F = v6(Q) ⊂ P27 is a degree twelve polynomial.
Recall that an [FQ] ∈ ⟨v6(Q)⟩ can be considered as a general binary form. By Theorem 6.0.4,
r(F ) = 7, thus we have the following strict inclusions:

v6(Q) ⊊ Sec2(v6(Q)) ⊊ Sec3(v6(Q)) ⊆ Sec4(v6(Q)) = ⟨v6(Q)⟩.
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We write F =
∑11

j=0

(
12
j

)
ajx

12−j
0 x121 and consider (a0 : · · · : a12) as coordinates in ⟨v6(Q)⟩ = P12.

This gives

Cat(6, 6, 2)(F ) =



a0 a1 a2 a3 a4 a5 a6
a1 a2 a3 a4 a5 a6 a7
a2 a3 a4 a5 a6 a7 a8
a3 a4 a5 a6 a7 a8 a9
a4 a5 a6 a7 a8 a9 a10
a5 a6 a7 a8 a9 a10 a11
a6 a7 a8 a9 a10 a11 a12


.

For an [FQ] ∈ P12, we have by Lemma 7.2.9, that [FQ] ∈ Secs(F ) if and only if every (s−1)×(s−1)
minor of Cat(3, 3, 2)(F ) vanish in [FQ] for 3 ≤ s ≤ 7, and [FQ] ∈ F if and only if every 2 × 2
minor of Cat(3, 3, 2)(F ) vanish in [FQ].

Now, we introduce some lemmas we will use in the discussion below.

Lemma 7.2.12. Let A be an n× n matrix. Then A has rank r if and only if A can be written as
a minimal sum of r matrices of rank 1.

Proof. Let A = (v1, . . . , vn), that is vi are the columns of A. Since A has rank r, there exists a
basis {b1, . . . , br} for the column space of A. In other word, there exists aij such that

v1 = a11b1 + · · ·+ a1rbr,

...
vn = an1b1 + · · ·+ anrbr.

This gives that

A = (a11b1 + · · ·+ a1rbr, . . . , an1b1 + · · ·+ anrbr)

= (a11b1, . . . , an1b1) + · · ·+ (a1rbr + · · ·+ anrbr).

Since Ai = (a1ibi, . . . , anibi) is a matrix where every column is a multiple of bi, Ai has rank 1.
For the other implication, assume that

A = (a11b1, . . . , an1b1) + · · ·+ (a1rbr + · · ·+ anrbr)

= (a11b1 + · · ·+ a1rbr, . . . , an1b1 + · · ·+ anrbr).

Since r is minimal, {b1, . . . , br} is linearly independent. Since the columns of A are spanned by
{b1, . . . , br}, the column space as dimension n, which implies that A has rank n. ■

Let the multiplicity of p in detA be

mp(detA) = max{m : D(detA)(p) = 0 for all D ∈ C[
∂

∂aij
]m−1}

Lemma 7.2.13. Let A = (aij) be an n× n matrix and let p ∈ Pn2−1 Assume m = mp(detA).
Then every (n−m+ 1)× (n−m+ 1) minors vanish in p.

Proof. Let Ai,j be the (n− 1)× (n− 1) minor obtained by deleting the ith row and jth column,
Generally, let detAi1...im−1,j1...jm−1 be the (n−m+ 1)× (n−m+ 1) minor obtained by deleting
the rows i1, . . . , im−1 and columns j1, . . . , jm−1. Then detA =

∑n−1
j=0 aij detAij . Thus,

∂ detA

∂aij
= detAij .
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In the same way, we let 0 ≤ i1 < · · · < im−1 ≤ n− 1 and 0 ≤ j1 < · · · < jm−1 ≤ n− 1 be given.
Then

∂m detA

∂ai1j1 . . . aim−1jm−1

= detAi1...im−1,j1...jm−1 .

Evaluating in p, we get

∂m detA

∂ai1j1 . . . aimjm
(p) = detAi1...im,j1...jm(p).

Since ∂ detA
∂ai1j1 ...aimjm

(p) = 0 by assumption, we are done. ■

Lemma 7.2.14. Let Cat(k, k, 2)(F ) be given and consider the hypersurface H =
V (det(Cat(k, k, 2)(F ))). If p ⊂ Secs(F ), but p ⊈ Secs−1(F ), then mp = k + 1− s.

Proof. This follows from Lemma 7.2.13, Lemma 7.2.12 and Lemma 7.2.9. ■

Proposition 7.2.15. F[016c] ̸= F[016b]

Proof. Since dimF[016c] = dimF[016b] it is enough to show that for a general element F ∈ F[016b]

then F /∈ F[016c]. Assume therefore F ∈ F[016b], that is F is apolar to a scheme Γ where
a subscheme of length four is contained in a line L. Let Q be the conic containing the
remaining five points. We have that ⟨v6(L)⟩ = P6, ⟨v6(Q)⟩ = P12. Let p1, p2 ∈ L ∩ Q.
Then ⟨v6(p1), v6(p2)⟩ ⊂ ⟨v6(L)⟩ ∩ ⟨v6(Q)⟩, which gives that ⟨v6(L), v6(Q)⟩ = P17. Let

L̂ = ⟨v6(L)⟩ ∩ ⟨v6(Q), F ⟩ = P2 ⊂ P6,

Q̂ = ⟨v6(Q)⟩ ∩ ⟨v6(L), F ⟩ = P2 ⊂ P12.

A general point in L̂ has rank 4 and a general point in Q̂ has rank 7. If we prove that there exists
an F1 ∈ L̂ such that F1 has rank 2, then we can find a unique F2 ∈ Q̂ such that F2 ∈ ⟨F1, F ⟩, so
F would be of type [016b]. We claim that such an F1 does not exists. Indeed, let

H = V (I3(Cat(3, 3, 2)(v6(L)))),

and consider H∩L̂. If there exists an F1 ∈ H∩L̂, then F1 ∈ Sec2(v6(L)). Since dimS2(v6(L)) = 3
and both H, L̂ ⊂ P6, we have H ∩ L̂ = ∅ in general. Consequently, there does not exists an
F1 ∈ L̂ of rank 2, so F /∈ F[016c]. ■

Remark 7.2.16. The relationship between the catalecticant and the secant varieties to a curve can
be used to give a geometric description of the VSP(F, 9) for an F ∈ F[016a]. Let F ∈ F[016a] and
recall that VSP(F, 9) is two points, that is F can be written as a power sum representation of
nine linear forms in two ways. By apolarity, there exists a IΓ ⊂ F⊥ and we have shown that IΓ
is generated by a cubic K and a 3-dimensional subset of quadrics. In particular, Γ is contained
in K. Assume that K is the union of a line L and a quadric Q. Then there exists a subscheme
ΓL ⊂ Γ of length three contained in L and a subscheme ΓQ ⊂ Γ of length six contained in Q.

Let p1, p2 ∈ L ∩Q and let L′ = ⟨v6(p1), v6(p2)⟩. By the same arguments as in the proof of
Proposition 7.2.15, we can find two planes

L̂ = ⟨v6(L)⟩ ∩ ⟨v6(Q), F ⟩ = P2 ⊂ P6,

Q̂ = ⟨v6(Q)⟩ ∩ ⟨v6(L), F ⟩ = P2 ⊂ P12.

Let

HL = V (det(Cat(3, 3, 2)(v6(L)))),
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HQ = V (det(Cat(6, 6, 2)(v6(Q)))).

We first consider HL ∩ L̂ ∈ P6. Since dimHL = 5 and dim L̂ = 2, dim(HL ∩ L̂) = 1. For
every p ∈ L′, we have that p ∈ Sec2(v6(L)), thus, by Lemma 7.2.14, L′2Q′ = HL ∩ L̂, where
Q′ is a conic. Since v6(p1), v6(p2) ∈ v6(L), the multiplicity of HL ∩ L̂ in these point is 3, thus
v6(p1), v6(p2) ∈ Q′. Secondly, we consider HQ ∩ Q̂ ∈ P12. Since dimHQ = 11 and dim Q̂ = 2,
dim(HQ ∩ Q̂) = 1. For every p ∈ L′, we have that p ∈ Sec2(v6(Q)), thus, by Lemma 7.2.14
L′5Q′′ = HQ ∩ Q̂, where Q′′ is a conic. Since v6(p1), v6(p2) ∈ v6(Q), the multiplicity of HQ ∩ Q̂ in
these points i 6, thus v6(p1), v6(p2) ∈ Q′′. To summarize, each point on Q′ has rank 3 and each
point on Q′′ as rank 6.

We will show that there are two pairs of points on Q′ and Q′′ such that F lies in the span
of each pair. Pick a point FL ∈ Q′ and let FQ be the corresponding point in Q̂ such that
F ∈ ⟨FL, FQ⟩. Let FL variate along Q′ and consider the conic QQ̂ in Q̂ parameterizing the
corresponding FQ. Then QQ̂ ∈ Q̂ = P2 and Q′′ ∈ Q̂ = P2 intersect in four points, where two
of the points are v6(p1), v6(p2). Let F2, F

′
2 be the remaining two points and let F1, F

′
1 be the

corresponding points on Q′. Then F ∈ ⟨F1, F2⟩ and F ∈ ⟨F ′
1, F

′
2⟩. See the figure.

F

F1

F2
F ′
1

F ′
2

v6(p1)

v6(p2)

L̂ Q̂

We now investigate how a general element of F[016b] or F[016c] fits into the figure. Let
F ∈ F[016c]. Thus F is apolar to a scheme Γ of length nine, where a subscheme of length two is
contained in a line L and the remaining subscheme of length seven in a conic Q. Let L′, L̂, Q̂,HL

and HQ be as above. We consider HL ∩ L̂ ∈ P6. As in the case [016a], L′Q′ = HL ∩ L̂, where
Q′ is a conic. By assumption, there exists an F(2) ∈ L̂ of rank 2. Thus, mF(2)

(HL) = 2, so Q′ is
the union of two lines intersecting in F(2). A general point in Q̂ has rank 7, thus we can find an
F(7) ∈ Q̂ of rank 7 such that F ∈ ⟨F(2), F(7)⟩. Since VSP(F(7), 7) = P1, there is pencil of ways F
can be decomposed as a sum of F(2) and F(7). Consider now HQ ∩ Q̂. The situation is an in the
case [016a], so L′5Q′′ = HQ ∩ Q̂, where Q′′ in general is a non-degenerate conic. We use the same
strategy to find F1, F2 and F ′

1, F
′
2 such that F ∈ ⟨F1, F2⟩ and F ∈ ⟨F ′

1, F
′
2⟩ and F1, F

′
1 has rank 3

and F2, F
′
2 has rank 6. Since F1 lies on the line spanned by v6(p1) and F(2) and v6(p1), F2 lies on

the line spanned by v6(p2) and F(7), the decomposition F = F1 + F2 is one of the decompositions
of in VSP(F, 7) = P1.

Let F ∈ F[016b]. We can do a similar description as in the case [016c], where we note that Q′′

and not Q′ is degenerate, since we assume that there exists a point of rank 5 in Q̂.

7.3 Binary Forms

In this section we explain how the F where F⊥ contains a linear form fits into the stratification
just given. Recall that if F⊥ contains a linear form, then F can be considered as a binary form.
The power sum decomposition of binary forms are completely understood and are stated in the
following
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7.3. Binary Forms

Theorem 7.3.1 (Sylvester). Let d = 2k and F ∈ C[x0, x1]d. Then F⊥ = ⟨G1, G2⟩, where
degG1 = d1 and degG2 = d2 and d1 + d2 = d+ 2. Let d1 ≤ d2. Then r(F ) = d2 VSP(F, r(F ))
is one point for r(F ) ≤ k and VSP(F, k + 1) = P1.

Corollary 7.3.2. Let d = 6 and F ∈ C[x0, x1, x2]6 and assume that F is apolar to a line. Then
r(F ) ≤ 4 and VSP(F, r(F )) is one points for r(F ) ≤ 3 and VSP(F, 4) = P1.

By the corollary we can find the Betti tables for each case.

1 2 1 -
- - - -
- - - -
- - - -
- - - -
- - - -
- 2 1 1

1 1 - -
- 1 1 -
- - - -
- - - -
- - - -
- 1 1 -
- - 1 1

1 1 - -
- - - -
- 1 1 -
- - - -
- 1 1 -
- - - -
- - 1 1

1 - - -
- - - -
- - - -
- 2 2 -
- - - -
- - - -
- - - 1

We summarize the corollary in a table.

B r(F ) VSP(F, r) Γ dim(FB)

[000] 1 one point one point 2
[100] 2 one point two points 5
[010] 3 one point three points on a line 7
[002] 4 P1 four points on a line 8

Observe that the type [000] is v6(P2) ⊂ P27. We show how these Betti strata fit into our
stratification in Figure 7.3.

[120] Five general
points dim14

[200] Four general
points dim11

[300] Three general
points dim8

[202] Five
points, four

on a line dim11

[210] Four points,
three on a
line dim10

[002] Four on
a line dim8

[010] Three points
on a line dim7

[100] Two
points dim5

[000] One
point dim2

Figure 7.3: Stratification including the binary forms
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8 | Double Cubic Forms

In this chapter we do explicit computation on the apolar ideal of double cubic forms. In particular,
we investigate the relation between a given form F = Q2, where Q is a ternary cubic, and a cubic
apolar to F .

We begin with a familiar characterization of ternary cubics. The family of ternary cubics of
the form Q = x30 + x31 + x32 + λx0x1x2 = 0 for λ ∈ A1 is called the Hesse pencil.

Lemma 8.0.1. [AD08] Let Q = 0 be a smooth ternary cubic. Then Q = 0 is a member of the
Hesse pencil. The only singular member of the Hesse pencil is the following

1. x0x1x2 = 0

2. (x0 + x1 + x2)(x0 + ϵx1 + ϵ2x2)(x0 + ϵ2x1 + ϵx2) = 0

3. (x0 + ϵx1 + x2)(x0 + ϵx1 + ϵx2)(x0 + x1 + ϵx2) = 0

4. (x0 + ϵ2x1 + x2)(x0 + ϵx1 + ϵx2)(x0 + x1 + ϵ2x2) = 0, where ϵ3 = 1.

A cubic of the form Q = x30 + x21x2 − x20x2 = 0 is called a nodal cubic and a cubic of the form
Q = x30 − x21x2 = 0 is called a cuspidal cubic.

Lemma 8.0.2. Let Q = 0 med a non-degenerate ternary cubic not in the Hesse pencil. Then
Q = 0 is either a nodal cubic or a cuspidal cubic.

Now, we give a result that gives a correspondence between a double cubic form F and a cubic
in the apolar ideal.

Proposition 8.0.3. Let Q = x30 + x31 + x32 + λx0x1x2 and let Q′ = y30 + y31 + y32 + λ′y0y1y2. Let
Q2 = F . If λλ′ = −18, then Q′ ∈ F⊥.

Proof. We use the program in Listing 10.21 and get the following output:

Q′(Q2) =(8λλ′ + 144)x30

+ (8λλ′ + 144)x31

+ (8λλ′ + 144)x32

+ (8λλ′ + 144)λx0x1x2

Since 18 · 8 = 144, we get that if λλ′ = −18 then Q′(Q2) = 0. ■

Corollary 8.0.4. Let Q = x30 + x31 + x32 + λx0x1x2 and let Q′ = y30 + y31 + y32 + λ′y0y1y2 and
assume λλ′ = −18. Then Q ∈ (Q′2)⊥ and Q′ ∈ (Q2)⊥

Remark 8.0.5. By, [Fri02, Proposition 2.16], we have that the j-invariant of a ternary cubic form
in Hesse form Eλ : x30 + x31 + x32 + λx0x1x2 is given by

j(Eλ) =
λ3(λ3 − 216)3

(λ+ 3)3(λ+ 3ϵ)3(λ+ 3ϵ2)3

We use the program in Listing 10.25 to show that when λλ′ = −18, for λ = 1, then j(Eλ) ̸= j(Eλ),
which means that the two general curves Q = 0 and Q′ = 0 in Corollary 8.0.4 are not isomorphic.
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Proposition 8.0.6. Let Q = x30 − x21x2. Let F = Q2 and Q′ = y32 and Q′′ = y0y
2
2. Then

Q′, Q′′ ∈ F⊥ and Q′, Q′′ are the only cubic forms in the ideal.

It is easy to check that Q′, Q′′ ∈ F⊥. For the uniqueness, let

Q̂ = b0y
3
0 + b1y

3
1 + b2y

3
2 + b3y

2
0y1 + b4y0y

2
1 + b5y

2
0y2 + b6y0y

2
2 + b7y

2
1y2 + b8y1y

2
2 + b9y0y1y2

be a general cubic. Then, by the program in Listing 10.23, we have

Q̂(Q2) = (120b0 − 4b7)x
3
0

−(12b0 − 24b7)x
2
1x2

−12b9x20x1 − 12b5x0x
2
1

+8b8x
3
1 − 12b4x

2
0x2

−24b3x0x1x2 + 24b1x1x
2
2

We have that Q′ ∈ F⊥ if every coefficient of each monomial is zero. We have immediately that
b1 = b3 = b4 = b5 = b8 = b9 = 0. Further, we get the equations

120b0 − 4b7 = 0, (8.1)
12b0 − 24b7 = 0. (8.2)

This system of equations is true only if b0 = b7 = 0. To summarize, we have that b2 and b6 are
free variables, so Q′ = y32 and Q′′ = y0y

2
2 are the only cubics in F⊥.

Proposition 8.0.7. Let Q = x30 + x21x2 − x20x2. Let F = Q2 and Q′ = y32. Then Q′ ∈ F⊥ and
Q′ are the only cubic forms in the ideal.

Proof. It is easy to check that Q′ ∈ F⊥. For the uniqueness, let

Q̂ = b0y
3
0 + b1y

3
1 + b2y

3
2 + b3y

2
0y1 + b4y0y

2
1 + b5y

2
0y2 + b6y0y

2
2 + b7y

2
1y2 + b8y1y

2
2 + b9y0y1y2

be a general cubic. Then, by the program in Listing 10.24

Q̂(Q2) = (120b0 − 40b5 + 8b6 + 4b7)x
3
0

−(8b8 − 12b9)x
2
0x1

+(12b5 − 8b6)x0x
2
1

+8b8x
3
1

−(120b0 − 12b4 − 24b5 + 8b7)x
2
0x2

+(24b3 − 16b9)x0x1x2

+(12b0 − 8b5 + 24b7)x
2
1x2

+(24b0 − 8b4)x0x
2
2

(24b1 − 8b3)x1x
2
2

We have that Q′ ∈ F⊥ if every coefficient of each monomial is zero. We first see that b8 = 0,
which implies that b9 = b3 = b1 = 0. The remaining equations are:

120b0 − 40b5 + 8b6 + 4b7 = 0

120b0 − 12b4 − 24b5 + 8b7 = 0

12b0 − 8b5 + 24b7 = 0

24b0 − 8b4 = 0
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12b5 − 8b6 = 0

The corresponding matrix equation is
120 0 −40 8 4
120 −12 −24 0 8
12 0 −8 0 24
24 −8 0 0 0
0 0 12 −8 0



b0
b4
b5
b6
b7


By row reduction, we get that the only solution is b0 = b4 = b5 = b6 = b7 = 0. To summarize,
b0 = b1 = b3 = b4 = b5 = b6 = b7 = b8 = b9 = 0, and b2 is a free variable. This implies Q̂ = b2y

3
2,

which shows that the only cubic in the apolar ideal of F is y32. ■

Theorem 8.0.8. Let Q be a irreducible ternary cubic form and let F = Q2. Then F⊥ contains
at least one cubic form.

Proof. By Lemma 8.0.1 and Lemma 8.0.2, the non-degenerate cubics are either in the Hesse
pencil or a nodal or a cuspidal cubic. By Proposition 8.0.3, an element in the Hesse pencil has at
least one cubic form in the apolar ideal, from Proposition 8.0.7 that a nodal cubic has exactly
one cubic form in the apolar ideal, and from Proposition 8.0.6 that a cuspidal cubic has exactly
two cubic forms in the apolar ideal. ■

Remark 8.0.9. Since the irreducible ternary cubics are open in the space of ternary cubics, the
result holds for a reducible ternary cubic as well.

Now, we show that if Q is the Fermat cubic and F = Q2 then F⊥ contains exactly one cubic
form.

Proposition 8.0.10. Let Q = x30 + x31 + x32. Let F = Q2 and Q′ = y0y1y2. Then Q ∈ F⊥ and
Q′ is the only cubic in the ideal.

Proof. We obviously have Q′(Q2) = 0. For the proof of uniqueness, let

Q′′ = b0y
3
0 + b1y

3
1 + b2y

3
2 + b3y

2
0y1 + b4y0y

2
1 + b5y

2
0y2 + b6y0y

2
2 + b7y

2
1y2 + b8y1y

2
2 + b9y0y1y2

be a general cubic. Then, by the program in Listing 10.22, we have

Q′′(Q2) = (120b0 + 12b1 + 12b2)x
3
0

+(12b0 + 12b1 + 120b2)x
3
2

+(12b0 + 120b1 + 12b2)x
3
1

+36b4x
2
0x1 + 36b3x0x

2
1

+36b6x
2
0x2 + 36b8x

2
1x2

+36b5x0x
2
2 + 36b7x1x

2
2

We have that Q′ ∈ F⊥ if every coefficient of each monomial is zero. We have immediately that
b3 = b4 = b5 = b6 = b7 = b8 = 0. Further, we have the following equations:

120b0 + 12b1 + 12b2 = 0 (8.3)
12b0 + 12b1 + 120b2 = 0 (8.4)
12b0 + 120b1 + 12b2 = 0 (8.5)
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To solve 8.3 - 8.5, we consider the coefficient matrix120 12 12
12 12 120
12 120 12

 .

Row reducing gives the identity matrix, which implies that the only solution is b0 = b1 = b2 = 0.
To summarize, b0 = b1 = b2 = b3 = b4 = b5 = b6 = b7 = b8 = 0, and b9 is a free variable. This
implies Q′′ = b9y0y1y2, which shows that the only cubic in the apolar ideal of F is y0y1y2. ■

Corollary 8.0.11. Let Q be a general ternary cubic and let F = Q2. Then F⊥ contains exactly
one cubic form.

Proof. By Theorem 8.0.8, F⊥ contains at least one cubic form for a general Q. To contained
more than one cubic form in the ideal is a closed condition, so if we can find an element that
contain only one cubic, we are done. In Proposition 8.0.10 we showed that if Q is the Fermat
cubic has only one cubic, then F⊥ contain only one cubic form. ■

Now, we investigate the case when the cubic form in the apolar ideal of a double cubic is a
triple line.

Proposition 8.0.12. Assume F = Q2 for a cubic Q such that y32 ∈ F⊥. Then

Q = a0x
3
0 + a1x

3
1 + a3x

2
0x1 + a4x0x

2
1 + a5x

2
0x2 + a7x

2
1x2 + a9x0x1x2.

In particular, Q is singular.

Proof. LetQ = a0x
3
0+a1x

3
1+a2x

3
2+a3x

2
0x1+a4x0x

2
1+a5x

2
0x2+a6x0x

2
2+a7x

2
1x2+a8x1x

2
2+a9x0x1x2

be a general cubic. Then

y32(Q
2) = (12a0a2 + 12a5a6)x

3
0

+(12a2a3 + 12a5a8 + 12a6a9)x
2
0x1

+(12a2a4 + 12a6a7 + 12a8a9)x0x
2
1

+(12a1a2 + 12a7a8)x
3
1

+(48a2a5 + 24a26)x
2
0x2

+(48a6a8 + 48a2a9)x0x1x2

+(48a2a7 + 24a28)x
2
1x2

+120a2a6x0x
2
2

+120a2a8x1x
2
2

+120a22x
3
2

We have that y32 is apolar to F if y32(Q). We get that a2 = 0, which implies that a6 = a8 = 0.
Since every term of y32(Q2) contains either a2, a6 or a8, we are done.

To show that Q is singular, let x2 = 1. Then Q = a0x
3
0 + a1x

3
1 + a3x

2
0x1 + a4x0x

2
1 + a5x

2
0 +

a7x
2
1 + a9x0x1. The cubic Q is singular if there is a point on the curve where both partial

derivatives vanish.

Fx0 = 3a0x
2
0 ++2a3x0x1 + a4x

2
1 + 2a5x0 + a9x1,

Fx1 = 3a1x
2
1 + a3x

2
0 + 2a4x0x1 + 2a7x1 + a9x0.

When x0 = x1 = 0 we get Fx0 = Fx1 = 0. The corresponding projective coordinate (0 : 0 : 1) is a
point on the Q and is therefore a singular point. ■

104



9 | Conclusion

9.1 Comparison of the Secant and the Catelecticant Varieties

In this section we compare the secant varieties and the catelecticant varieties to the Veronese
embedding. We have that Secr(v6(P(S1))) ⊂ Catr(v6(P(S1))). The equations defining the point in
Catr(v6(P(S1))) are defined by the catalecticant matrix. The equations defining Secr(v6(P(S1)))
are, however, not known in general. Therefore, we compare the catalecticant and secant varieties
by using our stratification. In the cases where they coincide, we have the equations for the secant
variety. We have that rank(Cat(F )) = 10− dim(F⊥)3.

Theorem 9.1.1. We have the following

1. Secr(v6(P(S1))) = Catr(v6(P(S1))), for r ≤ 6,

2. Sec7(v6(P(S1))) = Cat7(v6(P(S1)))−F[030]

3. Sec8(v6(P(S1))) = Cat8(v6(P(S1)))− (F[023a] ∪ F[030])

4. Sec9(v6(P(S1))) = Cat9(v6(P(S1)))
5. Sec10(v6(P(S1))) = Cat10(v6(P(S1)))

Proof. We have that rank(Cat(F )) = 10 − dim(F⊥)3. Since Secr(v6(P(S1))) is irreducible,
[Har92], we only need to compare the rank of a general element F ∈ FB with the rank(v6(P(S1))).
We get that for r different from 8 and 9, then F is the limit of an Ft, where r(Ft) = rank(Cat(F )).
We now consider the cases [030] and [023a].

For a general element F ∈ F[030], dim(F⊥)3 = 3, thus F ∈ Cat7. The rank of a general
element in F[030] is 9, so F[030] ⊂ Sec9(v6(P(S1))) − Sec8(v6(P(S1))). For a general element
F ∈ F[023a], dim(F⊥)3 = 2, thus F ∈ Cat8(v6(P(S1))). The rank of a general element in F[023a]

is 9, so F[023a] ⊂ Sec9(v6(P(S1)))− Sec8(v6(P(S1))). ■

9.2 Further Questions

In this section we raise some open questions.
The first question is related to the results we found in Chapter 8. Since there are only two

ways to find a basis for a general F of cactus rank 9, there might be difficult to find smooth
schemes that are apolar to F . For the double cubics, we found explicit equations for the cubic
forms in the apolar ideal. Therefore, it should be possible investigate if there are some smooth
schemes at all. We raise the following question

Question 9.2.1. Is there a smooth scheme of length nine apolar to a double cubic?

The second question we raise is if our methods work for forms of higher degrees.

Question 9.2.2. Is it possible to use the same methods that we have used for ternary forms of
degree larger than six?
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10 | Appendix

10.1 Computation for Chapter 4

Listing 10.1: Chern classes for G(4, 9)
R=QQ[c1 ,c2,c3,c4]

g6=3*c1^2*c4 -2*c2*c4+6*c1*c2*c3 -4*c1^3*c3-c3^2-6*c1^2*c2^2+c2 ^3+5* c1^4*c2 -c1^6
g7=4*c1*c2*c4 -c1^3*c4 -2*c3*c4+2*c1*c3^2-6*c1^2*c2*c3+3*c2^2*c3
+c1^4*c3 -3*c1*c2^3+4*c1^3*c2^2-c1^5*c2
g8=4*c1*c3*c4 -c4^2-3*c1^2*c2*c4+c2^2*c4+c1^4*c4-
3*c1^2*c3^2+2*c2*c3^2-3*c1*c2^2*c3+4*c1^3*c2*c3-c1^5*c3
g9=2*c1*c4^2-3*c1^2*c3*c4+2*c2*c3*c4 -
3*c1*c2^2*c4+4*c1^3*c2*c4-c1^5*c4

e1=g6*c1^14, e2=g6*c1^12*c2,e3=g6*c1^11*c3,e4=g6*c1^10*c2^2,
e5=g6*c1^10*c4 ,e6=g6*c1^9*c2*c3, e7=g6*c1^8*c2^3, e8=g6*c1^8*c3^2
e9=g6*c1^8*c2*c4 ,e10=g6*c1^7*c3*c4 ,
e11=g6*c1^7*c2^2*c3 , e12=g6*c1^6*c2^4, e13=g6*c1^6*c2*c3^2, e14=g6*c1^6*c2^2*c4 ,
e15=g6*c1^6*c4^2
e16=g6*c1^5*c3^3, e17=g6*c1^5*c2^3*c3 , e18=g6*c1^5*c2*c3*c4 , e19=g6*c1^4*c2^5,
e20=g6*c1^4*c2^3*c4 , e21=g6*c1^4*c2^2*c3^2
e22=g6*c1^4*c2*c4^2, e23=g6*c1^4*c3^2*c4 ,
e24=g6*c1^3*c2^4*c3 , e25=g6*c1^3*c2^2*c3*c4 ,
e26=g6*c1^3*c2*c3^3, e27=g6*c1^3*c3*c4^2
e28=g6*c1^2*c2^6,e29=g6*c1^2*c2^4*c4,
e30=g6*c1^2*c2^3*c3^2, e31=g6*c1^2*c2^2*c4^2,
e32=g6*c1^2*c2*c3^2*c4 , e33=g6*c1^2*c3^4
e34=g6*c1^2*c4^3, e35=g6*c1*c2^5*c3,
e36=g6*c1*c2^2*c3*c4 , e37=g6*c1*c2^2*c3^3,
e38=g6*c1*c2*c3*c4^2, e39=g6*c1*c3^3*c4 ,
e40=g6*c2^7
e41=g6*c2^5*c4, e42=g6*c2^4*c3^2,
e43=g6*c2^3*c4^2, e44=g6*c2^2*c3^2*c4 ,
e45=g6*c2*c3^4, e46=g6*c2*c4^3, e47=g6*c3^2*c4

b1=g7*c1^13, b2=g7*c1^11*c2, b3=g7*c1^10*c3,
b4=g7*c1^9*c2^2, b5=g7*c1^9*c4 , b6=g7*c1^8*c2*c3 ,
b7=g7*c1^7*c2^3, b8=g7*c1^7*c3^2
b9=g7*c1^7*c2*c4 , b10=g7*c1^6*c3*c4 , b11=g7*c1^6*c2^2*c3 ,
b12=g7*c1^5*c2^4, b13=g7*c1^5*c2*c3^2, b14=g7*c1^5*c2^2*c4
b15=g7*c1^5*c4^2, b16=g7*c1^4*c3^3, b17=g7*c1^4*c2^3*c3 ,
b18=g7*c1^4*c2*c3*c4 , b18=g7*c1^3*c2^5, b19=g7*c1^3*c2^3*c4
b20=g7*c1^3*c2^2*c3^2, b21=g7*c1^3*c2*c4^2,
b22=g7*c1^3*c3^2*c4 , b23=g7*c1^2*c2^4*c3 ,
b24=g7*c1^2*c2^2*c3*c4 , b25=g7*c1^2*c2*c3^3
b26=g7*c1^2*c3*c4^2, b27=g7*c1*c2^6, b28=g7*c1*c2^4*c4,
b29=g7*c1*c2^3*c3^2, b30=g7*c1*c2*c4^2,
b31=g7*c1*c2*c3^2*c4 ,
b32=g7*c1*c3^4, b33=g7*c1*c4^3, b34=g7*c2^5*c3,
b35=g7*c2^3*c3*c4, b36=g7*c2^2*c3^3, b37=g7*c2*c3*c4^2,
b38=g7*c3^3*c4
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d1=g8*c1^12, d2=g8*c1^10*c2, d3=g8*c1^9*c3,
d4=g8*c1^8*c2^2, d5=g8*c1^8*c4 , d6=g8*c1^7*c2*c3 ,
d7=g8*c1^6*c2^3, d8=g8*c1^6*c3^2
d9=g8*c1^6*c2*c4 , d10=g8*c1^5*c3*c4 , d11=g8*c1^5*c2^2*c3 ,
d12=g8*c1^4*c2^4, d13=g8*c1^4*c2*c3^2, d14=g8*c1^4*c2^2*c4
d15=g8*c1^4*c4^2, d16=g8*c1^3*c3^3, d17=g8*c1^3*c2^3*c3 ,
d18=g8*c1^3*c2*c3*c4 , d19=g8*c1^2*c2^5, d20=g8*c1^2*c2^3*c4
d21=g8*c1^2*c2^2*c3^2, d22=g8*c1^2*c2*c4^2,
d23=g8*c1^2*c3^2*c4 , d24=g8*c1*c2^4*c3 ,
d25=g8*c1*c2^2*c3*c4 , d26=g8*c1*c2*c3^3
d27=g8*c1*c3*c4^2, d28=g8*c2^6, d29=g8*c2^4*c4,
d30=g8*c2^3*c3^2, d31=g8*c2^2*c4^2, d32=g8*c2*c3^2*c4,
d33=g8*c3^4, d34=g8*c4^3

f1=g9*c1^11, f2=g9*c1^9*c2, f3=g9*c1^8*c3,
f4=g9*c1^7*c2^2, f5=g9*c1^7*c4 , f6=g9*c1^6*c2*c3 ,
f7=g9*c1^5*c2^3, f8=g9*c1^5*c3^2
f9=g9*c1^5*c2*c4 , f10=g9*c1^4*c3*c4 , f11=g9*c1^4*c2^2*c3 ,
f12=g9*c1^3*c2^4, f13=g9*c1^3*c2*c3^2, f14=g9*c1^3*c2^2*c4
f15=g9*c1^3*c4^2, f16=g9*c1^2*c3^3, f17=g9*c1^2*c2^3*c3 ,
f18=g9*c1^2*c2*c3*c4 , f19=g9*c1*c2^5, f20=g9*c1*c2^3*c4
f21=g9*c1*c2^2*c3^2, f22=g9*c1*c2*c4^2 ,f23=g9*c1*c3^2*c4 ,
f24=g9*c2^4*c3, f25=g9*c2^2*c3*c4, f26=g9*c2*c3^3,
f27=g9*c3*c4^2

P=matrix {{e1,e2,e3,e4,e5 ,e6 ,e7 ,e8,e9,e10 ,e11 ,e12 ,e13 ,e14 ,e1
5,e16 ,e17 ,e18 ,e19 ,e20 ,e21 ,e22 ,e23 ,e24 ,e25 ,
e26 ,e27 ,e28 ,e29 ,e30 ,e31 ,e32 ,e33 ,e34 ,e35 ,e36 ,e37 ,e38 ,e39 ,e40
,e41 ,e42 ,e43 ,e44 ,e45 ,e46 ,e47 ,b1,b2 ,b3 ,b4 ,
b5 ,b6 ,b7 ,b8,b9,b10 ,b11 ,b12 ,b13 ,b14 ,b15 ,b16 ,b17 ,b18 ,b19 ,b20 ,
b21 ,b22 ,b23 ,b24 ,b25 ,b26 ,b27 ,b28 ,b29 ,b30 ,
b31 ,b32 ,b33 ,b34 ,b35 ,b36 ,b37 ,b38 ,d1 ,d2 ,d3 ,d4,d5,d6,d7,d8 ,d9 ,
d10 ,d11 ,d12 ,d13 ,d14 ,d15 ,d16 ,d17 ,d18 ,d19 ,
d20 ,d21 ,d22 ,d23 ,d24 ,d25 ,d26 ,d27 ,d28 ,d29 ,d30 ,d31 ,d32 ,d33 ,d34
,f1,f2,f3,f4 ,f5 ,f6 ,f7,f8,f9,f10 ,f11 ,f12 ,
f13 ,f14 ,f15 ,f16 ,f17 ,f18 ,f19 ,f20 ,f21 ,f22 ,f23 ,f24 ,f25 ,f26 ,f27}}
(M,C)= coefficients P
F = transpose(C)

R=QQ
G=lift(F,R)
M
T=reducedRowEchelonForm G
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10.2 Computation for Chapter 5

Listing 10.2: Three points
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{ random(1,R),random(1,R),random(1,R)},
{random(1,R),random(1,R),random(1,R)}}

o2 = | 6/7x+6/5y+7/3z 2/3x+2y+7/4z 8x+5/2y+4/3z |
| 10/9x+4/5y+9/5z 3x+1/2y+1/2z 4x+10/7y+2/5z |

2 3
o2 : Matrix R <--- R

i3 : I = minors(2,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I

o6 = 3

Listing 10.3: Four points
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{ random(2,R),random(2,R)}}

o2 = | 1/4x2+7/9xy+3/2y2+4/7xz+3/8yz+1/2z2 8/3x2+1/4xy+7/9y2+8xz+yz+1/3z2 |

1 2
o2 : Matrix R <--- R

i3 : I = minors(1,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I
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o6 = 4

Listing 10.4: Four points, three on a line
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{(x+y)*y,(x+z)*(y+z),x},{z,y,0}}

o2 = | xy+y2 xy+xz+yz+z2 x |
| z y 0 |

2 3
o2 : Matrix R <--- R

i3 : I = minors(2,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

Listing 10.5: Five points, four on a line
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{(x+y)*y^2,(x+z)*(y+z)*z,x},{y,z,0}}

o2 = | xy2+y3 xyz+xz2+yz2+z3 x |
| y z 0 |

2 3
o2 : Matrix R <--- R

i3 : I = minors(2,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

Listing 10.6: Five points
i1 : R=QQ[x,y,z]
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o1 = R

o1 : PolynomialRing

i2 : M = matrix {{x,x-y,x^2+y^2},{y,z,x^2+z^2}}

o2 = | x x-y x2+y2 |
| y z x2+z2 |

2 3
o2 : Matrix R <--- R

i3 : I = minors(2,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

Listing 10.7: Six points
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : I = ideal(x^2+y^2+z^2,x*z^2+x^2*y)

2 2 2 2 2
o2 = ideal (x + y + z , x y + x*z )

o2 : Ideal of R

i3 : J=minors(2,jacobian I);

o3 : Ideal of R

i4 : codim variety ideal(I,J)

o4 = 3

Listing 10.8: Six points, four on a line
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{(y)*(y-x)*(z-x),(x+z)*(y+z),x},{(y-z)*(x+z),z+y,0}}

o2 = | x2y -xy2 -xyz+y2z xy+xz+yz+z2 x |
| xy -xz+yz-z2 y+z 0 |

2 3
o2 : Matrix R <--- R
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i3 : I = minors(2,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

Listing 10.9: Seven points on a conic
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{(y)*(y-x)*(z-x),(x+z),x},{(y-z)*(x+z)*(x+y),z+y,x-y}}

o2 = | x2y -xy2 -xyz+y2z x+z x |
| x2y+xy2 -x2z+y2z -xz2 -yz2 y+z x-y |

2 3
o2 : Matrix R <--- R

i3 : I = minors(2,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

Listing 10.10: Six points
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{ random(1,R),random(1,R),random(1,R),random(1,R)},
{random(1,R),random(1,R),random(1,R),random(1,R)},
{random(1,R),random(1,R),random(1,R),random(1,R)}}

o2 = | 7/9x+3/2y+5z x+3/10y+z 7/4x+1/3y+9/5z 10x+4/3y+5/2z |
| 3/10x+3/7y+3/5z 1/4x+1/2y+3z 3/8x+y+7/9z 1/3x+3/7y+5/2z |
| 1/2x+7/9y+1/5z 7x+5/7y+10/7z 2/3x+1/10y+9/5z 7/9x+3/2y+5/7z |

3 4
o2 : Matrix R <--- R

i3 : I = minors(3,M);

o3 : Ideal of R

111



10.2. Computation for Chapter 5

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I

o6 = 6

Listing 10.11: Nine points in a CI
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{x^3+y^3,z^3+x^2*y}}

o2 = | x3+y3 x2y+z3 |

1 2
o2 : Matrix R <--- R

i3 : I = minors(1,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I

o6 = 9

Listing 10.12: Seven points
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{(y+x+z)*x,(x+z)*(y-x),(x+z)*(x+y)},{(y-z),(x+z),z+y}}

o2 = | x2+xy+xz -x2+xy-xz+yz x2+xy+xz+yz |
| y-z x+z y+z |

2 3
o2 : Matrix R <--- R

i3 : I = minors(2,M);

o3 : Ideal of R
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i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

Listing 10.13: Seven points, four on a line

i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{ random(2,R),random(2,R),random(2,R),random(1,R)},
{random(1,R),random(1,R),random(1,R),0},
{random(1,R),random(1,R),random(1,R),0}}

o2 = | 5/8x2 +10/9 xy+4y2+5/2xz+5/2yz+7z2
7/9x2+10xy+6/7y2+9/8xz+8/3yz+3/2z2
x2+9/8xy+7/8y2+1/4xz+2yz+2z2 3/2x+5/8y+3z |

| 5/9x+8y+7/2z 1/2x+7/6y+1/2z 2/5x+1/2y+3/5z 0
|

| 7/6x+5/4y+7/5z 3/7x+5/8y+7/3z 2x+y+5/8z 0
|

3 4
o2 : Matrix R <--- R

i3 : I = minors(3,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I

o6 = 7

Listing 10.14: Eight points
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{(y+x+z)*(x+y),(x+z)*(y-x)+x^2,(x+y-z)},
{(x+z)*(x+y)+z^2,(x+z+y)*(x-y)-y^2,z+y+x}}

o2 = | x2+2xy+y2+xz+yz xy -xz+yz x+y-z |
| x2+xy+xz+yz+z2 x2 -2y2+xz-yz x+y+z |
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2 3
o2 : Matrix R <--- R

i3 : I = minors(2,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

Listing 10.15: Eight points, four on a line
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{(y+x+z)*(x+y),(x+z)*(y-x)+x^2,(x+y-z)},
{(x+z)*(x+y)+z^2,(x+z+y)*(x-y)-y^2,0}}

o2 = | x2+2xy+y2+xz+yz xy -xz+yz x+y-z |
| x2+xy+xz+yz+z2 x2 -2y2+xz-yz 0 |

2 3
o2 : Matrix R <--- R

i3 : I = minors(2,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

Listing 10.16: Eight points, seven on a conic

i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{ random(2,R),random(2,R),random(1,R),random(1,R)},
{random(2,R),random(2,R),random(1,R),random(1,R)},
{random(1,R),random(1,R),0,0}}

o2 = | 1/4x2+4xy+3y2+1/3xz+7/4yz+1/5z2
3x2+4/7xy+y2+1/3xz+3/2yz+4/5z2
8x+7/9y+1/10z 1/2x+2y+3z |

| x2+1/5xy+2y2+4/3xz+4/5yz+2/5z2
x2+8/9xy+1/3y2+2/3xz+5yz+z2
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1/3x+1/2y+2z 3/2x+4/9y+z |
| 2x+5/3y+1/7z 2x+5/8y+2z 0 0

|

3 4
o2 : Matrix R <--- R

i3 : I = minors(3,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I

o6 = 8

Listing 10.17: Nine points
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{ random(2,R),random(1,R),random(1,R),random(1,R)},
{random(2,R),random(1,R),random(1,R),random(1,R)},
{random(2,R),random(1,R),random(1,R),random(1,R)}}

o2 = | 3/8x2+5/2xy+1/2y2
+5/2xz+1/6yz+3/2z2 7/8x+3/5y+1/4z 5/4x+9/10y+2z 3/10x+1/10y+7/9z |

| 10/7x2 +3/10 xy
+2/3y2+7/8xz+yz+5/4z2 x+6/5y+5/4z 10x+10y+1/2z 10x+5/2y+9/2z |
| 3/4x2+2/3xy
+2y2+3/2xz+yz+z2 x+9/10y+9/10z 7/5x+3y+1/9z 5x+9/4y+4/5z |

3 4
o2 : Matrix R <--- R

i3 : I = minors(3,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I

o6 = 9

Listing 10.18: Nine points, four on a line
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i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{ random(2,R),random(1,R),random(1,R),random(1,R)},
{random(2,R),random(1,R),random(1,R),0},
{random(2,R),random(1,R),random(1,R),0}}

o2 = | 1/8x2+3/4xy+8/9y2
+8/3xz+yz+1/10z2 3/10x+5/7y+3/7z 3/10x+3y+1/2z 3/4x+5y+z |

| 1/7x2+xy+8/5y2
+xz+1/3yz+3/4z2 1/5x+7/2y+1/3z 6/5x+5/7y+9/7z 0 |
| 8/5x2+8/9xy+10/3 y2+5/8xz
+5/4yz+5/8z2 5/7x+9/7y+1/6z 7/6x+5/3y+2/7z 0 |

3 4
o2 : Matrix R <--- R

i3 : I = minors(3,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I

o6 = 9

Listing 10.19: Nine points, seven on a conic
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{ random(2,R),random(1,R),random(1,R),random(1,R)},
{random(2,R),random(1,R),random(1,R),random(1,R)},
{random(2,R),random(1,R),0,0}}

o2 = | 5/2x2+9/4xy
+y2+4xz+7/3yz+4/5z2 3x+8/9y+2/5z 9/5x+y+4/5z 3x+3/4y+5z |

| 1/2x2+2xy+9/2y2
+2/3xz+10/7yz+z2 x+1/2y+3/2z 5/3x+3/4y+1/2z 2/3x+1/3y+5z |
| 9/7x2+8/3xy+9/5y2+3/2xz+1/8yz+2/9z2 x+6/7y+2z 0 0

|

3 4
o2 : Matrix R <--- R

i3 : I = minors(3,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);
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o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I

o6 = 9

Listing 10.20: Ten points
i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : M = matrix {{ random(1,R),random(1,R),random(1,R),random(1,R),random(1,R)},
{random(1,R),random(1,R),random(1,R),random(1,R),random(1,R)},
{random(1,R),random(1,R),random(1,R),random(1,R),random(1,R)},
{random(1,R),random(1,R),random(1,R),random(1,R),random(1,R)}}

o2 = | 5/3x+2/5y+z 2/5x+4/3y+4/3z 3/2x+4/3y+5/8z 7/2x+9y+1/6z 7x+1/3y+4/5z |
| x+9/7y+3/2z 1/5x+5y+1/8z 4/7x+7/6y+4/7z x+2/3y+4/7z 2/7x+8y+8z |
| x+9/10y+1/5z 1/4x+1/5y+z 3/5x+2/9y+2z 5/4x+8/5y+4/7z 9/2x+9/5y+2/5z |
| 10x+y+3/10z 2/3x+4/3y+2/5z 1/4x+9/2y+7/5z 1/4x+5/2y+2/3z 3x+1/6y+5/7z |

4 5
o2 : Matrix R <--- R

i3 : I = minors(4,M);

o3 : Ideal of R

i4 : J=minors(2,jacobian I);

o4 : Ideal of R

i5 : codim variety ideal(I,J)

o5 = 3

i6 : degree variety I

o6 = 10

117



10.3. Computation for Chapter 8

10.3 Computation for Chapter 8

Listing 10.21: Hesse pencil
i1 : A=QQ[l,l’]

o1 = A

o1 : PolynomialRing

i2 : R=A[x0 ,x1 ,x2]

o2 = R

o2 : PolynomialRing

i3 : Q = (x0^3+x1^3+x2^3+l*x0*x1*x2)^2

6 3 3 6 4 4 2 2 2 2 3 3
3 3 4 6
o3 = x0 + 2x0 x1 + x1 + 2l*x0 x1*x2 + 2l*x0*x1 x2 + l x0 x1 x2 + 2x0 x2
+ 2x1 x2 + 2l*x0*x1*x2 + x2

o3 : R

i4 : diff(x0^3+x1^3+x2^3,Q)+l’*diff(x0*x1*x2,Q)

3 3 2
3
o4 = (8l*l’ + 144)x0 + (8l*l’ + 144)x1 + (8l l’ + 144l)x0*x1*x2
+ (8l*l’ + 144)x2

o4 : R

Listing 10.22: Fermat cubic
i1 : A=QQ[b0 ,b1 ,b2,b3,b4,b5,b6 ,b7 ,b8 ,b9]

o1 = A

o1 : PolynomialRing

i2 : R=A[x0 ,x1 ,x2]

o2 = R

o2 : PolynomialRing

i3 : Q = (x0^3+x1^3+x2^3)^2

6 3 3 6 3 3 3 3 6
o3 = x0 + 2x0 x1 + x1 + 2x0 x2 + 2x1 x2 + x2

o3 : R

i4 : b0*diff(x0^3,Q)+b1*diff(x1^3,Q)+b2*diff(x2^3,Q)+b3*diff(x0^2*x1,Q)
+b4*diff(x0*x1^2,Q)+b5*diff(x0^2*x2,Q)+b6*diff(x0*x2^2,Q)+b7*diff(x1^2*x2,Q)
+b8*diff(x1*x2^2,Q)+b9*diff(x0*x1*x2,Q)

3 2 2
3 2 2 2 2
3
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10.3. Computation for Chapter 8

o4 = (120b0 + 12b1 + 12b2)x0 + 36b4*x0 x1 + 36b3*x0*x1 + (12b0 + 120b1 + 12b2)x1
+ 36b6*x0 x2 + 36b8*x1 x2 + 36b5*x0*x2 + 36b7*x1*x2 + (12b0 + 12b1 + 120b2)x2

o4 : R

Listing 10.23: Cuspidal cubic

i1 : A=QQ[b0 ,b1 ,b2,b3,b4,b5,b6 ,b7 ,b8 ,b9]

o1 = A

o1 : PolynomialRing

i2 : R=A[x0 ,x1 ,x2]

o2 = R

o2 : PolynomialRing

i3 : Q = (x0^3-x1^2*x2)^2

6 3 2 4 2
o3 = x0 - 2x0 x1 x2 + x1 x2

o3 : R

i4 : b0*diff(x0^3,Q)+b1*diff(x1^3,Q)+b2*diff(x2^3,Q)+b3*diff(x0^2*x1,Q)
+b4*diff(x0*x1^2,Q)+b5*diff(x0^2*x2,Q)+b6*diff(x0*x2^2,Q)+b7*diff(x1^2*x2,Q)
+b8*diff(x1*x2^2,Q)+b9*diff(x0*x1*x2,Q)

3 2 2 3 2
2 2
o4 = (120b0 - 4b7)x0 - 12b9*x0 x1 - 12b5*x0*x1 + 8b8*x1 - 12b4*x0 x2
- 24b3*x0*x1*x2 + (- 12b0 + 24b7)x1 x2 + 24b1*x1*x2

o4 : R

Listing 10.24: Nodal cubic
i1 : A=QQ[b0 ,b1 ,b2,b3,b4,b5,b6 ,b7 ,b8 ,b9]

o1 = A

o1 : PolynomialRing

i2 : R=A[x0 ,x1 ,x2]

o2 = R

o2 : PolynomialRing

i3 : Q = (x0^3+x1^2*x2-x0^2*x2)^2

6 5 3 2 4 2 2 2 2 4 2
o3 = x0 - 2x0 x2 + 2x0 x1 x2 + x0 x2 - 2x0 x1 x2 + x1 x2

o3 : R

i4 : b0*diff(x0^3,Q)+b1*diff(x1^3,Q)+b2*diff(x2^3,Q)+b3*diff(x0^2*x1,Q)
+b4*diff(x0*x1^2,Q)+b5*diff(x0^2*x2,Q)+b6*diff(x0*x2^2,Q)+b7*diff(x1^2*x2,Q)
+b8*diff(x1*x2^2,Q)+b9*diff(x0*x1*x2,Q)
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10.3. Computation for Chapter 8

3 2 2
3 2
o4 = (120b0 - 40b5 + 8b6 + 4b7)x0 +
(- 8b8 + 12b9)x0 x1 + (12b5 - 8b6)x0*x1 + 8b8*x1 +
(- 120b0 + 12b4 + 24b5 - 8b7)x0 x2
+ (24b3 - 16b9)x0*x1*x2
+ (12b0 - 8b5 +

2 2 2
24b7)x1 x2 + (24b0 - 8b4)x0*x2 + (24b1 - 8b3)x1*x2

o4 : R

Listing 10.25: j-invariant

i1 : A=QQ[lambda ,e]/(e^2+e+1)

o1 = A

o1 : QuotientRing

i2 : R=A[x0 ,x1 ,x2]

o2 = R

o2 : PolynomialRing

i3 : jE_lambda = (1^3*(1^3 -216)^3)/((1+3)^3*(1+3*e)^3*(1+3*e^2)^3)

-9938375
o3 = --------

21952

o3 : frac A

i4 : jE_lambda ’ = (( -18/1)^3*(( -18/1)^3 -216)^3)/((( -18/1)+3)^3
*(( -18/1)+3*e)^3*(( -18/1)+3*e^2)^3)

-65548320768
o4 = ------------

9938375

o4 : frac A
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