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Abstract

We give an explicit calculation of the Hermitian K-theory groups of finite fields.
This is done via the spectral sequence associated to the very effective slice filtration
of Spitzweck and Østvær in [SØ12]. This is possible due to the computation of the
very effective slices of the Hermitian K-theory spectrum by Bachmann, cf. [Bac17].
The results coincide with those of Friedlander in [Fri76].
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Introduction

Hermitian K-theory is a verison of algebraic K-theory, which studies symmetric bilinear
forms over a ring. A more general notion of Hermitan K-theory is that over schemes,
classifying vector bundles with symmetric bilinear forms. It is often said that Hermitian
K-theory is the algebraic counterpart to real topological K-theory. This thesis will
compute the Hermitian K-theory of finite fields, first done by Friedlander in [Fri76].
Letting KQs(Fq) denote the Hermitian K-groups of finite fields, we recover the following
results using the very effective slice spectral sequence:

s modulo 8 0 1 2 3 4 5 6 7

K̃Qs(Fq) Z/2 (Z/2)2 Z/2 Z
q(s+1)/2 − 1

0 0 0 Z
q(s+1)/2 − 1

Table 1: Hermitian K-theory of finite fields.

Motivic Homotopy Theory

Motivic homotopy theory introduces classical homotopy theoretic tools aiding the study
of smooth schemes over a field. The stable motivic homotopy category, introduced by
Morel and Voevodsky in [MV99], has many spectra representing familiar cohomology
theories. In particular, it is the home of KQ, representing Hermitian K-theory. We will
obtain the results of table 1 by computing the motivic homotopy groups πs,0KQ.

There is a motivic analogue to the Atiyah-Hirzebruch spectral sequence, known as
the slice spectral sequence. It takes as input the homotopy groups of so-called slices
of a spectrum E, and converges under certain conditions to the motivic homotopy
groups of E. However, it relies on the so-called slice filtration, which can have a
complicated E1-page, and complicated convergence properties. This is indeed the case
for the Hermitan K-theory spectrum. To remedy this, we invoke the very effective slice
filtration, introduced by Spitzweck and Østvær in their work on twisted motivic K-
theory, cf. [SØ12]. The associated spectral sequence has the advantage of always being
strongly convergent. However, the very effective slices are in general difficult to identify.
Thanks to the work of Bachmann in [Bac17], the very effective slices of Hermitian K-
theory are known, and they are given by motivic cohomology and Milnor-Witt motivic
cohomology. The papers [SØ12] and [Bac17] are foundational for our computation.

Computation of π⋆KQ

This thesis aims to compute the motivic homotopy groups of KQ for a finite field Fq as
the base scheme, for powers of odd primes q. After reviewing the background material,
we compute the E1-page of the very effective slice spectral sequence in chapter 4. As

1



expected, this gives an 8-periodic spectral sequence, which collapses immediately. Except
for one extension problem, the results are instantly read off. The extension problem is
resolved by considering a determinant map from KQ1 into the multiplicative group
{±1}.

Outline of the Thesis

In chapter 1 the following ingredients in the calculation are introduced: Algebraic K-
theory, Milnor K-theory, Milnor-Witt K-theory and finally Hermitian K-theory. For
each of these, relevant results and computations are included. Chapter 2 introduces
motivic homotopy theory, and in particular the stable motivic homotopy category. We
give a presentation of motivic cohomology and its spectrum, the algebraic K-theory
spectrum, the Hermitian K-theory spectrum and the Milnor-Witt motivic cohomology
spectrum. In chapter 3, we introduce spectral sequences, and discuss the ideas of
convergence and algebra sepctral sequences. Then a short interlude with an example
computational with the Atiyah-Hirzebruch spectral sequence follows, before we define the
slice spectral sequences – our most important computational tool. The section concludes
with an overview of the very effective slices of KQ. The thesis concludes with chapter 4,
where we do the necessary computations to fill out the E1-page of the very effective slice
spectral sequence, before we retrieve the Hermitian K-theory of finite fields.

The content of chapter 1, apart from the definitions of higher algebraic and Hermitian
K-theory, should be accessible to anyone with a basic grasp of commutative algebra.
We note that the definitions in section 1.4 are brief, but tailored to our needs. A good
understanding of algebraic topology and categorical language is definitely an advantage
when reading chapter 2. Chapter 3 is readable for those with some knowledge about
algebraic topology, and the first three sections stand on their own. The last three are
readable after having read section 2.1. Chapter 4 relies heavily on the last two sections
of chapter 3. It can be read before the first two chapters, as we provide references every
time we use results from previous chapters.
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Chapter 1

K-theory

The study of K-theory or K-theories is fairly new in the history of mathematics. It
started with Grothendieck in the 1950s, who introduced the functor K0, where the K
came from the German word ‘Klassen’ meaning ‘classes.’ This already hints at what
K-theory is concerned about – identifying classes of some sort. The study of K-theory
has indeed become wide, and one can see this mysterious letter show up everywhere from
algebraic geometry and topology, to number theory and functional analysis [Kar10]. This
chapter will introduce some K-theories, all of which are important for the computation
carried out in chapter 4.

1.1 Algebraic K-theory

The zeroth algebraic K-group was introduced by Grothendieck in 1957 as an attempt to
reformulate the famous Riemann-Roch theorem by looking at vector bundles on algebraic
varieties. Even though varieties were the objects of study, the interest for algebraic K-
theory grew, and was defined for general rings. It is a strong invariant, but famously
hard to compute. Indeed, to this day, the K-groups of the ring Z are not known!

As we will see, algebraic K-theory has a rather strong connection to motivic
cohomology (see section 3.4), something that will prove important in chapter 2.

1.1.1 The Grothendieck Construction

From the category CMon of commutative monoids, there is a functor

G : CMon→ AbGrp

to the category of abelian groups which formally adds inverses to a monoid M . The
resulting group is denoted G(M) or M+. It is sometimes called the group completion of
M or the Grothendieck group of M . The construction is characterised by the following
universal property:

Given a commutative monoid M , the Grothendieck group of M is the group M+

together with a map i : M → M+, such that given any monoid map M → G to an
abelian group, there is a unique map f̃ : M+ → G such that f = f̃ ◦ i, i.e., we have the
following commutative diagram

M M+

G

f

i

∃!f̃

3



Chapter 1. K-theory

There is a constructive way of obtaining M+ from M . If we let M be a commutative
additive monoid, define the relation ∼ on the product M ×M by

(x, y) ∼ (x′, y′) ⇐⇒ x+ y′ = x′ + y ∈M.

We define M+ := M ×M/ ∼ with pointwise addition (x, y) + (x′, y′) := (x+ x′, y + y′).
It is easily checked that this is a group satisfying the universal property. Morover, there
is a natural interpretation of the symbols (x, y) ∈ M+ as x − y. Thus, we can think of
i(x) = (x, 0), having the additive inverse (0, x). As we will see, this interpretation of i
does not work under every circumstance:

Example 1.1.1. The above relation ∼ is an equivalence relation if M is a commutative
cancellation monoid. That is, a monoid for which ac = bc implies that a = b for all
a, b, c ∈M . Indeed, if (a, b) ∼ (c, d) ∼ (e, f), then

ad = bc and cf = de ⇐⇒ adf = bcf = bde ⇐⇒ af = eb ⇐⇒ (a, b) ∼ (e, f).

Furthermore, if there is a zero-element 0 ∈M s.t. 0x = 0 for all x ∈M , then in G(M),
we have

x = (0−10)x = 0−1(0x) = 0−10 = 0

for all x. This G(M) does not contain M , and we see that the map i above need not be
injective. ♣

More generally, this process can be carried out for certain symmetric monoidal
categories (C ,□) (see [Mac98, p. 184] for definition). Assume that the object class
of the category C iso of isomorphism classes of objects in C forms a set. Then C iso is a
commutative monoid with monoid operation given by

[C] + [C ′] := [C□C ′].

We define the Grothendieck group of C to be

K□
0 (C ) := (C iso)+.

To give the definition of the zeroth algebraic K-group, let P(R) be the category
of finitely generated projective modules over R. Then P(R)iso becomes symmetric
monoidal under direct sum.

Definition 1.1.2. The zeroth K-group of the ring R, is defined to be

K0(R) := K⊕
0 (P(R)).

1.1.2 The functors K1 and K2

We proceed the story by introducing the first and second K-groups. Consider the general
linear group GLn(R) over the ring R, and form the directed system

GL1(R) ↪→ GL2(R) ↪→ · · ·

where the inclusion map is given by

M 7→
(
M 0
0 1

)
.
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1.1. Algebraic K-theory

We denote the colimit of this system by GL(R). Let eij(a), defined for every i ̸= j, be
elementary matrix identical to the identity except at the (i, j)-entry, which takes the
value a. For every n, these elementary matrices generate a subgroup En(R) of GLn(R).
By the above inclusion map, they form a directed system by En(R) ↪→ En+1(R), whose
colimit is denoted by E(R). The following lemma is classic.

Lemma 1.1.3 ([Whi50]). The subgroup E(R) is the commutator of GLn(R).

This tells us that GL(R)ab = GL(R)/E(R).

Definition 1.1.4. Given the ring R, we define the first algebraic K-group of R to be

K1(R) := GL(R)/E(R).

To motivate the definition of the second K-groups of a ring R, consider again the
elementary matrices of GL(R). An easy computation shows that eij(a)eij(b) = eij(a+b).
Furthermore, the commutator satisfies the following:

[eij(a), ekl(b)] =


1 if j ̸= k and i ̸= l;
eil(ab) if j = k and i ̸= l;
ekj(−ab) if j ̸= k and i = l.

We want the Steinberg group to be generated by symbols satisfying the same relations:

Definition 1.1.5. Let R be a ring. We define the Steinberg group Stn(R) of order n ≥ 3
over R to be the free group generated by symbols xij(a) for which 0 ≤ i, j ≤ n, i ̸= j
and a ∈ R, subject to the following relations:

1. xij(a)xij(b) = xij(a+ b);

2. [xij(a), xkl(b)] = xil(ab) if i ̸= l;

3. [xij(a), xkl(b)] = 1 if j ̸= k and i ̸= l.

There are natural maps Stn(R) → Stn+1(R) for each n. Let the colimit of the
associated directed system be denoted St(R). Moreover, for any n, define the map
ϕn : St(R) → GLn(R) by the assignment xij(x) 7→ eij(x). The image is precisely the
elementary matrix group En(R). Taking the colimit gives the map ϕ : St(R)→ E(R).

Definition 1.1.6. The second algebraic K-group of the ring R is defined to be

K2(R) := ker(St(R)→ E(R)).

For fields, there is a particularly nice description of the algebraic K-theory group,
attributed to Matsumoto. A proof can be found in [Ros94, Theorem 4.3.15]:

Theorem 1.1.7 (Matsumoto). The second K-group K2(F ) of a field F is the free abelian
group on generators {x, y} with x, y ∈ F×, subject only to the following relations:

1. {x, 1− x} = 0 for x ∈ F − {0, 1} (Steinberg relation);

2. {xy, z} = {x, z}+ {y, z};

3. {x, yz} = {x, y}+ {x, z}.

5



Chapter 1. K-theory

Example 1.1.8. Let F = Fq be a finite field. Then, by the exact same argument we
will see in proposition 1.2.4, we have K2(F ) = 0. ♣

For the reader familiar with the notion of classifying space and the Quillen plus
construction, the following definition of higher algebraic K-groups will make sense:

Definition 1.1.9. For n > 0, we define the nth algebraic K-group of the ring R to be

Kn(R) := πn(BGL(R)+)

Remark 1.1.10. Definition 1.1.9 is the definition for K-groups of an arbitrary ring. It is
also possible to define algebraic K-theory of a scheme (see e.g. [Wei13, Ch. IV]). Note
that these definitions of higher algebraic K-theory coincide with the previous definitions
of K0, K1 and K2.

As our interests are closely related to finite fields, we include this highly nontrivial
computation done by Quillen:

Theorem 1.1.11 ([Qui72]). The K-groups of finite fields are given by

Kn(Fq) ∼=


Z if n = 0;
Z/qi − 1 for n = 2i− 1;
0 for n > 0 even.

1.2 Milnor K-theory

Recall the second algebraic K-group of fields. Due to Matsumoto (Theorem 1.1.7), they
have a rather nice description in terms of generators and relations. In order to study
the higher algebraic K-groups of fields, Milnor [Mil70] introduced the now called Milnor
K-theory, extending these relations to every degree. Despite his calling the definition
‘purely ad hoc’ for n ≥ 3 [Mil70, p. 319], there are some remarkable connections to the
motivic world, as we will see in the next chapter.

For the entire section, let F be a field. We write the n-fold tensor product
(F×)⊗n := F× ⊗ · · · ⊗ F×, where (F×)⊗0 := Z.

Definition 1.2.1. Let n ≥ 0. The Milnor K-theory of a field F is the graded ring
KM

∗ (F ) where the nth component is given by

KM
n (F ) = (F×)⊗n

(a1 ⊗ · · · ⊗ an : ai + ai+1 = 1 for some i) .

We denote the image of a1 ⊗ · · · ⊗ an ∈ (F×)⊗n in KM
n (F ) by the canonical map

l : F× → KM
n on each component by {a1, . . . , an}.

Remark 1.2.2. The expressions {x1, . . . , xn} ∈ KM
n (F ) are called Steinberg symbols,

satisfying the Steinberg relation {x1, . . . , xn} = 0 if xi + xi+1 = 1 for some i.

Lemma 1.2.3. Some basic properties of the Steinberg symbols are

(a)
{
a−1} = −{a};

(b)
{
a−1, b

}
= −{a, b} =

{
a, b−1};

(c) {x,−x} = 0 for all x;

6



1.2. Milnor K-theory

(d) {x, y} = −{y, x}.

Proof. For (a), observe that {1} = {1} + {1}, so {1} = 0. Then we can compute
0 = {1} =

{
aa−1} = {a}+

{
a−1}.

For (b), observe that
{
a−1, b

}
+ {a, b} =

{
a−1a, b

}
= {1, b} = 0. A similar

computation gives the second equality.
For (c), we utilize that F is a field, and get

{x,−x} =
{
x, (1− x)(1− x−1)−1

}
= {x, 1− x} −

{
x, 1− x−1

}
= {x, 1− x}+

{
x−1, 1− x−1

}
= 0.

Thus we can compute (d):

{x, y}+ {y, x} = {x, y}+ {x,−x}+ {y,−y}+ {y, x}
= {x,−xy}+ {y,−xy}
= {xy,−xy}
= 0.

Proposition 1.2.4. The Milnor K-theory of a finite field is concentrated in degrees 0
and 1, taking values

KM
n (Fq) ∼=


Z if n = 0;
F×
q if n = 1;

0 otherwise.

Proof. Let F = Fq. The result for n = 0 and n = 1 by definition. For n = 2, consider
the following:

Let u ∈ F× be a generator of the cyclic group of units in F . Then, given any
{x, y} ∈ KM

2 (F ), we have

{x, y} = {um, un} = mn {u, u} .

It is enough to show that {u, u} = 0.
Case: char F = 2. Then x = −x ∈ F and {u, u} = {u,−u} = −{u, u} = 0.
Case: char F ̸= 2. Then we construct the set A := F× − (F×)2 of non-squares,

and the set B := {1− v | v ∈ A}. Note that there is an obvious bijection between these
sets, and we claim that they have nonempty intersection. To see this, assume that they
do not. Then, as both sets have cardinality (q − 1)/2, their union is exactly F×. Now,
1 = 12 /∈ A, and 0 /∈ A ⊆ F×, so 1 /∈ B, which is a contradiction. Thus, A and B have
nonempty intersection, and there exist odd m,n such that um = 1− un. But then

0 = {un, un − 1} = {un, um} = mn {u, u} = (2k + 1) {u, u} = {u, u}

as we wanted.

The Milnor K-theory modulo 2 appears in our calculations (e.g. in definition 2.2.5),
so we include it here:

Definition 1.2.5. Milnor K-theory modulo 2 is the quotient

kM∗ (F ) := KM
∗ (F )/2KM

∗ (F ).
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Chapter 1. K-theory

A discussion on Milnor K-theory is hardly complete without a mention of the famous
Milnor conjecture, proposed by John Milnor in [Mil70], connecting Milnor K-theory and
étale cohomology. It is now a theorem, due to Voevodsky [Voe96].

Theorem 1.2.6. Let F be a field of characteristic not 2. The norm residue
homomorphisms

KM
n (F )/2 −→ Hn

et(F,Z/2)

are isomorphisms for all n ≥ 0.

1.3 Milnor-Witt K-theory

Milnor-Witt K-theory is defined similarly to Milnor K-theory, but we introduce a symbol
carrying negative degree. This gives rise to a richer structure. We mention Milnor-Witt
K-theory because of applications to computations of Hermitian K-theory. The following
definition is by Morel in collaboration with Hopkins:

Definition 1.3.1 ([Mor12, Definition 3.1]). Let F be a field, and consider the graded
free associative algebra generated by symbols [u] of units u ∈ F× of degree 1, and the
symbol η of degree −1. The Milnor-Witt K-theory of F , KMW

∗ (F ), is defined as this
algebra subject to the following relations

1. [ab] = [a] + [b] + η[a][b] for each a, b ∈ F× (η-twisted logarithm rule).

2. [a][1− a] = 0 for all a ∈ F − {0, 1} (Steinberg relation).

3. [a]η = η[a] for every u ∈ F×.

4. (2 + [−1]η)η = 0 (Witt relation).

Remark 1.3.2. Taking the quotient KMW
∗ (F )/(η), recovers the definition of Milnor K-

theory.
In order to state some elementary relations for KMW

∗ (F ), we introduce some notation:
⟨a⟩ := 1 + [a]η and h := ⟨1⟩+ ⟨−1⟩.

Lemma 1.3.3 ([Mor12, Lemma 3.5]). In KMW
∗ (F ), the following relations hold for every

a, b ∈ F×:

1. [ab] = [a] + ⟨a⟩[b] = [a]⟨b⟩+ [b],

2. ⟨ab⟩ = ⟨a⟩⟨b⟩,

3. ⟨1⟩ = 1 ∈ KMW
0 (F ) and [1] = 0 ∈ KMW

0 , and

4. [a/b] = [a]− ⟨a/b⟩[b].

Proof. All 3 first cases are proven in [Mor12]. The fourth can be shown like this: Note
by (a) that ⟨b−1⟩[b] = [b−1b]− [b−1] = −[b−1]. Using this, we get

[a/b] = [ab−1] = [a] + ⟨a⟩[b−1]
= [a]− ⟨a⟩⟨b−1⟩[b]
= [a]− ⟨a/b⟩[b].

8



1.3. Milnor-Witt K-theory

1.3.1 Symmetric Bilinear Forms and GW(F )

In order to compute the Milnor-Witt K-theory of specific fields, we introduce the
Grothendieck-Witt and Witt rings of fields. The following will be based on [Mil73]
and [Lam05].

Let R be a commutative ring with unity, and M be an R-module.

Definition 1.3.4. A bilinear form on M is a pairing β : M × M → R which is R-
linear in the first and the second argument. If the homomorphims x0 7→ β(x0,−) and
y0 7→ β(−, y0) are both bijective, then we say that β is an inner product. If M is also
finitely generated projective, we call (M,β) an inner product space over R. Finally, if
β(m,m′) = β(m′,m), we say that β is a symmetric bilinear form.

We define a map of inner product spaces f : (M,β)→ (M ′, β′) to be a map such that
the diagram

M ×M M ′ ×M ′

A

f×f

β β′

commutes, and such maps are called isometries if they are isomorphisms.

Symmetric inner product spaces over R form a category SBil(R). We can define the
category SBiliso(R) of isomorphism classes of inner product spaces. Giving it an additive
structure under the orthogonal sum, we get a commutative monoid:

(M,β)⊕ (M ′, β′) := (M ⊕M ′, β ⊕ β′),

where (β ⊕ β′)(m1 ⊕ m′
1,m2 ⊕ m′

2) := β(m1,m2) + β′(m′
1,m

′
2). Furthermore, we can

give SBiliso(R) a commutative multiplicative structure under the tensor product over R,
where we let

(M,β)⊗ (M ′, β′) := (M ⊗M ′, β ⊗ β′).

This gives our category a semiring structure. In order to make it a ring, we would like to
use the Grothendieck construction from section 1.1.1. This requires Witt’s cancellation
theorem:

Theorem 1.3.5 ([Mil73, pp. I, 4.4]). If X,Y and Z are inner product spaces, then

X ⊕ Y ∼= X ⊕ Z =⇒ Y ∼= Z.

The above theorem implies that SBiliso(R) is a cancellation monoid. Applying the
K0-functor adds inverses to the direct sum operation. We define the Grothendieck-Witt
ring of R to be

GW(R) := K0SBiliso(R).

When F is a field and u ∈ F×, we introduce the symbol ⟨u⟩ to be the inner product
space (F 2, Bu) with the form Bu(x, y) = uxy. This allows us to define the hyperbolic
plane to be h := ⟨1⟩ + ⟨−1⟩. We get the Witt ring W (R) by taking the quotient of
GW(R)/(h), where the ideal (h) is the ideal in GW(R) generated by h. In fact, one can
show that (h) coincides with Zh [Lam05, Ch. II].

There are maps dim: GW(R)→ Z and dim0 : W(R)→ Z/2. They are the dimension
and the dimension mod two maps, respectively. We denote the kernel GI(R) := ker dim

9



Chapter 1. K-theory

and I(R) := ker dim0, and call it the fundamental ideal. A snake lemma argument shows
that GI(R) ∼= I(R), and we have a commutative diagram with exact rows:

0 GI GW(A) Z 0

0 I W(A) Z/2 0

∼=

dim

dim0

The Grothendieck-Witt and Witt rings have rather nice presentations with relations
making them easier to work with. In order to prove the relationship between Milnor-Witt
K-theory and these rings, one needs the following:

Theorem 1.3.6 ([Mil73, p. 84]). Let F be a field. The additive group W(F ) is generated
by the elements ⟨u⟩ with u ∈ F×, subject to the following relations:

1. ⟨u⟩ = ⟨uv2⟩ for v ̸= 0;

2. ⟨u⟩+ ⟨−u⟩ = 0;

3. ⟨u⟩+ ⟨v⟩ = ⟨u+ v⟩+ ⟨uv(u+ v)⟩.

1.3.2 Comparison with KMW
∗

For n ≥ 0, we construct homomorphisms ϕ−n into KMW
−n (F ) as follows: Define

ϕ0 : GW(F ) → KMW
0 (F ) by ⟨u⟩ 7→ ⟨u⟩ and ϕ−n : W(F ) → KMW

−n (F ) by ⟨u⟩ 7→ ⟨u⟩.
The left hand side vertical map is the quotient map, and the right hand side vertical
maps are multiplication by η maps. Then we get the following commutative diagram:

GW(F ) KMW
0 (F )

W(F ) KMW
−1 (F )

KMW
−2 (F )

KMW
−3 (F )

...

ϕ0

η

ϕ−3

ϕ−2

ϕ−1

η

η

η

Theorem 1.3.7 ([Mor12, Lemma 2.10]). The homomorphism ϕ−n is an isomorphism
for every n ≥ 0.

For this result to be useful to us, we need to know the structure of the Grothendieck-
Witt and Witt rings over finite fields. The following is a blend of II.3.5 and II.3.6 in
[Lam05]:

Theorem 1.3.8. Let F = Fq with q odd. Then we have ring isomorphisms

1. GW(F ) ∼= Z⊕ Z/2,

10
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2. if q ≡ 1 mod 4, then W(F ) ∼= Z/2[F×/(F×)2],

3. if q ≡ 3 mod 4, then W(F ) ∼= Z/4,

where in case 2, Z/2[F×/(F×)2] denotes the group ring on F×/(F×)2.

In order to compute the Milnor-Witt K-theory of Fq for positive n, we require the
following theorem:

Theorem 1.3.9 ([GSZ15]). For any field F and every n ≥ 0 , there is a short exact
sequence

0 In+1(F ) KMW
n (F ) KM

n (F ) 0,

where In+1(F ) is the (n+ 1)th power of the fundamental ideal.

It follows from Theorem 1.3.9 that Ik(Fq) = 0 for k ≥ 2. Thus, so there is an
isomorphism KMW

n (Fq) ∼= KM
n (Fq) whenever n ≥ 1.

Now, we can give a complete description of the Milnor-Witt K-theory of finite fields:

Corollary 1.3.10. Let q be odd. Then the Milnor-Witt K-theory of finite fields is given
by

KMW
n (Fq) ∼=



Z/2[F×
q /(F×

q )2] if n < 0 and q ≡ 1 mod 4;
Z/4 if n < 0 and q ≡ 3 mod 4;
Z⊕ Z/2 if n = 0;
F×
q if n = 1;

0 otherwise.

1.4 Hermitian K-theory

Hermitian K-theory is in some sense the algebraic counterpart to real topological K-
theory. This section will give definitions for the target of the computation carried out
in chapter 4. The construction of the zeroth Hermitian K-ring coincides, as we will see,
with the construction of the Grothendieck-Witt ring.

We follow the construction given in [Bak81], tailored to our needs. Instead of
considering commutative rings with involution, we consider fields with trivial involution.
Throughout this section, let V be a vector space over a field F of characteristic different
from 2.

Definition 1.4.1. A sesqulinear form B on a vector space V over a field F is a map

B : V → HomF (V, F )

If B is injective, it is called nonsingular, regular, or non-degenerate.

Note that there is an adjunction between tensor product and Hom(−, F ), such that
HomF (V ⊗ V, F ) ∼= HomF (V,HomF (V, F )). Thus, every map B : V → HomF (V, F )
corresponds to a map B′ : V ⊗ V → F .

We can define the Hermitian evaluation map for a finitely generated projective
module M , evM : M → M∗∗, which is given by m 7→ (f 7→ f(m)). The following
lemma is a classic. We state it for projective modules over rings, but we only need it for
vector feilds:

11
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Lemma 1.4.2. The map evM : M → M∗∗ with M in P(R) is a natural isomorphism
of finitely generated projective modules.

Proof. This is an outline of the proof. Firstly, one checks that the dual of a projective
module is indeed projective. Then, note that a fundamental characterization of projective
modules is the existence of dual generating sets. In particular, for generating sets
{xi}i∈I ⊆ P and {fi}i∈I ⊆ P ∗, every x ∈ P can be written x = ∑

i∈I fi(x)xi. Then,
for any projective module P , letting x 7→ (f 7→ f(x)) = 0 in P ∗∗ is the same as saying
f(x) = 0 for all f ∈ P ∗. In particular, that goes for all fi in the generating set of P ∗.
Thus, x = ∑

i∈I fi(x)(xi) = 0, i.e. the map is injective.
For surjectivity, one can show that P is finitely generated projective if and only if

there are x1, . . . , xn ∈ P and f1, . . . fn ∈ P ∗, both generating sets, such that every x ∈ P
can be expressed x = ∑n

i=1 fi(x)xi. Let x1, . . . xn ∈ P and f1, . . . , fn ∈ P ∗ be generators,
and denote by x̂ := evM (x). Take the generating set x̂1, . . . x̂n of P ∗∗, and note that for
any x ∈ P , x = ∑n

i=1 fi(x)xi. Applying any f ∈ P ∗ on both sides,

f(x) =
n∑
i=1

fi(x)f(xi) =
n∑
i=1

fi(x)x̂i(f),

i.e., f = ∑n
i=1 x̂i(f)fi. Hence the x̂i generate P ∗∗, and we are done.

Definition 1.4.3. Given λ ∈ F , we define a λ-Hermitian form to be a nonsingular
sesqulinear form B on V such that the composite V V ∗∗ V ∗evV λB∗

is equal to
B.

Note that by the adjunction mentioned above, one could equally well have defined
the λ-Hermitian form to a nonsingular sesqulinear form B satisfying the relation
B(x, y) = λB(y, x).

Now we can define the category Pλ(F ) of λ-Hermitian forms on F . Objects are pairs
(V,B) of a vector spaces V over F and λ-Hermitian forms B : V → V ∗. Morphisms are
maps f : (V,B)→ (V ′, B′) which preserve λ-Hermitian forms, i.e. f∗B′f = B, meaning
that the following commutes

V V ′

V ∗ (V ′)∗

B

f

B′

f∗

We note that since Hermitian forms are non-singular, all the morphisms are
necessarily injective.

Consider the subcategory P(F )iso of P(F ) where the objects are the same, but
the only morphisms are isomorphisms. We define the so-called hyperbolization functor
Hλ : P(F )iso → Pλ(F ), sending a vector space V 7→ (V ⊕ V ∗, B), where B is the
symmetric bilinear form defined by B((x ⊕ f), (y ⊕ g)) = f(y) + λg(x), or equivalently
by the matrix (

0 1
λ 0

)
.

Morphisms f : V →W are sent to f ⊕ (f∗)−1 : V ⊕ V ∗ →W ⊕W ∗.

Definition 1.4.4. Modules in the image of Hλ are called hyperbolic, and we call Hλ(F )
the hyperbolic plane.
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Similarly to what we did with symmetric bilinear forms in section 1.3.1, we can give
the category Pλ(F ) a symmetric monoidal structure. We equip it with direct sum as
addition and tensor product as multiplication to get

(V,B)⊕ (V ′, B′) := (V ⊕ V ′, B ⊕B′)

and
(V,B)⊗ (V ′, B′) := (V ⊗ V ′, B ⊗B′),

giving it the familiar semiring structure. This allows for the use of the Grothendieck
construction.

Definition 1.4.5. For a field F , the zeroth λ-Hermitian K-theory ring of F is defined
to be

Kλ
0 (F ) := K0(Pλ(F )).

The symmetric and anti-symmetric forms play significant roles, so define

Kh
0 (F ) := K1

0 (F )
Ksp

0 (F ) := K−1
0 (F ),

where Kh
0 is called the zeroth Hermitian K-theory ring of F .

Remark 1.4.6. We have that P1(F ) is just the symmetric bilinear forms on vector spaces
over F . So the construction of Kh

0 (F ) makes it coincide with the familiar Grothendieck-
Witt ring of F , so GW(F ) ∼= Kh

0F .

We recall the construction of K1 in algebraic K-theory from section 1.1.2, as a
quotient of GL(F ). We construct Kh

1 (F ) analaguously:
Consider the group Aut(Hλ(Fn)) of automorphisms, as a subgroup of GL2n(F ).

Define the λ-Hermitian general linear groups GLλ2n(F ) := Aut(Hλ(Fn)). Further, define
GLλ(F ) := colimn GLλ2n(F ) where we take the colimit as a subgroup of GL(F ) =
colimn GLn(F ). Following the construction of algebraic K-theory, we introduce the
subgroup of λ-Hermitian elementary matrices, Eλ2n(F ) ⊂ GLλ2n(F ), generated by
matrices on the forms (

E 0
0 E−1

)
,

(
I B
0 I

)
,

(
I 0
B I

)
,

where E is an elementary matrix of GL2n(F ) and B is a λ-Hermitian form. Taking
the colimit, we define Eλ(F ) := colimnE

λ
2n(F ). Furthermore, by [Bak81, corollary 3.9],

Eλ(F ) is equal to [GLλ(F ),GLλ(F )], the commutator subgroup.

Definition 1.4.7. The first λ-Hermitian K-group of F is defined as Kλ
1 (F ) :=

GLλ(F )/Eλ(F ), i.e., the abelianization of GLλ(F ).

The determinant map det : GL1
2n(F )→ F× gives an induced determinant map from

K1
1 (F ). The next lemma is of great importance to the computation carried out in

chapter 4.

Lemma 1.4.8. The induced determinant map from GL1
2n(F ) on Kh

1 (F ) is split surjective
onto the multiplicative group {±1}.
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Proof. From [FG05, p. 130], the group of automorphisms on Hλ(Fn) can be identified
with λOn(F ), defined to be the group consisting of exactly the 2n× 2n block matrices

M =
(
a b
c d

)

such that M−1M = MM−1 = I2n and the inverse is given by

M−1 = Γ(M) :=
(
dT λbT

λcT aT

)
.

In our case, λ = 1. Then it is easy to see that Γ is determinant-preserving, as it performs
an even number of permutations of columns and rows. Thus MΓ(M) = I implies

det(MΓ(M)) = det(M) det(Γ(M)) = 1.

Thus, any M ∈ On(F ) has determinant ±1.
There is an inclusion map On(F ) ↪→ On+1(F ) given by the determinant-preserving

map (
a b
c d

)
7→


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 .
The fact that this inclusion is determinant preserving, can easily be seen by realizing
that the total number of permuations of rows and columns that are needed to get to
the matrix with a, b, c and d on the upper left corner is even. Furthermore, there is a
directed system

O1(F ) ↪→ O2(F ) ↪→ · · · ↪→ On(F ) ↪→ · · ·
whose colimit, the orthogonal group, is deonted by O(F ). Recall that Kh

1 (F ) ∼= O(F )ab.
Since the abelianization is a quotient, there is a surjective group homomorphism
π : O(F )→ O(F )ab.

We claim that there is a well defined induced determinant map on O(n). Using the
universal property of the colimit, there exists a unique map det : O(F )→ {±1} through
which every determinant map detn : On(F ) → {±1} factors. In other words, for all
m < n, the following commutes:

Om(F )

O(F ) {±1}

On(F )

ϕm

detm

det

ϕn

detn

Consider now the map π : O(F ) → O(F )ab to the abelianization of O(F ). Recall
that the universal property for the abelianization implies that every map O(F ) → G
to an abelian group G factors uniquely through the abelianization O(F )ab. Thus, there
exists a unique map d̃et : O(F )ab → {±1}, making the following diagram commute:

On(F ) O(F ) O(F )ab

{±1}
detn

ϕn

det

π

d̃et
(1.1)
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To see that d̃et is indeed surjective observe that one can choose

I2 :=
(

1 0
0 1

)
∈ O1(F ) and J2 :=

(
0 1
1 0

)
∈ O1(F )

whose respective images in O(F )ab are denoted by I and J . As (1.1) commutes, we have
that

d̃et(I) = det(I2) = 1 and d̃et(J) = det(J2) = −1.
This concludes the part of the proof showing that the induced determinant map on
Kh

1 (F ) ∼= O(F )ab is surjective.
To show that d̃et is split surjective, we search for a retraction r : {±1} → O(F )ab

such that the composition d̃et◦ r = id{±1}. We claim that the assignments 1 7→ π(ϕ1(I2))
and −1 7→ π(ϕ1(J2)) give a homomorphism satisfying the retraction property. To see
that r is a homomorphism, note that it factors as r : {±1} → O1(F )→ O(F )→ O(F )ab
which is a homomorphism if the first arrow is, as it would follow that r is a composition
of homomorphisms. Routine checks give that

1 · 1 = 1 7→ I2 = I2I2,

(−1) · (−1) = 1 7→ I2 = J2J2,

(−1) · 1 = 1 · (−1) = −1 7→ J2 = I1J2 = J2I1,

and r is indeed a homomorphism. When one realises that composing r with d̃et gives
the identity on {±1}, the proof is done.

Defining the second Hermitian K-group can be done analogously to the algebraic
case, by introducing the λ-Hermitian Steinberg group Stλ(F ). This is done in [Bak81,
Lemma 3.16], and resembles the construction of the Steinberg group in the algebraic
case. There is a canonical map Stλ(F )→ Eλ(F ) defined in [Bak81, Theorem 3.17], and
we can use this to define the second Hermitian K-group:

Definition 1.4.9. The second λ-Hermitian K-group is given as Kλ
2 := ker(Stλ(F ) →

Eλ(F )).

Inserting λ = 1 in the definitions above gives the Hermitian Kh
i (F )-groups, known

as Hermitian K-theory, and inserting λ = −1 gives the corresponding K-groups for the
anti-symmetric forms, Ksp

i (F ).

1.4.1 Higher Hermitian K-theory

This presentation of the higher Hermitian K-groups is based on [Hor05]. Before giving
the main definition, there are some preliminaries.
Remark 1.4.10. Hornbostel [Hor05] defines the Hermitian K-groups for so-called additive
categories with duality. This is slightly more general than what we need. Note that
Vect(X), which we introduce further down, is a category with duality in the sense of
[Hor05, Definition 1.1].

Definition 1.4.11. Given any small category C, the nerve of C is the simplicial set NC
defined in the following way: Its n-simplices are diagrams c : [n+ 1]→ C of the form

c0 → c1 → · · · → cn.

It comes with the face maps ∂i(c), which forgets the ith face in the obvious way, and the
coface (or degeneracy) map σi(c), replacing ci with ci

=−→ ci.
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Given a simplicial set, one can consider the geometric realization, a construction
detailed in e.g. [May99, ch. 16]. The geometric realization of a simplicial set S is
denoted |S|, and we define BC := |NC|.

Denote by iC the category whose objects are the objects of C and morphisms are the
isomorphisms of C.

Definition 1.4.12. Let (C,□) be a symmetric monoidal category for which iC = C.
Construct C+ := C−1C the following way: Objects are pairs (m,n) of objects in C.
Morphisms are equivalence classes of composites

(m1,m2) s□−→ (s□m1, s□m2) (f,g)−→ (n1, n2)

for s an object of C. We let the above composite be equivalent to the composite

(m1,m2) t□−→ (t□m1, t□m2) (f ′,g′)−→ (n1, n2)

if and only if there is an isomorphism η : s→ t in C.

There is an inclusion functor C → C−1C defined by sending m 7→ (m, e). This induces
a natural map BC → B(C−1C) [Wei13, Remark 4.2.2]. Next we can define C+ := C−1C
with a functor C → C+ such that BC → BC−1C is a group completion (at least under
very mild hypotheses [Hor05, p. 665]).

Let X be a scheme, and Vect(X) the category of locally free OX sheaves of finite
rank. Note that this is a symmetric monoidal category with respect to direct sum, and
it has a duality functor ∗ = HomOX

(−,OX) s.t. ∗(M) =: M∗ [Har77, Ch. II.5].

Definition 1.4.13. For a scheme X, define the Hermitian category of Vect(X), denoted
Vect(X)h, to be the category with objects pairs

(M,ϕ : M
∼=→M∗)

for M an object of Vect(X) and ϕ an isomorphism. Morphisms are maps f : (M,ϕ) →
(M ′, ψ) for which the following diagram comutes:

M M∗

M ′ (M ′)∗

f

ϕ

ψ

f∗

Definition 1.4.14. The Hermitian K-theory space of a scheme X is defined to be

Kh(X) := B(iVect(X)+
h ),

and the Hermitian K-theory of X is defined to be

Kh
n(X) := πn(Kh(X)).
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Chapter 2

Motivic Homotopy Theory

Motivic homotopy theory aims to study smooth schemes by the means of abstract
homotopy theory. Despite its young age, it has already seen spectacular applications,
for instance in the proofs of the Milnor and Bloch-Kato conjectures. The overarching
idea is to let the affine line A1 play the role of the unit interval in classical topology.
Indeed, the unit interval is not an algebraic variety, but the affine line is, and this would
result in a purely algebraic way of doing homotopy theory.

The focus of this chapter is to give a general introduction to motivic homotopy
theory, introduce the stable motivic homotopy category along with some of its properties,
and some cohomology theories and spectra representing these. Most of these will be
important to the computation in chapter 4, as they show up as very effective slices of
the Hermitian K-theory spectrum.

2.1 The Construction of SH(F )

The following is based on [Voe98], and is a sketch of Voevodsky’s construction. In order
to arrive at the stable motivic homotopy category, we need model structures along the
way. Few details will be given when it comes to model structures, and we refer to [Hov99]
for the curious reader.

The starting point is the category of smooth separated schemes of finite type over a
field F , denoted SmF , which we will embed into a larger category with nice categorical
properties, making it suitable for doing abstract homotopy theory. As mentioned, the
basic idea is to let the affine line A1 play the role of the unit interval, and do homotopy
theory on smooth schemes from there. Doing this directly is no good idea, however.
Indeed, it is not obvious how one would make the affine line contractible. Another issue
is that SmF does not have all small colimits, and in particular it does not even have all
quotients.

Given a category C, the standard way of formally adding the colimits of all small
diagrams is to consider the category of presheaves on C. That is, the category of all
contravariant functors from C to the category Set of sets: Pre(C) := [Cop, Set]. Every
object X ∈ C gives rise to a presheaf RX : Cop → Set, sending Y to the set HomC(Y,X).
By the Yoneda lemma, we embed C into Pre(C), identifying C it with the full subcategory
of its image. The morphisms in this new category are the natural transformations. The
resulting category contains all small limits and colimits i.e., it is bicomplete, as wanted.
In the same way, we embed SmF ↪→ Pre(SmF ) = [Smop

F ,Set].
To make easier classical homotopical constructions such as taking homotopy

(co)limits, we make a further embedding. Let ∆ be the simplicial category of finite
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ordered sets [n] := {1 < · · · < n} and morphisms nondecreasing maps of such sets. Let
[∆op, Set] be the category of simplicial sets, that is, contravariant functors ∆op → Set.
We embed

Pre(SmF ) ↪→ ∆opPre(SmF ) := [∆op,Pre(SmF )]

by mapping X 7→ ([n] 7→ X), i.e., mapping any presheaf to a constant simplicial presheaf.
We embed the simplicial sets ∆opSet ↪→ ∆opPre(SmF ) via the mapping X 7→ X,
evaluating all objects of SmF to X.

Now the category ∆opPre(SmF ) has all the nice categorical properties we want for
doing abstract homotopy theory, and we name it the category of motivic spaces, denoted
MS(F ). We note that SpecF is the terminal object of this category.

In order to endow MS(F ) with a model structure, one needs to define classes of
fibrations, cofibrations and weak equivalences. We will not spend time on that here, and
refer to [Voe98] for details. To make this this category useful, we consider SmF with the
Nisnevich topology, which is finer than the Zariski topology, but coarser than the étale
topology - exactly what is needed to prove interesting results like the homotopy purity
theorem and descent theorems for algebraic K-theory.

The category MS(F ) is now endowed with a model structure, taking the Nisnevich
topology on SmF into account. We localize this with respect to A1 → ∗, to
give a (motivic) model structure which is both proper and closed [Voe98]. The
resulting homotopy category will be denoted H(F ), and we denote the morphism
classes HomH(F )(X,Y ) as [X,Y ]H(F ). The category of pointed motivic spacesMS•(F ),
is defined by a canonical functor from an unpointed category via the assignment
X 7→ X+ := (X∐SpecF,SpecF ). By localizing MS•(F ), we get the pointed motivic
homotopy category H•(F ).

The categoryMS•(F ) is bicomplete, and has in particular all quotients. This means
that many of the familiar constructions from topology are available to us. Quotients of
spaces X by Y is given by the familiar push-out squares

Y X

∗ X/Y

⌜

where X/Y is pointed by the image of Y . For an arbitrary collection of spaces pointed
spaces (Xi, xi)i∈I , the wedge product ∨i∈I(Xi, xi) is given by

∐
i∈I xi

∐
i∈I Xi

∗
∨
i∈I Xi

⌜

These operations suffice to define the smash product, X ∧ Y := (X × Y )/(X ∨ Y ).
From the embeddings of SmF and ∆op(Set) intoMS(F ), we get two different kinds

of spheres: The usual one from topology, i.e. the simplicial sphere

S1,0 := ∆1/∂∆1,

pointed by ∆0, and, originating from SmF , the so-called Tate-circle

S1,1 := A1 − {0} ,
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pointed by 1. Note that the latter often is denoted Gm. Now, as we have a notion of
smash product in our category, we can form spheres of arbitrary degree by smashing it
with itself:

Sp+q,q := (S1,0)∧p ∧ (S1,1)∧q.

Furhtermore, this gives a suspension functor Σp,qX := Sp,q ∧X.
Remark 2.1.1. Note that another common grading convention for motivic spheres is the
so-called (m+αn)-grading, where S1 := S1,0 and Sα = S1,1. We can translate betwwen
them by

Sp,q = S(p−q)+qα,

but we will primarily be using the (p, q)-grading in this thesis. The α in the definition
of the Tate circle is nothing else than a ‘basis vector’ to keep track of how many of what
sphere we have smashed with. Thus, the bigrading carries the exact same meaning.

Proposition 2.1.2 ([Voe98, Lemma 4.1]). In the pointed motivic homotopy category
H•(F ), we have the canonical isomorphisms

(An − {1}) ∼= S2n−1,n−1 and Pn/Pn−1 ∼= An/An − {0} ∼= S2n,n.

Proof. The following is the proof the case n = 1 of the latter claim. See e.g. [MV99,
pp. 110-113] for a proof of the general case. Begin by computing the homotopy colimit
of the diagram ∗ ←− (A1 −{0}) −→ A1 in the category of motivic spaces. By [Str11, p.
153], this is equal to the simplicial suspension of A1 − {0}, giving

hocolim(∗ ←− (A1 − {0}) −→ A1) ≃ Σ1,0(A1 − {0}) = S2,1.

We compute this homotopy colimit a different way, keeping in mind that the affine line
is weakly equivalent to ∗. Consider the diagram

A1 − {0} A1

A1 P1

⌜

which is a pushout by gluing. We now have the equivalences

S2,1 ≃ hocolim(∗ ←− (A1 − {0}) −→ ∗) ≃ P1,

which become canonical isomorphisms in H•(F ).

To construct the motivic stable homotopy category, we need the notion of a
spectrum. Denote the P1-suspension functor X 7→ P1 ∧ X by ΣP1 . Inductively, define
Σn
P1 := ΣP1 ∧ Σn−1

P1 .

Definition 2.1.3. A P1-spectrum is a sequence of pointed spaces E = {En}n∈N for
Xn ∈MS•(F ) and structure maps σEn : ΣP1En → En+1. A map of P1-spectra f : E → F
is a sequence of maps {fn : Xn → Yn}n∈N for which the square

ΣP1En En+1

ΣP1Fn Fn+1

fn

σE
n

fn+1

σF
n

commutes for every n. These objects and morphisms constitute the category of P1-
spectra, denoted Spt(F ).
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Chapter 2. Motivic Homotopy Theory

As an analogue to the suspension spectrum in topology, we define the stabilization
functor Σ∞

P1 : MS•(F ) → Spt(F ) mapping a pointed space X to the spectrum{
Σn
P1X, id

}
n∈N, where Σn

P1 is the ‘smashing with P1 n times-functor’. The previously
discussed canonical mapMS(F )→MS•(F ) now gives a functorMS(F )→ Spt(F ). It
takes a scheme X ∈ SmF to the spectrum Σ∞

P1X+.

Definition 2.1.4. We define the sphere spectrum to be S := Σ∞
P1SpecF+.

We mention briefly how we give Spt(F ) a stable model structure and refer to [Jar00]
for the detail-hungry reader. Let the category of spectra Spt(F ) inherit a levelwise
model structure from the category MS•(F ). I.e., a map X → Y in Spt(F ) is a weak
equivalence (resp. (co)fibration) if the component maps Xn → Yn are weak equivalences
(resp. (co)fibrations) in MS•(F ). Having this levelwise model structure on Spt(F ),
one proceeds to construct a stable model structure on Spt(F ) [Voe98] . The associated
homotopy category is the stable motivic homotopy category SH(F ). We denote the
morphism classes HomSH(F )(X,Y ) =: [X,Y ]SH(F ).

Theorem 2.1.5 ([Voe98]). The following statements hold for the category SH(F ):

• SH(F ) is a triangulated category, and the shift functor is given by the simplicial
suspension: Σ1,0 = S1,0 ∧ −.

• SH(F ) is symmetric monoidal with unit the sphere spectrum.

• SH(F ) is an additive category.

• The smash product and homotopy colimits in SH(F ) commute.

We proceed to define the stable motivic homotopy groups.

Definition 2.1.6. Let m,n ∈ N, X ∈ Spt(F ) and U ∈ SmF . There is a directed system

[Sm,n ∧ U+, X0]→ [Sm+2,n+1 ∧ U+, X1]→ · · · .

Define πm,nX(U) to be the colimit of the above system, defining a presheaf. We define
the bigraded stable homotopy groups of X as πm,nX := πm,n(X)(SpecF ).

Note that for a spectrum X of SH(F ), the stable homotopy groups are given as

πp,qX = [Sp,q, X]SH(F ).

Remark 2.1.7. Instead of writing π∗,∗ we will emphasize the bigrading of the homotopy
groups (and later (co)homology groups) by π⋆. For motivic homotopy groups πm,n(X),
we will refer to m as the topological degree and n as the weight.

Similarly, there are motivic (co)homology theories associated with motivic spectra:

Definition 2.1.8. For an object E ∈ SH(F ), we can assign a cohomology theory
Ep,q(−) and a homology theory Ep,q(−) on MS•(F ), as functors MS•(F )→ Ab, given
by

Ep,q(X) := [Σ∞
P1X,Sp,q ∧ E]

Ep,q(X) := [Sp,q, E ∧ Σ∞
P1X].
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2.2. Motivic Cohomology

Among the most fundamental objects to study in stable motivic homotopy theory
are the homotopy groups of sphere, πm,nS, and in fact, most of these are still unknown.
By necessity, they are more difficult to compute than the topological ones. This stems
from the fact that the complex realization of the sphere spectrum is just the topological
one, while the motivic spheres, of course, are more complicated.

Computations done by Morel show the following:

Theorem 2.1.9 ([Mor06]). For a perfect field F with charF ̸= 2 and n ∈ Z, there are
isomorphisms

πn,nS
∼=−→ KMW

−n (F )

and for m < n,
πm,nS = 0.

We end the section with some words on Brown representability.

Definition 2.1.10 ([Wei94, Definition 10.2.7]). Let K be a triangulated category with
shift functor T , and A an abelian category. A functor H : K → A is called covariant
cohomological (or homological) if the exact triangle (u, v, w) of (X,Y, Z) induces the
long exact sequence

· · · w
∗
−→ H(T iX) u∗

−→ H(T iY ) v∗
−→ H(T iZ) w∗

−→ H(T i+tX) u∗
−→ · · · .

Define a contravariant cohomological functor H to be a homological functor H : Kop →
A.

Remark 2.1.11. The cohomology theory functors of definition 2.1.8 are (co)homological
functors.

An important feature of SH(F ) is that it satisfies Brown representability:

Theorem 2.1.12 (Brown representability, [NS11]). Let F be a countable field and
H : SH(F ) → A a (co)homological functor. Then there exists a spectrum E ∈ SH(F )
such that E⋆ = H. In other words, every cohomology theory is representable by some
spectrum.

2.2 Motivic Cohomology

One of the immediate questions after constructing the stable motivic homotopy category,
is how we can define motivic cohomology. As motivic cohomology shows up on E1-page
of the very effective slice spectral sequence, it will be of great use to us. This section
introduces the concept and provides some relevant calculations and results.

Definition 2.2.1. Let X,U ∈ SmF . An elemantary finite correspondence of U × X
is a closed irreducible subset Z ⊂ U × X which is surjective and finite over U . Let
CorF (U,X) denote the free abelian group generated by such finite correspondences of
U ×X. Elements of CorF (U,X) are commonly referred to as finite correspondences.

Example 2.2.2. For a morphism f : U → X, the graph Γf = {(u, f(u)) |u ∈ U} is an
example of a cycle in CorF (U,X). ♣

Denote by CorF the categroy whose objects coincide with those in SmF and with
morphisms CorF (X,Y ).
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Chapter 2. Motivic Homotopy Theory

Definition 2.2.3 ([MVW06, definition 2.1]). A presheaf with transfers is a contravariant
additive functor F : Corop

F → Ab. The category of presheaves with transfers is denoted
PST(F ).

Let Ztr denote the class of presheaves with transfers provided by representable
functors.

Definition 2.2.4 ([MVW06, definition 3.1]). For an integer q ≥ 0, define a motivic
complex Z(q) to be the following complex of presheaves with transfers:

Z(q) := C∗Ztr(G∧q
m )[−q]

where Z(q) is considered bounded above – the shifting convention for [−q] implies that
the terms Z(q)i = Cq−iZtr(G∧q

m ) vanish whenever i > q, and C∗ means taking the Suslin
complex (see e.g. [MVW06, p. 16]). For any abelian group A, define

A(q) := Z(q)⊗A.

Definition 2.2.5 ([MVW06, definition 3.4]). For p, q ∈ Z, the motivic cohomology
groups Hp,q(X,Z) are defined to be the hypercohomology of the motivic complexes Z(q)
with respect to the Zariski topology:

Hp,q(X,Z) := Hp
Zar(X,Z(q)).

Furthermore, for any abelian group A, we define

Hp,q(X,A) := Hp
Zar(X,A(q)).

To aid computations, we mention some of the vanishing properties of motivic
cohomology. Here is a summary of some of these.

Theorem 2.2.6 ([MVW06, Theorem 3.6, 19.3, Corollary 4.2 and p.viii]). Let X be a
smooth scheme, and A an abelian group.

• Then Hp,q(X,A) = 0 when p > q + dimX, where dimX is the dimension in the
Zariski topology.

• Hp,q(X,A) = 0 for p > 2q,

• Hp,q(X,A) = 0 for q < 0,

• For X connected,

Hp,0(X,A) =
{
A for p = 0,
0 else,

• and

Hp,1(X,Z) =


O∗(X) for p = 1,
Pic(X) for p = 2,
0 for p ̸= 1, 2,

where O∗ is the sheaf of invertible elements in O and Pic(X) is the Picard group
of X [Har77, p. 141, 143].

Of particular interest to us is the motivic cohomology of a point:
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2.2. Motivic Cohomology

Theorem 2.2.7 ([MVW06, p. viii, Theorem 5.1]). For any field F and any n, the
motivic cohomology along the diaognal is given by

Hn,n(SpecF,A) ∼= KM
n (F )⊗A,

where KM
n (F ) is the nth Milnor K-group of F . Furthermore, from [DI10], we have that

H⋆(SpecF,Z/2) = kM∗ (F )[τ ],

where kM∗ is mod 2 Milnor K-theory (as in definition 1.2.5) and |τ | = (0, 1).

The following proposition will be essential to the main computation of this thesis:

Proposition 2.2.8. The integer coefficient motivic cohomology of finite fields of order
q is given by

Hm,n(SpecFq,Z) ∼=


Z m = n = 0,
Z/qn − 1 m = 1, n > 0,
0 otherwise.

For coefficients in Z/2, the motivic cohomology is given by H∗,∗(SpecF,Z/2) =
kM

∗ (Fq)[τ ] for |τ | = (0, 1). In particular, we get degreewise

Hm,n(SpecFq,Z/2) ∼=
{
Z/2 m = 0, n ≥ 0 or m = 1, n > 0,
0 otherwise.

Proof. The case for mod-2 coefficients follows immediately from theorem 2.2.7.
For the case of integer coefficients, we use the slice spectral sequence defined in

section 3.4, which is strongly convergent in this case by theorem 3.4.5. The E2-page
has input in motivic cohomology, and it converges to algebraic K-theory. The abutment
is the algebraic K-theory of finite fields, given by theorem 1.1.11, and one can try to
reconstruct the E2-page from there. Using the vanishing results of theorem 2.2.6, we
immediately see that the first and second quadrants are zero everywhere except at the
origin. The fourth quadrant is zero everywhere except for at p = 0. Futhermore, the
cohomological dimension of finite fields is 1 [Mil13, ch. 15], and thus Hp,q(Fq) = 0 when
p > 1, and also when p < 0. Thus, we have the following E2-page. The slots without
marked input are all zero, and the sequence of (possibly) nonzero motivic cohomology
continues infinitely far down to the left.

H0,0

H1,1

H2,1

H3,1

H4,1

−5 −4 −3 −2 −1 0

−4

−3

−2

−1

0p

q

Figure 2.1: E1
∗,∗,0.
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Chapter 2. Motivic Homotopy Theory

Now, the spectral sequence converges to algebraic K-theory. Since every diagonal
−p−q = n has one nonzero group at most, this group has be isomorphic to the algebraic
K-group Kn(Fq). Now the result follows from theorem 1.1.11.

2.3 The Motivic Cohomology Spectrum

Finding a spectrum representing motivic cohomology is done by constructing a motivic
analogue to the Eilenberg-Maclane spectrum in classical homotopy theory. This
presentation is a sketch of the one given in [Voe98, section 6.1].

For any X in SmF , we define the functor L(X) : Smop
F → Ab by the assignment

U 7→ CorF (U,X). In other words, L(X) = CorF (−, X). Voevodsky proves that this is a
Nisnevich sheaf. He proceeds to show that L(−) extends to a functor from MS•(F ) to
Nisnevich sheaves with values in simplicial abelian groups. This is due to the fact that L
preserves colimits, and every pointed motivic space indeed is the colimit of representable
functors. Hence it suffices to describe L for smooth schemes.

We are finally ready to define the motivic analogues to Eilenberg-Maclane spaces. In
what follows, consider P1 pointed by ∞.

Definition 2.3.1. For n ≥ 0, define the nth motivic Eilenberg-Maclane space to be

K(Z(n), 2n) := L((P1)∧n).

If we let X and Y be in SmF , then there is a bilinear morphism L(X) × L(Y ) →
L(X × Y ) induced by the external product of cycles. This construction also extends to
pointed motivic spaces. Thus there are the following canonical maps:

µm,n : K(Z(m), 2m) ∧K(Z(n), 2n)→ K(Z(m+ n), 2(m+ n)).

There is a canonical map i : P1 → L(P1) defined in [Voe98, section 6]. Composing µ1,n
with i ∧ id gives the structure maps:

en : P1 ∧K(Z(n), 2n)→ K(Z(n+ 1), 2(n+ 1)).

Definition 2.3.2. The Eilenberg-Maclane spectrum HZ consists of the spaces
K(Z(n), 2n) where the structure maps en : P1 ∧ K(Z(n), 2n) → K(Z(n + 1), 2(n + 1))
between them are given by the following composition

P1 ∧K(Z(n), 2n) K(Z(1), 2) ∧K(Z(n), 2n) K(Z(m+ n), 2(m+ n)).i∧id µ1,n

Remark 2.3.3. For a prime number p, one can construct the Eilenberg MacLane-spectrum
with mod-p coefficients. In the category of abelian sheaves, it is defined by taking the
reduction of L(X) modulo p.

Example 2.3.4. For a spectrum E in SH(F ), the motivic cohomology of E is given by
Hp,q(E,Z) = HZp,q(E) = [E,Sp,q ∧HZ]SH(F ). ♣

Theorem 2.3.5 ([Voe98, Theorem 6.2]). The structure maps of the motivic Eilenberg-
Maclane spectrum have A1-weak equivalences as adjoints. In other words, HZ is an
ΩP1-spectrum.

24
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2.4 The Algebraic K-Theory Spectrum

This section outlines the construction of the P1-spectrum KGL, representing algebraic
K-theory (as defined in section 1.1). Once again, the presentation follows [Voe98],
despite his calling the construction ‘rather ugly’.

Consider the Grassmanian Grk(An) of k-planes in An, and consider the canonical
inclusions

Grk(An) ↪→ Grk(An+1)
Grk(An) ↪→ Grn+1(An),

giving rise to the inclusion

Grk(An) ↪→ Grk+1(An+1)
L 7→ L⊕ {0} .

Now, define
BGLn := colim

k
Grk(An+k)

and
BGL := colim

k
BGLk.

The constituent spaces of the spectrum KGL consist of copies of the space KGL, which
is defined as a fibrant replacement of the space

Z× BGL :=
∐
i∈Z

BGL.

The structure maps P1 ∧ KGL → KGL are defined in the following way: By [Voe98, p.
600], there is an isomorphism

HomH•(P1 ∧ (Z× BGL),Z× BGL) ∼= HomH•(Z× BGL,Z× BGL), (2.1)

and we define the map ē : P1 ∧ (Z× BGL)→ Z× BGL to be the map corresponding to
the identity on Z × BGL under the isomorphism (2.1). Since KGL is fibrant, ē lifts to
the map

e : P1 ∧KGL→ KGL.

Definition 2.4.1. The algebraic K-theory spectrum KGL consists of spaces KGL and
structure maps e : P1 ∧KGL→ KGL.

Indeed, KGL represents algebraic K-theory, as we have the following theorem:

Theorem 2.4.2 ([Voe98, Theorem 6.9]). For any X ∈ SmF , one has canonical
isomorphisms

Km−n(X) ∼= HomSH(F )(Sm+n,n ∧X+,KGL).

In particular, given X = SpecF , we have Km−n(F ) ∼= πm+n,n(KGL).

We conclude this section by mentioning the Bott periodicity for the algebraic K-
theory spectrum:

Theorem 2.4.3 ([Voe98, Theorem 6.8]). There is a canonical isomorphism KGL ∼=
P1 ∧KGL.
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Chapter 2. Motivic Homotopy Theory

2.5 The Hermitian K-Theory Spectrum

This section outlines the construction of the spectrum KQ representing Hermitian
K-theory. The representability of Hermitian K-theory as a spectrum in the motivic
stable homotopy category was first proved by Hornbostel [Hor05], but we follow the
presentation by Röndigs and Østvær [RØ16].

Define the functor KO : SmF → MS•(F ) sending some smooth F -scheme to the
space representing Hermitian K-groups for trivial involution (as in section 1.4), λ = 1.
For λ = −1, take instead the functor KSp : SmF → MS•(F ). The forgetful functor
F : P(F )h →P(F ) of [Hor05, Definition 4.1] induces the natural maps f0 : KO → KGL
and f2 : KSp → KGL. The homotopy fibers V Q and V Sp (resp.) yield the following
homotopy fiber sequences. Using the fact that SH(F ) is triangulated, we rotate the
triangle and take the adjoint map on the left:

Ω1,0K VQ KO KGL,

Ω1,0K V Sp KSp KGL.

h′
3 can f0

h′
1 can f2

There exist natural maps h0 : K → KO and h2 : K → KSp which are induced by the
hyperbolic functor H : iP(F )→ iP(F )h of [Hor05]. Taking the homotopy fiber of these
and rotating the triangle give the homotopy fiber sequences:

Ω1,0KO UQ KGL KO,

Ω1,0KSp USp KGL KSp.

can f3 h0

can f1 h2

We proceed by stating the fundamental theorem of Hermitian K-theory.

Theorem 2.5.1 ([Kar80]). There are natural weak equivalences

Ω1,0USp
∼−→ V Q and Ω1,0UQ

∼−→ V Sp.

Furthermore, there is a theorem by Hornbostel and Sclichting:

Theorem 2.5.2 ([HS04, Section 1.8]). The homotopy cofiber of the maps

KO → KO(A1 − {0} × −) and KSp→ KSp(A1 − {0} × −)

induced by the map A1−{0} → ∗ is naturaly weakly equivalent to Σ1,0UQ and Σ1,0USp,
respectively.

Using these theorems, one can show that there exist weak equivalences

UQ
∼−→ Ω1,0Σ1,0UQ ∼ Ω2,1KO

and
USp

∼−→ Ω1,0Σ1,0USp ∼ Ω2,1KSp.

Concluding the construction, we refer to the paper [Hor05], in which Hornbostel
shows that Hermitian K-theory is representable in the motivic unstable and stable
homotopy category. He shows that it can be represented by the motivic spectrum

KQ := (KO,USp,KSp, UQ,KO,USp, . . .)
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with structure maps the adjoints of the weak equivalences:

KO
∼−→ Ω2,1USp,

USp
∼−→ Ω2,1KSp,

KSp
∼−→ Ω2,1UQ,

UQ
∼−→ Ω2,1KO.

Example 2.5.3. The homotopy groups of KQ have the isomorphisms π0,0KQ ∼=
GW(F ) and π1,0KQ ∼= Kh

1 (F ). In general, πn,0KQ = πn(Kh(X)) for a scheme X,
where Kh(X) denotes the Hermitian K-theory space of definition 1.4.14. ♣

We conclude the section with a result describing Bott periodicity for Hermitian K-
theory, a phenomenon of which the computation in chapter 4 is an example.

Proposition 2.5.4 ([Hor05, Section 5]). Hermitian K-theory is (8, 4)-periodic so that
πp,qKQ = πp+8,q+4KQ.

2.6 Milnor-Witt Motivic Cohomology

In this section we define Milnor-Witt motivic cohomology. We follow [Bac+22, Ch. 2].
Throughout this section, denote Gm,1 := (S1,1, 1) as the Tate circle pointed by 1. We
note that the definition is similar to motivic cohomology, but the complexes are more
complex. We warn that this is a brief presentation.

Definition 2.6.1. Let q ∈ Z. Define the Zariski sheaf Z̃ {q} to be

Z̃ {q} :=


c̃(G∧q

m,1) if q > 0;
c̃(F ) if q = 0;
Hom(G∧q

m,1, c̃(F )) if q < 0.

In the above definition, c̃(X) means the presheaf C̃orF (−, X). To explain what
this means, recall the correspondences defined in section 2.3. For schemes U and X,
definition 2.2.1 coincides with the construction

CorF (U,X) := colim
T⊆U×X

HdimX
T (U ×X,KM

dimX).

Here the T in the colimit is finite surjective on U , but not necessarily irreducible, KMW
∗

is the sheaf of Milnor K-groups, and we take cohomology compactly supported on
T . Elements of CorF (U,X) are finite linear combinations of the form ∑

i niZi where
Zi ⊆ U ×X and ni ∈ Z = KM

0 (F ). The analogous concept in the current context is

C̃or(U,X) := colim
T⊆U×X

HdimX
T (U ×X,KMW

dimX , ω)

where we take cohomology with coefficients in the sheaf Milnor-Witt K-groups KMW
∗ .

The ω denotes the twist and details can be found in [Bac+22, Ch. 1].

Definition 2.6.2. Let q ∈ Z. Define Z̃(q) to be the Suslin complex of Zariski sheaves
of KMW

0 (F )-modules C∗(Z̃ {q})[−q].

Now we arrive at the definition of the Milnor-Witt motivic cohomology groups:
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Chapter 2. Motivic Homotopy Theory

Definition 2.6.3. The Milnor-Witt motivic cohomology groups of a smooth scheme X
with integer coefficients is defined to be the hypercohomology groups

Hp,q
MW(X,Z) := Hp

Zar(X, Z̃(q)).

Remark 2.6.4. There is a spectrum HZ̃ representing Milnor-Witt motivic cohomology.
The construcion is analgous to the construction of HZ in terms of EilenbergMaclane
spaces built from Z̃(q), and we refer to [Bac+22, Ch. 1] for the details.

We will need the following basic results about the cohomology theory in question:

Lemma 2.6.5 ([Bac17, Lemma 18]). The homotopy group of HZ̃ are given by

πp,qHZ̃ =
{
KMW

−p (F ) if p = q;
πp,qHZ otherwise.
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Chapter 3

Spectral Sequences

Spectral sequences are incredibly useful mathematical tools for calculation in several
areas of mathematics. They were invented by Leray in 1945 while a prisoner of war, and
quickly became a hit. As early as 1955, Massey famously wrote ‘It is now abundantly
clear that the spectral sequence is one of the fundamental algebraic structures needed
for dealing with topological problems’ [Mas55, p. 329]. Indeed, they are important to
us, as we want to use the slice spectral sequence to compute Hermitian K-groups.

In this chapter, we introduce spectral sequences and convergence properties of
them. Then we proceed to see an example of algebra spectral sequences, namely the
Atiyah-Hirzebruch spectral sequence, before we move on to the spectral sequences most
important to this thesis: The slice spectral sequences.

3.1 The Basics

To give the basic definitions needed to grasp the fundamentals of spectral sequences, we
follow the guide of McCleary [McC01].

Definition 3.1.1 ([McC01, definition 2.1]). A differential bigraded module over a ring
R, is a collection of R-modules, {Ep,q}, p, q ∈ Z, together with an R-linear mapping
d : Ep,q → Ep+s,q+t of bidegree (s, t), the differential satisfying d ◦ d = 0 (for composable
d).

A differential bigraded module usually has bidegree (−r, r− 1), in which case we say
that it is of homological type, or bidegree (r, 1 − r), in which case we say that it is of
cohomological type

Definition 3.1.2 ([McC01, definition 2.2]). A spectral sequence is a collection of
differential bigraded R-modules {E∗,∗

r , dr} called pages, where r ≥ 1. If the differentials
are all of bidegree (−r, r − 1), it is called a homology type spectral sequence, and if all
differentials are of bidegree (r, 1− r) it is called a cohomology type spectral sequence. For
every p, q, r, we define Ep,qr+1

∼= Hp,q(E∗,∗
r , dr) = ker dr/ Im dr.

Note that all pages of a spectral sequence can be considered quotients (and thus
submodules) of E1. One can consider the dr-boundaries Zr := ker dr and the dr-cycles
Br := Im dr of the Er-page. These modules give the following tower of inclusions:

0 = B0 ⊂ B1 ⊂ · · · ⊂ Z1 ⊂ Z0 = E1.
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We let Z∞ = ∩Zr and B∞ = ∪Br, and define E∞ := Z∞/B∞. We call this page the
infinity-page of the spectral sequence.

If there is some n ∈ Z such that Er = E∞ whenever r ≥ n, then we say that the
spectral sequence collapses on the nth page. This means that En = En+1 = · · · = E∞.
Note that this happens if and only if dr = 0 for all r ≥ n.

The spectral sequences we consider collapse, making computations way easier. We are
not interested only in the collapsing, however. We care about the notion of convergence,
which tells us something about whether we can extract useful information from the
infinity-page of the spectral sequence.

3.1.1 Convergence of a Spectral Sequence

Definition 3.1.3. Let M be an R-module. A filtration F ∗ on M is a sequence of
submodules {F pM} for p ∈ Z such that

· · · ⊂ F p+1M ⊂ F pM ⊂ F p−1M ⊂ · · ·M or
· · · ⊂ F p−1M ⊂ F pM ⊂ F p+1M ⊂ · · ·M.

The filtrations are called decreasing or increasing, respectively.
A filtered module can be collapsed in the following way:

Definition 3.1.4. Let M be an R-module and F ∗ a filtration on M . Then the associated
graded module of F ∗, denoted E∗

0(R), is given by

Ep0 = F pM/F p+1M

for decreasing filtrations and

Ep0 = F pM/F p−1M

for increasing filtrations.
Reconstructing some filtered module is often the last step of a computation done with

spectral sequences. This often turns out to be difficult, and sometimes even impossible
to uniquely determine without any extra information about the target of the spectral
sequence. This can be illustrated by an example.
Example 3.1.5. We are given an R-module M with a decreasing filtration F ∗ which
is bounded, that is, there exists an n such that F kM = 0 for k > n and an m such that
F kM = M for k < m. Assume without loss of generality that it is bounded below by 0.
Then the filtration looks like this:

{0} = Fn+1M ⊂ FnM ⊂ Fn−1M ⊂ · · · ⊂ F 1M ⊂ F 0M ⊂ F−1M = M.

The associated graded module in degree p is Ep0(M) = F pM/F p+1M , thus there are
short exact sequences

0 FnM En0 (M) 0

0 FnM Fn−1M En−1
0 (M) 0

...
...

...

0 F 1M F 0M E0
0(M) 0

0 F 0M F−1M = M E−1
0 (M) 0.

=
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Note that En0 determines Fn, while Fn−1 is determined only up to some choice of
extension of FnM by En−1

0 (M). In general, F kM is determined only up to some choice
of extension of F k+1M by Ek0 (M). ♣

Definition 3.1.6. Given a filtration F ∗ on a graded R-module H∗. For each degree
n, define F pHn := F pH∗ ∩ Hn. Then define the associated bigraded module for this
filtration to be

Ep,q0 (H∗, F ) :=
{
F pHp+q/F p+1Hp+q if F ∗ is decreasing and
F pHp+q/F p−1Hp+q if F ∗ is increasing.

Most spectral sequence computations aim to determine the H∗ of definition 3.1.6.
This, however, as illustrated by example 3.1.5, can be difficult. To quote McCleary, ‘If
there is a spectral sequence converging to H∗ and if it converges uniquely to H∗ and
if all of the extension problems can be settled, then H∗ is determined (a lot of ifs)’.
[McC01, p. 33]

To speak of different types of convergence, we need to be able to speak of different
kinds of filtrations:

Definition 3.1.7 ([Boa99, Definition 2.1]). Given a decreasing filtration F ∗G of the
group G. The filtration is

• exhaustive if G = ∪sF sG;

• Hausdorff if ∩sF sG = 0;

• complete if every Cauchy sequence in G converges.

For these notions to make sense, topologize G by letting cosets x+F sG of F sG play
the role of basic open sets for arbitrary s and x. The following proposition is easily
verifiable, and shown in [Boa99].

Proposition 3.1.8. The topological space G is Hausdorff if and only if the filtration F s

is Hausdorff.

By Cauchy sequence in definition 3.1.7, we mean a sequence n 7→ xn for which
xn−xm → 0 when m,n→∞ in the topological sense of convergence. Next we introduce
3 different ways a spectral sequence can converge.

Definition 3.1.9 ([Boa99, p. 63]). Given a spectral sequence r 7→ (Er, dr), and a target
group G with (decreasing) filtration F ∗G, we say the spectral sequence:

1. converges weakly to G if the filtration exhausts G and we have isomorphisms
Es∞
∼= F s/F s+1 and for all s;

2. converges to G if (1) holds and the filtration of G is Hausdorff;

3. converges strongly to G if (1) holds and the filtration of G is complete Hausdorff.
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3.1.2 Algebra Spectral Sequences

Many algebraic structures are richer than having merely one operation. Singular
cohomolgy, for example, has both addition of cochains and multiplication via the cup
product. Many spectral sequences converge not only as a group or module, but as an
algebra. We will see how this can help us both to compute the abutment of the spectral
sequence, as well as computing the structure of the target.

Definition 3.1.10. Let (M,d) and (M ′, d′) be differential bigraded modules over R.
The tensor product of differential graded modules over R, written (M ⊗R M ′, d⊗) is
defined to be

(M ⊗RM ′)p,q :=
⊕

s+u=p
r+t=q

M r,s ⊗R (M ′)t,u

where d⊗(m⊗m′) = d(m)⊗m′ + (−1)r+sm⊗ d′(m′). The differential bigraded module
(M,d) together with morphisms ψ : (M ⊗M)∗,∗ →M∗,∗ is a differential bigraded algebra
over R if the product is associative, i.e., if the following commutes:

M∗ ⊗M∗ ⊗M∗ M∗ ⊗M∗

M∗ ⊗M∗ M∗

1⊗ψ

ψ⊗1

ψ

ψ

Definition 3.1.11. A spectral sequence {Er, dr} is a spectral sequence of algebras if it
has maps ψr : Er ⊗ Er → Er for every r and the induced map ψr+1 can be written as
the composite

ψr+1 : Er+1 ⊗R Er+1
∼=→ H(Er)⊗H(Er)

p→ H(Er ⊗ Er)
H(ψr)−→ H(Er) ∼= Er+1

where p([a] ⊗ [b]) = [a ⊗ b]. Furthermore, {Er} is said to converge as an algebra if it
converges as a spectral sequence in the ordinary sense, and if the algebra structure of
E∗,∗

∞ is isomorphic to the induced algebra structure on the associated bigraded object.

3.2 The Atiyah-Hirzebruch Spectral Sequence

In this section, we present the Atiyah-Hirzebruch spectral sequence, and give an example
on how it can be used to compute the complex K-theory of complex projective n-space,
as well as its algebra structure. For the reader unfamiliar with complex K-theory, the
book of May [May99, ch. 24] gives an introduction.

Theorem 3.2.1 ([McC01, Theorem 11.16]). Given a spectrum E and a space X
homotopic to some CW-complex, there are half-plane spectral sequences

Ep,q2
∼= Hp(X;Eq(∗)) and E2

p,q
∼= Hp(X;Eq(∗))

converging conditionally (in the sense of Boardman [Boa99]) to E∗ and strongly to E∗,
respectively.

Theorem 3.2.2 ([Dug14, p. 209]). Let E be a spectrum with a procuct E ∧ E → E.
Then there is a pairing of Atiyah-Hirzebruch spectral sequences where the product on
E2-terms Hp(X;Eq)⊗Hp′(Y ;Eq′)→ Hp+p′(X ×Y ;Eq+q′) is equal to (−1)p′q times the
cup product.
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To demonstrate the power of the Atiyah-Hirzebruch spectral sequence, we give an
example from Dugger’s book:

Example 3.2.3 ([Dug14, Example 29.15]). In this example, we compute the complex
K-theory of CPn for any n. We begin by noting that the cohomology of CPn is given by
H i(CPn) ∼= Z if i ≤ 2n even, and H i(CPn) = 0 otherwise. Thus we have the necessary
ingredients to fill out the E2-page, which looks like fig. 3.1. Note that this gives rise
to a half-plane spectral sequence, and the only nonzero algebras on the E2-page have
degrees (p, q) where both p and q are even and positive. Since the bidegree (r, 1 − r)
of the differential always has odd total, all differentials from nonzero modules land on
a zero algebra. Thus, there are only trivial differentials on every page, and the spectral
sequence collapses at E2 = E∞. The infinity-page has the following generators:

1

β−1

x x2 x3

β−1x β−1x2 β−1x3

β βx βx2 βx3

β2 β2x β2x2 β2x3
−4

−3

−2

−1

0

1

2

3

Figure 3.1: E2 = E∞.

Note that the diagonals p+ q = 2k consist of something isomorphic to Z every other
entry. As Z is free all extension problems are solvable, and we get

Ki(CPn) ∼=
{
Zn+1 for i even;
0 otherwise.

But the spectral sequence also gives information about the multiplicative structure, and
we focus on K0(CPn). Notice that we have the decreasing filtration

0 = F 2n+1 ⊂ F 2n = F 2n−1 ⊂ F 2n−2 = · · · ⊂ F 1 = F 0 ⊂ K0(CPn).

Now, there is a short exact sequence

0→ F 3 → F 2 → E2,−2
∞ → 0,

and thus there is a canonical map F 2/F 3 ∼=−→ E2,−2
∞ = Z⟨xβ⟩. Let α ∈ F 2/F 3 denote

the inverse of βx under the isomorphism. The multiplicativity of the spectral sequence
implies that αk 7→ βkxk ∈ E2k,−2k

∞ . Furthermore, if k < n + 1, then αk is nonzero, but
note that αn+1 ∈ E2n+2,−2n−2

∞ , which is just trivial.
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To show that Z[α]/(αn+1) → K0(CPn) is indeed an isomorphism, note that it is a
map of filtered rings: The domain is filtered by powers of the ideal (α) and the codomain
is filtered by the filtration F ∗. This is an isomorphism in each degree, and there are only
finitely many nonzero degrees. Hence, the map is indeed an isomorphism. ♣

3.3 The Construction of a Spectral Sequence

This section will briefly explain the basic construction of a spectral sequence as found
in [Boa99, Section 0]. In this section, we take As and Es to be graded abelian groups
(i.e. we supress one of the gradings).

The method we will use to construct spectral sequences, is through unrolled exact
couples. This is a commutative diagram of graded abelian groups and homomorphisms
between them of the form

· · · As+2 As+1 As As−1 · · ·

· · · Es+1 Es Es−1 · · ·

i i

j

i

j jk k k
(3.1)

in such a way that each triangle, i.e. · · · → As+1 → As → Es → As+1 → · · · , is a long
exact sequence. We proceed to show how this can give rise to a spectral sequence.

Given an unrolled exact couple as in (3.1), let the Es be the components of the E1-
page of the spectral sequence we construct. I.e., Es1 = Es. For notational ease, define
for s ∈ Z and r ≥ 1:

• Zsr = k−1(Im[i(r−1) : As+r → As+1]), to be the rth cycle subgroup of Es1,

• Bs
r = j ker[i(r−1) : As → As−r+1] to be the rth boundary of Es1,

• Esr = Zsr/B
s
r ,

• Imr As := Im[i(r) : As+r → As],

where i(n) denotes the nth composition of i. Now there is a tower of subgroups of Es:

0 = Bs
1 ⊂ Bs

2 ⊂ · · · ⊂ Im j = ker k ⊂ · · · ⊂ Zs2 ⊂ Zs1 = Es.

Consider
As+r+1 As+r As+1 As

Es+r Es

i

j

i(r−1) i

jk k

and extract the short exact sequences

0 −→ Zsr
ker k

k−→ Imr−1As+1 i−→ Imr As −→ 0 (3.2)

and
0 −→ Imr As+1 ↪→ Imr−1As+1 −→ Im j

Bs+r
r
−→ 0, (3.3)
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where the last arrow can be defined by lifting by i(r−1) and applying j. Note that
Im j = ker k to splice these short exact sequences together for various r and s, forming
the (r − 1)th derived exact couple of (3.1). It consists of long exact sequences

· · · → Im(r−1)As−r+2 i−→ Imr−1As−r+1 → Esr
k−→ Imr−1As+1 i−→ Imr−1As → · · · .

Furthermore, we define the differential of this derived exact couple to be

dr : Esr
k−→ Imr−1As+1 −→ Es+rr .

The degree of dr is deg j + deg k (at least when we assume deg i = 0). Now we define
the cycles of dr to be Zsr+1/B

s
r , and the boundaries to be

Im [dr : Esr → Es+rr ] =
Bs+r
r+1

Bs+r
r

∼=
Zsr
Zsr+1

∼=
ker[Imr−1As+1 → As]
ker[Imr As+1 → As] ,

and take homology to get the next page, i.e., Esr+1 := Zsr+1/B
s
r+1.

3.4 The Slice Spectral Sequence

There is a motivic analogue to the Atiyah-Hirzebruch spectral sequence, relating motivic
cohomology and algebraic K-theory.

We follow Voevodsky’s Nordfjordeid lectures [VRØ07, section 4]. Note that he writes
Σs = Σ1,0 for suspension with the simplicial circle sphere and Σt = Σ1,1 for suspension
with the Tate circle.

Definition 3.4.1. We define SHeff(F ) to be the smallest triangulated subcategory of
SH(F ) being closed under arbitrary direct sums, and having all Σ∞

P1X+ for X ∈ SmX .

Note that even though SHeff(F ) is closed under certain spectra, if n ≥ 1, SHeff(F )
does not have the desuspension spectrum Σ−n,−nΣ∞

P1X+.

Definition 3.4.2. Consider the sequence of full embeddings of categories,

· · · ↪→ Σ1
P1SHeff(F ) ↪→ SHeff(F ) ↪→ Σ−1

P1 SHeff(F ) ↪→ · · · ↪→ SH(F ) (3.4)

which we call the slice filtration, or the effective slice filtration.

Remark 3.4.3. An equivalent notion to the slice filtration of (3.4) is the filtration

· · · ↪→ Σ0,1SHeff(F ) ↪→ SHeff(F ) ↪→ Σ0,−1SHeff(F ) ↪→ · · · ↪→ SH(F ).

This is a consequence of the fact that the category SHeff(F ) is triangulated, and thus
closed under simplicial desuspension.

As a consequence of [Nee96, Theorem 4.1], the full inclusion functor
iq : Σq

P1SHeff(F ) ↪→ SH(F ) has a right adjoint rq : SH(F ) → Σq
P1SHeff(F ) with the

property that the unit of the adjunction η : id→ rq ◦ iq is a natural isomorphism. Com-
posing in the other direction, gives

fq : SH(F ) rq−→ Σq
P1SHeff(F ) iq−→ SH(F ).

The counit of the adjunction iq+1 : Σq+1
P1 SHeff(F ) ⇄ SH(F ) : rq+1 is fq+1 → id. Applying

this to fq determines a natural transformation

fq+1 = fq+1 ◦ fq → fq.

The image fqE = fq(E) is often called the q-effective cover of the spectrum E.
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Definition 3.4.4. Let E be a motivic spectrum and q ∈ Z. The slice tower of E is the
distinguished triangles

fq+1E → fqE → sqE → Σ1,0fq+1E

where the functor sq : SH(F )→ SH(F ) is the qth slice of E.

Letting q vary in the above construction, consider the induced long exact sequence
in homotopy groups, giving rise to an unrolled exact couple:

· · · π⋆fq+1E π⋆fqE π⋆fq−1E · · ·

π⋆sqE π⋆sq−1E

(3.5)

which in turn gives rise to the slice spectral sequence [Voe02b]. In fact, there is a spectral
sequence for any n ∈ Z with initial groups πp,n(sq(E)). For the rth differential on the
nth spectral sequence, the differentials go from πp,n(sq(E)) to πp−1,n(sq+r(E)). It is
visualized like the Adams spectral sequence with p on the horizontal axis and q on the
vertical. Note that this grading is different from that of e.g. the Atiyah-Hirzebruch
spectral sequence seen in section 3.2.

The convergence properties for the slice spectral sequence are complicated, and in
many circumstances, we do not have strong convergence. For our purposes, the following
suffices:

Theorem 3.4.5 ([Voe02a, Section 5]). The slice spectral sequence associated to (3.5)
with E = KGL and X ∈ SmF ,

Ep,q2 = Hp−q,q(X,Z) =⇒ K−p−q(X),

is strongly convergent the algebraic K-theory of X.

Example 3.4.6. In [RSØ19], Röndigs, Spitzweck and Østvær use the slice spectral
sequence to compute some instances of stable homotopy groups of the motivic sphere
spectrum S. They prove that for fields F of charactereistic 0, there is a short-exact
sequence of groups

0→ KM
2 (F )/24→ π1,0S → F×/2⊕ Z/2→ 0

and, for every n ∈ Z, an exact sequence of Nisnevich sheaves on smooth schemes of finite
type

0→ KM
2−n/24→ πn+1,nS → πn+1,nf0(KQ).

Rather surprisingly, these computations relate Milnor K-theory, Hermitan K-theory and
the stable homotopy groups of the sphere spectrum. ♣

We conclude the section by mentioning what the slices of Algebraic and Hermitian
K-theory are.

Theorem 3.4.7 ([RØ16, Theorem 4.1]). There is an isomorphism sq(KGL) ∼= Σ2q,qHZ
for all q ∈ Z.
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Theorem 3.4.8 ([RØ16, Theorem 4.18]). The (effective) slices of the Hermitian K-
theory spectrum KQ are given by

sq(KQ) =

Σ2q,qHZ ∨
∨
i< q

2
Σ2i+q,qHZ/2 q ≡ 0 mod 2∨

i< q+1
2

Σ2i+q,qHZ/2 q ≡ 1 mod 2.

Needless to say, doing computations of Hermitian K-theory with the slice filtration
might involve a lot of difficulty. The next section descirbes a filtration giving slices that
are much nicer to work with - at least for our purposes.

3.5 The Very Effective Slice Spectral Sequence

Despite the success of the slice filtration defined in the previous section, Bachmann
points out that ‘there are some indications that this filtration is not quite right in certain
situations’ [Bac17, p. 2]. The most imoportant of these, might be that the slice filtration
does not always converge. As a solution, Spitzweck and Østvær introduced the the very
effective slice filtration.

Let F be a field.

Definition 3.5.1 ([SØ12, Definition 5.5]). The very effective motivic stable homotopy
category SHveff(F ) is the smallest subcategory of SH(F ) containing all suspension
spectra of shooth schemes of finite type, and is closed under extensions and homotopy
colimits. It is also known as the category of very effective spectra.

In the above definition, being closed under extensions is taken to mean that for cofiber
sequences X → Y → Z where X and Z belong to SHveff(F ), then Y also belongs to
SHveff(F ).
Remark 3.5.2. The category SHveff(F ) is contained in SHeff(F ), but it is not
triangulated as it is not closed under simplicial desuspension.

The very effective slice filtration looks like the following

· · · ⊂ Σ2q+2,q+1SHeff(F ) ⊂ Σ2q,qSHeff(F ) ⊂ Σ2q−2,q−1SHeff(F ) ⊂ · · · .

Again, using [Nee96, Theorem 4.1], obtain the full inclusion functor ĩq : Σq
P1SH(F ) ↪→

SH(F ) with the right adjoint r̃q : SH(F ) → Σq
P1SH(F ), with unit the natural

isomorphism η̃ : id→ r̃q ◦ ĩq. Composing the other direction gives

f̃q : SH(F ) r̃q−→ Σq
P1SHeff(F ) ĩq−→ SH(F ).

The counit of the adjunction

ĩq+1 : Σq+1
P1 SHeff(F ) ⇄ SH(F ) : r̃q+1

is given by f̃q+1 → id. We now obtain the natural transformation

f̃q+1 = f̃q+1 ◦ f̃q → f̃q

where f̃qE often is called the very q-effective cover of the spectrum E of SH(F )veff . The
cofibers

f̃q+1E −→ f̃qE −→ s̃qE −→ Σ1,0f̃q+1E

determine the very effective slices s̃q.
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Lemma 3.5.3 ([SØ12, Lemma 5.10]). For a spectrum E ∈ SHveff(F ) and F a perfect
field, we have πm,nE = 0 for m < n.

Example 3.5.4. Consider the spectrum KGL as defined in section 2.4. Then the very
effective slices coincide with the effective slices: s̃qKGL = sqKGL. ♣

Due to lemma 3.5.3, the spectral sequence associated to the very effective slice
filtration is always strongly convergent.

Theorem 3.5.5. For a spectrum E in SHveff(E) and an n ∈ Z, there is a spectral
sequence

E1
p,q,n = πp,n(̃sq(E)) =⇒ πp,n(E)

converging strongly to the homotopy groups of E.

3.6 The Very Effective Slices of Hermitian K-Theory

One of the challenges associated to the very effective slice filtration is the difficulty of
identifying the very effective slices. As proven by Bachmann, the very effective slices of
Hermitian K-theory can be expressed in terms of motivic cohomology and Milnor-Witt
motivic cohomology [Bac17]:

Theorem 3.6.1 ([Bac17, Theorem 16]). The very effective slices of Hermitian K-theory
are given by

s̃nKQ ≃ S2q,q ∧


s̃0KQ n ≡ 0 mod 4
HZ/2 n ≡ 1 mod 4
HZ n ≡ 2 mod 4
0 n ≡ 3 mod 4

and there is a cofiber sequence

S1,0 ∧HZ/2 −→ s̃0KQ −→ HZ̃.

Recall that HZ̃ denotes the Milnor-Witt motivic cohomology spectrum (re-
mark 2.6.4). For finite fields, this is easily computable. Using the induced long exact
sequence in homotopy groups, the zeroth very effective slice is computable as an exten-
sion of π⋆S1,0 ∧HZ/2 by π⋆HZ̃. We now have all the necessary ingredients to compute
the Hermitian K-groups of finite fields.
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Chapter 4

The Hermitian K-Groups of Fq

In this chapter, we use the very effective slice spectral sequence of section 3.5 to compute
the weight zero homotopy groups of KQ over a finite base field. The entails computing
the E1-page, using the tools of section 3.6, and then determining the abutment of the
spectral sequence. The computation concludes when the extension problems are resolved.
The chapter concludes by discussing some further topics of research.

4.1 The Computation

Before we compute the E1-page, we make note some notational conventions:

Notation 4.1.1. In the following proof, we denote by H⋆ the motivic cohomolgy groups
of SpecFq with integer coefficients, and by h⋆ the motivic cohomology groups of SpecFq
with Z/2-coefficients. Moreover, we denote morphism classes Hom(X,Y ) in SH(F ) by
[X,Y ].

Let q > 0 be odd. We are finally ready to prove the main theorem of this thesis:

Theorem 4.1.2. The spectral sequence

E1
s,t,0(KQ) = πs,0(̃stKQ) =⇒ πs,0KQ

converges strongly to the (unreduced) Hermitian K-groups of Fq. Furthermore, all
nonzero entries of E1

⋆,0 are given by fig. 4.1, except for E1
0,0,0
∼= GW(Fq), corresponding

to the unreduced 0th Hermitian K-group of Fq.

s

t

8m 8m+ 1 8m+ 2 8m+ 3 8m+ 4 8m+ 5 8m+ 6 8m+ 7

4m

4m+ 1

4m+ 2

4m+ 3

4m+ 4

h1,4m h0,4m

h1,4m h0,4m

H1,(s+1)/2

H1,(s+1)/2

Figure 4.1: E1
⋆,0(KQ).
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Before proving Theorem 4.1.2 we recall some results which we make heavy use of.
By proposition 1.2.4, Milnor K-theory is concentrated in degrees zero and one:

KM
n (Fq) ∼=


Z if n = 0;
F×
q if n = 1;

0 otherwise.

Corollary 1.3.10 gives a full description of the Milnor-Witt K-theory of finite fields:

KMW
n (Fq) ∼=



Z/2[F×
q /(F×

q )2] if n < 0 and q ≡ 1 mod 4;
Z/4 if n < 0 and q ≡ 3 mod 4;
Z⊕ Z/2 if n = 0;
F×
q if n = 1;

0 otherwise.

From proposition 2.2.8, motivic cohomology of SpecFq is given by

Hm,n := Hm,n(SpecFq,Z) ∼=


Z m = n = 0;
Z/qn − 1 m = 1, n > 0;
0 otherwise,

and

hm,n := Hm,n(SpecFq,Z/2) ∼=
{
Z/2 m = 0, n ≥ 0 or m = 1, n > 0;
0 otherwise.

Finally, lemma 2.6.5 says that Milnor-Witt motivic cohomology is given by

πp,qHZ̃ =
{
KMW

−p (Fq) if p = q;
πp,qHZ otherwise.

Now we give the proof of Theorem 4.1.2:

Proof. To compute E1
s,t,0 = πs,0(̃stKQ), we write s and t as s = 8m+ p and t = 4n+ r

for integers m,n, p, r, where 0 ≤ p ≤ 7 and 0 ≤ r ≤ 3, and consider different cases for
these.

To ease the computation, we begin by finding some general expressions that will be
useful. We start by computing a general expression for the long exact sequence induced
by the cofiber sequence

S1,0 ∧HZ/2→ s̃0KQ→ HZ̃. (4.1)
Whenever r = 0, we want to compute the group

E1
s,t,0 = π8m+p,0s̃4nKQ = π8m+p,0S

8n,4n ∧ s̃0KQ

=
[
S8m+p,0, S8n,4n ∧ s̃0KQ

]
=
[
S8(m−n)+p,−4n, s̃0KQ

]
= π8(m−n)+p,−4ns̃0KQ.

We can compute this by inserting it into the long exact sequence induced by (4.1). The
following part will be relevant to this computation:

· · · → π8(m−n)+(p+1),−4nHZ̃→ π8(m−n)+p,−4nS
1,0 ∧HZ/2→ π8(m−n)+p,−4ns̃0KQ

→ π8(m−n)+p,−4nHZ̃→ π8(m−n)+(p−1),−4nS
1,0 ∧HZ/2→ · · · .

(4.2)
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Furthermore, for integers p, we have the formulas

π8m+p,0s̃4n+1KQ = π8m+p,0S
8n+2,4n+1 ∧HZ/2 = h8(n−m)+(2−p),4n+1 (4.3)

π8m+p,0s̃4n+2KQ = π8m+p,0S
8n+4,4n+2 ∧HZ = H8(n−m)+(4−p),4n+2 (4.4)

π8m+p,0s̃4n+3KQ = π8m+p,0S
8n+6,4n+3 ∧ 0 = 0. (4.5)

We know of Bott periodicity of the Hermitian K-theory spectrum by Proposi-
tion 2.5.4. Thus, we divide the computation of fig. 4.1 into eight simple steps. Assume
s and t are as stated in the beginning of this proof.

By (4.5), the cases t = 4n+ 3 will be left out.
Case: s = 8m. We begin by considering the case t = 4n. In order to compute

π8m,0s̃4nKQ = π8(m−n),−4ns̃0KQ, we use the long exact sequence given by (4.2). We
compute the following:

• π8(m−n)+1,−4nHZ̃ = π8(m−n)+1,−4nHZ = H8(n−m)−1,4n = 0 for all m,n.

• π8(m−n),−4nS
1,0 ∧HZ/2 = h1−8(m−n)−1,4n =

{
Z/2 for m = n > 0;
0 otherwise.

• In order to compute π8(m−n),−4nHZ̃, observe that when n = 2m, this equals
KMW

−8(m−n)(Fq), which is zero in every even nonzero degree. Notice for m = n = 0,
we have KMW

−8(m−n)(Fq) = KMW
0 (Fq) ∼= GW(Fq) ∼= Z ⊕ Z/2. If n ̸= 2m, we have

π8(m−n),−4nHZ̃ = H8(n−m),4n = 0. Hence

π8(m−n)+1,−4nHZ̃ ∼=
{
Z⊕ Z/2 for n = 2m = 0;
0 otherwise.

• Finally, π8(m−n)−1,−4nS
1,0 ∧HZ/2 = h2−8(m−n),4n = 0 for all m,n.

Inserting all this (4.2), we obtain isomorphisms

π8m,0s̃4nKQ ∼=


Z⊕ Z/2 m = n = 0;
Z/2 m = n > 0;
0 otherwise;

Case: s = 8m, t = 4n + 1. By (4.3), π8m,0s̃4n+1KQ = h8(n−m)+2,4n+1 = 0 for all
m,n.

Case: s = 8m, t = 4n + 2. By (4.4), π8m,0s̃4n+2KQ = H8(n−m)+4,4n+2 = 0 for all
m,n.

Case: s = 8m+ 1, t = 4n. We compute π8m+1,0S
4n ∧ s̃0KQ = π8(m−n)+1,−4ns̃0KQ.

Using the (4.2), we observe the following:

• π8(m−n)+2,−4nHZ̃ = H8(n−m)−2,4n = 0 for all m,n.

• π8(m−n)+1,−4nHZ̃ = H8(n−m)−1,4n = 0 for all m,n.

• π8(m−n)+1,−4nS
1,0 ∧HZ/2 = h8(n−m),4n ∼=

{
Z/2 for m = n ≥ 0;
0 otherwise.
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Inserting into the (4.2), the above computations show that there is an isomorphism

π8(m−n)+1,−4ns̃0KQ ∼= h8(n−m),4n ∼=
{
Z/2 for m = n ≥ 0;
0 otherwise.

Case: s = 8m+ 1, t = 4n+ 1. Then

π8m+1,0s̃4n+2KQ = π8m+1,0S
8n+2,4n+1 ∧HZ/2

= h8(n−m)+1,4n+1

∼=
{
Z/2 for m = n ≥ 0;
0 otherwise.

Case: s = 8m+ 1, t = 4n+ 1. Then we have

π8m+1,0s̃4n+1KQ = h8(n−m)+1,4n+1 =
{
Z/2 for m = n ≥ 0;
0 otherwise.

Case: s = 8m + 1, t = 4n + 2. This gives π8m+1,0s̃4n+2KQ = H8(n−m)+3,4n+2 = 0
for all m,n.

Case: s = 8m+ 2, t = 4n. To compute

π8m+2,0s̃4nKQ = π8(m−n)+2,−4nS
8n,4n ∧ s̃0KQ,

we insert the expression into its (4.2). We compute

• π8(m−n)+2,−4nS
1,0HZ/2 = h8(n−m)−1,4n = 0 for all m,n.

• π8(m−n)+2,−4nHZ̃ = 0 for all m,n.

By this squeeze, π8m+2,0s̃4nKQ = 0.
Case: s = 8m+ 2, t = 4n+ 1. Then

π8m+2,0s̃4nKQ = h8(n−m),4n+1 ∼=
{
Z/2 for m = n ≥ 0;
0 otherwise.

Case: s = 8m + 2, t = 4n + 2. Then π8m+2,0s̃4n+2KQ = H8n−m+2,4n+2 = 0 for all
m,n.

Case: s = 8m + 3, t = 4n. Then π8m+3,0s̃4nKQ = π8(m−n)+3,−4ns̃0KQ. Consider
(4.2) and compute

• π8(m−n)+3,−4nS
1,0 ∧HZ/2 = h8(n−m)−2,4n = 0 for all m,n.

• π8(m−n)+3,−4nHZ̃ = H8(n−m)−3,4n = 0 for all m,n.

This squeeze ensures that π8m+3,0s̃4nKQ = 0 for all m,n.
Case: s = 8m+ 3, t = 4n+ 1. π8m+3,0s̃4n+1KQ = h8(n−m)−1,4n+1 = 0 for all m,n.
Case: s = 8m+ 3, t = 4n+ 2. We compute

π8m+3,0s̃4n+2KQ = H8(n−m)+1,4n+2 =

H1,4n+2 = H1,(s+1)/2 = Z
q(s+1)/2−1 for m = n;

0 otherwise;

Case: s = 8m+ 4, t = 4n. We compute
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• π8(m−n)+4,−4nS
1,0 ∧HZ/2 = h8(n−m)−3,4n = 0 for all m,n.

• π8(m−n)+4,−4nHZ̃ =
{
KMW

4n (Fq) for 8(m− n) + 4 = −4n;
H8(n−m)−4,4n otherwise.

Observe that 8(m − n) + 4 = −4n ⇐⇒ n = 2m + 1. But KMW
k (Fq) = 0 for all

odd multiples of 4. Thus, π8(m−n)+4,−4nHZ̃ = 0 for all m,n.

By this squeeze, π8m+4,0s̃4nKQ = 0 for all m,n.
Case: s = 8m + 4, t = 4n + 1. Then π8m+4,0s̃4n+1KQ = h8(n−m)−2,4n+1 = 0 for all

m,n.
Case: s = 8m + 4, t = 4n + 2. Then π8m+4,0s̃4n+2KQ = H8(n−m),4n+2 = 0 for all

m,n.
Case: s = 8m+ 5, t = 4n. Then for π8m+5,0s̃4nKQ, we compute the following parts

of (4.2):

• π8(m−n)+5,−4nS
1,0 ∧HZ/2 = h8(n−m)−4,4n = 0 for all m,n.

• π8(m−n)+5,−4nHZ̃ = π8(m−n)+5,−4nHZ = H8(n−m)−5,4n = 0 for all m,n.

Thus, π8m+5,0s̃4nKQ = 0 for all m,n.
Case: s = 8m+ 5, t = 4n+ 1. π8n+5,0s̃4n+1KQ = h8(n−m)−4,4n+1 = 0 for all m,n.
Case: s = 8m+ 5, t = 4n+ 2. π8n+5,0s̃4n+2KQ = H8(n−m)−1,4n+2 = 0 for all m,n.
Case: s = 8m + 6, t = 4n. To compute π8m+6,0s̃4nKQ = π8m+6,0S

8(m−n)+6,4n,
compute the following terms of (4.2):

• π8(m−n)+6,−4nS
1,0 ∧HZ/2 = h8(n−m)−5,4n = 0 for all m,n.

• π8(m−n)+6,−4nHZ̃ = π8(m−n)+6,−4nHZ = H8(n−m)−6,4n = 0 for all m,n.

By this squeeze, we get π8n+6,0s̃4nKQ = 0 for all m,n.
Case: s = 8m + 6, t = 4n + 1. Then π8n+6,0s̃4n+1KQ = h8(n−m)−4,4n = 0 for all

m,n.
Case: s = 8m + 6, t = 4n + 2. Then π8n+6,0s̃4n+2KQ = H8(n−m)−2,4n = 0 for all

m,n.
Case: s = 8m+ 7, t = 4n. Compute

• π8(m−n)+7,−4nS
1,0 ∧HZ/2 = h8(n−m)−6,4n = 0 for all m,n.

• π8(m−n)+6,−4nS
1,0 ∧HZ/2 = 0 from the previous case.

Inserting this into (4.2), we get that

π8n+7,0s̃4nKQ ∼= π8(m−n)+7,−4nHZ̃ = π8(m−n)+7,−4nHZ

∼=

H1,4n = Z
q(s+1)/2 for n = m+ 1;

0 otherwise.

Case: s = 8m + 7, t = 4n + 1. Then π8m+7,0s̃4n+1KQ = h8(n−m)−5,4n+1 = 0 for all
m,n.

Case: s = 8m+ 7, t = 4n+ 2. Then π8m+7,0s̃4n+2KQ = H8(n−m)−3,4n+2 = 0 for all
m,n. This, being the last possible case, concludes the proof and outputs the E1-page
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with a periodicity of 8. We summarize the computations in the following chart. Given
s = 8m+ p and t = 4n+ r,

E1
s,t,0 =



GW(Fq) s ≡ 0 (mod 8) m = n = 0, p = r = 0;
h1,4n s ≡ 0 (mod 8) m = n > 0, p = r = 0;
h0,4n s ≡ 1 (mod 8) m = n ≥ 0, p = 1, r = 0;
h1,4n+1 s ≡ 1 (mod 8) m = n ≥ 0, p = r = 1;
h0,4n+1 s ≡ 2 (mod 8) m = n ≥ 0, p = 2, r = 1;
H1,4n+2 s ≡ 3 (mod 8) m = n, p = 3, r = 2;
H1,4n+2 s ≡ 7 (mod 8) m = n− 1, p = 7, r = 0;
0 otherwise.

(4.6)

It is visually evident that there are no differentials on any possible page of the spectral
sequence: No nonzero entry can be hit by a nontrivial differential from the column on
its right hand side. Thus the spectral sequence collapses immediately, and the results
can can be read off.

All the h’s are isomorphic to Z/2. When m = n = 0, we have E∞
0,0,0
∼= GW(Fq) ∼=

Z ⊕ Z/2. Note that taking the reduced Hermitian K-theory eliminates this extraneous
Z.

By proposition 2.2.8, the group H1,(s+1)/2 is isomorphic to Z/q(s+1)/2 − 1, where s
denotes its horizontal position on the E1-page.

All columns contain one group, except for columns with position s ≡ 1 mod 8, which
have two. Thus, only one extension problem arises. It is dealt with in the following
lemma.

Lemma 4.1.3. Let s ≡ 1 mod 8. Then the short exact sequence

0→ Z/2→ KQs → Z/2→ 0

is split. Hence KQs = (Z/2)2.

Proof. If one can prove the claim for s = 1, all other cases follow from Bott periodicity
(proposition 2.5.4). To settle that case, it suffices to prove the existence of a map
KQ1 → Z/2 which is split surjective. Indeed, there are only two possible extensions
of Z/2 by Z/2: KQ1

∼= Z/4 or KQ1
∼= (Z/2)2. It follows that any surjective map

KQ1 → Z/2 has kernel of order 2 which is isomorphic to Z/2. Recall lemma 1.4.8,
proving the existence of an induced split surjective determinant map from KQ1 onto the
multiplicative group {±1}, having a retraction r : {±1} → KQ1. All these facts suffice
to prove that following commutes and has exact rows,

0 Z/2 KQ1 Z/2 0

0 ker det KQ1 {±1} 0

0 Z/2 (Z/2)2 Z/2 0

∼= ∼=

∼=

det

∼= ∼=r

finishing the proof.
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At last, observe that our results agree with those of Friedlander:

Corollary 4.1.4 ([Fri76, p. 90]). Hermitian K-theory of finite fields of order q is given
by

s modulo 8 0 1 2 3 4 5 6 7

K̃Qs(Fq) Z/2 (Z/2)2 Z/2 Z
q(s+1)/2 − 1

0 0 0 Z
q(s+1)/2 − 1

4.2 Further Topics of Research

The very effective slice spectral sequence has yet to see abundant usage. In our case,
the E1-page was indeed very kind, and there is hope that Hermitian K-theory of other
smooth schemes can be calculated with similar difficulty – or maybe lack of difficulty.
Further computations can be made for instance with

• projective spaces like P1, Pn, smooth projective curves or other classic varieties;

• classifying spaces, or lens spaces.

Another challenge is to compute the very effective slices of the sphere spectrum; these
are still unknown. A discovery of that kind could improve chances of computing stable
homotopy groups of the motivic spheres.
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