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Abstract

This thesis summarizes some of the important work and theory for understanding
Bayesian Neural Networks. We include computational and theoretical aspects to-
gether, to show how they interplay. Afterward, we introduce the Hyperspherical
Uniform prior to Bayesian Neural Networks. This prior replaces the need for Batch
Normalization. Our experiments for smaller networks indicated the performance
to be similar to the conventional Gaussian Priors. We argue that this prior could
increase the performance significantly for deeper networks, and potentially assist
interpretability.
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0.1 Terminology

« Acronyms:
— rv: random variable.

NN: Neural Network.

FNN: Frequentist Neural Network.

BNN: Bayesian Neural Network.

VI-BNN: Variational Inference Bayesian Neural Network.

pdf: probability density function.

VD: Variational Distribution.

VI: Variational Inference.

* In classical statistical learning, the conventions for naming predictor and target
variables vary. Predictor variables may be referred to by any of the following
terms: "Covariate" (Continuous predictor variables), "Explanatory Variable"
(Any predictor), "Confounding Variable" (Predictor variables that are depend-
ent on other predictor variables) (O’Brien et al., 2020; Hastie et al., 2001).

* Whenever "parameter" is used without further explanation, the reader should
assume this refers to all the parameters updated during model training. In
Bayesian neural networks case, the 1 (mean) and ¢ (sigma) vectors of means
and variances for the variational distributions from which the weights and bi-
ases are sampled during forward passes.

+ In Bayesian inference statisticians often refer to ppjo(D, ) as "the model".
However, "likelihood" is also often used, which is the term we will utilize since
it cannot be confused with the whole Bayesian or frequentist neural network
itself.

« For this thesis, y refers to both the weights w and biases b of a frequentist
neural network (FNN) together. Alternatively, for the realizations of the pdfs of
the weights and biases for a Bayesian neural network. W is both the weights
and biases of a Bayesian neural network (BNN) together. Being Bayesian,
these are then random variables. Since we work with variational inference
BNNs, W is specifically the variational distribution set to approximate the true
posterior of the weights and biases. 0 refers to the parameters that compose
the pdf’s of W, or, equivalently, the parameters determining its distribution. W
and B refer to the random variables for the weights and biases separately. W ;
and B, respectively refer to the weights and biases for layer j. While W ;; and
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B, respectively refer to the weights and biases for inputting to node i in layer
Jj-

When we write V f(x) for a function f : R" — R, we mean the column vector.
Such notation is conducive to deep learning by making the mathematical the-

ory more analogous to the programming implementation. Explicitly we mean:

VIx)=| "

When writing a subscript f,,(x) this refers to function number n, meaning each
fa(x) is a different function, although they probably have some relation since
we denote them that way. f(x), on the other hand, refers to the output of
f(x) along dimension n. When we talk about a Jacobian J(x), where f has
a vector codomain in addition to the vector domain, we find it more appropri-
ate to use the denominator convention as we are working purely theoretically.
Meaning:

A AW ()
Vf(x)i 270 1 270 1 ma?f’”bl
Vf(x 2 Mz 2Lz

Jf(X) — ( )2 — axl axQ axm
AZC30 I EVTC T P T

Double Descent, or modern machine learning framework, refers to the same
idea. The test error first worsens as the number of parameters increases
and then gets better after an order of magnitude more parameters are added.
Double Descent is primarily argued for in cases where datasets are massive.
This phenomenon is explained more in Chapter 1.

When we use the term "normalize," we refer to normalizing a vector. l.e.,
projecting it unto the unit-hypersphere.
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Chapter 1

Background

In this chapter, we summarize some of the most important background work for the
work in this thesis.

1.1 Introduction

In prediction modeling, we have a set of predictor and target variables. We hope the
predictor variables can be used to predict the target variables. In the classical statist-
ical learning framework, we were historically working with datasets considered very
small by modern machine learning standards. This might explain why the classical
statistical learning framework developed as it did. Here the systematic relationship
between the predictor and target variables was assumed denotable with a simple
model. Simple in the sense of a limited amount of parameters by modern stand-
ards. l.e., less than 250 real numbers, for example.

The systematic relationship was viewed as a largely tractable and human-interpretable
relationship; the rest would, in reality, be random noise. Therefore we wished to be
careful about having a model with too many parameters and too high a capacity.
Although many parameters may yield low training error, it would yield a higher error
when we test our model on new data (Hastie et al., 2001). Because the performance
gain we saw on the training data was not caused by superior modeling of the true
systematic relationship. Instead, our model was modeling the noise, or even worse
idiosyncratic noise, of our dataset. This effect is referred to as "overfitting." Hence,
the model should have a large enough number of parameters to model the system-
atic relationship adequately, but without having so many, it captured the noise of
our dataset. Another way of limiting overfitting is regularization. That is often used
to avoid too high model variance or overfitting. Regularization is part of a model’s



architecture that aims to reduce variance by incentivizing a smaller parameter norm.
The norm referred to here is not necessarily £2, but often is.

In statistical learning, it is common to employ more parameters than optimal on their
own and then add regularization. This approach often results in lower test errors
than the alternative. The interpretation is that we need to add extra parameters since
we do not know which are capable of modeling the true relationship. Regularization
is added to avoid modeling too complicated relationships apparent in the data. Since
we fear this will lead to overfitting because we have assumed from the beginning that
the relationships would not be too complicated. Perhaps that is an implicit Occam’s
razor argument (Duignan, 2023). Therefore, we allow introducing this regularization
bias to have a greater reduction in the variance of our model. In the classical sense,
we wish to find the best trade-off between bias and variance by tuning the number
of parameters and intensity of regularization. The best compromise between these
two has classically been called the bias-variance trade-off best fit.

However, when computational recourses and datasets are massive, Belkin et al.
(2019); Sejnowski (2020); Sevilla et al. (2022); Belkin et al. (2020); Nakkiran et al.
(2019); Mei and Montanari (2021) argue that the test error may not strictly follow
this classical framework. This behavior is referred to as "Double Descent" by most
of those authors. We refer to this framework as Double Descent or modern machine
learning. Most of the arguments are empirical. However, Mei and Montanari (2021)
mathematically argues this is the case under certain assumptions. In Double Des-
cent, we first observe the classical bias-variance-trade-off curve, and then, slowly,
the test error decreases as the number of parameters increases. Even below the
original bias-variance best fit.

Double Descent does not entail going arbitrarily far in the variance direction in the
classical sense either. It is only the addition of parameters that lowers the test er-
ror. The results in Nakkiran et al. (2019) further empirically exemplify the Double
Descent phenomenon. However, they also show, in particular, that regularization
terms remain effective for arbitrarily large models. The significance of regulariza-
tion is relevant for the work in this thesis. One of our goals is to employ a more
sophisticated form of regularization for these high-parameter models than usual for
the field. The models most used in this new Machine Learning framework of More
Compute (Sevilla et al., 2022) are based on the artificial neural network (Cun and
Fogelman-Soulié, 1987).

The classical statistical learning and deep learning frameworks are seemingly at
odds. Two distinct research cultures are attempting the same thing in contradictory
frameworks. The two cultures were explored already in Breiman (2001), where the
author suggested to "... move away from exclusive dependence on data models and
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adopt a more diverse set of tools.". Part of the goal of this thesis is to attempt to fol-
low the advice from there. However, moving away from exclusive dependence does
not entail discarding altogether. We try to bring some of the expertise in regulariz-
ation and the Bayesian framework into modern deep learning. The culture gap has
been more recently discussed, taking into account the new Double Descent frame-
work, in Nalisnick et al. (2023). There the authors attempt something related to the
goal of this thesis, namely understanding Double Descent deep models, and their
surprisingly impressive performance from the statistical view.

The drop in test error seems to be caused by the increase in parameters and capa-
city without omitting regularization. An attempt to bridge some of the gaps between
modern deep learning and the classical statistical learning framework might be to
incorporate more competent regularization into arbitrarily large models. This could
reduce the test error in deep learning further. Perhaps one could outperform the
current combination of Dropout, see 2.1.2.2, layer by layer (Srivastava et al., 2014)
and L£? regularization penalty on the parameter vector in the calculation of the loss
(Wu et al., 2014). Although £? regularization has had good support in the classical
statistical learning literature for a long time (Marquardt and Snee, 1975), referred
to there as "Ridge Regression," we aim to find room for improvement in both the
Dropout and £? part simultaneously. Gal and Ghahramani (2015) indicate BNNs
with Gaussian priors induce Dropout. Furthermore, Figueiredo (2003) indicates that
the Gaussian prior also induces L2 regularization. Therefore, we find the BNN ar-
chitecture interesting and aim to outperform the current Gaussian prior BNNs in this
thesis.

However, these deep models tend to fail spectacularly on rare occasions. Models
that exert less of such behavior are in the literature referred to as robust models
(Huber, 2011, 2002). These are generally desirable, with a particular use in e.g.,
medical applications. In addition, in applications where robustness is especially
desired, there is often a desire for an uncertainty estimate of the predictions the
models make. Statistical learning where the classical bias-variance curve is optim-
ized is still done today. Regardless of Double Descent, these models are much more
interpretable. Hence, making an informed decision on how to treat their predictions
and their uncertainty is much easier, in addition to their usual tendency to be more
robust.

An attempt to try to incorporate the best of both worlds, i.e., having the perform-
ance of high-parameter deep neural networks, with the uncertainty estimates and
robustness of classical models, is the Bayesian Neural Network'. Bayesian Neural
Networks (BNNs) have been shown to both match conventional neural networks and

'See (Shridhar et al., 2019) for reading on the convolutional case, also helpful for fully connected
BNNs.
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outperform them in terms of robustness and uncertainty estimation, although at a
greater cost of computation (Goan and Fookes, 2020). They are usually only se-
lected when datasets are small enough that computational recourses are sufficient
regardless, or where uncertainty estimates are desired. Although the interpretability
of classical models is still far out of reach for these models, the Bayesian Neural
Network is aimed to compete with the conventional, or as we will address them
henceforth, frequentist neural networks (FNNs). Both BNNs and FNNs suffer from
the problem of uninterpretablility.

BNNs usually employ an isotropic Gaussian prior over their parameters (Dusenberry
et al., 2020; Zhang et al., 2019; Immer et al., 2020; Louizos and Welling, 2017;
Hernandez-Lobato and Adams, 2015; Neal, 1996). However, in this thesis, we will
attempt to find alternative priors that hopefully replace the need for Batch Normal-
ization. This is an attempt to offset some of the increase in computational expense
and, at the same time, hopefully, be more computationally stable and informative.

A gradient descent algorithm is used in neural networks, forcing us to compute the
gradient. This computation is a primary source of problems, where the perhaps
most severe is vanishing and exploding gradient. We wish to specify a prior such
that the norm of the backward pass is one, alleviating the need for Batch Normaliza-
tion. As explained in Subection 2.1.3, the vanishing and exploding gradient problem
becomes increasingly severe the deeper, i.e., the more parameters the network has.
Therefore specifying the prior such that the weights are £2 norm 1, the backward
pass is greatly restricted, and the gradient size problem is alleviated. When discuss-
ing the norm later, we always mean £2-norm unless we specify otherwise.

Furthermore, we expect to see greater and greater benefit the larger the model is.
Since massive models have better prediction performance, being restricted to non-
massive models is not ideal. In the Double Descent framework, massive models
seem to be the future of non-interpretable prediction. Restriction to the unit hyper-
sphere could be a helpful form of regularization regardless of the properties of the
gradient. Since a deep network with predictor and target variables on a standard-
ized scale, i.e., normalized, does, in theory, not need the weights of any layers to
have a norm different from one.

We see no obvious reason to believe that restriction to the unitsphere should mean-
ingfully reduce model capacity. That suggests the restricted model has the same
capacity as Gaussian prior BNNs but with fewer optimization solutions to the same
problem. However, it is hard to evaluate whether that constitutes an advantage,
given the earlier mentioned Double Descent trend. First-order optimization meth-
ods, Adam in particular (Kingma and Ba, 2014), are utilized for deep learning due to
computational concerns. This optimization method class can perform worse when

12



parameters are not on the same scale (Zhang et al., 2017; Bottou et al., 2016).
That problem is compounded with the numerical problems of gradient computation
mentioned earlier. If certain parameters are of inappropriate size, they are not only
themselves less amenable to optimization. But they affect the other parameters
earlier in the networks, whose gradient are approximated later, and dependently
on the later parameters. That provides compounding suboptimal optimization steps
for parameters of differing size, both from theory and computation. In addition to
that, we hope that this prior specification could bring the Bayesian advantages of
robustness and uncertainty estimation into the modern world of massive models.

Double Descent indicates massive models are useful. Massive models are usually
built on FNN-based architectures. Gradient problems are currently addressed with
heuristics and worsen as models grow. The optimization method used to optimize
them is less adept at handling parameters at differing scales. These two prob-
lems magnify each other. If we specify a norm one prior we redress both issues
at once, less heuristically. Hopefully, making them marginally more interpretable.
Using BNNs in themselves, with the conventional Gaussian prior already has bene-
fits in uncertainty estimation and robustness. We aim to inherit these useful traits
in the novel-prior BNN we propose here. In this thesis, we propose and apply the
Hyperspherical Uniform prior BNN and evaluate its performance.
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Chapter 2

Theory

In this chapter, we summarize some of the most important theory for the work in this
thesis.

2.1 Frequentist Neural Networks

The benchmark for the aforementioned high-parameter models has, for a while,
been the neural network. Although it has gone through many improvements over
the years, currently more utilized as a module in modern larger architectures, it is at
its core the same as it was when proposed in '87 (Cun and Fogelman-Souli¢, 1987).
However, we will have to refer to these as frequentist neural networks (FNNSs) for
the remainder of this thesis since we will explore novel solutions in Bayesian neural
networks (BNNSs).

We will begin by introducing a barebones FNN. It consists of alternating linear trans-
formations and non-linear activation functions. The linear transformations are of the
form x"W + b where x is the output from the previous activation function. The ac-
tivation function is usually a ReLU function. This applies to each of the elements x;
in the output vector x from the previous linear layer:

0 X,‘<0
Xi x,-20

g(x;)) = max(0,x;) = {

Although in our implementation, we use a variant called LeakyRelLU, where —c * x;
is returned instead of 0. ¢ is usually a small number, around 0.05:
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(x) —cxx; x <0

B Xi X; Z 0

The number of such layers is called the depth of the network. The output dimension
of each W (the b’s are applied to the outputs so its size always coincides with the
output size of W) are referred to as the width of each layer n. Often this structure
is visualized in a manner where the output elements from the activation layer are
nodes and the linear transformation that follows as a set of connections between
every previous node and every next node, see Figure 2.1.

Sending the input data through the entire network, i.e., making a prediction, is called
aforward pass. The trainable parameters here are the weights W and biases b of the
linear part of each layer. The ReLU is not trained. By trainable, we mean these are
the parameters updated when we fit our FNN to our training data. This procedure
is done by first specifying how we wish to measure our model’'s "goodness of fit" to
the data. Often Residual Sums of Squares, RSS, is chosen for regression. This
is defined as RSS = >/, (yi — f(x;))? where f and the y;’s is the neural networks

prediction for x; and its corresponding true values respectively.

For classification, we apply the SoftMax function to the last five outputs and then get
a scalar by applying, for example, binary cross-entropy on those with regards to the
true class value: —+ > | y; - log(f(x;)) + (1 — yi) - log(1 — p(y:)). Where f is the
networks, y is the true class, and p(y;) is the probability for that class. This is called
the loss. In the case of classification, the SoftMax function will be applied to each
of the five nodes in the graphic to the far right of Figure 2.1. Each node represents
a class, which after the SoftMax becomes the prediction probabilities. In order to
yield the predictions of the network, all the steps must, of course, be applied to the
input vector x. This application of the whole nested function is called the forward
pass. In order to begin training the network, a random sample of observations from
our data set is first drawn. The network then conducts a forward pass on this data
sample’s input, or predictor, vectors. The loss between the predictions yielded from
this forward pass and the targets from the data sample is then calculated.

The gradient of this loss is calculated by invoking the chain rule sequentially back-
ward through every layer. This process is referred to as backpropagation Rumelhart
et al. (1986) due to the conventional use of a forward-pass computation graph, from
subsection 2.1.3, to keep an overview assisting in the step-by-step application of
the chain rule. The computation graph was invented for the overview during the
manual calculation. However, conducting backpropagation is intractable analytically
for humans in modern applications. PyTorch (Paszke et al., 2019) can do this for
us. In PyTorch, the computation graph refers to its internal tracking of the sequence
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ReLU(xq w11 + b1) ReLU(x{ w21 + ba) ll ReLU (x4 w31 + b3)

Figure 2.1: A Frequentist Neural Network. Each of the red lines represents each of
the dimensions of x;. In the literature, the lines often represent each of the entries
in the weights w. Note, for each i, j: x;; = ReLU (x,_;w; ; + by).

Although there is usually no activation in the last layer.
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of every computation. This tracking is essential for PyTorch to manage to do the
backpropagation for us automatically.

2.1.1 SGD and Adam

A small change in the parameters along the direction of this calculated gradient is
made. This process of sampling from the data and conducting a parameter gradient
step from that subsample stochastic gradient descent, SGD (Robbins and Monro,
1951). A fixed step size was originally set, but an adaptive learning rate is used
more nowadays. Adaptive gradient descent methods track the direction of earlier
gradients. A larger step is made if the gradients of the last few steps are roughly in
the same direction. Contrarily, smaller steps are made if the last few gradients are
more different in their direction. This memory feature of adaptive methods is called
momentum. The most common is called "Adam" (Kingma and Ba, 2014), which
uses a variant of it. These small steps are conducted several times. The exact num-
ber of times is usually referred to as epochs and is a tuneable hyperparameter of
the network. SGD only utilizes the first derivative and is hence a first-order method.
First-order methods do not handle parameters on different scales well. Adam’s mo-
mentum variant may be viewed as an approximation to the second derivative. Yet,
no evidence suggests this approximation ameliorates the scale sensitivity. Thus,
Adam retains the propensity for scale sensitivity. Scale sensitivity is relevant for the
prior specification later (Zhang et al., 2017; Bottou et al., 2016).

To describe them formally, let us begin with their predecessor, static learning rate
gradient descent. Let f and v denote the network and its parameters. Let o denote
the static learning rate, and ¢ denote the optimization step. Let L denote the loss
function of the whole network with respect to the parameters. Then one optimization
step would be expressed by:

Vir1 = Y — oV L(y;)

Originally Robbins and Monro (1951) suggested the Stochastic variant of this pro-
cedure due to reduced demand for compute. In SGD, V,, is replaced an unbaised
estimator @,,L(q/,). %WL(I/II) is, as mentioned, just the gradient calculated on a sub-
sample of the available data. Adam, as mentioned, will introduce another layer of
complexity. There, the size of o per optimization step ¢ will depend what V,,L(y;)
was calulated to be from the earlier r. Formally:
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where ¢ is a small scalar (e.g. 10~%) used to prevent division by 0, and C; (e.g. 0.9)
and C; (e.g. 0.999) are the forgetting factors for gradients and second moments of
gradients, respectively. Squaring and square-rooting is done element-wise.

2.1.2 Computational Heuristics for Performance
2.1.2.1 Batch Normalization

Two additional techniques are usually employed to supplement test-error perform-
ance further. Batch Normalization loffe and Szegedy (2015) is applied between
every layer or every so often. It consists of normalizing the entire forward pass
tensor between two layers. This helps prevent the forward-passing tensor from
growing too large. The norm of the forward pass will inherently influence the gradient
norm. Batch Normalization, therefore, influences the forward and backward passes
to remain closer to a computationally desirable norm. Bayesian Neural Networks,
introduced in Section 2.3, also have to, in principle, utilize this method. Although in
this thesis, we will resolve that.

2.1.2.2 Dropout

The second technique is called Dropout (Srivastava et al., 2014; Hinton et al., 2012).
This technique consists of randomly setting the output weights of a node to 0. Dro-
pout is usually applied only during training. The original motivation was to make
each node learn something general rather than specific to the dataset. Dropout gen-
erally improves performance when the probability of dropping each node is tuned
appropriately during training. See Sanderson (2015) for an excellent visual intro-
duction to frequentist neural networks.

18



2.1.3 Computation Graphs, Backpropagation and Autograd

Tracking the computation graph and its chain rule differentiation is key to under-
standing Neural Networks. It will also be key to understand the developments in this
thesis, as our selection of Prior and Variational Distribution to achieve a norm one
backward pass without losing the other benefits of Gaussian BNNs are the main
goals of this thesis.

Solving any arbitrarily complex differentiation analytically is not tractable for com-
puters. Numerical approximation methods do not resolve that, as they would yield
compounding inaccuracies. Therefore, another method is needed. Computation
graphs get their name from, intuitively, being the graph of the computation. This
graph is helpful for humans when we solve the backpropagation manually by giv-
ing us an overview. The relevancy remains for computers as well. A third option is
automatic differentiation, autograd (Paszke et al., 2017) for short. Here we program
our forward pass into a series of primitive operations that we know how to differen-
tiate from the chain rule. Thus we get exact derivatives for the compositions of our
defined primitive operations and avoid repetitive calculations of the same values res-
ulting in compounding inaccuracies that we would get in numerical approximation.
In practice, the computer tracks all the computations, i.e., implicitly drawing a graph
of them, and then chain-rule differentiates all the computations in reverse order.

Imagine a function f with input x, component functions fi, fs, f3, f1, input x and y
as the output. It is unnecessary to view f, its components and output as a neural
network, its layers, and its loss just yet. Nevertheless, the reader may already do so,
as this is the motivation. In that setting, Autograd is used only in training. Here the
output(s), or predictions, are wrought into a loss scalar. In that case, y is a scalar.
In Explicitly writing out the component functions:

y = f(x) = fulfs(f2(f1(x))))

Let i : R* = R?, £, : R® = R?, f3: R® — R3, £, : R® — R™. Then the dimen-
sionality of the intermediate variables are x € R", x; € R3, x; € R?, x3 € R?, with
y € R™. These four functions are the primitive operations mentioned earlier. The
computer tracks the computation graph by storing these four components instead of
f as is. Now that we have each component function of f, we can utilize the chain
rule:

N8

9f(x) _ 9f(x) 9xa Ix3 Ix2 _ 9fa(xs) fs3(x2) dfe(x1) I (%) _ J4(x)

dx x4 0xg dXg X1 x4 0x3 %2 ox1

Remember from Terminology 0.1, §—£J is the ith row and jth column of the Jacobian,

J¢(x), of f. Backward differentiation (Curtiss and Hirschfelder, 1952) is more com-
putationally appropriate for finding our Jacobian since we are building this theory
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towards neural networks, meaning the computational cost of forward differentiation
is O(n * (...)) while for backward differentiation, it is O(m = (....)), which is smaller
for neural networks since the loss function is at the end wrought into one scalar.
Hence, we will build the Jacobian up row-wise using the vector-dacobian product,
VJP for short. Let the unit vector e; € R, which we view as a vector for generality.
The point of this generality is to illustrate why backward differentiation is more ap-
propriate computationally than forward differentiation. Let us calculate the VJP with
backward differentiation with this generality:

Vix)=e1 Ji(x), V (x)2=-e1 Ji(x),..., VI (X)m=e1 J(x)
Now see what happens if we instead were to construct the Jacobian using forward

differentiation:

af(x af(x af(x
5/51) = Jf(X)e]_, (J;)(Cg) = Jf(X)e]_, ceey g)(cy,) = Jf(X)e]_

In short, we calculate n products in forward differentiation and m in backward differ-
entiation. Since m will, for our purposes, denote the dimension of our loss function,
namely one, while n denotes the dimension, or number, of parameters. Hence, we
use backward differentiation in optimizing neural networks. The analogy to optim-
ization to neural networks may still seem strange because here. It may seem as
though we are trying to optimize our predictors with respect to the loss with respect
to our targets, which is not quite it. However, we need to start with the rudimentary
before we can advance. The computation graph for our function f in this example
can be graphed followingly:

@— fi —>@— fo —{ X2 /3 @ Ja —>@

Now we will advance to a more intricate setting reminiscent of actual neural net-
works. The following graph is of an entire feed-forward network and the calculation
of its loss, L(xz). Let us now explicitly define fi(x; w,b) = fo(x;w,b) = x'w + b.
Then we also define x; = f(x;wo,bg) = x'wy + bg and x, = fo(x;wy,by) =
XTW1 + bl.
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Let us calculate the derivatives with respect to our parameters wy, by, wy, bg:

JdL(x2) __ OL(x2) dfa(x;wi,b1) _ OL(x2) 9x] wi+bi aL(xz)X

owi  fa(x;wi,b1) ow1 T X9 ow1 T X9 1

dL(x2) _  OJL(x2) dfa(x;wi,b1) _ 9dL(x2) 9x] wi+by dx] wo+by aL(xZ)W X

owo  fa(x;wi,b1) dwo T xa Jx1 dwo T xa 1

IL(x2) __  OL(x2) dfe(x;wi,b1) _ 0L(x2) dx{ wit+b1 _ 9L(x2)

ob1 fa(x;w1,b1) dby T X9 db1 T X9

JdL(x2) JL(x2) dfa(x;wi,b1) _ dL(x2) 9x{ wi+b; ox1 _ aL(xz)W IxJ wo+bo 8L(x2)w
dby fa(x;wi,b1) dbg T xa ax1 dby ~  x2 bo T xa 1

We omit calculatlng o ILx2) 35 this varies by loss function. The most important clue
here is the intermediate term w; that always shows up when we backward pass. In
other words, the size of the w’s in deep neural networks will be key in determining
how large or small the gradient will be. This illustrates why one of the main goals
of the thesis is to restrict the size of the weights to norm 1. Since this will keep the
entire gradient with respect to all parameters within bounds, avoiding exploding and
vanishing gradients. The point of computation graphs was originally to help humans
that did not have access to PyTorch, including students who need to learn what is
going on under the hood. The forward graph is mostly there to keep track of how to
conduct the backward-chain rule operations.
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Figure 2.3: Conventional Notation Computation Graph
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@ %Jf;\ X1 dfa(x1) X5 IL(f2(x1))

v df1(x)

dfa(x1)

Figure 2.2: Mathematical Notation Computation Graph

The reader may react to the sudden change with % in the node for wy. This is
not the conventional way of notation in this field. The convention is, in fact, a grave
abuse of notation. Conventional notation would instead fill the nodes in Figure 2.2
with dL, d f5, d f1, dwg, which does not make mathamatical sense. However, this
makes the computation graph’s manual calculation much easier. Because in the
way we drew it above, we need to fill the nodes with new partial derivatives for every
weight or bias derivative that we want to calculate. This convention also has a useful
analogy to what PyTorch is doing under the hood. We will also draw a graph with
this convention because we use abuses the notation in order to draw the whole
backward graph at once. A warning for the mathematically rigorous reader, view
Figure 2.3 at your own risk.
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2.1.3.1 PyTorch

Every computational step described in the last section can be implemented where
the weights biases and input vector are torch tensors. For the weights and biases
or any other parameter we would like to optimize, PyTorch (Paszke et al., 2019)
will automatically differentiate these tensors. Pytorch is a library within the Python
programming language (Van Rossum and Drake, 2009; Hunt, 2019). This automatic
differentiation has many details we cannot go into here, but it is, at its core, just an
implementation of what was described in the last section. It will find the gradient of
the loss with respect to all the parameters we wish to optimize, and this will be fed
to Adam, and an optimization step will be conducted.

Autograd is a core property of PyTorch. It is perhaps its main advantage and why it is
the leading library for deep learning (He, 2019; OpenAl, 2023). Manual implement-
ation of the backward differentiation is orders of magnitude more time-consuming
than the forward passing architecture. A property of PyTorch that must be men-
tioned is that there is fundamentally no way to instruct it of a domain restriction over
its parameters. We write fundamentally because it seems this is something that
really could not tractably be changed. One would more or less have to write the
library over again. It will always optimize all its parameters registered for optimiza-
tion across the entire real line. This PyTorch limitation is a problem for the goal of
this thesis. We attempt Normalized Initialization inheritance in Subsection 5.1.2 to
redress this. Terminologically, the backward pass is the inverse of the forward pass.
Meaning it refers to calculating the gradient at each step, which intuitively goes "in
reverse." Autograd is the system that PyTorch uses to conduct automatic differenti-
ation in general. Backpropagation is a term that somewhat overlaps with automatic
differentiation. It refers to the calculation of the expression of each factor, each of
which is represented as a node in Figure 2.3, of the expression for the gradient.
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2.2 Bayesian Inference

In Bayesian inference, we assume there is a true model describing the entire sys-
tematic relationship between our target and predictor random variables. Mathemat-
ically we also assume that this true model contains parameters. These true para-
meters are even in the theoretically ideal setting of specifying the true model, not
necessarily reachable unless we have infinite data D. However, in the theoretical
case with infinite data, the posterior random variable ¥|D will be the true paramet-
ers describing the true model. There, the true parameters are mathematically not
real numbers, but real-valued random variables.

2.2.1 Random Variables

This section assumes the reader is familiar with introductory measure theory'. To
complete the formalism, the function ¥ : 2 — R™ is a real-valued random variable
if and only if:

{weQ:¥(w)<r}eF VreR"

Given a probability space (2, F,P). Where (2 is the sample space, i.e., the set of
all outcomes. F is the event space, each event f € Fiss.t. f C (). Meaning F is a
set of subsets of Q). Lastly, P : 2 — [0, 1] is a measure on 2, with the property that
P(Q2) = 1. Measures with this last property are referred to as probability measures.

Another class of functions accompanies most of these random variables, probability
density functions (pdfs). Let (X, .A, 1) be the Lebesgue measure space. Assume
also that ¥ has a pushforward measure that is absolutely continuous with regards
to the Lebesgue measure. We assume that last property because strictly speaking,
only such random variables have pdfs. A probability density function pg for W is
then any function that satisfies:

P{ocQ: U(0) € FY] :/ dP(w) /qu,(x)du(x) VF € A

T-1(F)

Remember, the conditional random variable ¥|D is the true parameters in the true
model only when the model is the true model, and we have infinite data. We go
through this to help clarify whether we are referring to the random variable itself, its
pdf, or its realizations.

A great resource here is chapters 7 and 8 in Lindstrem (2017)
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2.2.2 Bayesian Inference

The theoretical true posterior ¥|D is a conditional random variable. To find it, we first
need the true prior ¥, likelihood D|¥, and marginal of the data D. Moreover, know
their respective pdfs. Knowing those expressions, we can invoke Bayes Theorem:

P‘I:(‘I’)Pm\ll(a )
po(D)

In practice, the whole framework is not necessarily entirely representative of reality.
On the other hand, Bayesian inference is often an excellent approximation to the
actual situation. Moreover, even if it were, we do not know the pdf of either the
true prior, the true likelihood ppjw (D, ¥), or the true marginal distribution pp (D) of
the data. Selecting the likelihood is the only part an investigator should prioritize
effort, as prior selection is also paramount. In practice, this selection is often made
by plotting the training data and seeing which of the conventional toolbox methods
works the best.

P\P|D(‘I’,D) = (2.1)

Although the choice of likelihood could be a significant source of error, the Bayesian
statistician is often more concerned with the selection of prior. There is no generally
accepted recipe for selecting a reasonable prior the same way as for the likelihood.
Although one always has the option of uniform priors, this neglects some of the
advantages of the Bayesian framework. A vital strength of the Bayesian framework
is that it allows the investigator to let the prior represent his or her prior beliefs about
the parameters ¥. Hence, the name "prior."

To connect intuition to mathematics, the prior represents the investigator’s prior be-
liefs about the parameters, and the likelihood represents the parameters’ role in the
data. The parameters’ role in the data will determine how to deal with observa-
tions from the data. When the data is introduced, the prior and likelihood for this
data are multiplied, as seen in Bayes Theorem. Intuitively this can be viewed as a
weighted integral of probabilities between prior belief and introduced evidence in-
terpreted through the choice of likelihood. Hence, the posterior distribution over our
parameters is obtained.

There are more reasons for conducting Bayesian inference instead of frequentist
inference. The first is if the parameters are actually random variables. Bayesian
inference should then yield superior results since it is closer to the mathematical
reality. However, even in cases where the parameters are not real numbers, we
can never know them exactly. Thus, we can utilize the mathematical framework of
random variables to better capture our uncertainty of the parameters than in the
frequentist setting. Therefore, our notion of random variable modeled uncertainty
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and true randomness may be similar enough to yield great results. Hence, the
Bayesian framework might better account for the uncertainty of parameters even if
the parameters actually are real numbers.?

2.2.3 Finding the Posterior

From (2.1), we see that we need three expressions to find our posterior. The epres-
sions in question are the prior py (¥), the likelihood ppw (D, ¥), and the marginal
distribution of our data pp(D). In the Bayesian framework, we allow ourselves to
select a prior and the likelihood of our data, which we hope are reasonably appro-
priate. The marginal distribution pp(D) is determined by those two earlier choices.
Hence, if we want to find the posterior analytically, we would first need to find the
marginal:

po(D) = / Py (D, T) pay()d

In Bayesian inference, where we have selected a likelihood and prior that is reason-
ably simple, this integral can be possible to calculate. However, if when dealing with
complicated priors and likelihoods, we quickly find a problem. The integral is not
tractable, perhaps impossible, to calculate analytically. This is the case for BNNSs.
Therefore we resort to algorithms for approximation of the true posterior instead.

2.2.3.1 Markov chain Monte Carlo

One of the most famous algorithms for posterior approximation is Markov chain
Monte Carlo (MCMC), in modern practice through the Metropolis-Hastings Algorithm
(Hastings, 1970). Here a Markov chain that has the desired distribution as its equi-
librium distribution is constructed, and we can obtain a sample of the desired distri-
bution by recording states from the chain. As with most optimization algorithms, we
conduct several steps along this chain in order to have enough to sample from. In
addition, this algorithm also requires a substantial "burn-in" period. "Burn-in" is ne-
cessary because it takes several steps before the Markov chain converges towards
its equilibrium distribution, our posterior. Depending on the distributions in question,
several steps on an order of magnitude, often similar to the number of steps used
as the final sample, must be discarded for "burn-in."

We will not explain these methods in detail. The interested reader can see (Robert,
2015). As the reader might have already grasped, this method of computing the pos-

2See (Gelman et al., 2013) for more comprehensive reading on this topic.
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terior will have a tremendous computational expense. MCMC makes few assump-
tions on the form of the posterior and hence tends to yield accurate predictions. It is
generally more accurate than Variational Inference of the next section (Dupuy and
Bach, 2016). However, it is computationally intractable for complicated architectures
and large datasets. Therefore we will have to look at a better compromise. We allow
ourselves to make certain assumptions about what form our posterior has, in order
to let our computation be tractable.

2.2.3.2 Variational Inference

As mentioned earlier, Sevilla et al. (2022), together with the Double Descent au-
thors, show that more compute is the general trend in deep learning. Thus, we wish
to be careful with utilizing methods that entail great computational cost since any
compute utilized there could be utilized elsewhere in our architecture. Therefore
BNNSs typically utilize a less precise but much cheaper method to approximate the
posterior of its parameters. Namely, Variational Inference (Kingma et al., 2015; Blei
et al., 2017), VI for short. The idea behind VI is first to posit a family of distributions
and then to find the family member closest to the true posterior. Therefore, selecting
what family to use for this purpose is key and entails the main weakness of VI com-
pared to MCMC. Since MCMC makes no assumptions on the form of the posterior,
VI will only ever be able to approximate the best fit to the true posterior within the
family of distributions selected beforehand.

We refer to the family we select as the variational distribution, VD for short. The
goodness of fit of our VD to the true posterior is measured with Kullback-Leibler
divergence, KL divergence, or KL loss for short. However, this divergence is math-
ematically not a measure nor a metric. Because it is not symmetric. The definition
of this KL divergence between the VD, g¢ (), and true posterior, pgp(y¥, D), is
defined as:

def
KL(g2 (W) || paip (v, D) 2 [ qu(w)log (7220805 ) dy

The VD is parametrized by 8. We minimize the aforementioned KL divergence by
finding the 6 such that the KL divergence between the VD and true posterior is
minimized. In order to conduct this optimization problem, it is helpful to rewrite the
expression for this divergence. Note that the posterior, pwp(¥, D), is included in
the denominator to the right here, of which we do not know the form. Therefore
we invoke Bayes Theorem on the true posterior in the denominator to find a more
helpful expression:

S aw(w)log (5225 ) dy
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= [ qu(y)log (%) dy

pp (D)

= [ qu(w) (108 (£208) — 105 (puin(y. D)) + log(po(D)) dy

— [antw) (105 (22} s (pma(v,2) ) v+ [ aatw)tostrolD) ay

= [axtw) (105 (20} g (a1, 2)) ) dy+ bo(on(D)) [ anlv)av

The last integral will integrate to 1 since it integrates a pdf over its entire domain.

- /q\p(w) (log (Z‘Z%) —log (poje (V, D))) dy + log(pp(D))

Note that the logmarginal density of D, log pp(D), will not change as we update the
0 parameters of the pdf of ¥. Thus, we can discard the last addend, yielding us:

= [ qatwrog (l‘jj%) av~ [auw)ios (pou(wD)) ay @2

Now we have the KL divergence between VD and true posterior on a form much
more conducive to optimization since these integrals are tractable to approximate.
consequently,our optimization task becomes to find the 6 such that this term is min-
imized. The expression above is often referred to as the evidence lower bound,
ELBO for short. Since the last log(pp (D)) term was discarded, this term cannot be
smaller than the complete expression that includes the discarded term.
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2.3 Bayesian Neural Networks

In the previous sections, we went through Neural Networks, Bayesian Inference,
Variational Inference, and backpropagation in PyTorch. A Bayesian Neural Network
(BNN) is a neural network that has random variable weights and biases. The BNNs
we introduce are trained through variational inference. Thus, we posit a variational
distribution over our random variable weights and biases ¥3. Consequently, the loss
is specified as the KL divergence between the true posterior and the variational dis-
tribution. Then this loss is fed to Adam, and an optimization step is conducted. The
computational structure of the forward pass is critical. Whether PyTorch can conduct
automatic differentiation is determined by whether or not it can draw a differentiable
computation graph. The keen reader may already suspect that random variables
are not inherently amenable to automatic differentiation. There is a solution for this,
which we will explain in this section.

2.3.1 Forward-pass and Reparametrization Trick

For PyTorch to draw a well-defined computation graph, we must separate the sys-
tematic and stochastic components of ¥. This separation is called the Repara-
metrization Trick (Kingma et al., 2015). Here we construct our variational distribu-
tion with a sampler function that separates the stochasticity from the systematic
components. For example, the Gaussian could be mathematically constructed as
U + o x €. Here u and o are the real number parameters stored in PyTorch, while
€ is a standard normal Gaussian that we sample from. It is u and o that PyTorch
calculates the gradient of the loss with respect to. Here, the minimization of loss
with a step in ¢ is conducted, avoiding the backward pass flowing "into" €, therefore
resolving PyTorchs inability to handle random variables as parameters directly. From
Subsection 2.1.3, we know drawing the computation can be a good idea to help to
understand. Figure 2.4 represents how the reparametrization of ¥ is conducted in
a forward pass structure. We draw for layer n, only considering the weights since
the case for biases is analogous.

Note in the backwardpass graph, Figure 2.5, that the reparametrization of W =
Uw, + ow, allows its differentiation with respect to ow, * € and uw,, which become
1 and € respectively. Allowing PyTorch to optimize both parameters with autograd
as usual. PyTorch can then optimize all parameters describing the variational dis-
tribution ¥ with autograd. For BNNs with a Gaussian variational distribution, these
parameters consist of the mean u and variance o.

31t may be somewhat confusing whether we are using W to refer the "true" parameters themselves,
or a variational distribution. In this section, ¥ refers to the variational distribution set to approximate
the weights and biases.
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The loss function, L, is specified as the KL divergence between the variational dis-
tribution and the true posterior. To approximate that, we sample from all the ¢,s and
conduct a forward pass with those realizations, and repeat that several times. This
means each of the forward passes will be different since they have different realiz-
ations of the g,. Then an approximation of the KL-divergence with all those forward
passes and a single backward pass is conducted with that estimate. This process
is essentially a complicated Monte Carlo approximation to the KL divergence. In the
last paragraph, we used the example of a Gaussian to reparametrize. That is be-
cause BNNs conventionally utilize Gaussian variational distributions. In those cases
the g,’s are iid V/(0, 1). The reparametrization must still be done for novel variational
distributions but is often far less trivial. That was the case for our upcoming novel
variational distribution in Section 4.4.
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Figure 2.4: Reparametrized Computation graph for Bayesian Forward Pass
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Figure 2.5: Reparametrized Bayesian Computation graph for Backwards Propaga-
tion

2.3.2 Variational Inference Bayesian Neural Networks and their
Intuition

Equation (2.2) is called the evidence lower bound (ELBO) because it is the lower
bound on the log-likelihood (evidence) of our data. For BNNs, the minuend and
subtrahend there are often called the KL-loss and the Reconstruction-loss, respect-
ively. That is because the first term coincides with the definition for the forward KL
divergence between our prior and our VD, while the second term coincides with the
expectation of the likelihood of our data. Consequently, a helpful, intuitive interpret-
ation is to view the KL-loss as replacing the £? regularization term in FNNs and the
reconstruction loss as maximizing the likelihood, analogous to the traditional sum
of squares loss. This is relevant to the goal of this thesis, which will be explored
further in the next section. In short, the KL-loss is the ELBO part that induces this
L? regularization; see Subsection 4.2.1. Therefore it is even common in Bayesian
Deep Learning to adjust this term directly to "temper" it, for example, since it is in
practice known to represent the regularizing effects of the prior. Even though that
direct interference often has little statistical motivation as such. The idea behind
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BNNs is explored more at length in the Introduction. Restated, perhaps there are
"actual" Bayesian relationships in the data that we are working with, but this frame-
work allows for accounting for the uncertainty of the parameters in a better manner
than in the FNN case. That is the main reason why we bother making something
already complicated even more complicated. BNNs accommodate evaluation of
both parameter and model uncertainty (Hubin and Storvik, 2019).
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Chapter 3
Reproducibility and Replicability

In this chapter, we argue for the importance of reproducible and replicable science
in general. We show why reproducibility, especially computationally, is crucial for
modern machine learning. Lastly, we demonstrate how we achieved that in practice.

3.1 Introduction

Computational reproducibility is easy to achieve if efforts are made early in a project.
If delayed, it becomes less and less feasible later on. Computational reproducibility
is especially relevant for deep learning. Constraints in computational recourses are
widespread in deep learning, which exasperates the difficulties. Furthermore, the
body of libraries used to conduct deep learning is vast. Oddities may thus arise
from seemingly innocuous changes to the computational environment. Download-
ing new libraries or updating existing ones are examples of this. This chapter is,
therefore, deliberately placed before the experimental chapter. Because effort into
reproducibility before starting the implementation will be greatly rewarded. The im-
portance of reproducible science can not be understated. Deep learning models
and their performance have far outpaced our understanding of them. Reproducible
investigations of them assist the scientific community in understanding. Therefore,
we prioritize the reproducibility of this thesis. Because we want to make our tiny
contribution to the larger effort of science. This section thus goes through how we
achieve computational reproducibility in practice. Let us open this chapter with a
bold statement, and see whether it holds merit: "Nonreproducible science" is an
oxymoron.
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3.2 Terminology

Confounding use of terminology is a problem in scientific publications across sci-
entific disciplines. "Reproducible” is not exempt, often confounded with "replicable".
There are three main usage groups of the terms. The first group uses reproducible
to denote "new data and new methods in an independent study=same findings."
They use "replicable" to denote "same data and same methods=same results." The
second group interchanges the two terms. Of course, there is a third group that
makes no distinction between them. They interchange the two terms as if they refer
to the same thing without making it too clear what that is. This problem is well ad-
dressed by (Barba, 2018). We will use what is called the Claerbout-Donoho-Peng
convention, meaning we let the terms follow the first group.

3.3 The Philosophical Foundation of Science

An attempt at defining science is made by (Richards, 1928):
"The systematic description of phenomena.”

This definition is quite broad. However, the word phenomenon means observable
event. Therefore, the definition refers to the gain of knowledge by systematic obser-
vation.

Another attempt at a definition of science from Oxford Reference (2019) reads as
follows:

"The intellectual and practical activity encompassing the systematic study of the
structure and behavior of the physical and natural world through observation and
experiment.”

Neither does this definition specify what it means by "systematic," so we will use the
definition from the same people: "done or acting according to a fixed plan or sys-
tem." These two definitions are not enough to conclude with statistical significance
that there is philosophical consensus that science necessarily must be systematic.
However, this was meant to evoke the memory of a reader that already, either con-
sciously or subconsciously, agreed. If a scientist were to look at a potato, i.e., ob-
serve it. Occasionally pick it up and then drop it again. While doing this, it starts
to rain. Say the scientist dropped the potato many times in the exact same manner
while writing down all that was observed. The rain continued the whole time. Then
the scientist concludes that the potato causes rain. This procedure would satisfy
a systematic observation of the structure and behavior of the physical and natural
world through observation and experiment. Since the potato was observed and in-
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tervention on the potato was made, according to a fixed plan, thus following both our
definitions of science. The scientific conclusion is that dropping that potato causes
rain. However, most would agree that this is not science, at least not good science.
We would object to the scientist’s conclusion from their observation as "untrue" or
a variant of that. The concept of truth or its variations never entered our definition
of science, and we want to avoid getting into that part. Progress there would be in-
tractable for this thesis. However, both definitions have "systematic" and "study/ob-
servation" in common. This example might have been somewhat pessimistic since
we argue that completely wrong conclusions can be made from systematic investig-
ations. However, the point of the example was not to criticize science as a whole. It
was rather to implore us to, as researchers, to at least manage to be systematic in
our investigations.

Fully fleshed out, the systematic part of the definition refers to the fact that we ob-
serve the world with a well-formulated hypothesis in our currently proven or assumed
body of scientific truths. We then observe nature either as is or in an experiment
we fashion. Using the framework of previous science to interpret these results, we
evaluate if the observations support or contradict our hypothesis. In 1600 we would
now be done. Certain parts of the scientific community could seem to think the
same. In order to decide whether or not this hypothesis or its rejection should be
incorporated into our body of scientific knowledge, there must be a converging body
of evidence from several independent studies. If this happens, we are done, and
the knowledge is admitted. This is why we, and the philosophical or definitional con-
sensus, emphasized the systematic part in the definitions of science. In order to
improve how systematic we are, we need multiple stages of reproduction and rep-
lication of scientific results. That is why we began this section with that deliberately
bold statement. Since both replication and reproduction of results are essential to
the inherent systematic property of science.

3.4 Reproducibility’s Importance for Modern Science

In the earlier potato example, everyone would agree that that is insufficient evidence
to conclude that dropping the potato causes rain. The reader probably also agrees
that this should not warrant the scientific community to prioritize the investigation of
my claim. Instead, | should do it several times in different settings, aggregate my ob-
servations into a dataset, and statistically evaluate my findings. Say | write a report
stating the correspondence is genuine and include a summary of my investigation
of the data and the methods used in my code. At this point, many might argue that
an investigation from the scientific community is now warranted. However, we argue
that we are still not done. A common source of error happens during the stages
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where data is handled. For our potato example, say | published the code from my
data preprocessing. Here another researcher discovered that | had overwritten my
binary "rain" column with the observations from the binary "potato drop" column.
Therefore | found 1-1 correspondence over ten thousand potato drops when the
correspondence was not there at all. | wrote this last part in first person deliberately
since surprisingly "trivial" problems find their way into peer-reviewed journals. To
address issues like this, humility in accepting one’s own propensity for embarrass-
ing errors is paramount. Therefore, | wrote both this paragraph in the first person
and have made efforts to be reproducible since the start of my thesis. Since my
part or all of my results could be invalid due to a computational error. A particularly
egregious example is in Kaiser (2015), where there was active fraud. Open access
to data and code would have helped discover the fraud much faster, perhaps saving
lives. However, reproducibility has a long list of advantages in addition to correct-
ing embarrassing mistakes or fraud (Macleod et al., 2014; Chalmers and Glasziou,
2009). It may be that another researcher’s surprisingly small changes to my work
could result in much more significant findings than what | managed on my own. So
let us dive into how to achieve it.

3.5 Computational Reproducibility in Practice

Reproducibility is not relevant to all the stages of the scientific process. However,
in most modern science, data and code will be involved. From that point onwards,
efforts into reproducibility provide far more reward than it requires investment. Imple-
menting reproducibility in practice means making sure other researchers can redo
or reproduce our computation. We will explain the tools we believe are the most
relevant, most of which we have used ourselves.

3.5.1 Computational Reproducibility in this thesis

We include permanent links to all the datasets. We have not been completely
consistent with including permanent links to all papers referenced as well, but al-
most. In the cases where one was not included, we have listed a URL we have
no reason to believe will disappear anytime soon. In our opinion, more important
is including the data. Since even if there was an error in the preprocessing in the
included code, debugging without seeing the same outputs as us is much more dif-
ficult. The ideal way of doing so, which we have managed to do, is constructing
the code s.t. when others run it, the code downloads the data from a permanent
link on its own. The exception would be the vision data, but that is trivially built into
Torchvision and loaded from there.
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We have utilized Git (Git, 2023; Chacon and Straub, 2014). Git is a program that
tracks all changes a coder conducts to their code when the coder "commits" their
changes to a repository. The structure is, in short, a directed acyclical graph (DAG)
of all the versions of the code that the user has committed to the graph. This is
great for a researcher tracking their entire scientific progress. Commits should be
frequent and contain comments that explain what has been done to the best of the
researcher’s ability. This history of commits is also great for the researcher to spot
where they might have made a mistake or for other researchers to stop a mistake in
their code or data processing. This also helps science to be more open and allows
researchers to learn how other researchers conduct their research. GitHub is an
almost universal website for backup-storage of commits, the collaboration between
multiple Git users, and publishing the git repositories.

Jupyter notebooks Kluyver et al. (2016); Granger and Perez (2021) are software
facilitating interactive coding. Their main point is that several files can be imported
into the cells in the notebook, and the output can be saved. In this way, Notebooks
provide a summary of how the code was used and the results, allowing other re-
searchers not necessarily to look through the entirety of the codework. This works
well with Git, where the outputs and commands used to yield them can be committed
at each step, accommodating version control.

Conda environments (Anaconda, 2020) helps set up the appropriate computa-
tional environment on their machine. It lets us specify all libraries and dependencies
to be of consistent version. We have created such a Conda environment and at-
tached a .yml file that allows other researchers to recreate the Conda environment
we have used. The .yml file can be viewed as a recipe for Conda to recreate the
computational environment on another machine. This eliminates several sources
of errors by allowing other researchers to have a computational environment very
close to our own. Not only does it help other researchers, but also the original pub-
lisher. Sometimes code that used to work suddenly no longer does. A reason for
that could be that when downloading new libraries and amending others to make
them compatible, the computational environment may have changed such that the
code malfunctions. For the ideal use of Conda, the researcher should export their
environment at every installation of a new package at that step and commit it to the
Git DAG. Optimally, the code should be run, and the output on the Jupyter Notebook
also be committed. If the researcher had then been diligent in exporting the environ-
ment every time it was amended and committed it to the repository, the researcher
could look back to the last well-functioning commit and recreate the environment
from the .yml file there. Whether or not that is reproducibility is hard to answer,
since we usually implicitly use that term to refer to other researchers’ ability to re-
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produce. However, we think it is a good idea to start with being able to reproduce
your own results, which Conda helps with. We would like to, in particular, mention
the analogous Mamba Mam (2020). Mamba is a lot faster computationally than
Conda.

3.5.2 Additional Computational Reproducibility

Well-documented readable code is an essential part of coding. This boils down
to coding code with a reasonably intuitive structure from the start while concur-
rently adding comments, i.e., documentation, to explain the code further. McConnell
(2004) is a resource for this. Although efforts were made, we do not consider the
repo available at the time of publication to be of sufficient readability or documenta-
tion for a scientific publication.

Binder Jupyter et al. (2018), is a project website that constructs from a Jupyter
notebook from the git repo of the research. What we should have done was to store
a pre-trained model such that other researchers could investigate our models on the
interactive Binder site. Although training the BNNs is too computationally expensive
for Binder, the benefit is somewhat limited. Other researchers without our GPUs
would be limited to rerunning different tests with the same pre-trained models.

Utilizing this framework and the tools listed could greatly assist reproducibility. That
accommodates less erroneous and cheaper science on its own. Furthermore, it
accommodates collaboration across scientists. Another term we have not delved
into yet is that of open and accessible science. The framework we have summarized,
and the tools we demonstrated to achieve it, also allow a much larger variety of
people to partake in the scientific process. Other researchers do not need direct
access to the University of Oslo’s mainframe to run our code. Although to train the
models, they would either need significant GPU resources or significant patience.
In Al research, this is unavoidable since substantial computation is necessary. This
is also why this whole framework allows for more inclusive science. This is great for
the newly included scientists who want to contribute and for science as a whole. As
more scientists working together in a well-functioning collaborative environment will
scientifically outperform fewer scientists working less closely together.

3.5.3 Replicability

A general issue in deep learning is that one seed may yield a particular result while
another seed yields another. Often the two results are significantly different.” The

"Whether this is strictly reproducibility or replicability is hard to determine.
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obvious solution is to run many different seeds and evaluate the aggregate results
together. This is easier said than done for deep learning. As mentioned, the problem
is that the computational demands in deep learning are inherently large, sometimes
massive. Hence, the community often only tests for one or a few seeds. We have
run into this issue ourselves as well. Only one seed per experiment was affordable
within our computational budget.

Accommodating reproducibility will allow other later researchers to aggregate the
code of earlier publications and test them for different seeds if they can afford to do
so. Perhaps no other researchers could prioritize doing so initially. However, should
the results become relevant later, the reproducible framework allows later research-
ers with later and more powerful hardware to recreate the Conda environment of
earlier researchers. Thus, they can test different seeds more easily with their more
powerful hardware.
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Chapter 4

Priors and Variational Distributions
in Bayesian Neural Networks.

This chapter shows the earlier work in novel priors and variational distributions for
Bayesian neural networks. We describe the issues we believe are the most import-
ant and propose priors and variational distributions we believe best redress these.

4.1 Introduction

Optimizing a neural network BNN or FNN involves small optimization steps and
adjusting them based on the norm of the gradient. In theory, there is already reason
to suspect that the gradient norm is important for optimization (Bottou et al., 2016).
Adam can mathematically use arbitrarily small or large gradients for optimization.
However, being a first-order method, it is not invariant to the gradient norm, and
that can cause problems. Furthermore, setting one learning rate for all parameters
can be problematic since it is not obvious it will account for their differing scales.
In practice, the norm can cause even more problems. Computers do not handle
arbitrarily large or small numbers trivially. The chain rule derived an expression for
the gradient can result in components too large or too small, causing overflow or
a gradient that disappears to zero. Over and underflow may lead to computational
inaccuracies or even a crash. This problem is referred to as vanishing and exploding
gradients in the literature, first specified Hochreiter (1998). Keeping the gradient
norm within bounds is, therefore, crucial.

As mentioned in Section 2.1, Batch Normalization (loffe and Szegedy, 2015) ad-
dresses this issue. It often works well in practice. However, the mathematical or
modeling theoretical motivation for doing so is not convincing. Theoretically, it is a
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curiosity; although it should not harm, it probably will not do any good. The Bayesian
interpretation is analogous in that Batch Normalization is merely a numerical heur-
istic. Implementation-wise, there are also several problems with it. Wu and He
(2018); Arpit et al. (2016) explore some of these problems and propose solutions.
Although Batch Normalization and Dropout work well independently, they some-
times have problems being used together in the FNN case (Li et al., 2018). As
mentioned, the Gaussian prior has also been shown to work well. One reason for
this might be that it induces Dropout (Gal and Ghahramani, 2015). By induces, we
mean that Dropout could be viewed as an approximation to an underlying Bayesian
structure. Novel prior work has already been done in this field (Polson and Rockova,
2018). However, we would like to specify a prior similar to the Gaussian in hopes
that it will inherit its beneficial properties. Specifying a prior and variational distri-
bution that can induce both benefits without the seeming conflict could be fruitful.
Furthermore, normalization of weights as a replacement for Batch Normalization
has already indicated usefulness in the FNN case (Salimans and Kingma, 2016).
In addition, this restriction should make the network have fewer combinations of
weights and biases that result in the same loss. Specifying a prior that restricts
the norm of the gradient close to 1 while retaining the desirable qualities of
the Isotropic Gaussian is a primary goal of this thesis.

4.2 Isotropic Gaussian Prior

As mentioned earlier, the Isotropic Gaussian, isotropic meaning independent and
identical variance along all dimensions, is the standard prior used for BNNs (Dusen-
berry et al., 2020; Zhang et al., 2019; Immer et al., 2020; Louizos and Welling, 2017;
Hernandez-Lobato and Adams, 2015; Neal, 1996). In order to find more appropriate
novel priors, we first need to understand why the Isotropic Gaussian has worked so
well. Therefore, we wish to specify novel priors that inherit as much desirable traits
from the Gaussian as possible while hopefully adding more.

4.2.1 Relationship to £? regularization

Both £2 regularization and the Gaussian prior have worked well for FNNs and BNNs.
In order to specify a more appropriate prior than the Gaussian, it might be fruitful
to understand its relationship to £? regularization. Showing analytical results for
their respective effects in FNNs and BNNs is complicated, so we examine a more
straightforward case. Let us look at a network with only one layer with no activation
function, analogous to linear regression. Let y be our target variable, x be our
predictor variable, and w be our weights. Let their true relationship be as follows:
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y'=x'wt+b+te

¢ is a Gaussian random variable with mean 0 and variance ¢2. We assume that b
is known for simplicity and concern ourselves with y = y* — b. For each n, the data
D consisting of both y,, x,, will have a normal distribution. Maximum likelihood with
L? regularization for regression is called ridge regression. Unlike the posterior from
Bayesian inference, ridge regression yields an estimate without distributions. We,
therefore, compare that to the maximum aposteriori estimate, MAP for short.

We, therefore, compare the ridge regression estimate to the maximum aposteriori
estimate of the parameters. The likelihood for N observations of D then has the
following pdf:

N
pD|w(Da W) = H p/\/'(anw,GQ)(D; W)

n=1

Where pprxrw,o2) denotes the pdf for a Gaussian rv with mean x| w and variance
o?. As we are conducting Bayesian inference for this problem, we wish to find the
posterior, pw(p(D; w). We therefore need a prior, p,,(w), on w. We set a Gaussian
prior with mean 0 and variance A ~! along all its dimensions. Why we set it inversely
will become clear later. Thus, we can invoke Bayes Theorem:

Pwip(D; W) o pyw(W)ppjw(D; W)
Inserting the pdf of the likelihood into the above expression yields us:

N
Pw(W)Ppiw(D; W) = parop-—1)(W) H PN (wxn,02) (D; W)

n=1

We wish to find the MAP estimate of the term above wrt w. Applying a strictly
mononotonically increasing function will not affect the maximum estimate. The log-
arithm is the standard choice for such a function. As it makes the calculation much
easier. Hence, we fill in the pdf’s, apply a logarithm and let C denote our constants
since they are invariant to the maximization:
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Maximizing this expression with respect to w yields the maximum a posteriori es-
timate for w, MAP estimate for short. The (y, — x, w)? term might be familiar.
The solution for w for this term in isolation is the least squares solution. Meaning
if we were to set lambda to a very small number, or, equivalently setting the vari-
ance very high, the optimization problem collapses to the least squares solution.'
Now it may become clear why we specified our prior variance in such odd terms. It
was to make clear that this is the £ penalty term from ridge regression. Ergo, the
Bayesian MAP and frequentist ridge regression solutions for a Gaussian likelihood
problem are equivalent. Where the variance of the prior is inversely related to the
regularization intensity in ridge regression. Hopefully, this illustrates why the terms
in equation (2.2), as mentioned in Subsection 2.3.2, are interpreted as regularization
and maximum likelihood, respectively.

We went through this, because of the opening statements of this thesis. Models
in deep learning are performing better and better, with higher and higher paramet-
ers and capacities. As mentioned earlier, even with the enormous year-on-year in-
creases in model complexity, regularization is still employed. So we are not merely
going further and further towards overfitting in the classical sense, as we are only
increasing parameters. But we retain the regularization component. The £? regu-
larization remains the gold standard for such regularization for FNNs. Although the
case we proved here would only hold true for a BNN with one layer that only has
weights and no biases, the Gaussian prior does in fact induces the same regulariz-
ation (Figueiredo, 2003). Therefore, for the novel priors we wish to investigate here,
we want to pick priors that have similar £? regularization behavior on the space of
weights and biases.

4.3 Hyperspherical Uniform Prior

A recently suggested class of distributions for prior and VD use is the radial direc-
tional distribution(Oh et al., 2019; Fortuin, 2021):

W = WwW,Wgq, Wy~ Drad (Wr) Wqa ~ Ddir (Wd) (4.1)

This class of distributions lets the direction and magnitude be separated. Meaning
||w,|| = 1, while w, remains a scalar. As mentioned, we want to select a prior that
restricts the gradient close to 1. We achieve this by selecting a radial-directional

"This is relevant since in the PyTorch implementation we occasionally set the variance of our priors
to infinity. In the code referred to as "Tempering" the priors. This is done by setting the "KL-loss" term
in (2.2), that is, in the loss function of the whole network, to 0.
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prior with all its radial mass on one. That means a completely informative prior
radially.

Furthermore, we see no obvious reason to introduce prior information along the
directional component. Therefore we let the directional component remain uniform.
The Hyperspherical distribution describes these two properties. Let I' denote the
gamma function. The area of the hypersphere with dimension m is then expressed
by:

2(mm/?)
I'(m/2)

Meaning the probability density function of a Hyperspherical Uniform rv, pyy(w),

becomes: .
2(mn™ B
Py (W) = {F(m/z) [[wl| =1

0 lwll #1

The Hyperspherical Uniform prior should not be placed on W in its entirety directly.
That does not give us the backward pass we want. Instead, we should use one
HU prior for each W;. However, we can use even more HU priors by setting one
separately per W;;. We always place one HU prior per B; for the biases. We do
not need an HU for the biases to get the desirable gradient properties. However,
keeping what Adam optimizes on the same scale is beneficial. Therefore we place
the HU on the biases as well.

This distribution is uniform along the hypersphere. Therefore, it is called the Hy-
perspherical Uniform distribution, HU for short. The "KL-loss" term from (2.2) just
becomes the same QF((’;T //;)) scalar everywhere and does not contribute to the gradi-
ent. Since it is always the same scalar everywhere. Implementation-wise, we do the

restriction to norm one is done in selecting VD in the .2

Furthermore, if some connections into a neuron are large, the others are forced by
the HU prior to being very small. If they are small enough to make no meaningful
difference, then this is analogous to what is referred to as parameter sparsity in the
statistical literature. Here some are precisely equal to 0. There is reason to suspect
sparsity is desirable (Vadera et al., 2022; Hoefler et al., 2021). Therefore, our HU
prior, in forcing some parameters to be close to zero, may have analogous benefits
to that parameter sparsity.

2Therefore, we omit calculating this in the code. Because it is just the same scalar everywhere.
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4.3.1 Adam'’s aptitude optimizing differing scale parameters

First-order methods, like SGD and its adaptive Adam variant, are not suited for
optimizing parameters at different scales (Zhang et al., 2017; Bottou et al., 2016).
Bottou et al. (2016) illustrates some issues, which we reiterate a short summary of
here. Let 6 denote the parameters determining the variational distribution, i.e. the
parameters we optimize in BNNs. Observe the simplified case of the full gradient
descent method, with a constant learning rate:

et—l-l — 91‘ — O‘tVL<9t) (4-2)

Where t denotes the optimization step, o the learning rate, and L is the loss. Ob-
serve how a linear transformation, or rescaling, of the parameters affects the op-
timization. Let C be a positive definite matrix, and consider ming L(C6*). The full
gradient iteration for this problem becomes:

0*[+1 < 9*1‘ - OCtCVL (CG*[)

which, after scaling by C and defining {6,} := {C6*,}, corresponds to:

0,41 < 6, — o,C*VL (6,) (4.3)

Comparing equation 4.2 with equation 4.3, we see that the behavior of the algorithm
changes under a change of variables. For instance, when L is strongly convex
quadratic with unique minimizer 6, the full gradient method equation 4.2 generally
requires many iterations to approach the minimizer.

The momentum variant property of Adam may be viewed as an approximation to the
second derivative. See subsection 2.1.1. Thus Adam would be a pseudo-second-
order optimization method. Adam’s variation of momentum consists of remembering
the last few gradients and comparing whether they directionally agree. This approx-
imation is not a localized estimate of the second derivative. Hence, it is probably not
a good enough approximator to the second derivative to resolve this weakness. The
literature provides no empirical evidence indicating that Adam is exempt from the
differing scales problem. Therefore, Adam should work better with parameters on
the same scale. Normalization should thus make the loss landscape more amen-
able to optimization. That is why going through autograd and trying to get down
to the computational details of the gradient’s size is calculated to be in practice. A
gradient of inappropriate size will hurt the optimization in first-order methods, like
Adam. Therefore, we hypothesize that hyperspherical restriction of both the weights
and biases should increase test performance.
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4.3.2 Replacing Batch Normalization

This manner of gradient restriction is much more conducive to Bayesian interpret-
ation. Theoretically, excluding the heuristic Batch Normalization could facilitate in-
creased performance and reduce computational expense. This restriction should,
theoretically, incorporate all the benefits listed in this section thus far. We will do this
by specifying the prior and VD s.t. the weights are restricted to the unit hypersphere.
From the equations in subsection 2.1.3, we know that the layerwise weights’, W,
the norm can make the gradient’s norm arbitrarily large or small. The partial deriv-
ative of a given W or B, is multiplied by the partial derivative of all the W ;s after
that layer. Ergo, restricting the norm of the weights per layer close to one will, ergo,
restrict the gradient’s norm close to 1 as well. By close to one, we do not necessar-
ily mean that the norm is between 0.5 and 1.5. Instead, on a reasonable scale, the
computer should handle it well. Between 0.05 and 50, for example.

4.3.2.1 Gradient Computational Issue of Batch Normalization

Furthermore, while it remains a heuristic theoretically, it is more problematic in prac-
tice. The backpropagation for Batch Normalization is significantly more complicated
than the backpropagation for a linear or activation function (Agrawal, 2023). Re-
member from subsection 2.1.3, that when we backpropagate, utilizing the chain rule,
the partial derivative of every applied function will be applied in reverse. So although
one backward pass through one derivative of a batch normalized layer should not
be too problematic, the issue will compound over deeper networks. Therefore, we
can suspect the numerical stability of a HU prior BNN to be greater than a Gaussian
BNN in this regard, and that this advantage will grow for deeper networks.

4.3.3 Summary: Two Compounding Problems Solved

Adam is not scale-invariant and can work better with parameters on the same scale.
Furthermore, during the backward pass, the gradient may, at some point, either
explode or implode. That can either crash the program or cause numerical inac-
curacies that exacerbate Adams’s scale inaccuracy of the optimization step size
of each parameter. Specifying the prior such that ||W,|| = ||B;|| = 1 directly
helps to let Adam more easily calculate an appropriate gradient step by setting all
the parameters on a similar scale, but also computationally by greatly reducing the
propensity for gradient explosion or implosion. Lastly, that gradient solution allows
us to discard the heuristic Batch Normalization. Perhaps that also helps with per-
formance, uncertainty estimation, and making the models more interpretable by op-
erating in a more mathematically supported, or at least theoretically understood
Bayesian framework.
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4.3.4 Prior Use of Radial-Directional Distribution

Recent results indicate that a Variational Autoencoder (Kingma and Welling, 2022)
with a Hyperspherical Uniform prior for density estimation over a dataspace with
latent hyperspherical structure can perform better than its Gaussian counterpart
(Davidson et al., 2018). In Variational Autoencoders, the goal is to make inferences
on the distribution of the data presented. The prior and VD specified there is for in-
ference on the general distribution of the dataset. Their results indicated that the HU
prior and vMF VD are more appropriate than the Gaussian for datasets with latent
hyperspherical properties. The prior and VD we specify are analogous, but instead
of prediction. Thus advantages for inference on the distribution of datasets are not
obviously transferrable to prediction. A BNN that describes the systematic relation-
ship between predictor and target variables differs from a VAE that describes the
data distribution. However, making inferences on a dataset as a whole and making
inferences between the target and predictor random variables still holds an analogy.
Therefore, some of the advantages may transfer to our prediction purposes.

For Mean Field VI BNNs, the radial-directional distribution (4.1) has been applied to
the VD (Farquhar et al., 2019). Thus explicitly assuming the form of the posterior
and implicitly changing the prior. There, a Gaussian VD was set over the radial
dimension, and they set a uniform VD over the angles.

4.4 The von Mises-Fisher Variational Distribution

With the prior choice made, it remains to find an appropriate VD. Let us assume that
our prior is "true ." True in the sense that a BNN with the exact number of layers and
nodes we are trying at a given moment is the true relationship between predictor and
target variables. From that, the true posterior over the parameter space has a radial
component equal to 1. Therefore a VD like the one used in Farquhar et al. (2019) is
not too helpful. Although the uniform distribution over the angles is desirable, setting
a Gaussian on a component that is always one is strange. Setting the HU as our VD
is not helpful since it is always uniform. Another radial-directional distribution is the
von Mises-Fisher distribution (vMF). This distribution can set its radial component
equal to 1, as we want. The pdf of this distribution is expressed in the following
manner:

fo(wi, k) = Cy(ic) exp(iep ' w)

where ||x|| = ||u|| = 1. p denotes their dimensionality. C, (k) is defined by:
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Where I, denotes the modified Bessel function of the first kind at order v.

u and k are the mean direction and concentration parameter. The greater the value
of k, the higher the concentration of the distribution around the mean direction .
This parameter is how the variance of the vMF is specified. Greater k means lower
variance, hence the "concentration parameter" name. Analogously to (4.1), the vMF
is only defined along the unit sphere.

Both i and k denote the mean and variance along the directional component. The
radial component, however, desirably remains equal to 1 with our specified C,(x).
Thus, the mean and variance along the radial component come out to 1 and 0
respectively, as we wanted from the specification of our HU prior. x is a scalar.
Meaning the vMF has an isotropic variance. That is in contrast to the Gaussian prior
and VD.

Since we would like to keep computational costs as low as possible, avoiding both
Batch Normalization and Dropout is helpful. Neither of them are too intensive for the
forward pass, especially Dropout. However, Batch Normalization entails increasing
the computational demand during the backward pass (Agrawal, 2023). Accordingly,
this novel VD-prior combination will still have an architecture significantly more ex-
pensive per depth than its frequentist counterpart. However, the goal is to compete
with Gaussian BNNs for applications where they are already preferred over FNNs,
i.e. where robustness and especially uncertainty estimates are desired. In that case,
we have hopes to be computationally competitive. Our PyTorch implementation of
the vMF sampling function was based on Kim (2021).

4.4.1 Two ways of utilizing von Mises-Fisher

There are two ways of specifying a vMF VD over our weights W and biases B. In
both solutions, B is one VMF for each layer. We place one vMF on each B;. But
there are two solutions for W:

The layerwise VMF is where we specify one vMF over the entire W; tensor
between two layers. Restricting the W ; in this manner yields the advantage of keep-
ing the norm of the backward pass quite tightly bounded. See Subsection 2.1.3.
However, the downside of this solution is that the variance along the entire W
tensor between two layers is isotropic.
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The nodewise VMF is where we specify multiple vMF’s for each node of W ;. Here
we select each component W ; that is multiplied with x, and let this subset of W
be a vMF. l.e. we are letting all the connections into each next node be specified as
one vVMF. The advantage here is that the restrictions on the variance are less severe.
However, the desirable restriction of the tightly restricted backward pass is partially
lost. We are instead left with only restricting the input to each node to be of norm
1. That restricts the norm of the backward pass much more than we would see in
the Gaussian case. Since the norm will then formally be restricted to the width of
that layer, being the sum of the norm of all the nodes. Specifying the vMF per node
means each vMF distribution will have a lower dimensionality. That is advantageous
as the vMF is much cheaper computationally for lower dimensions.

Since the HU prior is uniform, we never calculate it in the code. Since it will always
just remain a constant. Therefore, when we select to either use the Nodewise or
layerwise vMF, we have also implicitly selected whether we place the HU per W;;
or W respectively.
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Chapter 5

Limitations and Solutions

In this chapter, we describe the main limitations and propose solutions to the Hyper-
spherical Uniform Prior and von Mises-Fisher variational distribution.

5.1 Restricted Optimization in PyTorch: "Ghost Mu"

PyTorch itself has a fundamental limitation regarding spherical learning. Paramet-
ers, usually u, are only defined for the unit hypersphere here. However, PyTorch
does not support the optimization of parameters under any restriction. Therefore,
we must register our u as a parameter that PyTorch optimizes across the entire real
line. Afterward, we project it unto the unit hypersphere for use in the spherical ran-
dom variable. This is why we are introducing the term "Ghost Mu" since PyTorch
optimizes parameters outside their domain. In practice, we found that the norm of
the "Ghost Mu"s has an unfortunate tendency to grow for every epoch. The growing
"Ghost Mu"s introduce increasing numerical issues as the epochs continue. This
is only the case for the optimization of restricted parameters. The Gaussian VD
has parameters defined for the entire real line. Hence, the mus never get projected
there. In that case, the mathematical us coincide directly with the parameters re-
gistered in PyTorch. The "Ghost Mu" problem is present for all spherical VDs since
they all have mus only defined for the unit hypersphere. Hence, the Power-Spherical
or Projected Normal distributions would not ameliorate this problem.

Statistically or mathematically, there is no trivial interpretation of what PyTorch is
doing. The mathematical concept of u does not exist, while PyTorch optimizes
the parameters for spherical learning. There are only the registered parameters that
exist on the entire real line and their projection unto the unit hypersphere before use.
After the projection, the mathematical u "appears." Therefore, spherical learning
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in PyTorch must be viewed as partly computationally heuristic from the statistical
view. However, heuristic approaches are common and work well in practice in deep
learning. So we cannot expect to get rid of them entirely anytime soon.

5.1.1 The Favourable Gradient Properties of the Hyperspherical
Unifrom Prior are not compromised by "Ghost Mu"

However, although it may be obvious, the desirable restrictions we have placed on
our gradient are not compromised by the "Ghost Mus." During backpropagation, they
are first projected. Therefore, all of the desirable gradient norm properties discussed
are retained no matter how far the "Ghost Mu"s diverge. It is merely the projection
step from the registered parameters into the domain of the actual parameters where
we are concerned with numerical instability, especially for deeper networks.

5.1.2 Normalized Initialization Inheritance.

Directly addressing the "Ghost Mu" problem would entail reworking PyTorch intern-
ally, down to the autograd itself, in order to support restricted optimization. Internally
restricted optimization is the most optimal solution. However, that would be far bey-
ond the scope of this thesis. Perhaps that is even intractable for leading researchers
since it may require rewriting the entire library. While the optimal solution may re-
main elusive, effective heuristic solutions can still make significant improvements in
practice. Reinserting the normalized mus right after every epoch might be the most
straightforward approach available. Then, the numerical inaccuracies of the Ghosts
can not be compounded. However, this also proved much harder to implement than
to propose. Therefore, we instead tried to re-instantiate the networks every 10-
20 epochs. While re-instantiating, we let the initialization inherit the variance and
means from the earlier 10 or 20 epochs. However, the means initialized to the new
object are projected unto the unit hypersphere. That is why we call the procedure
Normalized Initialization Inheritance (NII).

NIl is not any more heuristic than not having it. Since we are merely changing
when we have to resolve the underlying problematic heuristic. l.e., changing when
the projection step is done. We are conducting a projection of a ghost earlier than
PyTorch forces us to at a later stage regardless. Thus, keeping the ghosts closer to
the mathematical mu we want it to represent than if we were to leave it until later.
What is heuristic, is trying to optimize restricted parameters with PyTorch, since
PyTorch will force all parameters to exist on the entire real line.
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5.2 Computational intensity of the von Mises-Fisher

Sampling from the vMF can be computationally intense and somewhat unstable for
high concentrations (Davidson et al., 2018). An idea to address this could be to
utilize the Power-Spherical distribution. This distribution was already proposed for
Variational Autoencoders (De Cao and Aziz, 2020). However, the Power-Spherical
distribution also has isotropic covariance. This computational property is what we
suspect makes the network occasionally halt its training. It gets stuck in the rejection
sampling loop in our implementation of the vMF.

5.3 Isotropic Covariance of the von Mises-Fisher

The vMF has isotropic covariance along all its dimensions. That is not analogous
to the Isotropic Gaussian prior, since there a non-isotropic VD is utilized. It is for-
cing all the variances along all the VD’s dimensions to be one. This is in contrast
to the conventional Gaussian Variational Distribution and could limit performance.
The Projected Normal Gaussian would redress this issue, as it supports separate
variance along each dimension.
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Chapter 6

Experiments

This chapter tests the Hyperspherical Uniform (HU) prior and von Mises-Fisher vari-
ational (vMF) distribution in practice. We compare it to the conventional Gaussian
solution and investigate the limitations and solutions from Chapter 5.

6.1 Introduction

The experimental design compares the efficacy of our vMF and NIlvMF BNNs to the
conventional Gaussian BNN. "Gaussian" is short for the conventional BNN setup,
with both Gaussian prior and variational distribution (VD). "vMF" is short for von
Mises-Fisher and refers to the usage of the von Mises-Fisher VD with a hyper-
spherical uniform prior. The "NIlvMF" designation is the same as the vMF, but with
normalized initialization inheritance added. See Subsection 5.1.2.

We are designing experiments with four settings. In three of them, we will test clas-
sification performance, and one will also support the evaluation of uncertainty es-
timation. Lastly, we include one regression dataset. We have opted only to test the
Nodewise VMF. The nodewise vMF is already much more computationally intens-
ive than the Gaussian. We quickly found the layerwise vMF to be computationally
intractable during the experimental setup. In each test case, we train one network.
Then we sample ten realizations from that BNN and test their ensemble performance
on a separate test set. We quickly found that the vMF and NIIvMF architectures work
best for high learning rates and high initialization of the concentration parameter of
the weights. However, both became increasingly computationally intensive as the
learning rate and concentration parameter was tuned up. We, therefore, had to,
throughout this chapter, balance their performance and computational demand. We
report the differing learning rates for differing epochs in the experiments where we
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were forced to change them. The number inside the parentheses for the Hidden
Layers denotes the number of nodes for that layer. Then how many such entries

there are denotes how many hidden layers there are.

6.2 Phoneme data

Phoneme Testset Accuracy
Test case Gaussian vMF NIl vMF
10 epochs 921/1000 928/1000 NA
30 epochs 923/1000 931/1000 931/1000
50 epochs 920/1000 926/1000 929/1000

Hyperparameters

Prior N(0,e701) HU HU
Learning Rate 0.02, 0.01,0.007 | 0.14,0.05,0.03 | 0.14
Hidden Layers (10, 10) (10, 10) (10, 10)

Table 6.1: Hyperparameters and results for the Phoneme experiment.

This experiment uses the phoneme data from Hastie et al. (1995). The data was
extracted from the TIMIT database (TIMIT Acoustic-Phonetic Continuous Speech
Corpus, NTIS, US Dept of Commerce). This data is widely used in speech recog-
nition. The networks are tasked with predicting which of five phonemes for classi-
fication based on digitized speech. The phonemes are transcribed as follows: "sh"
as in "she," "dcl" as in "dark," "it" as the vowel in "she," "aa" as the vowel in "dark,"
and "ao" as the first vowel in "water." From the continuous speech of 50 male speak-
ers, 4509 speech frames of 32 msec duration were selected, and approximately two
examples of each phoneme from each speaker are included as the predictor vari-
ables. Each speech frame is represented by 512 samples at a 16kHz sampling
rate. Furthermore, each frame represents one of the above five phonemes. A
log-periodogram was computed from each speech frame. Log-periodograms are
one of several widely used methods for casting speech data in a form suitable for
speech recognition. Thus, the data consist of 4509 log-periodograms of length 256,
with known class (phoneme) memberships. The networks are trained on a random
sample of about three-quarters of the data. Then they are tested on the remain-
ing quarter, conveniently 1000 observations. The NIl vMF is not calculated for ten
epochs since NIl applies normalization in intervals of 10 epochs.

Table 6.1 shows that the performance of the vMF appears marginally superior to
the Gaussian’s. The NIIVMF slightly outperforms the vMF again. However, we are
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reluctant to consider the results here significant since we should see either these
results across several different seeds before concluding significance or see much
larger differences.

The setup we attempted was to select the best hyperparameters for the ten-epoch
case. Then we planned to run with those hyperparameters through thirty and fifty
epochs. Here we ran into the computational instability of the vMF, described in
Section 5.2. The training of the vMF would completely halt at around epoch 14,
with a high learning rate. So we were forced to tune it down for higher epochs
successively. We must also note that in the NIlvMF, Adam loses its earlier learning
rate from the last epoch. We, therefore, had to guess where we thought it was.

Consequently, we applied successively lower learning rates there. For consistency,
we opted to tune the hyperparameters for each case separately to give each network
its optimal parameters. This should yield an equal comparison between the models.
Figure 6.1 for the loss and average norm of registered W ; per epoch are informative.
Remember, for the vMF and NIlvMF, the average norm curve refers to registered
mus, not the actual mathematical mus. Therefore we refer to them as "Ghost Mu"s.
See Section 5.1. The behavior for the Gaussian loss convergence is what we would
expect. However, the vMF loss curve seems more uneven. The spikes at 10 and 30
in the NIl vMF are not surprising. However, there appears to be no loss descent after
the first ten epochs. This behavior is even more unusual than the vMFs, considering
the impressive performance of the NIlvMF on the test set. We would expect a model
with such an unusual loss curve not to have converged properly.

Regarding the norm curves, the Gaussian increases slower for higher epochs but
does not decrease. Therefore, we could suspect that gradient explosion would be
a problem for large models. Regarding the vMF’s norm curve, the numerical inac-
curacies would keep compounding. Although it is hard to evaluate how much of an
impact the numerical inaccuracy of the projection of larger and larger mu vectors
would have. The norm seemingly increases linearly with no slowing down. For the
NIlvMF, we see the registered normalization effects for epochs 10 and 30 reducing
the norm, as expected. However, less expected is the behavior after each normal-
ization. The norm of the "Ghost Mu"s grows slower and slower for each application
of the NII. Likely due to the decreasing learning rate.
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Figure 6.1: Loss and Norm Curves for Phoneme Classification.

The left side plots plot the loss, i.e. the ELBO for the networks, per epoch. The plots
in the right plot the norm of the registered parameters per epoch. For the vMF and
NIlvMF, the registered parameters are not the actual parameters. Instead, the plots
provide a look into what PyTorch does under the hood with them.
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6.3 Simulated Data

Bivariate Gaussian Testset Accuracy
N Gaussian vMF NIl vMF
50 137/200 129/200 138/200
150 484/600 497/600 499/600
250 862/1000 822/1000 853/1000

Hyperparameters

Prior N(0,e7%1) HU HU
Learning rate 0.04 0.07 0.14
Hidden Layers (5, 5) (5, 5) (5, 5)

Table 6.2: Hyperparameters and results for the Simulated data experiment.

We sampled our data from five bivariate Gaussian random variables for this exper-
iment. The networks’ task is to use the two-dimensional coordinate of each obser-
vation to predict from which of the five bivariate Gaussians that point was sampled.
The random variables have means (-2, —2), (-2, 2), (0,0), (2, —2) and (2, 2). They

have the same variance X = [(1) ?] }

We have generated three different sizes of datasets. N refers to the total number
of generated observations of each class. We split the data into four-fifths for the
training set and the remaining fifth for the test set. We test the networks on the
three different datasets. Table 6.2 describes the test results. There we see that
the NIlvMF systematically outperforms its non-NIl vMF counterpart. However, the
relative performance of the Gaussian and NIl vMF do not differ significantly. We
measured the networks’ aptitude for uncertainty estimation. This aptitude is meas-
ured in cross-entropy, expressed by:

5

=D f(x)log(F(x)e)

k=1

Where f is the network and x is the covariate vector, which in our case is the
cartesian product [-5,5] x [-5,5]. k denotes the class. We report the results for
each case compared to the true uncertainties visually by plots in Figures 6.2 6.3
6.4. That is why bivariate Gaussians were the most practical for visualization.
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Figure 6.2: N=250: Cross-Entropy Uncertainty. z-axis: —>__, f(x); log(f(x))

Figure 6.2 shows that all three networks find the four quadrants where they should
be more certain. The Gaussian manages to detect that there is more certainty
around origo, which the NIlvMF also manages to do. The vMF does not appear to
detect this. In general, the vMF and especially NIl vMF appear much smoother and
symmetric, which visually is more resemblant of the true uncertainty.
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Gaussian Cross-Entropy N=150 NIl vMF Cross-Entropy N=150

4

Figure 6.3: N=150: Cross-Entropy Uncertainty. z-axis: —>_,_, f(x); log(f(x))

Figure 6.3 shows, like before, that all three networks find the four quadrants where
they should be more certain. This time the Gaussian appears less certain than it
should in the lower right quadrant. There was already a hint of this for N = 250 in
Figure 6.2, but this is now more pronounced. The Gaussian manages to detect that
there is more certainty around origo. The NIlvMF barely manages to do so. The vMF
does not appear to detect this. Again, the vMF and especially NIl vMF appear much
smoother and symmetric, which visually is more resemblant of the true uncertainty.
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Here in Figure 6.4, we see that all the networks are struggling. The Gaussian and
NIl vMF exhibit similar behavior, while the vMF appears essentially like the NIl vMF
but with the bottom left quadrant lost.

We considered measuring £? distance between the cross-entropy of the networks
and the true uncertainty. However, this could disproportionally benefit an overcon-
fident network, as the true uncertainty does not take into account the actual realized
data. Generally, we would consider the NIl vMF to have yielded the most appropri-
ate uncertainty estimates in this experiment due to its symmetric properties over the
Gaussian. Moreover, for its ability to detect an extra quadrant over the vMF when
N = 50 and slightly more clearly detecting the certainty in origo for N = 250.
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6.4 Regression with Carbon Nanotubes Data

Carbon Nanotubes Data test set accuracy in R?
Epochs Gaussian vMF NIl vMF
10 0.7483 0.8791 NA
30 0.9724 0.9592 0.9693
50 0.9906 0.9735 0.9696

Hyperparameters

Prior N(0,e701) HU HU
Learning rate 0.0007 0.08 0.11
Hidden Layers (5, 5) (5, 5) (5, 5)

Table 6.3: Hyperparameters and results for the Carbon Regression experiment.

For this task, the networks are instructed to predict the calculated atomic coordinate
of carbon atoms. This is done with UCI (2018) from ACI et al. (2017) and Aci and
Avci (2016). The predictor variables are real numbers, chiral indices, and initial
atomic coordinates. The network’s task is to predict the real number w-axis of the
atomic coordinate calculated by CASTEP from ACI et al. (2017) and Aci and Avci
(2016). The predictor variables are standardized in the data pre-processing for this
test. Standardized here means transformed to the standard normal distribution. The
target variable is a real number from zero to one. The architecture we used for this
experiment was four layers. We used five nodes on both of the two hidden layers.

There seems to be a somewhat inverse relationship to the results in Section 6.2.
The vMF trains faster initially before the Gaussian somewhat outperforms the vMF
and NIIlvMF. Figure 6.5 might explain why this is the case. Here, we see that the loss
descent for the vMF and NIlvMF are much lower, to begin with, but seem to struggle
to converge. The NIIVMF appears to struggle in particular. On the other hand,
the Gaussian shows optimal loss convergence. It quickly reaches a low loss and
largely stays there. The Gaussian exhibits favorable behavior regarding the norms
of the W;. It appears to slowly and monotonically converge to 1. Therefore, any
gradient issues should not be expected even for larger models or models trained for
longer. The "Ghost Mu"s in the vMF are severe. Although somewhat less so than in
the phoneme classification. The Gaussian may disproportionately benefit from the
standardized data on this task. Perhaps that is part of why both its loss and norm
are favorable.

We found in the earlier experiments that setting a prior on the Gaussian that had
slightly lower variance than one improved performance. Perhaps this slightly stronger
regularization helps the Gaussian stay closer to norm one in its weights W .
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Figure 6.5: Loss and Norm Curves for Carbon Regression.

The left side plots plot the loss, i.e. the ELBO for the networks, per epoch. The plots
in the right plot the norm of the registered parameters per epoch. For the vMF and
NIlvMF, the registered parameters are not the actual parameters. Instead, the plots
provide a look into what PyTorch does under the hood with them.
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6.5 Vision

Modified National Institute of Standards and Technology (MNIST) dataset (Lecun
et al., 2000) is a database of images of handwritten digits. Each image is a 28x28
pixel bounding box and anti-aliased compression of black and white images. The
task for the networks will be to predict what digit the human attempted to write.
It became apparent early on that test prediction was easy while computationally
demanding. Therefore we sampled ten percent of the original training data for them
to train on. We used the entire test set for testing. The same ten-network realization
ensemble testing regimen is used as before. The architecture we used for this
experiment was four layers. We used five nodes on both of the two hidden layers.

Furthermore, we encountered issues for the vMF as described in Section 5.2, which
become worse as the dimensionality of each vMF instance increases. The dimen-
sion of the first layer vMFs, even with the nodewise architecture, was too large. It
had to be 28x28=784. Therefore, we let the first layer be frequentist to evaluate both
networks. Frequentist meaning that the parameters in this layer are optimized with
maximum likelihood, using the same likelihood function as the later Bayesian layers.
The Bayesian interpretation of this is that the "true" parameters, W; and B, of the
first layers, are not random variables but vectors of real numbers. Parameters of
the layer coming afterward are then random variables again. Although this does not
break the theory, it is not supported either. We are doing this because our limited
computational recourses force us to.

6.5.1 Vision Classification with MNIST

MNIST test set accuracy

Trained on a subsample of 10% of the training data
Epochs Gaussian vMF NIl vMF
10 8625/10000 7395/10000 NA
30 9023/10000 8473/10000 8882/10000
50 9083/10000 8630/10000 9129/10000

Hyperparameters

Prior N(0,e7%1) HU HU
Learning rate 0.0007 0.08 0.10
Hidden Layers (10, 10) (10, 10) (10, 10)

Table 6.4: MNIST Hyperparameters and Results.

Table 6.4 shows that the Gaussian exhibits superior performance on 10 and 30
epochs. It appears to train initially faster than the vMF and NIlvMF. That is strange
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since the vMF and NIIvMF have vastly larger learning rates than the Gaussian, 0.08
vs. 0.0007. The vMF is a consistent underperformer in this test. However, it does
improve with each epoch. The NIIVMF exerts essentially the same performance
as the Gaussian. The difference we consider significant is that the NIlvMF and
Gaussian outperform the vMF.

The plots for the loss and average norm of the layerwise weights W ; are included
in Figure 6.6. The results indicate that the "Ghost Mu" problem is severe for this
setting. The vMF norm curve grows steadily from 42 to 62. That is an already high
start. The Gaussian norm curve is also relatively large. That could indicate that
this is a setting where the NIlvMF could outperform its competition for deeper nets
trained for more epochs. The NIllvMFs gradient and "Ghost Mu"s will significantly
differ from the others in that setting. However, that would only be the case for deeper
networks regarding the Gaussian since a four-layer network with norm 5.5 is not
problematic computationally. The large average W norm of the vMF may explain
why it underperforms the NlIlvMF and Gaussian.

The plots for the loss show that the Gaussian has a much smoother descent than
the vMF and NIIvMF. In this case, the NIlVMF becomes smoother than the vMF
further in training. However, earlier results indicate that a smooth loss convergence
does not necessarily indicate better test performance.
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Figure 6.6: Loss and Norm Curves for MNIST Vision Classification.

The left side plots plot the loss, i.e. the ELBO for the networks, per epoch. The plots
in the right plot the norm of the registered parameters per epoch. For the vMF and
NIlvMF, the registered parameters are not the actual parameters. Instead, the plots
provide a look into what PyTorch does under the hood with them.
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6.5.2 Vision Classification with EMNIST

EMNIST test set accuracy
Trained on a subsample of 10% of the training data

Epochs Gaussian vMF NIl vMF

10 8748/10000 6994/10000 NA

30 9097/10000 8576/10000 9063/10000
50 9172/10000 8742/10000 9197/10000

Hyperparameters

Prior N(0,e7%1) HU HU
Learning rate 0.0007 0.08 0.1

Hidden Layers (10, 10) (10, 10) (10, 10)

Table 6.5: EMNIST Hyperparameters and Results.

We test the efficacy of the networks, with the exact same setup as in Subsec-
tion 6.5.1. The only difference is that we have replaced the MNIST dataset with
the EMNIST dataset (Cohen et al., 2017). EMNIST stands for Extended Modified
National Institute of Standards and Technology. Here, data has been pulled from the
same large source in NIST. The code used to process the images in the older MNSIT
into 28 by 28 grayscale has been lost. EMNIST is a newer dataset that does this and
documents how. That means the EMNIST is a dataset very close to MNIST, but not
quite. We can view this data as new data gathered in the exact same manner, or a
new random sample from the same source. Therefore, this data should essentially
be an attempted replication of the MNIST experiment in Subsection 6.5.1, since we
have kept all other things equal.

The results here, shown in Table 6.5 and Figure 6.7 generally replicate the results
from Subsection 6.5.1. We can therefore be slightly more confident in our results.
Summarized, the NIlvMF and Gaussian largely exhibit similar performance, while
the vMF lags slightly behind.
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Figure 6.7: Loss and Norm Curves for MNIST Vision Classification.

The left side plots plot the loss, i.e. the ELBO for the networks, per epoch. The
plots in the right plot the norm of the registered parameters per epoch. For the vMF
and NIIVMF, the registered parameters are not the actual parameters used when
optimizing, they are projected first.
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Chapter 7

Discussion

In this chapter, we further discuss the results from Chapter 6. We set them in light
of the theory from earlier, and what they could mean for future work.

7.1 Summary and Significance of Results

7.1.1 Validity of results

The experiments we conducted were on networks that are rather small by modern
standards. Two hidden layers with five or ten nodes each are small models. Fur-
thermore, we could only test for one seed per experiment. Both of these choices
were made since the von Mises-Fisher distribution is computationally intensive for
higher concentration parameters. Together with the fact that it performs well when
initialized for higher concentrations, made deep networks and multiple seeds testing
out of scope for the recourses we were allocated.

However, the EMNIST experiment, which is deliberately a closely related dataset
to MNIST, both provided similar results. The test set accuracy in Table 6.4 and
Table 6.5 were similar, and the plots for the loss and norms in Figure 6.6 and Fig-
ure 6.7 were also similar. Therefore, we could speculate that repeated testing may
yield results that do not vary as much as feared. Thus, we can draw somewhat
stronger conclusions than we otherwise could. However, neural networks are in
general sensitive to initialization and hyperparameters. Furthermore, their perform-
ance is known to be variable, so we should still be careful with making too strong
conclusions.
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7.1.2 Summary of Results

The results were that the NIl vMF performed on par with the Gaussian. It marginally
outperformed the Gaussian in the uncertainty estimation in Section 6.3, while itself
being outperformed in the regression task from Section 6.4. In the phoneme and
vision classification tasks from Section 6.5 and Section 6.2 the Gaussian and NIl
VMF performed similarly. The vMF was in all tasks marginally outperformed by the
NIl vMF, except in regression.

7.2 Norm Results

The NIlvMF consistently outperformed the vMF. The NIl vMF, also in general, was
on par with the performance of the Gaussian. Informatively, the case where the
Gaussian outperformed the vMF was in the case of carbon regression 6.4. That
is informative because this was the singular case where the average norm of the
layerwise weights W ; of the Gaussian was close to 1. Therefore, our theory would
indicate the Hyperspherical Uniform prior to not perform better than the Gaussian in
that specific instance if the norm plots were provided before the results. Our theory
would predict the gradient to be within bounds, and hence the gradient’s restrictive
properties would be superfluous.

The parameters were largely on the same scale naturally for the Gaussian there,
which is beneficial for Adam. Although, it could, of course, be the case that the
norm of W ; varies greatly between each layer while only averaging close to 1. How-
ever, during our experiments, we measured the norm of each layer in the regression
task. The measurement of the norm of the first layer is even included as one of the
commits. There we found, that even for each j, ||W}|| =~ 1. This supports our hypo-
thesis that maintaining ||W ;|| ~ 1 is beneficial. Furthermore, that indicates that our
hypothesis in Subsections 4.3.1 and 4.3.2 may have been correct. They would not
predict the superior performance of the HU in cases where the Gaussian naturally
trained parameters ||W;|| = 1 V.

Therefore, we could speculate that NIl would eventually become superfluous for
much higher epochs. We speculate that this means the optimization inside PyTorch
might understand that the "Ghost Mu"s were supposed to live on the unit hyper-
sphere. That observation congrues with the NIlvMF’s superior test performance,
although we refrain from concluding. These results would have to be replicated
across several seeds before one should conclude.

70



7.2.1 Replacing Batch Normalization

As mentioned in subsubsection 4.3.2.1, the replacement of Batch Normalization
by the vMF will not yield large advantages for smaller networks. As we have only
utilized two hidden layers, we did not employ Batch Normalization, since that is only
needed for deeper networks. Therefore, this advantage of the vMF and NIl vMF has
not been manifested. We can, therefore, speculate that the HU prior would exert
greater benefits for deeper networks.

7.2.2 Efficacy of Normalized Initialization Inheritance

The Normalized Initialization Inheritance solution appears from the results to im-
prove the performance of the networks. The NIl vMF almost consistently outper-
forms its VMF counterpart. Therefore, we could speculate that large parts of the
suspected issues arising from the "Ghost Mu" problem have been resolved by this
simple approach. The issues were not expected to be extensive, to begin with, so
we find that these results hint that it was mostly resolved.

7.3 Impact of non-resolved limitations

Although the negative effects of the "Ghost Mu" may have been resolved, other
issues are not. The isotropic variance of the von Mises-Fisher distribution and its
computational intensity for higher concentration parameters has yet to be resolved.

7.3.1 Von Mises-Fisher Computational Demand

As mentioned, the NIl vMF architecture generally performs on par with the Gaus-
sian. It outperforms it on uncertainty estimation but is itself outperformed on the
regression task. It generally performs optimally for high concentration parameters.
This is suboptimal regarding the computational intensity of its variational distribution
for these high-concentration parameter. This behavior has dictated why we did not
test networks with wider or more hidden layers due to the computational expense of
the NIl vMF and vMF architectures for those scenarios. That is also why we did not
test for higher epoch situations either.

7.3.2 Isotropic Covariance of the von Mises Fisher

It is hard to evaluate how much of an effect this has on performance since we have
yet to compare the von Mises-Fisher to another hyperspherical distribution with non-
isotropic covariance. However, considering the general on-par performance with
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the Gaussian, we could speculate that the other positive attributes of the NIl vMF
outweigh the impact of this limitation.

7.4 Spherical Learning for Deep Learning Interpretab-
ility

Bayesian Neural Networks with Gaussian prior have already replaced the perhaps
heuristic Dropout method (Gal and Ghahramani, 2015). With the Hyperspherical
prior Batch Normalization is replaced, see Section 4.3.2. As Batch Normalization
has no motivation from the Bayesian perspective, we have taken one more step into
making our models better fit the Bayesian framework. Therefore, By doing so, we
may assist in better understanding how parameters are optimized since one layer
of heuristic is eliminated. Our implementation of spherical learning, with the Hyper-
spherical Uniform prior, works generally on par with the conventional Gaussian prior
solution, even with remaining limitations. A better understanding of how parameters
are optimized and what they do can make one tiny step toward a better understand-
ing of how deep models work. We have made a slightly more interpretable model
that could be used without sacrificing performance. That dramatically increases the
chance that it will be helpful for further research or application.

7.5 Suggestions for future work

In general, we believe the Hyperspherical Uniform prior has shown desirable per-
formance, with its advantages discussed earlier. Therefore we suggest future work
also utilize this prior. For our von Mises-Fisher variational distribution, we could
suggest alternatives here.

7.5.1 Projected Normal Distribution

Another candidate for variational distribution that has the unit sphere as its codo-
main is the projected normal distribution. However, this distribution has been used
successfully for directional inference (Hernandez-Stumpfhauser et al., 2017), not for
deep learning. This distribution is a multivariate Gaussian distribution that is projec-
ted. For our purposes, it would be along the unit sphere. That leaves us with both
the native norm one property that was desirable in the vMF.

Additionally, it allows separate variances along each of its dimensions. Hypothet-
ically, this distribution should also more closely inherit the Gaussian’s £? regular-
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ization properties. However, the important part is that this distribution supports a
separate variance along each dimension.

In theory, then, this would be our ideal VD. However, its pdf is difficult for higher
dimensions. A trigonometric reparametrization could be made. Wang and Gelfand
(2013) and Wang et al. (2014) demonstrated how to do so, PN (i, X) with ¥ # 1.
Although for the special case of circular data (k = 2). Let us do a trigonometric
transformation of a Projected Gaussian Normal, ¥, by ¥ = (cos©,sin ©)”. The
expression for the density of © is:

: )!EI%exp(C) i) q)(ji—%) fio.2x) ()

p(6 | %) = <2nA(9) A0 (&)
A(0)

Here u” = (cos 0,sin6), A(0) = u" S 'u, B() = 'S 'pand C = —iu"S'p,
1027 (+) is an indicator function, and ®(-), ¢(-) are the standard normal distribution
and density functions, respectively. The expression above is reminiscent of one in
Pukkila and Rao (1988). This expression of the pdf much more readily generalizes
to higher dimensions.

The trigonometric reparametrization resolves the problem of the pdf itself being un-
usable. However, as mentioned in Section 5.1, any gradient registered parameter
will be optimized along R in its entirety. In Hernandez-Stumpfhauser et al. (2017),
the sampling was conducted by first sampling from a Gaussian and then projecting
it afterward. After conversations with the authors, we found no way to conduct this
sampling without the projection step. That leaves us, in principle, with the same
"Ghost Mu" problem as before. However, the straightforward Normalized Initializa-
tion Inheritance proved to improve results systematically, so the effect of the "Ghost
Mu" is hard to determine. We know this problem can get worse the larger the original
vector that has to be projected is. As we expect the norm of u to increase the same
way we saw them do for the vMF, this problem would keep getting worse on its own.
However, the NIl method proposed in Subsection 5.1.2 could help ameliorate that
issue. That method consistently improved the performance of the vMF in our testing.
Hence, we suggest implementing this VD with NIl for further research. To repara-
metrize this distribution one could construct the sampler to be from a Gaussian and
then project. While for the pdf, use the trigonometric transformation above.
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Chapter 8

Conclusion

Our results indicate that the Hyperspherical Uniform (HU) prior Bayesian neural
network (BNN), with von Mises-Fisher (vMF) variational distribution (VD), gener-
ally performs on par with the conventional Gaussian one. The novel prior provided
three main weaknesses, computational intensity for lower variance, "Ghost Mu,"
and isotropic covariance. We proposed Normalized Initialization Inheritance (NII)
to address the "Ghost Mu" issue. Testing this solution indicates that it ameliorates
the issue. As the Hyperspherical Unform prior replaces Batch Normalization, it is
more coherent with the Bayesian framework. Therefore, our prior can help deeper
networks that need Batch Normalization be marginally more interpretable while re-
ducing computational demand during the backward pass.

The Projected Normal (PN) VD redresses the current VD’s isotropic covariance and
computational intensity issues. While the "Ghost Mu" issue would remain, NIl could
also be applied there. We suggest investigating the HU prior with PN VD. Our prior
and VD combination already performs well despite the remaining limitations. We
expect the gradient advantages to increase for deeper nets. For those two com-
pounding reasons, we speculate that the HU prior with PN VD may yield significantly
better performance than the Gaussian BNN for deep networks.
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