
Optimizing Coordination on
Road Construction Sites with a
Reinforcement Learning Framework

Øystein Høistad Bruce
Master’s Thesis, Spring 2023

This master’s thesis is submitted under the master’s programme Computational
Science, with programme option Applied Mathematics and Risk Analysis, at the
Department of Mathematics, University of Oslo. The scope of the thesis is 60
credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Abstract

Road construction sites are often inefficient, with construction machines
frequently idling for extended periods, wasting fuel and time. One
way to increase efficiency is to optimize the scheduling of the dumpers
transporting materials across the site. This thesis proposes and
investigates a multi-agent reinforcement learning framework designed to
coordinate dumpers and excavators on construction sites. The framework
generates time schedules for all vehicles, considering multiple criteria such
as fuel consumption, completion time, and cost. Users can choose a plan
that best aligns with their preferences, ensuring maximum efficiency. The
framework has a negligible training time and generally outperforms a
baseline constructed from human behavior. In addition, we developed a
predictive fuel consumption model for a dumper using high-resolution
data logged over 12 working days. By associating each dumper with such
a model, we can more accurately predict their fuel consumption while
driving, further improving the planning.

Figure 1: Data driven road construction sites [SIN20]

Acknowledgements

First, I want to express my sincere gratitude to my supervisor at SINTEF, Signe
Riemer-Sørensen, for allowing me to work on such an interesting task. Her
guidance and expertise throughout this thesis have been invaluable, and I feel
fortunate to have had the opportunity to learn from her. In addition, thanks to
SINTEF for providing me with resources and support during my thesis.

I would also like to thank my supervisors at UiO, Øyvind Ryan and Vegard
Antun, for their guidance and support in helping me to develop the skills and
knowledge necessary to write a good master’s thesis.

Second, I would like to express my appreciation to CLOPEN 1 [UiO], my study
group throughout my bachelor’s and master’s degrees. Working with my fellow
CLOPEN team members, Sigurd Holmsen and David Händler Andersen, has
been an incredible experience. Our collective efforts have resulted in better
results and increased knowledge, and I am grateful for the sense of community
and collaboration we have fostered.

Finally, I would like to thank all my friends, family, and girlfriend who have
supported me throughout my academic journey. Your encouragement, love,
and support have been a constant source of motivation, and I am grateful for
everything you have done for me.

Øystein Høistad Bruce,

Oslo 2023

1https://www.mn.uio.no/math/studier/aktuelt/aktuelle-saker/2020/maec-studenter-vant-nb-
casenm.html

ii

https://www.mn.uio.no/math/studier/aktuelt/aktuelle-saker/2020/maec-studenter-vant-nb-casenm.html
https://www.mn.uio.no/math/studier/aktuelt/aktuelle-saker/2020/maec-studenter-vant-nb-casenm.html

Contents

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 Outline . 3

I Reinforcement Learning Framework 4

2 Theory 5
2.1 Reinforcement Learning . 5
2.2 Neural Networks . 10
2.3 Graphs . 13
2.4 Bruce’s algorithm . 15

3 Method 17
3.1 Route Optimization on Construction Site 17
3.2 An Overview of the Problem’s Environment 18
3.3 The Roles of the Agents: An In-Depth View 19

A Closer Look at the Planning Agents 20
The Coffee Break Agent: A Solution for Temporary Breaks . . 24
Node Agents: Guiding the Way through Graphs 25

3.4 A Detailed Breakdown of an Episode 28
3.5 Exploration vs. Exploitation 30
3.6 A Guide to the Framework’s Configuration Options 31

4 Results 33
4.1 Evaluate Performance: Two Baselines 33
4.2 Testing the Framework’s Capability on Basic Scenarios 35
4.3 Framework Evaluation: Analysis on Multiple Maps 40

5 Discussion 45

iii

Contents

II Fuel Model 48

6 Towards more advanced route planning 49

7 Theory 50
7.1 A Brief Overview of How to Evaluate Machine Learning Models 50
7.2 Understanding Model Interpretability: Exploring SHAP and

SAGE Values . 50

8 Data 53
8.1 Exploring the GPS and Fuel Data 53
8.2 Data Selection and Cleaning 54
8.3 Merging Data . 56
8.4 Statistics of a Route . 56
8.5 The Final Data Set . 58
8.6 Investigation of New Features 58

9 Method 59
9.1 Predictive Model for Fuel Consumption on a Route 59
9.2 Fine-tuning Models: Hyperparameter Tuning 59
9.3 Feature Investigation for Improved Model Performance 59

10 Results and Discussion 65
10.1 Measuring Model Performance 65
10.2 Analyzing Model Predictions 66
10.3 Final Considerations: Key Takeaways and Insights 67

III Summary and Conclusions 68

IV Appendices 72

A Appendix for Part I 73
A.1 Universal Approximation Theorem 73
A.2 The Default Configuration of the Framework 76
A.3 Determining the Starting Order of Dumpers 78
A.4 Map 1: Demonstrating Baseline 1 79
A.5 Map 1: Dumper and Loader Scheduling and Performance . . . 80

B Appendix for Part II 84
B.1 A Brief Introduction to Decision Trees 84
B.2 Tables of Selected Data Points 85
B.3 Data Summary: A Table of Statistics 88

Bibliography 92

iv

CHAPTER 1

Introduction

Road construction is essential for the development of infrastructure and trans-
portation systems. However, it also significantly impacts the environment, as it is
a major source of greenhouse gas emissions [HN15]. Moreover, road construction
sites are often inefficient, as construction machines frequently idle for extended
periods, wasting fuel and time. Therefore, there is a need to optimize the
planning and execution of road projects to reduce emissions, costs, and duration.

Skanska, in collaboration with SINTEF, Volvo, and Ditio [Lei+23] [SIN23]
[Ska19], conducted a research project from 2020 to 2022 to improve the
coordination of machinery on road construction sites using data and artificial
intelligence techniques.

Figure 1.1: Representation of the problem on a road construction site.

Figure 1.1 depicts a road construction site comprising loading and dumping
locations, roads, intersections, and a parking area. The objective is to find the
most efficient plan to transport all the required mass while minimizing fuel
consumption, time, and cost with the available dumpers.

1

Introduction

This problem belongs to the class of capacitated vehicle routing problems, where
vehicles have a limited carrying capacity and must move materials between
different locations.

To address this problem, SINTEF used a stochastic time-front construction
heuristic to generate an initial plan for moving materials. This plan was further
optimized using a local search algorithm.

This thesis explores an alternative approach and investigates the following
research questions:

• Can reinforcement learning be effectively applied to the scheduling problem
on construction sites?

• How does such a framework handle dynamic changes in the construction
site environment?

• Can we use the continuously logged GPS data to predict the fuel
consumption of dumpers and further optimize the scheduling?

This thesis proposes a framework to address the scheduling problem using
multi-agent reinforcement learning. The framework enables agents to be
responsible for route planning, navigation, and decision-making concerning
directing dumpers to a parking spot. In addition, an agent is responsible for
scheduling temporary breaks for dumpers in cases where it can improve overall
efficiency. These agents learn through trial and error, using a reward signal
based on the coordination’s efficiency, including distances and waiting times.
Our framework aims to improve productivity and efficiency at road construction
sites through intelligent dumper scheduling.

The framework was developed entirely by the author of this thesis and required
significant coding efforts. The GitHub repository1 [Bru23] contains the full
code for this thesis.

In addition to the reinforcement learning framework, this thesis also develops a
fuel consumption model that can be integrated with the framework to improve
the accuracy of fuel consumption estimates during route planning. The fuel
consumption model predicts the amount of fuel consumed by the machinery
when traversing the roads on the construction site by considering factors
such as altitude, acceleration time, and the amount of mass loaded. This
integration is necessary for more advanced evaluations, as the current method
of converting distance directly to fuel consumption based on averages can lead
to inaccurate estimates. Due to time constraints, we did not implement this
integration. However, future work could incorporate fuel consumption as the
cost of traversing a road rather than physical distance.

By reducing waiting times and fuel consumption, our framework has the
potential to enhance both the sustainability and cost-effectiveness of road
construction sites.

1https://github.com/oystehbr/MasterThesis_Bruce

2

https://github.com/oystehbr/MasterThesis_Bruce

1.1. Outline

1.1 Outline

Part I Reinforcement Learning Framework

Chapter 2 presents an overview of the fundamental concepts in reinforce-
ment learning. It includes a brief introduction to neural networks
and an explanation of the concepts in graph theory relevant to our
application. Finally, the author presents his algorithm to solve the
all-pairs shortest path problem in weighted graphs.

Chapter 3 details the development and setup of the proposed reinforce-
ment learning framework, explaining its capabilities and limitations.

Chapter 4 presents the performance of the proposed framework by
evaluating it in several scenarios. The framework is first tested
on basic scenarios to demonstrate its capabilities. Then, we conduct
a larger analysis with more complicated maps.

Chapter 5 discusses the reinforcement learning framework with sugges-
tions for potential improvements. In addition, we explore areas that
we did not test but could be interesting to investigate in further
research.

Part II Fuel Model

Chapter 6 outlines the necessity of the fuel model and its potential
to enhance the evaluation process of the reinforcement learning
framework.

Chapter 7 provides the theoretical background needed to understand the
fuel model part of this thesis.

Chapter 8 provides a detailed overview of the data used in the fuel
model analysis. It explains the data preprocessing and guides the
structuring of the final data set before training the model.

Chapter 9 presents how we select the optimal model based on our data,
including feature selection techniques to identify the most relevant
features.

Chapter 10 interprets and discusses the final fuel model’s results.

Part III Summary and Conclusions

Part IV Appendices

Appendix A covers the appendix for Part I.
Appendix B covers the appendix for Part II.

3

PART I

Reinforcement Learning
Framework

4

CHAPTER 2

Theory

2.1 Reinforcement Learning

Learning by interacting with the environment around us is the most basic and
standard way of acquiring knowledge for humans. Reinforcement learning is a
machine learning technique that mimics this learning process by trial and error.
The goal is for an agent to learn to make more informed responses to different
situations.

Researchers have successfully applied reinforcement learning to a wide range
of problems in domains such as robotics [Lev+16], game intelligence [Sil+18],
and language models [Ouy+22]. Several educational resources are available
in the field; for instance, Spinning Up [AA], produced by OpenAI, provides a
comprehensive introduction to reinforcement learning and practical advice on
how to implement and apply it. Additionally, the book [SB18] offers a more
detailed and technical treatment of the subject.

There are many different models in reinforcement learning, but they all
follow the same basic concept of an agent performing actions in an environment
and being rewarded based on the desirability of the outcome.

Figure 2.1: The Reinforcement Learning Cycle: The agent observes the
environment’s current state, st. It then performs an action at, which leads to a
new state st+1 and a reward rt.

5

2.1. Reinforcement Learning

Agent, environment, state, action space

An agent can be considered a player that learns by interacting with its
environment. The environment is the world in which the agent lives and
operates. An action is a move that an agent makes, which results in changes in
the environment.

To select an action, the agent must have some knowledge of the current state
of its environment. A state, s, is a complete description of the environment.

The set of all valid actions an agent can perform is called the action space.
The environment and the particular task the agent aims to learn influences the
action space. Depending on the nature of the environment and the task, the
action space can be either discrete or continuous.

The agent, environment, state, and action relationship are visualized in
Figure 2.1.

Policy

A policy refers to the decision-making process of an agent or its brain. It
determines the agent’s actions based on information about the environment. A
policy can be deterministic (as shown in Equation 2.1) or stochastic (as shown
in Equation 2.2).

at = µθ(st) (2.1)
at ∼ πθ(·|st) (2.2)

where µ, π refers to a function and probability distribution (respectively),
and st is the observed state of the environment at time t. The θ represents that
the policy function could depend on a set of adjustable parameters resulting in
different policies. For example, in the case of a neural network-based policy,
the parameters could include weights, biases, and activation functions.

The policy could be as simple as a look-up table, which could be applied where
the action space is discrete and relatively small (e.g., a game of Tic Tac Toe).
A more advanced policy may be necessary for more complex scenarios where
the action space is larger and continuous, such as using a neural network.

Trajectory, episode

By repeating the cycle of reinforcement learning (as shown in Figure 2.1) until
we reach either a failure or a predefined stopping criterion, we obtain a trajectory,
also called an episode.

A trajectory, τ , is a sequence of states and actions in the environment:

τ = (s0, a0, s1, a1, ...) (2.3)

where the initial state s0 can be fixed or randomly sampled from the starting-
state distribution.

The laws of the environment determine the state transitions, which rely on
the most current state and action. State transitions may be deterministic (as
shown in Equation 2.4) or stochastic (as shown in Equation 2.5).

6

2.1. Reinforcement Learning

st+1 = f(st, at) (2.4)
st+1 = P (·|st, at) (2.5)

where the actions {at}t>0 are chosen according to the agent’s policy.

Reward and Return

The reward function, R, measures if the action taken by the agent is good or
bad, and it is critical to be able to train the policy. The reward function often
depends on some or all of the following: current state (st), current action (at),
and next state (st+1). The reward, rt, at time t in an episode is of the form:

rt = R(st, at, st+1) (2.6)

The agent aims to maximize the cumulative reward, called return R(τ), over
an episode. The return is often a linear combination of all rewards obtained in
the given episode. However, this linear combination could be discounted and
controls the importance of future rewards.

Goal

The main objective of reinforcement learning is determining the policy that
generates the maximum expected return, denoted by J(π). The optimal policy,
denoted by π∗, is expressed mathematically as:

π∗ = arg max
π

J(π) (2.7)

where

J(π) = Eτ∼π[R(τ)] =
∫

τ

P (τ |π)R(τ) (2.8)

P (τ |π) = P (s0)
T −1∏
t=0

P (st+1|st, at)π(at|st) (2.9)

Equation 2.8 and 2.9 define the following terms: τ represents an episode, P (τ |π)
denotes the probability of reaching the episode τ given the policy π, and R(τ)
expresses the return of the episode τ .

Exploration vs. Exploitation

While training an agent, a key consideration is a trade-off between exploration
and exploitation. Exploration refers to the agent trying out new actions in
unfamiliar states to gain new knowledge about the environment. By doing so,
the agent can discover potentially better policies and avoid getting stuck in
suboptimal ones. Exploitation involves selecting reasonable actions based on
the agent’s experience, usually by following the trained policy without knowing
if any variation would lead to a greater return.

7

2.1. Reinforcement Learning

Vanilla - and Deep Q-Learning

Q-learning [WD92] is a reinforcement learning technique that enables an agent
to learn how to act optimally in a given environment by estimating the maximum
expected return achievable for each action. The main objective is to train the
agent’s policy, Qθ(s, a), such that it approximates the optimal action-value
function, Q∗(s, a), which we define as:

Q∗(s, a) = max
π

Eτ∼π[R(τ)|s0 = s, a0 = a], (2.10)

where R(τ) is the return of the trajectory τ , (s, a) is a state-action pair, and
π is the policy. Q∗(s, a) represents the maximum expected return achievable by
acting according to the optimal policy, given an initial state s and arbitrary
action a.

The agent’s policy Qθ(s, a) is a function that maps each state-action pair to
a Q-value, which estimates the maximum expected return of taking an action
in a given state. The agent tries to maximize the expected return for any
state. Hence, it always selects the action with the highest Q-value, as shown in
Equation 2.11.

a(s) = arg max
a

Qθ(s, a), (2.11)

where a(s) is the action yielding the highest Q-value in a given state s

To improve the approximator Qθ(s, a), Q-learning uses a form of the Bellman
equation (presented in Equation 2.12), which was first introduced in [Bel52].
This equation allows the agent to update its estimates of the Q-values based on
the rewards it receives while taking actions in the environment.

Q(st, at)← (1− α)Q(st, at) + α
[
rt + γ max

a
Q(st+1, a)

]
, (2.12)

where α is the learning rate, γ is the discount factor, and Q(st, at) and
Q(st+1, a) are the Q-values for the state-action pairs (st, at), (st+1, a), respect-
ively. We denote the reward for taking action at at time t as rt.

Equation 2.12 updates the Q-value of a state-action pair (st, at) by combining
the current Q-value and the newly proposed Q-value. The newly proposed
Q-value, [rt + γ maxa Q(st+1, a)], estimates a new maximum expected return
based on the current reward, rt, and the discounted maximum of the Q-value
of the next state st+1. The discount factor γ ∈ [0, 1] ensures that rewards
received soon are given more weight than those received in the distant future.
The learning rate α ∈ [0, 1] determines the trade-off between the old and the
newly proposed Q-value. A higher α means more weight is given to the newer
estimate. The Bellman equation is recursive because it uses the same formula
to calculate the maximum Q-value of the next state, which depends on another
state-action pair (st+1, at+1).

8

2.1. Reinforcement Learning

Figure 2.2: The approximator Qθ(s, a) in Vanilla - and Deep Q-learning. While
Vanilla Q-learning utilizes a look-up table as its approximator, Deep Q-learning
replaces it with a neural network.

Vanilla Q-learning uses a table-based approach for the policy, known as the
Q-table (Figure 2.2). The Q-table contains a Q-value for every state-action pair,
which it updates using Equation 2.12. This method is limited to environments
with a low and finite number of discrete states and actions. As a result, it
may struggle to generalize to unseen states, particularly in environments with
continuous state spaces.

Deep Q-learning overcomes this limitation by using a neural network as
the function approximator Qθ(s, a). We feed the state into the neural network
and obtain the Q-values for all possible actions. Using a neural network allows
the policy to handle large and continuous state spaces, as the network can
generalize to similar states even if they are not identical.

In Deep Q-learning, we train our policy by first inputting the state st into
the neural network to obtain the Q-values. We then update the Q-value for the
action, at, using Equation 2.12, while keeping the other Q-values unchanged.
Finally, we use the updated Q-values and the corresponding state st as a training
sample for the neural network.

We will use the Deep Q-learning approach in our reinforcement learning
framework.

9

2.2. Neural Networks

2.2 Neural Networks

Our agents in the reinforcement learning framework use neural networks as
their policy. Neural networks are models composed of interconnected layers of
nodes that learn to recognize patterns in data and make predictions based on
those patterns. Two books that provide a comprehensive introduction to neural
networks are Deep Learning [GBC16] and Neural Networks and Deep Learning
[Nie15].

The fundamental goal of a neural network is to approximate a mathematical
function that maps a set of input variables x to a set of output variables y. In
other words, the goal is to train a neural network, denoted as f , to approximate
the underlying function such that f(xi) ≈ yi for all observations i.

Simple neural network

Figure 2.3: Illustrates two types of neural network computations: (a) at node-
level (b) a simple neural network

We apply the following terminology:
(1) Neuron, layer: these are the building blocks of a neural network. The

neuron (node) consists of weights and a bias term. It performs a dot product
between the weights and the output of the previous nodes, then adds a bias
term, and finally, applies an activation function to get the neuron’s output. A
layer is a stack of nodes.

(2) Input -, hidden- and output layer: are terms used to talk about the
structure of a neural network. The input layer is the first layer and represents
a sample of input data. The hidden layer(s) is the layer(s) between the input
layer and the output layer and decides the depth of the network. The output
layer is the last and outputs the predicted value(s).

(3) Weights and bias: are used in calculating the output of a node. The
weights indicate the importance of the connection between any two nodes. The
bias term is a constant value used to speed up or delay the activation of a given
node.

10

2.2. Neural Networks

(4) Activation function: is a function used in a node that can introduce
non-linearity into the neural network. Often used functions are, e.g., tanh,
(Leaky) ReLU, and sigmoid, in addition to linear mappings for simple informa-
tion passing.

Neural networks are scalable; Figure 2.3 can illustrate (a) a single neuron or
(b) a simple neural network.

(a) Refers to a node that takes the previous layer as its input. The
input features (x1, x2, ..., xn) are multiplied with their corresponding weights
(w1, w2, ..., wn) and added the bias term. The resulting value is then passed
through an activation function, σ, to get the node’s output. If the network
contains additional layers, the output of the current node is the input for the
next layer. If the current node is the output node, its value represents the
neural network’s prediction.

(b) Refers to a neural network with an input size of n, no hidden layers,
and a single output prediction ŷ.

Larger neural network

Figure 2.4: A neural network structure. Three input features, two hidden layers
with four nodes each, and a single output node.

Figure 2.4 depicts a more extensive neural network, where all nodes in the
hidden and output layers are constructed similarly to Figure 2.3 (with the
interpretation of (a)), but with different weights and biases. This structure is
commonly known as a fully-connected feed-forward neural network, where each
node in a layer connects to every node in the previous layer.

11

2.2. Neural Networks

Evaluation and training

A neural network starts with random values for its weights and biases, often
centered around 0. The neural network learns by iteratively tuning these
parameters through a process of feed-forwarding data, making predictions,
evaluating the results using a cost function, and then updating the parameters
with back-propagation [RHW86]. This common type of machine learning is
called supervised learning, where a model trains on labeled data and aims to
make accurate predictions for new, unseen data.

The cost function evaluates the predictions {ŷi}m
i=1 against the known targets

{yi}m
i=1, which we aim to minimize to achieve better predictions. A cost function

could, for instance, look like this:

E(θ) = 1
m

m∑
i=1

L(yi, ŷi) (2.13)

where yi and ŷi are the target label and prediction (respectively), θ is a
collective variable that indicates that E(θ) depends on multiple parameters,
and m refers to the number of samples, The term 1

m acts as a weight, indicating
that the cost considers the loss of each observation as equally important in this
example. The function L evaluates the loss/error for each target-prediction
pair. The cost function and the loss have the same dimension as the output layer.

The back-propagation algorithm is a technique used for tuning the parameters
of neural networks by iteratively updating the weights and biases based on the
error calculated at the output layer. This process involves using an optimization
algorithm, such as the gradient descent, which aims to find the optimal weights
and biases that minimize the cost function. The computation of the update for
each weight w and bias b in gradient descent goes as follows:

wt+1 = wt − ϵ
dE(θ)

dw
(2.14)

bt+1 = bt − ϵ
dE(θ)

db
(2.15)

where ϵ is the learning rate, a hyper-parameter controlling the step size taken.

The Adam optimizer [KB14], a modified version of the gradient descent
algorithm, was utilized for training the neural networks in this thesis.

Universal Approximation Theorem

The Universal Approximation Theorem A.1.5, first introduced in [Cyb89], is an
essential theorem in the field of neural networks as it highlights the strengths of
these models. It states that a feed-forward neural network with a single hidden
layer can approximate any continuous function to an arbitrary accuracy greater
than 0. However, the theorem does not offer a method for finding the optimal
network; it simply states that such construction is possible. For a detailed proof
of this theorem, please refer to Appendix A.1.

12

2.3. Graphs

2.3 Graphs

In this thesis, we use graph theory to model and solve problems related to road
construction sites. Graph theory is a branch of mathematics that studies the
structure and properties of graphs, which are abstract models of relationships
between objects. We refer to the book [BM08] for the core concepts of graph
theory.

A graph G, consisting of a set of vertices V (G), also called nodes, and a set
of edges E(G). A vertex represents an object, such as a location, and an edge
represents a relationship between two vertices, such as a connection or a road.

In the context of our problem, we represent the road network as a graph.
The edges of this graph have associated costs, known as edge weights, resulting
in a weighted graph. Depending on the weighting system used, the weighted
graph can be either directed or undirected.

A directed graph (example in Figure 2.5) is a graph where edges have a
designated direction, with each edge only traversable one way. Conversely,
undirected graph (example in Figure 2.6) is a graph in which edges are
bidirectional, allowing for traversal in either direction. If one uses a distance-
based weighting system, the graph will be undirected because the weight of
each edge remains constant regardless of the direction of traversal. However, if
the edge weights depend on factors such as fuel consumption, the graph will
likely be directed since the weight may differ in each direction.

Two vertices in a graph are adjacent if an edge is connected. In Figure 2.6,
it can be observed that vertex N5 is adjacent to the vertices N1, N4, N6, and
N9.

In graph theory, a path refers to a sequence of vertices connected by edges.
A cycle is a path that begins and ends at the same vertex.

Figure 2.5: Example of a directed graph, with arrows indicating the direction
of the edges.

13

2.3. Graphs

Figure 2.6: Example of an undirected graph, where edges are bidirectional.

All-pairs shortest path problem

In graph theory, the all-pairs shortest path problem involves finding the shortest
path between every pair of nodes in a weighted graph. The problem arises in
various applications, such as routing and navigation systems, where finding the
most efficient way to travel between multiple nodes is crucial. In this problem,
the shortest path is the set of nodes one must traverse to achieve the shortest
distance between two nodes in the graph. The shortest distance between two
nodes is the minimum sum of all edge weights along a path connecting them.

Floyd–Warshall algorithm

The Floyd–Warshall algorithm, presented in Algorithm 1, solves the all-pairs
shortest path problem, by finding the shortest distance between all pairs of nodes
rather than the complete information of the paths. This information is enough
to find the shortest path in simple operations (one way: Algorithm 3).

Algorithm 1 Floyd–Warshall [Hou10]
Input: A digraph G with V (G) = {1, 2, ..., n} and weights c : E(G)→ R
Output: An n× n matrix M such that M [i, j] contains the length of the

shortest path from vertex i to vertex j.
1: M [i, j] :=∞ ∀ i ̸= j
2: M [i, i] := 0 ∀ i
3: M [i, j] := c((i, j)) ∀ (i, j) ∈ E(G)
4: for i := 1 to n do
5: for j := 1 to n do
6: for k := 1 to n do
7: if M [j, k] > M [j, i] + M [i, k] then
8: M [j, k] = M [j, i] + M [i, k]
9: for i := 1 to n do

10: if M [i, i] < 0 then return (’graph contains a negative cycle’)

14

2.4. Bruce’s algorithm

2.4 Bruce’s algorithm

The author of this thesis has developed an algorithm to solve the all-pairs
shortest path problem (as explained in Section 2.3) in weighted graphs. The
algorithm searches for the shortest distance between every pair of nodes in
the graph, similar to the well-known Floyd–Warshall algorithm (presented in
Algorithm 1). Our algorithm works for both undirected and directed graphs
but assumes the absence of negative cycles in the graph. This requirement is
not limited in its intended application, as the graph represents a road network,
and the edges represent the traversal cost. We assume positive cost as it should
represent distance or fuel consumption.

Bruce’s algorithm, presented in Algorithm 2, utilizes a process of adjacent
inquiry to determine the shortest distances between all nodes in the graph.
Adjacent inquiry means that each node should ask its adjacent nodes about their
knowledge of the shortest distance. Initially, the algorithm sets the distance
between all pairs of nodes to the maximum possible value, which is either the
sum of the absolute values of all edge weights or a large number representing
infinity. If two nodes are adjacent, the algorithm stores the corresponding edge
weight.

The inquiry begins with a node pair: a start node and an end node. The
start node asks all its adjacent nodes for their estimated shortest distance to the
end node. The same process applies to every node pair. The algorithm repeats
this process until the estimated shortest distances do not change, confirming
that they are indeed the shortest.

Algorithm 2 Bruce’s algorithm (Find Shortest Distances)

Input: A directed - or undirected weighted graph G with
V (G) = {1, 2, ..., n} and weights w : E(G)→ R

Output: An n× n matrix S such that S[i, j] contains
the length of the shortest path from vertex i to vertex j.

1: S[i, j] :=∞ ∀ i ̸= j
2: S[i, i] := 0 ∀ i
3: S[i, j] := w((i, j)) ∀ (i, j) ∈ E(G)
4: updates = 1
5: while updates > 0 do
6: updates = 1
7: for i := 1 to n do
8: for j := 1 to n and j ̸= i do
9: for (k, w) in (i.edges.other_node, i.edges.weight) do

10: if w + S[k, j] < S[i, j] then
11: S[i, j] = w + S[k, j]
12: S[j, i] = w + S[k, j] ▷ if the graph is undirected
13: updates = updates + 1

Algorithm 3 shows how to get the shortest path between any two nodes based on
the information of the shortest distances. We obtain the path through adjacent
inquiry by following the edge that satisfies this condition: the shortest distance
from the current node equals the sum of the shortest distance from the adjacent

15

2.4. Bruce’s algorithm

node and the weight of the edge connecting them. We repeat this process until
we reach the end node.

Algorithm 3 Bruce’s algorithm (Find Shortest Path)
Input: start_node, end_node

Output: the shortest path: [start_node, ..., end_node]

path = [start_node]

next_node = start_node

while next_node != end_node do
shortest_distance = next_node.shortest_distance_to(end_node)

for edge in next_node.edges() do
tmp_node = edge.to_node

tmp_shortest = tmp_node.shortest_distance_to(end_node)

shortest_using_edge = tmp_shortest + edge.weight

if shortest_using_edge == shortest_distance then
next_node = tmp_node

path = path + [next_node]

Return: path

Table 2.1 shows the computation time of Bruce’s algorithm. As n increases, the
computation time grows significantly. However, the algorithm is still suitable
for our problem because the road construction site expects to have fewer than
1000 nodes. These nodes represent intersections or decision points within the
construction site.

If this algorithm is a bottleneck for the problem, one can improve performance
by parallelizing the algorithm and running it on a computer with higher
processing power.

Table 2.1: Speed test of Bruce’s algorithm 2, serialized version

n Nodes Edges Time (s)

10 100 340 0.1
20 400 760 1.2
30 900 1740 8.6
40 1600 3120 33
50 2500 4900 103
60 3600 7080 270
70 4900 9660 604
80 6400 12640 1419
90 8100 16020 2512

100 10000 19800 5188
The graphs are generated as a grid of n × n nodes. The edges connect the nodes as in
Figure 2.6, resulting in 2n(n − 1) edges. The test was performed with MacBook Pro
(2020) Apple 8-core M1 CPU GHz, 8GB RAM, 512GB SSD [APP20].

16

CHAPTER 3

Method

The author of this thesis developed the framework presented in this chapter
from scratch, incorporating some ideas from [Qin+21].

Section 3.6 provides a guide to the framework’s configuration options. This
section, in addition to the default values of the framework presented in Appendix
A.2, contains the necessary information for using the framework effectively.

However, before exploring the configuration options in detail, it is essential
first to thoroughly understand the problem at hand and the framework itself.

3.1 Route Optimization on Construction Site

This thesis aims to find the most efficient assignment of dumpers to jobs on
a construction site. To accomplish efficient plans, we need to consider various
factors, including the map of the construction site, the locations of the dumpers
and loaders, and the requirements of each job, such as the volume of mass
transported. The dumpers are the vehicles transporting the materials to the
designated dumping areas, while the loaders are the stationary units that load
the materials onto the dumpers. The loaders will always fill the dumpers to
their maximum capacity if there is sufficient remaining mass. Typically, a loader
on a construction site is an excavator, although it may also take the form of a
conveyor belt or a person using a shovel. The type of loader used impacts the
loading process and fuel consumption rates.

There are several ways to optimize this system, such as by minimizing fuel
consumption, time, or project cost. If the algorithm can learn to optimize
for one of these objectives, it can be adapted to optimize for the others, as
the difference primarily affects the reward function. The main challenge is
incorporating the project leader’s chosen optimization objective into the reward
functions.

The framework consists of several agents with distinct responsibilities and
reward functions. During training, the framework generates a new plan (dumper
schedule) for each episode, which is evaluated based on a range of metrics,
including driving distance, waiting times for dumpers and loaders, and overall
execution time. To simplify evaluation, a single metric, such as fuel consumption,
could be used by accurately weighting the other measures.

17

3.2. An Overview of the Problem’s Environment

3.2 An Overview of the Problem’s Environment

In this context, the environment is the map of the road construction site, which
includes the locations of the jobs and the dumpers and loaders (an example
in Figure 3.1). We represent the map as a weighted graph, where the nodes
represent the locations of the intersections/decision points on the construction
site, and the edges represent the connections between them (roads). By using
the information provided by the nodes and edges, such as the distances or the
predicted fuel consumption, we can optimize the assignment of the dumpers to
the jobs. In practice, we could generate the graph from the same GPS data
used for the fuel model (Part II). However, for the sake of this master’s thesis,
let us assume that we have the graph already.

Figure 3.1: Representation of a road construction site as a weighted graph

Node colors: loading (green), dumping (red), parking (dark blue),
and intersection (light blue)
Task: Transport 400 tons from each loading node to each dumping node.
This visualization of the graph was generated automatically by the framework.

Each job on the construction site specifies the amount and type of mass to
transport from a designated loading node to a dumping node. The mass is
loaded at the loading node, transported to the dumping node, and then dumped
at its destination. When multiple jobs contain the same type of mass, it is
possible to transport the materials between jobs rather than directly from the
specified loading node to the dumping node.

A node cannot serve as both a loading and a dumping node. An additional
node should be added to the map adjacent to the desired node to accommodate
multiple jobs at one location.

Furthermore, the environment includes a parking node for the dumpers,
which can function as both the starting and ending points for the dumpers at
the beginning and end of their day. Moreover, the framework can utilize this
node to let dumpers park whenever deemed more efficient.

18

3.3. The Roles of the Agents: An In-Depth View

3.3 The Roles of the Agents: An In-Depth View

For our problem, we found it relevant to explore the application of multi-
agent reinforcement learning (inspired by [Qin+21]). Multi-agent reinforcement
learning involves multiple agents coexisting and interacting within a shared
environment, each with its own goals and rewards. In our case, the agents
should cooperate to achieve a common goal: optimize the coordination on a
road construction site.

The problem involves a set of dumpers that should behave similarly, assuming
all other factors, such as speed, mass capacity, and dumping ability, are equal.
Each dumper should alternate between loading nodes and dumping nodes while
seeking to optimize the path to its final destination. Specifically, when situated
at a loading node, the dumper should identify the most suitable dumping node
to go to next, considering its job status and ability to accept the type of mass
loaded. On the other hand, when stationed at a dumping node, the dumper
should identify the most suitable loading node to travel to, one that has not
yet fulfilled its job and has short queues. Determining the optimal loading and
dumping nodes involves a weighted decision among both the distance and idle
time required.

Using a single agent attached to each dumper is not an efficient approach
since it does not allow for learning from the experiences of other dumpers.
Alternatively, having a single agent that steers all the dumpers may seem
reasonable, but it can quickly become computationally expensive and challenging
to scale. However, the structure naturally lends itself to be divided into more
straightforward tasks that are easier to learn, leading to faster and more accurate
learning. Our work has resulted in the implementation of four distinct types of
agents:

1. Loading Agent: determining the next loading plan (optionally: send it to
a parking node).

2. Dumping Agent(s): determining the next dumping plan, one agent
responsible for one type of mass.

3. Coffee Break Agent: evaluating the Loading Agent’s plan, and it can
allow dumpers to take temporary breaks.

4. Node Agent(s): determining the next edge to follow, given a plan.

Figure 3.2 illustrates how the agents work together within the framework.

19

3.3. The Roles of the Agents: An In-Depth View

Figure 3.2: Cooperation among the agents and the cycle of the dumpers

Policy

In our framework, we utilize the Deep Q-learning method described in Section
2.1, where we equip each agent with a neural network. The neural network
takes the state information as input and outputs a vector containing a Q-value
for each possible action. The agent selects its action by choosing the index of
the maximum Q-value, where each index corresponds to a specific action.

Training individual policies in our multi-agent problem is relatively
straightforward since there is no clear continuation of states for an agent.
As a result, we found it efficient to use only the current state to train the model
and not consider the next or previous states. This approach necessitates setting
γ = 0 in the Bellman Equation 2.12, which updates the Q-values.

A Closer Look at the Planning Agents

State - Loading Agent

Equation 3.1 represents the state information for the Loading Agent when the
environment consists of N loading nodes.

SL = (Dparking, I1, I2, ..., IN , D1, D2, ..., DN) (3.1)

In Equation 3.1, Ii represents the predicted waiting (idling) time in minutes
at loading node i, and Di denotes the shortest distance to it from our current
location. The distance measure can be physical distance, fuel consumption,
or time (which is the default). There is correspondence between {Ii}N

i=1 and
{Di}N

i=1 for all N possible loading nodes. Additionally, Dparking represents the
distance to the nearest parking node.

At first, we set the shortest distance between every pair of nodes on the map
to equal the sum of all edge weights (in absolute value). However, as dumpers

20

3.3. The Roles of the Agents: An In-Depth View

find more efficient routes than the current best, we update the shortest distance
accordingly.

The predicted waiting time is calculated based on the presence of dumpers
at the destination node and the estimated arrival time of other dumpers.
Additionally, the calculation considers the shortest distance obtained so far,
the speed of the dumpers, and the estimated duration of loading/dumping at
the destination node. The waiting time is allowed to be negative, with the
interpretation of How long has the loader been available. This possibility is an
essential factor to consider in the decision-making process since the loaders
consume fuel and should aim to avoid idling during their work, thus minimizing
fuel waste.

State - Dumping Agent

Equation 3.2 shows the state information for a Dumping Agent(s) responsible
for M dumping nodes.

SD = (∆m1, ∆m2, ..., ∆mM , D1, D2, ..., DM) (3.2)

In Equation 3.2, we calculate the values {∆mi}M
i=1 using Listing 3.1. Further-

more, Di denotes the shortest distance from our current location to dumping
node i and exhibits identical behavior to that described in the state of the
Loading Agent (Section 3.3). There is a relationship between {∆mi}M

i=1 and
{Di}M

i=1 for all M possible dumping nodes.
The value of ∆mi represents how many dumps by which dumping node

i is ahead of the dumping node with the lowest completion rate, based on
their respective completion rates. The completion rate refers to the progress
made by each dumping node regarding the number of tons of mass they have
received out of the total amount required. The Dumping Agent can learn
to distribute dumpers more evenly among all dumping nodes by considering
the imbalance in dump completion rates. This consideration ensures that all
dumping nodes remain accessible longer during the episode and prevents some
nodes from finishing early. Furthermore, it may reduce waiting times and
prevent suboptimal planning toward the end of the episode.

Listing 3.1: Pseudocode: Calculation of {∆mi}M
i=1, delta_mass

Calculate the completion rate for each dumping node
received_mass = [received_mass_1, received_mass_2, ..., received_mass_M]
total_mass = [total_mass_1, total_mass_2, ..., total_mass_M]
completion_rate = mass_dumped / total_mass

Find the progression relative to the lowest completion rate
base_index = completion_rate.index(min(completion_rate))
progress_ahead = completion_rate - min(completion_rate)

Calculate the delta_mass included in the state information
delta_mass = progress_ahead * (total_mass[base_index] / dumper_capacity)

21

3.3. The Roles of the Agents: An In-Depth View

Action - Loading Agent

The Loading Agent selects the next loading node to serve and is called upon
whenever an empty dumper requires a new loading destination. The policy
outputs align with the loading nodes; however, if the agent’s preferred option
becomes unavailable due to job completion, the agent automatically chooses
the next best option based on the policy. We can enable an additional action
to the Loading Agent’s action space, allowing it to park dumpers instead of
assigning them a loading plan if it determines this to be more beneficial. Once
a dumper is parked, it cannot be assigned any new plan in the current episode.

Action - Dumping Agent

The Dumping Agent(s) operates similarly to the Loading Agent but selects the
next dumping node instead of a loading node. Each mass type has its own
Dumping Agent, which imposes restrictions on where specific types of mass can
dump. Consequently, the dumper must consult the Dumping Agent responsible
for the loaded mass type. It is important to note that a Dumping Agent cannot
direct dumpers to a parking node; only empty dumpers can park.

Rewards - Loading Agent

Let us consider a Loading Agent that issues a plan. Upon completing the
loading plan, defined as the dumper reaching its designated final destination
and successfully executing the task at the location, the dumper will provide
Information 3.1 to the Loading Agent.

Information 3.1: Post-information of a loading plan

1. TD (driving time in seconds): time to arrive at the destination node
2. WD (waiting time dumper in seconds): queue time at the destination node
3. WL (waiting time loader in seconds): time since loader was last used
Equation 3.3 shows the setup of the reward function and is dependent on
Information 3.1.

R(WL, WD, TD) = min
[

K

WD + w1 · TD − w2 ·WL
, 80

]
(3.3)

In Equation 3.3, K is a constant used to determine the magnitude of the rewards.
The weights (w1, w2) corresponds to TD and WL, respectively. The weights
indicate that TD is w1 times more costly than WD, and WL is w2 times more
expensive than WD. The negative sign to w2 indicates that the Loading Agent
should prioritize a loader expected to idle for a long time to prevent longer
idling times.

Setting the weights (w1, w2) = (8, 3) indicates that an idling loader consumes
three times more fuel than an idling dumper. Moreover, the fuel consumption
of a moving dumper is, on average, eight times greater than when it is idling.
The values align with those expected from a heavy-duty excavator and a 40-ton
dumper.

We want to set K such that the rewards fall in the domain of [0, 80]. To
achieve this, we first set the shortest time between any pair of loading and

22

3.3. The Roles of the Agents: An In-Depth View

dumping nodes (also possible parking nodes) to TSD. In Equation 3.3, setting
K = 50 · (w1 − w2) · TSD results in a reward of 50 for the agent if the dumper
follows the shortest possible route, do not have to wait in a queue, and the
loader is ready for the entire duration of the trip. This is achieved when
TD = TSD, WD = 0, WL = TD.

Determining an appropriate reward for a dumper directed to a parking node is
challenging as it requires information about the remaining part of the episode.
The reward system for parking suggests that if there are no idle loaders during
an episode, decreasing the number of dumpers in the planning may be beneficial.
Conversely, increasing the number of dumpers may be advantageous if idle
loaders exist. To overcome this issue, we devised a solution that addresses all
such cases at the end of each episode when the necessary information is available.
We set the parameter TD equal to the driving time to the parking node and
impose a penalty for parking through WD, computed using the formula in
Equation 3.4.

WD(t0) = w4 ·
1
N

N∑
i=1

W total
loaderi

(t0) (3.4)

In Equation 3.4, we define WD(t0) as a measure of the cost for parking at time
t0, where w4 is a hyperparameter that determines the degree of this cost. To
calculate WD(t0), we first define W total

loaderi
(t) as a function that computes the

total idle time of loader i after time t in the current episode. We do not add
any idling time if a dumper arrives loader i at the earliest possible time in an
episode. Moreover, N is the number of loaders in the environment.

By setting w4 = 1, the Loading Agent is penalized for parking a dumper at
time t0 as if the dumper was idling for the average idling time experienced by
all loaders after time t0.

Rewards - Dumping Agent

To calculate the reward for the Dumping Agent(s), we follow a procedure similar
to the Loading Agent (Section 3.3). The reward function takes the same form as
Equation 3.3 but with a different interpretation of WL. As explained in Section
3.3, the state information provided to the Dumping Agent contains details
of the completion rate imbalance between the dumping nodes. To quantify
this imbalance, we need to determine how many dumps ahead the dumping
node selected by our plan is compared to the dumping node with the lowest
completion rate. We assign this value to WL, and the corresponding weight w2
in Equation 3.3 is negative to penalize imbalance in the completion rates. For
example, setting w2 = −60 ·w1 indicates a willingness to travel an extra minute
per unit of imbalance to compensate for the imbalance.

Since the dumping time is shorter than the loading time, dumping sites are
less likely to have queues. Thus, we set WD = 0 and do not prioritize it.

23

3.3. The Roles of the Agents: An In-Depth View

The Coffee Break Agent: A Solution for Temporary Breaks

The Coffee Break Agent was introduced late in the research as we found putting
dumpers on a temporary break helpful, allowing other dumpers to select their
next loading plan first. Without this feature, the Loading Agent would assign
plans to dumpers as they become available without considering that the next
available dumper might be much closer to the desired loading node.

As Illustrated in Figure 3.2, the Loading Agent and Coffee Break Agent
work in close collaboration. Whenever the Loading Agent has decided on a
plan, the Coffee Break Agent evaluates it. The Coffee Break Agent decides
whether the dumper should continue with it or wait for the next dumper to
select its plan before making a decision. The process continues until the Coffee
Break Agent approves the plan.

If the temporary break lasts until the end of an episode, we consider the
dumper going directly to the parking area at the start of the break. This
situation highlights the similarity between the Loading Agent’s parking option
and the Coffee Break Agent. However, a key difference is that when a dumper
is parked, it remains so for the entire episode, whereas the Coffee Break
Agent allows for temporary pauses. Disabling the parking option and utilizing
all available dumpers in the environment can be advantageous in reducing
completion time in some cases. In such scenarios, the Coffee Break Agent
becomes even more critical, especially in environments with many dumpers.

In some scenarios, the first available dumper is far from the relevant loading
node, while another dumper much closer becomes available shortly after. In
such cases, it is clear that the distant dumper should not be assigned the plan
and instead wait for a more suitable one, as illustrated in Section 4.2. This
extreme scenario serves to highlight the necessity of the Coffee Break Agent in
ensuring optimal plan assignments.

It is important to note that the Coffee Break Agent is not involved with the
Dumping Agent.

State

The state information for the Coffee Break Agent, as shown in Equation 3.5, is
based on the plan issued by the Loading Agent and the potential competitors
for the same loading node.

SC =
(

TD

TMD
,

TSD

TMD
,

TSL

TMD
, Q

)
(3.5)

Equation 3.5 specifies four variables that make up the state information: the
current dumper’s arrival time (TD), the shortest possible arrival time for
dumpers on their way to or at a dumping node (TSD), and the shortest possible
arrival time for dumpers on their way to or at a loading node that requires a trip
via a dumping node (TSL). Scaling all arrival times by 1/10 of the maximum
time between any pair of loading and dumping nodes (or the parking node)
(TMD) allows applying the approach in various environments. The Loading
Agent’s policy generates the final information, the Q-value for the intended
loading plan (Q).

24

3.3. The Roles of the Agents: An In-Depth View

Incorporating the arrival times of other dumpers in the state can enable
the Coffee Break Agent to make more informed decisions about when to take
breaks.

Action

The Coffee Break Agent’s actions are straightforward: it must either approve
or reject the Loading Agent’s plan, instructing the dumper to proceed with its
current plan or advising it to wait for a future opportunity.

Rewards

The Coffee Break Agent’s reward function is similar to that of the Loading Agent
(as shown in Equation 3.3). If the dumper follows the recommended plan, the
Coffee Break Agent receives the same reward as the Loading Agent. However,
if the dumper takes a temporary break, the duration of the break is added to
the waiting time for the dumper, with a weight w5. The weight w5 must be
lower than w2 because the agent should not learn that it is advantageous to let
loaders idle while a dumper is on a break, as the dumper may wait for a long
time before deciding to resume work.

If a dumper remains on a break until the end of an episode, we treat it as if
it went to the parking node at the start of the break. Assigning a meaningful
reward for this situation is difficult since it is hard to determine if remaining on
a break was a smart move and, at the same time, align it with other rewards. As
a result, the Coffee Break Agent does not receive any reward for those dumpers,
which means there are no samples from which to learn.

Node Agents: Guiding the Way through Graphs

The final type of agent is the Node Agent. Instead of allowing the dumpers to
find their route, we make the nodes into agents (inspired by [Qin+21]).

When a dumper arrives at a new node, the corresponding Node Agent
selects the next edge to follow based on the available information from the
dumper. The state information for the Node Agent is a one-hot vector, where
the activated entry represents the dumper’s next destination node. Each index
in the state corresponds to a unique node in the map.

The Node Agent’s action specifies the next edge the dumper should follow.
The policy of the Node Agent can either be fixed or trainable. When operating
under a fixed policy, the Node Agent consistently selects the same action for a
given state. In contrast, a trainable policy will adapt and change based on the
experience it gains over time.

Rewards

Whenever a dumper is driving, it must have a plan provided by a planning
agent. The dumpers should share their plan with all Node Agents on the path
to the destination node. Rewards are calculated based on the path after a
dumper completes its plan. Initially, the Node Agents make random choices,
resulting in many repetitive nodes along the path. Given a path, we deploy the
following algorithm to provide rewards to the Node Agents:

25

3.3. The Roles of the Agents: An In-Depth View

Algorithm 4 Pseudocode: Give reward to Node Agents based on a path

Input: path. the nodes a dumper visited while finding its way
to the plan’s destination node.

Note:
- Whenever the reward R occurs, the corresponding
Node Agent will receive this information and learn.
- ** ... ** means it should be done.

path_indices = [0, 1, ..., len(path) - 1]

end_node = path[-1]

final_path = []

i = 0

Find final path
while i < (len(path) - 1) do

j = ** index of last occurrence of path[i] in path **
final_path.add(path[j])

i = j + 1

final_path.add(end_node)

Calculate reward, R, for nodes in final path
for idx in range(final_path - 1) do

Shortest observed distance is base_dist

shortest_observed_dist = ** final_path[idx] to end_node **
curr_dist = ** distance by traversing final_path[idx:] **

R = 10 * shortest_observed_dist / curr_dist ▷ Green

Rewarding remaining nodes in the path
for idx in path_indices do

if path[idx] in final_path then
if ** same state-action pair (Green case) ** then

Continue ▷ Gray
R = 0 ▷ Red

green: will receive a positive reward based on path optimality
gray: will be skipped in training (duplicates of green)
red: will receive 0 as reward

Algorithm 4 categorizes the nodes in the path into three different cases, each
with a different reward system. Green cases include nodes forming the final
path, defined as the shortest distance from the starting node to the destination
node based on the dumper’s path. We implemented the algorithm such that the
final path is composed of the last occurrence of each node. This implementation
does not make any difference, as it is more of a coding matter. The duplicates
of the green cases, called gray cases, are skipped. The remaining nodes, the red
cases, are rewarded with 0, which sets a lower and upper bound for the reward
at 0 and 10, respectively.

However, this approach may lose some information the agents hold, as it

26

3.3. The Roles of the Agents: An In-Depth View

excludes information about detours. Table 3.1 provides an example of such a
case.

Table 3.1: Example path, and the splitting happening in Algorithm 4

path [L3, N4, N5, N4, L3, N2, L3, N4, N5, N4, N5, D6]
(path_colored) [L3, N4, N5, N4, L3, N2, L3, N4, N5, N4, N5, D6]
path_indices [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
final_path [L3, N4, N5, D6]

Comments: L, D, and N are the Loading node, Dumping node, and (intersection) node
(respectively).

The example in Table 3.1 shows that we could give the Node Agent placed at
node N2 a more suitable reward by adding it first in the final_path. Missing
this information is not a problem because the discovery of the transition from
N2→ L3 will most likely occur in another path.

Enhancing Node Agents with Bruce’s Algorithm

We use Bruce’s algorithm (see Section 2.4) to determine the shortest path
between nodes. This algorithm always finds the optimal solution and is faster
than having the Node Agents train from scratch.

If our sole objective is to follow the shortest path, we can freeze the Node
Agents and instruct them only to follow the path discovered by Bruce’s algorithm.
However, if our goal is to expand the knowledge of our Node Agents beyond
just the shortest path, providing the shortest distance to the environment can
make their training more effective. This increase in effectiveness occurs because
the Node Agents use the shortest observed distance to calculate their rewards.
If this distance remains constant throughout training, it improves the accuracy
of the rewards and leads to faster learning.

In situations where edges may become more costly due to traffic and road
closures having additional knowledge beyond the shortest path can be beneficial.
By training our Node Agents to consider those factors, we can improve their
ability to navigate around obstacles and find alternative paths.

27

3.4. A Detailed Breakdown of an Episode

3.4 A Detailed Breakdown of an Episode

We define an episode of the framework as completing all jobs provided or
expiring a pre-defined timer within the algorithm.

Initialization

(1) Jobs and timer
The user must specify the map of the road construction site, the capabilities of
the loaders, and the jobs to complete. The environment regulates the amount
of mass that is moved and tracks the progress of the jobs. We control the
episode’s duration by setting a pre-defined timer. The episode terminates if the
dumpers do not complete the tasks within the designated time frame.

(2) Dumpers starting node
We must specify the maximum number of dumpers on the road construction
site and determine how to map the dumpers to starting node(s). In a real-case
scenario, we can use GPS coordinates to map each dumper to the nearest node.
During testing, we mapped all dumpers to the parking node. Alternatively,
we can distribute them evenly among all loading nodes or distribute them
randomly among all nodes.

(3) Starting order of dumpers
Establishing the starting order is crucial for optimizing the efficiency of the
initial stage of an episode. The state information may need to be clarified at the
beginning of an episode since the framework initializes the dumpers sequentially.
An algorithm that prioritizes closeness and availability ensures that dumpers
receive their first loading plan in an organized order. This organized order
allows the agents to access more accurate information when deciding which
plan to follow. See Appendix A.3 for details on determining the starting order.

Actions and events within an episode

Let T = {t1, t2, ..., td} represent the set of timers for the d available dumpers
in the environment. Timer ti corresponds to dumper i and indicates the time
remaining until dumper i must act.

(4) Beginning of an episode
At the beginning of an episode, when T = {0, 0, ..., 0}, all dumpers are re-
quired to act. If dumper i starts at its plan’s destination node, it reserves
the corresponding loader/dumping area or is placed in a queue if multiple
dumpers have the same plan. Conversely, if dumper i is away from its intended
destination node, it provides its plan to the Node Agent at the current node.
The Node Agent will then direct dumper i to traverse an edge based on its plan.
Regardless of its action, add the duration until dumper i must perform another
action to ti (measured in seconds). If the destination node is the parking node,
then the corresponding timer ti is set to the maximum time, preventing dumper
i from taking further actions.

28

3.4. A Detailed Breakdown of an Episode

(5) Repeat until the dumpers complete all jobs or the pre-defined
timer expires
After initializing the dumpers in the environment, they make decisions
dynamically. Whenever ti = 0 for some i = 0, 1, ..., d, the dumper(s) i must act.
For instance, after completing a loading or dumping task, it calls the Dumping
or Loading Agent (respectively) for a new plan. If it has reached its destination
node, it may initiate or join a queue for loading or dumping. Alternatively, if it
is en route to its final destination, it calls a Node Agent to determine which
edge to traverse next. All tasks consume time, and we add their duration to the
corresponding dumper’s timer. However, if the plan’s destination is the parking
node, dumper i remains parked throughout the episode. Figure 3.2 illustrates
how the cycle of all dumpers works in the framework.

After the dumpers complete all necessary actions or events in a time step,
we update the time system T by subtracting the minimum value of T from
all its elements T := T −min(T). This update means that T takes uneven
increments based on the shortest time until the next dumper(s) must act. As a
result, the environment’s time also advances unevenly.

Post-episode

(6) Store information, train agents
After each episode, the framework saves a significant amount of information,
including the plans executed by the dumpers, the schedule of the loaders,
and various performance metrics. These metrics include completion time, job
completion rate, total distance driven by the dumpers, and idle time for dumpers
and loaders.

To make it easier to compare plans, we assign a fuel consumption and cost
value to each plan. We calculate these values based on the previously mentioned
metrics and pre-defined constants such as fuel price, fuel consumption rates,
and salaries.

The agents train both during and after each episode. During an episode, the
agents store the state-action pairs they have executed and the corresponding
rewards in their memory. These samples remain in the agents’ memory for
several episodes. In the post-episode stage, the agents use a random batch of
their stored samples for training.

29

3.5. Exploration vs. Exploitation

3.5 Exploration vs. Exploitation

The framework allows for two different approaches to agent exploration. The
first approach involves setting a fixed random choice probability for the agents.
The second approach involves setting an exploration parameter that allows the
agents to act gradually according to their trained policy. It is important to
note that the agents can learn simultaneously or sequentially.

When setting the exploration parameter to n, the agent selects its action as
follows:

a(s) =

arg max
a

Qθ(s, a) with probability min(c
n , 1)

random a with probability max(1− c
n , 0)

(3.6)

where c = 0, 1, ..., n, ... is the current episode number and n is the exploration
parameter.

The planning agents will disregard actions that cannot be executed due to
the job status at the loading/dumping nodes (as explained in Section 3.3).

In the simplest form, the Node Agents are pre-computed and not trained at
all (see Section 3.3). However, if we train them from scratch, the author has
achieved favorable results by splitting the exploration of the agents. This
splitting includes letting the Node Agents explore while the planning agents
make random actions, and the Coffee Break Agent is deactivated. This strategy
is motivated by the fact that the planning agents’ reward function relies on the
route taken by the dumper and that the Coffee Break Agent depends heavily
on the Loading Agent. Consequently, if the Node Agents make unreasonable
choices, such as taking a detour, the planning agent should avoid learning from
such situations.

Repeated exploration

Using multiple exploration numbers instead of relying on a single high one can
help broaden the search and avoid getting stuck in local minima. This approach
allows the agents to explore a more diverse set of states and increases the
chances of finding the global optimum. Specifically, we can set the exploration
vector to (n, k, m), where n is the exploration number used in Equation 3.6,
k represents the number of episodes in which the agent’s actions are solely
determined by the policy (without exploration), and m is the number of times
we repeat this process. This exploration vector will make our framework follow
the repeated exploration setup for m(n + k) episodes.

30

3.6. A Guide to the Framework’s Configuration Options

3.6 A Guide to the Framework’s Configuration Options

The framework offers several configuration options for the environment, jobs,
dumpers, loaders, and agents. In this section, we will present and discuss these
different options. The framework’s default values are in Appendix A.2.

Environment, Map

The framework represents the road network as a weighted graph and categorizes
the nodes in the graph as one of the following types: loading node, dumping
node, parking node, or (pure) intersection node. Loading, dumping, and parking
nodes are intersection nodes with an additional specialty. It is important to
note that the framework does not support nodes with multiple specialties. If a
node needs more than one specialty, one should place a new node next to the
desired node. The framework can only handle one parking node.

It is possible to manipulate the agents into believing that the loading nodes
are waiting at the beginning of an episode, which may result in earlier utilization
of them. Conversely, the loading nodes may remain inactive until their initial
use, potentially resulting in each loading node completing its tasks before
moving on to the next.

All edges in the graph should be assigned a distance and, optionally, a fuel
consumption value. We can use GPS data to calculate these distances in a
real-case scenario. At the same time, each edge can obtain a fuel consumption
value by integrating the fuel model (Part II) into the framework.

We set a maximum time limit (pre-defined timer) to end an episode if the
dumpers do not complete all jobs within the allotted time.

Jobs

A job description within the framework should include the following:

• A loading node

• A dumping node

• The loader positioned at the loading node

• An identifier for the type of material to transport

• The quantity of material to transport

It is important to note that the framework does not support assigning
multiple mass types to a single loading/dumping node. However, adding a new
node to the map can circumvent this restriction.

Dumpers

The framework necessitates the specification of the maximum number of dumpers
available. We must assign each dumper an average speed and maximum carry
capacity for use during graph traversal. The user must also define the dumping
rate in seconds per ton and set an independent dumping time as a fixed duration
that applies regardless of the quantity of mass dumped. Dumpers will always
be loaded to max capacity if permitted by job requirements.

31

3.6. A Guide to the Framework’s Configuration Options

At the start of each episode, the framework offers several options for setting
the initial positions of the dumpers. The framework can either set all dumper’s
starting positions at the parking node, distribute them evenly across all loading
nodes, or map them randomly.

During an episode, the dumper operator will only turn off its dumper if
parked. Otherwise, they will either be driving or idling.

Loaders

Each loader should have a loading rate representing the duration required to
load one ton of mass. In addition, it is necessary to specify an independent
loading time, which is a constant duration that applies regardless of the quantity
of mass loaded.

The loaders are activated upon the arrival of the first dumper and remain
operational until job completion or until the end of the episode.

Node Agents

It is possible to choose between using the Node Agents’ policy or only following
edges that lead to the shortest distance using Bruce’s algorithm (see Section
2.4). If we train the Node Agents, we could set them to trainable or finished
training. The Node Agents can explore, as described in Section 3.5.

Planning agents

The planning agents can explore, as described in Section 3.5. It is necessary to
set the weights in the reward function for the Loading and Dumping Agents,
as shown in Equation 3.3. The Loading Agent can enable the option to park
dumpers and must set the weighting w4 in the penalty term in Equation 3.4.

Coffee Break Agent

We can let the Coffee Break Agent be active or inactive. The penalty weight w5
must be specified if the agent is active, as detailed in Section 3.3. The Coffee
Break Agent can explore, as described in Section 3.5.

Additional parameters

To effectively compare final plans within the proposed framework, we must
define fuel consumption rates for idling and driving vehicles, salaries for vehicle
operators, and fuel prices. Combining metrics from a plan and these parameters
allows us to assign each plan a comparable measure, such as cost or fuel
consumption. These metrics from each plan include completion time, job
completion rate, total distance driven by the dumpers, and idle time for dumpers
and loaders.

32

CHAPTER 4

Results

In this chapter, we present the results of the framework described in Chapter
3. Although the settings have not been validated against empirical data, the
framework is robust enough to handle all possible settings.

Unless we specify different settings for a particular analysis, we presume
that we use the default settings in Appendix A.2.

4.1 Evaluate Performance: Two Baselines

We will evaluate each map based on two key factors: fuel consumption and the
time required to complete all jobs. To assess performance, we will establish two
baselines. Baseline 1 is based on a logical and practical approach, while Baseline
2 represents the lower bound for each map, which may not be realistically
achievable.

Baseline 1: Using Practical Approach

Baseline 1 is a practical human perspective on a potential solution and serves
as a reference point for evaluating the performance of our framework. The
strategy consists of two steps: pairing each loading node with a dumping node
and assigning dumpers to each pair.

In the first step, we pair each loading node with a dumping node. We
prioritize the loading node with the maximum distance to any dumping node
and let it select the nearest available dumping node. This way, we avoid having
dumpers travel the longest distances on a map repeatedly. We repeat this
process until all loading nodes have a partner. Appendix A.4 illustrates the
pairing process used for this baseline.

In the second step, we assign a set of dumpers to each pair and let them
alternate between the loading and dumping nodes until they finish the jobs. We
limit the number of dumpers assigned to each pair to ensure no dumper is idle
during an episode. This limit depends on the time it takes for a dumper to travel
to the dumping node, dump the mass, and return to the loading node. Once
we determine the maximum number of dumpers for each pair, we distribute all
available dumpers evenly without exceeding the maximum number. If there are
any leftover dumpers, we assign them to the pairs that need the most dumpers.

By executing the strategy of Baseline 1, we can measure its performance in
terms of total fuel consumption and completion time.

33

4.1. Evaluate Performance: Two Baselines

Baseline 2: The Lower Bound

Please note that achieving the lower bound for completion time and fuel
consumption is possible only in specific scenarios. While attaining the lower
bound for time may be feasible in some cases, achieving the lower bound for
fuel consumption is rare due to the challenge of simultaneously satisfying all of
its assumptions.

To determine the lower bound for the time required to complete all jobs
within a given map, we first calculate the travel time for a dumper to reach each
loading node from the parking spot. Moreover, we assume that each loading
node remains occupied until the completion of its job. Next, we add the travel
time for the dumper to return to the parking spot via the optimal dumping
node, minimizing travel time. Finally, we select the maximum time among all
loading nodes as the optimal time to complete the map.

To find the minimal fuel consumption, we make several assumptions. First,
we assume that vehicles never idle. Second, we include only one distance from
the parking spot to each loading node, equivalent to sending one dumper to
each loading node. Third, we assume that mass can be delivered to the nearest
dumping node, even if it has reached the maximum capacity. The single dumper
on each loading node will alternate between the nearest dumping node and the
loading node. On the last trip from each loading node, we assume that the
dumper returns to the parking spot via the optimal dumping node, minimizing
distance. Finally, we sum up the total distance each loading node required and
convert them into fuel consumption using the settings described in Appendix
A.2.

Comparing Plans: An Overview of our Scoring System

The proposed scoring system calculates a score for a given plan based on its fuel
consumption and completion time relative to Baseline 2. Baseline 2 represents
the lower bound for fuel consumption and completion time (see Section 4.1).

Equation 4.1 calculates the score by assigning an 80% weight to the fuel
consumption ratio and a 20% weight to the completion time ratio. This weighting
prioritizes fuel efficiency while still considering completion time. However, this
scoring system reflects only some considerations. If priorities for the various
metrics attached to each plan differ, adjusting the weighting and possibly adding
a new metric into the scoring becomes necessary.

Score :=
(

4
5 ·

FB2

FM
+ 1

5 ·
TB2

TM

)
· 100 (4.1)

In Equation 4.1, FB2 and TB2 represent the fuel consumption and completion
time of Baseline 2 (respectively). The variables FM and TM refer to the
corresponding metrics of another method’s plan.

34

4.2. Testing the Framework’s Capability on Basic Scenarios

4.2 Testing the Framework’s Capability on Basic Scenarios

To verify the framework’s ability to identify optimal solutions, we should first
test it on simple scenarios with well-known optimal outcomes.

We used the map presented in Figure 4.1 to demonstrate such scenarios.

Figure 4.1: Simple Map

Scenario 1: The Benefits of the Coffee Break Agent

We are constructing a scenario using the map depicted in Figure 4.1, where
the optimal solution is straightforward. First, we assign two dumpers to each
loading node. Specifically, we let the loading time at node L0 equal the travel
time from L0 to D2, plus the time to dump the mass at D2 and return to L0.
Similarly, we let the loading time at node L6 equal the travel time from L6
to D8, plus the time to dump the mass at D8 and return to L6. As a result,
after the initial loading at each node, dumpers traveling horizontally across the
map will encounter no waiting time. Furthermore, to test the capabilities of
the Coffee Break Agent, we disabled the parking option for the Loading Agent.

To achieve the desired outcome, we applied a loading rate of 4 s/ton at L0
and 2 s/ton at L6. The task involves transporting a total of 200 tons of mass
from both loading nodes and evenly distributing it among the two dumping
nodes. Consequently, dumpers on the L6 −D8 route will finish earlier than
those on the L0 − D2 route. Due to the significant distance between these
routes, other alternatives are not beneficial. A proficient Coffee Break Agent
should recognize that dumpers on the L6−D8 route should take a temporary
break until the episode ends.

35

4.2. Testing the Framework’s Capability on Basic Scenarios

Figure 4.2: Fuel consumption while training the agents on Scenario 1.

In Figure 4.2, the agents’ performance is assessed based on fuel consumption per
episode. The framework has successfully converged to a solution to the problem.
The training process involved setting the exploration number, as described in
Section 3.5, to 100 for both the planning agents and the Coffee Break Agent.

Listing 4.1 provides the schedule for each dumper for the converged solution.

Listing 4.1: Time schedule of the converged solution obtained in Figure 4.2
Dumper num: 0 | Dumper num: 1

--------------------- | ---------------------
Time: Plan: | Time: Plan:
[00:00:00, 00:03:10] L0 => L0 | [00:00:00, 00:01:51] L6 => L6
[00:03:10, 00:05:00] L0 => D2 | [00:01:51, 00:03:01] L6 => D8
[00:05:00, 00:09:32] D2 => L0 | [00:03:01, 00:05:33] D8 => L6
[00:09:32, 00:11:22] L0 => D2 | [00:05:33, 00:06:43] L6 => D8
[00:11:22, 00:15:54] D2 => L0 | [00:06:43, 00:09:15] D8 => L6
[00:15:54, 00:17:44] L0 => D2 | [00:09:15, 00:10:25] L6 => D8

Dumper num: 2	Dumper num: 3

Time: Plan: | Time: Plan:
[00:00:00, 00:06:21] L0 => L0 | [00:00:00, 00:03:42] L6 => L6
[00:06:21, 00:08:11] L0 => D2 | [00:03:42, 00:04:52] L6 => D8
[00:08:11, 00:12:43] D2 => L0 | [00:04:52, 00:07:24] D8 => L6
[00:12:43, 00:14:33] L0 => D2 | [00:07:24, 00:08:34] L6 => D8

36

4.2. Testing the Framework’s Capability on Basic Scenarios

Listing 4.2 highlights the Coffee Break Agent’s critical role in optimizing
coordination. Near the end of the episode, the Loading Agent must choose
loading node L0 due to job completion of L6. Dumper 3 would receive this plan
as it is first in line for the final loading plan. However, the Coffee Break Agent
intervenes and identifies that a dumper positioned on the L0 − D2 route is
better for this task. As a result, the scheduling is improved by letting Dumper
1 and 3 take temporary breaks instead of executing the plan.

Listing 4.2: Coffee Break Agent’s actions in Listing 4.1
Dumper num: 0 | Dumper num: 1

--------------------- | ---------------------
00:05:00 - FOLLOW PLAN | 00:00:00 - FOLLOW PLAN
00:11:22 - FOLLOW PLAN | 00:03:01 - FOLLOW PLAN

| 00:06:43 - FOLLOW PLAN
| 00:10:25 - COFFEE BREAK

Dumper num: 2	Dumper num: 3
00:00:00 - FOLLOW PLAN | 00:00:00 - FOLLOW PLAN
00:08:11 - FOLLOW PLAN | 00:04:52 - FOLLOW PLAN

| 00:08:34 - COFFEE BREAK
| 00:09:16 - COFFEE BREAK
| 00:09:33 - COFFEE BREAK
| 00:10:26 - COFFEE BREAK

37

4.2. Testing the Framework’s Capability on Basic Scenarios

Scenario 2: The Benefits of the Parking Option

In this scenario, we want to test a situation where parking is more advantageous
for dumpers than being a part of the environment. This advantage might occur
if the queues are too long or the parking node is nearby. To test this scenario,
we will use the map shown in Figure 4.1 and the same configurations as in
Scenario 1. However, we will change the initial mapping of the dumpers to the
parking node instead of the loading nodes and enable the Loading Agent to
direct dumpers to the parking spot. Furthermore, we will deactivate the Coffee
Break Agent, as it performs a similar function to the parking action.

The optimal schedule for this setup involves having two dumpers, each
driving in opposite directions. Specifically, one dumper should follow the
L0−D2 route while the other takes the L6−D8 route. This arrangement is
optimal because the two routes are significantly distant from the parking node,
and the number of jobs on each route is relatively low.

As in Scenario 1, the loader at L6 will complete its job before the loader
at L0. After the dumper on the L6−D8 route completes the jobs assigned to
those nodes, it would be optimal for this dumper to park.

Figure 4.3: Fuel consumption while training the agents on Scenario 2.

The agents’ performance was evaluated based on fuel consumption per episode,
as shown in Figure 4.3. The exploration number for the planning agents is 100.

The framework converged to a solution but not to the optimal one. The top
plans achieved while training the agents on Scenario 2 are shown in Table 4.1.

38

4.2. Testing the Framework’s Capability on Basic Scenarios

Table 4.1: Performance of top plans for Scenario 2

Score Rank Plan Fuel Cost Time Distance L idle D idle D

93.8 332 96 81.1 2482 5900 46.00 1192 0 2
85.9 110 79 80.9 2476 10974 45.87 1192 0 1
85.8 220 77 81.0 2479 10986 45.93 1192 0 1
75.1 441 100 112.4 3347 5145 66.00 436 6 3
61.0 550 74 114.4 3438 14960 65.80 1192 0 1
60.1 667 99 125.8 3916 9454 65.87 4745 0 2
60.1 778 98 125.8 3916 9455 65.87 4747 0 2
57.6 880 97 130.5 4112 10106 65.93 6197 0 2
50.8 003 72 157.5 4800 8954 85.87 4135 0 3
50.2 990 85 143.0 4648 14960 65.80 10252 0 1
43.9 004 62 190.4 5741 9019 105.87 3875 115 4
34.9 005 50 259.3 7739 9293 145.73 4492 2 4
33.8 006 33 271.2 8248 9379 145.73 8185 193 4
31.8 009 49 294.6 8777 9539 165.66 5063 2 4
Score (see Section 4.1), D: dumpers (required amount).
Rank XYZ: Plan ranking based on Fuel (Xth), Cost (Yth), Time (Zth). A ’0’ indicates that
the plan did not rank in the top 9 for any categories.
Plan (Game number), Fuel (liter), Cost (NOK), Time (seconds), Distance (kilometer).
L idle: Loaders idling (seconds), D idle: Dumpers idling (seconds).

Table 4.1 shows that the framework converged to a plan with second place in
scores, despite ranking first in fuel and cost. This converged solution is plan
number 79 in the table. According to the scoring system (see Section 4.1),
which tries to find the most suitable plan balancing several factors, the best
plan is the one we expected to be optimal. Our framework successfully found
this solution as plan number 96.

The converged plan uses a single dumper to complete all jobs within the
environment, starting with the jobs at the route L6−D8. After completing all
jobs at L6, the dumper follows the path [D8, N7, L6, N3, L0]. This approach
results in the dumper traversing the edge connecting (L0, N1) one less time
and the edge connecting (N7, L6) one additional time compared to the optimal
solution using two dumpers. As a result, the total distance driven is slightly
shorter than for the optimal plan. Consequently, this plan has slightly lower
fuel consumption and cost than the optimal solution but takes about twice as
much time.

39

4.3. Framework Evaluation: Analysis on Multiple Maps

4.3 Framework Evaluation: Analysis on Multiple Maps

This section presents a comparative analysis of our framework’s performance
against Baseline 1. For each method, we identify the best plan for a given
scenario. We define the best plan as having the highest score according to
the scoring system outlined in Section 4.1. First, we provide an overview of
the maps used in our analysis. Finally, we examine the metrics obtained from
applying the methods to multiple maps.

The Maps Structures: Similarities and Differences

In our study, we represent road construction sites as undirected weighted graphs
on a 10× 10 grid. Each scenario in the study includes one parking node, six
loading nodes, and three dumping nodes. The job involves transporting 400
tons of mass from each loading node and distributing it evenly among the
three dumping nodes, resulting in 800 tons of mass across all dumping nodes.
We assume the materials to be homogeneous, meaning dumpers can transport
all mass to any dumping node. This assumption of homogeneous materials
is actually more challenging for our framework since the number of possible
solutions increases.

We use a random and independent uniform distribution over the interval
[100, 1000] to assign edge weights, representing the distance in meters between
nodes.

Our analysis considers scenarios where we can deploy up to 25 dumpers
onto the road construction site. However, our framework may find that using
only some of the available dumpers is more efficient in finding the optimal plan.

Figure 4.4 (Map 1 in the study) illustrates the structure of the maps in
our research. In our analysis, we maintain the general structure of each map
while varying the edge weights and the placement of the special nodes (parking,
loading, and dumping) across different maps. In other words, the edge weights
and special node placements remain constant for each map but differ between
maps.

40

4.3. Framework Evaluation: Analysis on Multiple Maps

Figure 4.4: Map 1

Jobs: loading nodes: 400 ton, dumping nodes: 800 ton
Loading nodes: L8, L15, L17, L32, L72, L97
Dumping nodes: D57, D60, D63
Parking node: P83

Performance Analysis of Map 1: A Detailed Presentation

Our initial map, Map 1, as illustrated in Figure 4.4, serves as the primary
training ground for our agents. Therefore, we will thoroughly explain the
procedure to achieve the best plans and contrast our findings with those of the
two baselines, as discussed in Section 4.1.

In this scenario, Baseline 2, also known as The Lower Bound, provides a
fuel consumption of 483.0 (liter) and a completion time of 4140 seconds.

To establish the performance of Baseline 1, we will evaluate its performance
with different numbers of dumpers as deploying fewer dumpers could yield
better plans.

41

4.3. Framework Evaluation: Analysis on Multiple Maps

Table 4.2 presents the results of Baseline 1 on Map 1, indicating that
employing too few dumpers will result in significant idle time for the loaders.
Conversely, deploying too many dumpers will increase the overall distance
traveled. Therefore, to find the plan with the lowest fuel consumption for
Baseline 1, it is necessary to strike a balance between the fuel consumption from
the distance traveled with the loaders’ idling time. Specifically, 14 dumpers
would offer the plan with minimum fuel consumption for Baseline 1, as seen in
Table 4.2.

Table 4.2: Baseline 1: Map 1

D Score Fuel (L) Time (s) Distance (km) Idling Loader (s)

10 66.1 651.9 12207 333 29150
11 69.4 640.6 9141 337 23604
12 71.6 632.2 7939 339 19496
13 71.7 631.9 7939 342 17898
14 71.9 629.4 7939 343 16408
15 72.2 635.9 7287 350 14933
16 72.6 642.8 6661 357 13589
17 72.8 644.7 6464 360 12252
18 72.7 646.0 6464 363 11202
19 72.6 646.9 6464 366 9984
20 72.7 645.6 6464 367 8874
21 73.2 653.3 5942 374 7779
22 74.0 661.4 5369 380 6815
23 73.7 664.6 5369 384 5858
24 73.5 667.0 5369 387 5188
25 73.3 669.1 5369 390 4350

Measuring the performance done by Baseline 1 on Map 1, given the number of dumpers
(D) available. We calculate Score as described in Section 4.1.

Considering fuel consumption and completion time is essential to ensure an
efficient and sustainable plan. Therefore, we use the scoring system presented
in Section 4.1. Based on the results presented in Table 4.2, the plan with 22
dumpers scores the highest.

Our framework requires training the agents to generate effective plans.
In Map 1, we train the agents from scratch, while pre-trained agents are

used in the remaining maps to achieve better performance in earlier episodes.
To train our agents, we set the exploration vector to (20, 10, 10) (described in
Section 3.5), indicating that we explore more than we rely solely on our policy.
We trained the agents by running 360 episodes, which took slightly longer
than 2 minutes to complete on the laptop [APP20]. After training, we use the
exploration vector (5, 20, 20) and run 510 episodes because the agents can start
discovering optimal plans immediately. This exploration vector indicates that
we rely more on our policy while exploring less frequently. This process took
slightly longer than 3 minutes to complete on the laptop [APP20].

In Map 1, the best plan generated by our framework achieved a score of 75.3,
with a fuel consumption of 617 liters and a completion time of 6575 seconds.
Further details about the results for Map 1 are available in Appendix A.5. Table
A.2 presents metrics for the highest-scoring plans. Furthermore, the schedules

42

4.3. Framework Evaluation: Analysis on Multiple Maps

for both loaders and dumpers in the best plan for Map 1 are provided in Listing
A.1 and A.2, respectively.

On Map 1, our framework found a schedule that consumes 44 liters less than
Baseline 1. This decrease in fuel consumption comes at the cost of an additional
20 minutes of time. However, our scoring system favors this trade-off.

Performance Analysis of All Maps: An Overview and Comparison

We will perform the same analysis on 20 maps with similar structures as we
did with Map 1. All maps will use the pre-trained agents obtained from Map
1 and an exploration vector of (5, 20, 20) to run 510 episodes. We will record
metrics of the best plan and the plan with the minimum fuel for our framework
and the two baselines.

Table 4.3 presents the performance of our framework on 20 maps and compares
it to the two baselines. We focus on the results indicated by b, representing the
best plan on the map.

Our framework achieved an average score of 72.9, compared to Baseline
1’s 69.8, outperforming the baseline in 75% of cases. While the score itself is
challenging to interpret, it indicates that our framework outperforms Baseline 1
on average.

The framework consistently provided plans that consumed less fuel across
all maps analyzed, resulting in an average reduction in fuel consumption of 10%
compared to Baseline 1. However, this reduction came at the cost of a 23%
increase in time.

Two factors contribute to this increase. First, Baseline 1 initially sends
dumpers to all loading nodes, while our framework may not use all loading
nodes after a while in an episode. Second, our framework found deploying an
average of 20.6 dumpers effective, while Baseline 1 deployed on average 2.5
more dumpers.

Thus, this time increase results in lower fuel consumption and fewer dumpers
to complete the jobs. Our scoring system favors this trade-off between fuel
consumption and time. By adjusting the weighting in the scoring system, we
may achieve a smaller increase in time at the cost of reduced fuel savings.

43

4.3. Framework Evaluation: Analysis on Multiple Maps

Table 4.3: Performance on several maps

Map Framework Baseline 1 Baseline 2

D Fuel Time Score D Fuel Time Score Fuel Time

1-a 22 617 6575 75.3 22 661 5369 74.0 483 4170
1-b 22 613 7072 74.8 14 629 7939 71.9 483 4170
2-a 25 425 4230 66.4 21 438 4068 65.6 265 3504
2-b 16 400 6349 64.1 14 423 5403 63.1 265 3504
3-a 17 744 7476 63.2 25 925 6104 55.3 488 3996
3-b 14 719 9130 63.1 14 884 9364 52.7 488 3996
4-a 25 673 6913 61.5 25 721 5770 60.3 423 3873
4-b 25 669 7221 61.3 25 721 5770 60.3 423 3873
5-a 21 474 6117 68.1 25 520 4076 68.7 337 3447
5-b 18 471 6644 67.6 14 494 6603 65.0 337 3447
6-a 21 454 5431 75.6 25 543 4553 68.0 351 3710
6-b 15 450 6629 73.5 20 539 5540 65.5 351 3710
7-a 18 543 5947 84.9 25 610 4392 81.3 492 3681
7-b 14 538 6962 83.7 13 582 6803 78.4 492 3681
8-a 25 538 6090 74.3 23 584 5155 71.8 412 3962
8-b 25 538 6090 74.3 15 571 8680 66.9 412 3962
9-a 25 490 5156 77.4 25 502 4047 79.5 395 3344
9-b 25 490 5156 77.4 21 500 4736 77.3 395 3344
10-a 11 437 7374 66.9 23 534 4374 64.0 308 3899
10-b 11 436 7727 66.6 11 473 7287 62.8 308 3899
11-a 14 650 8699 80.4 21 754 6517 74.0 573 4317
11-b 12 641 10883 79.5 12 719 10028 72.4 573 4317
12-a 25 659 6380 80.7 25 702 5585 78.5 559 4123
12-b 25 659 6380 80.7 20 700 6828 76.0 559 4123
13-a 10 413 8055 71.8 9 447 8342 66.9 316 4284
13-b 10 413 8055 71.8 9 447 8342 66.9 316 4284
14-a 25 450 4927 75.7 25 506 4524 70.0 352 3228
14-b 25 448 5478 74.6 25 506 4524 70.0 352 3228
15-a 14 424 6157 83.3 23 576 4340 69.5 377 3716
15-b 14 424 6157 83.3 10 525 8696 65.9 377 3716
16-a 13 525 8012 60.7 24 593 4477 62.8 333 3989
16-b 13 523 8810 60.0 11 531 8336 59.7 333 3989
17-a 25 719 5881 68.9 22 779 6124 64.1 499 3929
17-b 19 703 6626 68.7 16 777 7892 61.3 499 3929
18-a 25 475 5088 71.7 24 484 3888 74.6 349 3283
18-b 25 470 5739 70.9 20 481 4655 72.2 349 3283
19-a 25 499 4713 65.3 22 505 4320 65.9 320 3284
19-b 15 472 6542 64.3 13 492 6511 62.1 320 3284
20-a 25 584 5437 85.1 25 620 5206 81.7 515 3950
20-b 25 584 5437 85.1 25 620 5206 81.7 515 3950

D represents the number of dumpers, and Equation 4.1 calculates the Score. We
measure Fuel and Time in liters and seconds (respectively). Indicator Map-a provides
the plan with the highest score, while Map-b represents the plan with minimal fuel.

44

CHAPTER 5

Discussion

We have presented a multi-agent reinforcement learning framework for planning
the coordination of dumpers on a road construction site. Our framework
includes agents responsible for route planning, navigation, and decision-making
concerning directing dumpers to a parking spot. We used Q-learning to train
our agents to learn optimal policies. We evaluated our approach through
experiments on various problem instances and compared its performance with
two baselines. Our results demonstrate that our approach produces, on average,
more efficient plans than a rule-based method derived from information on
current construction site planning practices. The information originates from
interviews with foremen, site managers, and the planning department in the
project Data driven road construction sites [SIN20].

In this chapter, we discuss potential shortcomings of the developed framework
and explore ways to overcome them.

Exploring Alternative Agent Architectures and Parameters

We used a zero gamma value for Q-learning in our approach, meaning our agents
only considered the immediate reward in each state rather than the long-term
return. This approach may result in suboptimal plans that are locally greedy
at the expense of global efficiency. To improve this, we could use a positive
gamma and ensure a more concise state transition function for each agent.
Using a positive gamma would allow our agents to learn to balance the trade-off
between local and global rewards by considering the future consequences of their
actions. However, using a positive gamma may also introduce some challenges,
such as dealing with delayed rewards and tuning the gamma value for different
scenarios.

This thesis excludes experiments with different gamma values for two reasons:
inconsistent state transitions and time constraints. The setup with multiple
agents controlling all dumpers causes inconsistency in state transitions. When
an agent performs the same action in a given state, the resulting state transition
can vary significantly. The next state depends not only on the previous state
and the action but also on the actions taken by other agents and the locations
of the dumpers in the environment. This inconsistency violates the Markov
chain property [SB18], which assumes that the next state depends solely on
the current state and action. Violating the Markov chain property can be
problematic because it may lead to suboptimal decision-making, as the agent’s

45

Discussion

understanding of the environment may be incorrect. Consequently, a positive
gamma may not be applicable in our scenario.

Another improvement would be integrating the Coffee Break Agent into the
Loading Agent since it only evaluates its plan. We did not prioritize this due
to time constraints. Integration may improve computational time because we
could rely on one neural network instead of running two networks whenever the
Loading Agent issues a plan. The challenge would be to add more information
to the state of the Loading Agent, but this could have both positive and negative
effects. This information could make the state transition more consistent but
may also add irrelevant details to the loading plans.

In the first draft of our framework, we trained the Node Agents. However,
these agents did not always find the optimal route for a dumper’s next
destination. To address this issue, we utilized a method for solving the all-pairs
shortest path problem to provide the Node Agents with information about the
edge leading to the shortest path. We did not test the ability of Node Agents
to train in situations where the environment changes continuously during an
episode, such as when roads open and close. Implementing this functionality
would likely have required significant additional coding time, so we decided
to defer it for the sake of this thesis. Additionally, since an all-pairs shortest
path algorithm can quickly update changes in the environment for the sizes of
graphs we consider, it was not necessary to implement this functionality into
the environment.

Although hyperparameter optimization is a common task for neural
networks, we found it unnecessary for this thesis. We performed some
manual hyperparameter optimization, but the neural network did not limit the
framework’s performance, so a full systematic optimization was unnecessary.

A Smarter Approach for Plan Comparison

In this thesis, the framework underwent evaluation using Baseline 1 (see Section
4.1), which generated plans based on specified logic. Visual inspection revealed
that the plans generated by Baseline 1 appeared reasonable.

As described in Chapter 1, similar functionality to the presented framework
was developed in the project [SIN20]. However, the frameworks were not directly
comparable due to practical reasons. The software used in SINTEF’s project
relies on proprietary code, which prevented us from running it locally and
feeding in comparable graphs during the project time.

In addition, comparing the framework’s plans to actual road construction
site operations could provide valuable insight into its effectiveness. Moreover,
verifying the framework’s performance on real maps could help us understand
if it works better on such maps than the maps used in our analysis. It would
also be beneficial to test the framework on various map structures to determine
whether it prefers one over another.

If additional time were available, we would have sought an alternative
method for comparison, such as finding a similar framework or conducting
a more comprehensive assessment of its effectiveness against real-world road
construction site operations. This would have allowed us to better understand
the strengths and limitations of our framework in relation to other approaches.

The framework generates plans accompanied by metrics that measure their
success. We base our plan selection on the scoring system discussed in Section

46

Discussion

4.1. Selecting the optimal plan for a construction site could benefit from a
thorough understanding of the priorities and goals of the construction site
management team. By taking these factors into account, the plan selection
process could be more effective in meeting the needs of the project.

Applying Our Framework to Real-World Scenarios

The proposed framework has certain restrictions that may limit its applicability
in real-world scenarios. One such restriction is the availability of only one
parking node. Moreover, for optimal use of the framework, all dumpers must
start on this parking node at the beginning of the planning phase. However, this
restriction may not always be feasible in real-world scenarios where dumpers
may be distributed across multiple locations.

To address this issue, one potential solution would be to map dumpers to
the nearest node on the map during the starting phase. Although additional
coding can quickly address this issue, we did not include it in this thesis.

Additionally, we could have implemented the possibility for dumpers to start
with materials on their vehicle. However, we deemed this feature unnecessary
for the scope of this thesis.

In a real-world scenario, decision-makers responsible for the coordination of
dumpers can use the proposed framework to improve planning. They can
compare the plan provided by the framework with their original plan using
metrics. If the metrics indicate that the framework’s plan is superior, decision-
makers can choose to use it. If not, they can retain their original plan.

One significant advantage of our framework is that it has a negligible training
time and can generate informative plans in just a few minutes. This short
training time means that decision-makers can quickly generate new plans based
on environmental changes without incurring a high computational cost.

If computational power permits, decision-makers should initialize the
framework several times with random initialization of the weights and biases
of the neural networks. This approach introduces randomness and can result
in the framework generating different best plans. Additionally, experimenting
with other hyperparameters, such as parameters in the agents’ reward function,
Q-learning parameters, and neural network architecture, can be beneficial.

Running multiple instances of the framework with different hyperparameters
and introducing randomness is similar to starting with a new solution in a
combinatorial optimization algorithm. For instance, in greedy search, when it
has exhausted all possible improvements, it generates a new random solution
and starts over. Ultimately, the algorithm selects the best solution from all
its visited solutions. Similarly, by running multiple instances of the framework
with different hyperparameters and introducing randomness, decision-makers
can generate a range of plans and select the best one based on their evaluation
criteria.

47

PART II

Fuel Model

48

CHAPTER 6

Towards more advanced route
planning

Developing a fuel model is crucial to improve the accuracy of evaluating plans
generated by the reinforcement learning framework. Currently, the framework
estimates fuel consumption based on pre-defined fuel consumption averages.
This approach does not account for variations in fuel consumption due to
factors such as vehicle load, terrain, and driving behavior, leading to inaccurate
estimates and suboptimal planning. Instead, a more precise approach would
be to create individualized fuel models for each dumper that can be updated
in real-time as the vehicle collects more data while driving. These fuel models
could provide a more accurate estimate of fuel consumption based on the specific
characteristics of each dumper and its operating conditions.

Most currently used models are based on outdated and long-term aggregated
data [Str01]. To circumvent this, we use a small sample of high-resolution fuel
data combined with GPS data to create a data-driven model with the XGBoost
framework [CG16].

XGBoost is a powerful machine learning algorithm that combines multiple
decision trees [Qui86] to improve predictive accuracy. By leveraging the
strengths of decision trees, XGBoost can achieve high performance on a wide
range of tasks. One advantage of XGBoost over neural networks is its faster
training time, making it a more efficient choice for certain applications. As
decision trees serve as the building blocks of the XGBoost algorithm, we include
a brief overview of their functionality in Appendix B.1.

We selected the XGBoost framework for its excellent performance on
tabular data. [SA21] systematically compares various models’ performance
and computational efficiency when applied to tabular data. They found that
XGBoost generally outperforms deep learning models in terms of performance
and requires less tuning, which is practical for real-world applications. In terms
of overall performance, the best results were achieved using an ensemble of
deep-learning models and XGBoost. However, due to the limited data sample
size, we decided to apply XGBoost alone.

49

CHAPTER 7

Theory

7.1 A Brief Overview of How to Evaluate Machine Learning
Models

Train, test, validation

When training and evaluating a machine learning model, splitting the data
into three sets: training, validation, and test [XG18] is common practice. The
training set trains the model, while the validation set tunes its hyperparameters
and selects its structure. Model selection involves finding the model that gives
the lowest validation error. After identifying the best model, we apply it to the
unseen test set to estimate its predictive performance. It is important to note
that the test set estimates the model’s performance but does not guarantee its
performance on real-world data, which may come from a different distribution.

Cross-validation

K-fold cross-validation is a popular method for evaluating the performance of
a machine learning model [Koh95]. The basic idea is to divide the data into
K mutually exclusive subsets of approximately equal size. The model is then
trained and evaluated K times, with each fold serving as the test set once and
the remaining K-1 folds as the training set. This method evaluates the model
across multiple data sets and helps determine how well the input data describes
the target variable. Additionally, k-fold cross-validation can provide valuable
insights into the data by revealing consistent trends and relationships across
multiple data sets. Moreover, it can help identify potential issues or biases
affecting the model’s accuracy.

7.2 Understanding Model Interpretability: Exploring SHAP
and SAGE Values

SHAP [LL17] and SAGE [CLL20] are two methods to interpret machine learning
models and are based on the Shapley values from game theory [Sha53]. Ian
Covert, the author of the papers on SHAP and SAGE, overviews the concepts
here [Cov20]. This thesis will calculate these values using the PyPI packages
shap [Lun] and sage-importance [Cov].

50

7.2. Understanding Model Interpretability: Exploring SHAP and SAGE Values

SHAP is a framework that explains how each feature contributes to a model’s
prediction for a single sample, allowing for local interpretation. SHAP values
can be used for this purpose regardless of how well the model describes the
data. SAGE values represent how much a model depends on each feature over
the whole data set, allowing for a global interpretation.

Shapley values

Shapley values provide a fair method for distributing rewards among players in
a cooperative game. Let us say we have a set of players C = {1, 2, ..., c} and a
profitability function:

π : P(C)→ R (7.1)

that calculates the total reward using only a subset of players S ⊆ C. Here
P(C) represents the power set of C, containing all 2c possible subsets of C.

In order to distribute rewards fairly among the players, we must establish
certain properties. Let us denote the reward for each player 1, 2, ..., c as
ϕ1(π), ϕ2(π), ..., ϕc(π), then the properties are as follows:

1. (efficiency)
∑c

i=1 ϕi(π) = π(C)− π(∅). We should distribute all rewards
generated by the players.

2. (symmetry) For i, j ∈ C, if π(S ∪ {i}) = π(S ∪ {j}) ∀ S ⊆ C, then
ϕi(π) = ϕj(π). If two employees perform identically, they should receive
the same reward.

3. (dummy) For i ∈ C, if π(S ∪ {i}) = π(S) ∀ S ⊆ C, then ϕi(π) = 0.
A player should receive a reward of 0 if it does not contribute to any
profitability increase.

4. (linearity) If π = a1π1+a2π2+...+akπk, then ϕi(π) = a1ϕi(π1)+a2ϕi(π2)+
... + akϕi(πk). If the profitability function is a linear combination of sub-
functions, the player’s reward is also a combination of rewards from each
sub-function.

The Shapley values are the unique way to satisfy all these properties. The
method for distributing rewards is given by:

ϕi(π) = 1
c

∑
S⊆C\{i}

(
c− 1
|S|

)−1
[π(S ∪ {i})− π(S)] for i = 1, 2, ..., c (7.2)

where |S| is the number of players in the subset S.

51

7.2. Understanding Model Interpretability: Exploring SHAP and SAGE Values

SHAP (SHapley Additive exPlanations)

We use the SHAP method to explain the predictions made by a model f for a
given set of input features x = (x1, x2, ..., xn). This method assigns a value ϕi

to each feature xi, where i = 1, 2, ..., n. The value ϕi represents the contribution
of feature i in deviating the prediction from the average prediction EX [f(X)].

We introduce the cooperative game for making a prediction, where the input
features x act as the players. We define the profitability function for a subset
of features S as:

πSHAP
f,x (S) = EXS̄

[f(X) | XS = xS] (7.3)

where xS is the known features and the remaining subset of features, denoted
by S̄, will be stochastic variables.

We can now apply the profitability function, Equation 7.3, to Equation 7.2 to
determine the importance of each feature in making the prediction.

SAGE (Shapley Additive Global importancE)

To explain how much a model f relies on each feature over the entire data set,
we use the SAGE values.

We introduce a cooperative game for making accurate predictions, where
the input features x act as players. We define the profitability function for a
subset of features S as:

πSAGE
f (S) = −EXY [L(EXS̄

[f(X) | XS], Y)] (7.4)

where X represents the entire input data set with the corresponding target
labels Y . XS is the known features in the inner expectation, while the remaining
subset of features, denoted by S̄, will be stochastic variables. L is a loss function
describing the closeness of the model to the data, and the negative sign indicates
that decreasing the loss increases profitability.

We can now apply the profitability function, Equation 7.4, to Equation 7.2 to
determine the global importance of each feature in making predictions for the
model.

52

CHAPTER 8

Data

The analyzed data comprises 12 working days of a single dumper [Vol]. Ditio
collects the GPS data. At the same time, Volvo extracts fuel data directly from
the CAN BUS on the dumper control system using an Aplicom unit.

Before using the data, we must preprocess the data (Section 8.2), including
identifying and removing erroneous observations due to issues with the data
logging unit. Additionally, resampling the data points is necessary to efficiently
merge the two data sources (Section 8.3).

Finally, we partition the data and create summary statistics (Section 8.4)
to train and evaluate the fuel prediction model.

8.1 Exploring the GPS and Fuel Data

GPS Data

We can utilize GPS data as a source of information to predict fuel consumption
for a given route. The logging frequency of GPS data depends on the movement
and activity of the vehicle. Typically, the logging frequency while driving is
around two seconds. However, when the dumper is stationary, there will be
longer gaps in the data logging. We consider the following features of the GPS
data:

1. Altitude [meters]: height above sea level

2. Timestamp [date and time]: the time of the recorded data point.

3. x, y [meters]: coordinates, according to a given centering on the
construction site, representing the dumper’s location (placement of center
is irrelevant). We use them to calculate distances between time points.

4. Type [number] : 0: Waiting to obtain mass, 1: Driving with mass, 2:
Driving without mass

5. Quantity [ton]: the amount of mass on the vehicle. The quantity is 0
when the Type is not 1.

6. Course [degrees]: the angle at which the dumper is facing.

53

8.2. Data Selection and Cleaning

7. HorizontalAccuracy, VerticalAccuracy [meters]: a measure of the
uncertainty of the measurement in the horizontal and vertical directions
(respectively).

8. load_x, load_y, dump_x, dump_y [meters]: coordinates, according
to a given centering on the site, indicating where the dumper loads and
dumps the mass (placement of center needs to be the same as for the
features x and y).

Fuel Data

The fuel data represent the fuel consumption rate at a specific time point.
Typically, the logging frequency for the fuel data is around 5 seconds, although
there may be some deviations. The fuel data contains the following noteworthy
features:

1. longitude, latitude [degrees] two out of three values of the geographic
coordinate system. We use these coordinates to determine the position
of the dumpers, and they need to correspond to the GPS data to be
trustable.

2. unitId [number]: the fuel tracker ID connected to the vehicle.

3. data_Time [date and time]: the time of the recorded data point.

4. data_Fuel [Liter/ hour]: the fuel consumption rate, measured in liters
per hour.

8.2 Data Selection and Cleaning

The data set presents several complications, including time gaps, inaccurate
fuel consumption measurements, and significant variations in altitude. During
the filtering process, any data points that exhibit these issues in either the GPS
or fuel data are marked as untrustworthy based on the analysis described below.
As described in Section 8.4, we will partition the data into 30-second intervals
to create summary statistics. For this reason, having frequent consecutive
observations is important due to the short time range.

Time gaps

Time gaps occur in both data sets, and including them in the final merged data
set would result in poor interpolation points. As described in Section 8.3, we
will interpolate data points to achieve a second-by-second frequency of our data.

Time gaps are particularly problematic for the fuel data since, with the 30-
second route statistics, we only use about six logged fuel values and interpolate
the rest. Fewer values will lead to high uncertainty in the values. For the GPS
data, a longer time gap would have some impact, but the effect of each missing
point is limited since we measure continuous quantities without abrupt changes.

We should deem data with significant time gaps untrustworthy and retain
data with time gaps below a certain threshold as trustworthy. An optimal

54

8.2. Data Selection and Cleaning

threshold for time gaps is five seconds based on the typical intervals observed.
However, we implemented a limit of 10 seconds to preserve data as much as
possible.

Poor measurements of fuel data

Poor measurements in the fuel data can manifest signatures in several ways.
One is when the same fuel rate repeats several times. It is unrealistic for the fuel
rate to remain constant over several consecutive time points, as various factors,
such as the driver, terrain, or sensor noise, can affect the rate. When filtering
the data, we will exclude data points with three or more similar consecutive
fuel rate values and split the routes accordingly. Table B.1 in Appendix B.2
shows an example of such data points, where we marked the fuel data as failed.

The other problem is that the fuel rate can be 0 between non-zero (and
possibly high) fuel rates, which is illogical. A fuel rate of 0 should refer to a
turned-off dumper, so we cannot trust such values. Table B.2 in Appendix
B.2 shows the problem. Even values lower than 2 L/h are not reliable when
the dumper is driving since the fuel rate is around 2.3 - 3 when the dumper is
standing still (shown in Table B.3, Appendix B.2).

One solution is to have a linear interpolation between the observation before
and after a fuel rate observation below the threshold of 2, but this will again
reduce the actual fuel rate usage in the statistics of a route. We will allow
such linear interpolation if the interval is within our time gap threshold of 10
seconds. An alternative approach would be to consistently partition the data
and eliminate any instances where the fuel rate falls below a threshold of 2.
However, this method may result in a higher loss of data.

A final issue to consider is the occurrence of two consecutive fuel rate values
below a threshold of 2. In such instances, we find it appropriate to exclude
those data points and partition the data.

Large variation in altitude

The GPS data includes a feature that indicates the accuracy of the measurements
in both the vertical and horizontal directions. Since we base our model on a
fixed time interval, altitude is one of the most essential features. Moreover,
significant oscillations in altitude would drastically affect the prediction. So,
whenever we get an VerticalAccuracy above the threshold of 12 (in the data set,
higher VerticalAccuracy results in noisy altitude), then we will mark those data
points as untrustable. Table B.4 in Appendix B.2 illustrates such an example.

Figure 8.1 illustrates the fluctuation of the altitude over distance based on
Table B.4. The figure also suggests how the altitude may appear with more
accurate data collection. We considered smoothing the altitude but ultimately
decided to exclude these instances.

55

8.3. Merging Data

Figure 8.1: Altitude fluctuation over distance using data from Table B.4.

8.3 Merging Data

After filtering the data, we must merge the GPS and fuel data sets. To
accomplish this, we convert both data sets into second-by-second frequency.
This conversion results in a consistent time for all observations and makes the
data easier to use. For categorical features, we will use the last known value and
assign it to the subsequent time points until the next observed value occurs. We
use linear interpolation to estimate missing values between existing observations
for features varying over time.

8.4 Statistics of a Route

We will use the merged data set to create a predictive model. However, analyzing
individual data points alone provides no insight. To extract more meaningful
information, we will conduct statistics to summarize routes by calculating
metrics such as distance and altitude changes. This approach will enable us to
identify crucial patterns and trends for accurately predicting fuel values.

Our first challenge is determining the time interval size for performing the
statistics. It could be dynamic, where the time intervals vary, or static, with
a constant time interval for every route. Using dynamic time intervals would
require more data, as the statistics could become too unique and difficult to
generalize. On the other hand, using static time intervals avoids these problems
but requires adapting the model’s usage to work with varying time intervals.

For a static time approach, choosing the appropriate time interval size
requires considering two main effects. Firstly, if the intervals are too small, we
may need more logged fuel data points to base our statistics. Moreover, delays or
noise in individual time points may result in less reliable statistics. Conversely,
if the intervals are too large, detailed information in the data could be lost, as

56

8.4. Statistics of a Route

some statistics calculate average values. Furthermore, larger intervals require
more data points, which may reduce the total amount of reliable statistics.

After careful consideration, we determined that 30-second routes provide
the minimum duration necessary to generate meaningful statistics. The routes
will then contain six logged fuel rate values when the logging unit is operating
normally.

We considered sampling the statistics from overlapping tracks but ultimately
opted against it due to the risk of producing inaccurate, low-error estimates.
Additionally, using multiple samples that contain a significant amount of noise
could compromise our model’s performance. Hence, we chose to exclusively use
uniquely determined statistics to ensure the most reliable results.

Statistics

In the below statistics, we calculated changes as the increase/decrease between
two consecutive data points. We summarized each route with the following
statistics:

1. LengthDistance [meters (m)]: distance of the route.

2. AltitudeGain [m]: sum of all positive changes in the altitude .

3. AltitudeLoss [m]: sum of all the negative changes in the altitude.

4. AltitudeDeltaEndStart [m]: the difference in altitude from the start
to the end of the route.

5. AltitudeDeltaMaxMin [m]: the difference between the max and min
altitude recorded.

6. AltitudeChange [m]: AltitudeGain + | AltitudeLoss |

7. SpeedMean [m/s]: the average speed through the route. We calculated
the mean speed as LengthDistance/30.

8. Quantity [ton]: the amount of mass on the vehicle for transportation.

9. UpInclination [num]: sum of all positive incline changes. We calculated
the incline as ∆Altitude/∆Distance between all consecutive data points.

10. DownInclination [num]: sum of all negative incline changes. We
calculated the incline as ∆Altitude/∆Distance between all consecutive
data points.

11. AccTime [s]: the amount of seconds used for positive acceleration. Every
second, where the increase is more than 1m/s.

12. Fuel [L]: the fuel consumption of the route in liter.

57

8.5. The Final Data Set

8.5 The Final Data Set

After completing our filtering and merging process, we generated a set of 30-
second statistics (as shown in Section 8.4) for each day by randomly sampling
non-overlapping routes. Table 8.1 shows the number of statistics achieved
through sampling. We will use these statistics to train our fuel model.

Date number of statistics
2021-09-28 53
2021-09-29 18
2021-10-13 33
2021-10-14 37
2021-10-15 18
2021-10-18 11
2021-10-19 56
2021-10-20 25
2021-10-21 23
2021-11-03 1
2021-11-04 0
2021-11-15 2

Table 8.1: Daily statistics overview, more details in Appendix B.3.

As shown in Table 8.1, there is limited data passing our filtering criteria for
days after and including 2021-11-03. Therefore, we will exclude those days from
our analysis, as they may contain more noise than informative samples.

We will exclude the data from 2021-10-21 from our feature selection and
use it to evaluate the final model. We will use cross-validation to evaluate the
model using different features, as it is appropriate for our small data set. We
split the data into folds for cross-validation, so each day is a fold. This approach
will allow us to detect potentially unusual or atypical samples.

Using folds of different sizes for cross-validation when partitioning the data
by date may introduce potential issues. A primary concern is the possibility of
bias, as the model’s performance can vary significantly on specific subsets of the
data due to an over or under-representation of statistics in the training or test
sets. However, despite this potential issue, we will proceed with this approach.

8.6 Investigation of New Features

Integrating additional features such as weather and road vibration into the data
set and model could provide valuable insights, particularly regarding the impact
of different road friction scenarios.

To ensure the model performs well under varying weather conditions,
gathering data from several days with diverse weather patterns would be
necessary. However, if we lack sufficient data on different weather situations,
including weather as a feature may result in a less effective model.

Moreover, road vibration could serve as a significant feature of the model,
as it differentiates between driving on a paved versus a dirt road.

58

CHAPTER 9

Method

9.1 Predictive Model for Fuel Consumption on a Route

The proposed approach for predicting fuel consumption for dumpers involves
partitioning the route into 30-second intervals, as explained in Section 8.4. The
statistical properties of each partition are calculated and used as inputs to a
trained predictive model, which generates a fuel consumption prediction for
each partition. The final estimated fuel consumption for the complete route is
obtained by summing up all the predictions.

If the route length is not evenly divisible by 30 seconds, we handle the
remaining portion like a regular 30-second partition. We then linearly scale the
resulting prediction according to the length of the remainder.

This approach assumes that the statistical properties of the partition can
sufficiently explain fuel consumption patterns within each 30-second partition.
We must validate this assumption through further research to improve the
predictions’ accuracy.

As described in Section 8.5, we use the data from 2021-10-21 as the final
test set. The final test set is first introduced in Table 9.6 to evaluate the last
models.

9.2 Fine-tuning Models: Hyperparameter Tuning

Given a set of features, we divide the samples into training, testing, and
validation sets (see Section 7.1). First, we exclude a test set containing data
from a specific date, as explained in Section 8.5. Then, we split the remaining
samples into a training and validation set using an 80-20 split.

We use the Hyperopt [BYC13] Python library to set the hyperparameters.
Our goal is to select hyperparameters that generalize well to unseen data and
achieve good performance on the test data by minimizing the validation error.

9.3 Feature Investigation for Improved Model Performance

To determine the most and least important features for predicting fuel
consumption, we use SAGE values (see Section 7.2). Specifically, we will use
the weighted SAGE values, where the weights are determined by the size of the
data set being evaluated, over all the models developed by the cross-validation
(Section 7.1).

59

9.3. Feature Investigation for Improved Model Performance

By iteratively excluding the worst-performing feature, we can identify the
best features and stop once the prediction error on the validation and test set
significantly decreases. This process, known as feature selection, is commonly
used in machine learning to improve model performance and simplify the model
through fewer features.

Correlation matrix

First, we look at the correlation matrix of the data included in the data set.

Figure 9.1: Correlation matrix (spearman) for features and the target in the
data set.

The correlation matrix shown in Figure 9.1 provides insights into the direct
relationship between the studied features. It is important to note that all
samples/routes have the same duration, which implies that distance and mean
speed are 100% correlated. Interestingly, distance does not correlate with
fuel consumption in any significant way. This observation suggests that using
distance as the only feature in the model would not be optimal, but combining
it with other features may be more insightful.

The most correlated features with fuel are those related to altitude changes,
particularly altitude gain, which makes sense.

Although many features are similar, some are inherently correlated due to
their construction. Still, including them all in the feature selection process is
necessary because the model may prefer one feature to another. However, we

60

9.3. Feature Investigation for Improved Model Performance

will exclude distance from the process due to its 100% correlation with the
mean speed of the route.

Feature selection

After conducting cross-validation and evaluating the importance of each feature
to the model based on SAGE values (and also the in-built feature importance
evaluation within XGBoost), we obtained the ranking of the different features
shown in Table 9.1. We base the ranking on the weighted average of the SAGE
values and feature importance from the cross-validation.

VAL FEAT IMPORTANCE (FEATURE)
0 0 AltitudeDeltaEndStart
1 1 AltitudeGain
2 2 AccTime
3 6 UpInclination
4 7 AltitudeChange
5 3 AltitudeDeltaMaxMin
6 5 Quantity
7 8 AltitudeLoss
8 4 SpeedMean
9 9 DownInclination

Table 9.1: Ranking of features in the first iteration of selection.

Table 9.2 shows the mean squared error for the train, test, and validation sets.

Date Test Val Train
2021-09-28 0.00661 0.00531 0.00003
2021-09-29 0.00886 0.00566 0.00081
2021-10-13 0.00538 0.00800 0.00092
2021-10-14 0.00397 0.00481 0.00140
2021-10-15 0.00720 0.00465 0.00159
2021-10-18 0.00807 0.00648 0.00122
2021-10-19 0.01020 0.00481 0.00051
2021-10-20 0.00449 0.00305 0.00150

Table 9.2: Mean squared error for training, testing, and validation sets. The
test data is from a date and refers to the cross-validation folds in this context.

By analyzing the errors for all folds in the cross-validation, as shown in Table
9.2, it reveals that two test folds (dates 2021-10-13 and 2021-10-14) exhibits
a lower error than the validation data used for hyperparameter optimization.
This lower error could potentially happen because the fold had well-recorded
samples. These samples may better conform to the underlying distribution of
the data, making them easier to predict.

We used an early stopping criterion. However, it is important to note that
the model appears to overfit for the dates 2021-09-28 and 2021-10-19. This is
evident from the low training error and high testing error.

A detailed examination of individual predictions, presented in Table 9.3,
reveals that some predictions appear reasonable based on their statistics
but deviate significantly from the corresponding logged actual values. This

61

9.3. Feature Investigation for Improved Model Performance

observation suggests that inaccurate measurements may contribute to a
significant portion of the error variation. In addition, the number of samples
included in each fold may also affect errors.

As seen in Figure 9.2, a visual representation of the predictions versus actual
values highlights the model’s performance on the best and worst days.

(a) test set: 2021-10-14 (b) test set: 2021-10-18

Figure 9.2: Prediction vs actual value, sorted by the actual target value

The results of our prediction model on the data from 2021-10-14 show a
high degree of fit, as demonstrated in Figure 9.2a. While there are minor
deviations from the target values, overall, the model accurately captures the
data’s dynamics. However, when we analyze the samples from 2021-10-18,
depicted in Figure 9.2b, we can see that they exhibit a trend, but many of the
samples are poorly predicted. This observation suggests there may be errors or
inaccuracies in the data, or the model may not be sufficiently robust to predict
the samples accurately. Upon further examination of the complete data set, we
can see that many of the samples that were predicted poorly actually make
logical sense in the context of other samples. Let us investigate one of the worst
predictions within the data of 2021-10-18.

No Date Fuel Distance AltitudeDeltaEndStart Prediction
Bad prediction

113 2021-10-18 07:17:21 0.22 178 6.0 0.42
Similar to target fuel

109 2021-10-13 17:00:20 0.21 198 -3.4 -
110 2021-10-19 17:21:55 0.21 130 -0.5 -
111 2021-10-19 18:02:20 0.22 110 2.5 -
112 2021-09-28 11:49:31 0.22 60 4.3 -
114 2021-09-29 06:20:40 0.22 139 -0.7 -
115 2021-10-18 12:32:53 0.22 59 2.0 -
116 2021-10-19 18:44:41 0.23 126 -3.8 -
117 2021-10-13 09:52:12 0.23 111 2.4 -

Similar to predicted fuel
220 2021-10-19 14:55:12 0.42 80 5.4 -
221 2021-09-28 14:31:24 0.42 107 3.7 -
222 2021-10-14 14:57:26 0.42 115 4.6 -
223 2021-10-20 13:33:07 0.42 111 11.0 -

Table 9.3: Shows our prediction vs. similar samples. A part from Table B.5 in
Appendix B.3

The data in Table 9.3 suggests that the target fuel value may be influenced by
measurement errors or noise. This is evidenced by the poorly predicted sample
being more similar to samples with fuel consumption of 0.42 rather than 0.22.

62

9.3. Feature Investigation for Improved Model Performance

This observation suggests there may be errors in the logging unit on the dumper
or elsewhere in the process. Further analysis and investigation are needed to
ensure accurate measurement of fuel consumption.

Repeated feature selection

We can perform iterative feature selection to identify and select the most
important features in our data set using the SAGE values for the validation data.
In the first iteration, the least important feature overall was the DownInclination
feature (as seen in Table 9.1). After repeating this process, we achieve Table 9.4.
This table presents the weighted mean squared error of the validation data over
all days given a set of features. The weighted mean squared error gives equal
importance to all samples, regardless of the amount of data in each evaluation.
We determine the weighting by comparing the number of samples for a specific
day to the total number of samples across all days in the cross-validation.

Model MSE excluded feature (including those above)
model0 0.00528 -
model1 0.00522 DownInclination
model2 0.00517 SpeedMean
model3 0.00544 AltitudeLoss
model4 0.00559 AltitudeDeltaMaxMin
model5 0.00620 Quantity

Table 9.4: The models weighted error on validation data over all days.

Table 9.4 shows that the model error decreases in the beginning when we exclude
features, reaching its minimum value at model2. However, the SpeedMean had
high importance in the in-built feature importance in XGBoost, as shown in
Table 9.1. To further check for improvement, we started with the features in
model1 and excluded the next worst-performing feature instead of SpeedMean.
The resulting models’ performances are listed in Table 9.5.

Model MSE excluded feature (including those above)
model0 0.00528 -
model1 0.00522 DownInclination
model6 0.00527 AltitudeLoss
model7 0.00539 AltitudeDeltaMaxMin
model8 0.00523 AltitudeChange

Table 9.5: The models weighted error on validation data over all days.

We can see that there is no better MSE in our second attempt to find a better
combination of features, and the final model will then be based on model2
with the following features: AltitudeDeltaEndStart, AltitudeGain, AccTime,
UpInclination, AltitudeChange, AltitudeDeltaMaxMin, Quantity, AltitudeLoss.

Since each model in this table corresponds to a group of models, we will
determine the overall best model by applying all the models to a completely

63

9.3. Feature Investigation for Improved Model Performance

unseen final test data set from 2021-10-21 and selecting the model that performs
best on that data (Table 9.6).

Although model averaging, which combines predictions from multiple models,
is generally considered more accurate and robust, we will not use it in this case.

Test set MSE of data 2021-10-21
2021-09-28 0.00513
2021-09-29 0.00396
2021-10-13 0.00623
2021-10-14 0.00515
2021-10-15 0.00375
2021-10-18 0.00519
2021-10-19 0.00502
2021-10-20 0.00527

Table 9.6: Results of the final test data set on the models developed with the
final features

64

CHAPTER 10

Results and Discussion

Based on the analysis in Chapter 9, we developed the final model with the fol-
lowing features: AltitudeDeltaEndStart, AltitudeGain, AccTime, UpInclination,
AltitudeChange, AltitudeDeltaMaxMin, Quantity, AltitudeLoss.

10.1 Measuring Model Performance

Figure 10.1: Prediction for unseen data from 2021-10-21, sorted by actual target
value.

Figure 10.1 shows the final model’s prediction on the unseen data. The predic-
tions align well with the target values in this final unseen test data, indicating
that the model is a good predictor of fuel consumption for routes lasting 30
seconds.

65

10.2. Analyzing Model Predictions

10.2 Analyzing Model Predictions

We can examine the SHAP values (see Section 7.2) for specific samples to
understand how the model arrives at its predictions. Analyzing the SHAP
values will give us insight into the specific features and how they contribute to
the model’s predictions. Figure 10.2 displays the SHAP values for two samples
taken on 2021-10-21. To provide additional context, the feature values for these
samples are presented in Table 10.1.

(a) lowest fuel target (target: 0.093, prediction: 0.152)

(b) highest fuel target (target: 0.625, prediction: 0.460)

Figure 10.2: SHAP values for two samples from 2021-10-21 with final model

feature lowest prediction sample highest prediction sample
AltitudeDeltaEndStart -5.3 10.5
AltitudeGain 0.0 10.5
Quantity 0 0
AccTime 18 14
AltitudeLoss -5.3 0.0
AltitudeChange 5.3 10.5
AltitudeDeltaMaxMin 5.3 10.5
UpInclination 0.0 0.174

Table 10.1: The statistics of the samples in Figure 10.2

66

10.3. Final Considerations: Key Takeaways and Insights

According to the results presented in Figure 10.2, the feature AltitudeDeltaEnd-
Start has the greatest impact on the prediction’s deviation from the average
predicted value. This finding is consistent with our prior expectations, as
variations in altitude are likely to affect fuel consumption significantly.

On the other hand, both AltitudeDeltaMaxMin and UpInclination have
relatively small effects on the predictions.

It is worth noting that, in both examples in Table 10.1, the Quantity is
0, indicating no mass on the dumper. This indicates no mass on the dumper,
contributing to a lower prediction than the average prediction.

10.3 Final Considerations: Key Takeaways and Insights

Figure 10.1 shows that the highest target value from 2021-10-21 was 0.625,
while the prediction was 0.460. This deviation may be due to the limited data
available at the extremes of the target distribution. As shown in Figure 10.3, the
distribution of fuel consumption and the most important feature over the entire
data set may not capture the full range of possible values. Further analysis and
potentially increased data coverage in these areas may be necessary to improve
the model’s ability to accurately predict values at the extremes.

Figure 10.3: feature distribution in all the data

Increasing the amount of data available for analysis is necessary to improve the
model further. In our current study, we used 274 statistics collected over 9 days
(Table 8.1). This sums up to 137 minutes, or just over 2 hours, of data. This
indicates that we only had an average of 15 minutes of usable data per day.

Upon examining the raw data, as described in Section 8.2, we identified
several instances of noisy or poorly reported values from the logging unit on
the dumper. Investigating this issue is important to increase the amount of
usable data for each day. In addition, we can apply more stringent criteria to
the data filtering process, ensuring we only train the model with high-quality
data. Currently, we applied relatively lenient criteria in some cases.

67

PART III

Summary and Conclusions

68

Summary and Conclusions

This thesis explores ways to increase the efficiency of road construction sites.
One of the key research questions we investigated was whether reinforcement
learning can be effectively applied to the scheduling problem on construction
sites. To address this question, we developed a reinforcement learning framework
to optimize the coordination between dumpers and loaders, minimizing their
time idling, driven distance, and overall time spent on tasks. Our results
demonstrate that reinforcement learning can indeed provide a powerful tool for
improving efficiency on road construction sites. In addition, we created a fuel
model to predict the fuel consumption by dumpers based on their routes within
the construction site. In summary, our work presents an approach to reducing
fuel consumption and increasing efficiency using reinforcement learning and a
fuel predictive model.

Reinforcement Learning Framework

Our reinforcement learning framework enables intelligent scheduling of dumpers
to improve coordination and efficiency on road construction sites. The framework
comprises several agents, each with its responsibilities. When a dumper needs
to make a new move, such as driving to a new loading or dumping location
or navigating to the next road within the construction site, an agent is called
upon to assist.

The Loading Agent provides the dumper with a loading plan, directing
it to drive to a specific loading location and load mass with the help of a
loader. Before executing the loading plan, the Coffee Break Agent evaluates
its reasonability. If approved, the dumper navigates to the loading location. If
rejected, the dumper must wait for another dumper in the system to receive its
plan before trying again.

The Dumping Agent(s) operates similarly to the Loading Agent but directs
the dumper to a dumping location where it can unload its mass. There are
multiple Dumping Agents, each responsible for a specific type of mass.

Regardless of the plan, the dumpers deliver it to the Node Agents along
the route to the destination. These agents are located on all nodes within the
graph and will guide the dumper along the shortest path to its destination by
directing it to the next road.

In reinforcement learning, agents learn through a reward signal that guides
their decision-making. As agents operate within their environment, they
receive rewards for making good decisions and smaller rewards for less optimal
choices. In our case, we may only know the efficiency of an agent’s action after
other agents complete their actions, which delays the rewards. The rewards
calculation varies between our agents, but all share the same goal: to reduce
the distance driven by dumpers, minimize idling, and increase overall efficiency.
Over time, as our agents receive more rewards and learn from their experiences,
they become better at making smart decisions.

Our framework will rarely converge to a single solution, which allows for the
generation of multiple plans for the user to choose from. Each plan provides
metrics that describe its overall efficiency, including the total completion time,
distance driven by dumpers, fuel consumption, idling time for loaders and
dumpers, and the cost of executing the plan. By providing multiple plans with

69

Summary and Conclusions

different trade-offs between these metrics, our framework allows users to select
the plan that best meets their needs and preferences.

It is important to note that these metrics only consider variable costs,
which optimization can reduce. Fixed costs, such as the fuel consumption of
an operating loader or the salary of a loader operator when loading, are not
included in the calculations as they must always be covered regardless of the
plan chosen.

We first evaluated our framework in two scenarios with easily interpretable
solutions to verify its abilities. Our framework found the best solution in both
cases, demonstrating that our agents’ responsibilities worked as expected.

We then analyzed 20 more advanced maps and compared our framework to
two baselines: Baseline 1, the logical approach, and Baseline 2, the absolute
minimum. Our framework outperformed Baseline 1 in 75% of cases, consistently
providing plans with lower fuel consumption and an average reduction of 10%
compared to Baseline 1. However, this came at the cost of a 23% increase
in time due to our framework’s deployment of fewer dumpers, among other
factors. Our scoring system, used for selecting the best plan, favors this trade-off
between fuel consumption and time.

One research question we investigated was how a reinforcement learning
framework handles dynamic changes in the construction site environment. Our
analysis suggests that our framework is well-equipped to adapt to such changes.
It took only a few minutes to simulate 510 episodes and find effective plans
for each of the 20 maps analyzed. These maps had similar structures and
could represent dynamic changes in the environment. Furthermore, when the
maps have the same number of loading and dumping nodes as those used in
training, we can employ trained agents to search for good plans from the first
simulation. Given its ability to quickly adapt to new conditions, our framework
shows promise for handling dynamic changes in real-world construction site
environments.

In real-world applications, decision-makers coordinating dumpers can use our
framework to improve planning. They can compare the framework’s plan with
their original plan using metrics and choose the superior one. If computation
power permits, users should run multiple instances of the framework with
randomized agent initialization and varied hyperparameters to generate a range
of plans. Ultimately, users can select the best plan based on their evaluation
criteria.

70

Summary and Conclusions

Fuel Model

This thesis introduces a fuel consumption model that aims to enhance the
accuracy of fuel consumption estimates during route planning. Ideally, each
dumper should have a unique fuel model based on its specific data. As the
dumper operates and collects more data, the model can be retrained to provide
even more precise estimates. This fuel model can help further optimize the
reinforcement learning framework by accurately predicting the fuel consumption
of its plans.

The data sets used in this study comprised fuel and GPS data collected from a
single dumper over several days. The data points were recorded at varying step
lengths, introducing several issues when merging the two data sets.

Individual data points alone are insufficient to gain meaningful insights
from the data. Thus, we decided to apply statistics to summarize routes by
calculating metrics describing the route. Each route includes several data
points, allowing us to calculate metrics such as distance and altitude changes.
This approach enabled us to identify critical patterns and trends for accurately
predicting fuel consumption.

To generate reliable statistical samples for summarizing routes using data
points, we needed a sufficient number of consecutive and accurately recorded
data points in our data set. For instance, relying solely on a route’s first and
last measurements would not provide a sufficient sample. As a result, data
cleaning was necessary to ensure the accuracy and reliability of our samples.

During our data cleaning process, we excluded poorly measured fuel rates to
ensure the accuracy of the fuel consumption of our samples. We also excluded
consecutive data points with unrealistically large variations in altitude. When
selecting the final routes, we ensured they contained minimal time gaps, resulting
in more data points to rely on for our summary of the route.

Ultimately, we chose to summarize the routes in 30-second time intervals and
make our model predict fuel consumption for routes of that duration. The model
partitions the data into 30-second summaries for longer routes and predicts a
fuel value for each partition. We then sum the predicted fuel values for each
partition to make the final prediction for the entire route.

For our fuel consumption model, we found that the most important features
were altitude-related, given our fixed time length of 30 seconds. Interestingly,
the distance driven was not included as one of the final features, likely because
other features already capture this information due to the fixed time length. In
addition, we included the amount of time spent accelerating and the quantity
of mass loaded in the final model.

Although time constraints prevented us from integrating the fuel model into
the reinforcement learning framework, this future work could enhance the
accuracy of the framework’s plan evaluations. Our fuel model demonstrated
promising results in predicting dumper fuel consumption. This addresses our
research question of whether continuously logged GPS data can predict the fuel
consumption of dumpers and further optimize the scheduling. Integrating the
fuel model could further improve the optimization process through more precise
evaluations.

71

PART IV

Appendices

72

APPENDIX A

Appendix for Part I

A.1 Universal Approximation Theorem

The Universal Approximation Theorem A.1.5 states that a feed-forward neural
network with a single hidden layer can approximate any continuous function to
an arbitrary accuracy greater than 0.

In the proof of this theorem, we will use a variation of the Hahn-Banach
Theorem A.1.1 and the Riesz Representation Theorem A.1.2.

Theorem A.1.1 (Hahn-Banach [Rud87, p. 107]). Let S be a linear
subspace of a normed linear space X, and let f0 ∈ X. Then f0 is in
the closure S̄ of S if and only if there is no bounded linear functional L on
X such that L(f) = 0 ∀ f ∈ S but L(f0) ̸= 0

Let C(Ω)∗ be the set of linear functionals on C(Ω) and let C(Ω) be the set
of all continuous functions from Ω to R. Let M(Ω) denote the space of finite,
signed regular Borel measures on Ω.

Theorem A.1.2 (Riesz Representation [MW13, p. 492]). Let Ω be a
compact Hausdorff space. Then L ∈ C(Ω)∗ if and only if there exists a
µ ∈M(Ω) such that

L(f) =
∫

Ω
f(x) dµ(x) ∀ f ∈ C(Ω) (A.1)

Before examining the Universal Approximation Theorem A.1.5, it is important
to introduce several definitions. Let In denote the n-dimensional unit cube
[0, 1]n.

73

A.1. Universal Approximation Theorem

Definition A.1.3 ([Cyb89, p. 306]). We say that σ is discriminatory if for
a measure µ ∈M(In),

∫
In

σ(wT x + b) dµ(x) = 0

for all w ∈ Rn and b ∈ R implies that µ = 0.

Definition A.1.4 ([Cyb89, p. 306]). We say that σ is sigmoidal if

σ(t)→
{

1 as t→ +∞
0 as t→ −∞

Theorem A.1.5 (Universal Approximation [Cyb89, p. 306]). Let σ be
any continuous discriminatory function. Then finite sums of the form

G(x) =
N∑

j=1
αjσ(wT

j x + bj) (A.2)

are dense in C(In). In other words, given any f ∈ C(In) and ϵ > 0, there
is a sum, G(x), of the above form, for which

|G(x)− f(x)| < ϵ ∀ x ∈ In

Proof. Let S ⊂ C(In) be the set of all functions of the form given in Equation
A.2. We want to prove that the subspace S is dense in C(In); this is equivalent
to the closure of S being equal to C(In), i.e., S̄ = C(In).

Assume that S̄ ̸= C(In):

Applying the Hahn-Banach Theorem A.1.1, stating that there exists a bounded
linear functional, L, on the space C(In) such that L(S̄) = L(S) = 0 and
L ̸= 0. Further, by the Riesz Representation Theorem A.1.2 there exists some
µ ∈M(In) such that L takes this form:

L(h) =
∫

In

h(x) dµ(x) ∀ h ∈ C(In)

74

A.1. Universal Approximation Theorem

Since σ(wT x + b) ∈ S ⊂ C(In),

∫
In

σ(wT x + b) dµ(x) = 0

We reached a contradiction since σ is assumed to be discriminatory, implying
that µ = 0, so the linear functional must be L = 0. Hence, the assumption is
incorrect, and we have proved by contradiction that S̄ = C(In), equivalently
that S is dense in C(In). ■

Remark A.1.6. It is proven [Cyb89] that all continuous sigmoidal functions,
as defined in Definition A.1.4, are discriminatory. This result is easier to
understand when considering the context of a neural network, as sigmoidal
functions are common activation functions.

Remark A.1.7. Equation A.2 in Theorem A.1.5 can be interpreted as
representing a single-hidden-layer neural network with N nodes. The
network takes x as input, has weights wj for each node j in the hidden
layer, a bias term b, and an activation function σ. We represent the weights
for the output node as α = (α1, α2, ..., αN).

75

A.2. The Default Configuration of the Framework

A.2 The Default Configuration of the Framework

It is important to note that we still need to validate the default settings against
empirical data, so their logic may be limited.

Agent Policy Configurations

• Neural Network Architecture:

– Fully connected with three hidden layers.
– Hidden layer node count: 100, 50, and 100 (respectively).
– ReLU activation function applied to each hidden layer.

• Optimizer:

– Criterion: MSELoss [PyT]
– Optimizer: Adam
– Learning rate: 0.001

• Q-learning Parameters:

– γ = 0 (framework restriction, can only be 0)
– α = 0.5

• Memory:

– Size: 5000 samples.
– FIFO (First in, First Out) memory management.
– Up to 500 samples of memory are trained between episodes.

Environment, Map

• Edge weights represent the distance between nodes in meters.

• Loading nodes seem active from the start of an episode.

• The pre-defined timer: 1000000000 seconds (ensuring job completion).

Jobs

• Each job has a mass quantity of 400 tons.

• The mass type is identical.

76

A.2. The Default Configuration of the Framework

Dumpers

• Initial position: the parking node

• Average speed: 5 m/s

• Maximum mass capacity: 40 tons

• Independent dumping time: 30 seconds

• Dumping rate: 0 seconds/ton

Loaders

• Independent loading time: 30 seconds

• Loading rate: 4 seconds/ton

Node Agents

• Use only pre-obtained shortest path (see Section 3.3)

Planning agents

• Weights in the reward function (see Equation 3.3):

– Loading Agent: (w1, w2) = (8, 3)
– Dumping Agent(s): (w1, w2) = (8,−60 · 8).

∗ By setting w2 = −60 · 8, the cost of one unit of imbalance, based
on the completion rates, is equated to the cost of driving an
additional 60 seconds.

• The parking action is enabled with weighting w4 = 1 in Equation 3.4.

Coffee Break Agent

• The agent is active.

• The weight of taking a coffee break is w5 = 1 (see Equation 3.3).

Additional parameters

• Fuel Consumption:

– While idling for a dumper: 3.785 · 1 L/h
– While idling for a loader: 3.785 · 3 L/h
– While driving for a dumper: 3.785 · 8 L/h

• Fuel Price: 21 NOK/L

77

A.3. Determining the Starting Order of Dumpers

• Salaries:

– Loader operator: 242.15 NOK/h
– Dumper operator: 233.33 NOK/h

A.3 Determining the Starting Order of Dumpers

This procedure is done to determine the starting order of the dumpers.

1. Set all loading nodes to be unallocated.

2. For each unallocated loading node, identify the nearest unallocated dumper
and add it to a list.

3. For each dumper in the list from Step 2, select its nearest loading node
from among the loading nodes that have chosen that dumper and allocate
that loading node.

4. For each dumper in the list from Step 2, request a plan from the Loading
Agent in the order of the shortest distance to any loading node. Then,
allocate the dumpers.

5. If not all dumpers are allocated:

a) If all loading nodes are allocated, return to Step 1.
b) If not all loading nodes are allocated, return to Step 2.

6. All dumpers have received their initial plan, and the episode can begin.

78

A.4. Map 1: Demonstrating Baseline 1

A.4 Map 1: Demonstrating Baseline 1

Table A.1 presents the shortest distances between all loading and dumping
nodes for Map 1, as depicted in Figure 4.4. In Map 1, each loading node is
responsible for transporting 400 tons, while each dumping node should receive
800 tons. Consequently, the pairing process will select each dumping node twice.
The data lead to the following pair-up of nodes in Baseline 1:

• First, L8 is the most distant from any dumping node (specifically, node
D60) and pairs up with D57, the closest dumping node among the three.

• Second, L17 is the next most distant from any dumping node (specifically,
node D60) and pairs up with D57. Since L8 and L17 have paired up with
D57, it is unavailable for additional pairing.

• Next, L97 chooses D63. Although L97 is closer to D57, it is unavailable
due to two loading nodes already paired with it. Therefore, L97 pairs up
with its second-best option.

• L15 selects D63.

• Finally, L72 and L32 get D60, completing the pairing process.

Thus, the resulting pairs are:

(L8, D57), (L17, D57), (L97, D63), (L15, D63), (L72, D60) and (L32, D60).

Table A.1: Distances between loading and dumping nodes in Map 1

Loading node Dumping node Distance (m)

L8
D57 2662
D60 5166
D63 4200

L15
D57 3241
D60 3935
D63 2969

L17
D57 2336
D60 4840
D63 3874

L32
D57 3103
D60 2318
D63 1680

L72
D57 3891
D60 1599
D63 1301

L97
D57 2183
D60 4215
D63 2701

79

A.5. Map 1: Dumper and Loader Scheduling and Performance

A.5 Map 1: Dumper and Loader Scheduling and
Performance

Table A.2 shows metrics of the plans with the best performance, where the best
plan is plan number 459. Listing A.1 provides the loaders’ schedule for the best
plan. Listing A.2 provides the dumpers’ schedule for the best plan.

Table A.2: Performance of top plans for Map 1

Score Rank Plan Fuel Cost Time Distance L idle D idle D

75.3 590 459 617.3 19019 6575 356.0 3691 6517 22
75.2 050 487 619.6 18933 6481 359.8 3171 4224 22
74.8 110 485 613.4 18733 7072 355.3 3904 3268 22
74.6 970 165 619.2 18951 6834 356.7 4909 3444 21
74.3 060 346 622.1 18941 6835 361.2 3679 2733 22
74.2 680 233 618.5 18976 7096 354.5 5885 3469 19
74.0 340 449 614.8 18933 7477 347.0 9161 2126 15
74.0 003 224 638.4 19627 6192 370.1 2548 7438 25
Score (see Section 4.1), D: dumpers (required amount).
Rank XYZ: Plan ranking based on Fuel (Xth), Cost (Yth), Time (Zth). A ’0’ indicates that
the plan did not rank in the top 9 for any of the categories.
Plan (Game number), Fuel (liter), Cost (NOK), Time (seconds), Distance (kilometer).
L idle: Loaders idling (seconds), D idle: Dumpers idling (seconds).

Listing A.1: Best plan (Map 1): Schedule for the loaders
Loader (node: 8) | Loader (node: 15)

----------------------- | -----------------------
Start first job: 00:33:46 | Start first job: 00:14:58
Finish last job: 01:22:04 | Finish last job: 01:15:40

|
Breaks (FROM - TO): | Breaks (FROM - TO):

00:18:08 - 00:32:14 | 00:41:37 - 00:43:34
00:35:24 - 00:47:05 |
00:50:15 - 00:53:24 |

Loader (node: 17)	Loader (node: 32)

Start first job: 00:25:43 | Start first job: 00:10:25
Finish last job: 00:59:28 | Finish last job: 00:56:27

|
Breaks (FROM - TO): | Breaks (FROM - TO):

00:41:37 - 00:43:34 | 00:13:35 - 00:24:41
| 00:31:02 - 00:34:11

Loader (node: 72)	Loader (node: 97)

Start first job: 00:04:44 | Start first job: 00:08:52
Finish last job: 00:36:33 | Finish last job: 00:40:41

|
Breaks (FROM - TO): | Breaks (FROM - TO):

Note: The loaders at nodes 72 and 97 do not have any breaks.

80

A.5. Map 1: Dumper and Loader Scheduling and Performance

Listing A.2: Best plan (Map 1): Time schedule for dumpers
Dumper num: 0 | Dumper num: 1

---------------------- | ----------------------
Time: Plan: | Time: Plan:
[00:00:00, 00:07:54] P83 => L72 | [00:00:00, 00:11:05] P83 => L72
[00:07:54, 00:12:45] L72 => D63 | [00:11:05, 00:16:56] L72 => D60
[00:12:45, 00:28:53] D63 => L17 | [00:16:56, 00:27:51] D60 => L32
[00:28:53, 00:37:12] L17 => D57 | [00:27:51, 00:33:58] L32 => D63
[00:37:12, 00:49:55] D57 => L17 | [00:33:58, 00:50:05] D63 => L32
[00:49:55, 00:58:14] L17 => D57 | [00:50:05, 00:58:20] L32 => D60
[00:58:14, 01:12:31] D57 => L8 | [00:58:20, 01:08:05] D60 => P83
[01:12:31, 01:30:19] L8 => D60 | Dumper parked

Dumper num: 2	Dumper num: 3

Time: Plan: | Time: Plan:
[00:00:00, 00:14:16] P83 => L72 | [00:00:00, 00:17:27] P83 => L72
[00:14:16, 00:20:07] L72 => D60 | [00:17:27, 00:22:18] L72 => D63
[00:20:07, 00:31:02] D60 => L32 | [00:22:18, 00:35:24] D63 => L15
[00:31:02, 00:37:09] L32 => D63 | [00:35:24, 00:45:50] L15 => D63
[00:37:09, 00:50:15] D63 => L15 | [00:45:50, 01:06:07] D63 => L15
[00:50:15, 01:00:41] L15 => D63 | [01:06:07, 01:16:33] L15 => D63
[01:00:41, 01:05:22] D63 => P83 |
Dumper parked

Dumper num: 4	Dumper num: 5

Time: Plan: | Time: Plan:
[00:00:00, 00:20:38] P83 => L72 | [00:00:00, 00:12:02] P83 => L97
[00:20:38, 00:26:29] L72 => D60 | [00:12:02, 00:19:50] L97 => D57
[00:26:29, 00:40:32] D60 => L32 | [00:19:50, 00:32:04] D57 => L17
[00:40:32, 00:48:47] L32 => D60 | [00:32:04, 00:40:23] L17 => D57
[00:48:47, 01:15:40] D60 => L15 | [00:40:23, 00:56:17] D57 => L17
[01:15:40, 01:26:06] L15 => D63 | [00:56:17, 01:04:36] L17 => D57

| [01:04:36, 01:18:53] D57 => L8
| [01:18:53, 01:36:41] L8 => D60

Dumper num: 6	Dumper num: 7

Time: Plan: | Time: Plan:
[00:00:00, 00:23:49] P83 => L72 | [00:00:00, 00:13:35] P83 => L32
[00:23:49, 00:29:40] L72 => D60 | [00:13:35, 00:19:42] L32 => D63
[00:29:40, 00:43:43] D60 => L32 | [00:19:42, 00:36:56] D63 => L8
[00:43:43, 00:51:58] L32 => D60 | [00:36:56, 00:46:21] L8 => D57
[00:54:05, 01:03:50] D60 => P83 | [00:46:21, 01:09:18] D57 => L15
Dumper parked | [01:09:18, 01:19:44] L15 => D63

Dumper num: 8	Dumper num: 9

Time: Plan: | Time: Plan:
[00:00:00, 00:27:00] P83 => L72 | [00:00:00, 00:30:11] P83 => L72
[00:27:00, 00:31:51] L72 => D63 | [00:30:11, 00:36:02] L72 => D60
[00:31:51, 00:46:54] D63 => L32 | [00:36:02, 00:53:16] D60 => L32
[00:46:54, 00:53:01] L32 => D63 | [00:53:16, 01:01:31] L32 => D60
[00:53:01, 00:57:42] D63 => P83 |
Dumper parked

81

A.5. Map 1: Dumper and Loader Scheduling and Performance

Dumper num: 10	Dumper num: 11

Time: Plan: | Time: Plan:
[00:00:00, 00:33:22] P83 => L72 | [00:00:00, 00:36:33] P83 => L72
[00:33:22, 00:39:13] L72 => D60 | [00:36:33, 00:42:24] L72 => D60
[00:39:13, 00:56:27] D60 => L32 | [00:42:24, 01:02:56] D60 => L15
[00:56:27, 01:02:34] L32 => D63 | [01:02:56, 01:16:36] L15 => D60
[01:02:34, 01:07:15] D63 => P83 |
Dumper parked

Dumper num: 12	Dumper num: 13

Time: Plan: | Time: Plan:
[00:00:00, 00:15:13] P83 => L97 | [00:00:00, 00:18:24] P83 => L97
[00:15:13, 00:23:01] L97 => D57 | [00:18:24, 00:26:12] L97 => D57
[00:23:01, 00:35:15] D57 => L17 | [00:26:12, 00:38:26] D57 => L17
[00:35:15, 00:43:34] L17 => D57 | [00:38:26, 00:46:52] L17 => D57
[00:43:34, 00:59:28] D57 => L17 | [00:46:52, 01:12:29] D57 => L15
[00:59:28, 01:07:47] L17 => D57 | [01:12:29, 01:22:55] L15 => D63
[01:07:47, 01:22:04] D57 => L8 |
[01:22:04, 01:39:52] L8 => D60

Dumper num: 14	Dumper num: 15

Time: Plan: | Time: Plan:
[00:00:00, 00:21:35] P83 => L97 | [00:00:00, 00:24:46] P83 => L97
[00:21:35, 00:29:23] L97 => D57 | [00:24:46, 00:32:34] L97 => D57
[00:29:23, 00:41:37] D57 => L17 | [00:32:34, 00:44:39] D57 => L8
[00:41:37, 00:49:56] L17 => D57 | [00:44:39, 00:54:04] L8 => D57
[00:49:56, 01:02:01] D57 => L8 | [00:54:04, 01:06:09] D57 => L8
[01:02:01, 01:19:49] L8 => D60 | [01:06:09, 01:23:57] L8 => D60

Dumper num: 16	Dumper num: 17

Time: Plan: | Time: Plan:
[00:00:00, 00:27:57] P83 => L97 | [00:00:00, 00:31:08] P83 => L97
[00:27:57, 00:35:45] L97 => D57 | [00:31:08, 00:38:56] L97 => D57
[00:35:45, 00:46:44] D57 => L17 | [00:38:56, 00:53:06] D57 => L17
[00:46:44, 00:55:03] L17 => D57 | [00:53:06, 01:01:25] L17 => D57
[00:55:03, 01:09:20] D57 => L8 | [01:01:25, 01:15:42] D57 => L8
[01:09:20, 01:27:08] L8 => D60 | [01:15:42, 01:33:30] L8 => D60

Dumper num: 18	Dumper num: 19

Time: Plan: | Time: Plan:
[00:00:00, 00:34:19] P83 => L97 | [00:00:00, 00:37:30] P83 => L97
[00:34:19, 00:43:59] L97 => D63 | [00:37:30, 00:45:18] L97 => D57
[00:43:59, 00:59:45] D63 => L15 | [00:45:18, 00:57:23] D57 => L8
[00:59:45, 01:10:11] L15 => D63 | [00:57:23, 01:15:11] L8 => D60

Dumper num: 20	Dumper num: 21

Time: Plan: | Time: Plan:
[00:00:00, 00:40:41] P83 => L97 | [00:00:00, 00:18:08] P83 => L15
[00:40:41, 00:50:14] L97 => D63 | [00:18:08, 00:28:34] L15 => D63
[00:50:14, 00:54:55] D63 => P83 | [00:28:34, 00:37:21] D63 => L32
Dumper parked | [00:37:21, 00:43:28] L32 => D63

82

A.5. Map 1: Dumper and Loader Scheduling and Performance

| [00:43:28, 00:56:34] D63 => L15
| [00:56:34, 01:07:00] L15 => D63
| [01:07:00, NaN] D63 => P83
|

Dumper num: 22	Dumper num: 23

Dumper parked | Dumper parked

Dumper num: 24

Dumper parked

Note: The dumpers 22, 23, and 24 are parked at the start and remain unused.

83

APPENDIX B

Appendix for Part II

B.1 A Brief Introduction to Decision Trees

A decision tree [Qui86] is a powerful tool for making informed decisions. It
visually displays the different options and their potential outcomes, allowing for
a thorough evaluation of each choice. The final value of each branch presents
the predicted outcome.

Figure B.1 shows an example of a decision tree predicting the fuel
consumption of a dumper on a specific route. The decision tree indicates
that routes longer than 100 meters tend to have higher fuel consumption
compared to shorter routes.

Figure B.1: An example of a decision tree, predicting fuel consumption of a
route.

84

B.2. Tables of Selected Data Points

B.2 Tables of Selected Data Points

Table B.1: Constant fuel rate, raw data

data_Time data_Fuel diff_xy fuel_data_fails track_data_fails

2021-10-15 05:18:46 26.95 4.0 False False
2021-10-15 05:18:51 74.50 19.0 True False
2021-10-15 05:18:56 74.50 14.0 True False
2021-10-15 05:19:01 74.50 8.0 True False
2021-10-15 05:19:06 74.50 29.0 True False
2021-10-15 05:19:11 74.50 28.0 True False
2021-10-15 05:19:16 74.50 11.0 True False
2021-10-15 05:19:21 74.50 39.0 True False
2021-10-15 05:19:26 74.50 32.0 True False
2021-10-15 05:19:31 74.50 11.0 True False
2021-10-15 05:19:36 74.50 15.0 True False
2021-10-15 05:19:41 74.50 17.0 True False
2021-10-15 05:19:46 74.50 15.0 True False
2021-10-15 05:19:51 74.50 15.0 True False
2021-10-15 05:19:56 74.50 7.0 True False
2021-10-15 05:20:01 74.50 5.0 True False
2021-10-15 05:20:06 74.50 10.0 True True
2021-10-15 05:20:11 74.50 1.0 True True
2021-10-15 05:20:16 74.50 0.0 True True
2021-10-15 05:20:21 74.50 0.0 True True
2021-10-15 05:20:26 74.50 2.0 True True
2021-10-15 05:20:31 74.50 1.0 True False
2021-10-15 05:20:36 74.50 11.0 True False
2021-10-15 05:20:41 74.50 14.0 True False
2021-10-15 05:20:46 74.50 11.0 True False
2021-10-15 05:20:51 74.50 30.0 True False
2021-10-15 05:20:56 74.50 39.0 True False
2021-10-15 05:21:01 32.10 13.0 False False

The table shows constant fuel rate over several time points. Such data points will be
marked as failed.

85

B.2. Tables of Selected Data Points

Table B.2: Zero in between high fuel rate

data_Time data_Fuel diff_xy

2021-10-19 12:12:58 81.15 31.0
2021-10-19 12:13:03 61.05 31.0
2021-10-19 12:13:08 0.00 28.0
2021-10-19 12:13:13 35.10 13.0
2021-10-19 12:13:18 6.70 21.0
2021-10-19 12:13:23 14.10 14.0
2021-10-19 12:13:28 38.85 10.0
2021-10-19 12:13:33 32.15 3.0
2021-10-19 12:13:38 67.25 40.0
2021-10-19 12:13:43 34.45 16.0

The table illustrates an unstable fuel rate,
characterized by a sudden spike to 0 when
the dumper is still moving (as indicated by a
positive diff_xy value).

Table B.3: Low fuel rate

data_Time data_Fuel diff_xy fuel_data_fails track_data_fails

2021-10-15 05:23:02 2.25 1.0 False True
2021-10-15 05:23:07 2.45 0.0 False True
2021-10-15 05:23:12 2.40 0.0 False True
2021-10-15 05:23:17 2.35 0.0 False True
2021-10-15 05:23:22 2.25 0.0 False True
2021-10-15 05:23:27 2.45 0.0 False True
2021-10-15 05:23:32 2.55 0.0 False True
2021-10-15 05:23:37 2.65 0.0 False True
2021-10-15 05:23:42 2.65 0.0 False True
2021-10-15 05:23:47 2.15 0.0 False True
2021-10-15 05:23:52 3.10 0.0 False True
2021-10-15 05:23:57 2.15 0.0 False True
2021-10-15 05:24:02 2.30 0.0 False True
2021-10-15 05:24:07 2.30 0.0 False True
2021-10-15 05:24:12 2.70 0.0 False True
2021-10-15 05:24:17 2.70 0.0 False True
2021-10-15 05:24:22 3.60 0.0 False True
2021-10-15 05:24:27 2.45 0.0 False True
2021-10-15 05:24:32 2.40 0.0 False True
2021-10-15 05:24:37 2.00 0.0 False True
2021-10-15 05:24:42 2.50 0.0 False True
2021-10-15 05:24:47 2.25 0.0 False True

The table shows that the fuel rate varies from 2 to 3, whenever the dumper is standing
still (diff_xy ≈ 0).

86

B.2. Tables of Selected Data Points

Table B.4: Altitude oscillating

Timestamp Distance Altitude VerticalAccuracy Over threshold

2021-10-19 17:41:07 36.47 301.48 7.16 False
2021-10-19 17:41:13 40.59 300.30 10.02 False
2021-10-19 17:41:19 32.19 302.89 7.46 False
2021-10-19 17:41:24 21.38 300.99 10.41 False
2021-10-19 17:41:31 8.93 300.01 8.20 False
2021-10-19 17:41:37 7.65 298.09 8.29 False
2021-10-19 17:41:45 9.80 296.79 12.37 True
2021-10-19 17:41:56 6.57 286.05 16.24 True
2021-10-19 17:42:07 4.09 292.57 18.02 True
2021-10-19 17:42:13 7.33 304.42 11.53 True
2021-10-19 17:42:20 2.84 293.35 17.15 True
2021-10-19 17:42:27 2.22 293.50 18.78 True
2021-10-19 17:42:33 2.24 293.79 11.55 True
2021-10-19 17:42:41 2.43 292.73 13.87 True
2021-10-19 17:42:49 2.46 293.52 14.68 True
2021-10-19 17:42:55 0.73 289.29 9.48 True
2021-10-19 17:43:07 2.41 294.64 14.21 True
2021-10-19 17:43:50 6.79 302.16 11.60 True

The raw data indicates that the Altitude tends to oscilliate when the VerticalAccuracy
exceeds the threshold of 12. It appears to be illogical, as the observed changes in Altitude
are too large for the relatively low time and Distance.

87

B.3. Data Summary: A Table of Statistics

B.3 Data Summary: A Table of Statistics

Table B.5: Some statistics of each route, from data set Section 8.5.
LD: LengthDistance, ADES: AltitudeDeltaEndStart,
AT: AccTime, Q: Quantity

No Date Fuel (L) LD (m) ADES (m) AT (s) Q (ton)
1 2021-10-18 10:48:01 0.04 60 -1.2 20.0 0.0
2 2021-09-29 09:51:25 0.06 194 -1.5 12.0 0.0
3 2021-10-14 17:45:17 0.07 64 -0.5 9.0 0.0
4 2021-09-29 07:18:18 0.07 118 -3.3 3.0 0.0
5 2021-10-14 18:01:51 0.07 53 -0.4 3.0 0.0
6 2021-09-28 14:33:25 0.08 76 -1.8 9.0 0.0
7 2021-10-19 15:16:57 0.08 112 -1.1 12.0 40.0
8 2021-10-20 05:26:53 0.08 35 1.5 7.0 0.0
9 2021-10-13 08:47:06 0.08 110 -5.8 17.0 0.0
10 2021-09-28 10:20:44 0.08 101 -3.6 11.0 0.0
11 2021-10-13 06:04:17 0.08 103 -4.3 11.0 0.0
12 2021-10-19 16:26:29 0.08 54 2.2 6.0 0.0
13 2021-09-28 11:02:44 0.08 104 -3.3 17.0 0.0
14 2021-09-28 08:16:57 0.08 101 -3.7 11.0 0.0
15 2021-10-19 16:03:29 0.09 103 -1.9 14.0 0.0
16 2021-10-19 16:08:13 0.09 19 0.2 5.0 0.0
17 2021-09-28 16:27:10 0.09 123 -2.1 12.0 0.0
18 2021-09-28 11:41:08 0.09 114 0.0 6.0 0.0
19 2021-10-21 10:31:26 0.09 69 -5.3 18.0 0.0
20 2021-09-28 07:54:45 0.10 108 -1.2 17.0 0.0
21 2021-09-28 16:17:53 0.10 107 -2.0 10.0 0.0
22 2021-10-14 10:37:47 0.10 79 0.1 0.0 40.0
23 2021-09-29 14:03:25 0.10 68 -0.3 10.0 0.0
24 2021-11-15 18:59:28 0.10 90 -0.7 9.0 0.0
25 2021-10-15 05:05:37 0.11 87 -3.2 12.0 0.0
26 2021-10-18 07:18:01 0.11 102 -0.1 6.0 0.0
27 2021-10-21 10:54:02 0.11 55 -1.3 24.0 0.0
28 2021-10-20 15:23:47 0.11 105 1.0 10.0 0.0
29 2021-10-20 15:06:45 0.11 139 -3.4 18.0 0.0
30 2021-10-19 11:31:44 0.11 108 -1.0 11.0 0.0
31 2021-10-15 12:34:31 0.11 86 -6.8 11.0 40.0
32 2021-10-20 10:30:24 0.11 35 -4.1 13.0 40.0
33 2021-09-28 15:19:30 0.11 99 0.2 24.0 0.0
34 2021-09-28 16:46:34 0.12 104 -3.2 10.0 0.0
35 2021-10-21 11:00:53 0.12 46 -1.5 16.0 0.0
36 2021-10-13 14:48:05 0.12 61 1.4 10.0 0.0
37 2021-10-19 15:45:46 0.13 126 2.8 13.0 0.0
38 2021-10-18 15:10:53 0.13 105 2.9 0.0 0.0
39 2021-10-15 05:44:05 0.13 96 -7.0 7.0 0.0
40 2021-10-14 14:41:35 0.13 82 -5.9 9.0 0.0
41 2021-09-28 09:43:36 0.13 67 -1.4 22.0 0.0
42 2021-09-28 07:05:08 0.13 115 -5.0 25.0 0.0
43 2021-10-21 06:35:57 0.14 100 -2.0 4.0 0.0
44 2021-10-13 10:57:38 0.14 111 -0.3 4.0 40.0
45 2021-09-28 07:17:33 0.14 101 -2.7 12.0 0.0
46 2021-09-29 10:44:58 0.14 137 -3.5 10.0 0.0
47 2021-10-13 10:35:22 0.14 121 -6.3 9.0 0.0
48 2021-10-19 19:30:45 0.14 110 0.7 9.0 0.0
49 2021-10-13 14:47:07 0.14 90 0.5 17.0 0.0
50 2021-10-14 10:01:59 0.14 124 -1.1 22.0 0.0
51 2021-10-15 12:08:32 0.14 94 -6.1 6.0 0.0
52 2021-10-19 17:52:27 0.14 91 2.6 2.0 0.0
53 2021-10-19 07:03:04 0.14 118 1.5 6.0 0.0
54 2021-09-28 07:33:10 0.14 128 -4.1 13.0 0.0
55 2021-10-19 15:57:47 0.14 108 2.6 2.0 0.0
56 2021-09-28 15:48:43 0.15 122 -3.3 6.0 0.0
57 2021-10-13 10:15:16 0.15 107 0.4 18.0 0.0
58 2021-10-14 16:30:01 0.15 111 -3.9 13.0 0.0
59 2021-10-19 16:20:52 0.15 94 -2.0 13.0 40.0
60 2021-09-28 15:48:11 0.15 144 -0.6 12.0 0.0
61 2021-10-14 16:38:24 0.15 117 -6.3 7.0 0.0
62 2021-10-13 12:50:39 0.15 54 0.8 12.0 40.0
63 2021-09-28 10:32:20 0.16 123 -4.2 14.0 0.0
64 2021-10-21 06:25:13 0.16 55 2.2 21.0 0.0
65 2021-09-28 11:30:22 0.16 134 0.3 23.0 0.0
66 2021-10-19 16:10:39 0.16 102 3.0 6.0 0.0
67 2021-10-13 07:11:47 0.16 51 -0.6 15.0 40.0
68 2021-09-28 15:16:57 0.16 54 2.0 12.0 0.0
69 2021-09-28 14:32:54 0.16 137 -1.4 24.0 0.0
70 2021-10-19 15:22:18 0.16 119 2.6 15.0 0.0
71 2021-11-03 09:32:44 0.17 69 0.0 11.0 0.0
72 2021-10-14 10:59:29 0.17 103 -5.3 7.0 0.0
73 2021-09-29 08:32:14 0.17 146 -2.0 17.0 0.0

Continued on next page

88

B.3. Data Summary: A Table of Statistics

Table B.5 – continued from previous page
No Date Fuel (L) LD (m) ADES (m) AT (s) Q (ton)
74 2021-09-28 17:32:10 0.17 164 -1.8 21.0 0.0
75 2021-10-14 11:44:03 0.17 91 -3.8 23.0 0.0
76 2021-09-28 15:20:10 0.17 136 -4.0 17.0 0.0
77 2021-10-14 11:17:39 0.17 110 -0.5 12.0 40.0
78 2021-10-13 10:02:08 0.18 110 1.9 5.0 40.0
79 2021-09-29 06:10:53 0.18 150 -3.3 11.0 0.0
80 2021-10-20 15:23:09 0.18 67 2.8 21.0 0.0
81 2021-10-15 12:07:11 0.18 111 1.0 8.0 40.0
82 2021-09-29 05:58:49 0.18 108 -1.6 8.0 30.0
83 2021-10-14 10:10:47 0.18 120 0.3 10.0 40.0
84 2021-09-28 14:10:46 0.18 120 -3.2 11.0 0.0
85 2021-10-20 07:44:47 0.19 122 0.9 15.0 0.0
86 2021-10-14 14:09:30 0.19 119 1.5 6.0 40.0
87 2021-10-20 13:56:35 0.19 100 2.4 17.0 0.0
88 2021-10-21 06:23:11 0.19 105 -0.6 11.0 28.0
89 2021-10-20 08:10:23 0.19 127 1.0 12.0 0.0
90 2021-09-28 17:40:47 0.19 136 -6.1 17.0 0.0
91 2021-10-19 17:15:49 0.19 104 1.2 17.0 0.0
92 2021-10-14 14:39:17 0.19 108 0.4 4.0 40.0
93 2021-09-28 11:51:21 0.19 90 0.4 29.0 0.0
94 2021-10-14 14:10:58 0.19 107 -4.0 18.0 0.0
95 2021-09-28 17:30:14 0.19 137 0.1 8.0 42.0
96 2021-09-28 11:19:58 0.19 123 1.0 8.0 42.0
97 2021-10-18 14:03:03 0.19 64 3.1 12.0 40.0
98 2021-10-13 08:18:06 0.19 106 -6.7 7.0 0.0
99 2021-10-14 10:44:55 0.19 112 0.1 6.0 40.0
100 2021-09-28 17:39:00 0.20 151 0.2 10.0 42.0
101 2021-10-19 16:48:34 0.20 117 0.4 19.0 0.0
102 2021-10-20 05:26:18 0.20 81 1.0 23.0 0.0
103 2021-09-29 08:58:20 0.20 129 -1.0 11.0 0.0
104 2021-09-28 12:00:55 0.20 122 -1.1 6.0 0.0
105 2021-09-28 17:40:14 0.20 133 -0.7 16.0 0.0
106 2021-10-14 17:52:00 0.20 173 -1.0 15.0 40.0
107 2021-10-19 17:04:00 0.20 124 1.4 10.0 0.0
108 2021-10-15 06:04:48 0.21 125 1.2 9.0 40.0
109 2021-10-13 17:00:20 0.21 198 -3.4 18.0 40.0
110 2021-10-19 17:21:55 0.21 130 -0.5 14.0 0.0
111 2021-10-19 18:02:20 0.22 110 2.5 18.0 0.0
112 2021-09-28 11:49:31 0.22 60 4.3 7.0 42.0
113 2021-10-18 07:17:21 0.22 180 6.2 11.0 0.0
114 2021-09-29 06:20:40 0.22 139 -0.7 20.0 0.0
115 2021-10-18 12:32:53 0.22 59 2.0 12.0 40.0
116 2021-10-19 18:44:41 0.23 126 -3.8 17.0 0.0
117 2021-10-13 09:52:12 0.23 111 2.4 13.0 40.0
118 2021-10-14 17:49:19 0.23 133 4.0 12.0 40.0
119 2021-10-20 07:13:34 0.23 121 4.2 7.0 40.0
120 2021-10-14 14:18:54 0.23 110 -6.1 10.0 0.0
121 2021-09-28 05:23:13 0.23 80 2.9 14.0 0.0
122 2021-10-20 07:23:19 0.23 103 1.6 13.0 0.0
123 2021-10-19 15:33:01 0.23 130 1.7 9.0 0.0
124 2021-10-14 16:28:38 0.24 124 0.8 10.0 40.0
125 2021-10-20 08:16:53 0.24 108 -0.5 15.0 40.0
126 2021-10-18 14:59:56 0.24 56 2.9 17.0 0.0
127 2021-09-28 17:19:09 0.24 129 1.2 13.0 42.0
128 2021-10-19 16:09:25 0.24 78 5.6 17.0 0.0
129 2021-10-14 17:54:57 0.24 137 4.7 11.0 0.0
130 2021-10-19 12:13:31 0.24 141 2.1 13.0 0.0
131 2021-10-14 17:56:23 0.24 152 -2.5 25.0 40.0
132 2021-10-19 16:08:44 0.25 36 4.2 9.0 0.0
133 2021-10-20 13:55:26 0.25 86 4.3 29.0 0.0
134 2021-10-21 09:36:13 0.25 117 2.5 5.0 31.0
135 2021-09-28 17:57:32 0.26 158 3.5 11.0 0.0
136 2021-10-18 07:10:35 0.26 209 4.8 11.0 0.0
137 2021-10-21 06:44:01 0.26 131 0.4 7.0 24.0
138 2021-10-19 17:00:14 0.26 58 5.5 22.0 0.0
139 2021-09-28 09:41:53 0.26 93 3.3 6.0 42.0
140 2021-10-19 16:47:24 0.27 89 5.8 29.0 0.0
141 2021-10-14 10:00:25 0.27 114 1.6 14.0 40.0
142 2021-10-20 13:33:53 0.27 108 2.7 26.0 0.0
143 2021-10-20 13:32:30 0.27 59 4.8 23.0 0.0
144 2021-10-14 12:50:13 0.27 107 2.1 10.0 40.0
145 2021-10-19 12:25:28 0.28 94 6.6 20.0 0.0
146 2021-10-13 17:07:30 0.28 160 -1.3 8.0 40.0
147 2021-10-18 16:00:13 0.28 66 0.3 17.0 40.0
148 2021-10-14 18:00:33 0.29 120 3.4 7.0 40.0
149 2021-10-19 12:12:25 0.29 103 5.4 24.0 0.0
150 2021-10-14 11:42:27 0.29 95 3.5 16.0 40.0
151 2021-09-28 17:20:08 0.29 135 -1.9 17.0 0.0
152 2021-09-28 15:46:28 0.29 138 -0.1 14.0 42.0
153 2021-10-14 09:59:29 0.30 40 3.2 13.0 0.0
154 2021-09-28 10:28:12 0.30 88 3.1 18.0 0.0
155 2021-10-19 12:01:33 0.30 140 2.4 11.0 0.0

Continued on next page

89

B.3. Data Summary: A Table of Statistics

Table B.5 – continued from previous page
No Date Fuel (L) LD (m) ADES (m) AT (s) Q (ton)
156 2021-10-14 17:56:56 0.30 164 2.3 10.0 0.0
157 2021-10-13 08:16:32 0.31 116 4.2 12.0 0.0
158 2021-10-21 06:10:21 0.31 124 3.1 9.0 36.0
159 2021-09-28 15:45:41 0.32 103 3.2 13.0 0.0
160 2021-10-13 14:43:35 0.32 112 5.0 18.0 40.0
161 2021-09-28 08:03:59 0.32 92 2.2 12.0 0.0
162 2021-09-28 08:15:20 0.32 102 4.0 11.0 0.0
163 2021-09-28 05:47:41 0.32 74 1.9 23.0 0.0
164 2021-09-28 07:12:08 0.32 61 3.7 8.0 42.0
165 2021-10-13 14:21:21 0.32 45 3.3 15.0 0.0
166 2021-10-14 18:02:21 0.32 125 -1.1 19.0 0.0
167 2021-10-13 14:10:19 0.33 114 4.4 18.0 40.0
168 2021-10-19 16:47:58 0.33 101 10.7 9.0 0.0
169 2021-09-29 06:09:25 0.33 146 1.9 12.0 36.0
170 2021-10-19 17:14:17 0.33 59 6.2 29.0 0.0
171 2021-10-19 17:51:00 0.33 60 5.5 27.0 0.0
172 2021-09-29 06:18:36 0.34 123 6.3 17.0 0.0
173 2021-09-28 11:37:43 0.34 107 5.0 13.0 0.0
174 2021-09-29 08:56:54 0.34 140 1.5 12.0 39.0
175 2021-10-18 07:16:51 0.34 126 6.9 20.0 0.0
176 2021-10-19 12:00:57 0.34 92 10.5 6.0 0.0
177 2021-10-13 11:49:34 0.35 118 -6.1 6.0 0.0
178 2021-10-15 06:30:34 0.35 116 3.6 13.0 40.0
179 2021-09-28 11:10:38 0.35 102 4.7 13.0 0.0
180 2021-10-13 07:02:07 0.35 92 4.6 15.0 40.0
181 2021-10-19 15:45:04 0.35 117 10.5 9.0 0.0
182 2021-10-19 12:00:26 0.35 109 7.6 23.0 0.0
183 2021-10-19 18:01:44 0.35 118 13.4 11.0 0.0
184 2021-10-21 10:28:51 0.35 19 3.8 22.0 36.0
185 2021-09-29 09:49:30 0.35 130 2.7 15.0 39.0
186 2021-10-19 16:36:36 0.35 118 6.4 23.0 0.0
187 2021-09-28 16:24:29 0.36 95 3.8 13.0 0.0
188 2021-10-20 05:25:20 0.36 100 8.5 15.0 0.0
189 2021-09-29 06:08:49 0.36 121 4.5 13.0 36.0
190 2021-10-19 15:09:58 0.36 124 13.6 8.0 0.0
191 2021-10-19 17:51:36 0.36 121 11.8 14.0 0.0
192 2021-11-15 16:54:49 0.36 73 3.4 11.0 40.0
193 2021-10-19 11:49:05 0.37 134 13.8 7.0 0.0
194 2021-09-29 08:56:22 0.37 131 2.4 19.0 39.0
195 2021-10-20 17:22:06 0.37 207 4.5 18.0 0.0
196 2021-10-13 11:38:15 0.37 124 4.7 19.0 40.0
197 2021-10-21 08:00:23 0.37 150 0.3 8.0 36.0
198 2021-09-28 07:03:44 0.38 76 2.5 8.0 42.0
199 2021-10-19 15:21:30 0.38 128 12.9 10.0 0.0
200 2021-10-20 13:56:00 0.38 96 10.6 8.0 0.0
201 2021-10-21 06:34:39 0.38 125 0.2 10.0 24.0
202 2021-10-21 10:29:28 0.38 75 6.1 13.0 36.0
203 2021-10-14 10:18:07 0.38 112 5.3 20.0 40.0
204 2021-09-29 07:16:02 0.38 166 4.1 15.0 34.0
205 2021-10-19 16:25:18 0.39 115 11.0 22.0 0.0
206 2021-09-28 08:50:47 0.39 111 4.2 11.0 0.0
207 2021-10-14 18:05:58 0.39 136 8.2 8.0 40.0
208 2021-10-19 17:02:59 0.40 110 10.8 13.0 0.0
209 2021-10-19 20:09:47 0.40 160 0.9 8.0 40.0
210 2021-10-14 10:57:43 0.40 113 4.9 20.0 40.0
211 2021-09-28 11:19:07 0.40 117 4.7 16.0 0.0
212 2021-10-18 07:10:05 0.40 182 6.9 29.0 0.0
213 2021-10-19 19:44:16 0.41 194 -3.4 19.0 0.0
214 2021-10-13 12:48:09 0.41 93 5.9 16.0 0.0
215 2021-10-19 15:21:00 0.41 94 6.5 29.0 0.0
216 2021-10-20 13:16:17 0.41 102 6.0 29.0 0.0
217 2021-09-29 05:58:07 0.41 129 1.3 13.0 30.0
218 2021-10-20 12:56:16 0.41 125 9.1 24.0 0.0
219 2021-09-28 17:38:25 0.42 133 4.1 17.0 0.0
220 2021-10-19 14:55:12 0.42 80 5.4 19.0 0.0
221 2021-09-28 14:31:24 0.42 107 3.7 14.0 42.0
222 2021-10-14 14:57:26 0.42 115 4.6 19.0 40.0
223 2021-10-20 13:33:07 0.42 111 11.0 16.0 0.0
224 2021-09-29 08:30:12 0.42 142 4.6 18.0 39.0
225 2021-09-28 17:55:19 0.42 89 4.6 10.0 42.0
226 2021-09-28 17:29:31 0.42 122 4.4 17.0 42.0
227 2021-10-21 10:38:32 0.42 34 5.8 23.0 0.0
228 2021-10-13 17:57:42 0.43 117 14.2 16.0 0.0
229 2021-10-21 10:52:17 0.43 33 5.6 22.0 0.0
230 2021-10-13 08:35:09 0.43 64 6.6 19.0 0.0
231 2021-10-19 15:44:34 0.43 102 7.1 29.0 0.0
232 2021-10-19 19:42:40 0.43 158 -0.9 13.0 40.0
233 2021-10-20 07:12:38 0.43 132 10.7 19.0 40.0
234 2021-10-14 16:46:00 0.44 96 3.2 16.0 40.0
235 2021-10-14 11:27:57 0.44 87 4.9 20.0 40.0
236 2021-10-21 17:33:44 0.44 79 5.0 13.0 30.0
237 2021-10-19 11:36:07 0.45 125 9.0 29.0 0.0

Continued on next page

90

B.3. Data Summary: A Table of Statistics

Table B.5 – continued from previous page
No Date Fuel (L) LD (m) ADES (m) AT (s) Q (ton)
238 2021-10-19 08:47:17 0.45 114 10.1 6.0 0.0
239 2021-10-15 06:04:15 0.45 63 5.9 23.0 0.0
240 2021-10-21 08:12:32 0.45 143 2.1 9.0 36.0
241 2021-10-21 10:52:50 0.46 97 6.4 14.0 32.0
242 2021-10-20 14:58:35 0.46 123 11.4 25.0 0.0
243 2021-10-15 05:56:42 0.46 90 5.2 22.0 0.0
244 2021-10-20 08:09:27 0.46 123 12.6 12.0 0.0
245 2021-10-20 08:21:43 0.47 137 14.2 16.0 0.0
246 2021-10-13 05:25:55 0.47 87 7.7 17.0 0.0
247 2021-10-14 11:07:02 0.47 97 6.5 19.0 40.0
248 2021-10-13 10:23:56 0.48 102 6.1 23.0 40.0
249 2021-10-15 05:49:25 0.48 86 6.0 22.0 0.0
250 2021-10-15 06:13:13 0.48 96 6.4 17.0 40.0
251 2021-10-19 17:14:48 0.49 132 11.6 23.0 0.0
252 2021-10-21 16:54:26 0.49 91 5.8 16.0 32.0
253 2021-10-13 17:13:52 0.49 110 7.8 15.0 40.0
254 2021-10-15 05:34:28 0.49 88 6.4 18.0 0.0
255 2021-10-13 14:32:37 0.49 97 5.6 20.0 40.0
256 2021-10-15 05:42:00 0.50 66 5.3 20.0 0.0
257 2021-10-15 08:19:04 0.51 106 5.2 17.0 0.0
258 2021-10-19 14:43:26 0.51 132 8.6 29.0 0.0
259 2021-10-14 16:36:40 0.51 86 5.3 22.0 40.0
260 2021-10-13 11:47:41 0.52 82 6.3 20.0 0.0
261 2021-10-13 14:21:59 0.52 87 6.2 21.0 40.0
262 2021-10-19 14:33:14 0.52 156 13.2 23.0 0.0
263 2021-10-21 10:45:41 0.53 55 6.9 19.0 0.0
264 2021-10-13 11:26:37 0.53 73 7.2 17.0 0.0
265 2021-10-13 17:14:29 0.53 165 12.1 24.0 40.0
266 2021-10-19 15:56:38 0.54 122 10.6 29.0 0.0
267 2021-10-21 17:11:17 0.55 64 9.3 19.0 0.0
268 2021-10-15 14:55:09 0.55 70 6.6 25.0 40.0
269 2021-10-15 06:39:18 0.56 84 6.8 20.0 0.0
270 2021-10-19 14:10:21 0.57 121 8.7 29.0 0.0
271 2021-10-19 14:20:32 0.57 143 10.8 28.0 0.0
272 2021-10-14 14:38:47 0.57 82 9.2 20.0 0.0
273 2021-10-21 10:59:04 0.59 59 8.5 19.0 0.0
274 2021-10-15 14:47:07 0.60 85 7.7 20.0 40.0
275 2021-10-13 05:16:36 0.62 86 8.4 15.0 0.0
276 2021-10-21 11:25:05 0.62 60 10.5 14.0 0.0
277 2021-10-15 14:32:18 0.63 58 7.0 23.0 40.0

91

Bibliography

[APP20] APPLE. MacBook Pro (13-inch, M1, 2020) - Technical Specifica-
tions. https://support.apple.com/kb/SP824?viewlocale=en_US&
locale=no_NO. Accessed on May 13, 2023. Apple, 2020.

[Bel52] Bellman, R. ‘On the Theory of Dynamic Programming’. In: Proc
Natl Acad Sci U S A vol. 38, no. 8 (1952), pp. 716–719.

[BM08] Bondy, A. and Murty, U. Graph Theory (graduate texts in
mathematics 244). Springer, 2008.

[Bru23] Bruce, Ø. MasterThesis_Bruce. https : / / github . com / oystehbr /
MasterThesis_Bruce. 2023.

[BYC13] Bergstra, J., Yamins, D. and Cox, D. ‘Making a Science of
Model Search: Hyperparameter Optimization in Hundreds of
Dimensions for Vision Architectures’. In: Proceedings of the 30th
International Conference on Machine Learning. Ed. by Dasgupta,
S. and McAllester, D. Vol. 28. Proceedings of Machine Learning
Research 1. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 115–
123.

[CG16] Chen, T. and Guestrin, C. ‘XGBoost: A Scalable Tree Boosting
System’. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’16.
San Francisco, California, USA: ACM, 2016, pp. 785–794.

[CLL20] Covert, I., Lundberg, S. M. and Lee, S. ‘Understanding Global
Feature Contributions Through Additive Importance Measures’. In:
CoRR vol. abs/2004.00668 (2020). arXiv: 2004.00668.

[Cov] Covert, I. sage-importance - PyPI. https://pypi.org/project/sage-
importance/. Version: 0.0.4.

[Cov20] Covert, I. Explaining machine learning models with SHAP and
SAGE. https: / / iancovert .com/blog/understanding- shap- sage/.
Accessed: December 15, 2022. 2020.

[Cyb89] Cybenko, G. ‘Approximation by superpositions of a sigmoidal
function’. In: Mathematics of Control, Signals and Systems vol. 2
(1989), pp. 303–314.

[GBC16] Goodfellow, I., Bengio, Y. and Courville, A. Deep learning. MIT
press, 2016.

92

https://support.apple.com/kb/SP824?viewlocale=en_US&locale=no_NO
https://support.apple.com/kb/SP824?viewlocale=en_US&locale=no_NO
https://github.com/oystehbr/MasterThesis_Bruce
https://github.com/oystehbr/MasterThesis_Bruce
https://arxiv.org/abs/2004.00668
https://pypi.org/project/sage-importance/
https://pypi.org/project/sage-importance/
https://iancovert.com/blog/understanding-shap-sage/

Bibliography

[HN15] Hanson, C. S. and Noland, R. B. ‘Greenhouse gas emissions from
road construction: An assessment of alternative staging approaches’.
In: Transportation Research Part D: Transport and Environment
vol. 40 (2015), pp. 97–103.

[Hou10] Hougardy, S. ‘The Floyd–Warshall algorithm on graphs with
negative cycles’. In: Information Processing Letters vol. 110, no. 8-9
(2010), pp. 279–281.

[KB14] Kingma, D. P. and Ba, J. ‘Adam: A Method For Stochastic
Optimization’. In: arXiv preprint arXiv:1412.6980 (2014).

[Koh95] Kohavi, R. ‘A study of cross-validation and Bootstrap for accuracy
estimation and model selection’. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). Morgan
Kaufmann, 1995, pp. 1137–1143.

[Lei+23] Leivestad Hall, E. et al. Vil kutte utslipp med kunstig intelligens.
https://www.nrk.no/osloogviken/anleggsmaskiner-pa-tomgang-
er - klimaversting - _ - kunstig - intelligens - kan - vaere - losningen -
1.16338194. Accessed: April 14, 2023. 2023.

[Lev+16] Levine, S. et al. ‘Learning Hand-Eye Coordination for Robotic
Grasping with Deep Learning and Large-Scale Data Collection’. In:
CoRR vol. abs/1603.02199 (2016). arXiv: 1603.02199.

[LL17] Lundberg, S. M. and Lee, S. ‘A unified approach to interpreting
model predictions’. In: CoRR vol. abs/1705.07874 (2017). arXiv:
1705.07874.

[Lun] Lundberg, S. shap - PyPI. https://pypi.org/project/shap/. Version:
0.41.0.

[MW13] McDonald, J. N. and Weiss, N. A. A Course in Real Analysis.
2nd ed. Academic Press, 2013.

[Nie15] Nielsen, M. A. Neural networks and deep learning. Vol. 25.
Determination press San Francisco, CA, USA, 2015.

[Ouy+22] Ouyang, L. et al. ‘Training language models to follow instructions
with human feedback’. In: Advances in Neural Information Pro-
cessing Systems vol. 35 (2022), pp. 27730–27744.

[PyT] PyTorch. torch.nn.MSELoss. https : / / pytorch . org / docs / stable /
generated/torch.nn.MSELoss.html. Accessed: April 17, 2023.

[Qin+21] Qin, W. et al. ‘Multi-agent reinforcement learning-based dynamic
task assignment for vehicles in urban transportation system’. In:
International Journal of Production Economics vol. 240 (2021),
p. 108251.

[Qui86] Quinlan, J. R. ‘Induction of decision trees’. In: Machine Learning
(1986), pp. 81–106.

[RHW86] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. ‘Learning
representations by back-propagating errors’. In: nature vol. 323,
no. 6088 (1986), pp. 533–536.

[Rud87] Rudin, W. Real and Complex Analysis. 3rd ed. McGraw-Hill Boston,
1987.

93

https://www.nrk.no/osloogviken/anleggsmaskiner-pa-tomgang-er-klimaversting-_-kunstig-intelligens-kan-vaere-losningen-1.16338194
https://www.nrk.no/osloogviken/anleggsmaskiner-pa-tomgang-er-klimaversting-_-kunstig-intelligens-kan-vaere-losningen-1.16338194
https://www.nrk.no/osloogviken/anleggsmaskiner-pa-tomgang-er-klimaversting-_-kunstig-intelligens-kan-vaere-losningen-1.16338194
https://arxiv.org/abs/1603.02199
https://arxiv.org/abs/1705.07874
https://pypi.org/project/shap/
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html

Bibliography

[SA21] Shwartz-Ziv, R. and Armon, A. ‘Tabular Data: Deep Learning is
Not All You Need’. In: CoRR vol. abs/2106.03253 (2021). arXiv:
2106.03253.

[SB18] Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, 2018.

[Sha53] Shapley, L. S. ‘17. A Value for n-Person Games’. In: Contributions
to the Theory of Games (AM-28), Volume II. Ed. by Kuhn, H. W.
and Tucker, A. W. Princeton: Princeton University Press, 1953,
pp. 307–318.

[Sil+18] Silver, D. et al. ‘A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play’. In: Science vol. 362,
no. 6419 (2018), pp. 1140–1144.

[SIN20] SINTEF. Data-driven road construction sites. https://www.sintef.no/
en/projects/2020/data-driven-road-construction-sites/. Accessed:
March 15, 2023. 2020.

[SIN23] SINTEF. Artificial intelligence cuts emissions and costs of road
projects. https: / /www.sintef.no/en/ latest- news/2023/artificial -
intelligence- aids- with- cuts- in - emissions- and- costs- of - road-
projects/. Accessed: April 14, 2023. 2023.

[Ska19] Skanska. Skanska vil kutte utslipp med kunstig intelligens. https:
//www.skanska.no/hvem-vi-er/media/aktuelt/skanska-vil-kutte-
utslipp-med-kunstig-intelligense/. Accessed: April 14, 2023. 2019.

[Str01] Stripple, H. Life cycle assessment of road. A pilot study for inventory
analysis. 2001.

[UiO] UiO, M. i. MAEC-studenter ble vinnerne av Norges Bank Case-
NM 2020! https://www.mn.uio.no/math/studier/aktuelt/aktuelle-
saker/2020/maec-studenter-vant-nb-casenm.html. Accessed: April
21, 2023.

[Vol] Volvo. A45G FS Articulated Haulers. https://www.volvoce.com/
norge / nb - no / volvo - maskin - as / products / articulated - haulers /
a45gfs/. Accessed: February 20, 2023.

[WD92] Watkins, C. J. and Dayan, P. ‘Q-learning’. In: Machine learning
vol. 8 (1992), pp. 279–292.

[XG18] Xu, Y. and Goodacre, R. ‘On Splitting Training and Validation
Set: A Comparative Study of Cross-Validation, Bootstrap and
Systematic Sampling for Estimating the Generalization Performance
of Supervised Learning’. In: Journal of Analysis and Testing vol. 2
(Oct. 2018).

[AA] Achiam, J. and Abbeel, P. OpenAI: Spinning Up. https://spinningup.
openai.com/en/latest/index.html#. Accessed: December 7, 2022.

94

https://arxiv.org/abs/2106.03253
https://www.sintef.no/en/projects/2020/data-driven-road-construction-sites/
https://www.sintef.no/en/projects/2020/data-driven-road-construction-sites/
https://www.sintef.no/en/latest-news/2023/artificial-intelligence-aids-with-cuts-in-emissions-and-costs-of-road-projects/
https://www.sintef.no/en/latest-news/2023/artificial-intelligence-aids-with-cuts-in-emissions-and-costs-of-road-projects/
https://www.sintef.no/en/latest-news/2023/artificial-intelligence-aids-with-cuts-in-emissions-and-costs-of-road-projects/
https://www.skanska.no/hvem-vi-er/media/aktuelt/skanska-vil-kutte-utslipp-med-kunstig-intelligense/
https://www.skanska.no/hvem-vi-er/media/aktuelt/skanska-vil-kutte-utslipp-med-kunstig-intelligense/
https://www.skanska.no/hvem-vi-er/media/aktuelt/skanska-vil-kutte-utslipp-med-kunstig-intelligense/
https://www.mn.uio.no/math/studier/aktuelt/aktuelle-saker/2020/maec-studenter-vant-nb-casenm.html
https://www.mn.uio.no/math/studier/aktuelt/aktuelle-saker/2020/maec-studenter-vant-nb-casenm.html
https://www.volvoce.com/norge/nb-no/volvo-maskin-as/products/articulated-haulers/a45gfs/
https://www.volvoce.com/norge/nb-no/volvo-maskin-as/products/articulated-haulers/a45gfs/
https://www.volvoce.com/norge/nb-no/volvo-maskin-as/products/articulated-haulers/a45gfs/
https://spinningup.openai.com/en/latest/index.html##
https://spinningup.openai.com/en/latest/index.html##

	Acknowledgements
	Contents
	Introduction
	Outline

	Reinforcement Learning Framework
	Theory
	Reinforcement Learning
	Neural Networks
	Graphs
	Bruce's algorithm

	Method
	Route Optimization on Construction Site
	An Overview of the Problem's Environment
	The Roles of the Agents: An In-Depth View
	A Closer Look at the Planning Agents
	The Coffee Break Agent: A Solution for Temporary Breaks
	Node Agents: Guiding the Way through Graphs

	A Detailed Breakdown of an Episode
	Exploration vs. Exploitation
	A Guide to the Framework's Configuration Options

	Results
	Evaluate Performance: Two Baselines
	Testing the Framework's Capability on Basic Scenarios
	Framework Evaluation: Analysis on Multiple Maps

	Discussion

	Fuel Model
	Towards more advanced route planning
	Theory
	A Brief Overview of How to Evaluate Machine Learning Models
	Understanding Model Interpretability: Exploring SHAP and SAGE Values

	Data
	Exploring the GPS and Fuel Data
	Data Selection and Cleaning
	Merging Data
	Statistics of a Route
	The Final Data Set
	Investigation of New Features

	Method
	Predictive Model for Fuel Consumption on a Route
	Fine-tuning Models: Hyperparameter Tuning
	Feature Investigation for Improved Model Performance

	Results and Discussion
	Measuring Model Performance
	Analyzing Model Predictions
	Final Considerations: Key Takeaways and Insights

	Summary and Conclusions
	Appendices
	Appendix for Part I
	Universal Approximation Theorem
	The Default Configuration of the Framework
	Determining the Starting Order of Dumpers
	Map 1: Demonstrating Baseline 1
	Map 1: Dumper and Loader Scheduling and Performance

	Appendix for Part II
	A Brief Introduction to Decision Trees
	Tables of Selected Data Points
	Data Summary: A Table of Statistics

	Bibliography

