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Abstract

We define a family of coherent sheaves indexed by the natural numbers on the Hilbert
scheme of points on a surface S, and study some of their properties. The first two sheaves
are bundles whose degeneracy loci parametrize subsets of singular loci of curves on S,
that are members of general linear systems of appropriate dimension.

We verify that one degeneracy locus is of expected dimension and compute the total
Chern class of the first bundle, as well as relate the Chern classes of the second bundle
to the Chern classes of two tautological bundles.
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Chapter 0

A Short Anecdote

I believe it was in the 11th lecture of the commutative algebra course I took last autumn
that professor Kristian Ranestad turned thoughtfully to regard the view from the 11th

floor of Niels Henrik Abels Hus and muttered: “there must be something more to this”.
I do not remember the topic of the lecture, but these words remained with me, fore I
found them to be the perfect summary of any small investigation into the unknown.

Specifically, writing a master’s thesis in mathematics is such an investigation. That is
how I have experienced it, at least. It seems to me I have wandered through a cluster of
crossroads marked with road signs written in some semi-familiar language.

The road-cluster has been charted by explorers preceding me, of course, so the journey
mostly consists of me deciphering the atlas they handed down. It seems then, that I
should not have encountered any surprises. That is not the case, however. Sometimes I
wandered down deciphered roads of the atlas, coming upon paths not mentioned in the
charts. In those moments I could not help but think: there must be something more to
this.
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Chapter 1

Introduction

Enumerative geometry is an ancient mathematical discipline. An early example of a
problem within enumerative geometry is the problem of Apollonius. The problem bears
the name of the ancient greek geometer Apollonius of Tyana, who stated and solved it.
Apollonius asks: Given three general circles in the plane (e.g. three circles with distinct
radii and centra that are not on a line), how many circles are tangent to all three circles?

The questions studied by enumerative geometers are usually stated in a similar manner
to Apollonius’ problem. Such questions are generally of the form: “how many geometric
objects satisfy a given set of conditions?”. This thesis is not an exception to these sort
of inquiries. We pick up the threads of a series of results that attempt to answer the
question: “Given a general collection of curves on a surface, how many curves in the
collection will be nodal?”.

Steiner commented in 1848 in the paper1 [Ste54], that the answer to the question: “How
many reduced degree d curves on P2 in a general pencil are nodal?” was 3(d− 1)2. Klei-
man, Piene suggest in [KP04, Remark 3.7] that this was probably known before then. In
1863, Cayley computes the number of reduced 2-nodal curves on P2 in a general pencil to
be 3

2(d−1)(d−2)(3d2−3d−11) [KP04], by constructing a ‘discriminant of 2-nodal curves’.

Much later, Severi – a geometer part of the Italian school of the early 20th century –
asserted that the discriminant is irreducible, making it a variety. His intuition was right,
but the proof was wrong, as Fulton states in [Ful83]. Three years after Fulton remarks
the importance of proving the irreducibility of the discriminant, Harris provides a correct
proof in [Har86].

Twelve years after Harris’ proof, Göttsche conjectures the theorem on which this thesis
is based. In 1999, the problem of counting degree d nodal curves on P2 in general linear
systems had been solved2. The drive for generalization motivated the generalization to
the problem of counting nodal curves on ‘well behaved smooth surfaces’, such as a K3
surface. It did not take long before mathematicians started working on a generalization
to arbitrary smooth projective surfaces. In rough terms, the Göttsche conjecture counts
the number of δ-nodal curves on a smooth projective surface in a general linear system,

1I could only access an 1854 edition. See [KP04] for the exact reference.
2Recursive formulas for computing the number of nodal curves in the linear systems were first given

by Ran [Ran89] and later by Harris-Caporaso [CH98].
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Chapter 1. Introduction

provided that the ambient complete linear system is ‘sufficiently ample’. More accurately,
it states the following.

Theorem 1.1. (The Göttsche Conjecture, [KST11, Theorem 4.1])
Suppose that L is a δ-very ample line bundle on a smooth projective surface S. If Pδ is a
general linear system of curves on S, the number of δ-nodal curves in Pδ is a polynomial
of degree δ in the Chern numbers L2, L.KS ,K

2
S and c2(S).

By now, Göttsche’s conjecture has many proofs (see for instance [KST11] or [Tze12]). It
also has a vast generalization provided by Rennemo in [Ren17], under whose supervision
I pick up the torch which illuminates the study of linear systems of nodal curves on
smooth surfaces. However, instead of studying the collections of nodal curves, we study
the collections of their nodes. It turns out that there is a natural generalization of the
question: how many δ-nodal curves are there in a general linear system of dimension δ?
Namely, we may ask: what happens when the dimension of the system does not equal the
number of nodes our curves have? Let us start by studying the simplest possible case.

Problem 1. Let S be any smooth projective surface equipped with a sufficiently ample
line bundle L. Letting |L| = PH0(S,L), we shall see that there is a codimension 1
subscheme |L|1 ⊂ |L| consisting of all nodal curves on S. Take P2 to be a general linear
system in |L|. Then P2 ∩ |L|1 has dimension 1. Away from the curves with more than 1
node in |L|1, we may map a curve C ∈ |L|1 to its nodal point on S. Call this map ϕ1. If
the image of ϕ1 is a scheme, then it has a canonical class in the Chow ring. We ask: are
we able to identify the class of this scheme in the Chow ring A(S)?

There is no reason for us to limit our study to the 1-nodal curves in |L|. As will be
shown later, the set Pδ+1 ∩ |L|δ will be of dimension 1. This generalization raises some
questions. We may ask: letting C ∈ Pδ+1 ∩ |L|δ, what should the codomain of the map
C 7→ Csing be? We require this codomain to be a projective variety that keeps track of δ
points on S. Some obvious candidates for this variety are:

1. The δth order symmetric product of S given as Symδ S = Sδ/Sδ, where Sδ is the
symmetric group on δ elements.

2. The Blowup of Symδ Sδ or Sδ along a number of diagonals.

3. The Hilbert scheme S[δ] parametrizing 0-dimensional subschemes of S of length δ.

The third alternative is quite promising, due to the fact that much of the modern
algebro-geometric theory of counting singular curves on surfaces takes place in the study
of Hilbert schemes of points on surfaces. The second alternative is essential to us in our
study of the case δ = 2. Among other varieties, we will work with the blowup of S × S
along the diagonal.

We generalize Problem 1 further.

Problem 2. Consider X = Pγ ∩ |L|δ, where γ ≥ δ. Under some assumptions, We shall
see that X is of dimension γ − δ. If it is a scheme, compute the image of ϕδ in the Chow
ring A(S[δ]), when ϕδ is the function defined on the subset of X of curves with exactly δ
nodes, which are mapped to their singular loci, that are closed points in S[δ].

4



We have illustrated the situation in Problem 2 for γ = 2 and δ = 1 in Figure 1.1.

It turns out that our approach to solving problem 2 for the special cases δ ∈ {1, 2} does
not seem to generalize to δ > 2, something we comment on in Section 5.2.1. Note that
the case Pδ ∩ |L|δ is precisely the Göttsche conjecture, something we prove in Section
5.2.3.

Figure 1.1: Illustration of the definitions in Problem 2, in the case where γ = 2 and δ = 1.
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Chapter 1. Introduction

Results

We solve a readjusted version of Problem 1 in Section 6.1.2. A crucial part of solving the
problem is restating it into a manner that is computationally tangible. The restatement
is called Problem 3, and it uses the important Observation 5.26, which relates Problem 1
to the Chern classes of the first somewhat tautological bundle ST (L, 1). We define the
somewhat tautological sheaves ST (L, n) in Section 5.2.1, where we also categorize some
of their properties. The solution of Problem 3 reads as follows.

Proposition 1.2. (Solution of Problem 3)
Let (S,L) be a smooth projective surface equipped with a 2-very ample line bundle. Then if
P2 ⊂ PH0(S,L) is a general linear system, the associated class of the locus V of singular
points of curves in P2 in A(S) is

[V ] = c1(ST (L, 1)) = 3c1(L) + c1(ΩS),

where ST (L, 1) is the first somewhat tautological bundle.

The proposition and proof is given in full detail as Proposition 6.5.

Although Problem 2 remains open, we make some headway on the special case where
δ = 2. This special case of Problem 2 is also readjusted using Observation 5.26, which
gives us the liberty of working a more direct problem. We use the observation to relate
Problem 2 to the Chern classes of the second somewhat tautological bundle ST (L, 2). We
have dubbed this readjustment Problem 4. We have dedicated Chapter 7 to computing
the Chern classes of ST (L, 2). The main result of the chapter is the following theorem,
wherein we detail the total Chern class of ST (L, 2).

Theorem 1.3. (Partial solution of Problem 4)
Let S be a smooth projective surface equipped with a line bundle L. We have that

c•(ST (L, 2)) = c•(L[2])c•(F) = c•(L[2])c•(qB∗(p∗
BL ⊗ IB/I2

B)) (1.1)

where
c•(F) =

c•((ΩS ⊗ L)[2])
c•(qB∗(k∗OE(−E)⊗ p∗

BL)) (1.2)

and
c•(IB/I2

B) = q∗
B [c•(ΩS[2])]

p∗
1 [c•(ΩS)] c•(k∗(ΩE/∆)) . (1.3)

See Theorem 7.1 for a complete description of the theorem and its setting.

6



1.1. Outline

1.1 Outline

Chapter 2 consists of a small collection of results that are essential for any algebraic
geometer working with locally free sheaves. The chapter is aimed towards new geometers,
giving them a frame of reference for important facts that are used sporadically throughout
the thesis.

In Chapter 3 we recall the core concepts, results and tools of intersection theory, notably
the presentation of the Chow ring of a projective space and the generalized Bezout’s
theorem, the fundamental theorem for Chern classes and the splitting principle. We move
on to discussing characteristics of nodal curves and continue by presenting some common
theory surrounding jet bundles, which we will encounter again in Chapter 6. Finally, we
briefly discuss some aspects of singularities and state properties of blowups. These topics
are essential for the thesis, and we will present the core theory surrounding them.

Linear systems are the topic of Chapter 4. Among the prerequisites of the Göttsche
conjecture we find assumptions on the complete linear system |L| as well as assumptions
of generality on the linear systems Pδ. The chapter revolves around defining and provid-
ing examples of these notions, as well as providing results from the literature that are
necessary to the thesis.

The fifth chapter introduces the notions of Hilbert schemes of points on surfaces that are
necessary to us. We review how the theory of Hilbert schemes of points on surfaces is
connected to counting δ-nodal curves (via the Göttsche conjecture) and look into some
of the core theory in the literature on tautological bundles. We continue by defining
and examining the behavior of the somewhat tautological sheaves ST (L, n) by means
of examples and propositions, describing some of their most central properties. Among
other facts, we assert that the first somewhat tautological bundle is the first jet bundle
J1L. A crucial observation at the end of the chapter allows us to readjust Problem 1 to
be more tangible. We also reformulate a special case of Problem 2, using this observation.
Finally, we prove that the special case of Problem 2 where one studies |L|δ∩Pδ is precisely
the Göttsche conjecture.

We compute the total Chern class of the first somewhat tautological bundle on a smooth
projective surface in Chapter 6. Incidentally, this requires us to compute the classes
c•(Symn ΩS) for all n ∈ N which we successfully do. We go on to solve the readjusted
Problem 1, which requires a dimension count of a specific degeneracy locus. Finally, we
illustrate how not to generalize the notion of a jet bundle to encompass data on curves
with at least 2 singularities.

In Chapter 7 we compute the total Chern class of the second somewhat tautological
bundle ST (L, 2). This requires a fair amount of bookkeeping; among other things, we
prove short exactness of a sequence, as well as asserting commutativity of necessary
diagrams. In particular, we relate the Chern classes of the bundle ST (L, 2) to two
tautological bundles.

The appendix consists of two sections. The first sections consists of proofs of preliminary
facts which we considered too tedious, or of too little relevance for the preliminaries. The
second section contains a simile, in Dutch.

7



Chapter 1. Introduction

1.2 Notation and Conventions

We use vector bundle and locally free sheaf interchangeably whenever the meaning is
clear from context. We let V (f1, ..., fr) denote the common zero-set of homogeneous
polynomials f1, ..., fr. Unless otherwise specified, a scheme X will be a separated scheme
of finite type over C. By variety we will mean an integral scheme, i.e. a reduced,
irreducible scheme. By surface we will mean a 2-dimensional variety, and by a curve we
will mean 1-dimensional reduced scheme. If no auxiliary information is given, a point of a
scheme will mean a closed point. We follow Fulton’s convention that the projectivization
PW of vector space W is defined as PW := Proj SymW∨, where W∨ is the dual vector
space ofW . When nothing else is specified, (S,L) is a smooth projective surface equipped
with a line bundle.

8
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Chapter 2

Background on Quasi-Coherent Sheaves

This thesis is about exactly two things: a few handpicked locally free sheaves on smooth
projective varieties, and their Chern classes. It is intended for this chapter to be a small
collection of propositions and theorems which constitute necessary tools for anybody
wishing to work with sheaves in algebraic geometry. Throughout the thesis, I have taken
the freedom of taking these results for granted by referencing them only by their slogan
(and not their number or name). I hope that the appending of these facts will help
readers who are new to algebraic geometry understand the thesis. The experienced
geometer may safely skip this chapter.

2.1 Exact Functors & Locally Free Sheaves

Tensoring by a locally free sheaf in the category of OX -modules is exact.

Proposition 2.1. (Tensoring by a locally free sheaf is xact)
Let X be a scheme, let E be locally free on X and suppose F1,F2 and F3 are OX-modules
that fit into an exact sequence

0 // F1 // F2 // F3 // 0 .

Then the sequence

0 // E ⊗OX
F1 // E ⊗OX

F2 // E ⊗OX
F3 // 0

is exact.

The pushforward of quasi-coherent sheaves along a finite morphism is exact.

Proposition 2.2. (Pushforward along a finite morphism is exact)
Let f : X → Y be a finite morphism of schemes, and let F1,F2 and F3 be OX-modules
that fit into an exact sequence

0 // F1 // F2 // F3 // 0 .

Then the sequence

0 // f∗F1 // f∗F2 // f∗F3 // 0 .

is an exact sequence of OY -modules.

11



Chapter 2. Background on Quasi-Coherent Sheaves

The last proposition of the section provides a practical way of proving an OX -module is
locally free.

Proposition 2.3.
Let X be a scheme and let F1,F2 and F3 be coherent OX-modules that fit into an exact
sequence

0 // F1 // F2 // F3 // 0 .

If F2 and F3 are locally free of finite rank, then so is F1. We also have that if F1 and
F3 are locally free of finite rank, then so is F2. Furthermore, if the Fi all are locally free
of finite rank, then they satisfy

rankF2 = rankF1 + rankF3.

2.2 Adjoint Functors & Stalks

The pullback and pushforward of sheaves along morphisms of locally ringed spaces are
both functors. In fact, the two functors are adjoint.

Proposition 2.4. (Adjoint Property of Push & Pull: [Har77, Page 110])
Let f : X → Y be a morphism of schemes, and let F be an OX-module and G an
OY -module. There is a natural isomorphism of groups

HomOX
(f∗G,F) ∼= HomOY

(G, f∗F).

In the interest of further relating the pushforward and pullback along a morphism, we
state the projection formula.

Proposition 2.5. (Projection Formula [Har77, Exercise II.5.1d])
Suppose f : X → Y is a morphism of schemes, F is an OX-module and E is a locally
free OY -module of finite rank. Then there is an isomorphism

f∗(F ⊗OX
f∗E) ∼= f∗(F)⊗OY

E

of OY -modules.

The stalks of the pullback of a quasi-coherent sheaf are well behaved, whereas the stalks
of the pushforward of any sheaf are not. The latter is remediable when one pushes
forward along a closed immersion.

Proposition 2.6. (Stalks of pullbacks of quasi-coherent sheaves [Stacks, Tag 0098])
Let f : X → Y be a morphism of schemes, and let F be an OY module. Let x ∈ X.
Then

(f∗F)x = Ff(x) ⊗OY,x
OX,x,

as OX,x-modules.

12
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2.3. The Grothendieck Ring

2.3 The Grothendieck Ring

The Grothendieck ring K(X) of a variety X is (in the context of algebraic geometry) a
ring of formal sums of isomorphism classes of locally free sheaves modulo some relation.
There exists a ring-homomorphism relating the Grothendieck ring to the Chow ring,
which explains our interest in K(X).

It is easiest to describe the Grothendieck ring by constructing it. For any scheme X, let
L(X) denote the free abelian group on the set of isomorphism classes of vector bundles
on X. As a group we can describe K(X) as a quotient of L(X), where we mod L(X)
out with the relation [F ] = [E ] + [H] whenever there exists an exact sequence of locally
free sheaves

0 // E // F // H // 0 .
The multiplicative operation making K(X) into a ring is the tensor product [E ] · [F ] =
[E ⊗ F ], which we extend linearly. Multiplication distributes over addition, since tensor-
ing by a locally free sheaf is exact.

We introduce K(X) mostly as a referential framework for applying the Grothendieck-
Riemann-Roch theorem, as well as for easing the notation in Chapter 7. For a thorough
introduction, see [Ful98, Chapter 15]. Let us finish off the chapter by committing a
felony: introducing theory that is incomprehensible without the definitions of Section
3.2, a later section.

Let E be a locally free sheaf of finite rank on X. Factor the total Chern class
c•(E) = Π(1 + αi), and call αi the ith Chern root of E . The Chern character ch(−) of E
is defined as

ch(E) =
∑

i

eαi =:
∑

i

chi(E),

where

eαi =
rank E∑
k=0

αi
k

k! .

We can express the Chern character of E in terms of the Chern classes ci(E) (encountered
in Section 3.2). The first terms of the Chern character are

ch0(E) = rank E ;
ch1(E) = c1(E);

ch2(E) = c1(E)2 − 2c2(E)
2 ;

ch3(E) = c1(E)3 − 3c1(E)c2(E) + 3c3(E)
6 .

The Chern character is quite useful in our pursuit. Under certain assumptions it is an
isomorphism that relates the Grothendieck ring to the Chow ring (see Section 3.1) via
the following.

Theorem 2.7. [EH16, Theorem 14.3]
If X is a smooth projective variety, then the map

ch : K(X)⊗Q→ A(X)⊗Q

is an isomorphism of rings.

13



Chapter 2. Background on Quasi-Coherent Sheaves

It is constructive for the thesis to also introduce the Todd classes of E , which are defined
in a similar manner to the Chern character. We define the Todd class of E to be

td(E) =
n∏

i=1

αi

1− e−αi
=:
∑

i

tdi(E).

The Todd class can also be expressed in terms of the Chern classes ci(E). The first terms
of the Todd classes of a locally free sheaf E are

td0(E) = 1;

td1(E) = c1(E)
2 ;

td2(E) = c1(E)2 + c2(E)
12 ;

td3(E) = c1(E)c2(E)
24 .

We will make use of the Todd classes when we apply the Grothendieck-Riemann-Roch
theorem (that we sometimes abbreviate to GRR). The theorem is stated in Section 3.2.

2.4 Operations on Locally Free Sheaves

Given a locally free sheaf F , there are operations that map F to a different locally
free sheaf. In this thesis we make use of three such operations. Firstly, the n-fold
tensor product of F , denoted Tn(F). Secondly, the nth symmetric algebra of F , denoted
Symn(F) in this thesis, but sometimes Sn(F) in the literature. Finally, we have the
nth wedge product of F , which we denote

∧nF . We state a theorem which asserts that
these sheaves are indeed locally free. The proposition also informs us of their rank;
this information will be used multiple times throughout the thesis. We cite [EO22a,
Proposition 11.22].

Theorem 2.8. (Facts about locally free sheaves)
Let X be a scheme. The set of locally free sheaves is closed under direct sums, tensor
products, symmetric products, exterior products, duals and pullbacks.
If F is locally free of rank r with m1, ...,mr a basis of Fx as an OX,x-module, then

i) Tn(F) is locally free of rank rn, and the set of sections of the form m1 ⊗ ...⊗mn

where ik ∈ {1, ..., r} is a basis of Tn(F)x as an OX,x-module;

ii) Symn(F) is locally free of rank
(n+r−1

r−1
)

and the set of sections of the form mn1
1 ···mnr

r

where
∑
ni = n is a basis of Symn(F)x as an OX,x-module;

iii)
∧n(F) is locally free of rank

(r
n

)
, and the set of sections of the form mi1 ∧ · · · ∧min ,

where i1 < i2 < ... < in, is a basis of
∧n(F)x as an OX,x-module;

iv) If
0 // F ′ // F // F ′′ // 0

is an exact sequence of locally free sheaves of ranks n′, n and n′′ respectively. Then

n∧
F ∼=

n′∧
F ′ ⊗OX

n′′∧
F ′′.

14



Chapter 3

Intersection Theory

In this chapter we recall some fundamental tools of intersection theory and stockpile
relevant facts about singularities and blowups.

3.1 The Chow Ring

Conventions

We denote the Chow ring of a smooth, quasi-projective variety X by A(X). We let it
be clear from context when we consider a subvariety of X as an element in the ring, as
opposed to a variety in the usual sense.

The Chow Ring of Projective Space

The Chow ring of a projective space is quite important for this thesis, as the linear
systems we study are projective spaces parametrizing curves on a surface.

Theorem 3.1. [EH16, Theorem 2.1]
We have that

A(Pn
C) = Z[H]/Hn+1,

where H ∈ A1(Pn
C) is the class of a hyperplane. Furthermore, the class of a subvariety

Pn
C of codimension k and degree d is dHk.

Having complete knowledge of the Chow ring of Pn allows for the proof of a more general
version of Bezout’s theorem. This version is better suited for intersection theoretical
applications.

Theorem 3.2. (Bezout’s Theorem [EH16])
If X1, ..., Xk ⊂ Pn are subvarieties of codimension c1, ..., ck with

∑
ci ≤ n, and the Xi

intersect generically transversely, i.e. X1 ∩ ... ∩Xk is reduced of codim c =
∑k

i=1 ci, then

deg(X1 ∩ ... ∩Xk) =
∏

deg(Xi).

In particular, two subvarieties X,Y ⊂ Pn having complementary dimension that intersect
transversely will intersect in exactly deg(X) · deg(Y ) points.

15



Chapter 3. Intersection Theory

The Class of a Subscheme of a Smooth Variety

There is a natural way of associating to a subscheme of a smooth variety X an element
in the Chow ring A(X) of X. Let Y ↪−→ X be a subscheme of X, and let Y1, ..., Yk be the
irreducible components of the reduced scheme Yred. The Jordan-Hölder theorem gives
that all composition series in OY,Yi are of the same (finite) length ℓi, since our schemes
are Noetherian and the ground field is C. The associated class of Y , which henceforth
will be referred to as the class of Y in A(X), is

[Y ] :=
∑

i

ℓi[Yi],

where [Yi] denotes the class of the subvariety Yi ↪−→ X.

Functoriality

Let f : Y → X be a map of schemes. If f is proper, it will induce a group homomorphism
f∗ between Chow groups A(Y ) and A(X). The homomorphism is defined by extending a
homomorphism f∗ : Z(Y )→ Z(X) between the group of cycles on Y and X respectively.
Since this construction is somewhat technical, we refer to [EH16, Chapter 1.3.6] or [Ful98,
Chapter 1.4] for a detailed construction, allowing us to only state the theorem we need.

Theorem 3.3. [EH16, Theorem 1.20]
If f : Y → X be a proper map of schemes, then the map f∗ : Z(Y )→ Z(X) detailed in
Chapter 1.3.6 in [EH16] induces a map of groups f∗ : Ak(Y )→ Ak(X) for each k.

The definition of the pushforward is needed to express the Grothendieck-Riemann-Roch
theorem, which we will encounter in the next section.

If f : Y → X is a flat morphism of smooth projective varieties, then it induces a map
between Chow rings.

Theorem 3.4. [EH16, Theorem 1.25]
Suppose f : Y → X is a flat morphism of smooth projective varieties. Then the map
f∗ : A(X)→ A(Y ) defined on cycles by

f∗(⟨A⟩) := ⟨f−1(A)⟩ for every subvariety A ⊂ X

induces a ring homomorphism.

This result is useful when computing Chern classes, as we will see in the main theorem
of the next section.

3.2 Chern classes

Conventions

We denote the kth Chern class of a vector bundle E by ck(E) ∈ Ak(X) and define
c•(E) := 1 + c1(E) + c2(E) + ...+ crank E(E) to be the total Chern class of E .

16



3.2. Chern classes

Foundational Theory of Chern Classes

The Chern classes of a vector bundle E on a smooth, projective variety X are classes
in the Chow ring A(X) that are associated to the vector bundle. The Chern classes
are uniquely determined by a few natural properties, which may be summarised in one
theorem.

Theorem 3.5. [EH16, Theorem 5.3]
Let X be a smooth quasi-projective variety, and let E be a vector bundle on X. There is a
unique way of assigning to each vector bundle E a class c•(E) = c0 + c1(E) + c2(E) + · · · ∈
A(X) in such a manner that:

a. (Line Bundles) If L is a line bundle on X then the Chern class of L is 1 + c1(L).

b. (Bundles with enough sections) If τ0, . . . , τr−i are global sections of E, and the
degeneracy locus D = V (τ0 ∧ τ1 ∧ ... ∧ τr−i) where the sections are (linearly)
dependent has codimension i, then ci(E) = [D] ∈ Ai(X).

c. (Whitney’s formula) If

0 // E // F // G // 0

is a short exact sequence of vector bundles on X then

c•(F) = c•(E)c•(G) ∈ A(X).

d. (Functoriality) If ϕ : Y → X is a morphism of smooth varieties, then

ϕ∗(c•(E)) = c•(ϕ∗(E)).

It is possible to extend the definition of the total Chern class to coherent sheaves. Indeed,
any coherent sheaf F on a smooth projective variety X can be resolved by locally free
sheaves, giving an exact sequence

0 En En−1 · · · E1 E0 F 0 (3.1)

where the Ei are locally free. This allows for a canonical way to define the total Chern
class of F in a manner which makes Whitney’s formula hold in general.

Definition 3.6. (Total Chern class of a coherent sheaf)
Let F be a coherent sheaf on a smooth projective variety X with a resolution of locally
free sheaves as in (3.1). Then we define

c•(F) :=
n∏

i=0
c•(Ei)(−1)i

,

the total Chern class of F .

This definition will be relevant in Chapter 7, where the final computation of the Chern
classes of ST (L, 2), the second somewhat tautological bundle, will be partially expressed
in the Chern classes of some coherent sheaves.

In addition to uniquely determining the Chern classes associated to a vector bundle,
the properties in Theorem 3.5 also serve as tools for computing the classes. Pairing the
theorem with the splitting principle provides us with a powerful combination of tools for
proving identities between Chern classes of vector bundles.

17



Chapter 3. Intersection Theory

Principle 3.7. The Splitting Principle [EH16, Theorem 5.11]
Any identity among Chern classes of vector bundles that is true for vector bundles that
are direct sums of line bundles is true in general.

This formulation of the splitting principle is somewhat vague; it is not a priori clear what
is meant by ‘identity’. However, instead of giving an accurate description of the theorem
the above principle attempts to describe, we instead illustrate the utility of the splitting
principle via an example.

Example 3.8. (An Application of the Splitting Principle)
Let E be a rank 2 vector bundle on a smooth projective variety X. We desire to compute
c•(Sym2 E), where in this setting, ‘compute’ means ‘express the Chern classes of Sym2 E
in terms of the Chern classes of E ’. Assume E = L ⊕M, where L, M are line bundles
with c1(L) =: ℓ and c1(M) =: m. By Whitney’s sum formula, we have that

c•(E) = c•(L)c•(M) = (1 + ℓ)(1 +m) = 1 + (m+ ℓ) +mℓ.

Since the Chow ring is a graded ring, the product mℓ will be in the second graded com-
ponent of A(X). We may thus conclude that c1 := c1(E) = m+ ℓ and c2 := c2(E) = mℓ.

Now for the main computation, we have that

c•(Sym2 E) = c•(Sym2(L ⊗M)
= c•(L⊗2 ⊕ (L ⊗M)⊕M⊗2).

By applying Whitney’s formula to the right hand side, we obtain

c•(Sym2 E) = c•(L⊗2)c•(L ⊗M)c•(M⊗2).

Furthermore, since c1 : Pic(X)→ A1(X) is a homomorphism, the above product may
be expanded to

c•(Sym2 E) = (1 + 2ℓ)(1 + ℓ+m)(1 + 2m) (∗)
= 1 + 3(m+ ℓ) + 4mℓ+ 2(m+ ℓ)2 + 4mℓ(m+ ℓ).

Substituting for c1 and c2, we obtain the expression

c•(Sym2 E) = 1 + 3c1 + (4c2 + 2c2
1) + 4c1c2.

Since this expression holds for all rank 2 vector bundles on X that split, it will hold for
all rank 2 vector bundles on X, by the splitting principle. △

We remark that Eisenbud & Harris provide the same example in [EH16], but make a
small error in expanding the product (∗), that we have corrected.

A particular application of Whitney’s formula in combination with the splitting principle
will be applied multiple times in Chapters 6 & 7. We are referring to the proposition
below, whose proof follows along the same lines as the method in Example 3.8.

Proposition 3.9. [EH16, Proposition 5.17]
If E is a vector bundle of rank r and L is a line bundle, then

ck(E ⊗ L) =
k∑

l=0

(
r − l
k − l

)
c1(L)k−lcl(E) =

k∑
i=0

(
r − k + i

i

)
c1(L)ick−i(E).

18



3.2. Chern classes

Remark 3.10. More generally, there are explicit formulas that express the Chern
classes of a tensor product of locally free sheaves c•(E ⊗ F) when E and F are of finite
rank. The proofs in this thesis only require the application of Proposition 3.9, but we
nonetheless give references that state formulae for c•(E ⊗F), as this more general case is
a useful preliminary in computations similar to those that are present in this thesis. A
recent article is [Szi22], which provides two formulas, and also comments on formulae in
[Man16]. △

Varieties in general have many affiliated bundles. Computing the Chern classes of such a
bundle often comes down to applying Whitney’s formula to a short exact sequence the
bundle is part of. Since our linear systems are projective spaces, it is worth keeping track
of the Chern classes of bundles associated to Pn. We state some in the table below.

Table 3.1: Chern classes of bundles associated to Pn.

Total Chern class of bundles Class in A(Pn)

c•(TPn) (1 +H)n+1

c•(ωPn) 1− (n+ 1) ·H
c•(ΩPn) (1−H)n+1

c•(NY/Pn) 1 + dH ′

In the table, H denotes the class of a hypersurface in A(Pn), H ′ denotes the inverse
image of the inclusion Y ⊂ Pn, where Y is a smooth degree d hypersurface. Furthermore
we have that TPn is the tangent sheaf of Pn, ωPn the canonical sheaf on Pn, ΩPn the
sheaf of Kähler differentials on Pn and NY/Pn the normal bundle of a closed projective
subscheme of Pn.

Grothendieck-Riemann Roch

In simple terms, the Grothendieck-Riemann-Roch formula explains the relation between
the Chern classes of a vector bundle to the Chern classes of its pushforward along a
proper morphism. We recall from Secion 3.1 that a proper morphism f : Y → X of
schemes induces a group homomorphism f∗ : A(Y )→ A(X) of Chow groups. Under the
same assumption on f , it also induces a map

f∗ : K(Y )→ K(X)

between the Grothendieck groups of Y and X. Since the definition of the pushforward
f∗ is a little technical, and we will not use it explicitly in this thesis, we refer curious
readers to [Ful98, Chapter 15.1], where a comprehensive introduction is given.

Having covered its prerequisites, we move on to stating the Grothendieck-Riemann-Roch
theorem.

Theorem 3.11. (Grothendieck-Riemann-Roch, [Ful98, Theorem 15.2])
Let f : X → Y be a proper morphism of non-singular varieties. Then for all α ∈ K(X),

ch(f∗α) · tdY = f∗(ch(α) · tdX)

in A(Y )⊗Q, where we denote tdZ := td(TZ) if Z is a smooth variety. In other words,
the diagram
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Chapter 3. Intersection Theory

K0(X) A(X)

K0(Y ) A(Y )

ch(−)·tdX

f∗ f∗

ch(−)·tdY

commutes.

We shall make use of the theorem in Chapter 7.

3.3 Jet Bundles

Given a smooth projective variety Y equipped with a line bundle L, we denote by JnL
the nth jet bundle of a line bundle L1. The jet bundle is defined to be the locally free
sheaf

JnL = π1∗(OY ×Y /In+1
∆ ⊗ π∗

2L), (3.2)

where π1 : Y × Y → Y is first projection, π2 : Y × Y → Y is second projection and
where I∆ denotes the ideal of the diagonal ∆ ⊂ Y × Y .

A lot of information about the jet bundles is made available by the following theorem. I
cite [EH16], but I have made a few edits.

Theorem 3.12. (The Jet Bundle Theorem)
Let Y be a smooth projective variety equipped with a line bundle L. The sheaves JmL
have the following properties:

a. If p ∈ Y is a closed point, then there is a canonical identification of the fiber
JmL ⊗ κ(p) of JmL at p with the sections of the restriction of L to the mth-order
neighborhood of p; that is,

Jm(L)⊗ κ(p) = H0(L ⊗ (OX, p/m
m+1
X,p ))

as vector spaces over κ(p) = OX, p/mX,p = C. In other words,

JmL ⊗ κ(p) = {germs of sections of L at p}
{germs vanishing to order ≥ m+ 1 at p} .

b. If s ∈ H0(L) is a global section, then there is a global section s̃ ∈ H0(Jm(L)) whose
value at p is the class of s in H0(L ⊗ (OX, p/m

m+1
X,p )).

c. For each m > 0 there is a short exact sequence of OY -modules

0 // L ⊗ Symm(ΩY ) // JmL // Jm−1L // 0

where ΩY denotes the sheaf of C-linear differential forms on Y .

The short exact sequences in c) in the theorem are of great use when computing the
Chern classes of JnL, as we may apply Whitney’s formula recursively. The challenge
in this lies in computing the Chern classes of Symn(ΩY ). We make this computation in
Section 6.1.1, in the special case where Y is a surface.

1In the literature, such as [Ful98] and [EH16], a jet bundle is often referred to as a bundle of principle
parts. We prefer the term jet bundle.
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3.4. On Singularities and Blowing Up

Example 3.13.
The 0th jet Bundle of L is L. We have worked out a proof and appended it to A.1.1. △

A corollary to the theorem is JnL being locally free of rank
(n+k

k

)
. The proof is suggested

by Vakil in an unpublished note. We have written it out and appended it to A.1.2

Corollary 3.14. If dimY = k, then Jn(L) is a locally free sheaf of rank
(n+k

k

)
.

3.4 On Singularities and Blowing Up

The Göttsche conjecture counts the number of nodal curves in a general linear system of a
sufficiently very-ample line bundle. Heuristically, we say a curve is nodal if at some point,
the curve looks like {xy = 0} at the point. Rigorously we say a curve C is nodal at a
point p if it is analytically isomorphic to the origin in the scheme Y = Spec(C[x, y]/(xy)).
That is, the completion of the local ring of p ∈ C is isomorphic to the completion of the
local ring of OY,0, where 0 ∈ Y is the origin.

Example 3.15. (A slightly altered version of [Har77, Example I.5.6.3])
The origin of the plane curve C given by y2 − x2(x+ 1) = 0 has a node at the origin.
This becomes apparent when we study the LHS of the equation in the ring C[[x, y]],
where we can factor y2 − x2(x+ 1). We have that

y2 − x2(x+ 1) = (y − x
√

1 + x)(y + x
√

1 + x),

the term
√

1 + x being an element in C[[x, y]] as it is a binomial series. Indeed, it equals
the formal power series

(1 + x)
1
2 =

∞∑
k=0

(
1
2
k

)
,

where (
α

k

)
:= α(α− 1) · · · (α− k + 1)

k! .

The crux of the idea is that we have factored y2 − x2(x+ 1) = gh, where g, h ∈ C[[x, y]].
Hartshorne then shows that OC,0 ∼= C[[x, y]]/(gh). He continues by applying an
automorphism mapping g and h to x and y respectively, granting us the isomorphism
OC,0 ∼= C[[x, y]]/(xy). See Figure 3.1 for a plot of the curves, as well as Figure 3.2 for a
plot of the folium of Descartes. △

Definition 3.16. We say a curve is δ-nodal if it has δ nodes.

Let us introduce some tools that will give insight into the geometry of singular curves.
We usually focus on reduced curves. A nice property of reduced curves is that their
singular locus is empty or zero-dimensional.

Remark 3.17. For a reduced curve C, we have dimCsing ≤ 0. △

We will use this fact in the proof of Proposition 6.5.

A convenient way of asserting whether a point is singular (on any projective variety) is
by applying the projective Jacobian criterion. We cite the proposition from [EO22b].
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Chapter 3. Intersection Theory

(a) The curve xy = 0. (b) The curve y2 − x2(x + 1) = 0.

Figure 3.1: Plot of the plane curves in example 3.15.

Figure 3.2: The folium of Descartes: x3 + y3 − 3xy = 0
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Proposition 3.18. (The projective Jacobian Criterion)
Let X = V (F1, F2, ..., Fr) ⊂ Pn be a closed irreducible projective algebraic set, and let

J =
(
∂Fi

∂zj
(p)
)
.

Then the rank of J does not depend on the choice of representative for p. Moreover X
is non-singular at p if and only if rankJ = n− dimX.

Blowups and the Resolving of Singularities

Some singularity types are possible to ‘resolve’ by performing a series of blowups at the
singular locus. The idea is that, to any projective variety X, we may associate a smooth
projective variety X̃ such that there is a birational map X̃ X.Φ This was proved
by Hironaka in a famous paper.

Theorem 3.19. (Hironaka’s theorem on resolutions of singularities [Hir64])
Let B be a field of characteristic zero. If X is an algebraic B-scheme, say reduced and
irreducible, then there exists an algebraic subscheme D of X such that

(i) the set of points of D is exactly the singular locus of X, and

(ii) if f : X̃ → X is the blowup of X along D, then X̃ is non-singular.

The restriction of Φ is an isomorphism from Φ|X̃\E : X̃ \ E → X \ Z, where Z is the
singular locus on X.

This interpretation of blowups is geometric and allows for a lot of intuition. It is however
not hands-on, in the sense that we obtain tools to work with the blowup of a variety.
This is remedied by the following identification of blowups with fibre products.

Theorem 3.20.
Let Y,Z be smooth projective varieties such that Z closed

↪−−−→ Y . Then the following are true:

a. E is the fibre product in the diagram:

E BlZ(Y )

Z Y

k

⌜
ϕ π

closed

where π : BlZ(Y ) → Y is the blow-up morphism and k is the inclusion of the
exceptional divisor into the blow-up.

b. Let the setting be that of a. Then E = P(NZ/Y ).

This theorem will come in handy in Section 7.5, wherein we compute the total Chern
class of the second somewhat tautological bundle ST (L, 2).
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Chapter 4

Linear Systems

Linear systems, also known as linear series, are among the simplest examples of moduli
spaces. They are projectivizations of vector subspaces of V = H0(S,L), meaning that
they take on the form of projective spaces. In our setting, the linear systems parameterize
curves on a smooth projective surface. In this chapter, we briefly recall the common1

theory about linear systems, before introducing conditions on the systems that are vital
for the general setting of our thesis.

4.1 Common Theory of Linear Systems

Conventions

Let S be a smooth projective surface equipped with a line bundle L. We write |L| for
the complete linear system P(H0(S,L)). By a linear sub-system of |L|, we will always
refer to a linear system Pδ ⊂ |L| of curves on S. We will refer to linear sub-systems of
|L| for some line bundle L as linear systems of |L| or just linear systems, if there can be
no confusion about their ambient space. We let the dimension of a linear system be its
dimension as a scheme. A linear system of dimension 1, 2 or 3 is respectively called a
pencil, a net or a web.

Definitions and Common Theory

Let us recall the definition of a linear system. Given a divisor D on a smooth projective
variety X (we may assume it is a Cartier divisor), we can define the complete linear
system |D|:

|D| = {D0 |D0 is a divisor linearly equivalent to D}
= {D0 |D0 −D = div(s),where s ∈ H0(S,L(D))},

where L(D) is the line bundle associated to the divisor D and div(s) is the divisor induced
by a rational function on X. By the following proposition, the set |D| corresponds to the
projectivization of the global sections of the line bundle associated to the divisor D.

Proposition 4.1. [Har77, Proposition II.7.7]
Let X be a smooth projective variety over the algebraically closed field k. Let D be a
divisor on X and let L ∼= L(D) be the corresponding invertible sheaf. Then:

1Here we mean common in the sense that it is covered in [Har77], allowing it to be considered ‘general
knowledge’.
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a. for each nonzero s ∈ Γ(X,L), the divisor of zeros div(s) is an effective divisor
linearly equivalent to D;

b. every effective divisor linearly equivalent to D is div(s) for some s ∈ Γ(X,L); and,

c. two sections s, s′ ∈ Γ(X,L) have the same divisor of zeros if and only if there is a
λ ∈ k∗ such that s′ = λs.

The Göttsche conjecture loosely states that under some constraints on our linear systems,
the amount of δ nodal curves in said linear systems are finite and there is a formula for
the amount of δ nodal curves in the linear system. The first of these constraints is a
notion of generality of our choice of linear system. This is a common theme in intersection
theory; the developed machinery is only applicable to ‘good’ cases. Picking a general
linear system with regard to a property P in |L| is defined as follows.

Definition 4.2. (General linear systems w.r.t. a property)
Let dim |L| = N − 1, i.e. |L| = PN−1. We say that a property P holds for a general
linear system d = Pδ if there exists a nonempty Zariski open U ⊂ Gr(δ + 1, N) = {d ⊂
|L| : dim d = δ} where P holds for all Pδ ∈ U .

Here Gr(k, n) denotes the Grassmannian whose points parameterize k-dimensional vector
subspaces of Cn.

4.2 Theory of Linear Systems Special to the Thesis Setting

We require the notion of δ-very ampleness of a line bundle to impose the desired criterion
on our linear systems that many results in this thesis rely upon.

4.2.1 δ-Very Ample Linear Systems

In order to count the amount of singular curves in a linear system of curves on a smooth
surface, one needs to impose a criterion on the ambient complete linear system |L|.
We recall that, for a non-singular projective variety X, the length of a 0-dimensional
subscheme Z ⊂ X is defined to be the dimension of H0(Z,OZ) as a C-vector space. The
criterion used by (but not invented by) Göttsche in [Got98] uses the notion of δ-very
ampleness of the line bundle L.

Definition 4.3. (δ-very ample line bundles & linear systems)
We say that a line bundle L on a smooth, projective variety X is δ-very ample if for
every length (δ + 1)-subscheme Z ⊂ X, the restriction map

H0(X,L)→ H0(Z,L|Z) def= H0(Z, ι∗(L))

is surjective, where Z ι
↪−→ X is the inclusion.

We say the complete linear system |L| is δ-very ample whenever L is δ-very ample.

Remark 4.4. An n-very ample line bundle is k-very ample whenever n ≥ k. This follows
from the fact that (δ + 1)-very ample line bundles are δ-very ample. Indeed, for a length
δ-subscheme W of X and all length (δ + 1) subschemes Z containing it, the induced
restriction H0(Z,L|Z)→ H0(W,L|W ) is surjective. This follows from the fact that Z and
W may be realized as affine schemes Z = Spec(A) and W = Spec(A/I). The restriction
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map H0(Z,L|Z) = H0(Z,OZ)→ H0(Z,OW ) = H0(W,L|W ) will therefore be the natural
map A→ A/I, which is a surjection. Since the restriction map H0(S,L)→ H0(W,L|W )
factors through all vector spaces H0(Z,L|Z) (the composition of two pullback maps is
the pullback map of the composition), and the respective composition of these maps are
surjective, it follows that the map H0(S,L)→ H0(W,L|W ) is surjective. △

Remark 4.5. Being 0-very ample is the same as being globally generated, and being
1-very ample is the same as being very-ample. If L is ℓ-very ample and M is m-very
ample, then L ⊗M is (ℓ + m)-very ample [HTT05]. We have appended a neat little
proof of the equivalence of the notions of 0-very ampleness and being globally generated,
in A.2. △

Let us study some examples before explaining why the notion of δ-very ampleness is
crucial to our thesis.

Example 4.6. (Partial categorization of δ-very ample line bundles of P2)
Let S = P2. If L is a line bundle on S, then L = OS(d) for some d ∈ Z. The line bundle
OS(1) is clearly very ample, hence it is 1-very ample. By Remark 4.5, we get that OS(d)
is d-very ample. Thus for all d ≥ δ the bundles OP2(d) are δ-very ample, by remark
4.4. △

Example 4.7. (A collection of canonical examples of δ-very ample line bundles)
Let Z ι

↪−→ Pn be a closed immersion that corresponds to a line bundle L on Z. Then
L = ι∗(OPn(1)), which by definition is 1-very ample. If M is any globally generated line
bundle on Z, we have that the line bundle L⊗δ ⊗M⊗k, for δ, k ∈ N, is δ-very ample.
The point is that the problem of finding a δ-very ample line bundle is reducible to the
problem of finding a very ample line bundle. △

The condition of L being δ-very ample provides us with a description of curves in |L|.
This description presupposes a notion of generality on the linear systems we study, which
we specified in Definition 4.2.

Proposition 4.8. [KST11, Prop 2.1]
If L is δ-very ample then the general δ-dimensional linear system Pδ ⊂ P(H0(L)) contains
a finite number of δ-nodal curves appearing with multiplicity 1. All other curves are
reduced with geometric genus ḡ > g − δ.

Here g denotes the arithmetic genus of a curve C ⊂ S, i.e. g := g(C) = dimCH
1(C,OC)

and ḡ, the geometric genus of C, denotes the genus of its normalization C̄ → C.

This an important prerequisite for the Göttsche conjecture, as it details the dimension of
the linear systems of |L| that are of interest, as well as describing some properties the
curves in the systems have. Kool, Shende & Thomas were by no means first in proving
such a result, see for instance [Got98, Prop 5.2] or [KP99, Chapter 3], but they lowered
the necessary bound of very-ampleness of L from (5δ − 1)-very ample to δ-very ample.

The proposition inspires the slogan: “the ampler the line bundle L is, the more well
behaved a general linear system in |L| is”. We are not interested in computing lower
bounds for the required degree δ of δ-very ampleness that make our proofs work. To this
end, we adapt the following convention.
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Convention 4.9. (Sufficiently ample line bundle)
When a statement holds for a δ-very ample line bundle (for some δ ∈ N), we might
preface the statement by specifying L to be sufficiently ample with regard to the criteria
or the assertion of the statement.

To illustrate this convention, we could have rewritten Proposition 4.8 to read “If L is
sufficiently ample, then the general δ-dimensional (...)”.

It is convenient for us to define the subsets of |L| which consist of curves having have a
specific number of nodes.

Definition 4.10. We define

|L|n = {C ∈ |L| : C has n or more nodes}.

It is possible to give |L|n a natural scheme structure, whose singularities have been
identified.

Proposition 4.11. (Some characteristics of |L|n as a scheme)
For sufficiently ample |L|, we have that |L|n is a scheme of codimension n in |L|.
It is smooth at exactly the points that are curves with exactly n nodes (counted with
multiplicity).

Proof. The proof of this proposition is contained in the proof of [KST11, Proposition
2.1.].

We conclude this section by adapting a semantical convention regarding the choice of
general global sections of a line bundle.

Convention 4.12. (General global sections of a line bundle)
When we define a general linear system Pδ = PW ⊂ |L| by giving sections of its
corresponding vector space, we start by choosing W ⊂ H0(S,L) so that PW is general,
before we select a set of sections which span W . We will write a general linear system of
dimension δ as Pδ := P⟨s0, ..., sδ⟩C = PW.

Remark 4.13. The projectivization of the vector space in the above remark gives an
equality of sets

P⟨s0, ..., sk⟩C = {a0s0 + a1s1 + ...+ aksk | (a0 : ... : ak) ∈ Pk
C}.

We use this equality for multiple elementary, albeit important arguments that regard the
interpretation of the results of the thesis. △

4.2.2 ΣW , the Discriminant and the Incriminant

In studying a linear system |L| = PN of degree d hypersurfaces of Pn, it is convenient to
work with a projective variety Σn,d called the universal singular point. It is defined as

Σn,d = {(Y, p) ∈ PN × Pn | p ∈ Ysing}

and has a natural scheme structure which is described, for instance, in [EH16, Chapter
7]. Let π1 : Σn,d → PN and π2 : Σn,d → Pn be projections. The scheme D = π1(Σn,d) is
called the discriminant, and is the subset of curves in |L| which are singular. The scheme
D is in fact a variety.
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Example 4.14. (Counting singular curves in a general pencil)
Let S = P2

C be equipped with a line bundle L. The amount of singular curves on S
in a general pencil P1 ⊂ |L| equals the degree of the variety D, by Bezout’s theorem.
Irreducibility of D was proven by Harris in [Har86]. △

Whereas the discriminant has been extensively studied, the image of the projection π2
has not. We shall study the image of a morphism similar to π2, in Chapter 6. To this
end, we define a scheme similar to Σn,d that better fits our setting.

Definition 4.15. Let S be a smooth projective surface equipped with a line bundle L.
Let W ⊂ H0(S,L) be a vector subspace. We define

ΣW = {(C, p) ∈ PW × S | p ∈ Csing}.

We let π1 and π2 be the natural projection maps, and denote by DW = π1(ΣW) the
discriminant of W , or simply the discriminant D when it is clear which linear system PW
we are referring to. We also introduce the incriminant ofW as the scheme IW := π2(ΣW),
limiting ourselves to just the incriminant I if the context allows for it. The term
‘incriminant’ is our own, and is not (to our knowledge) used in other literature.

Remark 4.16. (The incriminant as a set)
Let PW ⊂ |L| be a linear system. As a set, we have that

IW = {p ∈ S | ∃C ∈ PW such that p ∈ Csing}.

△

This remark will prove useful in Chapter 6, wherein we study the classes of the first
somewhat tautological bundle ST (L, 1).
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Chapter 5

Hilbert Schemes of Points on Surfaces

The theory of Hilbert schemes of points on surfaces is widely and actively studied. The
construction of Hilbert schemes in general is quite explicit, allowing us great insight
into their scheme structure. It is therefore unfortunate that most Hilbert schemes
are difficult to work with. There are, however, some Hilbert schemes which are quite
well-behaved; the Hilbert schemes of points on a surface being among the prime examples.

Hilbert schemes of points on surfaces are smooth varieties. The Hilbert scheme S[n]

of points parametrizes 0-dimensional subschemes of S of length n, i.e. subschemes
Z ⊂ S such that dimCH

0(Z,OZ) =
∑

p∈Supp(Z) dim(OZ,p) = n. The variety S[n] is a
resolution of singularities of S(n), which is the variety Sn/Sn, or in other words, the nth

order product of S modded out by the group action of the symmetric group on n elements.

We are primarily interested in the Hilbert scheme S[2]. The points of S[2] generically
parametrize pairs of points, and constitute a convenient manner of storing the data of
the singular locus of curves with two singularities.

5.1 Preliminaries

5.1.1 Introductory Theory

We state one of the central theorems for Hilbert schemes of points on smooth surfaces.

Theorem 5.1. [Fog68, Theorem 2.4]
Let S be a smooth surface over the field k. Then S[n] is a smooth scheme of dimension
2n.

The theorem is vital to the thesis, as it ensures that the Chow group A(S[n]) has a well
defined ring-structure. The final computations of Chapters 6 and 7 are all performed in
these rings.

All Hilbert schemes come equipped with a so called universal family. This is a scheme
Zn(S) closed

↪−−−→ S ×HilbS/ SpecC that is flat over HilbS/ SpecC. In fact, any scheme X over
SpecC that maps into HilbS/ SpecC, or more specifically, into S[n], will have a flat family
over it.
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Remark 5.2. There is a bijection between the sets

Homsch/C(X,S[n]) 1-1←→ {Z closed
↪−−−→ X × S |Z is flat over X and ∀x ∈ X,

q−1(x) ⊂ X × S is of length n and q is the projection map}.

In practice, this means that giving a morphism f : X → S[n] from an arbitrary scheme
X into the Hilbert scheme S[n] is equivalent to giving a scheme Zf that fits into the
diagram immediately below.

Zf X × S

X

closed

flatq (5.1)

It is well known that, given such a morphism f , this flat scheme equals the fibre product
Zf := Zn(S)×S[n] X in the below diagram.

Zf Zn(S)

X S[n]

f ′

⌜
q′ q

f

(5.2)

We remark that this is just a reformulation of the fact that the Hilbert scheme S[n]

represents the functor on the right hand side of the bijection above. See [Göt05, Chapter
5] or [Ric23, Chapter 5.2] for a comprehensive explanation of these facts, as well as a
general introduction to Hilbert schemes. △

Remark 5.3. The universal family can, as a set, be described as

Zn(S) = {(Z, x) |x ∈ Z} ⊂ S[n] × S,

or equivalently, by the fact that Z ⊂ S is the fiber of Z ∈ S[n]. △

5.1.2 The Connection Between Hilbert Schemes and the Göttsche Conjecture

The connection of Hilbert schemes of points with the Göttsche conjecture stems from
Göttsche’s article [Got98]. Göttsche studies the bundle1 L[δ] (a so called tautological
bundle) associated to a sufficiently ample line bundle L, and shows that the integral
dn(L) of a particular Chern class of L[δ] equals the amount tSδ (L) of δ-nodal curves on
S in a general δ-dimensional linear system of |L|. It is useful to do some bookkeeping
before we showcase how Göttsche connects the theory of Hilbert schemes of points on
surfaces to the conjecture that bears his name.

Define the projections pn : Zn(S)→ S, qn : Zn(S)→ S[n] giving us the below diagram.

Zn(S) S

S[n]

pn

qn (5.3)

The importance of the tautological bundles merits a definition environment.
1The first construction of this vector bundle precedes Göttsche’s article by many years. It is for

instance mentioned in [Ful84, Example 2.5.6]. Fulton also cites earlier articles where the bundle is studied.
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Definition 5.4. (The tautological bundle on S[n] associated to a line bundle)
Let L be a line bundle on a smooth projective surface S. We define the tautological
bundle L[n] on S[n] to be

L[n] := (qn)∗(pn)∗(L),

where the morphisms are given in Diagram 5.3.

Let us verify that the sheaves L[n] indeed are locally free.

Remark 5.5.
(
L[n] is locally free of rank n

)
The bundle L[n] is locally free of rank n. Indeed, the pullback p∗

n(L) of L along a
morphism pn is a line bundle. The morphism qn being finite and flat implies (qn)∗(pn)∗(L)
is locally free. We have appended a proof in A.1 for the fact that the fibre of L[n] at
a point Z ∈ X [n] is the vector space H0(Z,L|Z), which implies L[n] has rank n, since
H0(Z,L|Z) ∼= H0(Z,OZ), and Z ⊂ S is of length n. △

The Chern classes of tautological bundles associated to line bundles are known.

Remark 5.6.
(
The Chern classes of L[n]

)
The Chern classes of L[n] were computed by Manfred Lehn in [Leh99, Theorem 4.6]. As
we shall see in Chapter 7, the Chern classes of the second somewhat tautological bundle
can be expressed as a product that includes the total Chern class c•(L[n]) as a term,
making the article by Lehn a crucial reference for this thesis. △

Definition 5.4 is clearly generalizable from the line bundle case to the case of locally free
sheaves of finite rank.

Remark 5.7. (Tautological Bundles in General)
Suppose E is a locally free sheaf of rank r on S, then E[n] = (qn)∗(pn)∗E is a locally free
sheaf, as qn is finite and flat. In the article [EGL99], Ellingsrud, Göttsche and Lehn give
an algorithm that express the Chern classes of the bundle E[n] in terms of the classes
of E . Thus, whenever one knows the total Chern class of E , one theoretically knows
the classes of E[n]. An unfortunate fact is that the algorithm is somewhat inefficient,
making it impractical to compute the classes of E[n] for locally free sheaves in general.
Nonetheless, we will assume the classes of E[n] to be known whenever c•(E) is known. In
the main computation of Chapter 7, we derive an expression of c•(ST (L, 2)) that contains
two tautological bundles. △

We are now ready to describe the setting in which Göttsche asserts the connection
between Hilbert schemes of points on surfaces and his conjecture.

Definition 5.8. [Got98, Def 5.19]
Let Sδ

2 ⊂ S[3δ] be the closure (with the reduced induced structure) of the locally closed
subset Sδ

2,0 which parametrizes subschemes of the form

⨿δ
i=1 Spec(OS,xi/m

2
S,xi

),

where x1, ..., xδ are distinct points in S. It is easy to see that Sδ
2 is birational to S[δ]. We

put dn(L) :=
∫

S2δ c2δ(L[3δ]).

Göttsche then goes on to prove the proposition which connects the theory of punctual
Hilbert schemes of smooth surfaces to the question of counting δ-nodal curves in a general
δ-dimensional linear system.
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Proposition 5.9. [Got98, Prop 5.2]
Assume L is (3δ − 1)-very ample. Then a general δ-dimensional sub-linear system
V ⊂ |L| contains precisely dn(L) curves with Ci with ≥ δ singularities. If furthermore
L is (5δ − 1)-very ample (5-very ample if δ = 1), then the Ci have precisely δ nodes as
singularities, i.e. dn(L) = tSδ (L).

Since the publication of [Got98], recursive formulae have been found to compute the
aforementioned polynomials. See for instance [KST11, Chapter 4].

5.2 Applications

The terminology ‘somewhat tautological’ is our own, as are the proposition and examples
below. The name was chosen to reflect the close relationship the sheaves have with the
tautological bundles. The construction of the somewhat tautological sheaves only differs
by pulling back to and pushing forward from the doubling of the universal family, rather
than the universal family itself.

5.2.1 Somewhat Tautological Sheaves

Let us give life to the words somewhat tautological by defining the sheaves our thesis
revolves around. Defining the sheaves requires the notion of doubling2 a closed subscheme.

Definition 5.10. (The doubling of a closed subscheme)
Let X be a scheme and let Z ⊂ X be the closed subscheme associated with the ideal
sheaf IZ . We define the doubling of Z to be the subscheme Z2 ⊂ X associated with the
ideal sheaf I2

Z .

The notion of doubling is intrinsically related to singularities of curves.

Lemma 5.11. Let p ∈ C be a closed point of the curve C ⊂ S. Let IC ⊂ OS be the ideal
sheaf associated to C, and let Ip ⊂ OS be the ideal sheaf associated to the point p. Then

p ∈ Csing ⇐⇒ IC ⊂ I2
p ⊂ OS

Proof. Let mp,S and mp,C denote the maximal ideals of the local rings of p in C and S
respectively, i.e. mp,S is the maximal ideal of the stalk of Ip at p and mp,C the maximal
ideal of the stalk of Ip/IpIC at p. Since j∗OC = OS/IC , where j : C ↪−→ S is the
inclusion, we have that the maximal ideal in the local ring of p in C is mp,C = mp,S/IC,p

and its square is m2
p,C = (m2

p,S + IC,p)/IC,p. We have the following isomorphisms of
C-vector spaces

mp,C/m
2
p,C
∼= (mp,S/IC,p)/((m2

p,S + IC,p)/IC,p) ∼= mp,S/(m2
p,S + IC,p). (5.4)

Suppose IC ⊂ I2
p . Then IC,p ⊂ m2

p, so equation (5.4) becomes

mp,C/m
2
p,C
∼= mp,S/m

2
p,S .

Since mp,S/m
2
p,S is the Zariski cotangent space of S, it is of dimension 2. This implies

the Zariski cotangent space of p in C has dimension 2, so C is singular at p.

2I have not encountered this terminology in the literature, but it seems too intuitive to be novel.
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Suppose IC ̸⊂ I2
p . Then IC,p ̸⊂ m2

p,C . Hence we must have

mp,S/(m2
p,S + IC,p) ⊊ mp,S/(m2

p,S)

implying a strict inequality of their dimension as C-vector spaces. Therefore,

1 ≤ dimC(mp,C/m
2
p,C) = dimCmp,S/(m2

p,S + IC,p) < dimCmp,S/(m2
p,S) = 2

which implies C is not singular at p.

In geometrical terms, the lemma tells us the following.

Corollary 5.12. Let C be a curve on S, and p ∈ C. Then C is singular at p if and only
if C contains the doubling p2 of the point p.

We shall require an appropriate generalization of this corollary to points of the Hilbert
scheme S[n] in order to prove a central property the somewhat tautological sheaves
ST (L, n) exhibit. To this end, we investigate what happens when one doubles a point
Z ∈ S[n] that is supported on n points of S.

Lemma 5.13. Suppose Z = p1 ⊔ ... ⊔ pr ⊂ S is a disjoint union of r ∈ N closed points
on a smooth projective surface S. Then the doubling Z2 of Z is the disjoint union of the
doubling of points.

Proof. Let S be a smooth projective surface. We shall use the following fact. If X,Y ⊂ S
are disjoint closed subschemes, then their ideal sheaves satisfy the identity IY ⊔W = IY IW .
Denoting the doubling of the point pi as p2

i (breaking the notational convention), we
have that the ideal sheaf of the disjoint union of doubled points satisfies

Ip2
1⊔...⊔p2

r
= Ip2

1
· · · Ip2

1

def= (I2
p1 · · · I

2
pr

) = (Ip1 · · · Ipr )2 = I2
p1⊔...⊔pr

= I2
Z

def= IZ2 ,

where def= signifies use of the definition of doubling.

Applying Corollary 5.12 to the scheme Z in Lemma 5.13 gives us the appropriate
generalization of the former.

Corollary 5.14. Let C be a curve on S, and let p1, ..., pr ∈ C be closed points. Then C
is singular at the points p1, ..., pr if and only if C contains the scheme Z2 = p2

1 ⊔ ... ⊔ p2
r,

where p2
i denotes the doubling of the point pi.

Proof. The curve C containing Z2 is the same as C containing the doubling of the
points of p1, ..., pr, which is equivalent to being singular at all the points pi, by Corollary
5.12.

It is instructive to get a notion of how doubling affects the length of 0-dimensional
subschemes.

Example 5.15. (The doubling of a reduced point has length 3)
Let p ∈ S be a point. Since S is smooth, its local rings are regular. Let mp denote the
maximal ideal in the local ring OS,p. By [Stacks, Tag 00NO] there is an isomorphism⊕

i=0 m
i
p/m

i+1
p

ϕ∼= OS,p/mp[x, y] = C[x, y] that allows us to choose x′, y′ ∈ mp/m
2
p such

that ϕ(x′) = x and ϕ(y′) = y. The doubling of p is given by the scheme SpecOS,p/m
2
p,

which by the above equals the vector space C⊕ Cx⊕ Cy. Hence dimCH
0(p2,Op2) = 3,

meaning p2 is of length 3. △
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We shall use the setting of Diagram 5.5 to define the somewhat tautological sheaves
associated to L. The square in the diagram is the fibre product over SpecC, with ι
being the inclusion and pn, qn are the natural projections with p, q being their respective
restrictions.

(Zn(S))2

S[n] × S S

S[n] SpecC

p

q

ι

pn

qn

(5.5)

Definition 5.16. (Somewhat tautological sheaves associated to a line bundle L)
Let S be a smooth projective surface equipped with a line bundle L, and let the setting
be that of Diagram 5.5. The nth somewhat tautological sheaf ST (L, n) associated to L is
defined as ST (L, n) := q∗p

∗L.

Naturally, the first question we must ask ourselves is: why are these sheaves interesting;
what information do they possess? One answer that is fruitful for our endeavour is that
the sheaf ST (L, n) contains the data of whether the curve C = V (s) corresponding to a
section s ∈ H0(S,L) is singular at n distinct points of S.

Proposition 5.17.
Let S be a smooth projective surface with a line bundle L. Let s ∈ H0(S,L) and
define C = V (s). The curve C is singular at n distinct points p1, ..., pn of S if and
only if its induced section ŝ ∈ H0(S[n], ST (L, n)) vanishes when restricted to the point
Z = p1 ⊔ · · · ⊔ pn ∈ S[n].

Proof. We compute the fibres of the sheaf ST (L, n). Consider Diagram 5.6.

Z2 (Zn(S))2 S[n] × S S

[Z] S[n]

p′

⌜
q′ q

pn

i

(5.6)

We start by showing that the fibre of ST (L, n) at a point [Z] ∈ S[n] equals H0(Z2,L|Z2),
where Z2 is the doubling of Z as a subscheme of S. The fibre of ST (L, n) at Z is its
pullback to [Z] along i. We claim that i∗ST (L, n) = q′

∗p
′∗(p∗

nL). Since the diagram
commutes and q is finite (as we shall demonstrate in Remark 5.18), we may reduce the
claim to proving it on affine opens. Let SpecA ⊂ S[n] be an open containing the point
[Z]. Since q is finite, hence affine, there is a C-algebra B such that q−1(SpecA) = SpecB,
giving us the diagram
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Spec(AmZ/m⊗A B) SpecB SpecR

Spec(AmZ/m) SpecA

j

⌜
q′ q

p

i

(5.7)

where SpecR ⊂ S and AmZ/m is the local ring of [Z] in SpecA modded out with its
maximal ideal m. Let L be the R-module such that L = L̃. Then p∗L = L̃⊗R B. By the
properties of the ‘∼’-functor w.r.t pullback and pushforward of quasi-coherent sheaves
on Noetherian schemes, we obtain the expressions

i∗q∗p
∗L = ˜(L⊗R B)A ⊗A AmZ/m; (5.8)

q′
∗j

∗p∗L = ˜(L⊗R AmZ/m⊗A B)AmZ
/m. (5.9)

But since B is an A-algebra, and AmZ/m
∼= C and all of these rings are C-algebras, we

have that
q′

∗j
∗p∗L = ˜L⊗R B ⊗A C = i∗q∗p

∗L,

confirming the claim. Since i∗ST (L, n) = q′
∗p

′∗(p∗
nL), we have following chain of equalities

q′
∗p

′∗(p∗
nL) = q′

∗p
′∗(L|S[2]×S)

= q′
∗(L|Z2) = H0(Z2,L|Z2),

where the final equality follows from the fact that pushing forward to a point corresponds
to taking global sections. Identifying the fibres of ST (L, n) reveals what happens when
one restrict a global section of ST (L, n) to a point of S[n], which we shall demonstrate
now. Recall first that

L|Z2 = L ⊗OS/IZ2 = L/IZ2L.

If the induced section ŝ ∈ H0(S,L/IZ2L) of a section s ∈ H0(S,L) vanishes, then it
comes from IZ2L. But the section s comes from from the sheaf IZ2L if and only if the
curve C = V (s) contains the scheme Z2. It then follows from Corollary 5.14 that C is
singular at the points in SuppZ. This completes the proof.

Remark 5.18. The morphism q in diagrams (5.5) & (5.6) is finite for all n. Indeed,
since q is projective, we must only verify that its fibres are finite sets. The morphism α
(which is just the restriction of the projection qn) is finite, by Remark 5.3. Furthermore,
since Zn(S) and (Zn(S))2 are schemes defined on the same underlying set, the map β
must be bijective, since it is an immersion.

(Zn(S))2

Zn(S) S[2] × S

S[n]

ι
closed β

α

closed

qn

(5.10)

A diagram chase of the commutative diagram (5.10) then reveals that the fibres of
q = qn ◦ ι are finite. △
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The observant reader will have realized that Proposition 5.17 is remarkably similar to
point b in Theorem 3.12 (the jet bundle theorem). This is by no means surprising; it
turns out that the first jet bundle associated to L is a somewhat tautological sheaf.

Example 5.19. (The first jet bundle is a somewhat tautological sheaf)
We work over the 1st Hilbert scheme of points on S, which is just S itself. The universal
family lying flat over S is ∆ ⊂ S × S, the diagonal. This fact is well known, and is for
instance stated in [Leh99, Chapter 1.2]. Denote by ∆2 the doubling of the diagonal.
Then, with notation as in Diagram 5.11, we have that J1L = q∗p

∗L def= ST (L, 1), which
we shall now verify.

∆2

S × S S

S SpecC

p

q

ι

π2

π1

(5.11)

Diagram 5.11 commutes, since we are taking the fibre product of S with itself. We must
show that q∗p

∗L = π1∗(OY ×Y /I2
∆ ⊗ π∗

2L) def= J1L. This follows from the set of equalities
below, where the second equality is an application of the projection formula.

π1∗(OY ×Y /I2
∆ ⊗ π∗

2L) = π1∗(ι∗O∆2 ⊗ π
∗
2L)

= π1∗ι∗(O∆2 ⊗ ι
∗π∗

2L)
= π1∗ι∗(ι∗π∗

2L)
= (π1 ◦ ι)∗(π2 ◦ ι)∗L = q∗p

∗L.

△

Remark 5.20.
We remark that all jet bundles may be expressed in this form. Substitute Diagram 5.11
with Diagram 5.12 and observe that the computation in Example 5.19 is equally valid
when we substitute n+ 1 for 2.

∆n+1

S × S S

S SpecC

p

q

ι

π2

π1

(5.12)

What makes the case n + 1 = 2 stand out is that we are interested in the somewhat
tautological sheaves, which are defined via doubling and not ‘n+ 1-tupling’. △
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The identification of the first somewhat tautological sheaf with a vector bundle raises a
question: are all of the sheaves ST (L, n) locally free? The answer is no. It turns out to
be true for n ∈ {1, 2}. The crux of this fact is that the doubling of the universal families
Zn(S) are not flat over S[n] in general. Thus pushing a locally free sheaf forward from
these schemes does not necessarily give a locally free sheaf. We verify that (Z3(S))2 is
not flat over S[3] in example 5.23. Let us verify that ST (L, 2) is locally free.

Corollary 5.21.
ST (L, n) is a locally free sheaf of rank 3n for n ∈ {1, 2}.

Proof. We have already shown that the corollary holds for n = 1, since ST (L, 1) = J1L.
Let therefore n = 2. The pullback of a line bundle is a line bundle, implying p∗L is locally
free of rank one. We argue that q is flat and finite, which would imply that q∗(p∗L) is loc-
ally free. The rank is then determined by studying the dimension of the fibres of ST (L, 2),
which by the proof of Proposition 5.17, equals dimH0(Z2,L|Z2) = dimH0(Z2,OZ2).

The morphism q is finite by Remark 5.18. We now argue that q is flat. By [Har77,
Theorem III.9.9] it suffices to show that the fibres ((Z2(S))2|p for all p ∈ S[2] have the
same length. We claim that Z2 is of length 6, whenever Z is of length 2. Proving this
claim will assert that the scheme (Z2(S))2 corresponds to a morphism h : S[2] → S[6].
Indeed, the morphism h will map a point Z ∈ S[2] to its doubling Z2.

Assume Z ∈ S[2]. There are two cases: either Z = P ⊔Q for P,Q ∈ S or SuppZ = {P}.
In the first case, we have that Z2 = P2 ⊔ Q2 by Lemma 5.13. Since this is a disjoint
union of affine schemes, we have that H0(Z2,OZ2) = H0(P2,OP2)⊕H0(Q2,OQ2). This
vector space has dimension 6, by example 5.15.

Now suppose SuppZ = {P}. In this case, Z ⊂ S is a non-reduced point, meaning
it satisfies m2

P ⊊ I(Z) ⊊ mP , where I(Z) is the ideal that corresponds to Z. We are
done if we manage to show that dimC(OS[2],P /I(Z)2) = 6. Since S[2] is smooth, it is
regular. Hence we may choose a basis {x′, y′} of the vector space mp/m

2
p
∼= C2, where

x′, y′ generate mp. Since the inclusion relations m2
P ⊊ I(Z) ⊊ mP are strict, we can write

I(Z) = m2
p + (f), where f ∈ (x′, y′), but with an appropriate choice of x′, y′ we can

express I(Z) = m2
p + (x′). Furthermore we have the short exact sequence of vector spaces

0 // I(Z)2/m4
P

// OS[2],P /m
4
P

// OS[2],P /I(Z)2 // 0

which reduces the problem of finding the length of Z to computing the lengths
of R/m4

p and I(Z)2/m4
P . By [Stacks, Tag 00NO], regularity of S[n] implies that

OS[2],P /m
4
P
∼= C[x, y]/(x, y)4. A basis of this C-vector space is {1, x, y, ..., , xy2, y3},

meaning it is of dimension 10. Now consider I(Z)2/m4
P . Since mP = (x′, y′), we may

express I(Z) = (x′2, x′y′, y′2) + (x′) = (x′, y′2). These identifications give us

I(Z)2/m4
P = (x′, y′2)2/(x′, y′)4 = Cx′2 + Cx′y′2 + Cx′2y′ + Cx′3,

which is a four dimensional vector space. Hence, OS[2],P /I(Z)2 is of dimension six,
meaning Z2 has length 6.

Convention 5.22. (Somewhat Tautological Bundles)
When referring to the somewhat tautological bundles (associated to a line bundle L), we
refer to the sheaves ST (L, 1) = J1L and ST (L, 2).
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Example 5.23.
(
(Z3(S))2 is not flat over S[3]

)
Fix S = P2

C = ProjC[x0, x1, x2] and choose coordinates D+(x2) = SpecC[x, y]. Let
P ⊂ D+(x2) be the length 3 point P = Spec(C[x, y]/I), where I = (x, y)2, meaning
P ∈ S[3]. We have that the doubling of P satisfies

P2 = Spec(C[x, y]/I2).

The length of P2 will then be

len(P2) def= dimCH
0(P2,OP2)

= dimCC[x, y]/I2 = dimC⟨1, x, y, x2, xy, y2, x3, x2y, xy2, y3⟩C = 10.

By a similar argument as in the proof of Corollary 5.21, the doubling of a point Z ∈ S[3]

that is supported on three points of S will have length 9. Since Z2 is the fibre of
q : (Z3(S))2 → S[3] over Z, and the length of the fibres of q are not constant, [Har77,
Theorem III.9.9] gives that (Z3(S))2 is not flat over S[3]. △

We contend that a similar argument showcases that the doubling of the higher
universal families (Z>3(S))2 are not flat over S[n] either. However, since the morphism
q : (Zn(S))2 → S[n] is finite, we do have the following.

Remark 5.24. (The sheaves ST (L, n) are coherent)
The sheaves ST (L, n) = q∗p

∗L are coherent for all n. Indeed, pushing a locally free sheaf
forward with a finite morphism gives a coherent sheaf. △

Remark 5.25. (The difficulties in working with ST (L, n) for n > 2)
A consideration that should be made apparent is that our understanding of the somewhat
tautological sheaves relies partly on our understanding of the universal families Zn(S)
that are flat over S[n]. The universal families for n > 2 are not as well behaved as when
n ∈ {1, 2}. Indeed, see for instance [Son16] for a reference stating the higher Zn(S)
are singular, Cohen-Macaulay and irreducible. This makes working with the sheaves
ST (L, n) for n > 2 significantly more difficult than studying the somewhat tautological
bundles. △

We have nothing more to say about the sheaves ST (L, n) for n > 2, and we will restrict
the remainder of the thesis to working with the bundles ST (L, 1) and ST (L, 2). The
beauty of these bundles lies in that their degeneracy loci have a crystal clear geometric
interpretation. This unlocks a tangible reformulation of Problem 1, and a palpable
formulation of a special case of Problem 2, as will be shown in the next section.

5.2.2 The Defining Rationale: Degeneracy Loci of Somewhat Tautological
Bundles

We recall that the ith Chern class of a rank r vector bundle is equal to the class of
the degeneracy locus V := V (τ0 ∧ τ1 ∧ ... ∧ τr−i), given that the locus is of codimen-
sion i (Theorem 3.5). We shall see how the interpretation of Chern classes as classes
of degeneracy loci unlock a natural correspondence between the Chern classes of the
somewhat tautological bundles, and the schemes Pδ ∩ |L|n, that were introduced in the
introduction. This will allow for a more tangible reformulation of Problem 1, as well as a
palpable formulation of a special case of Problem 2. For the remainder of the section, let
ŝ ∈ H0(S[n], ST (L, n)) denote the induced section of s ∈ H0(S,L).

42



5.2. Applications

The bundles ST (L, n) contain the binary data of whether a curve C = v(s) associated
to the section s ∈ H0(S,L) is singular at all points in Supp(Z) on S, when Z ∈ S[n] is
supported on n points. Our interest lies in studying specific global sections of ST (L, n).
Namely, given sections s0, s1, ..., sj ∈ H0(S,L), general in the sense of Remark 4.13, we
want to study the section f̂k = k0ŝ0 + k1ŝ1 + ... + kj ŝj , where k = (k0, ..., kj) ∈ Cj is
non-zero. Specifically, we want to determine at which points on S the curve V (fk) is
singular, where fk = k0s0 + k1s1 + ...+ kjsj . This may be done by investigating at which
point Z ∈ S[n] the induced section f̂k vanishes.

Our interest in sections of this particular form stems from the following observations.
Asking where f̂k vanishes for some nonzero k ∈ Cj is equivalent to asking where the
wedge sum ŝ0 ∧ ... ∧ ŝj vanishes. Indeed, the relations that define the exterior algebra
dictate that the section ŝ0 ∧ ... ∧ ŝj ∈ H0(S[n],

∧j+1 ST (L, n)) vanishes precisely when
the collection of kiŝi are linearly dependent, or in symbols, when there is a choice of k
such that

f̂k =
∑

kiŝi = 0.

These observations are of importance to us, since the general linear systems we work with
are precisely described by a section of the form fk = k0s0 + k1s1 + ...+ kjsj (Remark
4.13)! This motivates the following observation.

Observation 5.26. (Interpretation of the degeneracy loci of ST (L, 1) and ST (L, 2))
Let L be a sufficiently ample line bundle on a smooth projective surface S such that
|L|n is of expected dimension. Suppose 3n ≥ δ > n where n ∈ {1, 2} and suppose
P⟨s0, ..., sδ⟩C = Pδ is a general linear system in |L|. Consider the map

Pδ ∩ |L|n \ |L|n+1
ϕn→ V (ŝ0 ∧ ... ∧ ŝδ) ⊂ S[n]

of Problem 2, which maps C
ϕn7→ Z ∈ S[n], where Supp(Z) = Csing. We have that

im(ϕn) ⊂ V , where V is the degeneracy locus V (ŝ0∧ ...∧ ŝδ). Furthermore, the degeneracy
locus V consists of exactly the schemes Z ∈ S[n] that are supported on n points in S,
such that there exists a curve C ∈ Pδ which is singular at the points in Supp(Z).

Proof. We are interested in studying the cases where 3n ≥ δ > n and n ∈ {1, 2}.
Rephrasing this, we let δ = 3n− i, where i ∈ {0, 1, ..., 2n− 1}. Let s0, ..., sδ ∈ H0(S,L)
be general sections in the sense of Remark 4.13, and denote their induced sections by
ŝi ∈ H0(S[n], ST (L, n)). We have the following chain of equalities.

V (ŝ0 ∧ ... ∧ ŝδ) = {Z ∈ S[n] | ŝ0 ∧ ... ∧ ŝδ(Z) = 0};
= {Z ∈ S[n] | c0ŝ0(Z) + ...+ cδ ŝδ(Z) = 0, for some c = (c0 : ... : cδ) ∈ Pδ};
= {Z ∈ S[n] | f̂c(Z) = 0 for some c ∈ Pδ};
= {Z ∈ S[n] | fc is singular at all p ∈ Supp(Z) for some c ∈ Pδ};
⊃ {Z ∈ S[n] | fc has a node at precisely the p ∈ Supp(Z) for some c ∈ Pδ};
= ϕn(Pδ ∩ |L|n \ |L|n+1) = imϕn,

where f̂c(Z) =
∑δ

i=0 ciŝi(Z) and fc(p) =
∑δ

i=0 cisi(p). The fourth equality is an
application of Proposition 5.17

We remark that the choice of δ = 3n− i is not arbitrary. Theorem 3.5 states that for this
choice of δ, the class [V ] ∈ A(S[n]) equals ci(ST (L, n)), if V is of codimension i in S[n].
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A first step to solving problems 1 and 2, wherein we ask about the image of ϕn, is perhaps
to understand the degeneracy loci V in the observation. This motivates the following
readjustment of Problem 1.

Problem 3. (Readjustment of Problem 1)
Compute the class of V (ŝ0 ∧ ŝ1 ∧ ŝ2) in A(S), where PW = P⟨s0, s1, s2⟩C is a general net
in a sufficiently ample linear system |L|.

We successfully solve this problem in Section 6.1.2 by proving V (ŝ0 ∧ ŝ1 ∧ ŝ2) is of
appropriate dimension and by computing the Chern class c1(ST (L, 1)), which equals the
class of V in A(S).

Problem 2 is left open, but we attempt to solve the problem for the cases Pδ ∩ |L|2, where
5 ≥ δ > 2. By the observation, these special cases of Problem 2 are solved if we prove
that the appropriate degeneracy loci are of expected dimension as well as compute the
total Chern class c•(ST (L, 2)). We have dedicated Chapter 7 to the latter. We shall call
this endeavour: ‘Problem 4’.

Problem 4. (Special cases of Problem 2)
Compute the total Chern class c•(ST (L, 2)) and investigate whether the degeneracy loci
Vδ := V (ŝ0 ∧ ... ∧ ŝδ) are of expected dimension, when δ = 6− i for i ∈ {0, 1, 2, 3} and
where PW = P⟨s0, ..., sδ⟩C ⊂ |L| is a general linear system.

An interesting question, that we will not further touch upon in this thesis, is the following.

Question 1. Let n, δ and V be as in the observation. Is it true that imϕn = V ?

We have not been able to come up with any counterexamples. Should the answer be yes,
it would strengthen the connection between problems 1 & 2 and problems 3 & 4.

5.2.3 The Case |L|δ ∩ Pδ Corresponds to the Göttsche Conjecture

We have yet to comment on the omitting of some cases of Problem 2. Given the scheme
|L|n ∩ Pδ, how do the cases δ = n and δ < n relate to the problem? The latter is trivial:
if δ < n, then |L|n ∩ Pδ = ∅, since codim |L|n > dimPδ, and the scheme |L|n ∩ Pδ is a
transversal intersection. The case where δ = n, on the other hand, is worth commenting
on.

Proposition 5.9 states that if L is sufficiently ample, then all δ-nodal curves in a linear
system Pδ ⊂ |L| will have precisely δ nodes as singularities. Furthermore, by Theorem
1.1, the amount tSδ (L) of δ-nodal curves in a general linear system Pδ, is finite. We shall
prove that |Pδ ∩ |L|δ| = tSδ (L). But before we do so, we remark two useful facts.

Remark 5.27. (All curves in a pencil are singular at a point, if two curves are)
Consider the pencil PW = {fp = p0s0 +p1s1 | p = (p0 : p1) ∈ P1} where s0, s1 ∈ H0(S,L).
If fq, fq′ are singular at the point x ∈ S, whenever q ≠ q′, then fp is singular at x for all
p ∈ P1. Indeed, assume two such points q, q′ exist, and fix representatives (q0 : q1) and
(q′

0 : q′
1) for these points. Then the induced global sections s̃0 and s̃1 of the jet bundle

J1L satisfy (
q0 q1
q′

0 q′
1

)(
s̃0(x)
s̃1(x)

)
=
(

0
0

)
.
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But since the points q, q′ are distinct, the matrix(
q0 q1
q′

0 q′
1

)

is invertible, which implies (
s̃0(x)
s̃1(x)

)
=
(

0
0

)
.

Thus p0s̃0(x) + p1s̃1(x) = 0 for all (p0 : p1) ∈ P1, meaning that fp is singular at x ∈ S
for all p ∈ P1. △

This remark can clearly be generalized to the case of somewhat tautological sheaves.

Remark 5.28. If two general sections s0, s1 ∈ H0(S,L) that define the pencil
P1 = P⟨s0, s1⟩C induce sections ŝ0, ŝ1 ∈ H0(S[δ], ST (L, δ)) that both vanish at Z =
P1 ⊔ ... ⊔ Pδ ∈ S[δ], then all curves in the pencil P⟨s0, s1⟩C are singular at the points
in SuppZ. Indeed, if C0 = V (s0) and C1 = V (s1) are both singular at P1, ..., Pδ, then
the induced sections ŝ0, ŝ1 vanish when restricted to Z, by Proposition 5.17. Since all
curves in P⟨s0, s1⟩C are of the form ŝ := αŝ0 + βŝ1 with (α : β) ∈ P1, all of their induced
sections vanish when restricted to Z, meaning all curves C ∈ P⟨s0, s1⟩C are singular at
the points in SuppZ. △

Claim 5.29. (The Göttsche conjecture corresponds to the case δ = n)
Let δ ∈ N, and let PW = Pδ ⊂ |L| be a general linear system, where L is a sufficiently
ample such that PW only contains a finite amount of δ-nodal curves, and no curves with
δ + 1 nodes. Then we have

deg([ϕδ(|L|δ ∩ Pδ)]) = tSδ (L),

where ϕδ maps a curve to the point Z ∈ S[n] such that SuppZ = Csing, and [ϕδ(|L|δ∩Pδ)]
is the class of ϕδ(|L|δ ∩ Pδ) in the Chow ring A(S[δ]).

Proof. No two curves in PW = Pδ have the same set of δ nodes. Indeed, assume
V (s1) = C1 ∈ PW = Pδ and V (s2) = C2 ∈ PW both have the points P1, ..., Pδ as nodes.
By applying Remark 5.28 to the pencil P1 = P⟨s1, s2⟩C ⊂ PW , we have that every single
curve in P1 is nodal at the δ points. This contradicts the Göttsche conjecture, since the
amount of δ-nodal curves in PW is finite. We must therefore have C1 = C2, meaning
no two curves have all their nodes in common. This induces a natural injection ϕδ that
maps each curve in

PW ∩ |L|δ = {C ∈ PW |C is δ-nodal}

to a unique point Z ∈ S[δ], namely the point Z such that SuppZ = Csing. The image
of ϕδ injects by the above discussion, meaning Y := imϕ is a disjoint union of exactly
tSδ (L) points. The class [Y ] ∈ A(S[δ]) therefore equals [Y ] = tSδ (L)[P ], where [P ] is the
class of a closed point P ∈ S[δ] in the Chow ring A(S[δ]). Applying deg to the class [Y ]
grants us the result.

The claim illustrates that we are indeed studying a generalization of the Göttsche
conjecture.
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Part III

Somewhat Tautological Bundles
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Chapter 6

Jet Bundles

The jet bundles JnL associated to a line bundle L on a smooth projective variety S
keep track of whether a curve on S is ‘severely singular’ at a point. The severity of the
singularities the bundles JnL keep track of are dependent on n. The larger n is, the
more severe are the singularities JnL keep track of. This formulation might make it
seem like JnL contains strictly more information than JkL, whenever n > k, but this is
not true. The bundle JnL is incapable of detecting singularities that are not sufficiently
severe. The bundle J2L, for instance, is not able to discern whether a curve C = V (s)
corresponding to a section s ∈ H0(S,L), is nodal at a point. This leads us to remark
that J1L is the only jet bundle that is suited for the purpose of studying the degeneracy
loci of the previous chapter, as these loci roughly parametrize points at which a curve
in a linear system is singular, completely disregarding the severity of said singularities.
To this end, we shall study ST (L, 1) = J1L in order to solve Problem 3, which we do in
Section 6.1.2.

Other than solving this problem, we compute the Chern classes of all jet bundles JnL on
a smooth projective surface S, as the generalization from n = 1 to any n ∈ N is relatively
straightforward. In Section 6.2 we showcase a generalization of J1L that fails to keep
track of singular loci of curves in a proper manner.

6.1 Computation of the Classes c•(JnL) and a Degeneracy Locus

Conventions

For the entirety of this section, we denote λ := c1(L) and ck := ck(ΩS). Note that ΩS is
a bundle of rank 2, so its higher Chern classes ck for k > 2 disappear.

6.1.1 The Total Chern Class of JnL

To solve Problem 3, we need to compute a specific degeneracy locus of global sections
of J1L. We shall prove that this locus is of expected codimension, meaning its class
in the Chow ring equals an appropriate Chern class of J1L. To this end, we begin by
computing the Chern classes of JnL.

We showed that J0L = L in example 3.13, meaning the case where n = 0 is known. Let
us instead investigate the case n = 1. Eisenbud & Harris use a trick to compute this
efficiently in [EH16, Page 259]. I will deviate slightly from this computation in order to
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obtain an expression which is somewhat nicer to generalize.

Applying Whitney’s formula to the sequence

0 // L ⊗ ΩS
// J1L // L // 0

grants us the expression

c•(J1L) = c•(L)c•(L ⊗ ΩS) = (1 + λ)c•(L ⊗ ΩS).

By Proposition 3.9, we have that

(1 + λ)c•(L ⊗ ΩS) = (1 + λ)
[ 2∑

k=0

k∑
i=0

(
2− i
k − i

)
λk−ici(ΩS)

]
,

which gives us the equality

c•(J1L) = (1 + λ)
[ 2∑

k=0

k∑
i=0

(
2− i
k − i

)
λk−ici(ΩS)

]
.

Applying Whitney’s formula to

0 // L ⊗ Sym2(ΩS) // J2L // J1L // 0

gives us
c•(J2L) = c•(J1L)c•(L ⊗ Sym2(ΩS)).

We need only compute the rightmost factor, which we do by applying proposition 3.9
again, leaving us with

c•(L ⊗ Sym2(ΩS)) =
2∑

m=0

m∑
j=0

(
3− j
m− j

)
λm−jcj(Sym2(ΩS)).

Hence, we have

c•(J2L) = c•(J1L)c•(L ⊗ Sym2(ΩS))

= (1 + λ)
[ 2∑

k=0

k∑
i=0

(
2− i
k − i

)
λk−ici(ΩS)

] 2∑
m=0

m∑
j=0

(
3− j
m− j

)
λm−jcj(Sym2(ΩS))

 .
We generalize this computation to the nth jet bundle.

Proposition 6.1.
For n > 1, we have

c•(JnL) = (1 + λ)
n∏

y=1

[ 2∑
k=0

k∑
i=0

(
y + 1− i
k − i

)
λk−ici (Symy(ΩS))

]
. (6.1)

Proof. We perform induction on n, the power of jet bundle. We let the inductive hy-
pothesis be the equation in the proposition. The hypothesis holds for n = 2, by the above.
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Suppose the hypothesis holds for some n. Applying Whitney’s formula to the short exact
sequence

0 // L ⊗ Symn+1(ΩS) // Jn+1L // JnL // 0
yields

c•(Jn+1L) = c•(JnL)c•(L ⊗ Symn+1(ΩS)).
By applying Proposition 3.9 to c•(L⊗Symn+1(ΩS)) and using that the rank of Symn(ΩS)
is n+ 1,1 we obtain

c•(L ⊗ Symn+1(ΩS)) =
2∑

m=0

m∑
j=0

(
n+ 2− j
m− j

)
λm−jcj(Symn+1(ΩS)).

Multiplying this by the hypothesized expression for JnL gives us the desired formula.

Before this equation is of any use to us, we must compute the classes ci (Symy(ΩS)). An
equivalent piece of datum is the total Chern class c• (Symy(ΩS)), which we compute in
the lemma below.

Lemma 6.2.
Denote ci := ci(ΩS). We have that

c•(Symn(ΩS)) =


∏⌊ n

2 ⌋
k=0

[
1 + n · c1 + (kn− k2)c2

1 + (n2 + 4(k2 − kn))c2
]

if n is odd
1

1+ n
2 c1

∏n
2
k=0

[
1 + n · c1 + (kn− k2)c2

1 + (n2 + 4(k2 − kn))c2
]

if n is even

Proof. We shall make use of the splitting principle. Assume ΩS = L ⊕M where the
latter are line bundles with Chern classes c1(L) = x and c1(M) = y. By Whitney’s
formula we have

c•(ΩS) = c•(L)c•(M) = (1 + x)(1 + y) = 1 + (x+ y) + xy,

i.e. we have that c1 = c1(ΩS) = x+ y and c2 = c2(ΩS) = xy. Furthermore, we have that

Symn(ΩS) = Symn(L⊕M) = L⊗n⊕ (L⊗n−1⊗M)⊕ ...⊕M⊗n =
n⊕

k=0

[
L⊗k ⊗M⊗n−k

]
.

By Whitney’s formula, we obtain

c•(Symn(ΩS)) =
n∏

k=0
[1 + kx+ (n− k)y] . (6.2)

We want to express this product in terms of the Chern classes ci. We achieve this by
writing out the product in (6.2) in a convenient manner. Consider the following product.

[1 + kx+ (n− k)y][1 + (n− k)x+ ny]. (6.3)

Writing it out gives us

(1 + kx+ (n− k)y)(1 + (n− k)x+ ky)
= 1 + n(x+ y) + k2xy − k2x2 + k2xy − k2y2 + knx2 − 2knxy + kny2 + n2xy

= 1 + n(x+ y) + (kn− k2)(x− y)2 + n2xy

= 1 + n(x+ y) + (kn− k2)[(x− y)2 + 4xy]− (kn− k2)4xy + n2xy

= 1 + n(x+ y) + (kn− k2)(x+ y)2 + (n2 + 4(k2 − kn))xy
1This follows from the fact that rank L ⊗ Symn(ΩS) = rank Symn(ΩS) =

(
n+2−1

2−1

)
=
(

n+1
1

)
= n + 1.
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Substituting for c1 and c2, we obtain

= 1 + n · c1 + (kn− k2)c2
1 + (n2 + 4(k2 − kn))c2.

We acknowledge that if n is odd in the expression of (6.2), we may rewrite it to

c•(Symn ΩS) =
n∏

k=0
[1 + kx+ (n− k)y]

=
⌊ n

2 ⌋∏
k=0

[1 + kx+ (n− k)y] [1 + (n− k)x+ ky]

=
⌊ n

2 ⌋∏
k=0

[
1 + n · c1 + (kn− k2)c2

1 + (n2 + 4(k2 − kn))c2
]
.

If n is even, there is a k such that n/2 = k. In this case, the product above will have
one too many terms, namely a multiple of (1 + n

2x+ n
2 y) too many. We remedy this by

dividing the product by this term. This gives us the expression in the lemma.

We do not provide an expression for the individual Chern classes of Symn(ΩS), as it was
not entirely clear how one would construct a formula for these by using the method in the
proof of the lemma. It seems reasonable to assume it is possible to write a script which
computes the total Chern class using the expression in the lemma. The script can then
sort the individual Chern classes ci(Symn(ΩS)) after it has computed the total Chern
class. We therefore consider the problem of computing c•(JnL) on a smooth projective
surface solved and celebrate by appending a noteworthy remark.

Remark 6.3.
The Chern polynomial c•(JnL) is a polynomial in the ring

Z[λ, c1, c2]/(λ3, λ2c1, λ
1c2

1, c
3
1, c2λ, c2c1, c

2
2).

△

For the sake of future convenience, we have calculated2 the total Chern classes of the
first two non-trivial jet bundles using the formulae above.

Example 6.4.
Letting λ = c1(L) and ci = ci(ΩS), we have

c•(J1L) = 1 + (3λ+ c1) + (3λ2 + 2λc1 + c2) (6.4)
c•(J2L) = 1 + (6λ+ 4c1) + (15λ2 + 20λc1 + 5c2

1 + 2c2). (6.5)

△

6.1.2 Solution of Problem 3.

Recall that s ∈ H0(S,L) induces a global section of J1L, which we denote by s̃. Choose
W = ⟨s0, s1, s2⟩C such that PW is a general net in |L|. We are interested in computing
V := V (s̃0 ∧ s̃1 ∧ s̃2), as described in Problem 3. Since V is a degeneracy locus of three
sections (and J1L has rank 3), we have (by Theorem 3.5) that [V ] = c1(J1L) if V ⊂ S

2By hand.
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is of codimension 1. The below proposition verifies that V is indeed of the expected
dimension. Recall that IW denotes the incriminant of Section 4.2.2, which as a set is
described by

IW = {p ∈ S | ∃C ∈ PW such that p ∈ Csing},

as stated in Remark 4.16. Recall further that, as a set,

ΣW = {(C, p) ∈ PW × S | p ∈ Csing}.

We are finally ready to solve Problem 3.

Proposition 6.5. (Solution of Problem 3)
Let (S,L) be a smooth projective surface equipped with a 2-very ample line bundle. Then
if PW = P⟨s0, ..., s2⟩C ⊂ |L| is a general net in |L|, we have

[IW ] = [V ] = c1(J1L) ∈ A(S),

where V := V (s̃0 ∧ s̃1 ∧ s̃2).

Proof. Let PW = {fp | p ∈ P2}, where p = (p0 : p1 : p2) and fp = p0s0 + p1s1 + p2s2. We
want to show that

[IW ] = [V (s̃0 ∧ s̃1 ∧ s̃2)] = c1(J1L).

Choose three general sections s0, s1, s2 ∈ H0(S,L) in the sense of Remark 4.13. By
Theorem 3.5 we have that

c1(J1L) = [V (s̃0 ∧ s̃1 ∧ s̃2)] ∈ A1(S),

if the degeneracy locus V (s̃0 ∧ s̃1 ∧ s̃2) is of expected dimension. It is therefore sufficient
to assert the equality V = IW of sets, in addition to showing that the degeneracy locus
V is of codimension 1. We start by proving the equality.

Denoting f̃p := p0s̃0 + p1s̃1 + p2s̃2, we have the following equalities of sets:

V (s̃0 ∧ s̃1 ∧ s̃2) = {p ∈ S | s̃0 ∧ s̃1 ∧ s̃2(p) = 0}
= {p ∈ S | c0s̃0(p) + c1s̃1(p) + c2s̃2(p) = 0, for some c = (c0 : c1 : c2) ∈ P2}
= {p ∈ S | f̃c(p) = 0 for some c ∈ P2}
= {p ∈ S | fc is singular at p for some c ∈ P2}
= IW .

The penultimate equality follows from Proposition 5.17, and the last equality is just
Remark 4.16.

We now argue that IW is of dimension 1 in S. It suffices to show that dim ΣW = 1.
Indeed, since IW is the image of ΣW by a morphism, its dimension can not exceed the
dimension of ΣW . Also, we have that V = IW has dimension ≥ 1 by Krull’s principal
ideal theorem, implying dimV = 1. We shall therefore prove that dim ΣW = 1.

Since L is 2-very ample, all curves C ∈ PW are reduced by Proposition 4.8. The fibres
of the map

π1 : ΣW → |L|1 ∩ PW,
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over a curve C equal Csing. Since the curve C is reduced and singular, the fibre π−1
1 (C)

is of dimension 0. It is true that |L|1 ∩ PW has dimension 1 in |L|, since codim |L|δ = δ,
by Proposition 4.11. From a well known result on dimension of fibres of dominant
morphisms, it follows that

dim ΣW ≤ dim π−1
1 (C) + dim |L|1 ∩ PW = 0 + 1.

Since the case dim ΣW = 0 does not occur by assumption of generality on W, we are
done.

6.2 Failure of a Naive Generalization of J1L

It is inconvenient to work over S×n when one intends to keep track of the singularities of
curves. To illustrate this, we provide a generalization of the first jet bundle J1L that
seems deceptively natural and showcase its subsequent failure to store data on the pairs
of points where a curve C ∈ |L| might be singular. As we shall see, the points in the
diagonal of S × S are troublesome.

6.2.1 A Naive Generalization of J1L

Let us start by considering a heuristic argument. We propose the following naive
generalization of J1L, that will keep track of curves with 2 singularities. Consider the
direct sum J1L ⊕ J1L and study the behaviour of the induced global section s̄ = (s̃, s̃)
of J1L ⊕ J1L on S × S. If the curve V (s), where s ∈ H0(S,L), is singular at the points
p and q, then the section s̄ will vanish when restricted to the fibre of J1L ⊕ J1L at the
point (p, q) ∈ S × S. The bundle is thus able to ascertain if a curve V (s) is singular
at two distinct points. There is however a problem: the section s̄ also vanishes at the
point (p, p) when V (s) is singular only at the point p. We illustrate below how this fact
causes the degeneracy locus of the bundle to not be of the expected dimension. In fact,
the degeneracy locus will not even correspond to the set of points in S × S that we are
interested in.

Example 6.6.
(
Failure of a naive generalization of J1L

)
Let the πi’s in the diagram below be distinct projection maps.

S × S S

S

π1

π2

We define E = π∗
1(J1L)⊕ π∗

2(J1L). If s ∈ Γ(S,L), we denote its induced section of E by
s̄ = π∗

1(s̃)⊕ π∗
2(s̃), where s̃ is the induced global section of J1L.

It is a slight subtlety that E does not contain the desired data. After all, if a curve
Z(s) ∈ L is singular at two points p1, p2 ∈ S, then s̄(p1, p2) = (0, 0), meaning the section
s is singular at p1 and p2.

The supposed appropriate setting for E , in the context of Problem 2, would be to study
whether its degeneracy locus relates to the image ϕ2(P3 ∩ |L|2 \ |L|3) where P3 = PW
is a general linear system, and whether the locus is of the appropriate dimension. We
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6.2. Failure of a Naive Generalization of J1L

shall show that neither are true. Indeed, the degeneracy locus of four general sections
s̄0, ..., s̄3 ∈ Γ(S × S, E) induced by s0, ..., s3 ∈ Γ(S,L) satisfies the equalities

V (s̄0 ∧ s̄1 ∧ s̄2 ∧ s̄3)
= {(P1, P2) ∈ S × S |

∑
cis̄i(P1, P2) = (0, 0), where c = (c0 : c1 : c2 : c3) ∈ P3}

= {(P1, P2) ∈ S × S | f̄c(P1, P2) = (0, 0) where c ∈ P3}
= {(P1, P2) ∈ S × S | fc is singular at P1 and P2, where c ∈ P3}
= {(P1, P2) ∈ S × S |C = V (fc) ∈ PW is singular at P1 and P2, where c ∈ P3}
=: D,

where f̄c =
∑
cis̄i and fc =

∑
cisi. Since E is a rank 6 bundle, the expected dimension

of D is 1, by Theorem 3.5. But D will have at least dimension 2. Indeed, we have that

Y = {(p, p) ∈ S × S | ∃C ∈ PW which is singular at p} ⊂ D.

Clearly, Y is in bijection with the set

Y ′ = {p ∈ S | ∃C ∈ PW which is singular at p},

but the latter is exactly a degeneracy locus of 4 sections of J1L on S, by a similar set
of equalities as above. A degeneracy locus of four sections of a rank 3 bundle is, by
Theorem 3.5, of codimension 0, meaning Y ′ = S. It follows that

Y = {(p, p) ∈ S × S | ∃C ∈ PW which is singular at p} = ∆ ⊂ S × S,

meaning D contains a dimension 2 subscheme.

We remark that the degeneracy locus D is not of any interest to us to begin with, since
P3 ∩ |L|2 contains curves that have at least two nodes, and the locus D contains curves
that only have one singularity. △
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Chapter 7

The Second Somewhat Tautological
Bundle

This chapter is dedicated to taking on part of Problem 4. We compute the Chern classes
of ST (L, 2), in the sense that we relate them to the Chern classes of bundles that are
known and some of which are likely to be computable. We compute the classes of ST (L, 2)
in two separate approaches.

7.1 Results

This chapter mostly consists of bookkeeping and technical arguments, making it some-
what tedious to follow. We therefore start by presenting our main findings as well as
stating the contents of the sections, hoping this provides some overview.

Our strategy for computing c•(ST (L, 2)) lies in applying Whitney’s sum formula to an
exact sequence

0 // F // ST (L, 2) // L[2] // 0

granting us c•(ST (L, 2)) = c•(F)c•(L[2]). The Chern classes c•(L[2]) are known, as
detailed in Remark 5.6. Hence the computation reduces to computing the Chern classes
of the bundle F . We prove exactness of this sequence (with an explicit expression for
F) in Section 7.3. Two different approaches of computing c•(F) are presented in section
7.5. The first approach argues that computing the Chern classes of F almost reduces to
computing the Chern classes of IB/I2

B, and follows up on this by computing c•(IB/I2
B).

The second approach computes c•(F) more directly. The approaches differ practically in
that we apply Whitney’s formula to two distinct short exact sequences. We now present
the main result.

Theorem 7.1. Let S be a smooth projective surface equipped with a line bundle L. We
have that

c•(ST (L, 2)) = c•(L[2])c•(F) = c•(L[2])c•(qB∗(p∗
BL ⊗ IB/I2

B)) (7.1)

where
c•(F) =

c•((ΩS ⊗ L)[2])
c•(qB∗(k∗OE(−E)⊗ p∗

BL)) (7.2)

and
c•(IB/I2

B) = q∗
B [c•(ΩS[2])]

p∗
1 [c•(ΩS)] c•(k∗(ΩE/∆)) , (7.3)
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where the morphisms are given in diagrams (7.4) & (7.8).

Section 7.4 is dedicated to proving short exactness of a particular sequence that we use
in the computation of (7.3). The purpose of the next section is to introduce diagrams
and facts that we will use throughout the remainder of the chapter.

7.2 Setting the Stage

Computing the total Chern class of the jet bundles JnL was made easy by the existence
of the sequences

0 // L ⊗ Symm(ΩY ) // JmL // Jm−1L // 0

that consisted of bundles whose Chern classes were either known or they were recursively
computable. We are less fortunate in our ambition of computing c•(ST (L, 2)). The
appropriate sequences available to us consist of sheaves we know less about. As shall
be revealed in Section 7.3, our approach of computing c•(ST (L, 2)) relies on computing
the total Chern class of a bundle F . We have found two sequences that help us in our
quest of computing c•(F), should they be short exact. This section is dedicated to do
the bookkeeping required to assert short exactness of these sequences. To that end, we
start by repeating an important fact.

Lemma 7.2.
Let Z2(S) be the universal family lying flat over S[2] that is closed in S[2] × S. Then we
have that

B := Bl∆(S × S) = Z2(S).

Proof. The result is well known. It is for instance stated in [Leh99, Chapter 1.2].

Let B2 be the closed subscheme of S[2] × S defined by the doubling of B, i.e. by the
ideal sheaf I2

B, where IB is the ideal sheaf associated to B. The doubling of B has the
following connection to S[2].

Lemma 7.3.
Let Z6(S) be the universal family lying flat over S[6]. The morphism h : S[2] → S[6] in
the diagram corresponds to B2 in the sense that Z6(S) pulls back to B2. I.e, we have
that the diagram

B2 Z6(S)

S[2] S[6].

⌜
qB π

h

commutes.

Proof. We consider the morphism h from the proof of Corollary 5.21 and apply the
universal property of S[6] to it.
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Lemma 7.4.

B B2 S[2] × S S

S[2] S[6]

i

qB

ιB

pB

ιB2

pB2

qB2

p

q

h

(7.4)

a. All the arrows in Diagram 7.4 are morphisms of schemes, and the diagram commutes
wherever possible.

b. if L is a line bundle on S, it holds that

L[2]
def= qB∗p

∗
B(L) = q∗(ιB∗OB ⊗ p∗L) (7.5)

c. if L is a line bundle on S, it holds that

ST (L, 2) def= qB2∗p
∗
B2(L) = q∗(ιB2∗OB2 ⊗ p∗L) (7.6)

Proof. a. By Lemma 7.2, the diagram

B S[2] × S S

S[2]

closed

qB

p

q (7.7)

commutes. The morphisms qB and h come from Lemma 7.3. The morphisms
p, q are first and second projection respectively and qB is a projection. The
remaining morphisms are the natural ones, or they are given by composition of the
aforementioned morphisms.

b. This equality follows from an application of the projection formula, which we use
in the first equality below.

q∗(ιB∗OB ⊗ p∗L) = q∗(ιB∗(OB ⊗ ι∗Bp∗L))
= (q ◦ ιB)∗(OB ⊗ (p ◦ ιB)∗)
= qB∗(OB ⊗ p∗

BL) = qB∗(p∗
BL) = qB∗p

∗
BL.

The penultimate equality is a trivial computation in the Picard group of B.

c. Exchange “B” with “B2” in b.

Along with Diagram (7.4), we will be needing the following pullback diagram.

Remark 7.5. Diagram (7.8) is the fibre product of S × S along with the data (E, k),
which represents the closed embedding of the exceptional divisor into the blowup B. The
morphism p2 equals the morphism pB in Diagram 7.4, as follows by the identification
Z2(S) = B. △
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E

B

S × S S

S SpecC

k

p2

p1

π

π2

π1

(7.8)

Convention 7.6.
For the remainder of this chapter, all unspecified morphisms refer to the morphisms in
Diagrams (7.4) & (7.8).

7.3 Initial Computations of c•(ST (L, 2))

This section is dedicated to reducing the computation of c•(ST (L, 2)) to classes of other
sheaves, as well as describing the further complications this brings. Our initial strategy
will be to apply Whitney’s formula to the following short exact sequence.

Lemma 7.7.
The sequence of OS[2]-modules

0 // q∗(p∗L ⊗ IB/I2
B) // q∗(p∗L ⊗OB2) // q∗(p∗L ⊗OB) // 0 (7.9)

is an exact sequence of locally free sheaves.

Proof. The sequence of locally free sheaves

0 // IB/I2
B

// OB2
// OB

// 0

is exact by the fact that OB2 = OS[2]×S/I2
B and OB = OS[2]×S/IB. Tensoring by p∗L, a

line bundle, is exact, giving us the short exact sequence

0 // p∗L ⊗ IB/I2
B

// p∗L ⊗OB2
// p∗L ⊗OB

// 0 .

Note that this is a sequence of OB-modules. Pushing the sequence forward by q is exact,
since q is finite. This leaves us with the sought after short exact sequence

0 // q∗(p∗L ⊗ IB/I2
B) // q∗(p∗L ⊗OB2) // q∗(p∗L ⊗OB) // 0 .

This is a sequence of locally free sheaves, since the second and third sheaf are locally free
by Remark 5.5 and Corollary 5.21.

Note that IB/I2
B is supported on B. Henceforth, we shall abuse notation slightly

by writing IB/I2
B when we think of it as a sheaf on B. With this notation we may

appropriately relabel the sheaves (using Lemma 7.4) of the sequence (7.9) to

0 // F // ST (L, 2) // L[2] // 0 (7.10)

wherein we define F := qB∗(p∗
BL ⊗ IB/I2

B).
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Applying Whitney’s formula to sequence (7.10) reduces the problem of computing
c•(ST (L, 2)) to computing c•(F) and c•(L[2]). As stated in Remark 5.6, the Chern classes
of the tautological bundles L[n] are known. The problem of computing c•(ST (L, 2))
therefore further reduces to computing c•(F). This task is the subject of Section 7.5.
Our first approach of computing c•(F) requires us to do some more bookkeeping, which
we dedicate the next section to.

7.4 A Blowup Short Exact Sequence

Our first approach of computing c•(F) starts by computing c•(IB/I2
B). As will be

shown in Section 7.5, this computation is reducible to the computation of c•(ΩB), which
motivates our interest in proving exactness of the following sequence.

Lemma 7.8.
Let the setting be as in Diagram 7.8, where π is the blow-up morphism and k is the
inclusion of the exceptional divisor. Then the sequence

0 // π∗ΩS×S
// ΩB

// k∗ΩE/∆ // 0 (7.11)

is exact, and
k∗ΩE/∆ ∼= ΩB/S×S .

Proof. Recall the cotangent exact sequence of OB-modules (see for instance 22.2.25 in
[Vak22]):

π∗ΩS×S
// ΩB

// ΩB/S×S
// 0

We claim that this sequence is short exact. Indeed, the blowup morphism π restricted to
U is an isomorphism. The morphism π∗ΩS×S → ΩB is therefore trivially an isomorphism
on U . But a morphism of locally free sheaves is injective if there exists an open on which
its restriction is injective. The morphism

π∗ΩS×S ΩB

is thus injective, proving short exactness of the sequence

0 // π∗ΩS×S
// ΩB

// ΩB/S×S
// 0 . (7.12)

Observe that (7.11) and (7.12) only differ by their rightmost sheaves. This motivates
us to prove exactness of (7.12) by proving the isomorphism k∗ΩE/∆ ∼= ΩB/S×S , thereby
asserting that it is identical to sequence (7.11).

By 22.2.27b) in [Vak22], commutativity of the diagram

E Bl∆(S × S)

∆ S × S

k

⌜
ϕ π

closed

(7.13)

implies

k∗ΩB/S×S

β∼= ΩE/∆.
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By adjointness, we obtain a morphism

ΩB/S×S
α−→ k∗ΩE/∆

that fits into the diagram

k∗ΩB/S×S ΩE/∆ ∼= k∗k∗ΩE/∆

ΩB/S×S k∗ΩE/∆

β

α

k∗ k∗ (7.14)

The morphism α is an isomorphism if it induces isomorphisms on stalks, by [Har77, Prop
II.1.1]. Recall that if ι : Z ↪−→ X is a closed immersion and F is an OZ-module, then
ι∗ι∗F ∼= F [Stacks, Tag 04CJ]. Since k is a closed immersion, we obtain the following
deconstruction of the map β:

k∗ΩB/S×S
k∗α−−→ k∗k∗ΩE/∆ ∼= ΩE/∆.

We study the stalks of these sheaves. Note that if x ∈ B \E, then both sheaves localize
to the 0-ring on the stalk of x. Assume therefore x ∈ E. The equalities below follow
from the identification of stalks of pullbacks along morphisms of ringed spaces (see e.g.
[Stacks, Tag 0098]).

(k∗ΩB/S×S)x = ΩB/S×S,x ⊗OB,x
OE,x

∼= (k∗k∗ΩE/∆)x = k∗ΩE/∆,x ⊗OB,x
OE,x.

The isomorphism on stalks is, by adjunction, given by αx ⊗ id. The only remaining step
is to prove that this implies αx is an isomorphism. We may express this desire in a
diagram. The morphism αx factors through βx in the following way:

ΩB/S×S,x ⊗B,x OE,x k∗ΩE/∆,x ⊗B,x OE,x

ΩB/S×S,x k∗ΩE/∆,x

∼
βx

∼=
αx

σ (7.15)

We wish to assert injectivity of the map σ, as this would make it a bijection. It is
convenient to restate this diagram in terms of the definition of the blowup B as a zero
locus of a homogeneous ideal. We obtain the diagram

ΩB/ Proj(A), x ⊗OB,x
(OB/IE)x (k∗ΩE/∆, x)B,x ⊗OB,x

(B/IE)x

ΩB/ Proj(A), x k∗ΩE/∆, x

∼
βx

∼=
αx

σ (7.16)

where ProjA = S × S. Restating the fibre product diagram (7.13) with this notation
gives us Diagram (7.17)

B ×Proj A E B = Bl∆(ProjA)

∆ ProjA

k

⌜
ϕ π

closed

(7.17)
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We may assume that the blowupB is embedded in Pn
A = Pn−1×SpecA = ProjA[x1, ..., xn]

as the zero set of the ideal I = (Ii,j)i,j generated by the homogeneous forms Ii,j =
xifj − xjfi. We may further assume IE = (f1, ..., fn) where ĨE = IE and where the fi’s
form a regular sequence. Defining Bl such that B = Proj(Bl), our goal has become to
show that IE · ΩBl/A = (0), as this would mean the kernel of σ′ is zero, in terms of the
sequence

0 // IE · ΩBl/A
// ΩBl/A

σ′
// ΩBl/A ⊗Bl/(IE · ΩB/A) // 0 .

Since localization commutes with the tensor product, we may reduce to the case where
we study the non-localized variation of diagram (7.16).

We prove the statement IE · ΩBl/A = (0) by verifying it on the distinguished opens
D+(xi) ∈ Pn

A. We start by checking i = 1, and remark that the other cases will
be similar. Fix U = D+(x1) and choose coordinates yi = xi/x1. The scheme
B ∩ U equals the zero locus of the expressions fj − yjf1. The module ΩBl/A is
therefore generated by the elements dg =

∑
I aId

∏
yni

i =
∑

I aI
∑

i nidyi, where
g ∈ Bl ∩ U = Spec(A [y2, ..., yn] /(fj − yjf1)j=2,...,n). The module ΩBl/A is therefore
generated by the elements dyi. Furthermore, by the relations defining Bl ∩ U , we have
that IE = (f1, ..., fj) = (f1). Hence, for the product ΩBl/A to vanish, it suffices to show
that f1dyi = 0. By the Leibniz rule, and the fact that f1 ∈ A, we have that

f1dyi = d(f1yi).

But by the defining relation fi = yif1 of B ∩ U , we obtain the equality

d(f1yi) = d(fi) = 0.

Which is what we wanted to show. We therefore have that IE · ΩB/A = 0, which implies
injectivity of σ′. The map αx thus factors through three isomorphisms, meaning it is an
isomorphism itself.

The proof above does not rely explicitly on our varieties, meaning it generalizes to the
following more general setting.

Lemma 7.9. (Generalization of Lemma 7.8)
Let the setting be that of the pullback/blowup diagram

E BlY (X)

Y X

ι

⌜
g π

where ι is a closed immersion, π is the blowup morphism and X,Y are smooth projective
varieties. Then the sequence

0 // π∗ΩX
// ΩBlY (X)/X

// ι∗ΩE/Y
// 0 (7.18)

is exact, and
ι∗ΩE/Y

∼= ΩBlY (X)/X .

Note that if X,Y are smooth, then so are E and BlY (X), meaning we do not have to
assume the latter to match our setting.
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7.5 Computing c•(F) = c•(qB∗(p∗BL ⊗ IB/I2
B))

We present two different approaches of computing c•(F). The approaches differ in that
they rely on applying Whitney’s formula to different sequences, which in turn lead to
different complications in expressing c•(F) in terms of Chern classes that are known. In
particular, the first approach uses the blowup short exact sequence of Section 7.4. The
second approach relies on a conjecture wherein we claim short exactness of a sequence,
motivated by the claim that B is generically a cyclic double cover of S[2].

The result of the second approach is somewhat better, as it completely reduces the
computation of c•(F) down to computing the Chern classes of a relatively innocent
looking sheaf. The first approach is, however, quite insightful, justifying its presence in
this thesis.

7.5.1 Approach 1: Computing c•(F) via c•(k∗(ΩE/∆))

Before we compute the Chern classes of F = qB∗(p∗
BL ⊗ IB/I2

B), it seems natural to
explain what we mean by ‘computing c•(F)’. In our case, the word compute means to
express c•(F) mostly in terms of the Chern classes of the bundles p∗

BL, and IB/I2
B.

Example 3.8, Remark 5.7 and Lemma 6.2 motivate our desire in this endeavour, as
they exemplify that the Chern classes of complicated bundles can sometimes be ex-
pressed in terms of the Chern classes of the bundles they are made up of. We shall
consider the classes c•(p∗

BL) to be known, since the pullback of the total Chern class is well
behaved along flat morphisms. We shall therefore focus our attention on the sheaf IB/I2

B.

The computation of c•(IB/I2
B) is performed in three steps. The first step is to prove

exactness of a particular sequence that contains IB/I2
B. The second step is to apply

Whitney’s formula, and reduce the expression of c•(IB/I2
B) to bundles whose total

Chern class is known. We manage to express c•(IB/I2
B) to a product containing only

one term, c•(k∗(ΩE/∆)), whose Chern classes we do not know. The chapter finishes off
by sketching a possible continuation (in which we assume c•(IB/I2

B) to be known) by
applying Grothendieck-Riemann-Roch to F .

Computing c•(IB/I2
B)

We finally compute c•(IB/I2
B) using, among others, the blowup exact sequence of the

previous section.

Proposition 7.10.
(
Computation of c•(IB/I2

B) ∈ A(B)
)

Let the setting be that of Diagrams (7.4) and (7.8). We have that

c•(IB/I2
B) = q∗

B [c•(ΩS[2])]
p∗

1 [c•(ΩS)] c•(k∗(ΩE/∆)) . (7.19)

Proof. The sequence

0 // IB/I2
B

// ι∗BΩS[2]×S
// ΩB

// 0

is exact since B and S[2] × S are smooth, and ιB is a closed immersion. We apply
Whitney’s formula to it, obtaining

c•(IB/I2
B) =

c•(ι∗BΩS[2]×S)
c•(ΩB) . (7.20)
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BL ⊗ IB/I2

B))

Recall that the cotangent sheaves of products split (see [Har77, Exercise II.8.3]) in the
sense that

ι∗B(ΩS[2]×S) = ι∗Bq
∗ΩS[2] ⊕ ι∗Bp∗ΩS .

Using that diagrams (7.4) and (7.8) commute, Whitney’s formula, and the fact that the
total Chern class commutes with pullback, we may reformulate (7.20) to

c•(IB/I2
B) = q∗

B [c•(ΩS[2])] p∗
B [c•(ΩS)]

c•(ΩB) . (7.21)

The cotangent sheaves of S and S[2] are considered variables, as they certainly differ
from surface to surface. This reduces the proof to computing c•(ΩB).
By Lemma 7.8, we have that the sequence

0 // π∗ΩS×S
// ΩB

// k∗ΩE/∆ // 0

is exact. Applying the same tools as before, we obtain the chain of equalities below.

c•(ΩB) = c•(π∗(ΩS×S))c•(k∗(ΩE/∆))
= c•(π∗(π∗

1(ΩS)⊕ π∗
2(ΩS)))c•(k∗(ΩE/∆))

= p∗
1 [c•(ΩS)] p∗

2 [c•(ΩS)] c•(k∗(ΩE/∆)).

Inserting this into equation 7.21 yields

c•(IB/I2
B) = q∗

B [c•(ΩS[2])] p∗
B [c•(ΩS)]

p∗
1 [c•(ΩS)] p∗

2 [c•(ΩS)] c•(k∗(ΩE/∆)) .

Since the morphism p2 in Diagram 7.8 and the morphism pB in Diagram 7.4 are the same
(as mentioned in Remark 7.5), two terms in the above expression cancel. This grants us
the expression

c•(IB/I2
B) = q∗

B [c•(ΩS[2])]
p∗

1 [c•(ΩS)] c•(k∗(ΩE/∆)) ,

which is the desired equality.

The proof of Proposition 7.10 raises a question: why did we bother proving the
isomorphism in Lemma 7.8, when we might as well have expressed c•(k∗(ΩE/∆)) as
c•(ΩB/S×S)? One answer is that the total Chern class of the sheaf of relative differentials
is generally not known. Expressing the bundle as k∗(ΩE/∆) instead, kindles the hope of
allowing an explicit computation of the total Chern class of c•(IB/I2

B) using Grothendieck-
Riemann-Roch.

Further Deliberations on Approach 1

Approach 1 leaves us with two problems. Firstly: we do not know the Chern classes
c•(k∗ΩE/∆). If we were to learn these classes, we would by Approach 1 know the total
Chern class c•(IB/I2

B), which in turn would mean we could express the total Chern
class of E := p∗

BL ⊗ IB/I2
B, by an easy application of Proposition 3.9. This is where the

second problem comes in. Assuming c•(E) is known, can we express c•(F) = c•(qB∗E) in
terms of the Chern classes of E?

We do not have any answers to these problems, but we have given them some thought.
Regarding the first problem, we can say the following about its setting. We are going to
need the following well-known fact.
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Fact 7.11. Let X be a smooth projective variety, and let X ∆
↪−→ X ×X be the diagonal

embedding. Then N∆/X×X
∼= TX .

Combining this fact with Theorem 3.20.b), we obtain a result that helps us identify the
cotangent sheaf ΩE/∆. Namely, we have the isomorphisms

ΩE/∆ ∼= ΩP(N∆/S×S)/∆ ∼= ΩP(TS)/∆.

If this identification allows for a simpler computation of c•(ΩP(TS)/∆), then odds are it is
possible to use GRR to compute the class c•(k∗(ΩE/∆)) = c•(k∗(ΩP(TS)/∆)).

What regards the second problem, let us assume we have been successful in expressing
c•(F) in terms of known classes. We apply Grothendieck-Riemann-Roch to F , but
remark that we do not complete the computation. For ease of notation, we denote
tdX := td(TX). Theorem 3.11 (GRR) states that

ch(qB∗E) · tdS[2] = qB∗(ch(E) · tdB),

which we further reformulate to

ch(qB∗E) = qB∗(ch(E) · tdB) td−1
S[2]

= qB∗(ch(E) · tdB · q∗
B(td−1

S[2]))
= qB∗(ch(E) · td(TB/S[2])).

The last equality is obtained in the following manner. Recall the exact cotangent sequence,
which is short exact since our varieties are smooth and projective

0 // q∗
BΩS[2] // ΩB

// ΩB/S[2] // 0 .

The pullback commutes with dualizing, since the sheaves are locally free of finite rank.
By dualizing we obtain

0 // TB/S[2] // TB
// q∗

BTS[2] // 0 .

Applying additivity of the Todd classes, we obtain the equality

td(TB/S[2]) = td(TB)
td(q∗

BTS[2])
.

Hence, it is reasonable to assume that if one manages to compute the Todd class
td(TB/S[2]), then one can ascertain an expression for ch(qB∗E).

7.5.2 Approach 2: Computing c•(F) via c•(IE/I2
E)

The computation of c•(F) in this approach is quite simple, but it hinges on a sequence
being short exact, which is something we conjecture. We begin by performing the
computation before motivating the conjecture.

66
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BL ⊗ IB/I2

B))

The Computation

Recall that the morphisms in this chapter are the ones given in Diagrams (7.4) & (7.8)
and recall the short exact sequence

0 // qB∗(p∗
BL ⊗ IB/I2

B) // ST (L, 2) // L[2] // 0 .

As in the previous section, we shall begin by computing c•(IB/I2
B), which once again

requires us to compute c•(ΩB). This is where our two approaches diverge; in this section
we compute c•(ΩB) by applying Whitney’s formula to a short exact sequence that is
different to the one in Lemma 7.8. This novel expression of c•(IB/I2

B) makes the final
expression of c•(F) quite simple, and even relates it to the tautological bundles of Remark
5.7.

For the sake of simplicity, assume L = OS , making the deriving of an expression somewhat
less messy. Consider again, the exact sequence

0 // IB/I2
B

// ι∗BΩS×S[2] // ΩB
// 0 .

The cotangent sheaf of a direct sum splits, giving us

ΩS×S[2] = p∗ΩS ⊕ q∗ΩS[2] .

Let us express the class of IB/I2
B in the Grothendieck ring K(B):

IB/I2
B = ι∗BΩS×S[2] − ΩB (7.22)

= p∗
BΩS + q∗

BΩS[2] − ΩB, (7.23)

where we have used that (pB)∗ = ι∗B ◦ p∗ and (qB)∗ = ι∗B ◦ q∗. We conjecture that the
following sequence is short exact.

Conjecture 7.12.
The sequence

0 // q∗
BΩS[2] // ΩB

// IE/I2
E

// 0 (7.24)

is an exact sequence of locally free sheaves.

We motivate the conjecture by sketching a suggestion of proof in the next section.

By the sequence, we have the relation

ΩB = q∗
BΩS[2] + IE/I2

E

in the Grothendieck ring of B. Inserting this into (7.23) gives us

IB/I2
B = p∗

BΩS + q∗
BΩS[2] − ΩB

= p∗
BΩS + q∗

BΩS[2] − q∗
BΩS[2] − IE/I2

E

= p∗
BΩS − IE/I2

E .

Since E is a divisor on B, we have the well known-identification:

IE/I2
E = k∗OE(−E), (7.25)
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where k : E ↪−→ B is the inclusion and OE(−E) is the line bundle associated to the divisor
E. Applying the pushforward qB∗ to both sides of the equality IB/I2

B = p∗
BΩS − IE/I2

E

gives us
qB∗(IB/I2

B) = qB∗(p∗
BΩS)− qB∗(k∗OE(−E)).

By Remark 5.7 we have that qB∗(p∗
BΩS) = (ΩS)[2]. Hence,

qB∗(IB/I2
B) = (ΩS)[2] − (qB ◦ k)∗(OE(−E)).

Performing the same sequence of operations without the simplification L = OS gives us
the following more general result.

Proposition 7.13.
We have that

F def= qB∗(IB/I2
B ⊗ p∗

BL) = (ΩS ⊗ L)[2] − qB∗(k∗OE(−E)⊗ p∗
BL), (7.26)

where the sheaf (ΩS ⊗L)[2] is a tautological bundle, as defined in Remark 5.7. Expressing
this in the language of Chern classes, we have

c•(F) =
c•((ΩS ⊗ L)[2])

c•(qB∗(k∗OE(−E)⊗ p∗
BL)) .

It is clear from proposition 7.13 why we consider Approach 2 to be the more promising
approach. Obtaining a closed expression of c•(F) only requires the computation of
c•(qB∗(k∗OE(−E)⊗p∗

BL)), since the total Chern class c•((ΩS⊗L)[2]) is computable with
the methods in [EGL99]. It therefore seems likely that an application of Grothendieck-
Riemann-Roch to qB∗(k∗OE(−E)⊗ p∗

BL) will reveal the total Chern class c•(F).

Motivating Conjecture 7.12

Recall that qB : B → S[2] is a flat finite morphism. We make the following claim.

Claim 7.14. The morphism qB is generically a cyclic double cover. It is ramified over the
closed subscheme D := {Z ∈ S[2] | SuppZ = {p} where p ∈ S}. Letting U := S[2] \D,
we claim qB is étale when restricted to B ×S[2] U .

We sketch the situation in Diagram (7.27), where we have called D̃ := D ×S[2] B.

D̃ B B ×S[2] U

D S[2] U

(7.27)

Consider the exact sequence

q∗
BΩS[2] // ΩB

// ΩB/S[2] // 0 .

Assuming the claim, since derivations pull back and qB restricted to B ×S[2] U is étale,
we have that the sheaves q∗

BΩS[2] |B×
S[2] U

∼= ΩB|U are isomorphic. In particular the map
between them is injective, implying that the unrestricted map of sheaves is also injective.
We therefore obtain left-exactness of the sequence

0 // q∗
BΩS[2] // ΩB

// ΩB/S[2] // 0 .

The goal is now to prove that ΩB/S[2] ∼= IE/I2
E . A further approach would be to restrict

the bundles to the ramification divisor q−1
B (D) = E ⊂ B, and compare the two.
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Appendix

A.1 Assorted Proofs

A.1.1 Proof of Example 3.13

Proof. We have that
J0L = π1∗(OY ×Y /I∆ ⊗ π∗

2L).

Now recall that as a sheaf over Y , we have that OY ×Y /I1
∆ simply means ∆∗OY , where

∆ is the diagonal map Y → Y × Y . We thus have

J0L = π1∗(∆∗OY ⊗ π∗
2L).

Using the projection formula, we obtain

J0L = π1∗∆∗(OY ⊗∆∗π∗
2L).

By using the categorical identities and the definition of the diagonal, we obtain
π1∗∆∗ = (π1∆)∗ = (id)∗ and ∆∗π∗

2 = (π2∆)∗ = (id)∗.

Y

Y ×SpecC Y Y

Y SpecC

id

id

∆

π2

π1

Commutative diagram which illustrates the definition of ∆.

This reduces the expression of J0L to

J0L = (id)∗(OY ⊗ (id)∗L),

making it clear that
J0L = OY ⊗ L.

This is a simple computation in the Picard group of Y , granting us

J0L = L.
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A.1.2 Proof of Corollary 3.14

Proof. We use the inductive principle on n, letting the induction hypothesis be the
corollary. We saw earlier that J0L = L, so the hypothesis holds for n = 0.

Suppose the corollary holds for some n. We need to show that Jn+1L is a vector bundle
of rank

(n+1+k
k

)
. By theorem 3.12 we have the short exact sequence

0 // L ⊗ Symn+1(ΩY ) // Jn+1L // JnL // 0

and by a well known property of short exact sequences of locally free sheaves, we
have that Jn+1L is a vector bundle, since JnL is a vector bundle by assumption and
L ⊗ Symn+1(ΩY ) is a vector bundle. The latter have respective rank

(n+k
k

)
and

(n+k
k−1

)
,

and so Jn+1L must have rank
(n+k

k

)
+
(n+k

k−1
)
, which by recurrence of binomial coefficients

equals
(n+1+k

k

)
. This is the desired rank of Jn+1L.

A.1.3 Computing the Fibres of L[n]

Claim A.1. Let S be a smooth projective surface equipped with a line bundle L. Then
the fibre of the induced tautological bundle L[n] at a point [Z] ∈ S[n] is H0(Z,OZ).

Proof. Consider the pullback diagram below.

[Z]×S[n] Zn(S) Zn(S) S

[Z] S[n]

ι

π

q

p

i

We have that q∗(L) is a line bundle on Zn(S). Furthermore, we have that

[Z]×S[n] Zn(S) = (π ◦ ι)−1([Z]) ∼= Z,

and that i∗(p∗(q∗(L))) = π∗(ι∗(q∗(L))), since p is flat. This gives us the set of equalities

L|[Z] = i∗(L[n])
= i∗(p∗q

∗(L))
= π∗(ι∗(q∗(L)))
= π∗(L|Z)
= H0(Z,L|Z) ∼= H0(Z,OZ).

A.1.4 L is 0-Very Ample ⇐⇒ L is Globally Generated

Claim A.2. Let L be a line bundle on a smooth projective variety X. Then L is 0-very
ample if and only if L is globally generated.

Proof. Suppose L is 0-very ample. Then for all points p ∈ X, the map ϕ : H0(X,L)→
H0(p,L|p) is surjective. Since H0(X,L) is a finite-dimensional C-vector space, we have
that there exists an N ∈ N such that

H0(X,L) = CN = (OX, p/mp)N = ON
x, p/mpON

x p.
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Recall that H0(p,L|p) = Lp/mpLp. Substituting these modules for the domain and
codomain gives us that ϕ is a surjective map of C-modules ϕ : ON

x, p/mpON
x p → Lp/mpLp.

By Nakayama’s lemma, we have that ϕ is surjective if and only if it lifts uniquely to a
surjective map

ψ : ON
X,p → Lp.

Since p was chosen arbitrarily, we have that ON
X → L is surjective on stalks, meaning it

is surjective. Hence L is globally generated.

73



Appendix A. Appendix

A.2 The ongoing game of tennis in the part of my head that
belongs to a mathematicican

Mensen willen zijn als andere mensen maar anders,
onvergelijkbaar, eenmalig, uniek, om nooit te vergeten,
uitblinken willen ze graag in schoonheid, in macht of in wijsheid.
Maar de goden dulden het niet, en al wie te hoog vliegt
vangen ze in een kleverig web van futiele beletsels,
door hun onbetekenendheid zo vernietigend voor de
sterveling die zich op eigen kracht probeert te verheffen.
Vrienden, we weten wat we zijn maar niet wat we worden.
Dit zijn de mythen van mensen die in hun overmoed meenden
goden te evenaren, en van de val die ze maakten.

- Imme Dros, Griekse mythen
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