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Abstract

In this thesis we use tropical geometry to approach an open problem in real
geometry. The problem, first posited by Wachspress, E.L. in [Wac75] and
further explored by Kohn. et al. in [Koh+21] has to do with a set of objects
called regular rational polypols. Wachspress found that one can assign a
unique plane curve to each of these objects, and stated as a conjecture that
he believes that this curve lie outside the polypol. Here we define analogous
objects in tropical geometry and work towards evaluating a similar question.
This is complicated by the fact that the tropical adjoint is not necessarily
unique, and by the nature of tropical intersections. We approach the problem
by restricting to simple cases, finding all the information we can about those,
and then increasing the complexity gradually. In particular we give a complete
description of all possible tropical polypols bounded by tropical lines. Then
we begin a similar description of tropical polypols bounded by lines and one
tropical conic. We also give a proof of our version of the conjecture for tropical
polypols of degree four or less.
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Introduction

In this thesis we will use tropical geometry to explore an open problem from real geometry.
Tropical geometry is a subfield of algebraic geometry studying a type of geometric

objects with some unusual properties. Tropical plane curves can, like usual algebraic
plane curves, be associated with polynomials, but with a different arithmetic than over
usual rings. This leads to, among other things, all tropical curves being piecewise linear.

Polypols are a generalization of polytopes, that are have boundaries given by non-
linear hypersurfaces. In [Koh+21] Kohn et.al. presents an overview of some currently
known properties of these geometric objects. In particular, the question of the adjoint
curves, of polypols in the plane. Among other things, Kohn et.al explores a conjecture
posited by E. Wachspress in [Wac75] and [Wac80] concerning whether the adjoint includes
points in the interior of the polypol. Wachspress believed that they do not. In [Koh+21]
this is proven for some cases, but the question remains open.

In this thesis, we seek to explore a parallel question in tropical geometry. To do this
we define tropical polypols and their adjoints. Then we describe what the adjoints of
some tropical polypols look like, paying particular attention to the question of whether
tropical adjoints are always unique. We then attempt to determine whether they can
include points in the interior of the polypol. We give a detailed account of tropical
polypols with sides from tropical lines. Then present some general results. And begin a
similar description of polypols with sides from lines and conics. Finally, we present a few
examples of types of polypols without giving a full description.

The following is a quick outline of the thesis. After the introduction, in Chapter 1 we
lie the theoretical framework for tropical plane algebraic geometry in general. Here we
give the definitions of some important concepts related to tropical plane curves and their
intersections. We also give a brief discussion of uniqueness of tropical lines and conics
through given sets of points.

Chapter 2 is the main chapter, where we present the main work done in this thesis.
We first introduce the real definitions and some results relevant to the open question.
Then we define tropical polypols, and present some general results. The rest of the
chapter describe particular cases, and gives examples.

Finally, Chapter 3 contains a brief summary, and discussion of some open problems.
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Chapter 1

Tropical plane geometry

This chapter gives some results and definitions for tropical geometry in general that are
needed as preliminary information before the main part of the thesis. First we present
the underlying arithmetic that govern tropical objects. The next section is concerned
with tropical plane curves, giving some general definitions and a description of the types
of tropical plane curves that show up in this thesis. The next two sections handle some
important properties of plane curves. First we look at intersections of two curves and
how this is different from classical geometry. Then the number of general points needed
to uniquely determine a tropical curve in the plane. The final section deals with tropical
convexity.

1.1 Arithmetic and polynomials

In this section we present the definitions of the tropical semiring and of tropical
polynomials that we use in this thesis.

Definition 1.1.1 ([MS15, p. 2]). The tropical semiring (R ∪ {∞}, ⊕, ⊙) consists of the real
numbers and infinity with two operations, ⊕ and ⊙. Tropical addition is defined as
equivalent to taking the minimum of two numbers, multiplication defined as equivalent
to taking the real sum of two numbers:

x ⊕ y := min(x, y)
x ⊙ y :=x + y.

It is worth noting that some texts define tropical addition as the maximum of two
numbers, rather than the minimum. All general results hold for both cases.

Definition 1.1.2 ([MS15, p. 5]). A tropical polynomial is a finite linear combination of
tropical monomials

f(x1, . . . , xn) =a1 ⊙ xj11
1 xj12

2 . . . xj1n
n ⊕ a2 ⊙ xj21

1 xj22
2 . . . xj2n

n ⊕ . . .

= min(a1 + j11x1 + · · · + j1nxn, a2 + j21x1 + · · · + j2nxn, . . . )

where ai ∈ R, jik ∈ N.

3



Chapter 1. Tropical plane geometry

1.2 Tropical plane curves

In this section we present a definition of tropical plane curves, describe some important
properties and give descriptions of tropical lines, tropical conics and tropical cubics.

Definition 1.2.1 ([Vig08, p. 97]). The tropical projective plane TP2 is defined as R3/
where (x, y, z) (x′, y′, z′) if and only if there is some k ∈ R such that (x′, y′, z′) =
(x ⊙ k, y ⊙ k, z ⊙ k).

Given a homogeneous tropical polynomial f(x, y, z) = ∑
i,j,k:i+j+k=d ai,j,kxiyjzk,

where d ∈ N, the tropical curve C given by f is the set of points (x0, y0, z0) ∈ TP2 such
that the minimum of f(x, y, z) is attained at least twice at (x0, y0, Z0) [BS17]. We say
that d is the degree of C.

To visualize the curves we set z = 0 and draw in R2. Then a tropical curve consists
of a set of vertices, and a set of linear branches. The branches are either bounded, in
which case they connect two vertices, or unbounded, in which case they only contain
one vertex. To each branch, one can assign a multiplicity or weight m such that at each
vertex, the curve fulfills a balancing condition. Said condition is that at each vertex, the
sum of the direction vectors of each adjacent branch, in relation to the vertex, multiplied
by the weight of the branch is zero [MS15, p. 12].

In this thesis we are mainly considering curves where all branches are of weight one.
A tropical curve is called simple if each vertex is either trivalent or is locally the

intersection of two line segments [MS15, p. 33].
One construction that can be used to find properties of tropical curves is the so

called dual subdivision. A tropical curve C of degree d is dual to a regular subdivision of
the triangle in R2 with vertices (0, 0), (0, d) and (d, 0). We say that C is smooth if this
subdivision consists of d2 triangles all of area 1

2 [MS15, p. 33].

Definition 1.2.2 ([MS15, p. 33]). Let C be a simple tropical curve, let t(C) be the number
of trivalent vertices, and let r(C) be the number of unbounded branches. The genus of
C is

g(C) = 1
2 t(C) − 1

2r(C) + 1

Definition 1.2.3. We say that a curve of genus zero is rational.

1.2.1 Tropical lines

A tropical line is given by a polynomial of the form

a1 ⊙ x ⊕ a2 ⊙ y ⊕ a3 ⊙ z.

It has one vertex and three branches in the directions north, east and southwest.

Example 1.2.4. Figure 1.1 on the facing page shows an example of a tropical line given
by the polynomial

x ⊕ y ⊕ z (1.1)

. Notice that it has genus g = 1
2 − 3

2 + 1 = 0.
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1.2. Tropical plane curves

Figure 1.1: Tropical line

1.2.2 Tropical conics

A tropical conic is a tropical curve given by a polynomial on the form

a1 ⊙ x2 ⊕ a2 ⊙ x ⊙ y ⊕ a3 ⊙ y2 ⊕ a4 ⊙ y ⊙ z ⊕ a5 ⊙ z2 ⊕ a6 ⊙ x ⊙ z2.

This can have one or more branches of weight higher than one. If we restrict to conics
with all branches having weight one then, they take the form of either two intersecting
lines or one type of so called proper conics.

Definition 1.2.5 ([RST05]). A proper conic is one where the coefficients fulfill the following
inequalities,

2a2 ≤ a1 + a3,

2a4 ≤ a3 + a5 and
2a6 ≤ a1 + a5.

In [RST05] four different types of proper conics are described. One type, which we
will call type 1, has one vertex with only bounded branches. This happens if

a2 + a4 <a3 + a6,
a2 + a6 <a1 + a4 and
a4 + a6 <a2 + a5.

In the other three types all vertices are on at least one infinite branch. This happens
when the conic fulfills the inequalities to be proper, and also either

Type 2: a2 + a4 > a3 + a6,

Type 3: a2 + a6 > a1 + a4 or

Type 4: a4 + a6 > a2 + a5.

A visualization of all four types is given in Figure 1.2 on the next page.
Notice how all of these have genus 4

2 − 6
2 + 1 = 0. In fact, proper conics coincide with

smooth conics.

Example 1.2.6. The following is an example of a proper conic with a vertex with only
bounded branches, i.e. a conic of type 1,

q = 3 ⊙ x2 ⊕ 2 ⊙ x ⊙ y ⊕ 3 ⊙ y2 ⊕ 4 ⊙ y ⊙ z ⊕ 7 ⊙ z2 ⊕ 4 ⊙ x ⊙ z.

5



Chapter 1. Tropical plane geometry

(a) Conic of type 1 (b) Conic of type 2

(c) Conic of type 3
(d) Conic of type 4

Figure 1.2: Proper tropical conics

This fulfills the inequalities from the definition, and also

a2 + a4 = 2 + 4 = 6 <7 = 3 + 4 = a3 + a6

a2 + a6 = 2 + 4 = 6 <7 = 3 + 4 = a1 + a4

a4 + a6 = 4 + 4 = 8 <9 = 2 + 7 = a2 + a5.

Hence this is a conic of type 1. This is shown in Figure 1.2a.

Example 1.2.7. The following is a conic of type 2:

p = 12.5 ⊙ x2 ⊕ 9.5 ⊙ x ⊙ y ⊕ 7.5 ⊙ y2 ⊕ 6.5 ⊙ y ⊙ z ⊕ 9.5 ⊙ z2 ⊕ 10.5 ⊙ x ⊙ z

1.2.3 Tropical cubics

Tropical cubics are tropical plane curves given by polynomials on the form

a1 ⊙ x3 ⊕ a2 ⊙ x2 ⊙ y ⊕ a3 ⊙ x2 ⊙ z

⊕a4 ⊙ x ⊙ y ⊙ z ⊕ a5 ⊙ x ⊙ y2 ⊕ a6 ⊙ x ⊙ z2

⊕a7 ⊙ y3 ⊕ a8 ⊙ y2 ⊙ z ⊕ a9 ⊙ y ⊙ z2 ⊕ a10 ⊙ z3

Like tropical conics, simple tropical cubics with branches all of weight one can take
many forms. They can take the form of three intersecting tropical lines, one tropical
conic and one tropical line or one irreducible curve with or without a singular point.
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1.3. Intersections

(a) Smooth tropical cubic

(b) Tropical cubic with one self-intersection

Figure 1.3: Tropical cubics

Example 1.2.8. Figure 1.3a shows an example of a smooth tropical cubic. Note how it
has genus g = 9

2 − 9
2 + 1 = 1, so it is not rational. The dual subdivision has one internal

vertex.

Example 1.2.9. Figure 1.3b is an example of a tropical cubic with one singular point. It
has genus 7

2 − 9
2 + 1 = 0 so it is rational. In the dual subdivision, the rectangle dual to

the vertex that is not trivalent, but locally the intersection of two branches, has double
the area of the triangles dual to the trivalent vertices.

1.3 Intersections

We need to have some intuition about how tropical intersections behave. In this section
we present some of the differences between tropical and classical intersections, and present
the notion of stable intersections. Which is needed to give a version of Bezout’s theorem
that holds in tropical geometry.

Definition 1.3.1. Given two tropical curves C and D, we say they intersect finitely if no
vertex of C is on D and vise versa.

Definition 1.3.2 ([Vig08, p. 11]). Let C and D be two tropical curves that intersect finitely
at a point p. Assume the edges meeting have weights m1 and m2, and direction vectors
(u0, u1) and (w0, w1) respectively. Then the intersection multiplicity at p is the absolute
value of

m1m2 det(u0 u1
w0 w1

)

Definition 1.3.3. Given two tropical curves C and D, we say they intersect transverally if
they intersect finitely, and if all intersections are of multiplicity one.

It is possible for two different irreducible tropical curves to have an infinite number of
points in common as in Figure 1.4a. In those cases one can define a finite, well defined set
of shared points that function as the intersections. This is described in detail in [RST05].
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Chapter 1. Tropical plane geometry

(a) Two lines with non-finite intersection

p

(b) The same two lines with stable intersection point
highlighted

Figure 1.4: Stable intersection

Definition 1.3.4. Given curves C and D of degrees c and d respectively. Suppose the
intersection C ∩ D is not transverse. Let ϵ ∈ [0, 1] be some real number. Let Cϵ and Dϵ

be translations of C and D, such that Cϵ and Dϵ intersect transversely in finitely many
points and such that limϵ→0 Cϵ → C and limϵ→0 Dϵ → D . Define the stable intersection
C ∩st D of C and D as the limit of Cϵ ∩ Dϵ as ϵ goes to zero.

Theorem 1.3.5 ([RST05, p. 303]). The limit of Cϵ ∩ Dϵ is independent of the choice of
perturbations. Hence the stable intersection C ∩st D is well defined.

Note that in the cases where vertices from one curve is on the other, the stable
intersection points coincide with those vertices.

We count points in C ∩ D that are not the stable intersection points as having
intersection multiplicity zero. Then a tropical version of Bezout’s theorem holds for
stable intersections.

Theorem 1.3.6 ([Vig08]). Assume C and D are tropical curves of degrees c and d
respectively. Then their stable intersection consists of cd points counted with multiplicities.

1.4 Uniqueness of curves through points

Classically, in real geometry there is exactly one curve of degree d through any set of
1
2(d2 + 3d) points in general position. The meaning of general position depends on the
degree of the curve. The same holds for simple tropical curves [MS15, p. 33]. However,
the requirements for a set of points to be in general position are different tropically.

1.4.1 A line between two points

In Euclidean geometry, given two distinct points, there will always be a unique line
through them. In tropical geometry, this is not necessarily true. Two points that would
fall on the same branch, i.e. they lie on the same vertical, horizontal or diagonal Euclidean
line, will lie on an infinite family of lines. There is, however, a way to associate a unique
line to any pair of points.

Definition 1.4.1 ([RST05]). Let A = (aij) be a k × k-matrix with entries in R ∪ {+∞}.
We define the tropical determinant of A as follows:

dett(A) =
⊕

σ∈Sk

(a1,σ1 ⊙ · · · ⊗ ak,σk
) = min

σ∈Sk

(a1,σ1 + · · · + ak,σk
).

Here Sk is the symmetry group on k elements.

8



1.4. Uniqueness of curves through points

In his phd thesis, [Vig08], Magnus Vigeland defined a unique line line between two
points using the following construction.

Definition 1.4.2 ([Vig08]). Given two points p = (p0, p1, p2) and q = (q0, q1, q2) ∈ TP2.‘
Find the vector

u = (u0, u1, u2) = (dett

[
p2 p3
q2 q3

]
, dett

[
p1 p3
q1 q3

]
, dett

[
p1 p2
q1 q2

]
).

We define the stable join of p and q as the line with coefficients u0, u1 and u2.

We will apply this to an example.

Example 1.4.3. Let the two points be given by p = (0, 0, 0) and q = (1, 0, 0). Note that
since p and q are on the same horizontal Euclidean line, there are infinitely many tropical
lines passing through them, as shown by the dashed lines in Figure 1.5. To find their
stable join need to find the tropical determinants of the following matrices,[

p2 p3
q2 q3

]
=

[
0 0
0 0

]
,

[
p1 p3
q1 q3

]
=

[
0 0
1 0

]
and

[
p1 p2
q1 q2

]
=

[
0 0
1 0

]
.

Given this find that

u = (u1, u2, u3) = (min{0 + 0, 0 + 0}, min{0 + 0, 1 + 0}, min{0 + 0, 1 + 0}) = (0, 0, 0).

Hence the line is the given by the polynomial f = x ⊕ y ⊕ z. This line has its vertex at p
and passes through q as desired.

qp

Figure 1.5: Stable join of two points

1.4.2 A conic through five points

In Euclidean geometry we know that for five general points, there is exactly one smooth
conic passing through them. When k ≥ 3 of said points are on the same line, the conic is
reducible, i.e. two lines. For k = 3 the lines are unique. If k = 4, there is a unique line l
containing four points and a pencil of lines containing the final point.

In the tropical case, the situation is somewhat different.

Example 1.4.4. In Figure 1.6 there are five points p1, . . . p5 that do not determine a unique
tropical conic. The points p1, p2 and p3 are colinear. In the classical case, the conic
through them would be unique, but reducible. That is, the only conic passing through
them would be the two intersecting lines highlighted on the far left. Tropically, as the
figure shows, there are at least two smooth conics through the points as well.

Similar to how there can in some cases be infinitely many lines through two points,
there can sometimes be infinitely many lines through five points, even if no three or more
of them are collinear.

9



Chapter 1. Tropical plane geometry

p1

p2

p3

p4 p5

p1

p2

p3

p4 p5

p1

p2

p3

p4 p5

Figure 1.6: Five points that give 3 options for a conic through them

p1

p2
p3

p4

p5

(a) There are potentially infinitely many
conics through the five points v1 . . . v5

p1

p2
p3

p4

p5

(b) Stable conic

Figure 1.7

Example 1.4.5. In Figure 1.7a there is an example of five points,

p1 =(1, 3, 0),
p2 =(0, 1, 0),
p3 =(3, 1, 0),
p4 =(2, 1.5, 0) and
p5 =(3, 3, 0)

such that no three are on a tropical line, yet there are multiple possible conics that pass
through all five of them. The fourth vertex could be anywhere along the dashed line.

There is a construction similar to the stable join for conics. This method is described
in [RST05, pp. 308, 309]. Analogous to the method for finding the conic through
five points in P2, the method uses the tropical determinant of a matrix given by the
points. Given five points pi = (pi1, pi2, pi3), i = 1, . . . , 5, let M be the matrix with rows
(2pi1, pi1 + pi2, 2pi2, pi2 + pi3, 2pi3, pi1 + pi3). Then the coefficients ai of the stable conic
are given by the tropical determinants of the 5 × 5 minors of M . The [Matlab] script in
Appendix A can be used to find to find these determinants. Then the tropical application
in [Polymake] can be used to visualize the curve.

10



1.5. Tropical polygons and tropical convexity

For any five given points in TP2 the unique stable conic is a proper conic [RST05,
Theorem 5.7]. It is stable in the sense of being the limit of conics through perturbations
of the five points.

Example 1.4.6. Given the five points from Example 1.4.5 on the preceding page, we find
the stable conic using the [Matlab] script. This gives the polynomial

f(x, y, z) = 9.5 ⊙ x2 ⊕ 6.5 ⊙ x ⊙ y ⊕ 5.5 ⊙ y2 ⊕ 4.5 ⊙ y ⊙ z ⊕ 5.5 ⊙ z2 ⊕ 6.5 ⊙ x ⊙ z.

Then using [Polymake], we find the conic in Figure 1.7b on the facing page.

1.5 Tropical polygons and tropical convexity

For the sake of this project, it is necessary to have a notion of a convex polytope in the
tropical sense. This has been explored in [DS04] and [DY07]. We use their definitions
here.

Definition 1.5.1 ([DS04]). A domain A in the plane is tropically convex if given any two
points x and y in A and any a, b ∈ R, the point a ⊙ x ⊕ b ⊙ y is in A.

Traditionally, a convex subset of the plane is one where the line segment between any
two points in the subset is contained in the subset. Using the following definition of a
line segment, the above definition is equivalent to that.

Definition 1.5.2 ([DS04]). Given two points x and y in the plane, the tropical line segment
[x, y] between them is equal to the set of all points on the form a ⊙ x ⊕ b ⊙ y where
a, b ∈ R.

The tropical line segment between two points is a subset of the unique line between
them.

v1

v2

v3 v4

(a) The convex hull of v1, . . . , v4. This is not convex
in the Euclidean sense, but it is tropically convex.

(b) This polygon is convex in the Euclidean sense,
but not tropically. Figure includes two points in
the set and the line segment between them, showing
how it is not contained by the set.

Figure 1.8: A tropically convex and non-convex subset of the plane

There are many ways to define a polygon.

Definition 1.5.3. A tropical n-gon is the tropical convex hull of a set of n points.

Example 1.5.4. The following are two examples of tropical triangles.

• Figure 1.9a shows the tropical convex hull of three colinear points. This triangle is simply
a line segment.

• Figure 1.9b shows the tropical convex hull of the intersections between three tropical
lines.

Note that there are no three tropical lines such that Figure 1.9a can be constructed as
the convex hull of their intersections.

11



Chapter 1. Tropical plane geometry

(a) The tropical convex hull of three colinear points
(b) The tropical convex hull of the intersections of
three tropical lines

Figure 1.9: Two tropical triangles
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Chapter 2

Polypols and adjoints

This is the main chapter of this thesis. In the first section we begin by presenting the
real case. Here we state the relevant definitions for the real version of the open problem.
We then present said problem, along with one general result that we will later discuss for
the tropical case. That done, we can in the next section, present our definition of tropical
polypols and tropical adjoints. Then we present a tropical version of the problem, and
discuss some general properties relevant to our approach to answering it. In the third
section, we restrict to polypols with sides from tropical lines, and give a classification
and some results for them. In the final section, we return to the general case, giving one
general result, before spending the rest of the chapter on the case of tropical conics.

2.1 Real polypols and adjoints

To begin discussing the tropical problem we are concerned with here, we first need to
give a brief discussion of the real version of the problem. In this section, we give the
relevant definitions of real regular rational polypols and their adjoint curve. Then we
present Wachspress’ conjecture, and some established relevant results. We use language
and notation from [Koh+21].

2.1.1 Definitions

Definition 2.1.1 ([Koh+21, p. 4]). Let C ∈ P2 be a plane curve with k ≥ 2 irreducible
components C1, . . . , Ck. Assume there are k points v12 ∈ C1 ∩ C2, . . . , vk1 ∈ Ck ∩ C1 such
that vij is non-singular on Ci and Cj , and that Ci and Cj intersect transversally at vij .
Then we say that the curves Ci and the points vij form a polypol P .

The curves C1, . . . Ck are called the boundary curves of P .
The set of points V (P ) = {vij} is called the vertices of P , and their complement in

the singular locus of C is called the residual points of C.
We say that P is rational if the curves Ci are rational.

Definition 2.1.2 ([Koh+21, Definition 2.9]). A real polypol is a polypol with real boundary
curves Ci, real vertices vi−1,i ∈ Ci−1 ∩Ci, and a given choice of segments connecting vi−1,i

to vi,i+1 in Ci(R), called the sides of the polypol, and a closed set P≥0 whose interior is
a union of simply connected sets and whose boundary is the union of the sides of the
polypol.

A quasi-regular polypol is a real polypol whose sides are non-singular on Ci.

Note that in this thesis we will sometimes refer to the interior and boundary of the
polypol, when we mean the interior and boundary of the set P≥0.

13



Chapter 2. Polypols and adjoints

Definition 2.1.3 ([Koh+21, Definition 3.1]). We say that a quasi-regular polypol P is
regular if all points on the sides of P except the vertices are non-singular on C and C
does not intersect the interior of P≥0.

Definition 2.1.4 ([Wac75, p. 135]). Let γi be the multiplicities of the residual points pi of
a regular polypol P of order D. Then the adjoint curve AP of P is the unique curve of
order D − 3 that passes through each residual point with multiplicity at least γi − 1 at
each pi.

2.1.2 The Wachspress conjecture

An important conjecture in the real case is the Wachspress conjecture.

Conjecture 2.1.5 ([Koh+21; Wac75]). The adjoint curve of a regular rational polypol P
does not intersect the interior of P≥0.

The question of whether or not this holds remain open.
Here are some results from [Koh+21] that will be useful later.

Proposition 2.1.6 ([Koh+21, Lemma 3.4]). Let P be a rational polypol defined by boundary
curves C1, . . . , Ck that intersect transversely. Then the adjoint curve AP intersects Ci

only at the residual points, with intersection multiplicity equal to 2δp at each singular
point p ∈ Ci and with intersection multiplicity one at each of the remaining residual
points. In particular, if P is regular, then the adjoint curve does not contain any points
on the sides of P .

The final line of the lemma, about regular polypols, warrants some discussion here.
In their proof Kohn et.al. makes use of the fact that if Ci is of degree di and AP is
of degree d − 3, then the sum of the intersections at the residual points counted with
multiplicity is di(d − 3). Hence Bezout’s theorem indicates that there are no further
intersections between Ci and AP , and so the adjoint does not intersect the boundary of
P on the side from Ci. This holds for all i.

This means that in the real case, any connected adjoint curve will have all points
outside the interior of the polypol. Any counterexample to Wachpress conjecture, if one
exists, would have to be a polypol with an adjoint of degree at least three.

2.2 Plane tropical polypols

This chapter will contain first a section on defining tropical polypols in general. Then
a section section on tropical polypols constructed from lines and their adjoint curves.
Finally a section on tropical polygons whose constitute curves have degree higher than
one.

2.2.1 Definitions and general results

We begin by defining tropical plane polypols. The following definitions are analogous to
the definitions of general and real plane polypols given earlier.

Definition 2.2.1. A tropical polypol P is a bounded component in P2 such that there is a
tropical curve C ∈ TP2 with k ≥ 2 irreducible, rational, components C1, . . . , Ck where
the boundary of P coincides with segments from each Ci, and C does not intersect the
interior of P . There are k points v12 ∈ C1 ∩ C2, . . . , vk1 ∈ Ck ∩ C1 on the boundary of P
such that vij is non-singular on Ci and Cj and such that Ci and Cj intersect transversally
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2.2. Plane tropical polypols

at vij . We call the points vij the corners of the polypol and the curves Ci its boundary
curves. There are segments connecting vi−1,i to vi,i+1 in Ci called the sides of the tropical
polypol. The boundary of P is the union of these segments. All points on the sides of P
except the corners are non-singular on C. We say that P is a tropical polypol consisting
of the curves C1, . . . Ck.

Definition 2.2.2. Given a tropical polypol P with boundary given by a tropical curve
C = ∪k

i=0Ci, we call the singular points of C that are not the corners of P the residual
points of P .

Definition 2.2.3. For a tropical polypol P with boundary curves C1, . . . , Ck, where Ci is
of degree di we say that the degree of P is

d =
k∑

i=1
di.

For the polypols considered in this paper, their residual points are either intersections
of two curves Ci and Cj or self-intersections of some Ci.

It is worth noting that tropical polypols are not necessarily convex.

Example 2.2.4. Figure 2.1 is an example of a polypol that is not tropically convex.

Figure 2.1: A tropical polypol, with boundary curves one conic and two lines

Definition 2.2.5. A tropical adjoint curve of a tropical polypol of degree d is a curve of
degree d − 3 passing through all residual points.

In the real case, we know that such a curve is unique [Koh+21]. However, as discussed
in Section 1.4 there are times when points that are in general position with regards to
defining a real curve, but which have several tropical curves passing through them. Later
in this section we will share examples of tropical polypols with multiple possible adjoints.

The main question under discussion in this thesis is the following.

Question 2.2.6. Is there a tropical polypol that has at least one adjoint curve that intersects
the interior of the polypol?

The rest of this section seeks to give some intuition on what an example of such a
polypol would look like. This is in some ways equivalent to searching for a counterexample
to a tropical version of Wachspress’ conjecture.

We know from Proposition 2.1.6 that the real adjoint curve never intersects the sides
a real polypol. In [Koh+21] Koh et. al. uses this lemma to prove the conjecture for
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Chapter 2. Polypols and adjoints

polypols of total degree lower than 6. Since polypols of degree less than six have adjoints
of degree less than 3, and so the adjoints are connected, and cannot have points on the
interior without intersecting the sides. The proof of Proposition 2.1.6 utilizes Bezout’s
theorem. We know that Bezout’s theorem holds in tropical geometry, and that all tropical
curves are connected. Thus, one might think that this is sufficient to show that the
conjecture holds in the tropical case. However, Bezout’s theorem only holds tropically
when utilizing the theory of stable intersections. It is fully possible for a curve A to pass
through a given point r on another curve Ci yet have the stable intersection point, i.e. the
point counted with intersection multiplicity more than 0, not be r. Meanwhile the proof
of Proposition 2.1.6 given in [Koh+21] requires that the adjoint has intersection points
with each boundary curve at the residual points. This means that Proposition 2.1.6 does
not necessarily hold tropically, and the question remains open.

Example 2.2.7. Figure 2.2 shows why Proposition 2.1.6 does not hold in the tropical case.
The cubic B passes through all residual points on the boundary conic C1 and has the
point multiplicity of an adjoint curve at those points, but it also intersects the side of
the polypol in one point from C1.

This is not a counterexample to Wachpress conjecture. The curve B is not the adjoint
of this polypol. In fact it fails to pass through one of the intersection points between C2
and C3. The actual adjoint curve lies outside the polypol here.

We can derive, from the theory of stable intersections, as well as general intersection
theory, some intuition about what a counterexample to a tropical version of Wachpress
conjecture might look like. For one, since the stable intersection point will lie on the
vertex of one of the curves, we can infer that the polypol needs to have curve vertices on
its sides. In addition, one or more of the residual points must be near those vertices.

Lemma 2.2.8. Let C1 and C2 be two tropical curves that intersect at a point r, such that
r ∈ C1 ∩st C2, and let A be a third tropical curve such that r ∈ A. Then the intersection
multiplicity at r for the stable intersection A ∩st Ci is at least one for at least one of the
Ci.

Proof. Assume for contradiction that the intersection multiplicity is zero for both Ci.
Then r must be on a double branch in A ∪ Ci for both Ci. These two double branches
can either have the same direction, or different directions.

If they have different directions, then since r is on both of them, r must be a one-
point intersection between C1 and C2 and a self-intersection of A. In this case the stable
intersection multiplicity at r is at least one for both A ∩st Ci, which contradicts the
assumption that it be zero for both.

If the double branches have the same direction, then r must be on a non-finite
connected component of C1 ∩ C2, it cannot be a vertex in either Ci as it would then have
non-zero stable intersection multiplicity in A ∩st Ci for that Ci. Therefore the stable
intersection multiplicity of C1 and C2 at r must be zero, which contradicts the starting
conditions.

Hence the intersection multiplicity at r for the stable intersection A ∩st Ci is at least
one for at least one of the Ci. ■
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2.2. Plane tropical polypols

C1

C2

C3

B

Figure 2.2: Tropical polypol consisting of three conics and a tropical cubic that passes through all
residual points on one of them, and the interior of the polypol

(a) One branch of the adjoint intersects the
interior

(b) One vertex of the adjoint is on the
interior

Figure 2.3: Possible counterexample configurations.
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Chapter 2. Polypols and adjoints

2.3 Tropical polypols consisting of lines and their adjoint curves

In this section, we restrict to the case of tropical polypols bounded by tropical lines.
We find that each of these polypols can be associated to an Eucledean polygon, and
that there is up to scaling a finite number of such polygons. Using this, we create a
classification of tropical polypols consisting of lines that can be used to find all relevant
information about the polypols. We first explain the classification, and then evaluate
possible polypols in order of number of tropical lines.

Tropical polypols consisting of lines will be a subset of tropical convex polygons.

Definition 2.3.1. Given n tropical lines in the plane, their complement will contain multiple
connected components. If one or more of these components are bounded, we say that
the tropical polypol given by the lines is the bounded convex component such that one
segment from each of the n lines are on the boundaries of the component.

Note that not every constellation of n lines defines a polypol. There are cases where
no convex component have segments from all lines on its boundary as well as cases where
no bounded component exists. To avoid the latter case, a restriction, which reflects the
definition of polypols in general, is that at least n intersections must be distinct and
finite. In this thesis we assume that all intersections between the lines are finite and
distinct.

2.3.1 Classification of convex figures made from tropical lines

Proposition 2.3.2. Eucledean convex polygons that can be constructed using tropical lines
have at most six sides.

Proof. It is not possible for three or more parallel lies to be the sides of a convex polygon.
Since tropical lines have edges in the same 3 directions, all convex figures constructed from
tropical lines have sides parallel to either the x-axis, the y-axis or the diagonal. Therefore,
since tropical lines only have branches in three directions, a polygon constructed using
tropical lines can have at most three pairs of parallel sides. So they can have at most six
sides. ■

We classify a polygon as a cycle of corners, starting in the corner furthest to the
southwest. Each corner is given a label based on the types of edges that goes into and
out of it, and on whether or not it is the vertex of a line. Edges are labeled according to
which direction they are in relation to the vertex of the line. A vertical edge is labeled N
(north), a horizontal edge E (east) and a diagonal S (southwest). So a corner of type
NE is one where a vertical and horizontal edge meets, and the interior of the cycle is
northeast from the corner.

Lemma 2.3.3. There are, up to scaling, finitely many convex polygons that can be
constructed using tropical lines.

Proof. A convex polygon that can be constructed using tropical lines has n = 1, . . . 6
sides. For each side, there is a finite choice of directions that side can have. It has to be
either type N , E or S. A polygon can have at most two of any one type of edge. A finite
choice of finite choices gives a finite total number of combinations. ■

Proposition 2.3.4. There are up to scaling 18 Euclidean convex polygons that can be
constructed with sides that are segments of the branches of tropical lines. There are
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2.3. Tropical polypols consisting of lines and their adjoint curves

• 2 with 3 sides

• 9 with 4 sides

• 6 with 5 sides

• 1 with 6 sides.

These are shown in Figure 2.4.

(a) (NS, SE, EN) (b) (SE, EN, NS)
(c)
(NE, EN, NE, EN)

(d)
(SE, EN, NE, ES)

(e)
(NE, ES, SE, EN) (f)

(NE, EN, NS, SN)

(g)
(SE, ES, SE, ES) (h)

(NS, SN, NE, EN)

(i) (SE, ES, SN, NS) (j)
(NS, SN, NS, SN)

(k)
(NS, SE, ES, SN)

(l)
(NE, EN, NE, ES, SN)

(m)
(NE, ES, SN.NE.EN)

(n)
(SE, ES, SN, NE, ES) (o)

(NE, ES, SN, NS, SN)

(p)
(NE, ES, SE, ES, SN)

(q)
(NS, SN, NE, ES, SN)

(r)
(NE, ES, SN, NE, ES, SN)

Figure 2.4: The possible polygons whose sides are the branches of tropical lines

Proof. This number is found via a brute force method where every possible combination
of 3, 4, 5 or 6 edges in the stated directions was listed, the ones that could not give valid
polygons ruled out, and the rest checked to see if it could form a completed cycle giving
a convex polygon that could actually be realized with tropical lines. For the cycle to be
complete we know that if the first corner is of type A−, then the final corner must be
of type −A. We also do not accept corners of type AA. Every corner must be a shared
point on two edges in different directions. Hence if one corner is of type −A, then the
next must be of type A−. Since a cycle starts in the lower left corner, and is traversed
clockwise, the first corner cannot be of type −N , since that would mean that either the
next corner is further south or the final corner further west. It also cannot be of type
E−, since that would also mean that a different corner is further west.
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Chapter 2. Polypols and adjoints

• Since one cannot get a closed cycle with 3 edges if two of them are parallel, the
total number of possible combinations of edges is the number of permutations of
3 objects without repetition. That is 6 possibilities. Two of them have −N as
the first corner. Out of the remaining four, one has ES as the first corner. So
only 3 possibilities need to be evaluated. (NS, SE, EN) and (SE, EN, NS) are
both complete cycles that can be constructed using tropical lines. On the other
hand (NE, ES, SN) is not. Therefore there are exactly two cycles.

• The first corner has to be of type −E or −S. Since all corners must be pairs of
different edges, and for each following corner one edge is determined by previous
choice, there are two choices for each corner. Hence there are 24 = 16 options to
evaluate. Out of those, there are four where the final corner has the same exiting
edge as the first. Meaning that either the cycle is not closed or it does not have
four distinct edges. Of the remaining 12 options, 3 have −E as the final corner,
meaning the first corner would have to be of type E−. These are in fact each
similar to one of the other nine. The final nine options are all convex cycles with
four distinct edges that can be constructed using tropical lines.

• By the same argument as above there are 25 = 32 options to evaluate. Out of
those, there are 12 where the fifth corner is the same type as the first, so they
cannot form a complete cycle with five distinct sides. Among the remaining 24, 5
have the fifth corner of type −E, and can be disregarded, as they are all similar
to other options. When drawing the remaining 19 possibilities, find that only 6
can be constructed as convex polygons bounded by tropical lines.

• To get a six-sided cycle, it needs to have two of each type of side. Since the
parallel sides face each other, there must be a twice-repeating sequence of three
sides in the same order. Excluding the options where the first corner is of type
E− or −N , there are 3 possible sequences. By drawing, find that only one of
them gives a convex polygon with six sides.

■

When some corners are vertexes, we count the polygons that are the same shape, but
have vertexes on different corners, as distinct.

2.3.2 Three lines

Figure 2.5: Tropical polypol bounded by three tropical lines

With intuition from the Euclidean case, one might assume that the only convex
polygons that can be constructed using 3 lines will be the two triangles. This would not

20



2.3. Tropical polypols consisting of lines and their adjoint curves

(a) No vertices on the
edge

(b) No vertices on the
edge

(c) One vertex on the
edge

(d) One vertex on the
edge

(e) One vertex on the
edge (f) One vertex on the

edge

(g) One vertex on the
edge (h) One vertex on the

edge

(i) One vertex on the
edge (j) One vertex on the

edge

(k) One vertex on the
edge

(l) Two vertices on
the edge

(m) Two vertices on
the edge

(n) Two vertices on
the edge (o) Two vertices on

the edge

(p) Two vertices on
the edge

(q) Two vertices on
the edge

(r) All three vertices
on the edge

Figure 2.6: The possible polygons made with three tropical lines

be correct. Since some corners can be nodes, each line can contribute two sides. We
therefore have the following.

Proposition 2.3.5. All 18 polygons from Figure 2.4 occur as polypols consisting of three
lines.

These are given in Figure 2.6.
For three lines all three intersections will be on the edges of the polygon. This means

there are no residual points. Hence there is no adjoint curve in this case.

Example 2.3.6. Figure 2.5 shows one example of a tropical polypol consisting of three
lines. The polypol is of type (NE, ES, SN, NE, EN). Since it has total degree 3, there
is no adjoint curve.

2.3.3 Four lines

Given four lines L1, L2, L3 and L4 such that all six intersections between them are unique
(i.e. no two intersections are in the same point), want to know when there is a well-defined
polypol with these lines as its boundary curves.

First we will try the following definition.
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Chapter 2. Polypols and adjoints

Definition 2.3.7. Given four lines L1, L2, L3 and L4 such that all six intersections between
them are unique, their complement in the plane will include multiple finite connected
components. The polypol defined by the lines will be the one that has points from all
four lines on its boundary.

The problem with this definition is that there is not always such a component.

Example 2.3.8. Figure 2.7 is an example of four tropical lines that do not form a well
defined tropical polypol.

Figure 2.7: Four tropical lines that does not give a well defined tropical polypol

The following is a discussion of the conditions necessary to determine whether four
lines with all transversal intersections form a tropical polypol or not.

Focusing on 3 of the lines, there will be a bounded component, call this T, defined
by them. The fourth line L4 will divide the plane into 3 components. Still assuming all
intersections are unique, there are 3 possible situations:

1. There are parts of T in all 3 components. This happens when the vertex of L4 is in
the interior of T .

2. All of T is contained in one component.

3. There are parts of T in two of the components, but not in the third.

Lemma 2.3.9. In situation 1 there is no well-defined polypol with segments from all four
lines on the boundary.

Proof. All 3 intersections between L4 and the other 3 lines will be on the boundary of
T , since the node is necessarily in the interior of T and the branches crosses over to the
exterior. Hence the complement of the lines in the plane will have 3 bounded connected
components. Call these A, B and C. Assume that the intersection p12 between L1 og L2
is on the boundary of A. Then, when moving along the boundary of T , the intersection
p14 will be between this point and p13. Similarily p24 will be between p12 and p23. Hence,
no points from L3 will be on the boundary of A. The same argument can be made for
why there are no points from L2 on the boundary of B or from L1 on the boundary of C.
Hence there is no convex polygon with segments from all four lines on its boundary. ■

Lemma 2.3.10. In situation 3, there is exactly one well-defined polypol.

Proof. Since T is in two different components, in the complement of all the lines T itself
will be split into two components A and B. One component will include two of the
points p12, p13, p23 on its boundary. Hence, it will have points from all four lines on its
boundary. It remains to show that this is the only polypol given by the lines. First,
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2.3. Tropical polypols consisting of lines and their adjoint curves

assume the component containing two corners from T is A. Need to prove that the
boundary of B cannot have segments from all four lines. Any choice of two of the points
p12, p13, p23 will have one line in common, while the third point will not be on that line.
We may without loss of generality assume this line is L3, that is p12 is on the boundary
of B. Now traversin the boundary of B from p12, one will meet p14 or p24 before any
points from L3. Hence no points from L3 is on the boundary of B. ■

Remark 2.3.11. In situation 2 a relabeling of the lines will give either situation 1 or
situation 3.

The above can be summarized as follows.

Proposition 2.3.12. Four tropical lines with all distinct transversal intersections are the
boundary curves of a well defined tropical polypol if and only if no one of the lines has its
vertex in the interior of the tropical triangle defined by the other three.

Looking back at the list of possible polygons. It is not possible to construct
(NS, SE, EN) and (SN, NE, ES) with four tropical lines, since each edge in the polygon
must be a section of a branch from one of the lines and these only have 3 edges. However
all the other polygons can be constructed. In polygons with more than four edges, there
is a choice of which corner or corners are nodes. This choice changes the position of the
residual points, and we therefore choose to consider them to be different. In total there
are 24 polygons with different corners. They are listed in Figure 2.8.

Example 2.3.13. Figure 2.9 is an example of a polypol consisting of four tropical lines.
The polypol is shaded in green. It is an Euclidean square. All corners are intersections
between the lines. The residual points are marked and the adjoint indicated.

Four lines will have six intersections. Four of said intersections will be on the boundary
of the polypol. Then the final two intersections will be outside the polypol. For two
general points, there will be a unique line going through them.

Proposition 2.3.14. The adjoint AP of a polypol consisting of four lines C1, . . . , C4 will
never intersect the interior of the polypol.

Proof. In Section 2.2.1 it is established that the adjoint can only intersect the sides of
the polypol at the vertices of the boundary curves. Using the catalog in Figure 2.8 we
see that there are only three possible figures with two vertices on the edge of the polypol.
These are the last three, the Euclidean hexagons. All three of them are such that the
line between the vertices is unique, since the vertices are not on the same branch of any
line, and does not intersect the interior of the polypol. ■

It is in fact possible to determine a lot about where the adjoint of a tropical square
lies in the plane based on which type of polygon it is.

To know where the line between two points can be it is necessary to know where the
points can lie. Since there are only 24 polygons, it is possible to find where the outside
intersections must be for each option.

Note that multiple different sets of four tropical lines can give rise to the same
polygon. Hence for each possible polygon there are multiple possibilities for where the
outside intersections can be located. However, the polygon does give a limited area for
the residual points to be in.
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(a) No vertices on the
edge

(b) No vertices on the
edge

(c) No vertices on the
edge (d) No vertices on the

edge

(e) No vertices on the
edge (f) No vertices on the

edge
(g) No vertices on the
edge (h) No vertices on the

edge

(i) No vertices on the
edge

(j) One vertex on the
edge

(k) One vertex on the
edge

(l) One vertex on the
edge

(m) One vertex on the
edge

(n) One vertex on the
edge

(o) One vertex on the
edge (p) One vertex on the

edge

(q) One vertex on the
edge

(r) One vertex on the
edge

(s) One vertex on the
edge (t) One vertex on the

edge

(u) One vertex on the
edge

(v) Two vertices on the
edge

(w) Two vertices on the
edge

(x) Two vertices on the
edge

Figure 2.8: The possible polygons made with four tropical lines

Example 2.3.15. Let’s have a look at (NE, EN, NE, EN) i.e. the square with two
horizontal and two vertical edges constructed from four tropical lines L1, . . . L4. The
horizontal edges comes from the branches in the eastward direction from two of the lines.
So those two lines have nodes to the west of the polygon. Call these lines L1 and L2.
The vertical edges comes from the branches in northern direction from the other two
lines, which must therefore have nodes south of the polygon. Call these lines L3 and L4.

Since the intersections L1 have with L3 and L4 are the corners of the polygon, the
intersection r12 between L1 and L2 must be one of the outside intersections. For a similar
reason, the other one is r34.

Any line whose eastward branch passes through v13 and v14 could take the place of
L1 and give rise to the same polygon. Hence one could say that the node of L1 could
be in any position from the point a infinitesimally close to the corner of the polygon to
infinitely far to the west. The same is true for L2. However there are some boundaries
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2.3. Tropical polypols consisting of lines and their adjoint curves

Figure 2.9: Tropical polypol consisting of four tropical lines, with residual points and adjoint
curve indicated

to where r12 can lie. For one, it cannot be on the northward branch of L1 since the
eastern and southwestern branches of L2 are south of the node of L1. So the region A
that r12 can be in is bounded by the (Euclidean) line extending the northern horizontal
edge of the polygon. If r12 lies on this line, then it must be an intersection between
the eastern branch of L1 and the northern branch of L2. Similarly, it cannot be on the
southwestward branch of L2, hence A is also bounded by the Euclidean line extending
the other horizontal edge of the polygon. If the intersection r12 lies on this line, then it
is an intersection of the horizontal branch of L2 and the diagonal branch from L1. If r12
lies between these two boundary lines, it is an intersection between the northern branch
from L2 and the southwestern branch of L1, hence A is bounded by the diagonal passing
through a. However, A is not bounded to the west.

A similar argument gives the area B to the south of the polypol, bounded on three
sides by the vertical lines extending the sides of the polypol and one diagonal, where the
intersection r34 can lie. Figure 2.10 shows the areas A and B.

Now since r12 is always on or above the line extending the southern horizontal edge
of P while r34 is always below it, and since r34 is always on or to the right of the line
extending the western vertical edge of P while r12 is always to the left of it, we can know
that r12 and r34 are never on the same branch of a line. Hence the adjoint line AP is
always unique, and in fact r12 is always on the northern branch of AP while r34 is always
on the eastern branch of AP .

A

B

Figure 2.10: Possible positions of residual points of a tropical polypol bounded by four lines
described in Example 2.3.15

Similar constructions can be made for all 24 possible polygons. For each polygon,
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each residual point will be somewhere in a predetermined region which is either an area
bounded on three sides and unbounded in the fourth like in Example 2.3.15 on page 24
or a bounded line segment. This is determined by whether perturbation of the vertexes
of both lines or only of one changes the location of the residual point. In all cases, the
adjoint will be unique and lie outside the polypol.

2.3.4 Five lines

There are nine possible polygons consisting of five lines. As above, we are choosing to
view the hexagons with different corners as nodes as different hexagons. All nine polygons
are listed in Figure 2.11.

(a) No vertices on the
edge

(b) No vertices on the
edge

(c) No vertices on the
edge (d) No vertices on the

edge

(e) No vertices on the
edge (f) No vertices on the

edge

(g) One vertex on the
edge

(h) One vertex on the
edge

(i) One vertex on the
edge

Figure 2.11: The possible polygons made with Five tropical lines

Five lines have a total of 10 intersections, of which five will be on the edge of the
polygon, and five will be the residual points.

The adjoint A will be a conic through these five points. As discussed in Section 1.4,
there are some cases where five points in the plane does not define a unique conic. It is
possible for such points to be the residual points of a tropical polypol.

Example 2.3.16. Figure 2.12 shows two tropical polypols with boundary curves five lines.
They both have the same cycle, (VNE , ES, SN, NE, ES, SN), but one of the lines is
different. Figure 2.12a has multiple possible adjoints. In fact, its residual points, r1, . . . r5
are in the same position as the points p1, . . . p5 in Example 1.4.5. Like in that example,
the stable conic through these five points is the proper conic of type 1 that has its fourth
vertex at r3. Figure 2.12b is only slightly different. One of the lines has its vertex slightly
further to the northeast, which moves r3 to the east. This set of residual points have one
unique conic passing through them. So the adjoint in Figure 2.12b is unique.

Proposition 2.3.17. For any polypol P with five lines as its boundary curves, its adjoint
curve AP does not intersect the interior of P .

Proof. No possible polypol constructed from five tropical lines have more than one
trivalent vertex on its boundary. Hence, since an adjoint that intersects the interior
would intersect the boundary in two points that are trivalent curve vertices, no adjoint
can intersect the interior of a polypol bounded by five tropical lines. ■
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r1

r2

r3

r4

r5

(a) Non-unique adjoint

r1

r2

r3

r4

r5

(b) Unique adjoint

Figure 2.12: Tropical polypols bounded by five lines

As in the case of tropical squares, each pentagon comes with a set of possible regions
for each intersection point to lie in. Like for squares, these regions are either unbounded
areas or bounded line segments. From these possible regions, one can determine that all
adjoints of tropical polypols with sides from five lines are either the union of two tropical
lines or proper conics of type 1. As illustrated by both polypols in Figure 2.12 being
of type (VNE , ES, SN, NE, ES, SN), the information given by the underlying polygon
alone is not sufficient to determine whether or not the adjoint is unique.

Figure 2.13: Possible positions of residual points of a tropical polypol bounded by five lines

2.3.5 Six lines

There is only one possible cycle that can be constructed using six lines. It is an Euclidean
hexagon and it has no vertices on the edge of the polygon.

A tropical polypol consisting of six lines have exactly nine residual points. The adjoint
curve is a cubic.

Example 2.3.18. Figure 2.14 shows a polypol consisting of six lines with the nine residual
points and adjoint curve indicated. Note that the polypol is an Euclidean hexagon, and
the adjoint is a cubic. The adjoint in this example has one self intersection, and lies
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entirely outside the polypol.

Figure 2.14: Tropical polypol bounded by six lines

Proposition 2.3.19. There is no polypol with six lines as its boundary curves that has an
adjoint that intersects the interior of the polypol.

Proof. There is no polypol with six lines as its boundary curves that has the vertexes of
any of the lines on its boundary. ■

Like for four and five lines, for each of the nine residual points of a tropical polypol
consisting of six lines it is possible to determine a subset of the plane where it is possible
for that residual point to be. In particular, six of the residual points reside on bounded
line segments that extend the sides of the polypol. Note that there is necessarily a gap
between the side of the polypol and the residual point, otherwise it would coincide with
the corner. The final three residual points have unbounded areas as their possible location
regions.
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Figure 2.15: Possible positions of residual points of polypols bounded by six lines

2.4 Polypols with boundary curves of higher degree

Now that we know that the adjoint curves of polypols with linear boundary curves do not
intersect the interior, we want to investigate the situation for polypols whose boundary
curves are of higher degree than one. To do so, we will first look at what can be proven
generally, then we will attempt to create a classification and catalog of possible cycles
like the one we made for polypols consisting of tropical lines.

Using what we know about the possible counterexamples, and stable intersections,
we can show that for polypols of degree four, the adjoint lies outside the polypol.

Proposition 2.4.1. A tropical adjoint curve of degree one cannot intersect the interior of
the polypol.

Proof. Assume, for contradiction, that there is a tropical polypol P with a linear adjoint,
AP , that intersects the interior of P .

We know that AP has degree 1 if and only if the polypol had degree d = 1 + 3 = 4.
There are four possible combinations of curves that add up to degree four. The boundary
curves are either four lines, one conic and two lines, two conics or one cubic and one line.

To have points on the interior of the polypol, the adjoint line needs to intersect the
sides in at least two points. As established in Section 2.2.1, these points must be vertices
of two of the boundary curves, sayC1 and C2. Then C1 and C2 must be such that the
residual points, r1 and r2, lies on the third branch, not included in the side of the polypol,
adjacent to each of the vertices on the boundary. Call these branches l1 and l2. Since
the adjoint line must pass through both residual points and the intersections with one of
the curves in a neighborhood of the point must be non-finite, either the vertex of AP

must lie on one of the curves, say C1, or one vertex of C1, in addition to the vertex of
C1 that lies on the boundary of P , must lie on AP . In either case, AP and C1 have two
stable intersection points on l1. Since two lines can only have one stable intersection, C1
cannot be a line. There are now three possibilities:

• C1 is a cubic, in which case C2 is a line,
• C1 is a conic and C2 is also a conic, or
• C1 is a conic and C2 is a line.

If C1 is a cubic, then we know, since it is rational that either of r1 or r2 is a self
intersection of C1 and the other point is an intersection between C1 and C2. If r1 ∈ l1
is an intersection between C1 and C2, then by Lemma 2.2.8, C2 and AP have a stable
intersection point at r1, but they also have one at the vertex of C2. It is not possible for
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two lines to have two stable intersection points. Hence, this situation cannot occur. On
the other hand, if r1 is the singular point of C1, then, still by Lemma 2.2.8, C1 and AP

have a stable intersection point at r1 and one at r2 in addition to the two at the vertices
on l1. A line and a cubic cannot have more than three stable intersections points, so this
is also not possible.

If C1 is a conic, then regardless of whether C2 is a conic or a line, r2 is an intersection
between C1 and C2. By Lemma 2.2.8 C1 and AP have a stable intersection point at r2 in
addition to the two in l1. A conic and a line can only have two stable intersection points.
Therefore this is not possible.

Since situations where AP intersects the interior of P are impossible, then AP cannot
intersect the interior of P . ■

2.4.1 Conics and lines

In this section tropical polypols consisting of one conic and some number of lines will be
discussed.

Classification

Recall from Section 1.2 that there are four types of proper tropical conics. Three of
these included branches in directions other than the three directions of the branches of
tropical lines. This means that when constructing a classification and catalog of possible
Euclidean polygons with sides from conics like the one for lines in Section 2.3, we need to
account for three additional directions. One to the southeast, perpendicular to direction
S from before and two with different slopes.

(a) From type 2, call W1
(b) From type 3, call W2

(c) From type 4, call W3

Figure 2.16: Possible sides from conics

For each type of conic, a polypol consisting of one such conic and any number of
lines, can have up to seven Euclidean sides. A polypol with boundary curves consisting
of an arbitrary number of conics can have up to 12 Euclidean sides. The requirement
that all corners of a polypol must be transversal intersections does however give a useful
restriction on the types of cycles a polypol with sides from conics can look like. Some
types of corners can only come from tangencies, and can therefore not be on the sides
of a polypol. Figure 2.17 show what these tangencies can look like. Expanding on the
notation from Section 2.3.1 on page 18, we call the sides from conics of type 2, type 3
and type 4 W1, W2 and W3 respectively. Then the corners that cannot be on the edges
of a polypol are of the types, SW1, W1S, NW2, W2N , EW3 and O3E.

Proposition 2.4.2. All cycles from Figure 2.4 can be constructed using one proper tropical
conic and multiple lines.

Proof. All proper tropical conics have branches in all the directions that tropical lines
do. Hence every type of corner needed to construct the cycles can be constructed as an
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(a) Conic of type two with tangent
(b) Conic of type three with tangent

(c) Conic of type four with tangent

Figure 2.17: Conics and tangents

intersection between a tropical conic and a tropical line. Therefore any of the cycles can
be constructed with at least one side being a segment from a tropical conic. ■

Restricting to proper conics of type 2, we can find how many convex Euclidean
polygons can be constructed with one side being of type W1.

Then there are altogether 30 such polygons, where the maximum number of sides is
seven:

• two cycles with three sides,

• eight cycles with four sides,

• ten cycles with five sides,

• eight cycles with six sides,

• and two cycles with seven sides.

We expect that the numbers would be the same for conics of type 3 and type 4, but
we have not verified this claim.

One conic and one line

By Bezout’s theorem, a tropical line and a tropical conic will intersect either in two
points or in one point twice. If the line is a tangent to the conic, there is no polypol.
The total degree of the polypol is 3. Hence there is no adjoint curve.
Remark 2.4.3. All polygons from Figure 2.4 can be constructed using one conic and one
line.
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This can easily be shown by going through the list and attempting the construction
for each cycle. Some of the polygons can be constructed in several ways, while others
only from one particular part of one type of tropical conic.

(a) (a)
(b) (b)

(c) (c) (d) (d)

(e) (e) (f) (f)
(g) (g) (h) (h)

(i) (i)
(j) (j) (k) (k)

(l) (l)

(m) (i)
(n) (j)

(o) (m)

Figure 2.18: The fifteen possible polygons that can be constructed with sides from one tropical
conic of type 2 and one tropical line

Remark 2.4.4. For each of the three conics that have the branches in Figure 2.16 there
are an additional fifteen polygons that can be constructed, one triangle, four squares,
five pentagons, four hexagons and one heptagon. The ones that can be constructed using
tropical conics of type 2 are given in Figure 2.18.

One can show that the list in Figure 2.18 is complete by fixing one conic of type 2
and trying different lines. Then we will have either a tangent, a polypol with cycle from
Figure 2.4 or one of these fifteen cycles.

Example 2.4.5. Figure 2.19 shows a polypol consisting of one conic of type 2 and one line.

One conic and multiple lines

We return to discussing tropical polypols bounded by one conic and some lines in more
general terms.

Note that, like how three lines is sufficient to construct every convex polygon in
Figure 2.4 on page 19, two lines and one conic of type 2 is sufficient to construct all 30
possible convex polygons listed in Section 2.4.1. However, there is a choice of which of
the Euclidean corners are trivalent curve vertices. Creating a classification that can be
used to determine the position of the adjoint requires evaluating more than 30 figures.
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Figure 2.19: Example of a tropical polypol bounded by one conic of type 2 and one line

The largest cycle that can be constructed using one tropical proper conic and a set of
tropical lines have seven sides, out of which one must come from the conic. Hence the
highest possible number of lines is six lines. A tropical polypol with boundary curves one
conic and six lines has degree 8, and its adjoint has degree 5. Notably, such a polypol
cannot have any of the curves’ trivalent vertices on its boundary. Since each side is from
a different curve, all corners must be intersections between the curves. Therefore, the
adjoint lies outside the polypol.

In fact, the number of possible vertices on the boundary of the polypol goes down
when the number of lines goes up. In the case where the conic is of type 2, the possible
seven-sided polypol with one conic and one line has five trivalent vertices on its boundary.
Both the possible seven-sided cycles with two lines have at most four. We already know
from Proposition 2.4.1 that the adjoint does not intersect the edge in this case. For one
conic and three lines the number of trivalent vertices is three, for four lines it is two and
for five lines only one. Hence a possible counterexample to Question 2.2.6 consisting of
one conic and lines would necessarily have either three or four lines.

Figure 2.20: Example of a tropical polypol bounded by one conic of type 3 and two lines

Example 2.4.6. Figure 2.20 shows an example of a conic with sides from one conic and
two lines. It represents one example of a polypol that cannot be constructed from lines
alone, nor from one conic and one line. The adjoint is indicated with a dashed line.
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2.4.2 Three conics

In the real case, the first case where Conjecture 2.1.5 has not been proven is for polypols
bounded by three conics. The problem is still open for these polypols in the tropical case
as well. In this section we therefore explore an example of a polypol consisting of three
conics. The boundary curve is a not necessarily unique cubic.

r2r1

r3

r5

r4

r6

r8

r7

r9

Figure 2.21: Example of a polypol with sides from three different conics, with residual points and
adjoint curves indicated

Example 2.4.7. Figure 2.21 shows an example of a polypol consisting of three conics of
different types. The adjoint of this polypol is a curve of degree three, but it is notably
not unique. Since all nine residual points r1, . . . r9 lie along the cycle of the adjoint cubic,
any of the points r2, r5 or r8 have the potential to be either a vertex or a self-intersection.
Hence the adjoint could be of the form of three lines intersecting at those points (shown on
the figure as solid color lines), three variations of one line and one conic, three variations
of a nodal cubic or a smooth cubic (shown in figure as dotted lines).
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Conclusion

In this thesis we have given a definition of tropical polypols and tropical adjoints. Using
that definition, we have given a full description of tropical polypols consisting of lines.
They have been shown to occur as a finite number of types, where relevant properties
of their adjoints are determined by type. With this we have proven a tropical version
of Wachspress’ conjecture for polypols whose boundary curves are lines. Using some
specific examples, we have discussed cases where the adjoints of such polypols are or
are not unique. We have also begun the work of a similar handling of tropical polypols
with sides from tropical conics as well as tropical lines. In this we have gotten as far as
determining that a counterexample to the conjecture with boundary curves one conic
and some lines would need to have three or four lines.

More generally, we have found that no tropical polypol of degree four can have the
adjoint intersecting the interior. Additionally, Lemma 2.2.8 gives a result about the
intersections of multiple tropical curves that might be useful in finding properties of
tropical polypols that have not been found here.

Finally, we have given some examples of tropical polypols with more or higher degree
boundary curves than the ones we have discussed in detail.

There are some questions that arise naturally from the things we have looked at in
this thesis, that we have not given an answer to. The following are the most important
open problems.

It is possible to expand the classification for polypols consisting of tropical lines given
here to polypols with boundary curves of higher degree. Since there are finitely many
possible edges for each degree, there will also be finitely many possible cycles.

Since this thesis explores tropical objects from tropical definitions, rather than as
tropicalizations of real objects, the question of correspondence between the objects
described here and real equivalents is open.

Over the course of this project, a lot of time was spent trying and failing to find an
argument that, similar to Proposition 2.1.6 in the real case, utilizes Bezout’s theorem to
show that the adjoint cannot intersect the sides of the polypol. It still seems entirely
possible that such an argument might exist.
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Appendix A

The First Appendix

The following is the [Matlab] code used in Section 1.4 on page 8.

Matlab Code

1 v = [ 1 , 2 , 3 , 4 , 5 ] ;
2 P = perms ( v ) ;
3

4 q1 = [ 0 , 3 , 1 ] ;
5 q2 = [ 0 , 1 , 0 ] ;
6 q3 = [ 0 , 1 , 3 ] ;
7 q4 = [ 0 , 1 . 5 , 2 ] ;
8 q5 = [ 0 , 3 , 3 ] ;
9

10 sums = ze ro s (1 ,120) ;
11 a = ze ro s (1 , 6 ) ;
12

13 %order x^2+xy+y^2+yz+z^2+xz
14

15 M = [2∗ q1 (1 ) q1 (1 )+q1 (2 ) 2∗q1 (2 ) q1 (2 )+q1 (3) 2∗q1 (3 ) q1 (1 )+q1
(3) ; 2∗q2 (1 ) q2 (1 )+q2 (2 ) 2∗q2 (2 ) q2 (2 )+q2 (3 ) 2∗q2 (3 ) q2 (1 )+
q2 (3) ; 2∗ q3 (1 ) q3 (1 )+q3 (2 ) 2∗q3 (2 ) q3 (2 )+q3 (3 ) 2∗q3 (3 ) q3 (1 )+
q3 (3) ; 2∗ q4 (1 ) q4 (1 )+q4 (2 ) 2∗q4 (2 ) q4 (2 )+q4 (3 ) 2∗q4 (3 ) q4 (1 )+
q4 (3) ; 2∗ q5 (1 ) q5 (1 )+q5 (2 ) 2∗q5 (2 ) q5 (2 )+q5 (3 ) 2∗q5 (3 ) q5 (1 )
+q5 (3 ) ] ;

16

17 M1 = M( : , 2 : 6 ) ;
18 M2 = M( : , [ 1 3 : 6 ] ) ;
19 M3 = M( : , [ 1 : 2 4 : 6 ] ) ;
20 M4 = M( : , [ 1 : 3 5 : 6 ] ) ;
21 M5 = M( : , [ 1 : 4 6 ] ) ;
22 M6 = M( : , 1 : 5 ) ;
23

24 a (1 )=tropdet (M1,P, sums ) ;
25 a (2 )=tropdet (M2,P, sums ) ;
26 a (3 )=tropdet (M3,P, sums ) ;
27 a (4 )=tropdet (M4,P, sums ) ;
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28 a (5 )=tropdet (M5,P, sums ) ;
29 a (6 )=tropdet (M6,P, sums ) ;
30

31 f unc t i on td = tropdet ( Matrix , Permutations , sumarray )
32 f o r index =1:120
33 temp = Permutations ( index , : ) ;
34 sum = 0 ;
35 f o r j = 1 :5
36 sum = sum + Matrix ( temp ( j ) , j ) ;
37 end
38 sumarray ( index ) = sum ;
39 end
40 td=min ( sumarray ) ;
41 end
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