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Abstract

Abstract

Reinsurance is a contract between two parties in which financial risk is
transferred from a cedent to a reinsurer for a fee, as a risk mitigation
measure it is recognized by the solvency ii directive as a method for
reducing SCR. The insurance layer contract, in which the reinsurer
covers risk within an interval, has been shown to be the optimal form of
reinsurance contract under the risk measure Value at risk. In previous
research methods for finding the optimal solutions under various conditions
has been characterized, as well as auxiliary results which has simplified
the optimization problem. In this thesis the problem has been extended
by introducing uncertainty to the risks. The optimization problem is
largely the same, but the method for introducing uncertainty is new, and
has required the use of an importance sampling scheme. We have seen
that the optimal solution to the optimization problem can change when
uncertainty is introduced and that simple summary statistics can indicate
which kinds of solutions are optimal.
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CHAPTER 1

Introduction

Reinsurance is a method of risk diversification for insurance companies where
one company cedes risk to another. There are many different types of contracts
for reinsurance, some of which will be introduced later, but in all of them a
cedent pays a reinsurer to take on some or all of the risk the cedent owns to
begin with.
Bundling risks is often benficient to the cedent, but it isn’t always feasible. In
this thesis the goal is to investigate multivariate reinsurance contracts under
uncertainty. This means that there are multiple risks that cannot be bundled
together and needs to be reinsured separately.
We will first review existing methodology for reinsurance contracts without
uncertainty in the univariate and multivariate cases, then develop methods for
optimising reinsurance contracts under uncertainty in the multivariate case.
At last we will develop methods for quantifying the effect of uncertainty on
reinsurance optimisation.
In order to develop the aforementioned methods we will perform a simulation
study, this will entail solving multiple problems with and without uncertainty
and then finding the quantities that describes the changes in optimal solutions
best.
The objective when optimizing reinsurance contracts is to minimize some risk
measure. We will use value at risk, which is the preferred risk measure under
solvency ii for capital requirements.
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CHAPTER 2

Theory about relevant concepts

2.1 Introduction

In our problem we use numerical methods and theory of random variables to
find how uncertainty influences optimal solutions of the reinsurance problem
discussed in earlier articles. We start by clearly defining some very basic
definitions and a short introduction to non-life insurance before we introduce
reinsurance contracts and risk measures and see how they work together. This
chapter will culminate in four sections on how the problem without uncertainty
has been solved before. This will allow us to introduce the new element of
uncertainty in the next chapter. Some of the results presented can be found in
articles cited in the text and some of it is based on [Hus23].

2.2 Useful definitions

We start of with a couple of simple definitions. We will define random variables,
cumulative distribution functions and probability density functions.

Definition 2.2.1. (Random variable) A random variable is a function Y : Ω → R
for a probability space (Ω, F , P) such that for all x ∈ R, {ω : x(ω) ≤ x} ∈ F .

We assume that all our random variables are absolutely continuously
distributed.

Definition 2.2.2. (Cumulative distribution function) The cumulative distribu-
tion function of a random variable X is the function F defined by

F (x) = P{ω ∈ Ω : X(ω) ≤ x}, x ∈ R.

Definition 2.2.3. (Probability density function) The probability density function
is the function f such that

F (x) =
∫ x

−∞
f(y)dy, −∞ < x < ∞

When the underlying random variable is absolutely continuously distributed
this function exists.

Definition 2.2.4. (Survival function) We define the survival function SX(α) as

SX(α) = P (X > α) = 1 − FX(α)

2



2.3. Basic concepts in Non-life insurance

2.3 Basic concepts in Non-life insurance

We continue with definitions of insurance contracts and related concepts which
we need in order to understand what risk we are reinsuring.

Definition 2.3.1 (Insurance policy). An insurance policy is a contract between
a customer and an insurance company where the insurance company agrees to
hold the financial risk of some adverse event happening to the customer in a
defined time window.

Such a contract represents a risk to the insurance company, we let risks
such as these be the random variables Zi. The collection of these risks is also a
random variable, which we will call Xj . We enumerate this random variable as
well as because it is in the insurance company’s interest to group these risks
into different portfolios as they often have different characteristics and hence
should be modeled differently. It is important for the insurance companies to
know what kind of risk they hold so that they know what they need to charge
for it, how much they need to hold in reserve and how much they need to
reinsure. For clarity we define the relation between claim, premium and cost of
the portfolio for the insurance company:

Definition 2.3.2 (Claim). A claim occurs when the random variable (Zi > 0)
we can also use Zi to denote the payout on the policy (i).

Definition 2.3.3 (Premium). A premium is what the customer pays the insurance
company for the insurance contract. Generally this should be given by

πi = (1 + γ)E[Zi]

Where γ is the risk loading the insurance company charges to hold the risk of
the type Z.

Definition 2.3.4 (Cost of portfolio). We let

Xj =
n∑
i

Zi

be the total payout of portfolio j and n be the number of policies in portfolio j.

The sum of the costs of portfolios,
∑

Xj is how much the insurance company
has to pay out. The situation we are looking at in the next chapter is the
case where we have two risks Yk =

∑
Xj , k = 1, 2, we are uncertain of the

distribution of Yk, and we want to reinsure each of the two risks separately. In
this chapter we will be cover theory for an unspecified number of risks, but
without the uncertainty.

2.4 Reinsurance contracts

An insurance contract is an agreement between a cedent and an insurer, where
the insurer agrees to cover some risk the cedent is exposed to for a fee called
a premium. These contracts can be between individuals and companies but
insurance companies also need to disperse their own risk. This is done by
reinsurance contracts, these often have a different structure but the concept of

3



2.5. Risk measures

ceding risk is the same.
In the article [Che+14] it is shown that insurance layer contracts are optimal
when using Value at risk as risk measure. We will introduce Value at risk
and discuss other risk measures later, but we will not introduce any other
reinsurance contracts than insurance layer contracts and stop-loss contracts,
where the latter is simply an insurance layer contract with the upper limit (bi in
this text) set to infinity. Following is a definition of an insurance layer contract.
For risks Xi, contract parameters ai, bi we have that the retained risk for a
cedent is given by Ii(Xi) and the cost for the reinsurance company is given by
Ri(Xi):

Ri(Xi) =


0, for Xi < ai

Xi − ai, for ai ≤ Xi ≤ bi

bi − ai, for Xi > bi

Ii(Xi) =


Xi, for Xi < ai

ai, for ai ≤ Xi ≤ bi

Xi − (bi − ai), for Xi > bi

The risk covered by the cedent is then I, but the cedent also have to pay a
premium, which we assume is a function of the expectation of the cost for the
reinsurer. We let πi = (1 + θ)E[Ri(Xi)] be the the price paid to the reinsurer
as premium per risk i. Note that we have used a common loading factor θ, even
if it may be natural to have different loading for different risks. We can now
consider the total risk covered by the cedent:

m∑
i=1

Ii(Xi) + (1 + θ)
m∑

i=1
E[Ri(Xi)] (2.1)

This is a random variable, and we can use different risk measures to evaluate it.

2.5 Risk measures

Introduction to Risk Measures

We can use risk measures to assign a value to reinsurance contracts, generally
risk measures are mappings from a set of random variables to the real numbers,
this is a way to quantify risk. There are several different risk measures but
we will start by defining a coherent risk measure and argue that Value at risk
is the best option for our purpose, even if it isn’t coherent. Coherency is a
concept introduced in [Art+99], the article argues that risk measures should be
constructed as follows:

Definition 2.5.1. For a set of random variables L, a coherent risk measure
ρ : L → R

⋃
{∞} have the properties:

• Normalization: ρ(0) = 0. This means that an empty portfolio, i.e. one
without any assets has a risk of zero.

4



2.5. Risk measures

• Monotonicity: If Y1 ≤ Y2 a.s., then ρ(Y1) ≤ ρ(Y2). This means that if the
portfolio Y1 costs less than Y2 almost surely then the risk given by the
risk measure should reflect this.

• Translational invariance: For any m ∈ R, ρ(Y1 + m) = ρ(Y1) + m

• Sub-additivity: ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2)

• Positive homogeneity: If α ≥ 0, then ρ(αZ) = αρ(Z)

This has later been refined to convex risk measures which has replaced the
sub-additivity and positive homogeneity properties with the convexity property.

Definition 2.5.2. A risk measure ρ is a convex risk measure if

• Monotonicity: If Y1 ≤ Y2, then ρ(Y1) ≤ ρ(Y2).

• Translational invariance: For any m ∈ R, ρ(Y1 + m) = ρ(Y1) + m

• Normalization: ρ(0) = 0

• Law invariance: If Y1 ∼ Y2 then ρ(Y1) = ρ(Y2)

• Convexity: ρ(λY1 + (1 − λ)Y2) ≤ λρ(Y1) + (1 − λ)ρ(Y2)

There are a number of risk measures which are convex or coherent such
as Conditional Tail expectation, Conditional Value at risk, Average Value at
risk. For these risk measures it is shown in [Che+14] that stop-loss contracts
are optimal reinsurance contracts in the optimization of univariate reinsurance
contracts. We will, however, use the less constrained Value at Risk.

Value at risk

Value at risk is not a coherent risk measure as it lacks the sub-additivity property.
This property ensures that the risk of multiple risks held together cannot be
any worse than holding each risk separately. The sub-addivity problem and
a concern that Value at risk does not appropriately consider the tails of the
distribution has been points of contention for whether Value at risk is a good
risk measure to use for capital requirements or not, and has been extensively
discussed in particular after the financial crisis in 2008. The concensus now
seems to be, however, that Value at risk is an invaluable tool and that the tail
risk should be handled by risk managers. Either way, the solvency ii directive
requiring the use of Value at risk as a risk measure makes it necessary to develop
methods using Value at risk.

We will consider independent, non-negative, absolutely continuously
distributed risks X1, X2, ..., Xm. Each of these risks will represent business
lines or some other kind of bundled risk, and our goal is to minimize this risk
measure by altering the contract parameters of the reinsurance contract.

Definition 2.5.3. For the survival function SXi
= P (Xi > x) = 1 − FXi

(x).
The α-level Value at risk Vα for a random variable Xi is defined as

Vα(Xi) = S−1
Xi

(α) = inf{x : P (Xi > x) ≤ α}

It has the following properties:

5



2.5. Risk measures

• Monotonicity: If Y1 ≤ Y2, then ρ(Y1) ≤ ρ(Y2).

• Translational invariance: For any m ∈ R, ρ(Y1 + m) = ρ(Y1) + m

• Normalization: ρ(0) = 0

• Law invariant: If Y1 and Y2 have the same distribution under P, then
ρ(Y1) = ρ(Y2).

Value at risk is not a coherent risk measure as it does not have the sub-additive
property, this property as described in the definition of coherent risk measures
ensures that the risk of two portfolios put together is not worse than adding the
risk of the two separate portfolios. It has also been critized for not taking into
account the tails of distribution, which it obviously does not, this can lead to

We include a theorem which says that the inverse image of the survival
function has a unique solution, which is extensively used in the proof for the
optimal solution.

Theorem 2.5.4. If the survival function S is strictly decreasing, then Vα(Xi) =
x0 if and only if:

P (Xi > x0) ≤ α ≤ P (Xi ≥ x0)

and in particular if

P (X > r) = α, then S−1
Xi

(α) = r

Proof. Assume first that:

Vα(Xi) = inf{x : P (Xi > x) ≤ α} = x0

If P (Xi > x0) = SXi > α then it follows, since SXi is right-continuous, that
there exists ϵ > 0 such that SXi

> α for all x ∈ [x0, x0 + ϵ]. However, this
implies that:

inf{x : P (Xi > x) ≤ α} ≥ x0 + ϵ

which contradicts our assumption that Vα(Xi) = X0. If P (Xi ≥ x0)α, then
it follows, since P (Xi ≥ x0) is left-continuous, that there exists ϵ > 0 such
that P (X ≥ x) < α for all x ∈ [x0 − ϵ, x0]. However, this implies that
P (Xi > x0 − ϵ ≤ P (Xi ≥ x0 − ϵ) < α, and hence:

inf{x : P (Xi > x) ≤ α} ≤ x0 − ϵ

which contradicts the assumption that Vα = X0. Thus, we have shown that:

Vα(Xi) = x0 =⇒ P (Xi > x0) ≤ α ≤ P (Xi ≥ x0).

In order to prove the converse implication, we assume that:

P (Xi > x0) ≤ α ≤ P (Xi ≥ x0)

Since P (Xi > x0) ≤ α, it follows that x0 ∈ {x : P (Xi > x) ≤ α}, and hence:

S−1
Xi

(α) = inf{x : P (Xi > x) ≤ α} ≤ x0

6



2.6. Optimization of portfolios

Assume then that S−1
Xi

(α) = x1 < x0. This implies that:

SXi(x) = P (Xi > x) ≤ α, for all x ∈ (x1, x0).

Since we have assumed that SXi is strictly decreasing, this implies that there
exists x2 in(x1, x0) such that P (Xi > x2) < α, and hence:

P (Xi ≥ x0) ≤ P (Xi > x2) < α,

which contradicts the assumption that P (Xi ≥ x0) ≥ α. We thus conclude that

P (Xi > x0) ≤ α ≤ P (Xi ≥ x0) =⇒ Vα(X) = x0

we still have to prove the last part:
Assume that P (Xi > x0) = α, then obviously P (Xi > x0) ≤ α. We see that

P (Xi ≥ x0) ≤ P (Xi > x0) = α

And again, since we assumed that SXi is strictly decreasing, it follows that

Vα(Xi) = x0.

■

2.6 Optimization of portfolios

In this section we will properly introduce the optimisation problem. We will
first review how the univariate optimisation problem can be solved with an
example, and and then turn to the multivariate problem. The multivariate
problem has some extra challenges and we will review the necessary theory to
solve it in more detail than for the univariate problem. In order to solve the
multivariate problem it is also necessary to use numerical methods for most
distributions and we will go through some of the strategies used in the method
used.

Univariate optimization problem

The simplest example is the univariate example, we use it to ease into the theory.
Our objective in this subsection will be to introduce a univariate optimization
problem and solve it. We put ourselves into the position of the cedent with a
portfolio, X, which is exponentially distributed. Underneath is a list of assumed
properties:

• X ∼ Exponential( 1
50 )

• θ = 0.2

• α = 0.01

The problem is formulated as

mina,bVα(I(X) + (1 + θ)E[R(X)])

7



2.6. Optimization of portfolios

In [Che+14] it is shown that the optimal value for a in this problem, when
using Value at risk as a risk measure, is given by

∂Vα

∂a
= 1 − (1 + θ)SX(a),

this implies that the optimal value for a is

a = S−1
X ( 1

1 + θ
) = −50 · ln

(
1

1.2

)
= 9.12

Next we need to find b so that P (X > b) = α. This is given by

α = 1 − (1 − e−λb)
ln(α) = −bλ

−50ln(0.01) = b = 230.26

The resulting value at risk is then

Vα(I(X) + (1 + θ)E[R(X)] = a + (1 + θ)E[R(X)] = 9.12 + 1.2 · (50 − 9.12) = 58.18

whereas the α-level value at risk for the uninsured portfolio is

V0.01(X) = inf{x : P (X > x) ≤ 0.01} = 230.26

This shows us that reinsurance contracts can effectively be used to reduce the
risk a company holds. This example is made extra simple by the closed form of
the survival function of the exponential distribution. In the next chapter where
we create new distributions with uncertainty, this is not an option, and we will
have to use numerical methods to estimate the survival functions.

The multivariate problem

The total risk covered 2.1 consists of two terms, a premium term and a retained
risk term and we want to minimize each of them. If we apply the α-level Value
at risk we get

Vα

(
m∑

i=1
Ii(Xi) + (1 + θ)

m∑
i=1

E[Ri(Xi)]
)

= S−1∑m

i=1
Ii(Xi)

(α) + (1 + θ)
m∑

i=1
E[Ri(Xi)]

(2.2)

We let fXi
(x) be the probability density function of the risk Xi. The premium

term for each risk i is then given by

E[Ri(Xi)] =
∫ bi

ai

(xi − ai)fXidxi + (bi − ai)P (Xi > bi)

=
∫ bi

ai

xfXi
dx −

∫ bi

ai

aifXi
dx + (bi − ai)P (Xi > bi)

=
∫ bi

ai

xfXi
dx − aiP (ai < Xi ≤ bi) + (bi − ai)P (Xi > bi)

8



2.6. Optimization of portfolios

=
∫ bi

ai

xfXidx + biP (Xi > bi) − aiP (Xi > ai)

we are interested in the partial derivatives of the premium term with respect to
ai and bi. We also introduce the notation ϕi to denote the expected reinsurance
cost of risk i.

∂

∂ai
(1 + θ)

m∑
i=1

ϕi = ∂

∂ai
(1 + θ)

(
m∑

i=1

∫ bi

ai

xfXi
dx + biP (Xi > bi) − aiP (Xi > ai)

)
= −(1 + θ)P (Xi > ai)

and similarly for bi:

∂

∂bi
(1 + θ)

m∑
i=1

ϕi = ∂

∂bi
(1 + θ)P (Xi > bi)

We see that partial derivatives of the premium term only depends on the contract
parameter we are differentiating with respect to, which is very convenient.

The retained risk term is less convenient to optimize. We start by defining
the following sets given contract parameters a1, b1, ..., am, bm:

A ={(X1, ..., Xm) :
m∑

i=1
Ii(Xi) <

m∑
i=1

ai},

B ={(X1, ..., Xm) :
m∑

i=1
Ii(Xi) =

m∑
i=1

ai},

C ={(X1, ..., Xm) :
m∑

i=1
Ii(Xi) >

m∑
i=1

ai}.

Now we will include some results from [HC20], these allow us to find ai with
relative ease. The fourth theorem, from [Hus22], also simplifies the process of
finding the bi-values.

Theorem 2.6.1. Assume that the contract parameters a1, b1, ..., am, bm are
chosen so that:

P ((X1, X2, ..., Xm) ∈ B ∪ C) ≥ α

P ((X1, X2, ..., Xm) ∈ C) ≤ α

Then we have:

Vα

(
S−1∑m

i=1
Ii(Xi)

(α)
)

=
m∑

i=1
ai

Proof. The result is immediate from the definition of Value at risk and by the
monotonicity of the survival function.

P (
m∑

i=1
Ii(Xi) ≥

m∑
i=1

ai) = P ((X1, X2, ..., Xm) ∈ B ∪ C) ≥ α

9



2.6. Optimization of portfolios

X1

X2

A

B

C

a1

a2

b1

b2

Figure 2.1: Each set represents different outcomes of the insurance layer contract
for a bivariate problem.

and

P (
m∑

i=1
Ii(Xi) >

m∑
i=1

ai) = P ((X1, X2, ..., Xm) ∈ C) ≤ α

■

Theorem 2.6.2. If we assume that the contract parameters a1, b1, ..., am, bm are
chosen so that

P ((X1, X2, ..., Xm) ∈ C = α

Then

S−1∑m

i=1
Ii(Xi(α)=

∑m

i=1
ai

Proof.

P (
m∑

i=1
Ii(Xi) >

m∑
i=1

ai) = P (X1, X2, ..., Xm) ∈ C) = α

■

Theorem 2.6.3. Assume that a1, b1, a2, b2, ..., am, bm are optimal contract
parameter values and that

(1 + θ)−m ≥ α (2.3)

Then the following must hold true:

ai = S−1
Xi

(
1

1 + θ

)
, i = 1, ..., m (2.4)

10



2.6. Optimization of portfolios

and:

P (
m∑

i=1
Ii(Xi) >

m∑
i=1

ai) = P ((X1, X2, ..., Xm) ∈ C) = α (2.5)

Proof. Let a1, a2, ..., am be chosen so that

P

(
m⋂

i=1
Xi > ai

)
≥ α,

then b1, b2, ..., bm should be chosen so that 2.5 holds. We can see that such
values exist and are relevant because if bi = ai for all i then

m∑
i=1

Ii(Xi) =
m∑
ii

Xi,

and

P

(
m∑
ii

Ii(Xi) >

m∑
ii

ai)
)

= P

(
m∑
ii

Xi >

m∑
ii

ai

)
> P

(
m⋂

i=1
Xi > ai

)
≥ α,

On the other hand, if bi = ∞ for all i then Ii(Xi) becomes a stop-loss contract
instead and

P

(
m∑
ii

Ii(Xi) >

m∑
ii

ai)
)

= 0

Since X1, X2, ..., Xm are assumed to be absolutely continuously distributed we
can conclude that there must exist values bi > ai such that (2.5) holds. Thus
Theorem 2.6.2 implies that

S−1∑m

i=1
Ii(Xi)

(α) =
m∑

i=1
ai

Now, if we increase the bi’s, we still have :

P (
m∑

i=1
Ii(Xi) ≥

m∑
i=1

ai) > P

(
m⋂

i=1
Xi > ai

)
≥ α

While at the same time:

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai)
)

≤ α

hence by Theorem 2.6.2 the retained risk term remains the same while the
premium term increases. This makes the value of Vα increase. On the other
hand, if we decrease the values of the bi’s the retained risk term increases
and the premium decreases. This means that for any a1, a2, ..., am we can find
b1, b2, ..., bm such that 2.5 holds, and it will be optimal with respect to the ai’s.

11
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Next we can find optimal ai’s conditioned on the bi’s by adding the derivatives
with respect to ai.

∂

∂ai
S−1∑m

i=1
Ii(Xi)

(α) = 1

and hence the derivative Vα is

∂

∂ai
Vα = 1 − (1 + θ)P (Xi > ai), i = 1, 2, ..., m.

and if we solve for ai we get

∂

∂ai
Vα = 1 − (1 + θ)P (Xi > ai) = 0, i = 1, 2, ..., m.

P (Xi > ai) = (1 + θ)−1, i = 1, 2, ..., m.

Thus, by the assumption (1 + θ)−m ≥ α and that the Xi’s are independent it
follows that

P (
m⋂

i=1
Xi > ai) = (1 + θ)−m ≥ α

■

From this we can conclude that b1, b2, ..., bm exists and that for any set of
ai’s we can find optimal bi’s. Lastly we include the theorem which allows us to
find these optimal bi’s in an efficient manner.

Theorem 2.6.4. Assume that a∗
1, ..., a∗

m given by (2.4) satisifies (2.3). Then the
remaining optimal contract parameters b∗

1, ..., b∗
m can be found by solving the

following optimization problem:

Minimize:
m∑

i=1
E[Ri(Xi)]

subject to: P ((X1, ..., Xm) ∈ C) = α

with respect to b1, ..., bm

Proof. We start out by noting that the constraint in the optimization problem
is the same as (2.5), which is used in 2.6.3, so the constraint is well-justified. It
also justfies writing the constraint as

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

a∗
i

)
= α

Then, by 2.5.4 it follows that under the constraint the retained risk term is
given by:

S∑m

i=1
I(Xi)(α) =

m∑
i=1

a∗
i .

12
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Hence, the resulting total α-level Value at risk becomes:

Vα =
m∑

i=1
a∗

i + (1 + θ)
m∑

i=1
E[Ri(Xi)]

From this it follows that minimizing Vα is equivalent to minimizing∑m
i=1 E[Ri(Xi)] subject to the constraint in this theorem with respect to

b1, ..., bm. ■

Finding the optimal solution

We see that determining the ai’s is quite straight forward, but that the lack
of constraints on the bi’s yields infinitely many possible solutions when m > 1,
so we need an algorithm to find the optimal set of bi’s. We will mainly deal
with the situation when m = 2, as our focus is not increasing m, but rather
adding uncertainty to the parameters of the distributions. However, we start
by considering the balanced solution for a general m.

Balanced case for general m

Let A be the common value of P (Xi > ai) such that A = SXi(ai), i = 1, ..., m.
We let B = SXi(bi), i = 1, ..., m such that P (Xi > bi) has the same value for
all i. The resulting values of the contract parameters are then given by:

bi = S−1
Xi

(B),

It is inconvenient to solve this problem analytically, instead we use Monte Carlo
simulation on the joint distribution of X1, ..., Xm. Based on this sample we
can iterate the value of B until the subset C contatins the desired fraction of
simulations. The iteration is done as follows: Since X1, ..., Xm is assumed to
be absolutely continuously distributed it follows that the probability

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)

is a continuous and increasing function of B. Thus we can find a value B = Bl

such that this value is less than α, as an lower bound and equivalently for an
upper bound B = Bu. In order to find these bounds we consider the figure 2.1
with the sets and note that

C ⊆
m⋃

i=1
(Xi > bi)

hence, we have:

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
= P [(X1, ..., Xm) ∈ C]

≤ P

 ⋃
i=1,...,m

(Xi > bi)

 = 1 − P

 ⋂
i=1,...,m

(Xi ≤ bi)

 = 1 − (1 − B)m

13
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If B ∈ [0, 1] is such that 1 − (1 − B)m = α, it follows from the previous equation
that

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
≤ α

Thus this value is smaller than the correct B-value. We let Bl = 1 − m
√

1 − α.
For the upper bound we consider the set ⋂

i=1,...,m

(Xi > ai)

 \B ⊆ C

hence, we have

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
= P [(X1, ..., Xm) ∈ C] ≥ P

 ⋂
i=1,...,m

(Xi > ai)

 \B


= P

 ⋂
i=1,...,m

(Xi > ai)

− P

 ⋂
i=1,...,m

(ai ≤ Xi ≤ bi)

 = Am − (A − B)m

Similarly to the lower bound, if B ∈ [0, 1] is such that Am − (A − B)m = α then

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
≥ α

and we denote this value by Bu = A − m
√

Am − α. Consequently we can deduce
that the true value of B is in between Bu and Bl, we can thus use the bisection
method to find the true value.

Unbalanced case for m = 2

For the unbalanced case we restrict ourselves to m = 2 which is the case we will
concern ourselves with in the next chapter.Our first goal is to find the relevant
interval for the value of the bi’s. We let A be the common value of P (Xi > ai)
such that A = SXi

(ai), i = 1, ..., m, we denote Bi = SXi
(bi), i = 1, 2. Due to

the nature of the reinsurance contracts Bi must be in the interval [0, 1 − A],
which is a fine starting point for finding the best value, but we can improve the
upper border.

If we again consult figure 2.1, we see that if B1 = 0, then B2 must have
the corresponding highest possible value. This value is given by the following
equation:

P (I(X2), I(X1) ∈ C|b1 = S−1
X1

(0)) = α,

where a1, a2, b1 is given. The algorithm for this process is described in the
algorithm section. After this we create an array of evenly spaced values and find
B1- and B2-values which yield P (C) = α in the same manner. For each of these
values we can find the corresponding bi-values, and then the corresponding total
risk, and we designate the lowest total risk as the optimal solution.
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2.7 Methods used in our study

In this section we define methods which we have used in our study to characterize
the optimal solutions.

Border and inner point solutions

In the previous section we saw that there were different types of solutions, and
we are interested in characterizing them more formally. In order to do this
we introduce the concept of balanced solutions, unbalanced solutions, border
solutions and inner point solutions. We start by introducing Bi, which is given
by Bi = F −1

Xi
(bi). It is easy to see that the possible values for Bi are [0, Ai],

where Ai = F −1
Xi

. In no examples do we see Bi = Ai, this is because it is
irreconcilable with our distributions and choice of α-values. Bi = 0 is a more
realistic solution, it is the case when we get a stop-loss contract as the optimal
solution. This is what we will refer to as a border solution.

Definition 2.7.1. (Border solution). A solution to the optimization problem
where Bi = 0, for at least one i.

An inner point solution is the opposite of a border solution

Definition 2.7.2. (Inner point solution). A solution where Bi ̸= 0, for all i.

We have not seen any solutions where B1 = 0, B2 = 0, this is not feasible
when ai is chosen according to the theory, and the cost of reinsurance as it is in
our examples. The types of solution we see in our simulation study are instead
on one out of two forms:

1. one stop loss contract and one insurance layer contract with Bi > 0.

2. both contracts with Bi > 0.

In the next section on hazard rates there is a discussion on which kinds of
problems leads to which kinds of solution.
The concept of unbalanced and balanced solutions is another approach to
classifying the solutions, which we use less in this study as all our solutions are
unbalanced.

Definition 2.7.3. (Balanced solution) We say that a solution is balanced if
b1 = b2.

The balanced solution is much easier to find computationally, as it reduces
to number of potential solutions. In the bivariate case this is not necessary,
and the concept of balanced solutions is not that interesting. Our examples are
often close to being balanced, but not quite balanced.

Hazard rate and the tails of distributions

While the speed of the main algorithm is reasonable it is convenient to quickly
check properties of distributions we consider using, and additionally the hazard
rate plots are also informative in their own right. In this section we look at a
method for determining what kind of solution a distribution will have. We start
by defining the hazard rate.
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Definition 2.7.4. (Hazard rate) Let y(x) be the probability density function
of a random variable Y, and S(x) the survival function of the same random
variable. Then the hazard function is defined as

h(x) = y(x)
S(x) ,

for S(x) > 0.

The hazard rate yields, for each x ∈ [0, ∞) the probability mass function of
the discretized approximation of y(x) divided by the probability of incurring a
claim that is greater than or equal to x.

In order to explain why we can use the hazard rate to say something about
the solution of a problem, we need the notion of super- and sublevel sets and
quasiconvexity and quasiconcavity. First, we remind the reader of the updated
objective function found in 2.6.4.

ϕ =
m∑

i=1
ϕi =

m∑
i=1

E[Ri(Xi)] =
m∑
i

∫ bi

ai

x · fXi(x)dx + biP (Xi > bi) − aiP (Xi > ai)

We will look at the objective function in terms of B = (B1, B2, ..., Bm) and
define the super- and sublevel sets from this.

Definition 2.7.5. The superlevel sets are the sets

L+
c (ϕ) = {B ∈ [0, 1]m : ϕ(B) ≥ c}

and the sublevel sets are the sets

L−
c (ϕ) = {B ∈ [0, 1]m : ϕ(B) ≤ c}

meaning that the superlevel set of ϕ is a set of values of B ∈ [0, 1]m which
yields the same or higher value of expected reinsurance cost as ϕ(c). We say that
ϕ is quasiconvex if all its sublevel sets are convex and ϕ is quasiconcave if all
its superlevel sets are convex. These sets can be plotted and form iso-contours.
Next, we see what kind of conclusions we can draw from these contours.

Theorem 2.7.6.

• If ϕ1(B1), ..., ϕm(Bm) are convex functions, then ϕ is a quasiconvex
function of B.

• If ϕ1(B1), ..., ϕm(Bm) are concave functions, then ϕ is a quasiconcave
function of B.

We prove the first part of the theorem, the second is proved in the same
manner:

Proof. We assume that ϕ1(B1), ..., ϕm(Bm) are convex function, and we let
B(j)=(B

(j)
1 ,...,B(j)

m ) ∈ L−
c (ϕ), j = 1, 2. In order to show that L−

c (ϕ) is convex we
must show that for any λ ∈ [0, 1], we also have that B = λB(1) + (1 + λ)B(2) ∈
L−

c (ϕ).
Since ϕ1, ..., ϕm are convex, we know that for i = 1, ..., m, we have

ϕi(λB
(1)
i + (1 + λ)B(2)

i ) ≤ λϕi(B(1)
i ) + (1 − λ)B(2)

i
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Hence we get that:

ϕ(B) = ϕ(λB(1) + (1 − λ)B(2)
i )

=
m∑

i=1
ϕi(λB

(1)
i + (1 − λ)B(2)

i )

≤
m∑

i=1
λϕi(B(1)

i ) + (1 − λ)ϕi(B(2)
i )

= λϕ(B(1)) + (1 − λ)ϕ(B(2)
i )

≤ λc + (1 − λ)c = c.

■

If we now look at the derivatives of the components of the objective function
ϕ1, ϕ2, ..., ϕm we will end up with the definition of the hazard rate. We first
find the derivative with respect to bi:

∂ϕi

∂bi
=
∫ bi

ai
x · fXi(x)dx + biP (Xi > bi) − aiP (Xi > ai)

∂bi

= P (Xi > bi)

The derivative with respect to Bi is then given by:

∂ϕi

∂Bi
= ∂ϕi

∂bi

∂bi

∂Bi
= − Bi

fXi
(S−1

Xi
(Bi))

, i = 1, ..., m

we thus see that ϕi is convex if

− Bi

fXi(S−1
Xi

(Bi))

is increasing in Bi. This is equivalent to

fXi
(S−1

Xi
(Bi))

Bi

increasing in Bi. We may now substitute Bi = SXi(x), and we are left with the
expression

fXi
(x)

SXi(x) ,

which is the hazard rate presented at the beginning of the section. Since Bi is
a decreasing function of x, ϕi is now instead convex if it is decreasing. Similarly
we have that ϕi is concave if the hazard rate is increasing. We can conclude
with the following theorem:

Theorem 2.7.7.

• If the hazard rate of the distribuion X is decreasing in Bi, then phii is
convex.

• If the hazard rate of X is increasing in Bi, then ϕi is concave.
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Iso-curves

An Iso-curve plot is a tool used to describe how changes in distribution of
resources changes the potential output. The idea being that there is a limited
amount of resources and it can be distributed between two or more alternatives.
We use Iso-curves for our bivariate problem to illustrate what the optimal
solution looks like.

We are, for every iso-curve, letting the expected reinsurance cost,∑m
i=1 E[Ri(Xi)], be the same and plotting the different B1, B2-values that

yields this value. The constraint is plotted in the same picture and provides the
border for feasible solutions. The iso-curve with the lowest

∑m
i=1 E[Ri(Xi)] that

also intersects with the constraint is the lowest feasible expected reinsurance
cost, and the optimal solution is characterized by the Bi-values which gives this
solution.

Given that the constraint will look the same for all our problems the iso-
curves are more interesting, as they can change from distribution to distribution,
or if we introduce uncertainty. The shape of the iso-curve is one way of
characterizing whether a solution will be on the border of the solution space or
an inner point.

Kurtosis

In chapter 3 we will consider methods of quantifying the uncertainty added
with our mixture distributions. In this thesis this has been done by looking
at summary statistics of samples drawn from the distributions and comparing
them. We have primarily used standard deviation and kurtosis, and kurtosis
requires a short introduction. Kurtosis is the fourth standardized moment, and
is defined as

Kurt[X] = E

[(
X − µ

σ

)4
]

We have used the Fisher definition of kurtosis which is the standard in the
python pandas package, the only difference being that it subtracts 3 from the
standard kurtosis estimate above.

Kurt[X] = E

[(
X − µ

σ

)4
]

− 3

The purpose of this estimate compared to the other is to give the normal
distribution a kurtosis of 0. One of our examples has approximately the same
tail as a normal distribution, and this is reflected in a slightly negative value
which we will see in the next section, however this does not in any interesting
way influence the way we use the kurtosis.

The kurtosis estimates used in the next chapter have been implemented by
creating large samples from the distributions we are interested in and then using
the mentioned python pandas function. The estimation of kurtosis on samples
is, as we will see, somewhat unstable as one outlier in the fourth power will
have a large influence on the estimate. We will, however, see some systematic
changes in the results which seem reasonable.
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2.8 The algorithm

Now that we know why the algorithm works we will go through how the algorithm
is implemented in practice. This section will consist of three algorithms and
short explanations of them.

Algorithm 1 Main algorithm
1: Set variables: seed, number of simulations, number of integration points,

number of iterations, epsilon, alpha, gamma, theta, Del, Distribution 1 and
Distribution 2

2: Calculate the integrals of the distributions at the integration points.
3: Find optimal a1, a2
4: Calculate expected reinsurance cost for bi-values from ai to the highest

percentile of the distribution.
5: Determine viable combinations of b1 and b2 given α
6: Calculate iso-curves
7: Calculate constraint
8: Determine optimal b1, b2 given objective function

where epsilon is the slack in the bisection method and Del is the size of the
importance sampling region. Step 2 is done by numerical integration at each
integration interval, for each interval the middle value as been chosen. Expected
reinsurance cost is used in the value at risk calculation, and is calculated for all
relevant values of ai and bi. In Step 5 and our importance sampling scheme is
used, this is discussed in more detail in its own section. Step 6, 7 and 8 is done
according to the theory in the previous section.

Determine viable combinations b1, b2

As mentioned in the unbalanced section, there is an algorithm for obtaining the
other bi-value given that the first is known.

Algorithm 2 viable combinations of b1, b2

1: Determine the max value of B1 and B2
2: Define vector BB1. BB1 should be evenly spaced values for B1 from 0 to

the max determined in previous step.
3: Define BB2 as an empty vector of the same size as BB1.
4: for i in range(BB2) do
5: BB2[i] is given by the B2 value which yields P (C) = α, we use our

importance sampling scheme as well as a bisection method
6: end for

Importance sampling

Importance sampling is a Monte Carlo technique that estimates attributes from
one distribution by drawing samples from another distribution and adjusting
the results by a specific factor. In our study, we employ importance sampling
to reduce the number of simulations required for estimating the probability of
landing in set C (as described in 2.1) given different contract parameters ai, bi.
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To achieve this, we generate two independent bivariate uniform variables,
constrained to the importance sample region D = ([1 − ∆, 1] × [0, 1]) ∪ ([0, 1] ×
[1 − ∆, 1]), using the following algorithm:

Algorithm 3 Importance sampling
1: set u0 = uniform(0, 2 − ∆
2: if (u0 ≤ 1) then
3: u1 = uniform(0, 1)
4: u2 = uniform(1 − ∆, 1)
5: else
6: u1 = uniform(1 − ∆, 1)
7: u2 = uniform(0, 1 − ∆)
8: end if
9: return u1, u2

We let u1 = u1,1, u1,2, ..., u1,n, u2 = u2,1, u2,2, ..., u2,n, and (x1, x2) =
(F −1

1 (u1), F −1
2 (u2)), where F −1

1 and F −1
2 are the inverse cumulative distribution

functions. This way we ensure that X1, X2 have the desired conditional
distribution. These variables are then used to estimate the appropriate values
of bi.

At this stage of the optimization process, we have already determined the
optimal values for ai, and our objective is to find the corresponding bi values
such that P (X1, X2 ∈ C) = α. With this importance sampling scheme, we can
compute P (X1, X2 ∈ C|X1, X2 ∈ D) for vectors x1, x2, and contract parameters
a1, a2, b1, b2. Then, P (X1, X2 ∈ C) can be calculated as:

P (X1, X2 ∈ C) = P (X1, X2 ∈ C|X1, X2 ∈ D) · P (D)

where P (D) = 1 − (1 − ∆)2, as can be seen in the figure below 2.8.
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U1

U2

1 − ∆

1 − ∆

1

1

E D

Find optimal solution

In step 8 of 1 we have two arrays B1, B2, for each index of these arrays we have
viable combinations of b1, b2 that yield a probability of exceeding the insurance
layer contract equal to α. We calculate the expected reinsurance cost for each
combination and chose the one with the lowest associated cost. According to
2.6.4 these bi characterizes the optimal solution to the optimization problem.
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CHAPTER 3

Numerical results

3.1 Introduction

In this chapter we will introduce uncertainty to our distributions, we will see
that adding this uncertainty will affect the optimal solution and we will attempt
to explain how this works.

The script we are using creates distributions with uncertainty by introducing
uncertainty to one of the parameters of the original distribution. This has to
be done numerically in order to create as many different distributions as we
are interested in, there are some choices of distributions and parameters which
have nice analytical distributions, but they will not be considered in this text.

Since we are doing this numerically we can use any combination of two
distributions we can think of, which lets us create an endless number of
distributions with different characteristics. By choosing different distributions
we can simulate uncertainty and use this to investigate how the uncertainty
influences the properties of the resulting solution. The key factor which we
expect will have an influence on the result is the heaviness of the tails of
distributions, so we are particularly interested in combinations of distributions
which leads to significant change in the tail of the distributions.

In order to see how the uncertainty affects the optimal solution we will
develop a method for quantifying the uncertainty we add to a distribution and
see if we can create a framework where we can see how much uncertainty affects
reinsurance optimization.

3.2 Introducing Uncertainty

We want to create distributions Y1,2 that have one parameter which has a
distribution of its own, σ · X. An example we will use is a construction where

X1 = Lognormal(1.0, 1.5)
Y1 = TN (50, 30 · X1)
Y2 = TN (50, 30 · X1),

where TN (µ, σ) is the Truncated normal distributed random variable with mean
µ and standard deviation σ. Note also that in this chapter the random variables
X1−3 only specify the distribution we are imposing on the parameters, none of
these are correlated in between distributions Ya−j or Y1−2.
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Figure 3.1: 1e8 samples drawn from the lognormal distribution, with empiric
mean 1.000 and empiric variance 2.251. We see realizations greater than or
equal 200.

Specifically we create the distributions Ya−j by selecting a parameter which
sets the number of different realisations we want from X, n. We then use this
X to create new parameters for our main distribution. If we want to have
uncertainty on the standard deviation of a truncated normal distribution we
may define a vector with values from the lognormal distribution lnv with length
n and define a vector of standard deviations for the mixed distributions as
σ[i] = lnv[i] · y for some suitable y. We can then find the probability density
function of this new distribution, Y, in x by finding the probability density
function for each of the underlying distributions with standard deviation σ[i]
and summing them each with a weight 1

n , we let the value of these be pdf [i](x).
Hence the probability density function of the distribution Y for a value x is
given by

y(x) = 1
n

n∑
i=1

pdf [i](x)

This new distribution is the distribution we are after. We may also manually
set the distribution parameters (i.e. σ[i]’s) for the mixture distribution but
in practice this results in simpler distributions. This way we end up with a
new distribution, characterized by the mean, standard deviation and weights
of the underlying distributions. While we don’t have the analytic probability
density function, cumulative distribution function or survival function we can
approximate them with arbitrary accuracy and reasonable speed.
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3.3 Quantifying Uncertainty in Reinsurance Contract
Optimization

In this section, we explore the impact of uncertainty on reinsurance contract
optimization through a simulation study. We introduce examples with and
without added uncertainty and obtain optimal solutions to these examples. Our
goal is to identify a suitable measure of dispersion to represent the degree of
uncertainty in the resulting distributions, quantify the uncertainty’s influence,
and interpret its effect on the increased objective function value observed in
the optimization process. We will also see how the uncertainty influences the
types of solution. The simulations has been set up as follows:

1. Simulate 1e7 samples for each distribution, plot the distributions and find
measures of dispersion.

2. Plot the hazard rate.

3. Find and plot the optimal solutions to the reinsurance contract optimiza-
tion.

4. Compare potential measures of dispersion of the distributions to the final
value of the objective function.

The simulations has been performed for the truncated normal distribution,
exponential distribution and pareto distribution. For each such distribution
there are two or three examples with added uncertainty, and an example without
uncertainty is also simulated as a baseline. Underneath is a list of all examples:

Example Distribution µ σ Empiric mean Empiric variance
a Ya ∼ TNI(µ, σ) 50 30 50.00 30.00
b Yb ∼ TNI(µ, σ) 50 30 · X1 55.29 52.87
c Yc ∼ TNI(µ, σ) 50 · X1 30 51.89 44.49
d Yd ∼ TNI(µ, σ) 50 X3 67.54 66.22
e Ye ∼ EXP (µ) 50 49.99 49.98
f Yf ∼ EXP (µ) 50 · X1 49.12 103.59
g Yg ∼ EXP (µ) X3 50.01 64.03
h Yh ∼ Pareto(µ, σ) 50 30 50.00 30.56
i Yi ∼ Pareto(µ, σ) X2 30 50.00 39.23
j Yj ∼ Pareto(µ, σ) 50 X3 50.00 31.33

Table 3.1: For each example a-j, the steps in the simulation study has been
followed. X1−3 are auxiliary functions used to introduce uncertainty as discussed
in the beginning of the chapter

• X1 : Lognormal(1.0, 1.5)

• X2 : P (X2 = 10) = 0.2, P (X2 = 30) = 0.2, P (X2 = 50) = 0.2, P (X2 =
70) = 0.2, P (X2 = 90) = 0.2

• X3 : P (X4 = 10) = 0.2, P (X3 = 20) = 0.2, P (X3 = 30) = 0.2, P (X3 =
40) = 0.2, P (X3 = 50) = 0.2

24



3.3. Quantifying Uncertainty in Reinsurance Contract Optimization

Truncated normal distribution

The truncated normal distribution is the first example because it has one of
the more fascinating responses to the added uncertainty because the optimal
solution changes depending on what the resulting distribution looks like. We
will introduce four examples based on the truncated normal distribution shown
in the table 3.2 below.

Example µ σ Empiric mean Empiric stdev Kurtosis
a 50 30 50.00 30.00 -0.05
b 50 30 · X1 55.29 52.87 49.34
c 50 · X1 30 51.89 44.49 5.03
d 50 X2 50.14 32.96 6.71

Table 3.2: For each distribution there has been generated 1e7 samples, the
empiric mean and empiric variance has been calculated for these samples.

We first look at samples drawn from the distributions. In figure 3.2-3.5 we
see how the distributions are skewed to the right by the added uncertainty in
the claims sample plots to the left. We note that Yb (the distribution with
the mixed standard deviation) has much higher extreme values than the other
distributions. There is a significant increase in empiric variance in Yb and Yc.
We can also see a dramatic increase in kurtosis in Yb, as discussed in chapter 2,
this estimate is somewhat prone to being influenced by outliers in the numeric
estimation, however the estimates in this example seem significant and may
indicate that a higher kurtosis leads to a balanced solution, while a lower
kurtosis leads to an unbalanced solution.

claims sample Ya hazard rate Ya

Figure 3.2: Ya

Next, we look at the hazard rate of the distributions, from chapter 2 we
know that a monotone increase in hazard rate will lead to a solution which
can be characterized as a border point solution, and opposite for a monotone
decreases in hazard rates. Distribution Ya has a strictly increasing hazard rate
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3.3. Quantifying Uncertainty in Reinsurance Contract Optimization

claims sample Yb hazard rate Yb

Figure 3.3: Yb

claims sample Yc hazard rate Yc

Figure 3.4: Yc

while it is strictly decreasing for Yb. Again, Yc, Yd has unexpected shapes, as
they are not monotone, this means that the theory for hazard rates does not
apply. We include them because they underpin the main result in the end of
the section.

In the figures (3.6, 3.7,3.8, 3.9), we see that Ya, Yc and Yd has a border
solution while Yb has an inner point solution. We note that even if the standard
deviation of all the ’new’ distributions is increased, only the mixed standard
deviation with increased kurtosis gets a change in solution type.
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claims sample Yd hazard rate Yd

Figure 3.5: Yd

Iso-curves Ya Optimal B1 Ya

Figure 3.6: Ya
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Iso-curves Yb Optimal B1 Yb

Figure 3.7: Yb

Iso-curves Yc Optimal B1 Yc

Figure 3.8: Yc
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Iso-curves Yd Optimal B1 Yd

Figure 3.9: Yd
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3.3. Quantifying Uncertainty in Reinsurance Contract Optimization

Exponential distribution

The next example we look at is the exponential distribution, we have already
looked at the analytical solution in the previous section but now we introduce
uncertainty to this example as well. The exponential distribution is often
thought of as the boundary between light- and heavy-tailed distributions, so
it is also interesting to see if the solutions change. We will only have three
examples due to the exponential distribution only having one parameter.

Example µ Empiric mean Empiric stdev Empiric kurtosis
Ye 50 49.99 49.98 6.02
Yf 50 · X1 49.12 103.59 99.29
Yg X3 50.01 64.03 11.82

Table 3.3: For each distribution there has been generated 1e7 samples, the
empiric mean, empiric variance and empiric kurtosis has been calculated for
these samples.

In the table 3.3 we see that Yf has a large increase in empiric standard
deviation and kurtosis, while Yg has a more moderate increase in both. This
is reiterated in the claims sample plots, where Yf is much more skewed. If
we now compare this to the plots with the Iso-curves and Optimal B1 we see
that Yf has a much more curved iso-curve and contstraint, indicating that the
uncertainty added to this example has had the most effect. While both Ye and
Yg has inner point solutions, we see that the iso-curve almost has the same
shape as the constraint and that differences in the values of ϕ in the Optimal
B1-plots are very small.

claims sample Ye hazard rate Ye

Figure 3.10: Ye
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claims sample Yf hazard rate Yf

Figure 3.11: Yf

claims sample Yg hazard rate Yg

Figure 3.12: Yg
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Iso-curves Ye Optimal B1 Ye

Figure 3.13: Ye

Iso-curves Yf Optimal B1 Yf

Figure 3.14: Yf
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Iso-curves Yg Optimal B1 Yg

Figure 3.15: Yg
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3.3. Quantifying Uncertainty in Reinsurance Contract Optimization

Pareto distribution

Example µ σ Empiric mean Empiric stdev Kurtosis
Yh 50 30 50.00 30.56 25318.27
Yi X3 30 50.00 39.23 825.30
Yj 50 X4 50.00 31.33 4198.78

Table 3.4: For each distribution there has been generated 1e8 samples, the
empiric mean, empiric standard deviation and empiric kurtosis has been
calculated for these samples.

For the pareto distribution the empiric kurtosis is too unstable to draw any
clear conclusions from, however, typically the kurtosis for Yj is higher than
for Yi, which is in line with the results from the exponential distribution and
truncated normal distribution. The standard deviation is, again, higher for the
example with the mixed mean than for the mixed standard deviation.

In the claims sample plots we see that Yh has one extreme outlier, and Yi

and Yj has multiple less extreme outliers, but heavier tails overall. The hazard
rates for examples Yh and Yj are quite as expected, and while Yi might look a
little odd it is only because of how the uncertainty on the mean is constructed
in conjunction with the heavy tail.

The iso-curves and Optimal B1’s are quite similar for all the pareto examples,
which is to be expected as all the distributions, irrespective of uncertainty, have
very heavy tails.

claims sample Yh hazard rate Yh

Figure 3.16: Yh
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claims sample Yi hazard rate Yi

Figure 3.17: Yi

claims sample Yj hazard rate Yj

Figure 3.18: Yj
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Iso-curves Yh Optimal B1 Yh

Figure 3.19: Yh

Iso-curves Yi Optimal B1 Yi

Figure 3.20: Yi
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Iso-curves Yj Optimal B1 Yj

Figure 3.21: Yj
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3.3. Quantifying Uncertainty in Reinsurance Contract Optimization

Asymmetric distributions

We include one asymmetric example of the exponential distribution, the idea
being that for asymmetric distributions the iso-curves will be tilted, so that
holding more of the light tailed risk is optimal. We are interested to see whether
there are any other significant changes.

Iso-curves Yk Optimal B1 Yk

Figure 3.22: Yk. Note that the solution to this example is not symmetric, so
the scale is not the same on the x- and y-axis.

We see that we get a very clear increase in our objective function when
b1 is increased, which is due to the tilted constraint. The optimal solution is
thus a border solution as expected. From the iso-curve plot we can theorise
that increasing the curve on the iso-curves, again could lead to an inner point
solution.

Summary

We have seen that uncertainty has a real impact on the solutions of optimal
reinsurance contracts, in this section we will try to draw some conclusions
from the observations. We will focus on the change in standard deviation and
kurtosis and how they impact

1. the type of solution.

2. the contract parameters

We need a couple of large tables to get an overview of the results
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3.4. Evaluating uncertainty

Example a1 a2 b1 b2 Empiric stdev Empiric Kurtosis
a 19.13 19.13 ∞ 127.40 29.99 -0.05
b 28.00 28.00 368.95 359.24 52.77 49.34
c 13.95 13.95 ∞ 219.28 44.49 5.03
d 20.60 20.60 306.44 169.00 32.96 6.71
e 9.12 9.12 269.77 257.86 49.98 6.02
f 3.31 3.31 669.22 647.77 103.59 99.29
g 5.53 5.53 372.40 345.84 64.04 11.82
h 35.12 35.12 201.21 196.19 30.56 25318
i 12.28 12.28 205.59 201.65 39.32 825.30
j 35.25 35.25 199.25 193.83 31.33 4198.78
k 8.20 10.03 352.23 253.84 - -

Example Uninsured Vα Retained risk Premium Vα

a 257.27 39.50 76.24 115.73
b 563.53 56.01 68.15 124.15
c 441.69 29.46 91.80 121.27
d 340.68 42.49 73.27 115.76
e 460.52 18.23 99.38 117.61
f 968.48 6.63 106.60 113.23
g 606.21 11.06 106.87 117.93
h 315.62 70.25 34.90 105.14
i 337.92 24.55 91.50 116.06
j 306.55 70.50 34.94 105.44
k 460.52 18.23 99.33 117.56

We make the following observations

• The uninsured risk is varying a lot, the Value at Risk after reinsurance is
quite stable.

• We see, however, that increases in the standard deviation is associated
with increases in Vα, the exception is Yf where a high empiric standard
deviation and kurtosis leads to a balanced solution with low retained risk
and the lowest Vα of the exponential examples.

• In the previous section we saw that the examples with uncertainty added
to the standard deviation were associated with more curved iso-curves,
here we see that the same examples has a higher increase in kurtosis. This
indicates that an increase in kurtosis is associated with a an increased
likelihood of an inner point solution being the optimal solution.

• The examples where standard deviation is increased significantly and
kurtosis only has a mild increase, Yc, Yf and Yi, also has a significant
reduction in retained risk.

3.4 Evaluating uncertainty

In order to have a measure of how much adding uncertainty costs, we need a
measure of how much uncertainty we are adding. We have seen that uncertainty
added has two different consequences which is reflected in changes in two
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3.5. Further research

different summary statistics, standard deviation and kurtosis. We conclude that
it is the dispersion parameter standard deviation that best reflects increases in
Vα, while increases in the tailedness parameter kurtosis doesn’t increase the Vα

as much but can lead to different optimal solutions.

3.5 Further research

A natural next step is to see what happens if we increase the number of contracts
and try to find optimal unbalanced solutions. This will require updating the
algorithm, and will be significantly more costly computationally, and probably
becomes unfeasible after m = 3 or m = 4. Furthermore it might be beneficial to
look at more examples. In the examples presented in this thesis there is a quite
clear connection changes in solution and increases in kurtosis, and between
increases in standard deviation and increases in Vα. However, to improve the
certainty of these results it might be beneficial to look at more distributions.
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APPENDIX A

The First Appendix - Probability
distributions

Pareto distribution

The Pareto distribution is a heavy tailed distribution with a shape parameter
α, a scale parameter σ and an optional location parameter µ. If the location
parameter is used the distribution is called a type 2 distribution and if not a
type 1 distribution. The two are equivalent if σ = µ. This can be shown by
comparing the inverse cumulative distributions.

• Pareto type 1 cdf FI(x) = 1 −
(

x
σ

)−α

• Pareto type 1 inverse cdf F −1
I (u) = σ(1 − u) −1

α

• Pareto type 2 cdf FII(x) = 1 −
(
1 + x−µ

σ

)−α

• Pareto type 2 inverse cdf F −1
II (u) = σ(1 − u) −1

α + µ − σ

Lomax distribution

If we let µ = 0, we get the Lomax distribution, which is also a heavy tailed
distribution.

• FL(x) = 1 −
(
1 + x

σ

)−α

• F −1
L (u) = σ(1 − u) −1

α − σ

Gamma Exponential distribution

The Gamma Exponential distribution is given by an exponential distribution
where the rate parameter is modelled by a Gamma distribution X|λ ∼ Exp(λ).
Depending on how the parameters are chosen we can end up with some very
convenient distributions. The conditional density of this distribution is given by

fX|λ(x|λ) = λe−λx

If we integrate this for t ∈ (x, ∞) we get the survival function

P (X > x|λ) =
∫ ∞

x

λe−λtdt = e−λx
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Next we can find the unconditional survival function by integrating P (X >
x|λ)g(λ)dλ where g(λ) is the density of the gamma distribution.

P (X > x) =
∫ ∞

0
P (X > x|λ)g(λ)dλ =

∫ ∞

0
e−λx βα

Γ(α)λα−1e−βλdλ

= βα

Γ(α)

∫ ∞

0
λα−1e−(β+x)λdλ = βα

Γ(α)
Γ(α)

(β + x)α

= βα

(β + x)α

This, in turn can be written as
[
1 + x

β

]−α

, so X ∼ Lomax (α, β)

Truncated Normal distribution

The truncated normal distribution is a normal distribution with a limited
interval. We have that if Y ∼ N(µ, σ) and X =d (Y |Y ∈ I), where I ⊆ R is
some interval of R, then X ∼ TNI(µ, σ). As we are interested in reinsurance
of positive claims we let I = [0, ∞). We have that the inverse cumulative
distribution function of the truncated normal distribution, truncated to the
interval I, is given by

X = µ + σ · Φ−1
(

Φ
(

−µ

σ

)
+ U ·

(
1 − Φ

(
−µ

σ

)))
where Φ is the cumulative distribution function of the standard normal
distribution and U is the uniform distribution on (0, 1). We need X to be
non-negative with probability one. We see that X is increasing in U, and if we
let U = 0, then

X = µ + σ · Φ−1
(

Φ
(

−µ

σ

))
= µ + σ ·

(
−µ

σ

)
= µ − µ = 0

Next, we can verify that the distribution is as postulated. We let x ≥ 0 and
consider the probability P (X > x):

P (X > x) = P

(
X − µ

σ
>

x − µ

σ

)
= P

(
Φ−1

(
Φ
(

−µ

σ

)
+ U · (1 − Φ(−µ

σ
))
)

>
x − µ

σ

)
= P

(
Φ(−µ

σ
) + U · (1 − Φ(−µ

σ
) > Φ(x − µ

σ
)
)

= P

(
U >

Φ( x−µ
σ ) − Φ( −µ

σ )
1 − Φ( −µ

σ )

)
= 1 −

Φ( x−µ
σ ) − Φ( −µ

σ )
1 − Φ( −µ

σ )

=
1 − Φ( x−µ

σ )
1 − Φ( −µ

σ )
= P (Y > x)

P (Y > 0)
= P (Y > x|Y > 0)

for a normally distributed Y with mean µ and standard deviation σ.
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The inversion method

The inversion method is used to simulate distributions, as long as we can
find the inverse distribution function it is possible to generate samples of the
cumulative distribution function of the distribution in question by using the
uniform distribution. Let F (x) be a strictly increasing distribution function
with inverse x = F −1(u) and let X = F −1(U), where U ∼ Uniform(0, 1).
Then

FX(x) = P (X ≤ x) = P (F −1(U) ≤ F −1(u)) = P ((U) ≤ u)

This enables us to sample from any of the distribution specified in the appendix
as we have a formula for the inverse of each of them.
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