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Abstract

This Master’s Thesis aims to optimize reinsurance contracts in both univariate
and multivariate cases, contributing to the advancement of reinsurance
optimization techniques. First, we review the optimization methodology and
identify the parts that can be solved analytically. We then develop Monte Carlo
simulation methods to optimize a set of reinsurance contracts, using value-at-
risk as the risk measure and exploring importance sampling to obtain more
stable results and illustrate the methods with symmetrical and asymmetrical
examples. Our findings provide insights for practitioners and researchers in
the field and demonstrate the potential of Monte Carlo simulation and the
importance sampling in optimizing multivariate reinsurance contracts.
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CHAPTER 1

Introduction

The fundamental principle of the insurance industry involves transferring risk
from the insured party to the insurer, who charges a premium in return. The
insurer then assumes economic responsibility for mitigating the risk associated
with the insured party.

In cases where the insured party’s coverage amount is significant, the
possibility of a large claim arises. This can result in irreversible harm to the
insurer’s portfolio or even lead to the failure to fulfill their financial obligation
to compensate for the damages incurred on the insured object. As a precaution
for these scenarios, insurance companies transfer risks between themselves to
diversify risk and reduce the total exposure to potential claims. The concept
of reinsurance has arisen, and the primary insurer that further transfers the
risk to a reinsurer is known as the cedent. The cedent may transfer the risk
for a large insurance contract or portfolio. This diversification strategy will, in
return, optimize the cedent’s financial position.

Usually, a single policyholder may incur a single risk factor, but since we are
dealing with reinsurance, it is beneficial to mitigate risks. Insurance companies
do this by pooling several risks to reduce the possibilities for financial losses
and increase their ability to fulfill financial obligations to policyholders. The
sole purpose is to limit the insurer’s exposure to complex and correlated risks.
However, note that pooling these risks does not necessarily mean that they are
bundled, since they may contain different distributions. Therefore, we have a
case of multivariate reinsurance contracts.

Despite the benefits of multivariate contracts, they are complex in both price
and structure, which can lead to sub-optimal results for both parties involved.
Necessary considerations include the reinsurance contract type and the risk
measure to use. The main focus of this thesis is to review the methodology for
optimizing reinsurance in univariate and multivariate cases, in particular by
exploring the applications of optimization that can be done analytically, in our
case, by using Lagrange multipliers. In addition, we examine the optimization of
a collection of reinsurance contracts using Monte Carlo simulation methods. The
primary risk measure will be value-at-risk, while the objective function will weigh
value-at-risk for retained risk against the expected gain. We wish to minimize the
value-at-risk and maximize the expected gain. However, maximizing expected
gain can result in no reinsurance contracts being implemented and the same
goes for a significant decrease in value-at-risk, as these goals contradict each
other. Therefore, the objective function balances both outcomes to find the
optimal solution.
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The methods developed will rely heavily on Monte Carlo simulation and
importance sampling techniques to perform the sampling of risks in the
multivariate case. To showcase the efficacy of these methods, a range of
examples will be presented in the bivariate case, encompassing both risks with
identical distributions and risks with different distributions.

This Master’s Thesis aims to provide fresh perspectives on optimizing
multivariate reinsurance contracts. It also explores the advantages of
incorporating value-at-risk as a risk measure and the potential use of importance
sampling to enhance the reliability of Monte Carlo simulation outcomes.

2. Chapter 2 introduces the nature of insurance contracts and their
applications to reinsurance. Definitions such as stop-loss and insurance
layer contracts are introduced, in addition to how risks and premiums
behave given a contract.

3. Chapter 3 deals with the theoretical background for our problem, with a
special focus on risk measure, objective function, insurance layer contracts,
optimization problems, and numerical simulation.

4. Chapter 4 further applies the introduced topics up until this point to our
problem. A new objective function is introduced, in addition to how the
optimization will be approached by optimizing each parameter. We will
also investigate an analytical approach using Lagrange multipliers in the
exponential case.

5. Lastly, Chapter 5 will analyze the tables and visualizations of the numerical
results for our optimization problem in a univariate and bivariate case.
Changes in parameters and behavior will be analyzed for different scenarios,
including symmetrical, asymmetrical, balanced, unbalanced, and changes
in dependencies.

3
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CHAPTER 2

Preliminaries

2.1 Insurance concepts

This section will introduce some relevant definitions and terminology regarding
the insurance applications of this thesis.

Firstly, an insurance contract is a contractual obligation where an insurer
covers the insured’s risk, referred to as the policyholder, in exchange for a fee,
i.e., a premium. If the insured experiences a loss, they may file a claim to the
insurer for reimbursement if the insurance policy validates the incident/loss. The
insurance policy contains the terms and conditions evidenced in an insurance
contract agreed upon by the parties (the insurer and the insured)1.

Risk is the main subject of the insurance policy and states what type of
incidents the insurance company covers. Risk is the exposure of an incident
that may result in damage or loss of an asset, referred to as an object. The
insurer determines the value of covering a specific risk X and calculates the
corresponding premium exchanged for the risk.

Assume that the risk X is non-negative, in addition to being absolutely
continuously distributed. Also, assume that the CDF of X, FX(x) = P (X ≤ x),
is strictly increasing whilst the survival function SX(x) = 1−FX(x) = P (X > x)
is strictly decreasing.

A portfolio is a collection of insurance contracts that the insurance company
classifies. It may be the entirety of insurance contracts, the number of business
lines, or the number of product lines offered by the insurance company. We will
assume that X1, . . . , Xm are the independent non-negative random variables
represented from m portfolios or business lines.

Reinsurance is insurance for the insurer, referred to as the cedent. The
practice consists of insurers protecting their portfolio to reduce the likelihood
of reimbursing a high-value claim, and they do this by transferring risk to
a secondary insurer, referred to as the reinsurer, in exchange for a premium.
The cedent reduces the portfolio’s value-at-risk by this practice, which may
contribute to the company’s solvency, especially when dealing with enhanced
exposure under larger quantities of assets under their portfolios.

1The usage of the terms insurance contract and insurance policy are commonly
interchangeable, despite the definitions.
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2.2. Reinsurance contracts

Party A
The insured

X

Party B
Primary insurer

(cedent)
Xce = X −Xre

Party C
Secondary insurer

(reinsurer)
Xre

Premium Premium

Coverage Coverage

Figure 2.1: Reinsurance concept

2.2 Reinsurance contracts

We will now define the risk covered by the reinsurer as Xre = R(X) and the
risk covered by the cedent as the retained risk Xce = I(X) = X −R(X). It is
preferable to introduce what types of reinsurance contracts there are to choose
from, of which there are three:

(i) Stop-loss contract

(ii) Insurance layer contract
(iii) Proportional contract

The stop-loss contract is a reinsurance contract in which the cedent covers the
risk up to a particular value a before the reinsurer handles the remaining risk
R(X) = max(X − a, 0), where a is known as the retention limit of the cedent.

A slightly more complicated but favored approach (in the univariate case)
when using the value-at-risk measure is the insurance layer contract, as shown
in the work of Cheung et al. (2014)[Che14]. The risk covered by the reinsurer
in an insurance layer contract is presented as an interval, where the reinsurer
covers the risk between a and b, where a < b, denoted by R(X). The cedent
then covers the risk outside the interval [a, b], denoted by I(X) = X −R(X).

Remark 2.2.1 In some instances, the retention limit b = ∞ for the reinsurer
may arise. Observe that the insurance layer contract a × b is modified to a
stop-loss contract, also known as Excess of Loss.

In addition, we have the proportional contract (otherwise known as Pro Rata).
Although this thesis will not cover it, it is worth mentioning. A proportional
contract introduces a fixed percentage 0 ≤ c ≤ 1, where the reinsurer and
cedent respectively cover the proportion of risk c, denoted by R(X) = cX and
I(X) = (1− c)X.

2.2.1 Insurance layer contract

Utilizing an insurance layer contract in the multivariate case, we are presented
with the layer [ai, bi] and are interested in optimizing the insurance contract
using these parameters.

To avoid an issue of deceit, we assume that the loss functions Ri(xi) and
Ii(xi) satisfy the following conditions in the bivariate case:

(i) 0 ≤ Ri(xi) ≤ xi ∀ xi ≥ 0,both Ri(xi) and Ii(xi) are non-decreasing functions.

(ii) 0 ≤ Ri(y)−Ri(x) ≤ y − x ∀ 0 ≤ x ≤ y.
There are three possible scenarios when we are presented with this interval.

Firstly, if Xi < ai, the reinsurer covers nothing, and the cedent covers all the

6



2.2. Reinsurance contracts

risk. Secondly, if ai < Xi < bi, the reinsurer covers up to Xi − ai, and the
cedent covers ai. Lastly, if Xi > bi, then the reinsurer covers the whole interval
bi − ai, and the cedent covers the rest, which would be all the risk up to Xi,
not including the interval [ai, bi], which would then be Xi − (bi − ai). These
notations can be derived as follows:

Ri(Xi) =


0 for Xi < ai

Xi − ai for ai ≤ Xi ≤ bi

bi − ai for Xi > bi

(2.1)

Algorithm 1 Insurance layer contract
1: input Xi, ai, bi:
2: return Ri(Xi)← min(max(Xi − ai, 0), bi − ai)

For i = 1, . . . ,m where ai < bi. The retained risks for the cedent are denoted
as follows: Ii(Xi) = Xi −Ri(Xi), which yields:

Ii(Xi) =


Xi for Xi < ai

ai for ai ≤ Xi ≤ bi

Xi − (bi − ai) for Xi > bi

(2.2)

Xi

Ii(Xi)

ai bi

Figure 2.2: Retained risk

2.2.2 Premiums

We have presented the basic idea of retained and reinsured risk and will now
introduce the corresponding premium for these transactions as compensation
for the reinsurer. When an insurer covers an insured’s risk, they must be
compensated for the exposure. This compensation is given by the pure premium,
which is the expected value of the risk E[X].

7



2.2. Reinsurance contracts

Definition 2.2.2 (Loading) To avoid a break-even financial result, a loading γ
is introduced:

π = (1 + γ)E[Xi] (2.3)

where γE[Xi] may be referred to as the cost of risk. Reinsurers utilize this
pricing strategy too, where θ is used as loading. The price paid by the cedent
for the ith contract is then denoted by

πXi
= (1 + θ)E[Ri(Xi)], i = 1, . . . ,m (2.4)

We have obtained the premium from clients to the cedent, which is
(1 + γ)

∑m
i=1 E[Xi]. The premium from the cedent to the reinsurer is

(1 + θ)
∑m

i=1 E[Ri(Xi)]. Additionally, we have the total risk
∑m

i=1 Xi and
the reinsured risk

∑m
i=1 Ri(Xi). These components will be referred to as the

gain for the cedent for now:

G = (1 + γ)
m∑

i=1
E[Xi]− (1 + θ)

m∑
i=1

E[Ri(Xi)]−
m∑

i=1
Xi +

m∑
i=1

Ri(Xi) (2.5)

Taking the expected gain into account, this can be further deduced:

E[G] = E

[
(1 + γ)

m∑
i=1

E[Xi]
]
− E

[
(1 + θ)

m∑
i=1

E[Ri(Xi)]
]

− E

[
m∑

i=1
Xi

]
+ E

[
m∑

i=1
Ri(Xi)

]

⇒ E[G] = γ

m∑
i=1

E[Xi]− θ
m∑

i=1
E[Ri(Xi)] (2.6)

We are given that we have fixed values for γ and θ, which do not weigh on
abundant Xi-values. In other words, the price policies are calculated linearly.

In chapter 4, we will discuss the optimization problem that forms the core
of this Master’s Thesis and introduce the final objective function, where the
gain for the cedent will serve as the numerator.
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CHAPTER 3

Theoretical background

In order to comprehend the optimal reinsurance for both univariate and
multivariate cases and derive the main outcomes of this thesis, this chapter
further elaborates on the initial concepts. To prepare for our findings, we
will delve into value-at-risk, optimization, Monte Carlo simulation, generalized
solutions, and partial derivatives of the total reinsurance premium. Moreover,
to interpret the results in chapter 5, we will briefly touch upon the topics of
convexity, concavity, and hazard rate.

We need to assess the insurance layer contract which involves intervals, and
this involves two parameters in the multivariate case: ai and bi. As the number
of parameters n increases, the optimization problem becomes increasingly
complex, as we will have 2n parameters to optimize. Given the high complexity
of this calculation, we will focus our analysis on the bivariate case for our
multivariate optimization problem.

3.1 Risk measure

When it comes to insurance contracts, insurance companies benefit from the
law of large numbers. The vast compilation of insurance contracts provides
valuable information to insurance companies, which in turn may be used to
produce representative statistics. With this information, insurance companies
can employ risk measures, which are mathematical tools that help to assess
risk and determine the appropriate amount of assets to keep in reserve. Risk
measures are a useful tool for assessing the level of risk associated with an
insurance policy or portfolio. They allow you to determine the appropriate
amount of assets to keep in reserve by quantifying the level of risk. Essentially,
this method calculates the probability of a loss occurring.

Introduce some conditions for the risk X.
Xi, i = 1, . . . ,m is non-negative and absolutely continuously distributed.

For insurance companies, risk measures are, in short, used to manage and
mitigate risk to ensure that a suitable premium associated with the policy or
portfolio is charged.

3.1.1 Value-at-risk

A commonly used risk measure is value-at-risk. Although value-at-risk lacks
the property of subadditivity, which makes it an incoherent risk measure, it

10



3.1. Risk measure

benefits from its simplicity and straightforward implementation. In addition, it
satisfies regulatory requirements and is an effective tool for measuring capital
requirements.

Value-at-risk determines the worst loss over a target horizon within a given
confidence interval. In other words, value-at-risk is a probability-based measure
of the potential loss. We consider a risk, X, with a given probability distribution.
Value-at-Risk is a specific percentile in the probability distribution of the risk.
For example, if we choose the upper α percentile in the distribution, it means
that there is a probability of α that the risk will be higher than this percentile.

Definition 3.1.1 (Percentiles) Percentile qα defines the amount of which is used
for solvency capital or reserve. [Bøl14, p. 6]

P (X > qα) = α (3.1)

and in our case, we use the value of α as a cut-off percentage for our value-at-
risk calculation. The cumulative distribution function of a given data set can
be represented by FX(qα) = 1 − α, with the corresponding survival function
SX(qα) = α, which corresponds to the upper and lower percentiles, respectively.

Example 3.1.2 For instance, a 4% value-at-risk of $500 over 1 month means
that our losses should not exceed $500 in the period of 1 month with a 96%
probability.

This measure of risk is defined relative to some random variable X. The
cumulative distribution of X is denoted by FX(x) = P (X ≤ x). The survival
function SX(x) = 1 − FX(x) = P (X > x) is also introduced. The α-level
value-at-risk associated with the risk X is given by S−1

X (α) defined as:

Vα[X] = S−1
X (α) = inf{x : P (X > x) ≤ α} (3.2)

If SX is strictly decreasing, we have that S−1
X (α) = r if and only if

P (X > r) ≤ α ≤ P (X ≥ r)

When SX is strictly decreasing, the following holds:

P (X > r) = α, then S−1
X (α) = r

Remark 3.1.3 If SX is strictly decreasing for all X ≥ 0, the cumulative
distribution function FX is strictly increasing for all X ≥ 0. A continuous
function is said to be strictly increasing if FX(x1) < FX(x2) ∀ x1, x2 ∈
R where x1 < x2.

Proposition 3.1.4 Any strictly increasing continuous function ϕ has the
following property (monotonicity) [Hus22]:

Vα[ϕ(X)] = S−1
ϕ(X)(α) = ϕ(S−1

X (α)) (3.3)

Proof. Since ϕ is a strictly increasing continuous function, it follows by (3.2)
that (3.3) arises from:

Vα[ϕ(X)] = inf{y : P (ϕ(X) > y) ≤ α}
= inf{y : P (X > ϕ−1(y)) ≤ α}

11



3.1. Risk measure

Figure 3.1: CDF and survival function visualizations

Substitute y = ϕ(x) and ϕ−1(y) = x:

Vα[ϕ(X)] = inf{ϕ(x) : P (X > x) ≤ α}
= ϕ(inf{x : P (X > x) ≤ α})
= ϕ(S−1

X (α))

■

Proposition 3.1.5 Value-at-risk has the following properties [Ury00, p. 276]:
VaR, introduced as Vα, is equivariant to translation, meaning that the translation
of input risks results in an equivalent translation of outputs for the risk measure,
i.e., linearity:

(i) Vα[X + c] = Vα[X] + c (3.4)
Vα is positively homogeneous, i.e., multiplying a risk with a positive constant
does not change the risk measure.

(ii) Vα[cX] = cVα[X] (3.5)

where c is a positive scalar. These properties are special cases of proposition
3.3.

Example 3.1.6 Let a > 0 and b be constants, and let X be a random variable,
and define ϕ(X) = aX + b. Then we have that:

Vα[aX + b] = Vα[ϕ(X)] = ϕ(Vα[X]) = aVα[X] + b

12
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3.2 Univariate reinsurance contracts

We will now continue to assume the univariate case and recall the risk covered
in an insurance layer insurance contract (2.1), which in the univariate case is:

R(X) =


0 for X < a

X − a for a ≤ X ≤ b
b− a for X > b

(3.6)

for m = 1 where a < b. Also, recall the retained risk (2.2) for the cedent,
denoted as follows in the univariate case I(X) = X −R(X), which yields:

I(X) =


X for X < a

a for a ≤ X ≤ b
X − (b− a) for X > b

(3.7)

3.2.1 Partial derivatives total reinsurance premium

Consider that for the total reinsurance premium denoted E[R(X)], we have:

E[R(X)] =
∫ b

a

(x− a)fX(x)dx+
∫ ∞

b

(b− a)fX(x)dx

=
∫ b

a

xfX(x)dx− aP (a < X ≤ b) + (b− a)P (X > b)

=
∫ b

a

xfX(x)dx− aP (X > a) + bP (X > b)

Hence, the derivatives of E[R(X)] yields:

∂E[R(X)]
∂a

= −afX(a)− P (X > a) + afX(a) = −P (X > a)

∂E[R(X)]
∂b

= bfX(b) + P (X > b)− bfX(b) = P (X > b)

We can use these results to study the impact of a change in one contract
parameter on the total reinsurance premium in the univariate case, while
keeping the other parameter constant

3.2.2 Value-at-risk

Recall the survival function SX(x) = 1 − FX(x) = P (X > x) introduced in
3.1.1, it follows from the nature of our insurance layer contract that

SI(X)(x) = P (I(X) > x) =
{
P (X > x) for x < a

P (X > x+ (b− a)) for x ≥ a

P (I(X) > x) =
{
SX(x) for x < a

SX(x+ (b− a)) for x ≥ a

13



3.3. Multivariate reinsurance contracts

Assume that α < SX(a) or equivalently a < S−1
X (α), and consider the following

case:
α ≤ SX(b) or b ≤ S−1

X (α)
The value-at-risk then becomes

Vα[I(X)] = S−1
I(X)(α) = S−1

X (α)− (b− a)

also, consider the following case:

α > SX(b) or b > S−1
X (α)

where the value-at-risk becomes

Vα[I(X)] = S−1
I(X)(α) = a

Taking both these scenarios into account and combining them, we get the
resulting value-at-risk in the univariate case:

Vα[I(X)] = S−1
I(X)(α) = max{a, S−1

X (α)− (b− a)}

It follows that the partial derivatives from this expression that

∂

∂a
Vα[I(X)] = ∂

∂a
a = 1

and

∂

∂b
Vα[I(X)] = ∂

∂b

(
S−1

X (α)− (b− a)
)

=
{
−1 for b < S−1

X (α)
0 for b > S−1

X (α)

Remark 3.2.1 In the case of b = S−1
X (α), we get that

Vα[I(X)] = max{a, S−1
X (α)− (b− a)} = max{a, a} = a

showing that Vα[I(X)] is continuous in b.

3.3 Multivariate reinsurance contracts

Proceeding with the thesis in the multivariate case. This involves considering m
non-negative random variables, denoted as X1, . . . , Xm, which represent risks
from m different business lines. We will use the bivariate case for illustrations
and applied instances to simplify the implementations.

In this section, we will consider the problem of optimizing multivariate
reinsurance contracts with respect to value-at-risk, expected costs, and gain for
the cedent in preparation for a more advanced objective function that will be
introduced in chapter 4. Recall the insurance layer contract for the reinsured
(2.1) and the retained risk (2.2):

Ri(Xi) =


0 for Xi < ai

Xi − ai for ai ≤ Xi ≤ bi

bi − ai for Xi > bi

14



3.3. Multivariate reinsurance contracts

For i = 1, . . . ,m where ai < bi. The retained risks for the cedent are denoted
as follows: Ii(Xi) = Xi −Ri(Xi), which yields:

Ii(Xi) =


Xi for Xi < ai

ai for ai ≤ Xi ≤ bi

Xi − (bi − ai) for Xi > bi

Since we cannot bundle our reinsurance contracts, we need to verify why our
problem opens up to pooling single risk factors when optimizing multivariate
reinsurance contracts. This approach opens up to mitigating an insurer’s
exposure to risks, improving their ability to fulfill financial obligations in
addition to diversifying their portfolio. This will in turn provide coverage for
losses that have differently distributed risks that may occur simultaneously or
sequentially.

3.3.1 Partial derivatives total reinsurance premium

Consider that for the total reinsurance premium denoted as Φ =
∑m

i=1 Φi =∑m
i=1 E[Ri(Xi)], we have:

E[Ri(Xi)] =
∫ bi

ai

(x− ai)fXi(x)dx+ (bi − ai)P (Xi > bi)

=
∫ bi

ai

xfXi(x)dx− aiFX(bi) + aiFX(ai) + (bi − ai)P (Xi > bi)

=
∫ bi

ai

xfXi
(x)dx− ai(1− P (Xi > bi))

+ ai(1− P (Xi > ai)) + (bi − ai)P (Xi > bi)

=
∫ bi

ai

xfXi(x)dx− aiP (Xi > ai) + biP (Xi > bi), i = 1, . . . ,m

Continuing, we will inspect the partial derivatives of the premium
term. This is useful for analyzing the dependencies and determining the
maximum/minimum points for a varying insurance layer contract parameter
while holding the other constant to understand how our premium term behaves
when either one changes.

∂E[Ri(Xi)]
∂ai

= ∂

∂ai

∫ bi

ai

xfXi
(x)dx− ∂

∂ai
ai

∫ ∞

ai

fXi
(x)dx

= −aifXi
(ai)− P (Xi > ai) + aifXi

(ai) = −P (Xi > ai)
∂E[Ri(Xi)]

∂bi
= ∂

∂bi

∫ bi

ai

xfXi
(x)dx+ ∂

∂bi
bi

∫ ∞

bi

fXi
(x)dx

= bifXi
(bi) + P (Xi > bi)− bifXi

(bi) = P (Xi > bi)

Since our parameters ai and bi are of the first order, the parameter not being
partially differentiated is treated as a constant and therefore cancels out. Hence,
the partial derivative of the premium term with respect to either ai or bi only
depends on the respective parameter.

15



3.3. Multivariate reinsurance contracts

3.3.2 Value-at-risk as the objective function

The total risk covered by the cedent is given by:

ϕ(X) =
m∑

i=1
Ii(Xi) + (1 + θ)

m∑
i=1

E[Ri(Xi)]

where the first term is the retained risk term, and the latter is referred to as
the premium term, i.e., the price paid by the cedent for the ith contract.
Recall the α-level value-at-risk (3.3)

Vα[ϕ(X)] = S−1
ϕ(X)(α) = ϕ(S−1

X (α))

By (3.3), we have that the resulting α-level value-at-risk is given by:

C0 = Vα[ϕ(X)] = Vα

[
m∑

i=1
Ii(Xi) + (1 + θ)

m∑
i=1

E[Ri(Xi)]
]

= S−1∑m

i=1
Ii(Xi)+(1+θ)

∑m

i=1
E[Ri(Xi)]

(α)

Utilizing the property of value-at-risk, we get the following:

C0 = Vα[ϕ(X)] = S−1∑m

i=1
Ii(Xi)

(α) + (1 + θ)
m∑

i=1
E[Ri(Xi)] (3.8)

where the premium term is a constant.

3.3.3 Minimizing value-at-risk

We wish to minimize C0 = Vα[ϕ(X)]. We will assume a multivariate case for
the generalized concept with an expected risk premium E[Ri(Xi)].

We denote three sets for the retained risk, according to the lower bound ai:

A = {x :
m∑

i=1
Ii(xi) <

m∑
i=1

ai} (3.9)

B = {x :
m∑

i=1
Ii(xi) =

m∑
i=1

ai} (3.10)

C = {x :
m∑

i=1
Ii(xi) >

m∑
i=1

ai} (3.11)

Figure 3.2 illustrates the bivariate case, i.e., m = 2. Observe that subset B
includes the boundaries of the rectangle in addition to the borderline between
A and C. Since we assume that SXi

are strictly decreasing for all i, it follows
that P (X ∈ B ∪ C) and P (X ∈ C) are also strictly decreasing in ai for all i.

16



3.3. Multivariate reinsurance contracts

Figure 3.2: The sets A, B and C for ai, bi, i = 1, 2

Proposition 3.3.1 Assume that the contract parameters are chosen such that

P (X ∈ B ∪ C) ≥ α

P (X ∈ C) ≤ α
Then

S−1∑
i=1]mIi(Xi)

(α) =
m∑

i=1
ai

We know that if SX is strictly decreasing, we have that S−1
X (α) = r if and

only if
P (X > r) ≤ α ≤ P (X ≥ r)

which results in the following for our retained risk:

P

(
m∑

i=1
Ii(Xi) ≥

m∑
i=1

ai

)
= P (X ∈ B ∪ C) ≥ α

Since the set B includes the boundaries of set C for our parameters. Meanwhile,
we also have that for the set C that

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
= P (X ∈ C) ≤ α

In short, this will simplify the α-level to:

P (X ∈ C) ≤ α ≤ P (X ∈ B ∪ C)

17



3.3. Multivariate reinsurance contracts

which can equivalently be written as:

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
≤ α ≤ P

(
m∑

i=1
Ii(Xi) ≥

m∑
i=1

ai

)

where we again utilize the properties of the introduced survival function, more
specifically:

S−1
X (α) = r ⇒ S−1∑m

i=1
Ii(Xi)

(α) =
m∑

i=1
ai

Similarly, one can also denote that P (X ∈ C) insinuates

S−1∑m

i=1
Ii(Xi)

(α) =
m∑

i=1
ai (3.12)

by the indistinguishable property S−1
X (α) = r. Which is equivalent to the results

produced in [HC20].

Theorem 3.3.2 Assume that a∗
1, b

∗
1, . . . , a

∗
m, b

∗
m are optimal contract parameters,

and that

P

(
m⋂

i=1
Xi > a∗

i

)
≥ α (3.13)

Then the following conditions must hold:

a∗
i = S−1

Xi

(
1

1 + θ

)
, i = 1, . . . ,m (3.14)

in addition to:
P (X ∈ C) = α (3.15)

Proof. The proof is given in [HC20]. ■

Observe that S−1
Xi

(
1

1+θ

)
= ai satisfies

SXi
(ai) = 1

1 + θ
, i = 1, . . . ,m

where we denote A0 = (1 + θ)−1. Hence, we have that all observed values of ai

belong in the same percentile with respect to A0. Thus, the optimal value A0
may be utilized to find the corresponding optimal values for a1, . . . , am:

a∗
i = S−1

Xi
(A0), i = 1, . . . ,m

Introduce the same application for the other parameter bi, i = 1, . . . ,m:

Bi = SXi
(bi) = P (Xi > bi), i = 1, . . . ,m

which is also subject to the solution of the optimization problem with respect
to B1, . . . , Bm instead of b1, . . . , bm. The optimal values B∗

1 , . . . , B
∗
m may also

be utilized to find the corresponding optimal values for b1, . . . , bm:

b∗
i = S−1

Xi
(B∗

i ), i = 1, . . . ,m
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3.4 Optimization problem

We must optimize our univariate and multivariate reinsurance contracts, and do
this with a combination of maximizing our gain in addition to minimizing our
value at risk. This is done by using a desired objective function with constraint
to an α-level risk that is acceptable for our observations to be sampled from.

3.4.1 Optimal contract parameters

Theorem 3.4.1 Recall (3.14) from the last chapter:

a∗
i = S−1

Xi

(
1

1 + θ

)
= S−1

Xi
(A0), i = 1, . . . ,m

Assume that the values a∗
1, . . . , a

∗
m satisfies (3.15). The remaining optimal

contract parameters b∗
1, . . . , b

∗
m may be found, as we know they already exist, as

shown in the proof to the theorem (3.3.2). The optimal contract parameters
may be found by solving the following optimization problem:

minimize
m∑

i=1
E[Ri(Xi)]

subject to P (X ∈ C) = α

(3.16)

with respect to b1, . . . , bm

Proof. The proof is given in [Hus22]. ■

3.4.2 Expected reinsurance expenses

Consider using the expected risk given in (3.16) as an example for an objective
function,

∑m
i=1 E[Ri(Xi)]. Denote fXi

as the density of Xi, i = 1, . . . ,m. Let
Φ =

∑m
i=1 E[Ri(Xi)]. For an insurance layer contract i = 1, . . . ,m we know

that:

Φi =
∫ bi

ai

xfXi
(x)dx− aiP (Xi > ai) + biP (Xi > bi), i = 1, . . . ,m

where Φi = E[Ri(Xi)]. Numerical integration will be used to compute
Φi, i = 1, . . . ,m as functions of Bi, i = 1, . . . ,m [Hus22].

3.4.3 Constraint

Consider the constraint P (X ∈ C) = α that will assist in determining the set of
Bi-values. Due to the irregular shape of the subset C, an analytical solution to
this problem is difficult. To bypass this issue, a simulation on the distribution
of Xi will iterate the values of Bi until the subset C obtains a specific fraction
of the simulations.

Recall the figure 3.2, of which it is easy to see that

C ⊂
m⋃

i=1
(Xi > bi)
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Hence, we have that

P (X ∈ C) ≤ P
(

m⋃
i=1

Xi > bi

)
≤

m∑
i=1

Bi

Indicating that the upper bound B1, . . . , Bm is quite good due to the typically
small numbers. Assume that we have generated N samples X1, . . . ,XN from
a given distribution of X, using Monte Carlo simulation. We can estimate
pC = P (X ∈ C) for given values of B1, . . . , Bm by computing the resulting
desired fraction of samples in the set C equal to a given α-level.

To obtain a stable estimate of the constraint set, we need a very large
N , given that many of the observed risk X will fall outside the set C, given
the environment we are working in. A sufficient N will counter this effect by
sampling an adequate amount of Bi-values affected in the desired set.

Assume that we can obtain a set D such that C ⊂ D for all Bi that fall within
the event {X ∈ C}, and such that pD = P (X ∈ D). Let pC|D = P (X ∈ C|X ∈ D).
Since C ⊂ D, we get:

pC = pC|D · pD

Continue by generating N samples X1, . . . ,XN from the conditional distribution
of X given X ∈ D. Estimate pC|D by

p̂C|D = 1
N

N∑
i=1

I(Xk ∈ C)

The unconditional probability pC is estimated by:

p̂C = p̂C|D · pD

Further assume that X1, . . . ,XN are generated by transforming independent
uniformly distributed vectors U1, . . . ,UN :

Xk = ψ(Uk) =
(
F−1

1 (U1k), . . . , F−1
m (Umk)

)
, k = 1, . . . , N

where ψ is strictly increasing for each k, and the vectors U1, . . . ,UN are sampled
uniformly from the set D′ given by

D′ = {u : 1−∆ < ui < 1, i = 1, . . . ,m}

Finally, let:
D = ψ(D′) = {x = ψ(u) : u ∈ D′}

∆ must be chosen to be as small as possible, depending on the joint distribution
of the risks X, although ∆ = 2α is usually sufficient. In addition, a large enough
∆ is preferable to observe enough samples C ⊂ D. The transformation ψ can
be compiled from the inverse distribution functions of X1, . . . , Xm. In order to
improve the stability of the probability estimates p̂C and p̂C|D, it is necessary
to verify that X1, . . . ,XN becomes distributed according to the conditional
distribution of X given X ∈ D.

Note that

D′ = {u : 1−∆ < ui < 1, i = 1, . . . ,m} = [0, 1]m\E ′
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Figure 3.3: D′ = {u : 1−∆ < ui < 1, i = 1, 2}

where
E = {u : 0 < ui < 1−∆, i = 1, . . . ,m}

Hence, we know that the probability pD is known because we have that

pD = P (Xk ∈ D) = P (Uk ∈ D′) = 1− (1−∆)m

Figure 3.4 shows a scatter plot where the blue observations represent
simulations located in the A- or B-sets, while the red observations represent
simulations located in the C-set. The two scatterplots correspond to two
extreme cases regarding the b-values. In the first case, b1 is set to its minimum
value, meaning that B1 obtains its maximum value. At the same time, b2
becomes maximal (typically infinite), and B2 becomes minimal (typically 0).
In the second scatterplot, the opposite is true. The purpose of the scatterplots
is merely to verify whether importance sampling works, i.e., whether the
blank area resulting from importance sampling overlaps with the C-set with a
corresponding ∆-value. If importance sampling works for these cases, it will
also work for the less extreme cases. For example, in cases with equal risk
distributions, one plot will be an approximate reflection of the other around
the line B1 = B2, as illustrated in Figure 3.4, where the risks are sampled from
Xi ∼ Lognormal(50, 50).

Although Monte Carlo serves beneficial results when using random sampling
to yield numerical results, a disadvantage is that if the sample size m is
insufficient, some values of Xi may not be sampled. For instance, these values
may be very large or small, i.e., unlikely, at the tail of our distribution. If Monte
Carlo fails to sample these values, the approximation of these numerical results
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Figure 3.4: Verification of importance sampling

may be poor. To counteract this effect, we introduce importance sampling.
Importance sampling is a Monte Carlo method used to predict the probability
of rare events. The usual Monte Carlo method requires large sample sizes to be
representative and may be computationally intensive for an algorithm [She19].

Importance sampling draws X∗
i , i = 1, . . . ,m from a different distribution

that assigns a higher probability to rare events. These observations are
then down-weighted for the final numerical results to reduce bias while still
representing these values. This approach uses variance reduction as a procedure
to increase the precision of our estimates.

Example 3.4.2 Assume the approach of importance sampling when m = 2,
then we have that the set E , is defined by

E ′ = {u : 0 < ui < 1−∆, i = 1, 2}

whilst D′ = [0, 1]2\E ′, as seen in the figure 3.3.

Consider the condition m = 2 from example 3.4.2, and assume the problem
of sampling the vector U = (U1, U2) which is bivariate and uniformly distributed
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R[0, 1]2 conditioned on that U ∈ D′, where

D′ = {u : 1−∆ < ui < 1, i = 1 ∧ 2}, where 0 < ∆ < 1

Partition the set D′ into two disjoint subsets:

D′
1 = {u : 0 < u1 < 1, 1−∆ < u2 < 1}
D′

2 = {u : 1−∆ < u1 < 1, 0 < u2 < 1−∆}

As a result of U being uniformly distributed on [0, 1]2, we have that the
probabilities of the disjoint sets D′

1 and D′
2 are equal to their respective areas:

P (U ∈ D′
1) = ∆

P (U ∈ D′
2) = ∆(1−∆)

of which it follows that
P (U ∈ D′) = P (U ∈ D′

1) + P (U ∈ D′
2)

= ∆ + ∆(1−∆) = 2∆−∆2 = 1− (1−∆)2 = pD

Continuing, we can simplify for our conditional distribution of U given U ∈ D′

is uniform on D′. Draw a random number U0 sampled uniformly from the
interval [0, 2−∆]. If U0 ≤ 1, U is sampled uniformly from the set D′

1, implying
that:

P (U ∈ D′
1|U ∈ D′) = P (U ∈ D′

1)
P (U ∈ D′) = 1

2−∆
and similarly for U0 > 1, where we sample U uniformly on the set D′

2, implying
that:

P (U ∈ D′
2|U ∈ D′) = P (U ∈ D′

2)
P (U ∈ D′) = 1−∆

2−∆

Algorithm 2 Uniform sampling in the bivariate case algorithm
1: def bi_uniform_D(∆):
2: u0 = uniform(0, 2−∆)
3: if u0 ≤ 1:
4: u1 = uniform(0, 1)
5: u2 = uniform(1−∆, 1)
6: if u0 > 1:
7: u1 = uniform(1−∆, 1)
8: u2 = uniform(0, 1−∆)
9: return u1, u2

3.4.4 Convexity and concavity

Hazard rate is a method of predicting the time until a specific event occurs. In
this case, it measures similarities between the propensity properties convexity
and concavity with respect to the density function’s relation to the survival
function.

Definition 3.4.3 (Convexity) Let S ⊂ X be a convex set. A function
f : S −→ R+ is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀ x, y ∈ S (3.17)

23



3.4. Optimization problem

Definition 3.4.4 (Concavity) Let S ⊂ X be a convex set, a function f : S −→ R+

is concave ∀ x, y ∈ S if

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y), ∀ x, y ∈ S (3.18)

Introduce the super- and sublevel sets of Φ 3.4.2 expressed in terms of
B = Bi, i = 1, . . . ,m.

Definition 3.4.5 (Level set) A set of a real multivariate function where the
function takes on a value c is known as a level set:

Lc(f) = {x | f(x) = c}, where x = (x1, . . . , xm)

or in our case:
Lc(Φ) = {B ∈ [0, 1]m : Φ(B) = c}

In simple terms, it means where the plane of B and the graph Φ(B) intersects.

Let
L+

c (Φ) = {B ∈ [0, 1]m : Φ(B) ≥ c} (3.19)

L−
c (Φ) = {B ∈ [0, 1]m : Φ(B) ≤ c} (3.20)

be the superlevel and sublevel sets of the function Φ relative to c, respectively.
The sets denoted by L+

c (Φ) and L−
c (Φ) are known as the superlevel and

sublevel sets of a function Φ with respect to the level c. A function is considered
quasiconvex when all of its sublevel sets are convex, while a function is considered
quasiconcave when all of its superlevel sets are convex.

Proposition 3.4.6 If Φ1(B1), . . . ,Φm(Bm) are convex functions, then Φ is a
quasiconvex function of B. If Φ1(B1), . . . ,Φm(Bm) are concave functions, then
Φ is a quasiconcave function of B.

Proof. We will prove the latter statement of proposition (3.4.6). Assume that
Φ1(B1), . . . ,Φm(Bm) are concave functions, and let B(j) = (B(j)

1 , . . . , B
(j)
m ) ∈

L+
c (Φ), where j = 1, 2. We have that for all concave functions that any λ ∈ [0, 1],

we get B = λB(1) + (1− λ)B(2) ∈ L+
c (Φ). We know that

Φi(λB(1)
i + (1− λ)B(2)

i ) ≥ λΦi(B(1)
i ) + (1− λ)ΦiB

(2)
i , i = 1, . . . ,m

Hence, for i = 1, . . . ,m

Φ(B) = Φ(λB(1) + (1− λ)B(2))

=
m∑

i=1
Φi(λB(1)

i + (1− λ)B(2)
i ) ≥

m∑
i=1

λΦi(B(1)
i ) + (1− λ)Φi(B(2)

i )

= λΦ(B(1)) + (1− λ)Φ(B(2)) ≥ λc+ (1− λ)c = λc+ c− λc = c

We then have that B ∈ L+
c (Φ) is concave. The claim that L+

c (Φ) is convex is
proved in a completely similar way. [Hus22] ■
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3.5. Generalized solutions of the optimization problem

3.4.5 Hazard rate

Now for the relationship between hazard rate and convexity/concavity. Utilizing
the expressions of Φ1, . . . ,Φm, we have that:

∂Φi

∂bi
= P (Xi > bi), i = 1, . . . ,m

Deriving the partial derivatives with respect to B1, . . . , Bm, we get that:
∂Φi

∂Bi
= − Bi

fXi(S−1
Xi

(Bi))

where the partial derivative is increasing in Bi, and hence Φi convex.
Equivalently, the following relation is also increasing in Bi:

fXi(S−1
Xi

(Bi))
Bi

which also yields a convex function Φi. Further, substitute Bi = SXi(x). Since
Bi is a decreasing function of x, we get that if the function Φi

fXi
(x)

SXi(x)
is decreasing in x, then it is convex. Similarly, if the function Φi increases in x,
it is concave. This is the hazard rate of the distribution of the risks Xi. [Hus22]

Theorem 3.4.7 If the risks X1, . . . , Xm have decreasing hazard rates, then Φ is
a quasiconvex function of B. If X1, . . . , Xm have increasing hazard rates, then
Φ is a quasiconcave function of B. The ratio fXi

(x)
SXi

(x) is the hazard rate of the
distribution of Xi.

3.5 Generalized solutions of the optimization problem

To determine the best amount of risk to transfer from an insurer to a reinsurer,
optimization can be used in a general manner. However, since there may not
be a single solution, a more comprehensive approach is needed. We will use a
developed optimization method that considers a range of solutions, providing
a nuanced and flexible answer to the question of risk. Our approach takes
into account simulated observations, distribution types, solution types, and
methods.

3.5.1 Balanced solutions

Recall A0 to be the common value of P (Xi > ai) by subsection (3.3.3), being
the common probability of all risks:

A0 = SXi(ai), i = 1, . . . ,m

and correspondingly, for the solution of bi’s, to reduce the set of possible
combinations which satisfy P (

∑m
i=1 Ii(Xi) >

∑m
i=1 ai) = α. This is chosen

such that
B = SXi

(bi), i = 1, . . . ,m
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3.5. Generalized solutions of the optimization problem

with the resulting values of the contract parameters:

bi = S−1
Xi

(B), i = 1, . . . ,m

It is preferable to produce a Monte Carlo simulation on the joint distribution of
Xi, i = 1, . . . ,m to find a value B, rather than solving this problem analytically
due to the varying space of the subset C. Due to the nature of our survival
function, we can see that an increasing value of B yields a decreasing value
of bi, i = 1, . . . ,m. Also, since the risks Xi, i = 1, . . . ,m are assumed to be
absolutely continuously distributed, the following probability

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)

is a continuous and increasing function of the value B. Estimating a value BL

such that

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
< α

provides a lower bound on the correct value of B. Correspondingly, estimating
a value BU such that

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
> α

provides an upper bound on the correct value of B.
Continuing, we will estimate the bounds of BL and BU . We have that for

all the risks greater than bi that:

C ⊆
m⋃

i=1
(Xi > bi)

Hence,

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
= P (X ∈ C) ≤ P

[
m⋃

i=1
(Xi > bi)

]

= 1− P
[

m⋃
i=1

(Xi ≤ bi)
]

= 1− (1−B)m

We also have that if B ∈ [0, 1] is such that 1 − (1 − B)m = α, it follows by
1− (1−B)m that

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
≤ α

Let BL denote this B-value since it is smaller than the correct B-value, denoted
by

1− (1−BL)m = α⇒ BL = 1− m
√

1− α
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3.5. Generalized solutions of the optimization problem

Further, we must estimate an upper bound BU for B. Similarly to the lower
bound value BL, we will use the definitions of our sets, of which we will focus
on the ai values lower than the risk Xi:[

m⋂
i=1

(Xi > ai)
]
\B ⊆ C

Hence,

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
= P (X ∈ C) ≥ P

([
m⋂

i=1
(Xi > ai)

]
\B

)

= P

(
m⋂

i=1
(Xi > ai)

)
− P

(
m⋂

i=1
(ai ≤ Xi ≤ bi)

)
= Am − (A−B)m

Correspondingly,we have that if B ∈ [0, 1] is such that Am
0 − (A0 −B)m = α, it

follows by Am
0 − (A0 −B)m that:

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
≥ α

Let BU denote this B-value since it is larger than the correct B-value, denoted
by:

Am
0 − (A0 −B)m = α⇒ BU = A0 − m

√
Am

0 − α

by using the bisection method, determining B is simplified such that the fraction
of the simulated observations that belong to C is approximately α.

Remark 3.5.1 The difference between the upper bound BU and the lower bound
BL is typically small.

Example 3.5.2 Assume that we have the values m = 2, α = 0.05 and θ = 1
9 .

Then we have that
A0 = 1

1 + 1
9

= 9
10 = 0.9

and

BL = 1−
√

1− α = 1−
√

0.95 = 0.02532

BU = A0 −
√
A2

0 − α = 0.9−
√

0.81− α = 0.02822

The bisection method will converge rapidly due to the small difference between
our lower and upper bounds.

Definition 3.5.3 (Bisection method) The bisection method is a root-finding
method for consistently bisecting an interval and extracting the subinterval
where the function changes sign, implying it must contain a root. [Mør17,
p. 242]

27



3.5. Generalized solutions of the optimization problem

Algorithm 3 Bisection method
1: a0 = a
2: b0 = b
3: for i = 1, . . . ,m
4: ni−1 = (ai + bi)/2
5: if f(ni−1) == 0
6: ai = bi = ni−1
7: if f(ai−1)f(an−1) < 0
8: ai = ai−1
9: bi = ni−1

10: else
11: ai = ni−1
12: bi = bi−1
13: nm = (am + bm)/2

In short, balanced solutions allows us to reduce the large number of
combinations that are produced by the equation

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

ai

)
= α

by assigning all possible Bi values to be equal. This does, however, not
guarantee a globally optimal solution, which is why unbalanced, although more
computationally heavy, may be more beneficial to use in some extreme cases.

3.5.2 Unbalanced solutions

Since an optimal balanced solution cannot be guaranteed to be optimal globally,
an unbalanced approach may be proficient. Enable this approach by introducing
Bi = P (Xi > bi) = SXi

(bi), i = 1, 2, for the case m = 2. A smaller m
is preferable since a large m may be too computationally heavy and time-
consuming.

Let B1 be some sufficient number. Determine B2 such that
P (
∑m

i=1 Ii(Xi) >
∑m

i=1 ai) = α holds. For Monte Carlo simulation on the
distribution of X1 and X2, B2 will be iterated until the subset C obtains
the preferable fraction of the simulations. Utilizing the approach we did for
balanced solutions, it is observable that for a given B1. Continue by calculating
the bounds for B2.

We know that when C ⊆ (X1 > b1) ∪ (X2 > b2) we have that

P ((X1, X2) ∈ C) ≤ P [(X1 > b1) ∪ (X2 > b2)]
= 1− P [(X1 > b1) ∩ (X2 > b2)]
= 1− (1−B1)(1−B2)

Solve for the lower bound BL for B2. We know that B2 ∈ [0, 1] such that
1 − (1 − B1)(1 − B2) = α, whereas the probability for the retained risks
Xi, i = 1, 2 being larger than the respective ai’s, we are left with a B2 value
less than the actual B2 value:

1− (1−B1)(1−BL) = α⇒ −(1−BL) = α− 1
1−B1

28



3.6. Distributions

⇒ BL = 1− 1− α
1−B1

= α−B1

1−B1

For the corresponding upper bound value, we have that

[(X1 > b1) ∪ (X2 > b2)] ∩ [(X1 > a1) ∩ (X2 > a2)] ⊆ C

and similarly:

P ((X1, X2) ∈ C) ≥ P ([(X1 > b1) ∪ (X2 > b2)] ∩ [(X1 > a1) ∩ (X2 > a2)])
= P ((X1 > b1) ∪ (X2 > b2)|(X1 > a1) ∩ (X2 > a2)) · P ((X1 > a1) ∩ (X2 > a2))
= (1− P ((X1 > b1) ∪ (X2 > b2)|(X1 > a1) ∩ (X2 > a2))) · P ((X1 > a1) ∩ (X2 > a2))

=
(

1− (A−B1)(A−BU )
A2

)
·A2 = A2 − (A−B1)(A−BU )

Similarly to the lower bound of B2, we have that B2 ∈ [0, 1] such that
A2

0 − (A0 −B1)(A0 −BU ) = α, and solve for BU :

A2
0 − (A0 −B1)(A0 −BU ) = α⇒ A0 −BU = A2

0 − α
A0 −B1

BU = A0 −
A2

0 − α
A0 −B1

= α−A0B1

A0 −B1

Example 3.5.4 Assume that we have the values m = 2, α = 0.05, θ = 1
9 ,

A0 = 0.9 and B1 = 0.03, then we have that

BL = α−B1

1−B1
= 0.05− 0.03

1− 0.03 = 0.02
0.97 = 0.00262

BU = α−AB1

A−B1
= 0.05− 0.9 · 0.03

0.9− 0.03 = 0.027
0.87 = 0.03103

3.6 Distributions

This section will denote some pertinent distributions relevant to the multivariate
optimization problem. A critical condition for the distributions we are about
to explore is that X < 0 should not occur, given the nature of how we have
defined risk respective to the parties involved. The bibliography used for
said distributions is given in Modern Mathematical Statistics with Applications
[DB12]. The listed distributions used in this thesis are Log-normal distribution,
Truncated normal distribution, Exponential distribution, Pareto distribution,
Normal distribution and Gamma distribution and can be found in Appendix A.

3.6.1 Copulas

A copula is a statistical tool that is used to model multivariate distributions
by describing the dependencies between two or more random variables. It is
expressed in terms of marginal distribution functions and a copula, which is
based on a correlation parameter, denoted as ρ ∈ [−1, 1].

A question that arises is why copula approach is preferred over regular
multivariate dependency in modeling combined risks. The answer lies in the
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3.6. Distributions

flexibility it offers in modeling the dependency between risks. By outputting a
joint distribution, the copula approach can effectively capture and model the
dependency between risks, making it a reliable choice for risk modeling.

Example 3.6.1 (Gaussian copula) The Gaussian copula is a tool for modeling the
relationship between random variables that have a joint distribution following
a multivariate normal distribution. It finds its application in finance and risk
management to model the dependency between various financial variables like
bonds and stocks. The Gaussian copula can model both positive and negative
dependencies between variables, making it a useful tool to represent different
economic scenarios, including recessions.

Theorem 3.6.2 (Sklar’s Theorem)
Let F1(x1) and F2(x2) be marginal cumulative distribution functions of two
random variables x1 and x2. Denote F1(x1) = P (X1 ≤ x1) and F2(x2) =
P (X2 ≤ x2). Let F (x1, x2) be a joint cumulative distribution function
F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2). Then F (x1, x2) is linked to F1(x1) and
F2(x2) through a copula. Thus

F (x1, x2) = C(F1(x1), F2(x2)) (3.21)

Furthermore, if F1(x1) and F2(x2) are continuous, then C is unique.

Introduce a joint distribution function C(u1, u2). Define the distribution
functions u1 = F−1

1 (x1) and u2 = F−1
2 (x2). Then x1 = F−1

1 (u1) and
x2 = F−1

2 (u2) are the percentiles of the distribution functions.

Algorithm 4 Inversion sampling
1: input F−1(u)
2: draw U ∼ uniform
3: return X ← F−1(U)

The distribution functions of X1 and X2 becomes F1(x1) and F2(x2) by the
inversion sampling, regardless of the dependencies of U1 and U2. The resulting
joint distribution function C(u1, u2) is known as a copula. [Bøl14, p. 202]

Example 3.6.3 The financial crisis of 2008 serves as a great example of why
copulas are crucial. The crisis was triggered by the housing market, and
copulas were utilized to model the dependence between different types of
mortgage-backed securities, including subprime and prime mortgages. The
models assumed that the probability of default for each type of mortgage was
independent of the possibility of default for the other types.

However, when the defaults of subprime mortgages increased, it became
apparent that there was a correlation, and hence the defaults of other types of
mortgages also increased. As the copula models did not take this correlation
into account, the risk of mortgage-backed securities was greatly underestimated.
This led to a widespread purchase of these securities, exposing investors to
significantly more risk than originally anticipated, resulting in massive losses.

30



31



CHAPTER 4

Optimal reinsurance

In this chapter, we will utilize the theory we have covered so far to support our
Master’s thesis. Our objective is to introduce an objective function called C1,
which we will strive to minimize. By demonstrating how this optimization is
carried out, we will provide examples and results in chapter 5. It is possible
to pursue optimization by either minimizing the denominator of the objective
function, maximizing the numerator, or both. Please note that if we maximize
the numerator, which represents expected gain, no reinsurance contracts will
be implemented. Similarly, if we minimize the denominator, our value-at-
risk will be reduced to zero. Therefore, we will optimize both of these terms
simultaneously to provide an optimal solution for realistic scenarios.

Our policy for pricing is based on a linear model, where the premium for
coverage increases proportionally with the amount of coverage purchased. In
contrast, a non-linear pricing policy be a convex function, i.e. a case where the
price increases more if the risk is moved along tail. This risk aversion is put in
place because an insurance company weigh more on higher losses rather than
small. Many of the following results are given in the lecture notes for the course
STK4400 "Risk and Reliability Analysis" at the University of Oslo as of spring
2023. [Hus23]

4.1 Univariate reinsurance

We start by recalling the univariate case. As this chapter will introduce a new
objective function denoted C1, we will do so for one dimension before resuming
the multivariate reinsurance optimization problem.

4.1.1 Partial derivatives of expected gain

We will now introduce the gain1 in the univariate case for the cedent by G:

G = (1 + γ)E[X]− (1 + θ)E[R(X)]−X +R(X)

where γ is the risk loading for the client and θ is the risk loading for the cedent.
It follows that

E[G] = (1 +γ)E[X]− (1 + θ)E[R(X)]−E[X] +E[R(X)] = γE[X]− θE[R(X)]
1This thesis does not account for the cost of capital
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4.1. Univariate reinsurance

Furthermore, we want to investigate the derivatives of the expected gain, to
observe how it behaves when one contract parameter changes while the other
remains constant:

∂E[G]
∂a

= −θ∂E[R(X)]
∂a

∂E[G]
∂b

= −θ∂E[R(X)]
∂b

Notice that the value of E[X] remains constant regardless of the values of a
and b. Determining these derivatives, we can recall that from 3.2.1 that:

E[R(X)] =
∫ b

a

xfX(x)dx− aP (X > a) + bP (X > b)

with the corresponding partial derivatives:

∂E[R(X)]
∂a

= −P (X > a)

∂E[R(X)]
∂b

= P (X > b)

This gives us the following results for the partial derivatives of expected gain:

∂E[G]
∂a

= −θ∂E[R(X)]
∂a

= θP (X > a) > 0

∂E[G]
∂b

= −θ∂E[R(X)]
∂b

= −θP (X > b) < 0

4.1.2 Objective function

Introduce the objective function C1, where the goal is to find a and b such that

C1(a, b) = Vα[I(X)]
E[G]

is minimized. Given the considerations of our value-at-risk assumptions (3.2.2),
if α < SX(a) or equivalently, if a < S−1

X (α), the derivatives of C1(a, b) with
respect to a are such that:

∂

∂a
C1(a, b) = (E[G])−2 · (E[G]− Vα[I(X)] · θP (X > a))

and similarly if b < S−1
X (α) we have:

∂

∂b
C1(a, b) = (E[G])−2 · (Vα[I(X)] · θP (X > b)− E[G])

while if b > S−1
X (α) we have:

∂

∂b
C1(a, b) = (E[G])−2 · (Vα[I(X)] · θP (X > b))

It follows that b > S−1
X (α), we have

∂

∂b
C1(a, b) > 0
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4.1. Univariate reinsurance

Thus, if we can show that for b < S−1
X we have:

∂

∂b
C1(a, b) < 0

then this would imply that the optimal b-value is S−1
X (α). In pursuit of this,

we need to first find the corresponding optimal value for a, since the sign of
∂
∂bC1(a, b) depends on the value of a. Assume an optimal value for a such that
E[G] > 0; this condition can be expressed as a > amin, where the lower bound
amin is the solution to E[G] = 0. Assume that there exists a unique a ∈ (amin, b)
such that ∂

∂aC1(a, b) = 0, given that amin < b. It follows that for this a-value,
we have:

E[G] = Vα[I(X)] · θP (X > a)
Insert the expression for E[G] into ∂

∂bC1(a, b):

(E[G])2 · ∂
∂b
C1(a, b) = Vα[I(X)] · θP (X > b)− Vα[I(X)] · θP (X > a)

= Vα[I(X)] · (θP (X > b)− θP (X > a))

Since a < b, we have that P (X > b) < P (X > a), hence ∂
∂bC1(a, b) < 0. These

results conclude that the optimal value for b is b∗ = S−1
X (α). When b = b∗, it

follows by Vα[I(X)] = max{a, S−1
X (α)− (b− a)} that:

Vα[I(X)] = max{a, S−1
X (α)− (b∗ − a)} = max{a, a} = a

If b > S−1
X (α), we have that:

P (I(X) > a) = P (X > b) < α

P (I(X) ≥ a) = P (X > a) ≥ α
So, by P (X > x) ≤ α ≤ P (X ≥ x), we also get that Vα[I(X)] = a.
Simultaneously, if b > b∗, the expected gain is reduced. Thus, C1(a, b) >
C1(a, b∗). On the other hand, if b < S−1

X (α), we have:

P (I(X) > a) = P (X > b) > α

Hence, Vα[I(X)] > a. Simultaneously, if b < b∗, the expected gain is increased.
However, the increase in expected gain is not enough to compensate for the
increase in Vα[I(X)]. Thus, we still have C1(a, b) > C1(a, b∗). We can conclude
with that in order to minimize C1(a, b), the value of b should be chosen such
that:

P (I(X) > a) = α

Since the optimal value for b is determined with b∗, we can continue by optimizing
a. This corresponding value, denoted a∗, is found by solving ∂

∂aC1(a, b) = 0
with respect to a ∈ (amin, b

∗) which is equivalent to:

E[G] = Vα[I(X)] · θP (X > a) = a · θP (X > a)

Recall the expected gain E[G] = γE[X]− θE[R(X)]. When E[G] = 0, we can
simplify this to:

γE[X] = θE[R(X)]⇒ E[R(X)] = γ

θ
E[X]
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where
E[R(X)] =

∫ b

a

xfX(x)dx− aP (X > a) + bP (X > b)

The expected gain can consequentially be written as:

E[G] = γE[X]− θ
∫ b

a

xfX(x)dx+ aθP (X > a)− bθP (X > b)

So, when E[G] = aθP (X > a), the remaining terms of the expression above
must equal 0:

γE[X]− θ
∫ b

a

xfX(x)dx− bθP (X > b) = 0

which is simplified to:∫ b

a

xfX(x)dx+ bP (X > b) = γ

θ
E[X]

⇒
∫ b

a

xfX(x)dx = γ

θ
E[X]− bP (X > b)

We have that the right-hand side of the above expression is known. We can use
this information to iterate until the expression is true and return the optimal a∗.
We can also return its corresponding A = S−1

X (a∗) and the minimized objective
function C1(a∗, b). The trapezoidal rule gives the estimation approach for our
integral.

4.2 Multivariate reinsurance

Applying the theory until this point to the multivariate case, we can dive into
how the new objective function and its expected gain behave when i = 1, . . . ,m
insurance contracts are involved.

4.2.1 Partial derivatives of expected gain

Recall the gain (2.5) in the multivariate case

G = (1 + γ)
m∑

i=1
E[Xi]− (1 + θ)

m∑
i=1

E[Ri(Xi)]−
m∑

i=1
Xi +

m∑
i=1

Ri(Xi)

and its respective expected gain (2.6):

E[G] = γ

m∑
i=1

E[Xi]− θ
m∑

i=1
E[Ri(Xi)]

where

E[Ri(Xi)] =
∫ bi

ai

xfXi
(x)dx− aiP (Xi > ai) + biP (Xi > bi), i = 1, . . . ,m

35



4.2. Multivariate reinsurance

Since our parameters ai and bi are first-order, we treat the parameter not
taken as a partial derivative as a constant and cancel it out. Hence, the
partial derivative of the premium term of either ai or bi only depends on the
respective parameter. So, similarly to the total reinsurance premium 3.3.1 in
the multivariate case and the expected gain in the univariate case, we have:

∂E[G]
∂ai

= ∂

∂ai

[
γ

m∑
i=1

E[Xi]− θ
m∑

i=1
E[Ri(Xi)]

]
− θ ∂

∂ai
E[Ri(Xi)]

= θP (Xi > ai) > 0

∂E[G]
∂bi

= ∂

∂bi

[
γ

m∑
i=1

E[Xi]− θ
m∑

i=1
E[Ri(Xi)]

]
− θ ∂

∂bi
E[Ri(Xi)]

= −θP (Xi > bi) > 0

Further, we have the m-dimensional case where our goal is to find a =
(a1, . . . , am) and b = (b1, . . . , bm) in order to minimize the objective function
C1(a,b):

C1(a,b) = Vα[
∑m

i=1 Ii(Xi)]
E[G]

where Vα [
∑m

i=1 Ii(Xi)] denotes the (1 − α) percentile of the distribution of∑m
i=1 Ii(Xi). We have that

Vα

[
m∑

i=1
Ii(Xi)

]
= S−1∑m

i=1
Ii(Xi)

(α)

4.2.2 Optimizing a given b

Given that we already have a a value, we will now consider an optimization
problem for b. Assume a fixed value for b has been chosen, denoted b0 such
that

Vα

 m∑
j=1

Ij(Xj)

 ≈ m∑
j=1

aj

The optimal value for a is then found by solving the partial derivative of the
objective function with respect to the desired variable, a:

∂

∂ai
C1 = 0, i = 1, . . . ,m

∂

∂ai

Vα[
∑m

j=1 Ij(Xj)]
E[G] = 0

∂

∂ai
C1 =

∂
∂ai

Vα[
∑m

j=1 Ij(Xj)] · E[G]− ∂
∂ai

E[G] · Vα[
∑m

j=1 Ij(Xj)]
(E[G])2

where previous results in (3.3.3) has shown us that

∂

∂ai
Vα

[
m∑

i=1
Ii(Xi)

]
= ∂

∂ai
S−1∑m

i=1
Ii(Xi)

(α) = ∂

∂ai

m∑
i=1

ai = 1
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such that

∂

∂ai
C1 =

E[G]− θP (Xi > ai) · Vα[
∑m

j=1 Ij(Xj)]
(E[G])2 = 0

We see that finding the optimal value for a holds if and only if

E[G] = θP (Xi > ai)) · Vα

 m∑
j=1

Ij(Xj)

 = θP (Xi > ai) ·
m∑

j=1
aj , i = 1, . . . ,m

which may also be denoted as

P (Xi > ai) = E[G]
θ
∑m

j=1 aj
, i = 1, . . . ,m

It follows that P (X1 > a1) = . . . = P (Xm > am) = A for some probability A.
Express a in terms of A, as introduced in Theorem 3.3.2:

ai = S−1
Xi

(A), i = 1, . . . ,m

Continue by inserting in the expression for E[G], and we get that:

E[G] = θA ·
m∑

j=1
S−1

Xj
(A)

where A can be easily determined, with a1, . . . , am being iterated. Denote the
resulting a as a1 = (a1,1, . . . , a1,m).

4.2.3 Optimizing b given a

Assume that an optimal value a = a1 has been found for an initial value b = b0,
as shown in (4.2.2). We now want to find an optimal b, denoted correspondingly
as b1 = (b1,1, . . . , b1,m).

The optimal value of b should be chosen such that the objective function
C1(a1,b) is minimized with respect to b:

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

a1,i

)
= α

We have that

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

a1,i

)
< α, b′ > b

P

(
m∑

i=1
Ii(Xi) ≥

m∑
i=1

a1,i

)
≥ α, b′ > b

and respectively Vα[
∑m

i=1 Ii(Xi)] =
∑m

i=1 a1,i. Intuitively, the expected gain
E[G] will be reduced if a chosen b is larger than the initial value of b = b0.
This is because the layer of our multivariate reinsurance contract is compressed.
Hence, C1(a1,b′) > C1(a1,b).
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Correspondingly, we have that

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

a1,i

)
> α, b′ > b

where Vα[
∑m

i=1 Ii(Xi)] >
∑m

i=1 a1,i. In this case, the expected gain E[G] is
not increased, as the layer of our multivariate reinsurance contract is extended.
Moreover, the objective function is not affected as a result of this since the
expected gain does not compensate for the increase in Vα[

∑m
i=1 Ii(Xi)]. Hence,

C1(a1,b′) > C1(a1,b). Continuing, we have that for a given a = a1, the
following optimization problem arises:

minimize C1(a1,b) = Vα[
∑m

i=1 Ii(Xi)]
E[G]

subject to P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

a1,i

)
= α

(4.1)

Recall that the numerator Vα[
∑m

i=1 Ii(Xi)] =
∑m

i=1 a1,i, meaning that the
objective function is minimized when the denominator is maximized, as the
numerator is a constant. Hence, the optimization problem can be denoted as
follows:

maximize E[G] = γ

n∑
i=1

E[Xi]− θ
n∑

i=1
E[Ri(Xi)]

subject to P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

a1,i

)
= α

(4.2)

Given that the retained risk is not dependent on the reinsurance contract, as
defined by b, the optimization problem may be further simplified to:

minimize
n∑

i=1
E[Ri(Xi)]

subject to P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

a1,i

)
= α

(4.3)

where

E[Ri(Xi)] =
∫ bi

ai

xfXi
(x)dx− aiP (Xi > ai) + biP (Xi > bi)

=
∫ bi

ai

xfXi
(x)dx− aiA+ biBi, i = 1, . . . ,m

(4.4)

Once a1 is determined, the next procedure is to determine the resulting a,
but by b1 instead of b0, and the resulting a is denoted a2 = (a2,1 . . . , a2,m).
The next step for finding b denoted b2 = (b2,1, . . . , b2,m) is to find the optimal
b by using the resulting a2 rather than a1. This process is iterated until the
solutions converge.
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4.2.4 Optimal solution in the exponential case

We will now apply the techniques introduced above to the bivariate exponential
case. Recall that the exponential distribution is a special case of the gamma
distribution. An essential property of the exponential distribution is that it
is memoryless and non-negative, which is necessary given the state of the
transactions.

Introduce the granulated sets for the set C:

Figure 4.1: Granulated sets A, B and C for i = 1, 2

We have that Xi ∼ exp (λ), i = 1, 2.

P (Xi > x) = e−λx, i = 1, 2

by ai = S−1
Xi

(A) it follows that the optimal values for ai, i = 1, 2 must satisfy:

P (Xi > ai) = e−λai = A, i = 1, 2

solving for the optimal values ai, we get that

ai = − ln(A)
λ

, i = 1, 2

utilizing the condition

P

(
m∑

i=1
Ii(Xi) >

m∑
i=1

a1,i

)
= α

We get that the optimal values for bi, i = 1, 2 is simplified to

P (I1(X1) + I2(X2) > 2a) = α
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where the event {I1(X1) + I2(X2) > 2α} corresponds to the set C, also denoted
as the granulated subsets C0 ∪ C1 ∪ C2, as visualized in figure 4.1. Further we
will solve for the area involving the subsets C0, C1 and C2:

P ((X1, X2) ∈ C0) = P ((X1, X2) ∈ C0 ∪ B)− P ((X1, X2) ∈ B)
= e−2λa − (e−λa − e−λb1) · (e−λa − e−λb2)

(4.5)

where the common value of ai, i = 1, 2 is denoted as a.
Continuing for the subset C1:

P ((X1, X2) ∈ C1) = P (X1 +X2 > b1 + a ∩X2 ≤ a)

=
∫ a

0
P (X1 + x2 > b1 + a)λe−λx2dx2

=
∫ a

0
e−λ(b1+a−x2)λe−λx2dx2

=
∫ a

0
λe−λ(b1+a)dx2 = λae−λ(b1+a)

(4.6)

and similarly for the subset C2:

P ((X1, X2) ∈ C2) = λae−λ(b2+a)

Introduce
P (Xi > bi) = SXi

(bi) = Bi = e−λbi , i = 1, 2
We want to estimate α given the condition P (I1(X1) + I2(X2) > 2a) = α.
Simplify by also using the area for each subset as found above:

P (I1(X1)+I2(X2) > 2a)
= P ((X1, X2) ∈ C0) + P ((X1, X2) ∈ C1) + P ((X1, X2) ∈ C2)
= e−2λa − (e−λa − e−λb1) · (e−λa − e−λb2) + λa · e−λa · (e−λb1 + e−λb2)
= A2 − (A−B1) · (A−B2) + λa ·A(B1 +B2)
= A(1 + λa)(B1 +B2)−B1B2 = α

(4.7)

insert a = − ln(A)
λ :

⇒ A(1− ln(A))(B1 +B2)−B1B2 = α

⇒ A(1− ln(A))(B1 +B2) = α+B1B2

B1 +B2 = α+B1B2

A(1− ln(A))
Turning our focus to the objective function, which is used to optimize the
parameters defined by our insurance layer contract, we have that

C1 = Vα[
∑m

i=1 Ii(Xi)]
E[G] = Vα[I1(X1) + I2(X2)]

E[G] = 2a
E[G]

Minimizing the objective function C1 with respect to the optimal values
B1 and B2 for a given A is equivalent with maximizing E[G] subject to
B1 +B2 = α+B1B2

A(1−ln(A)) .
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We have already remarked that the first term γ
∑m

i=1 E[Xi] in E[G] may be
disregarded in the maximization problem, given that the term is not dependent
on the values of B1 and B2. Maximizing E[G] is then equivalent to minimizing
the latter term −θ

∑m
i=1 E[Ri(Xi)] with respect to the values B1 and B2 subject

to B1 +B2 = α+B1B2
A(1−ln(A)) .

Recall the solution for the expected reinsurance premiums in subsection 3.4.2:

Φi = E[Ri(Xi)] =
∫ bi

ai

xfXi
(x)dx−aiP (Xi > ai)+biP (Xi > bi), i = 1, . . . ,m

Applying the exponential case to this solution, we get that the latter term of
the expected gain E[G] may be denoted as

E[Ri(Xi)] =
∫ bi

ai

xλe−λxdx− ae−λa + bie
−λbi

= (aλ+ 1)e−λa − (biλ+ 1)e−λbi

λ
− ae−λa + bie

−λbi

= aλe−λa + e−λa − biλe
−λbi − e−λbi + λae−λa + λbie

−λbi

λ

= e−λa − e−λbi

λ
= A−Bi

λ
, i = 1, 2

(4.8)

Maximizing E[G] subject to B1 +B2 = α+B1B2
A(1−ln(A)) is equivalent to minimizing

λ−1(2A− (B1 +B2)) with respect to B1 and B2 subject to B1 +B2. Assuming
λ > 0 is a known constant and that A is determined, this is equivalent to
maximizing B1 +B2 subject to B1 +B2 = α+B1B2

K where K = A(1− ln(A)).

Remark 4.2.1 Given that (1 − ln(A)) > 1, it follows that K > A since
K
A = 1− ln(A).

We have that B1 +B2 may be simplified in order to express B1 in terms of
B2:

B1 +B2 = α+B1B2

K
⇒ B1 = α−KB2

K −B2
and the goal of optimizing the objective function C1 may now be expressed as
a function of the value B2 alone. This function is denoted by ϕ:

ϕ(B2) = α−KB2

K −B2
+B2

with the derivative being calculated as follows:

ϕ′(B2) = 1− K2 − α
(K −B2)2 = 1− K2 − α

(B2 −K)2

Given the remark (4.2.1), we need to assume K2 > α, to solve for the optimal
value of the equation ϕ′(B2) = 0:

1− K2 − α
(B2 −K)2 = 0

K2 − α = (B2 −K)2

B2 = K ±
√
K2 − α
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Proposition 4.2.2 The optimal value of B2 is given as B2 = K −
√
K2 − α

with the corresponding value of B1 = K −
√
K2 − α.

Proof. To have a reasonable solution for the insurance layer contract, we must
have b2 > a given the boundaries of our interval, hence B2 < A. The proposed
solution B2 = K±

√
K2 − α involves B2 = K+

√
K2 − α, of which the property

B2 > K > A is not valid for the nature of our reinsurance contract. Therefore,
we let B2 = K −

√
K2 − α, yielding the property 0 < B2 < A < K. The

solution is valid given that:

α < A2(1− ln(A2))

Furthermore, the derivative of our function ϕ is decreasing in B2 around the
solution, meaning that this solution corresponds to a maximum value of the
objective function C1. Correspondingly, we can solve for B1:

B1 = α−KB2

K −B2
= α−K(K −

√
K2 − α)

K − (K −
√
K2 − α)

= α−K2 +K
√
K2 − α√

K2 − α
= K −

√
K2 − α

(4.9)

Hence, Bi = K −
√
K2 − α, i = 1, 2. Our solution is then a balanced solution,

as introduced in 3.5.1. Let B denote the common value of B1 and B2. ■

4.2.5 Lagrange approach

Continuing, we will expand our approach for optimal values of B1 and B2 by
applying it to the analytical approach using Lagrange multipliers. Although
the generalized form may be exponentially complicated and extensive given an
increase in i parameters, it is beneficial for finding local minima and maxima of
the objective function.

Introduce
Λ(B1, B2) = Φ(B1, B2)− L ·Ψ(B1, B2)

where
L is denoted as the Lagrange multiplier

Φ(B1, B2) = B1 +B2

Ψ(B1, B2) = B1 +B2 −
α−B1B2

K

A potential extrema point of Φ(B1, B2) is found by solving

∇Λ(B1, B2) = 0

where L is determined by Ψ(B1, B2) = 0. We have that

∇Λ(B1, B2) = ∇Φ(B1, B2)− L · ∇Ψ(B1, B2) = 0

⇒ ∇Φ(B1, B2) = L · ∇Ψ(B1, B2)
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Moreover,
∇Φ(B1, B2) = (1, 1)

∇Ψ(B1, B2) =
(

1− B2

K
, 1− B1

K

)
and

L

(
1− Bi

K

)
= 1, i = 1, 2

with the resulting solution when solving for Bi:

Bi = K(1− L−1), i = 1, 2

Let the common value of Bi, i = 1, 2 be B, as our extreme point yields a
balanced solution for the optimal values. Continuing, we need to determine L
such that Ψ(B1, B2) = 0 holds:

B1 +B2 = α+B1B2

K
⇒ 2B = α+B2

K

with the following solution for B, given that this is the desired quantity rather
than L:

B = K ±
√
K2 − α

Recall that 0 < B < A < K, and the positive coefficient is not a valid solution,
hence

Bi = B = K −
√
K2 − α, i = 1, 2

4.2.6 The objective function

Turning our focus back to the objective function C1, we can continue by deriving
the optimal value for A as well, given that the optimal value for B is expressed
in terms of A:

C1 = Vα[I1(X1) + I2(X2)]
E[G] = 2a

E[G]

with the solution for a being a = − ln(A)
λ , yielding the expected gain:

E[G] = γ(E[X1] + E[X2])− θ(E[R1(X1)] + E[R2(X2)]) = 2γ
λ
− 2θ(A−B)

λ

Hence

C1(A) =
−2 ln(A)

λ
2γ
λ −

2θ(A−B)
λ

= − ln(A)
γ − θ(A−B)

where

B = K −
√
K2 − α = A(1− ln(A))−

√
A2(1− ln(A))2 − α

We can see that these results do not depend on the constant λ and that the
optimal value of A can be found by minimizing the introduced objective function
C1(A) by either C ′

1(A) = 0 or by a numerical algorithm.
In order to minimize C1(A) we need to allocate a suitable interval

[Amin, Amax]. Note that the denominator γ − θ(A − B) which is equal to
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λ
2 ·E[G] after the simplification in (4.2.6), can be negative for large values of A.
The upper bound Amax needs to be chosen so that the denominator is positive
regardless of whatever value B holds.
Let

Amax <
γ

θ

Furthermore, a large value of C1 is not optimal either, and to counter this effect,
a proportional property can be introduced for good measure:

Amax = 3
4 ·

γ

θ

In addition, for the lower bound Amin, we have that the square root in the
formula for B is valid if

Amin = min{A : A2(1− ln(A))2 ≥ α}

Solving the following equation, the value of Amin can be found:

A2
min(1− ln(Amin))2 = α

by using the bisection method on the interval [α,Amin], as introduced in (3.5.3).

Figure 4.2: Objective function C1(A)

Example 4.2.3 Figure 4.2 demonstrates the objective function C1 as a function
of A over a given interval [A′

min, Amax]. The optimal solution is given by
Aopt = 0.186 and Bopt = 0.010, while the resulting value of the objective
function is C1 = 25.947. This example has γ = 0.1, θ = 0.2 and α = 0.01.
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CHAPTER 5

Numerical results

This chapter will denote the numerical results outputted by the simulation. We
will review various distributions from appendix A, in addition to the effects
of the optimal solution when there is a change in dependency and multiple
combinations of the characteristics of the optimization problem in the univariate
and multivariate case, such as symmetry, balance, and dependency.

All the following examples consider either the univariate or bivariate case,
with tables and visualizations respective to each distribution. We let α = 0.01,
θ = 0.20, γ = 0.10, ρ = 0.00 and ∆ = 0.10. The iso-curves are graphed by Φ,
which is returned from the objective function C1. The iso-curves are computed
using numerical integration, while the constraint curves are calculated using
the importance sampling method with N = 5 000 000.

5.1 Optimization in the univariate case

We start with the univariate case, i.e., m = 1. We expect an insurance layer
contract for the following results, as there are no additional distributions to
offset our optimization.

5.1.1 Simulation

This section will apply the theoretical background in the univariate case to how
the simulation works and how the optimized parameters behave depending on
distributions. We know that the optimal A is yielded when E[G] = aθP (X > a)
is found. This was simplified in 4.1.2, where we saw that this is the same as
solving

γE[X]− θ
∫ b

a

xfX(x)dx− bθP (X > b) = 0

or equivalently, as utilized by the simulation:

γE[X]− θ
∫ b

a

xfX(x)dx+ aθP (X > b)− bθP (X > b) = aθP (X > b)

where the point of intersection represents when the lefthand and righthand
sides are equal.
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5.1. Optimization in the univariate case

5.1.2 Results

The following figures and parameters are yielded for each distribution, compared
to an increase in standard deviation:

E[X] sd[X] Opt C1 Opt A Opt B Opt a Opt b
Truncated normal 30 30 24.86 0.201 0.01 49.29 125.72

Log-normal 30 30 23.17 0.216 0.01 40.82 147.20
Pareto 30 30 14.88 0.336 0.01 27.61 118.38

Exponential 30 30 25.95 0.193 0.01 49.40 138.15
Truncated normal 30 50 28.69 0.174 0.01 57.71 141.30

Log-normal 30 50 33.51 0.149 0.01 51.18 225.68
Pareto 30 50 15.78 0.317 0.01 27.45 135.35

Exponential 30 30 25.95 0.193 0.01 49.40 138.15
Table 5.1: Optimal contract parameters in the univariate case

Figure 5.1: Univariate LS and
RS versus A

Figure 5.2: Univariate LS and
RS versus A

Comparing these two figures and their respective tables, we can naturally
see that when the standard deviation increases, so do our objective function
and insurance layer contract. Furthermore, we can see that this affects some
distributions more than others. For instance, the log-normal distribution
experiences a higher jump in the objective function in addition to insurance
layer contract parameters a and b. Note that the left side, LS, is the blue graph,
while the right side, RS, is the orange graph.

Moreover, both the truncated normal and Pareto distributions are influenced
differently. Truncated normal distribution experiences a more considerable jump
in contract parameter a, while Pareto slightly decreases. Both distributions
have an increased b-value, although Pareto has a somewhat more significant
proportion increase.

We can see from figures 5.1 and 5.2 that the left-hand sign and right-hand
sign of both the truncated normal distribution and log-normal distribution
intersect at a lower value of A. At the same time, Pareto and exponential seem
relatively unchanged. This is because the exponential distribution does not get
affected by these distinctions.

Investigating further, we can see the effects as standard deviation increases
in figures 5.3 and 5.4. Log-normal provides a more apparent minimized C1 value
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Figure 5.3: Univariate objective
function C1 versus A

Figure 5.4: Univariate objective
function C1 versus A

but increases the objective function. The objective function for the truncated
normal distribution also has a jump, but not as drastic as log-normal. Both
the Pareto and exponential distributions remain relatively unchanged. Note
that E[X] < sd[X] is not always sufficient since we may omit some risks when
truncation occurs. As for the Pareto distribution, the opposite is true since the
distribution is prone to losses with low frequency but high severity.

5.2 Optimization in the bivariate case

Now let us focus on a scenario involving two variables, known as a bivariate
scenario (m = 2). We aim to determine whether the outcomes will fall under
a stop-loss or an insurance layer contract. In a symmetrical scenario, we can
expect most of the distributions to yield insurance layer contracts, except for
the truncated normal distribution, which will influence the mean, standard
deviation, and truncation points. However, one distribution may result in a
stop-loss contract in asymmetrical scenarios. At the same time, the other may
lead to an insurance layer contract, depending on the level of disparity between
the distributions.

5.2.1 Simulation

This section will denote the application of the theoretical background from
chapters 3 and 4 to the numeric simulations through simulated distributions
and methods in the bivariate case.

The simulation consists of 4 stages:

• Stage 1: Calculate the optimal A-value by solving

E[G] = A · θ · (a1 + a2)

of which the solution will minimize the objective function

C1 = (a1 + a2)
E[G]

based on initial guesses of B1 and B2
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• Stage 2: Use the current optimal value of A found in the previous stage in
order to optimize B1 and B2. Firstly, calculate expected reinsurance costs
R1(X1) and R2(X2) as functions of Bi, and store the results. Secondly,
calculate the isoquant curves for R1(X1)+R2(X2) as functions of (B1, B2).
Thirdly, generate risks sampled from the set D in order to determine
max(B1) and min(b1), followed by determining the corresponding max(B2)
and min(b2), respectively. Lastly, determine the constraint set, i.e., the
set of values of B1 and B2 such that P (C) = α. For each (B1, B2) in
the constraint set, calculate Φ =

∑m
i=1 E[Ri(Xi)]. The optimal value of

(B1, B2) is the value that minimizes Φ.

• Stage 3: Again, we find the optimal value of A based on the optimized
values of B1 and B2 by solving

E[G] = θ ·A · (a1 + a2)

of which the solution will minimize the objective function

C1 = (a1 + a2)
E[G]

based on initial guesses of B1 and B2

• Stage 4: Stage 4 allows for calculating the balanced and unbalanced
solutions.

We will examine different characteristics, such as symmetrical, asymmetrical,
balanced, unbalanced, and changes in dependencies, to analyze methods for
optimizing a set of reinsurance contracts using value-at-risk as a risk measure
and C1 as the objective function. In addition, we will attempt to replicate
various combinations of these characteristics to locate significant differences
between cases. We will utilize the log-normal, truncated normal, Pareto, and
exponential distribution.

5.2.2 Symmetrical

We start by looking at symmetrical cases. Then, we will work with optimal
reinsurance in the bivariate case where the risks X1 and X2 are sampled from
the same distribution.

Log-normal distribution

Lognormal distribution can model positive values with a skewed distribution
and is useful for modeling financial data with extreme values. However, this
distribution can also be sensitive to outliers in our data.

E[X1] E[X2] sd[X1] sd[X2] min(Φ) Opt C1 Opt A
Example 1 50 50 50 50 20.62 23.55 0.212
Example 2 100 100 50 50 28.30 15.55 0.322
Example 3 50 50 30 30 15.88 17.00 0.294
Table 5.2: Optimal values for symmetrical log-normally distributed risks
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With corresponding optimal contract parameters

a1 a2 b1 b2 B1 B2
Example 1 68.72 68.72 276.87 271.58 0.00673 0.00717
Example 2 98.79 98.79 264.69 290.15 0.00717 0.00807
Example 3 57.88 57.88 167.25 163.715 0.00706 0.00785

Table 5.3: Optimal contract parameters for symmetrical log-normally
distributed risks

Figure 5.5: Constraint and Iso-contours for example 1 in the log-normal
distribution

The optimal a and optimal b seem to be affected more if there is a change
in mean rather than a change in standard deviation. Naturally, the parameters
are increased when the mean increases, and otherwise, if the opposite is true.
The same goes for variations in the standard deviation. We can also notice that
when the mean is closer to being equal to the standard deviation, the objective
function C1 increases, thus yielding a higher value for the optimal A.

We have that the hazard rate of the lognormal distribution depends on
its properties. For instance, a log-normally distributed risk with a standard
deviation higher than the mean may have a decreasing hazard rate. However,
suppose the risk is log-normally distributed with a mean higher than or equal
to the standard deviation. In that case, there is an increasing hazard rate
(regarding our resulting iso curves and their convexity/concavity). In reality,
the hazard rate will first increase and then decrease as it moves further out the
tail. However, this also depends on our expected value and standard deviation
parameters.

We can see from figure 5.6 that we indeed have a balanced, optimal, and
unique solution in example 1. Although we have slight differences from our
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Figure 5.6: Φ versus B1 in example 1 Figure 5.7: C1 versus A in example 1

numerical outputs in table 5.3, we can argue that the optimal balanced solution
is calculated as follows (B∗

1 , B
∗
2) = (0.007, 0.007), with insurance layer contract

for risks X1 and X2. From figure 5.7, we also have a clear minimum for our
objective function C1 in the interval A ∈ [0, 0.4], where A = 0.212.

Pareto distribution

Pareto distribution can model heavy-tailed distributions and capture extreme
values that occur with a low probability. Although a good application for our
data, it may not be appropriate for simulating data with a finite upper bound
and requiring a large sample size to accurately determine parameters, which
may be limited by processing power.

E[X1] E[X2] sd[X1] sd[X2] min(Φ) Opt C1 Opt A
Example 4 50 50 30 30 16.25 13.83 0.362
Example 5 110 110 30 30 21.43 11.90 0.400
Example 6 50 50 70 70 21.01 16.08 0.311

Table 5.4: Optimal values for symmetrical Pareto distributed risks

With corresponding optimal contract parameters

a1 a2 b1 b2 B1 B2
Example 4 46.64 46.64 192.04 196.45 0.00525 0.00512
Example 5 105.40 105.40 254.65 257.89 0.00579 0.00545
Example 6 46.56 46.56 283.61 292.70 0.00554 0.00517

Table 5.5: Optimal contract parameters for symmetrical Pareto distributed
risks

In the case of the Pareto distribution, we can see that an increase in mean has
a much more significant impact on the ai parameters, which slightly decreases
when the standard deviation is increased. The resulting bi parameters are also
increased more when there is a higher standard deviation, resulting in a much
larger premium for the cedent. The objective function C1 sees a lower minimum
for a higher mean than a higher standard deviation. The expected gain is then
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Figure 5.8: Constraint and Iso-contours for example 6 in the Pareto distribution

increased by this change of mean since a1 + a2 is increased. This is evident
from the optimal A being almost 25% larger for the example 5 than example 6.

In figure 5.8, we can have that X1 and X2 is Pareto distributed with mean
50 and standard deviation 70. Since the Pareto distribution has a decreasing
hazard rate, we expect by Theorem 3.4.7 that Φ to be quasiconvex. This is
evident by the illustration, which shows that the sublevels are convex. The
constraint curve is bending away from the origin. We can see that the solution is
slightly unbalanced, with (B∗

1 , B
∗
2) = (0.00554, 0.00517) and the corresponding

(b∗
1, b

∗
2) = (283, 293). Although, due to numerical error, this example is indeed

balanced, i.e., B1 = B2 ≈ 0.005 due to symmetry.

Figure 5.9: Φ versus B1 in example 4 Figure 5.10: C1 versus A in example 4

We can see from figure 5.9 that we indeed have a balanced, optimal, and
unique solution in example 4. Although we have slight differences from our
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numerical outputs in table 5.5, we can argue that the optimal balanced solution
is calculated as follows (B∗

1 , B
∗
2) = (0.005, 0.005), with insurance layer contract

for risks X1 and X2. From figure 5.10, we also have a clear minimum for our
objective function C1 in the interval A ∈ [0, 0.7], where A = 0.362. Note that
we have expanded our x-axis for the Pareto distribution when examining A
since a halt at 0.4 would be unclear whether or not there was a minimum in
our interval.

Truncated normal distribution

Truncated normal distribution is able to model continuous data with a bounded
range and can also capture both positive and negative values (although we
assume Xi ≥ 0, i = 1, . . . ,m). Moreover, it may be computationally limited
to simulate in addition to sensitivity depending on the truncation points.

E[X1] E[X2] sd[X1] sd[X2] min(Φ) Opt C1 Opt A
Example 7 50 50 30 30 12.19 17.48 0.286
Example 8 100 100 30 30 16.09 12.96 0.386
Example 9 50 50 60 60 14.76 24.68 0.203

Table 5.6: Optimal values for symmetrical truncated normally distributed risks

With corresponding optimal contract parameters

a1 a2 b1 b2 B1 B2
Example 7 65.92 65.92 116.69 205.66 0.00229 4.586 · 10−6

Example 8 108.67 108.67 ∞ 162.32 0 0.01908
Example 9 83.69 83.69 ∞ 185.42 0 0.0222

Table 5.7: Optimal contract parameters for symmetrical truncated normally
distributed risks

In this example, we can see that an increase in mean will affect the results
more than an increase in standard deviation. This can be seen by the resulting
expected reinsurance cost Φ. In addition, we have that a1 + a2 is higher than
in the previous example, yet the optimal C1 is decreased. So this must mean
that the expected gain is increased when the mean increases even though the
expected reinsurance cost increases. This is to be expected since changes to the
mean do not affect the premium for the reinsurance contract, even though it
increases the retained risk.

In figure 5.11, we let X1 and X2 be truncated normally distributed with
mean 100 and standard deviation 30. The truncated normal distribution has
an increasing hazard rate. Thus, by Theorem 3.4.7 Φ is quasiconcave. Hence
the superlevel sets are convex. We can see from figure 5.11 that the iso-curves
are indeed convex since they are bending away from the origin. The optimal
solution is the one where B1 = 0 and B2 = 0.019. The corresponding solution
for the bi-values are (b∗

1, b
∗
2) = (∞, 162). Note that there will indeed be two

(unbalanced) optimal solutions by symmetry, where the bi and Bi values in the
bivariate case switch values.

Since the constraint curve is approximately linear, a strongly unbalanced
solution like the one illustrated will always be optimal when X1 and X2 share
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Figure 5.11: Constraint and Iso-contours for example 8 in the truncated normal
distribution

the characteristics for the distribution, and this distribution has an increasing
hazard rate.

Figure 5.12: Φ versus B1 in example 8 Figure 5.13: C1 versus A in example 8

From figure 5.12, we indeed have two optimal solutions due to symmetry. The
calculated optimal values are (B∗

1 , B
∗
2) = (0, 0.019) and (B∗

1 , B
∗
2) = (0.019, 0) in

example 8, as verified from table 5.7. Although difficult to determine visually,
we also have from figure 5.13 that there is a minimum for our objective function
C1 in the interval A ∈ [0, 0.4], where A = 0.386, as verified by table 5.7.
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Exponential distribution

The exponential distribution is able to model continuous data with non-negative
ranges and models concerning waiting times between events. It may not be
useful for modeling data containing heavy tails and assuming a constant failure
rate, which may not always be true.

E[X1] E[X2] sd[X1] sd[X2] min(Φ) Opt C1 Opt A
Example 10 50 50 50 50 17.96 25.94 0.193
Example 11 60 60 60 60 21.56 25.94 0.193
Example 12 70 70 70 70 25.15 25.94 0.193
Table 5.8: Optimal values for symmetrical exponentially distributed risks

With corresponding optimal contract parameters

a1 a2 b1 b2 B1 B2
Example 10 82.33 82.33 220.58 241.79 0.0121 0.00794
Example 11 98.79 98.79 264.69 290.15 0.0121 0.00794
Example 12 115.26 115.26 308.81 338.51 0.0121 0.00794

Table 5.9: Optimal contract parameters for symmetrical exponentially
distributed risks

We can see that our expected reinsurance cost increases with the increased
mean. However, the optimal C1 remains the same for all our examples, and
the same goes for our optimal A. In addition, the parameters for each example
increase proportionally with the mean, and all are chosen to be insurance layer
contracts.

Our constraint overlaps slightly with an iso-curve at the edges in figure 5.14,
bending slightly away from the origin. Therefore, We will have a balanced
solution by symmetry since the constraint curve will touch the isocurve for the
minimal value at a unique point. Note that the hazard rate of the exponential
distribution is constant, meaning that it decreases over time, even though the
iso-curves are linear.

We can see from figure 5.15 that we indeed have an unbalanced, optimal,
and unique solution in example 11. Although we have slight differences from our
numerical outputs in table 5.9, we have that the optimal unbalanced solution is
calculated as follows (B∗

1 , B
∗
2) = (0.001, 0.008), with insurance layer contract

for risks X1 and X2, as seen in table 5.9. From figure 5.16, we also have a
clear minimum for our objective function C1 in the interval A ∈ [0, 0.4], where
A = 0.193.
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Figure 5.14: Constraint and Iso-contours for example 11 in the exponential
distribution

Figure 5.15: Φ versus B1 in example 11 Figure 5.16: C1 versus A in example 11

5.2.3 Asymmetrical

Continuing, we will look at how the optimal contracts and the corresponding
parameters will behave when we introduce asymmetrical conditions, i.e., where
the distributions of risks X1 and X2 are different.
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Log-normal distribution

E[X1] E[X2] sd[X1] sd[X2] min(Φ) Opt C1 Opt A
Example 3 50 50 30 30 15.87 17.00 0.294
Example 13 50 50 30 50 18.34 19.77 0.253
Example 14 50 100 30 30 18.35 14.09 0.355
Example 15 50 100 30 50 22.11 16.01 0.312
Table 5.10: Optimal values for asymmetrical log-normally distributed risks

With corresponding optimal contract parameters

a1 a2 b1 b2 B1 B2
Example 3 57.87 57.87 167.24 163.71 0.00706 0.00785
Example 13 61.99 61.50 ∞ 227.46 0 0.01269
Example 14 52.69 106.83 143.91 365.44 0.01451 2.539 · 10−6

Example 15 56.22 112.67 202.97 262.91 0.00253 0.01124
Table 5.11: Optimal contract parameters for log-normally symmetrical

distributed risks

We will use example 3 as a benchmark when comparing asymmetrical log-
normal distributed risks. We can see in example 13 that an increase in standard
deviation for risk X2 yields an increased optimal Φ and C1, in addition to the
insurance layer contract for risk X1 yielding a stop-loss contract. For example
14, we can see that just an increase in the mean for risk X2 yields an insurance
layer contract for both risk X1 and X2, yet the risk X2 is on the verge of being
a stop-loss contract when considering the low value of B2. In reality, this is due
to a numerical error by the simulation, and example 14 is deemed a stop-loss
contract.

The changes in the mean do not affect the tails as much as in the standard
deviation for log-normal distributed risks, which is why we see the effects noted
above. Continuing, by increasing both the mean and standard deviation for
the risk X2, we can see that there is no stop-loss contract, but the insurance
layer contract for risk X2 has shifted to define higher values of a2 and b2. The
insurance layer contract for risk X1 has increased, both with decreased a1 and
increased b1.

Figure 5.17 shows iso-curves for the objective function Φ along with the
constraint curve. The superlevel sets are convex, and the constraint curve is
approximately linear.

Since the two risks have different distributions for both visualized examples,
the optimal combination of B1 and B2 is not balanced. Detailed calculations for
example 13 and 15 yield (B∗

1 , B
∗
2) = (0, 0.0013) and (B∗

1 , B
∗
2) = (0.0025, 0.0112),

respectively. Corresponding contract b∗
i parameters yield (b∗

1, b
∗
2) = (∞, 227)

and (b∗
1, b

∗
2) = (202, 263), respectively.

By figure 5.18, we can see a clear minimum when C1 is plotted as a function
of A in example 15, where A = 0.312. Note that we have selected A ∈ [0, 0.4]
for our visualization.
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Example 13 Example 15

Figure 5.17: Constraint and Iso-contours for example 13 and 15 in the log-
normal distribution

Figure 5.18: Objective function C1 versus A for example 15

Example 3 Example 13

Looking at Φ compared to B1 in figure 5.19, we can see in the symmetrical
example that a clear minimum is balanced. Hence it is also an optimal and
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Example 14 Example 15

Figure 5.19: Φ versus B1 asymmetrical cases for lognormally distributed risks

unique solution, where (B∗
1 , B

∗
2) = (0.007, 0.007). Furthermore, we can see

that as our standard deviation for risk X2 is increased, we have an increasing
function Φ of B1, and oppositely when only the mean is increased for risk X2,
where expected reinsurance costs are decreasing. We can, therefore, quickly
determine that example 13 has a stop loss contract where B1 = 0, and example
14 has a stop loss where B2 = 0, as verified by table 5.11.

Keeping the above results in mind, we can see that a combined increase for
the mean and standard deviation in example 15 yielded an unbalanced, optimal,
and unique solution, with a layer insurance contract for both risks.

Pareto distribution

E[X1] E[X2] sd[X1] sd[X2] min(Φ) Opt C1 Opt A
Example 4 50 50 30 30 16.25 13.83 0.362
Example 16 50 50 30 50 17.90 14.49 0.345
Example 17 50 150 30 30 19.80 11.90 0.400
Example 18 50 150 30 50 25.73 12.64 0.396

Table 5.12: Optimal values for asymmetrical Pareto distributed risks

With corresponding optimal contract parameters

a1 a2 b1 b2 B1 B2
Example 4 46.64 46.64 192.04 196.45 0.00525 0.00512
Example 16 47.39 45.51 260.15 211.54 0.00229 0.00845
Example 17 45.07 145.74 162.10 349.37 0.00924 0.00193
Example 18 45.24 142.40 233.57 367.82 0.00315 0.00762

Table 5.13: Optimal contract parameters for asymmetrical Pareto distributed
risks

We compare the example 4 to the asymmetrical cases for more depth. We
can see that when compared to example 16, the optimal value of Φ and C1 is
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naturally increased since one of the risks has an increased standard deviation.
However, when the standard deviation of risk X2 is increased, it seems to affect
the contract yielded for the risk X1. As a result, the insurance layer contract is
increased, resulting in a higher total reinsurance cost for the cedent. However,
this increase is not too large, so although there is a significant increase in layer
a1 × b1, this is due to the heavy tail of Pareto distribution.

Example 17 Example 18

Figure 5.20: Constraint and Iso-contours for example 17 and 18 in the Pareto
distribution

Example 4 Example 16
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Example 17 Example 18

Figure 5.21: Φ versus B1 asymmetrical cases for Pareto distributed risks

As for the mean, when it is increased for the mean in example 17, we can
see that the insurance layer contract for risk X1 has a decreased interval, and
the risk X2 is more affected. Increasing the mean and standard deviation for
risk X2 observes the combined effects, affecting the layer contracts of both X1
and X2.

Since the Pareto distribution has a decreasing hazard rate, we expect by
Theorem 3.4.7 that Φ to be quasiconvex. This is evident by figure 5.20, which
illustrates that the sublevels are convex. Provided that the constraint curve is
roughly linear or slightly curved away from the origin, an unbalanced solution
similar to the examples above will remain the most advantageous, assuming X1
and X2 follow the same distribution with a decreasing hazard rate.

In addition, we have that two risks have different distributions for both
visualized examples. The optimal combination of B1 and B2 is not balanced.
Detailed calculations for example 17 and 18 yield (B∗

1 , B
∗
2) = (0.009, 0.002) and

(B∗
1 , B

∗
2) = (0.003, 0.007), respectively. Corresponding contract b∗

i parameters
yield (b∗

1, b
∗
2) = (162, 349) and (b∗

1, b
∗
2) = (234, 368), respectively.

Looking more closely at expected reinsurance cost, we can see that in
example 16, the objective function will first decrease and then increase for
higher values of B1, yielding an optimal value at (B∗

1 , B
∗
2) = (0.002, 0.008),

verifying that we have an inner point solution which is optimal and unique.
The same results are verified for example 17 and 18, as mentioned previously.
However, as seen from figure 5.21, Φ increases when there is a higher standard
deviation and decreases when there is a higher mean. The combination of these
gives us a similar graph to example 16, suggesting that standard deviation has
more effect on Φ than the mean.

For example 18, we have expanded our search interval for our optimal value
of A when C1 is minimal. The reason for this is that at A ∈ [0, 0.4], it is hard
to visually determine whether the Pareto distribution yields a clear minimum
since numerical results yielded A = 0.362.
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Figure 5.22: Objective function C1 versus A for example 18

Truncated normal distribution

E[X1] E[X2] sd[X1] sd[X2] min(Φ) Opt C1 Opt A
Example 7 50 50 30 30 12.19 17.48 0.286
Example 19 50 50 30 40 13.79 19.38 0.258
Example 20 50 100 30 30 15.03 14.30 0.350
Example 21 50 100 30 40 16.04 15.24 0.328

Table 5.14: Optimal values for asymmetrical truncated normally distributed
risks

With corresponding optimal contract parameters

a1 a2 b1 b2 B1 B2
Example 7 65.92 65.92 116.69 205.66 0.00229 4.586 · 10−6

Example 19 68.84 70.86 ∞ 155.27 0 0.01945
Example 20 59.82 111.57 119.18 234.30 0.01950 3.976 · 10−6

Example 21 61.82 117.68 ∞ 183.71 0 0.01998
Table 5.15: Optimal contract parameters for asymmetrical truncated normally

distributed risks

As for our truncated normal distribution, when we compare it to the
symmetrical example 7, we have some interesting results. We can see for
example 7 and 20 that we nearly get stop-loss contracts, and example 19 and 21
yield stop-loss contract contracts. Following the same procedure, we can see that
when the standard deviation is increased for X2, the contract parameters for the
risk X1 are affected. Our total reinsurance cost seems proportional to the mean
and standard deviation changes. Still, the risk is spread differently depending
on whether the mean or the standard deviation changes. Note that similarly
to previous calculations, example 7 and 21 are in reality stop-loss contracts.
These small values of B2 are due to numerical errors in the simulation.
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We can see in example 20 that with a change in the mean for risk X2, the
distribution is moved along the x-axis for the distribution, and thus the risk has
shifted, yielding higher a2 and b2 values for insurance layer contract. However, a
change in both the mean and the standard deviation for the risk X2 experiences
a shift in the insurance layer contract for risk X2, in addition to the increase in
b1 for risk X1. Observe that when comparing example 19 to 21, the contract
parameter a1 is decreased rather than increased, so this risk is heavily affected
by the changes in risk X2. Similarly to the previous asymmetrical examples,
this distribution is also affected more by a difference in the standard deviation
rather than the expected value.

Example 19 Example 21

Figure 5.23: Constraint and Iso-contours for example 19 and 21 in the truncated
normal distribution

The truncated normal distribution has an increasing hazard rate. Thus,
by Theorem 3.4.7 Φ is quasiconcave. Hence the superlevel sets are convex.
Moreover, we can see from figure 5.23 that the iso-curves are indeed convex
since they bend away from the origin.

Since the two risks have different distributions for both visualized examples,
the optimal combination of B1 and B2 is not balanced. Detailed calculations
for example 19 and 21 yield (B∗

1 , B
∗
2) = (0, 0.0195) and (B∗

1 , B
∗
2) = (0, 0.02),

respectively. Corresponding contract b∗
i parameters yield (b∗

1, b
∗
2) = (∞, 155.27)

and (b∗
1, b

∗
2) = (∞, 183.71), respectively. In both examples, we have b∗

1 > b∗
2,

which means that risk X1 gets better reinsurance coverage for both examples
than risk X2. This is due to risk X2 having a higher standard deviation and
thus exposing to higher severity claims.

Provided that the constraint curve is roughly linear or slightly curved away
from the origin, an unbalanced solution like the above examples will remain the
most advantageous, assuming X1 and X2 follow the same distribution with an
increasing hazard rate.

For our objective function C1 by figure 5.24, we can see that there is a clear
minimum in the interval A ∈ [0, 0.4], where A = 0.328. Note that these values
for A are only valid for values B ≤ A due to B being calculated as a function of
A; B = K −

√
K2 −A. This avoids negative values for our expected gain E[G].
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Figure 5.24: Objective function C1 versus A for example 21

We can see from figure 5.25 the three different asymmetrical examples
for truncated normally distributed risks. The first plot, example 19, has an
increased standard deviation for risk 2. The expected reinsurance risk then
increases as B1 increases. Thus, the minimum value is B1 = 0, as verified from
table 5.15. We can also see a clear minimum when the mean is increased rather
than the standard deviation, as Φ will now decrease for higher values of B1. In
the last example, we have both an increase in standard deviation and mean.
This will yield two optimal unbalanced solutions, where (B∗

1 , B
∗
2) = (0, 0.02)

and (B∗
1 , B

∗
2) = (0.02, 0). All of our optimal solutions for the asymmetrical

examples are border solutions. Note that the small irregularities in our graph
are caused by the small difference in our y-axis, Φ, causing the bisection method
to show the small jumps when looking at similar values.
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Example 7 Example 19

Example 20 Example 21

Figure 5.25: Φ versus B1 asymmetrical cases for truncated normally distributed
risks

Exponential distribution

E[X1] E[X2] sd[X1] sd[X2] min(Φ) Opt C1 Opt A
Example 10 50 50 50 50 17.96 25.94 0.193
Example 22 40 60 40 60 17.97 25.95 0.193
Example 23 50 400 50 400 80.90 25.96 0.193
Table 5.16: Optimal values for asymmetrical exponentially distributed risks

With corresponding optimal contract parameters
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a1 a2 b1 b2 B1 B2
Example 10 82.32 82.32 220.58 241.79 0.01213 0.00794
Example 22 65.86 98.80 164.90 308.22 0.01620 0.00587
Example 23 82.35 658.78 ∞ 1798.99 0 0.01114

Table 5.17: Optimal contract parameters for asymmetrical exponentially
distributed risks

Lastly, we have the asymmetrical exponential case. We will use the
symmetrical example 10 to compare our results. We can see that examples
10 and 22 have different distributions. Still, the optimal value of Φ is almost
identical (this could, in reality, be the same, but we have a slight deviation due
to numerical error). Furthermore, the optimal values of C1 and A are almost
identical, which is due to the hazard rate of the exponential distribution as a
result of the mean being equal to the standard deviation:

h(x) = f(x)
1− F (x) = λe−λx

1− (1− eλx) = λ

In the symmetrical case, we have a1 = a2 and a slight deviation for b1 = b2.
This difference grows if some of the expected value is shifted, i.e., E[X1] < E[X2]
in example 22. We then get that the mean of risk X2 is shifted to the right on
the x-axis of our distribution and, consequently, will have higher values for our
layer-contract parameters a2 and b2. In example 23, we can see a more extreme
version, where 8 ·E[X1] = E[X2]. This results in a stop-loss contract for risk
X1, although a1 remains the same as in example 10. Moreover, the contract
parameters of risk X2 are significantly increased. Note that these changes in
expected value will also involve equal modifications to the standard deviation
since the expected value is equal to the standard deviation in our exponential
distribution.

Example 22 Example 23

Figure 5.26: Constraint and Iso-contours for example 22 and 23 in the
exponential distribution

Since the two risks have different distributions for both visualized examples,
the optimal combination of B1 and B2 is not balanced. Detailed calculations for

66



5.2. Optimization in the bivariate case

example 22 and 23 yield (B∗
1 , B

∗
2) = (0.0162, 0.0058) and (B∗

1 , B
∗
2) = (0, 0.0111),

respectively. Corresponding contract b∗
i parameters yield (b∗

1, b
∗
2) = (165, 308)

and (b∗
1, b

∗
2) = (∞, 1799), respectively.

An unbalanced solution is optimal for the asymmetrical cases in the
exponential distribution since the constraint curve is approximately linear
or slightly bending away from the origin, touching a linear iso-curve for a
minimal value at a unique point.

Example 10 Example 22

Example 23

Figure 5.27: Φ versus B1 asymmetrical cases for exponentially distributed risks

Investigating the functions given in figure 5.27, we can see that examples
10 and 22 have a clear minimal point of Φ when plotted against B1. Notice,
however, that the functions are somewhat irregular. This is due to slight
differences of Φ when it moves along B1, and the bisection method causes the
small jumps. As for example 23, we see a clear stop-loss contract where the
minimum is B1 = 0 since Φ increases linearly as B1 increases, as verified by
table 5.17.

For our objective function C1 by figure 5.28, we can see a clear minimum in
the interval A ∈ [0, 0.4], where A = 0.193.
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Figure 5.28: Objective function C1 versus A for example 23

5.2.4 Change in dependency

Finally, let us explore the consequences of modifying the dependency by
adjusting the correlation in the interval ρ ∈ [−1, 1]. When dealing with log-
normal and truncated normal distributions, an increase in risk can lead to a
higher skewness and a heavier tail, resulting in a greater likelihood of extreme
losses. In the case of Pareto and exponential distributions, shifting to the left
or right may occur depending on the correlation’s sign, affecting the mean and
variance and, as a result, the likelihood of more extreme losses.

The effect of dependency changes on each distribution depends on its shape,
parameters, and risk correlation. A positive correlation between risks allows the
risks to move together, which can result in a higher level of risk for the reinsurer.
This is because losses in one particular risk are likely to be accompanied by
losses in the other risk. On the other hand, if the risks are negatively correlated,
the reinsurer’s risk level may be reduced. This is because losses in one risk will
offset the profits in another. Depending on their properties, some distributions
may be more sensitive to correlation changes than others. Therefore, assessing
each distribution’s sensitivity to correlation changes is crucial when modeling
reinsurance contracts.

Let us delve into the truncated normal distribution in this section. This
distribution has interesting properties, such as its ability to manage both
positive and negative skewness and its flexibility in modeling extreme risks.
Moreover, the truncated normal distribution can be truncated on either end,
making it ideal for modeling risks with upper or lower limits, such as insurance
deductibles. Finally, it is worth noting that this distribution is sensitive to
correlation changes, which can considerably impact pricing and risk allocation
in multivariate reinsurance contracts.
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Algorithm 5 Correlation
1: input ρ,∆, dist1, dist2, N
2: c1 = 1

2 · (
√

1 + ρ+
√

1− ρ)
3: c2 = 1

2 · (
√

1 + ρ−
√

1− ρ)
4: if ρ = 0:
5: for j = 0, . . . , N do
6: u = bisection(∆)
7: drawX1[j]← dist1(u[0])
8: drawX2[j]← dist2(u[1])
9: end for

10: else
11: for j = 0, . . . , N do
12: u = bisection(∆)
13: g1 ← gaussian_invcdf(u[0])
14: g2 ← gaussian_invcdf(u[1])
15: h1 ← c1 · g1 + c2 · g2
16: h2 ← c1 · g1 + c2 · g2
17: v1 ← gaussian_cdf(h1)
18: v2 ← gaussian_cdf(h2)
19: drawX1[j]← dist1(v1)
20: drawX2[j]← dist2(v2)
21: end for
22: return X1[j], X2[j]

E[X1] E[X2] sd[X1] sd[X2] min(Φ) Opt C1 Opt A
ρ = −0.60 100 100 30 30 15.00 12.79 0.391
ρ = 0.00 100 100 30 30 16.09 12.96 0.386
ρ = 0.60 100 100 30 30 16.19 12.97 0.385
Table 5.18: Optimal values for truncated normally distributed risks with

change in dependency

With corresponding optimal contract parameters

a1 a2 b1 b2 B1 B2
ρ = −0.60 108.28 108.28 143.33 158.54 0.07472 0.02575
ρ = 0.00 108.67 108.67 ∞ 162.32 0 0.01909
ρ = 0.60 108.71 108.71 172.97 181.08 0.00762 0.00350

Table 5.19: Optimal parameters for change in dependency ρ

By these tables, we can see that a negative correlation yields a lower Φ, as
the level of risk is reduced due to one risk being less accompanied by a loss
from the other. So, we also have increased our gain E[G] since optimal A is
higher with a negative correlation. Thus the optimal value for our objective
function C1 finds a more optimal minimum value. On the other hand, if the
correlation is positive, the risks are allowed to move together; this is because
the level of risk is more exposed when the loss of a risk accompanies the loss of
another risk.
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5.2. Optimization in the bivariate case

As for our contract parameters, we can see that the positive and negative
correlation yields an insurance layer contract for both risks X1 and X2. This
is due to the increased certainty when both risks are correlated. If there is no
dependency between the risks, ρ = 0.00, we have that risk X1 sees an optimal
value when there is an insurance layer contract, and risk X2 does the same for
a stop-loss contract.

ρ = −0.6 ρ = 0.0

ρ = 0.6

Figure 5.29: Φ versus B1 for change in dependency

Based on the information presented in figure 5.29, it is evident that in
the case of a negative correlation, the stop-loss contract will be (B∗

1 , B
∗
2) =

(0.07, 0.03) with corresponding (b∗
1, b

∗
2) = (143, 159). Adjusting the correlation

to ρ = 0.0, we get two optimal solutions by symmetry, (B∗
1 , B

∗
2) = (0, 0.019) and

(b∗
1, b

∗
2) = (∞, 162), with corresponding symmetric results (B∗

1 , B
∗
2) = (0.019, 0)

and (b∗
1, b

∗
2) = (162,∞). Lastly, for a positive correlation, we get a clear

minimum (B∗
1 , B

∗
2) = (0.007, 0.003) with (b∗

1, b
∗
2) = (173, 181). There are some

irregularities for this plot due to small adjustments of Φ, so note that regulating
the B1 parameter has little effect on our objective function.
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5.3 Discussion

In chapter 5, we have introduced 4 distributions; log-normal, truncated normal,
Pareto, and exponential distribution. We have examined the symmetrical and
asymmetrical cases for each distribution and observed various results depending
on the distributions.

The log-normal distribution is characterized by a positively skewed shape, not
dissimilar to Weibull and Gamma distribution. For the univariate case, we
observed that the log-normal distribution experienced a higher jump for the
objective function C1 when the standard deviation is increased. Consequentially,
this also applies to the insurance layer contracts, which also increased in order
to capture these potential losses. This is also captured in figures 5.3 and 5.4.

As for the multivariate case, we have that log-normally distributed risks
that are symmetrical also captured this change. All of the examples resulted
in insurance layer contracts that were unique and balanced solutions. The
expected reinsurance cost, Φ, was increased when the mean was increased,
resulting from the distribution shifting to the right on the x-axis.

However, C1 was decreased for an increase in mean, meaning that this
insurance contract was preferable if one was to choose. A decrease in standard
deviation decreased the expected reinsurance cost and further minimized the
objective function C1. Asymmetrical cases saw similar capabilities, yet an
increase in either the mean or the standard deviation for X2 yielded a stop-loss
contract for risk X1 and X2, respectively. This is because when the uncertainty
is increased for risk X2, a stop-loss for X1 is not deemed very expensive for the
cedent. Yet, when the mean for X2 is increased, the corresponding contract sees
the lowest C1 value of all the examples, and the added constant for this risk
makes it feasible to have a stop-loss contract when the standard deviation is
more minor in comparison. Note that there are some jumps in the visualizations
for Φ against B1, indicating that there is not much to gain from adjusting the
B1 values.

The Pareto distribution is characterized by a heavy tail and a high degree of
skewness, which means that extreme events are relatively more likely to occur
than other distributions. For example, in the univariate case, an increase in
standard deviation increased the objective function C1, yet the optimal a barely
rose. Hence, the resulting value for C1 because caused by a decrease in the
numerator, i.e., the expected gain E[G]. The Pareto distribution handles losses
with low frequency and high severity better, which is why we do not observe
drastic changes in our optimal values and corresponding contract parameters.

As for the multivariate case, Pareto distributed symmetrical risks observed
similar results. An increase in standard deviation was less influential on the
parameters than an increase in mean. An increase in mean did, however, yield
a lower C1, which is caused by the fact that the mean is proportionally more
significant, resulting in less impact from our standard deviation when held
constant. The total reinsurance cost was fairly similar, yet the layer insurance
contract spanned a larger interval for the increase in standard deviation.

As for the asymmetrical cases, we observed only layer-insurance contracts as
well. Similarly to log-normal, an increase in standard deviation for risk X2 yiel-
ded an increase in b1, and an increase in mean yielded an increase in both a2 and
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b2. All of these asymmetrical examples contained unbalanced and unique results.

The truncated normal distribution is often used to model the behavior of
risks that are constrained to a specific range of values; specifically, it is a normal
distribution with values that are boundaries. In the univariate case, truncated
normally distributed risks had an increase in optimal a for an increase in
standard deviation, similar to log-normally distributed risks. In contrast, the
Pareto distribution observed a slight decrease. There was also an increase in
optimal b. The increase in C1 was less than for log-normally distributed risks
but more than for Pareto distributed risks.

For the multivariate case, we observed that all examples yielded stop-loss
contracts. An increase in mean and standard deviation produced stop-loss
contracts for symmetrical distributions, in contrast to Pareto and log-normally
distributed risks in the symmetrical case. Moreover, both stop-loss contracts
were yielded for risk X1, while our baseline example 7 resulted in a stop-loss
for risk X2. A mean with twice the value yielded a lower objective function C1,
arguably due to the exact reasons for log-normally and Pareto-distributed risks.
The reasoning for the resulting stop-loss contracts may be due to that high-
severity claims do not occur, but this does, however, depend on our truncation
points. Note that by symmetry, these results yield two optimal and unbalanced
solutions.

In the asymmetrical case, we also observed stop-loss contracts only. However,
not dissimilar to the previous distributions, an increase in standard deviation
for risk X2 yielded a stop-loss contract for risk X1, and oppositely when there
was an increase for the mean in risk X2. An increase in mean and standard
deviation for risk X2 resulted in a stop-loss contract for risk X2, suggesting
that the standard deviation has more influence on our model than the mean.

Finally, we have the exponential distribution. The exponential distribu-
tion is a probability distribution commonly applied to model waiting times or
interarrival times between events. This distribution is beneficial for reinsurance
policies that pertain to risks with a temporal component, such as weather-
related or mortality risks. In the univariate case, we cannot observe a change in
optimal C1 and corresponding optimal A for an increase in standard deviation
without increasing the mean due to the mean being equal to the standard
deviation.

Continuing in the multivariate case, we can see that our optimal C1
and corresponding optimal A remain constant for symmetrical exponentially
distributed risks. However, there is a shift in the insurance layer contracts due
to our distribution shifting to the right on the x-axis for the probability density
function in the exponential distribution. Nevertheless, the optimal B1 and B2
values are also held constant, yielding one optimal, unique, and unbalanced
solution for all examples. Note that for changing B1 rigorously, jumps in Φ
will occur due to the bisection method, which indicates that we do not see
much of an improvement in adjusting the total reinsurance cost. Hence, the
exponential distribution is relatively stable when optimizing various distribution
parameters.

In the asymmetrical case, we can see that an increase in mean and standard
deviation for risk X2 while simultaneously decreasing these values for risk X1
yields two insurance layer contracts, both unbalanced, unique, and optimal
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solutions. Risk X1 has a decreased interval a1 × b1 layer insurance contract,
while risk X2 has an increased interval. This indicates that risk X1 is not as
affected by the adjustments in X2 like some previous distributions are. An
extreme example where risk X2 has significantly increased these parameters
yields a stop-loss contract for risk X1, which is because the potential losses in
risk X1 are not as bad as they could be in risk X2, allowing the optimization
to be able to cover all possible losses in risk X1. Similarly to the symmetrical
case, these examples also had jumps for the layer insurance contracts, meaning
adjusting B1 has little say in our expected reinsurance cost.

We also briefly investigated changes in dependency for truncated normally
distributed risks. A negative correlation had smaller bi values and very similar
ai values compared to no dependence due to the risks being less accompanied by
one another, reducing the exposure to losses. Conversely, a positive correlation
allows the risks to be more accompanied by one another, increasing the exposure
to a level of risk.

5.4 Conclusion

This Thesis has provided a multivariate reinsurance optimization problem using
the objective function C1 to find the optimal value by reducing the risk measure
value-at-risk and increasing expected gain E[G]. The main results would either
result in an insurance layer contract or a stop-loss contract, depending on
the nature of our distribution and the change in dependency for a bivariate
insurance contract. We have reviewed univariate and multivariate examples,
and the multivariate examples are either symmetrical or asymmetrical. The
resulting visualizations and calculations emphasized whether a solution was
balanced, unbalanced, had one or several optimal and unique solutions, resulted
in stop-loss or insurance layer contract, and the convexity/concavity of the
constraint given by our optimization problem.

We have reviewed the log-normal, Pareto, truncated normal and exponential
distribution. In addition, this Thesis has also reviewed methodology for
optimizing reinsurance contracts for importance sampling simulation and the
utilization of analytical results in the exponential case by Lagrange multipliers.

Further work

Further research on optimizing multivariate reinsurance contracts could explore
the potential to optimize other risk measures and adjust the objective function.
Additionally, the dependency among risks could be explored in greater detail. As
for numerical analysis, extending the scope from bivariate (m = 2) to trivariate
(m = 3) cases may also be explored.
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APPENDIX A

The First Appendix

Definition A.0.1 (Normal distribution) If a continuous rv (random variable) X
is defined as a normal distribution with the following mean and variance

E(X) = µ, µ ∈ (−∞,∞)

Var(X) = σ2, 0 < σ

then the pdf (probability density function) is given by:

f(x;µ, σ) = 1√
2πσ

e(x−y)2/(2σ2), x ∈ (−∞,∞) (A.1)

If a function is given by the normal distribution, it is commonly denoted
f(x) ∼ N(µ, σ2). Some noteworthy properties of this distribution is that both
the median and mean are the same. The distribution is symmetric, in addition to
that both the mean µ and standard deviation σ are the only two characteristics
necessary to define the pdf of a rv.

Definition A.0.2 (Log-normal distribution) If a non-negative rv X is defined as
a lognormal distribution if the rv Y = ln (X) has a normal distribution with
the following mean and variance

E(X) = eµ+ σ2
2 , µ ∈ (−∞,∞)

Var(X) = e2µ+σ2
·
(
eσ2
− 1
)
, 0 < σ

then the pdf is given by:

f(x;µ, σ) =
{

1√
2πσx

e−[ln(x)−µ]2/(2σ2) x ≥ 0
0 x < 0

(A.2)

Definition A.0.3 (Truncated normal distribution) The truncated normal distri-
bution is derived from a normal distributed rv X, with a lower and/or upper
bound for the rv. X ∼ N(µ, σ2). The truncated normal distribution is defined
by f(x;µ, σ, a, b), where −∞ ≤ a < b ≤ ∞, with the rv in the interval a < x < b:

f(x;µ, σ, a, b) = 1
σ

ϕ
(

x−µ
σ

)
Φ
(

b−µ
σ

)
− Φ

(
a−µ

σ

) (A.3)

f = 0 if a < x < b is not valid.
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Definition A.0.4 (Pareto distribution) The Pareto distribution is given by a
continuous random variable X if its probability density function is given by:

fX(x;xm, α) =
{

αxα
m

xα+1 x ≥ xm

0 x < xm

(A.4)

where the scale parameter xm is the minimum possible value of X, and the
shape parameter α is known as the tail index. The corresponding expected
value and variance are given respectively as:

E(X) =
{
∞ α ≤ 1
αxm

α−1 α < 1

and

V ar(X) =

∞ α ∈ (1, 2](
xm

α−1

)2
α

α−2 α > 2

Note that the variance does not exist if α ≤ 1.

Definition A.0.5 (Gamma distribution) The gamma distribution is a continuous
probability distribution that takes on two parameters. Shape parameter α ∈ R+

and rate parameter β = 1
θ ∈ R+, where θ is denoted as the scale parameter.

The rv is defined as X ∼ Γ(α, β).

E(X) = α

β
, α, β > 0

Var(X) = α

β2 , α, β > 0

The pdf is given by:

f(x;α, β) = βα

Γ(α)x
α−1e−βx, x > 0 (A.5)

With Γ(α) being denoted as the gamma function.

Definition A.0.6 (Exponential distribution) X is said to have an exponential
distribution with parameter λ if the pdf of X is

f(x;λ) =
{
λe−λx x ≥ 0
0 otherwise

(A.6)

The exponential pdf is a special case of the general gamma pdf (A.5), where
α = 1 and β = 1

λ .
We then get:

E(X) = αβ = 1
λ
, λ > 0

Var(X) = σ2 = αβ2 = 1
λ2 , λ > 0
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APPENDIX B

The Second Appendix

Figure 3.1:

1 df_pnorm← curve(pnorm, from = 0, to = 10, n = 1000, plot = FALSE)
2 df_qnorm← curve(qnorm, from = 0, to = 1, n = 1000, plot = FALSE)
3 df_pnorm$x← df_pnorm$x
4 df_qnorm$x← df_qnorm$x
5 par(mfrow=c(2,2))
6 cdf← plot(df_pnorm$x, df_pnorm$y, type = ’l’, main = ’Cumulative

Distribution Function’, xlab = ’Risk’, ylab = ’Quantile’)
7 inverse_cdf← plot(df_qnorm$x, df_qnorm$y, type = ’l’, main = ’Inverse

Cumulative Distribution Function’, xlab = ’Quantile’, ylab = ’
Risk’)

8 survival_function← plot(df_pnorm$x,1-df_pnorm$y, type = ’l’, main = ’
Survival Function’, xlab = ’Risk’, ylab = ’Quantile’)

9 inverse_survival_function← plot(df_qnorm$x,1-df_qnorm$y, type = ’l’,
main = ’Inverse Survival Function’, xlab = ’Quantile’, ylab = ’
Risk’)

Figure 4.2:

1 gamma← 0.1
2 theta← 0.2
3 alpha← 0.01
4 A← seq(0.059, 0.35, by = 0.001)
5 C_1← function(A){(-log(A))/(gamma - theta*(A - B))}
6 B← A*(1 - log(A)) - sqrt((A∧2)*(1 - log(A))∧2 - alpha)
7 C← C_1(A)
8 plot(A, C, type = ’l’, xlab = ’A’, ylab = ’C1’, col = ’blue’, lwd = 2,

main = ’Objective function versus A’, sub = ’Optimal solution in
the exponential case’)

9 legend(0.06, 33, col = ’blue’, legend = c(’Objective function’), lty =
1, lwd = 2, text.font = 4, bg = ’lightblue’)

Python codes for optimization of univariate and multivariate
reinsurance contracts are given in the following repository:

https://github.com/drdrechr/SMR5960_simulation
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