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Abstract 

Few studies have quantified rates of primary production in the Oslofjord, and none of those 

studies have compared rates from different methods. In addition, there has been an increase in 

terrestrial run-off to coastal areas, including the Oslofjord, resulting in a reduction of the optical 

clarity. This study aims to investigate how primary production is affected by the observed coastal 

darkening, and to compare different methods of quantifying primary production. 

  

This study used three different methods of quantifying primary production; the vertically 

generalized production model (VGPM) based on chlorophyll concentration, the bio-optical method 

(BO-PP) based on in situ fluorescence and in vivo absorbance and lastly an incubation experiment 

with the stable isotope 13C, as a tracer in carbon fixation (13C-PP). All three methods were closely 

correlated, but with different scales. The results yielded a difference of an order of magnitude 

between the VGPM and the 13C-PP estimates, with the estimates based on the BO-PP situated 

almost in the middle. The VGPM rates are an overestimate due to downscaling to a localized area. 

The low estimates from 13C-PP show a possible N-limitation in the incubation bottles. The overall 

trend in estimates from all methods is an increase in production with an increase in optical clarity.  
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1 Introduction 

Primary production is the basis for life and an integral part of ecosystem metabolism. Primary 

production refers to the production of organic matter from inorganic carbon, using energy from 

the sun, a process known as photosynthesis (Behrenfeld et al., 2001; Field et al., 1998; Siegel et al., 

2013). In general terms photosynthesis is described as (Steemann Nielsen, 1952): 

 

𝐻2𝑂 (𝑙) + 𝐶𝑂2 (𝑔) + 𝑒𝑛𝑒𝑟𝑔𝑦 → (𝐶𝐻2𝑂) (𝑠) +  𝑂2 (𝑔) 

 

The energy refers to the photosynthetically active radiation (PAR) in the region between 400 nm 

and 700 nm in the solar radiation spectrum. PAR is absorbed by pigments in the chloroplasts 

within the cells of the photosynthetic organism. The chloroplasts, more specifically the thylakoid 

membrane, also contain the electron carriers, which generate a reducing power in the form of 

NADPH2 by utilizing the absorbed energy, this is referred to as the light dependent reaction. In 

addition, biochemical energy in the form of ATP is generated across the same membranes. This 

light dependent system is divided into two subsystems: photosystem I (PSI) and photosystem II 

(PSII). Together NADPH2, ATP and necessary enzymes create carbohydrates (CH2O) from CO2 and 

H2O, in the Calvin cycle, with O2 as a fortunate bi-product (Kirk, 1994). The Calvin cycle, also known 

as the dark reaction or light independent reaction of photosynthesis, is where CO2 is absorbed.  

 

Photosynthesis is not only the basis for almost all non-photosynthetic forms of life, it has shaped 

the planet by providing oxygen to the atmosphere, and is also essential for current climate 

development by removing and sequestering CO2 from the atmosphere (Falkowski, 2012). Since 

more than 50% of annual human CO2-emissions are removed from the atmosphere primarily by 

photosynthesis, estimates of rates of primary production are especially relevant in the context of 

climate change (Behrenfeld et al., 2009; P. G. Falkowski et al., 1998; Henson et al., 2018; López-

Sandoval et al., 2018). Primary production is divided into gross and net production, where gross 

primary production (GPP) is the total production, including energy used for respiration. Net 

primary production (NPP) is the production when respiration is accounted for.  
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𝑁𝑃𝑃 = 𝐺𝑃𝑃 − 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 

 

This distinction is important, as it is the NPP that is available for transfer in the trophic levels, thus 

controls the energy transfer and heterotrophic production (Falkowski, 2012; Falkowski et al., 

1998). Primary production in the marine environment is about equal to land production, even 

though the oceans cover 70% of the Earth’s surface (Field et al., 1998). While the photosynthetic 

organisms on land are large, vascular plants, the main contributors to the oceanic primary 

production are small, single celled organisms – phytoplankton (Falkowski, 2012). Algae, including 

phytoplankton, funnel most of the absorbed light energy to a reaction center associated with PSII, 

called P680. The electron transport associated with light absorbance takes place in the reaction 

center (Kirk, 1994). 

  

Understanding the mechanisms behind oceanic and coastal production, the carbon cycle, 

ecosystem effects and food-web structure have been contributors to develop methods for 

estimating the productivity. Staehr et al. (2012) conducted a literature review, with the goal of 

investigating the history of primary production estimating methods. They found that the amount 

of studies regarding aquatic primary production has risen drastically the last few decades, with an 

increasing focus on the carbon budget and effects and drivers of climate change. In addition, 

descriptive and comparative studies detailing changes in the production on different time scales 

accounts for a large part of the investigated studies (Staehr et al., 2012).  

1.1 History of methodology in estimates of primary production 

The history of estimating ecosystem metabolism, and as a consequence the primary production, 

spans almost a century (Staehr et al., 2012). While different methodologies have been developed 

alongside ecosystem science, most of them, in particular the early methods, have played a pivotal 

role in the development of aquatic ecology (Dineen, 1953; Juday, 1940). One of these pioneering 

methods is the measurement of O2 in incubation bottles accredited to Gaarder & Gran (1927). 

They measured the primary production in the Oslofjord using the production of oxygen gas in 
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bottles, light and dark incubated water samples, as a proxy for primary production. Incubation 

bottles are divided into light and dark bottles where the light bottles provide an estimate of NPP 

since the phytoplankton have access to light for photosynthesis. The dark bottle on the other hand 

provides an estimate of the respiratory losses based on the assumption of no photosynthesis in 

the absence of light. GPP is the difference between these bottles. The productivity is calculated by 

assuming a photosynthetic quotient (PQ), which is the ratio of mol evolved O2 to mol assimilated 

CO2 (Sakamoto et al., 1984; Williams et al., 1979). However, this method contains sensitivity 

issues, and is mostly suitable for regions with high production (Gazeau et al., 2005; Steemann 

Nielsen, 1952; Williams et al., 1979). 

1.2 Isotopic tracers in primary production estimates 

While the literature study by Staehr et al. (2012) stated that there is no single, widely used method 

for quantifying primary production, the method by Steemann Nielsen (1952) has been regarded as 

among the more robust and the preferred choice when estimating primary production at sea 

(Regaudie-de-Gioux et al., 2014). This method uses the radioactive carbon isotope, 14C, as a tracer 

in the production of organic matter, usually in incubation bottles, also known as the 14C-PP 

method. The resulting concentration of 14C in the organic matter can by measuring the emitted β-

rays, the rate of radioactive disintegration, using a scintillation counter. By knowing the exact 

amount of 14C added to the water sample, the rate of carbon assimilation can be calculated. 

Calculation of the rate of assimilation also requires total amount of CO2, dissolved inorganic carbon 

(DIC) in the water and the ratio of (14C + 13C + 12C) / 14C in DIC (Steemann Nielsen, 1952). The 

method assumes that 14C and 12C are assimilated at the same rate, that 14C is only incorporated 

into organic matter through photosynthesis and that no 14C is lost during respiration. While these 

requirements are not fulfilled, they are accounted for in the study (Steemann Nielsen 1952). The 

rate of incorporation of carbon in photosynthesis discriminates towards heavier isotopes and an 

isotopic discrimination factor = 1.06 is usually applied. 

 

The 14C-PP method is simple and has high sensitivity, even in areas of low production. However, 

restrictions against using the radioactive isotope has limited the use of this method during recent 



4 
 

years (López-Sandoval et al., 2018). Slawyk et al. (1977) suggested the use of the stable carbon 

isotope, 13C, as a tracer, also known as the 13C-PP method. In the initial suggestion, it is stated that 

the 13C-PP method was not developed to replace the 14C-PP method, but rather to act as an 

addition in estimates of productivity, for example coupled with other stable isotope tracers such as 

15N (Slawyk et al., 1977). The 13C-PP method has been further investigated and developed, and 

experiments using both the 14C-PP and the 13C-PP methods have yielded results indicating that the 

13C-PP method is a reliable and robust replacement for the 14C-PP method in light of restrictions 

regarding the handling of radioactive material (López-Sandoval et al., 2018; Regaudie-de-Gioux et 

al., 2014; Slawyk et al., 1984). While the 14C method is more straight forward since the β-radiation 

emitted by the algae can be measured directly, the 13C method requires different instrumentation. 

Typically the carbon assimilation is measured with isotope ratio mass spectrometry (IRMS), or 

cavity ring-down spectrometry (CRDS), on glass fiber filters, onto which the contents of incubation 

bottles have been filtered. CRDS, used by López-Sandoval et al. (2019), is an easier and more 

robust method of measuring isotopic abundance on glass fiber filters, compared to IRMS. The ratio 

of 13C to 12C on the filters is compared to a pre-determined standard ratio, for 13C/12C this is the 

Vienna Pee Dee Belemnite (ratio = 0.0112372) (IAEA, 1995), and reported as δ13C (‰). Calculations 

of the productivity require measurements of the amount of carbon on the filters, in addition to the 

δ13C, to be able to calculate the concentration of carbon on the filters, from the δ13C, via the ratio. 

These measurements can be taken simultaneously or separate (Sakamoto et al., 1984).  

Measurements of productivity from incubation bottles are direct measurements of volumetric 

production. All productivity estimates from bottle incubation experiment have the same weakness. 

This is known as the “bottle effect”. This is a term that refers to observable, yet unaccountable 

effects on growth in bottle incubation experiments (Pernthaler & Amann, 2005). 

1.3 The vertically generalized production model 

Compared to the abovementioned carbon based methods of quantifying primary production, the 

vertically generalized production model (VGPM) is a chlorophyll a based production model. VGPM 

is a method that uses remote sensing technology, and estimates the chlorophyll concentration 

based on sea surface color, and thus avoids the “bottle effect” (Behrenfeld et al., 2005; Westberry 
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et al., 2008). The oceanic primary production in the famous production map from Field et al. 

(1998) is a result of the VGPM. The theory behind the model is that production varies in a 

predictable manner in relation to the chlorophyll concentration (Behrenfeld & Falkowski, 1997a). 

The model employs a variable called Pb
opt, which is the chlorophyll-specific production per unit 

volume. This variable is based on empiric knowledge from 10 000s of measurement using the 14C 

method. Pb
opt allows for the conversion of the chlorophyll concentration to NPP, which is a rate 

(Behrenfeld & Falkowski, 1997a). The conversion from volume specific to area specific production 

employs the euphotic depth and a light dependent term. The light-dependent term is necessary as 

the primary productivity varies in the water column, due to the exponential reduction in light 

intensity with depth (Behrenfeld & Falkowski, 1997b). The euphotic zone is defined as the area 

between the surface and to the depth where 1% of PAR surface irradiance remains, which is the 

area of the water column where there is sufficient light for photosynthesis (Lee et al., 2007). 

1.4 Bio-optical estimates of primary production 

The bio-optical approach to quantifying primary production is another method to avoid bottle 

incubations and omit the “bottle effect” (Kolber & Falkowski, 1993). This method is based on light 

measurements in the PAR region and measurements of how PAR is absorbed in the water column. 

The method calculates absorbance coefficients for different components in the water column, and 

calculates their contribution to the total light absorbance (Smith et al., 1987, 1989). The 

absorbance is measured from particulate matter on glass fiber filters, where the total absorbance 

is compared to absorbance after depigmentation (bleaching). The absorbance after pigment 

bleaching represents the absorbance by detritus. The difference represents the algal absorbance 

of light in the PAR region, and both algal and detritus absorbance are necessary for the calculation 

of the primary production (Tassan & Ferrari, 1995; Thrane et al., 2014). 

 

The method is also dependent on the efficiency of PSII in regard to the utilization of absorbed 

quanta, known as the quantum yield (QY) of PSII (Genty et al., 1989; Smith et al., 1987, 1989). The 

QYs are measured using active fluorescence, either with pulse amplitude modulated fluorometry 

(PAM) (Schreiber, 2004) or fast repetition rate fluorometry (FRRF) (Kolber & Falkowski, 1993). The 
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QYs are necessary for the calculations of the rates of electron transport (ETRs). ETRs are further 

applicable in the calculations of the gross carbon fixation, when an appropriate value for the 

quantum yield of CO2 fixation is assumed, by measuring the in vivo rate of light absorbance. This 

value is assumed to be 8 photons per CO2 molecule. However, Kirk (1994) proved that this is a 

theoretical minimum and that the actual amount of photons needed is 10-12. During the last two 

decades this method has grown in popularity due its fast and inexpensive nature. In addition, the 

optical approach is quite flexible, and optical properties are easily applicable to other methods as 

well (Kromkamp & Forster, 2003; Thrane et al., 2014).  

1.5 Primary production in the Oslofjord 

The Oslofjord is an important ecosystem, and serves as a recreational area for a large fraction of 

the Norwegian population. This high population density has impacted the fjord substantially over 

the past century. It has been a basis for research for at least a century, and still is. The Oslofjord is 

divided into an inner and outer part, with a sill at Drøbak. The outer Oslofjord receives water from 

the Glomma river and its catchment, which drains most of the large forests in the eastern parts of 

Norway (Frigstad et al., 2020). Parallel to the increase in the concentration of CO2 in the 

atmosphere and increasing temperatures, there has been an observed increased concentration of 

dissolved organic matter in many boreal lakes and rivers (“browning”) which affects optical 

properties in both freshwaters and recipient coastal areas (Aksnes et al., 2009; Opdal et al., 2019).  

 

A reduction in optical clarity could cause adverse effects on coastal ecosystems, such as a shift 

towards more tactile predators as jellyfish, which are not dependent on sight to hunt, and a 

decrease in the primary production (Urtizberea et al., 2013). A reduction in the water clarity is 

essentially a reduction in the euphotic zone. The irradiance decreases exponentially with depth, 

due to attenuation. The depth of the euphotic zone can be investigated with Secchi depth 

measurement, a standard method of investigating optical clarity that has been in use for over a 

100 years (Dupont & Aksnes, 2013; Fleming-Lehtinen & Laamanen, 2012).  

 



7 
 

The attenuation of light in the water column is a result of a combination of different parameters, 

including particle absorbance, both algal and non-algal (detritus), and absorbance by water itself, 

especially in the high wavelength part of the spectrum. In addition, dissolved organic matter 

(DOM), and colored dissolved organic matter (CDOM) in particular, has physicochemical properties 

which absorb light in the short wavelength part of the spectrum, and colors the water column (Lee 

et al., 2013). Increased run-off of CDOM is likely a consequence of increased land vegetation, 

which reaches the fjords due to riverine input (Deininger & Frigstad, 2019; Finstad et al., 2016). 

 

In light of climate change a there has been a growing interest and need for primary production 

estimates, not only for the carbon budget, but also for how production and ecosystems are 

affected by the ongoing changes (Falkowski, 2012). A recent study from the Oslofjord, a result 

from long-term monitoring, reveals a decrease in the chlorophyll a concentration as a result of 

decreasing nutrients (Lundsør et al., 2020). The long-term monitoring revealed a pattern of three 

blooms; in March, June and September, in the inner Oslofjord. This pattern is likely to extend to 

the outer Oslofjord (Aure et al., 2014; Paasche & Østergren, 1980). The study also revealed a shift 

to a later onset of the growing season (Lundsør et al., 2020). The observed shift in the onset of the 

growth season, could be credited to higher sea surface temperatures (SST), although increased 

SSTs are predicted to result in an earlier onset of the growth season, due to earlier stratification of 

the water column (Desmit et al., 2020). However, the stratification of the Oslofjord is controlled by 

salinity rather than temperature, but there was an observed shift towards lower salinities at a later 

date compared to earlier investigations (Lundsør et al., 2020; Staalstrøm et al., 2012). The lowered 

salinities are a result of freshwater input. The CDOM follows the freshwater, and due to 

afforestation a there is an increase in CDOM concentration per unit of freshwater (Frigstad et al., 

2020). Other factors such as the survival of higher numbers of zooplankton through the warm 

winters could potentially contribute to a later onset of the growing season (Behrenfeld & Boss, 

2014). However, a main contributor to this shift could be the observed coastal darkening in the 

Oslofjord, due to increased run-off, though more studies are required (Aksnes et al., 2009; Frigstad 

et al., 2020; Opdal et al., 2019). The coastal zones are amongst the most productive systems, and 
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contribute to 20% of the annual oceanic primary production. Investigations of how this 

productivity is affected by ongoing changes are therefore important (Ducklow et al., 2022). 

1.6 Objectives and aims 

The phytoplankton phenology has been extensively studied and monitored in the Oslofjord, e.g. 

the intensities and timing of phytoplankton blooms. On the other hand, rates of primary 

productivity are not as extensively studied. The study by Gaarder & Gran (1927) in relation to the 

launch of the O2 method is one of few studies of productivity rates in the Oslofjord. A study 

conducted by Throndsen (1978) using the 14C-PP method is another. 

  

The objective of this thesis is to compare the methods mentioned above; the 13C-PP method, 

VGPM and the bio-optical method, which has not yet been done for the Oslofjord, with the specific 

aim of answering which method yields the most reliable estimates of primary production in this 

study. The second objective is to contribute to understanding whether and how primary 

productivity is affected by darkening coastal waters, with the specific aim of answering whether a 

higher CDOM concentration yields detrimental effects on primary production.  
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2 Materials and methods 

In relation to this thesis, three field samplings were conducted in the outer Oslofjord.  

All samples were analyzed using methods necessary for three different estimates of primary 

production along a salinity gradient from the Glomma estuary.  

2.1 Field sampling  

The sampling was conducted along a coastal transect with decreasing riverine influence. This 

transect consists of 5 predefined monitoring stations in outer Oslofjord, visualized in Figure 1, from 

brackish to coastal water; L1 (Glomma), L5 (Kjøkøy), I1 (Ramsø), Ø11 (Leira), OF2 (Missingene). The 

stations represent both a salinity and an optical gradient, specifically chosen due to their relation 

to the Glomma estuary. The sampling was conducted aboard the University of Oslo research vessel 

F/F Trygve Braarud during three separate cruises: 12th of May, 2nd and 29th of June in 2022. 

These dates are selected to catch the end of the spring flood and the summer bloom observed in 

the Oslofjord.  

 

Figure 1: Map showing the different stations, from brackish (L1) to coastal (OF2) water. Map made 

with Stamen map in ggmap (Kahle & Wickham, 2013). 
                                                
1
 From here and throughout the thesis, Ø1 is referred to as O1.  
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2.1.1 Sampling  

The on-ship CTD (Seabird S9+) was deployed at each station to gather information about the 

conductivity, temperature and depth. Water samples were collected using Niskin bottles, 5 L, 

attached to the CTD-rig. Water was collected from 3 m and 4 m depth and transferred into a 10 L 

canister for mixing. After thorough mixing, half the volume was transferred to a 5 L canister and 

stored in darkness. 

 

Light measurements were taken with a trio of hyperspectral irradiance RAMSES sensors from TriOS 

(Rastede, Germany). One is an on-board reference, fastened to the ship deck. The two remaining 

sensors are fastened to a rig which is lowered into the surface water. These measure the 

downwelling and upwelling irradiance. These measurements are needed to quantify the amount of 

photosynthetically active radiation (PAR) available for phytoplankton in the water column. 

Irradiance was measured at 1 m intervals from surface (0 m) to 10 m depth, at each station. Lastly, 

Secchi depth measurements were conducted to investigate water clarity.  

  

2.2 Primary production by incubation with isotopic tracers 

The incubation method was inspired by a protocol by López-Sandoval et al. (2019) and required 

estimates of carbon uptake in light and dark bottles using the stable isotope of carbon, 13C, as a 

tracer. This experiment is referred to as “13C-PP experiment”.  

2.2.1 Preparing solutions  

A stock solution of 13C bicarbonate was prepared by weighing (AG204 Bergman, Norway) 2.18 g of 

98% NaH13CO3 (sodium bicarbonate, molecular weight 85.00, Sigma-Aldrich) and dissolve it in 1 L 

of MilliQ-water. The resulting concentration was 25.6 mmol/L. In addition, a solution of 6 M HCl 

was prepared for removing inorganic isotope on filters.  
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2.2.2 Incubation 

For the 13C-PP experiment water was distributed into 1 L borosilicate bottles. This process was 

repeated thrice for every station, resulting in triplicates. 5 mL of the 13C stock solution was 

pipetted into each bottle, yielding a concentration of 0.13 mmol/L NaH13CO3 in each bottle. One 

bottle from each trio was covered in aluminum foil, this was the dark bottle. The trios were held 

together by zip ties, creating a rosette of bottles, and placed upside-down in an outdoor pool with 

continuous flow of surface water at the UiO field station in Drøbak. The bottles were incubated for 

24 hours.  

2.2.3 Filtering 

Each bottle was filtered onto one Whatman GF/F 47 mm filter. The filter was then placed into a 

MilliPore Petrislide where 50 µL 6 M HCl was pipetted onto the filter. The hydrochloric acid 

facilitates dissolution of inorganic carbonates, thus removing it from the sample. After filtering the 

slides were packaged with aluminum foil and kept frozen at -20 °C until analysis.  

2.2.4 Gas chromatography - CO2 analysis 

Total inorganic carbon (TIC) in the water samples was required for the backtracking of the amount 

of CO2 available for uptake by algae. TIC was measured with helium headspace-analysis on 

acidified water samples using gas chromatography (GC).2 The gas samples were prepared 

according to a protocol by (Åberg & Wallin, 2014). However, these samples are from the 

aforementioned remaining water stored in plastic bottles for approximately 5 to 6 months.  

 

The vials were loaded into a CTC GC Autosampler coupled with an Agilent Model 7890A GC, which 

has a He back-flash. GC separates gases based on their velocities and the concentration was 

measured at the end of the separation column by a thermal conductivity detector. See Yang et al. 

(2015) for further details on GC methodology.  

 

                                                
2
 Performed by Peter Dörsch at the University of Life Sciences, NMBU. 
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2.2.5 Isotope ratio mass spectrometry - 13C stable isotope analysis  

Isotope ratio mass spectrometry analysis3 of the filters from the 13C-PP experiment was conducted 

to measure the algal uptake of carbon during incubation. Instrumentation used was a Thermo 

Scientific Delta V Advantage coupled with a Costech Instruments Elemental Combustion System to 

perform stable isotope analysis of enriched samples on glass fiber filters. Before analysis the filters 

were compressed into pellets and placed on a carousel. The pellets were dropped one by one into 

a combustion chamber. The isotopic composition of the evolved CO2 gas was measured by the 

IRMS, and reported as relative deviations from a standard material (Vienna Pee Dee Belemnite – 

VPDB), δ13C (IAEA, 1995).  

𝛿13𝐶 = 1000 ∗ ( 
(
13𝐶
12𝐶)𝑠𝑎𝑚𝑝𝑙𝑒

(
13𝐶
12𝐶)𝑉𝑃𝐷𝐵

 − 1) 

 

2.3 Bio-optical measurements and analysis  

The bio-optical method of estimating photosynthetic rates (BO-PP) is dependent on measurements 

of the absorbance of different substances affecting the optical properties of the water and the 

suspended particles, in addition to the effectiveness of photosystem II in regard to the utilization 

of absorbed quanta.  

2.3.1 Pulse amplitude modulated fluorometry 

Pulse amplitude modulated (PAM) fluorometry was used for measuring the light dependent 

quantum yield (QY) of photochemistry in photosystem II. This was used as a proxy for the QY of 

CO2-fixation. The measurements are conducted using a PSI AquaPen (Drásov, Czech Republic), a 

portable fluorometer which can be attached to a computer. The water samples need to be fresh, 

thus the measurements were done in the field. For these measurements, the reaction centers in 

the photosystem need to be dark-adapted such that they are in the open state. This was achieved 

                                                
3
 Performed by the Biogeochemical Stable Isotope Facility run by Dr. Brian Popp at the School of Ocean and Earth 

Science and Technology at the University of Hawaii. 



13 
 

by keeping the water samples in the dark for the time between stations, approximately 30 

minutes. The measurements were conducted using blue light excitation at 450 nm using 

AquaPen´s predefined light curve 1 (LC1) protocol. Blue light excitation measures all 

phytoplankton. The same cuvette was used for each subsample from the same location, but the 

cuvette was replaced when a water sample from a different location was measured.  

 

The LC1 protocol consist of sending fully saturating light flashes, at approximately 3000 µmol 

quanta/m2/s, through the water samples. First, yielding the maximum value, the flash was sent 

through the fully dark adapted sample. Secondly the sample underwent a series of 6 saturating 

flashes when the sample was subjected to rising light intensity incubation levels, each incubation is 

60 seconds long. The intensity levels are 10, 20, 50, 100, 300 and 500 µmol quanta/m2/s  

2.3.2 Filtering 

For the bio-optical method 250 mL of water was filtered onto a 25 mm Whatman GF/F filter using 

a filtration rack with a vacuum pump. Three replicates were taken for each station, resulting in a 

total of 45 filters. Each filter was rolled and placed into a 2 mL Eppendorf tube. The Eppendorf 

tubes were packaged with aluminum foil and frozen at -20 °C. The filters are necessary for 

determining pigment and detritus absorbance with integrating sphere spectrophotometry. The 

remaining water was transferred to 1 L plastic bottles and stored in a climate room at 

approximately 4 °C.  

2.3.3 Integrating sphere spectrophotometer - filter absorbance  

To determine the absorbance by pigment and detritus in the water column integrating sphere 

spectrophotometry was conducted using a UV-2550 spectrophotometer, with an attached ISR-

2200 integrating sphere (Shimadzu, Japan). The integrating sphere spectrophotometer sends 

monochromatic light, in the PAR region, through the sample filter and measuring the absorbance 

at each wavelength, compared to the reference filter. Due to the spherical construction of the 

instrument, together with the white inside coating, minimal light is lost as a consequence of 
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scattering, although there might be a chance of backscattering. However, this can be accounted 

for during data-processing.  

 

The analysis was performed on the aforementioned 25 mm GF/F filters, including two extra filters 

to serve as a baseline and a reference. The sample filters were thawed on a microscope slide and 

200 µL of MilliQ water were pipetted onto each filter to ensure a moist filter. The filters were then 

covered with a second microscope slide. The first sample was placed in the sample slot of the 

integrating sphere, after running a reference and a baseline. The reference filter was kept in the 

reference slot for the duration of the analysis. After the first filter was analyzed, using the UVProbe 

Ver. 2.21 program, 200 µL of sodium hypochlorite solution (“Klorin”, < 5% NaClO) was pipetted 

onto the filter. The filter was left to bleach for approximately 1 minute before a second analysis 

was conducted. Bleaching removes pigment, and the resulting absorbance corresponds to detritus 

absorbance.  

2.3.4 UV-vis spectrophotometry – CDOM absorbance  

To determine the CDOM absorbance in the water samples, they were subjected to UV-vis 

spectrophotometry. The water was filtered through 25 mm GF/C filters to remove particles. The 

SHIMADZU UV-2550 spectrophotometer sends light between 400 nm and 750 nm through 50 mm 

quartz cuvettes, one with MilliQ water, which acts as a reference, and one with the filtered sample 

water. The computer program UVProbe Ver. 2.21 computes the absorbance as a function of 

wavelength4.  

2.4 Calculations 

Three different methods of calculating rates of primary production were used for this thesis; the 

vertically generalized production model, the bio-optical method and the 13C-PP method. The 

VGPM and 13C-PP yields NPP, while BO-PP yields GPP.  

                                                
4
 The analysis was conducted by Hanne Halkjelsvik Børseth for the master thesis “Organic matter and iron from the 

deep forest to the outer Oslofjord”, on water samples obtained during the same cruises as for this thesis. 
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2.4.1 VGPM calculations  

Equation for vertically generalized production model, first described by Behrenfeld & Falkowski 

(1997a): 

 

𝑽𝑮𝑷𝑴 = [𝒄𝒉𝒍𝒐𝒓𝒐𝒑𝒉𝒚𝒍𝒍 𝒂] ∗  𝑷𝒐𝒑𝒕
𝒃 ∗ 𝒅𝒂𝒚𝒍𝒆𝒏𝒈𝒕𝒉 ∗ 𝒛𝒆𝒖 ∗ 𝒇(𝑷𝑨𝑹)        (1) 

 

Chlorophyll a concentration (mg/m3) was obtained from the peak within the 660-680 nm region in 

the pigment absorbance spectra from integrating sphere spectrophotometry, 𝑎𝐼𝑆(𝜆), using the 

specific absorbance at 670 nm, 𝑎𝑝ℎ
∗ (670) from Mitchell & Kiefer (1988); Figure 7. In summary:  

 

[𝑐ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑎] =  
𝑎𝐼𝑆(670)

𝑎𝑝ℎ
∗ (670)

=
𝑎𝐼𝑆(670)

0.011
  

 

The chlorophyll-specific production per unit volume, 𝑃𝑜𝑝𝑡
𝑏 , was calculated using the polynomial 

model from Behrenfeld & Falkowski (1997a), with sea surface temperatures obtained from the 

CTD. 

 

Day length was obtained using a function created in RStudio, which accounts for the declination 

angle of the sun and latitude to compute day length in hours, based on Brock (1981).  

 

The euphotic depth, 𝑧𝑒𝑢, was found using light data from TriOS measurements standardized 

relative to sea surface irradiance, and was the depth where 1% of surface irradiance remains. The 

light dependent component in the equation is given by: 

 

𝑓(𝑃𝐴𝑅) = 0.66125 ∗
𝐸0

𝐸0+4.1
,  

 

as described in Behrenfeld & Falkowski (1997b).  
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Surface PAR irradiance, E0, was downloaded from the STRÅNG database, and converted from 

W/m2 to mol quanta /m2/day. 

  

𝐸0 =
(60 ∗ 60 ∗ ∑ 𝑖𝑟𝑟(𝑃𝐴𝑅)) 𝑡2

𝑡1

1000000
∗ 4.575 

 

2.4.2 13C-PP calculations  

Calculations of rates of primary production using stable isotopes were based on equation 1 from 

López-Sandoval et al. (2019):  

13C-PP = 
(

𝛿13𝐶𝑃𝑂𝐶−𝑙𝑖𝑔ℎ𝑡−𝛿13𝐶𝑃𝑂𝐶−𝑑𝑎𝑟𝑘

𝛿13𝐶𝐷𝐼𝐶−𝑙𝑎𝑏𝑒𝑙𝑒𝑑− 𝛿13𝐶𝐷𝐼𝐶−𝑛𝑎𝑡𝑢𝑟𝑎𝑙
) ∗ 𝑃𝑂𝐶

𝑡
 

 

Particulate organic carbon (POC) is the amount of carbon retained on the filters (µmol/L). The 

incubation time is referred to as “t” = 1 day. δ 13CPOC-light is the δ13C value in the POC retained on 

the filters after filtering the water from the light incubated bottles, while δ 13CPOC-dark refers to 

corresponding δ13C value in the dark incubated bottles. δ13CDIC-natural refers to the natural δ13C 

value, before the enrichment. δ13CDIC-labeled refers to the added inorganic carbon to the water 

samples, the stock solution. This was calculated by taking the enrichment of DIC into account 

(López-Sandoval et al., 2019): 

𝛿13𝐶𝐷𝐼𝐶−𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = [
(

µ𝑀13𝐶𝐷𝐼𝐶−𝑛𝑎𝑡𝑢𝑟𝑎𝑙 +  µ𝑀13𝐶𝐷𝐼𝐶−𝑠𝑡𝑜𝑐𝑘

µ𝑀12𝐶𝐷𝐼𝐶−𝑛𝑎𝑡𝑢𝑟𝑎𝑙 +  µ𝑀12𝐶𝐷𝐼𝐶−𝑠𝑡𝑜𝑐𝑘
)

(
13𝐶
12𝐶)𝑉𝑃𝐷𝐵

− 1] ∗ 1000 

 

The natural δ13C in DIC in sea water from Table 1 in Rau et al. (1996) was used to calculate the 

µM13CDIC-natural and µM12CDIC-natural, the concentrations of 13C and 12C in DIC before enrichment. 

µM13CDIC-stock was calculated by: µM13CDIC-stock = [DIC] * [% Atom 13C /100]. Where the DIC 

concentration (µmol/L) is obtained from the GC, and the% Atom 13C is the percentage of 13C in the 

                                                
5
 From Thimijan & Heins (1983)  
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stock NaH13CO3, which is indicated on the commercial label. µM12CDIC-stock was calculated by: 

µM12CDIC-stock = [DIC] * [100 -% Atom 13C /100] (López-Sandoval et al., 2019).  

 

The incubation yielded production per volume, areal primary production was calculated using a 

similar approach as VGPM, described in section 2.4.1, when integrating from volume to area:  

 

𝑷𝑷𝟏𝟑𝑪
=  (𝟏𝟑𝑪𝑷𝑷 ∗ 𝟏𝟐) ∗  𝒛𝒆𝒖 ∗ 𝒇(𝑷𝑨𝑹)        (2) 

The factor 12 is the conversion from µmol/L (from POC) to mg/m3.  

2.4.3 BO-PP calculations 

Equation for areal primary production using the bio-optical method: 

 

𝑩𝑶𝑷𝑷 = 𝟎. 𝟎𝟖 ∗  𝚫𝑬𝒂 ∗ 𝑸𝒀 ∗ 𝟏𝟐𝟎𝟎𝟎    (3) 

 

The factor 0.08 is the number of CO2 molecules fixed per absorbed quantum. As demonstrated by 

Kirk (1994) an appropriate value is 12 photons, yielding 1 CO2 molecule / 12 quanta = 0.08. 

Δ𝐸𝑎 is the pigment absorbance and light dependent (mol of quanta /area / time) component in the 

equation and requires measurements from integrating sphere spectrophotometry and UV-vis 

spectrophotometry, in addition to surface irradiance. The factor 12000 is the conversion from mol 

of quanta to mg C.  

 

To correct for backscatter in the spectrophotometer the absorbance at 750 nm was subtracted 

from the absorbance in the PAR spectrum. Pigment absorbance was computed by subtracting the 

absorbance of the bleached filter from the absorbance of the non-bleached filter. The pigment and 

detritus absorbance coefficients per meter, 휀𝑎(𝜆) and 휀𝑑(𝜆), were computed by multiplying the 

absorbance with the natural logarithm of 10 and then divide everything with the path length of the 

water column: volume filtered/ area of filter (V/A). In summary: 
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휀𝑎(𝜆) = ln(10) ∗
(𝐴𝑏𝑠𝑓(𝜆) − 𝐴𝑏𝑠𝑓(750)) − (𝐴𝑏𝑠𝑓𝑏(𝜆) − 𝐴𝑏𝑠𝑓𝑏(750))

𝑉
𝐴

 

 

휀𝑑(𝜆) = ln(10) ∗
(𝐴𝑏𝑠𝑓𝑏(𝜆) − 𝐴𝑏𝑠𝑓𝑏(750))

𝑉
𝐴

 

 

The CDOM absorbance coefficient , 휀𝑐(𝜆), was calculated in the same manner. However, the path 

length was the length of the quartz cuvette. 

 

휀𝑐(𝜆) = ln(10) ∗
(𝐴𝑏𝑠𝑑𝑜𝑚(𝜆) − 𝐴𝑏𝑠𝑑𝑜𝑚(750))

0.05
 

 

The specific water absorbance coefficient, 휀𝑤, was collected from Morel & Prieur (1977). The 

absorbance coefficients were spectrally averaged by computing the average absorbance over the 

PAR region, 400 - 700 nm.  

휀�̅� =
∑ 휀𝑎𝑖

Δ 𝜆𝑖

∑ Δ𝜆𝑖(𝑛𝑚)
 

 

휀𝑑̅̅̅ =
∑ 휀𝑑𝑖

Δ 𝜆𝑖

∑ Δ𝜆𝑖(𝑛𝑚)
 

 

휀�̅� =
∑ 휀𝑐𝑖

Δ 𝜆𝑖

∑ Δ𝜆𝑖(𝑛𝑚)
 

 

휀𝑤̅̅ ̅ =
∑ 휀𝑤𝑖

Δ 𝜆𝑖

∑ Δ𝜆𝑖(𝑛𝑚)
 

 

 휀𝑡𝑜𝑡 =  휀�̅� +  휀𝑑̅̅̅ + 휀�̅� + 휀𝑤̅̅ ̅ 

 



19 
 

The surface irradiance was integrating to the depth of the pycnocline using Beer-Lamberts law of 

monochromatic light moving through a liquid. 

  

𝐸𝑝𝑦𝑐 =  𝐸0

−𝜀𝑡𝑜𝑡∗𝑧𝑝𝑦𝑐  

 

The irradiance left at the pycnocline was used in calculating delta E. 

 

Δ𝐸 = 𝐸0 − 𝐸𝑝𝑦𝑐 

 

ΔEa describes how much of the irradiance is absorbed by pigments per square meter in the water 

column from surface to pycnocline.  

Δ𝐸𝑎 =  
휀�̅�

휀𝑡𝑜𝑡
∗  Δ𝐸 

 

2.5 Statistical analysis 

All statistical analyses for this thesis were conducted in R version 4.2.2 and all figures were made 

using the package ggplot2 (Wickham, 2016). The linear models were made with the base R 

function lm(). Light data from TriOS measurements were modeled with hierarchical linear models 

(the lmer()-function from the lme4()-package). The map was made using the ggmap-package and 

Stamen maps (Kahle & Wickham, 2013). CTD data was analyzed with the “oce”- and “ocedata”-

packages. PAR-data for each incubation date, at the coordinates corresponding to the UiO field 

station in Drøbak, were downloaded from the “STRÅNG”-database (https://strang.smhi.se/) and 

processed in RStudio.  

 

 

https://strang.smhi.se/
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Figure 2: Schematic presentation of methods, created in BioRender.com 
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3 Results  

The results are divided into 5 sections. The first is the section describing the physicochemical and 

optical properties of the water column at each station for each cruise date. The three following 

sections will present results from the VGPM, 13C-PP experiment and the BO-PP method of 

quantifying primary production, respectively. The last section will compare the methods.  

3.1 Physicochemical and optical properties of the water column 

The physicochemical and optical properties of the water column were investigated using CTD-data 

and Secchi depth data. The temperature and salinity data shown in Figure 3 are from a subset of 

CTD-data in the same depth interval as the water samples, 3-4 m. An example of the full CTD-

profile for station OF2, 12th of May 2022 can be found in Figure 15 in the appendix. As shown in 

Figure 3A the temperature is quite consistent across stations for each date, with increasing 

temperatures from the first to the last cruise date. The upper water layer holds a temperature 

around 10°C at the 12th of May, between 12-13 °C at the 2nd of June and around 17-18 °C at the 

29th of June. Figure 3B show an increasing salinity from the innermost to the outermost station, 

with the highest salinities at station OF2 ranging between 20 and 25 PSU. L1 had the lowest 

salinities, all at approximately 1 PSU.  

 

The pycnocline is defined as the largest relative density change per unit depth, the Brunt-Väisälä 

frequency squared (N2) maximum, in the CTD-profiles. The depth of the pycnocline remained 

relatively stable at station L1, between 7 m and 10 m, across dates, while the other stations show a 

large variability in the depth of the pycnocline, especially between the first and the second cruise. 

On the 12th of May the pycnocline is stable at around 20 m depth for all stations, except L1. The 

dates in June show a shallower pycnocline, compared to the cruise in May. The largest variability in 

the pycnocline is found at station I1, which has the maximum depth at approximately 22 m and 

minimum depth at 2.5 m. The optical properties are visualized with Secchi depths in Figure 3D, 

showing a similar trend as the salinity, with increasing transparency from the innermost to the 
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outermost station. Maximum water transparency, or Secchi depth, is recorded at the 29th of June 

at 8 m at OF2. Minimum water transparency is recorded at L1 at 29th of June at 1 m.  

 

 

 

Figure 3: The stations in the Oslofjord transect described by different parameters; A = 

Temperature (°C), B = Salinity (PSU), C= Depth of pycnocline (m), D = Secchi depth (m). 12th of May 

is missing due to equipment failure during this cruise. 

 

Further investigations of the optical properties were made with irradiance measurements from 

TriOS-data. The attenuation coefficient for each wavelength at each station was found using the 

hierarchical model, as the coefficient is the negative slope of log-transformed irradiance against 

depth, grouped by wavelength. The overall patterns of attenuation for all stations show a peak 

around 450 nm and a decrease towards 550 nm, and then an increase in attenuation for 

wavelengths higher than 550 nm, as visualized in Figure 4. Station L1 has the highest attenuation 

coefficient across wavelength, between 0.5 m-1 and 2.5 m-1. High noise at wavelengths with 
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highest attenuation is due to sensitivity limitations with the spectrometer. The lowest overall 

attenuation coefficient is at OF2, between 0.2 m-1 and 0.75 m-1. 

  

 

Figure 4: The attenuation coefficient (m-1) at each wavelength (nm) in PAR region at each station. 

High noise at wavelengths with highest attenuation is due to sensitivity limitations with the 

spectrometer. 

 

The attenuation coefficients were used to predict the endmembers of the attenuation coefficient 

minimum and the wavelength at the minimum with salinity as the predictor variable in a linear 

model, shown in Figure 5. The salinity range from the CTD-data was used to define endmembers, 

where freshwater = 0 PSU and saline water = 33 PSU. The attenuation coefficient and the 

wavelength minimums show the same trend of high values in fresh water compared to saline 

water. The attenuation coefficient endmember is between 0.6 m-1 and 0.7 m-1 in freshwater and 

between -0.2 m-1 and 0.07 m-1 in saline water. For the wavelength minimum the endmember is 

between 578 nm and 587 nm in freshwater and between 552 nm and 564 nm in saline water. In 
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addition, measurements of DIC, from GC, were used to predict concentrations of dissolved 

inorganic carbon in fresh and saline water. The DIC concentrations show a trend of low 

concentration in freshwater and higher concentration in saline water. The endmember for the 

predicted concentration of DIC is between 352 µmol/L and 566 µmol/L in freshwater and between 

1932 µmol/L and 2199 µmol/L in saline water. This corresponds to DIC concentrations between 4 

mg/L and 7 mg/L in freshwater and between 23 mg/L and 26 mg/L in saline water. All predictions 

are presented with 95% confidence intervals, Figure 5.  

 

 

Figure 5: Predicted endmembers, in a 95% confidence interval, for minimum attenuation (m-1), 

wavelength at minimum (nm) and DIC (µmol /L) in fresh (PSU = 0) and saline (PSU= 33) water.  

 

Lastly, the surface irradiance measurements, E0, are visualized in Figure 16, Figure 17 and Figure 18 

in the appendix. Figure 16 shows the time course of PAR the irradiance for the first incubation 

experiment, from 12th of May to the 13th of May, where t1 is the start of the incubation and t2 is 

the end. Using the E0- equation, the integral of this curve yields 30 mol /m2/d. This is the lowest 
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recorded amount of photons, as the incoming flux during the second incubation yields 52 

mol/m2/d and the third yields 64 mol/m2/d.  

3.2 Primary production estimated by VGPM 

Estimates of primary productivity based on VGPM were calculated based equation 1. The 

estimates show a trend of increasing productivity with increasing salinity, as seen in Figure 6, with 

a range from around 500 mg/m2/d to around 5500 mg/m2/d.  

 

 

Figure 6: VGPM rates of net carbon uptake (mg C/m2/d) from equation 3 against salinity (PSU) 

across stations (symbols) and dates (color).  

3.3 Primary production estimated from 13C incubations  

Equation 2 was used to calculate primary production based on δ13C measurements from IRMS. The 

rates of primary production show an increase in production with an increase in salinity, Figure 7. 
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The production ranges between 20 mg/m2/d and 350 mg/m2/d, an order of magnitude lower than 

the VGPM estimates. The highest production is seen at station I1, at the 29th of June, when salinity 

= 12.5 PSU.  

 

 

Figure 7: Net carbon uptake (mg/m2/d) from 13C-PP experiment, using equation 2, with salinity 

(PSU) as predictor variable. 

3.4 Primary production estimated with the bio-optical method 

The calculated absorbance coefficients were used to visualize the contribution of each 

component, i.e.: water, CDOM, non-algal particles (detritus) and algae (photosynthetic 

pigment) to the absorbance of light per meter in the water column in the PAR region. The 

absorbance coefficients for each parameter are stacked on top of each other in a cumulative 

plot, for each wavelength as shown in Figure 8.  
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Figure 8: Cumulative absorbance spectra for water, colored dissolved organic matter, detritus and 

photosynthetic pigment. The pigment absorbance is represented by the green area at the bottom, 

while the grey-brown area on top of pigment represents detritus absorbance. CDOM absorbance is 

shown in the brown-orange area, while water is represented with the blue area. A = Station OF2 at 

the 12th of May 2022, B = Station L1 at the 12th of May 2022. 

 

As visualized in Figure 8, the cumulative absorbance peaks towards the short wavelength end of 

the PAR-spectrum, at 400 nm. On the 12th of May CDOM is the main contributor to the absorbance 

at all stations, especially in the 400-550 nm range. Above 550 nm the main contributor gradually 

shifts towards water itself. Figure 8 displays the extremes, the lowest and the highest cumulative 

absorbance. All stations show characteristic peaks in pigment absorbance at approximately 440 

nm and 675 nm. These patterns are observable in the cumulative absorbance spectra for all 

stations and dates (see appendix: Figure 19, Figure 20, Figure 21, Figure 22 and Figure 23).  
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To explore differences in the absorbance across stations and dates, the spectrally averaged 

contributions of each component were calculated in regard to the total absorbance. Station L1 

generally has the highest total absorbance and CDOM as the largest contributor across all dates. 

However, station L5 at 29th of June, has the highest single peak at approximately 1.80 m-1. Station 

OF2 has the lowest total absorbance across all dates, with the minimum at 0.5 m-1 at 12th of May. 

In addition, as shown in Figure 9, station OF2 has the lowest contribution of pigment absorbance 

across stations and dates.  

 

Figure 9: Total absorbance (m-1) for spectrally averaged absorbance for water (H2O), 

photosynthetic pigment, detritus and colored dissolved organic matter at each station and date. 

The CDOM absorbance is represented by the orange area at the bottom, while the grey-brown 

area represents detritus absorbance. Pigment absorbance is represented by the green area and 

the blue area represents the water absorbance  

 

The total absorbance and chlorophyll a absorbance coefficients are used in the calculations of 

rates of carbon uptake (mg/m2/d) using equation 3. The rates are calculated using the mean 

quantum yield across the incubation intensities for each station and date. The quantum yields 
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from PAM fluorometry are visualized in Figure 24, Figure 25 and Figure 26 in the appendix, on a 

log-scale. When plotted with salinity as the predictor variable, the bio-optical rates of carbon 

uptake show an increase in productivity with an increase in salinity, and a consistency at different 

salinities except for 10-15 PSU, as visualized in Figure 10. The overall linear trend shows an 

increase in productivity from 500 mg/m2/d at the lowest salinity to 2.2 g/m2/d at the highest 

salinity. However, the maximum value and the outlier show a productivity of approximately 2.7 

g/m2/d for station I1 on the 29th of June.  

 

 

Figure 10: Bio-optical rates of gross carbon uptake (mg C/m2/d/) from equation 1 with salinity 

(PSU) as predictor variable 

3.5 Method comparison 

To compare differences between the different methods of quantifying primary production, and 

their relationships with salinity and the spectrally averaged CDOM absorbance (CDOMsa) , a 
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scatterplot was made. The plot shows a negative correlation between CDOMsa absorbance and 

salinity. This negative relationship is also observable between CDOMsa and the BO-PP and more 

loosely between CDOMsa and 13C-PP. The relationship between CDOMsa and VGPM show a similar 

negative trend, but with large variability and lower correlation. All productivity estimates show a 

positive correlation with increasing salinity, though with high variability. The productivity estimates 

displays positive correlation when compared to each other, with strong correlation seen between 

the estimates from the 13C-PP experiment and the VGPM, though with an order of magnitude 

difference in estimates.  

 

 

Figure 11: Scatterplot for salinity (PSU), spectrally averaged CDOM absorbance (CDOMsa) (m-1), BO-

PP (mg C/m2/d), 13C-PP (mg C/m2/d) and VGPM-PP (mg C/m2/d). The diagonal represents the 

variable distribution. The salinity in the lower left corner display correct values, the upper left 

yields incorrect values6.  

                                                
6
 This is a known bug for GGally::ggpairs. https://stackoverflow.com/questions/69377548/ggally-ggpairs-plot-

y-axis-of-the-first-variable-is-labelled-with-wrong-values  

https://stackoverflow.com/questions/69377548/ggally-ggpairs-plot-y-axis-of-the-first-variable-is-labelled-with-wrong-values
https://stackoverflow.com/questions/69377548/ggally-ggpairs-plot-y-axis-of-the-first-variable-is-labelled-with-wrong-values
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The negative correlation between CDOMsa and salinity is further investigated by fitting a linear 

model with salinity as a predictor variable for the response in CDOMsa absorbance, as visualized in 

Figure 12. This reveals a slope = -0.035, with standard error (SE) = 0.004 (-0.035 ± 0.004).  

 

 

Figure 12: The CDOMsa absorbance (m-1) with salinity (PSU) as a predictor variable. Fitted with 

regression line; slope = -0.035 ± 0.004. 

 

To assess the relationship between the chlorophyll concentration and the primary production, 

volumetric primary production was calculated (µg/L/d) based on the production in the incubation 

bottles. The production ranges from 11 µg/L/d to 65 µg/L/d, while the chlorophyll concentration 

has a range between 4 µg/L and approximately 12 µg/L. Chlorophyll a concentration is used as a 

predictor variable for volumetric production, to look at the change in production in relation to 

change in chlorophyll. This is described with the slope of the fitted regression line in Figure 13A, 
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slope = 4 ± 1. The volumetric primary production displays a positive correlation with chlorophyll 

concentration, but with variation along the line.  

 

Investigation of how the carbon uptake per mg chlorophyll a against temperature fit with the 𝑃𝑜𝑝𝑡
𝑏 , 

was conducted by plotting the chlorophyll specific production with temperature as a predictor 

variable, with the polynomic 𝑃𝑜𝑝𝑡
𝑏  from Behrenfeld and Falkowski (1997a) as an overlay. The 

unimodal shape with decrease > 20 °C follows from the model prediction by Behrenfeld and 

Falkowski (1997a). The chlorophyll specific production show increase with temperature, yet with 

quite some scatter, ranging from 2 mg C/mg chlorophyll to 8 mg C/mg chlorophyll, within the 

temperature interval from 10-20 °C, Figure 13B. 

 

In addition, salinity was used as a predictor variable to investigate changes in chlorophyll specific 

primary production in relation to changes in salinity. This relationship is illustrated in Figure 13C. 

The calculated chlorophyll specific primary production is represented by dots. The data is fitted 

with a regression line, slope = 0.16 ± 0.05.  

 

To assess whether the observed increase in production with increasing salinity, is rather a result of 

the decreased CDOMsa absorbance along the salinity gradient, chlorophyll specific primary 

production was plotted against CDOMsa absorbance. The data is fitted with a regression line with 

slope = -2 ± 1. This is illustrated in Figure 13D, which shows a slight decrease in chlorophyll specific 

primary production with an increase in CDOMsa absorbance.  
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Figure 13: Figures visualizing the relationships between primary production, chlorophyll a, 

temperature, salinity and CDOMsa absorbance. A = Volumetric primary production (µg/L/d) against 

the concentration of chlorophyll a (µg/L); fitted with regression line, slope = 4 ± 1, B = chlorophyll 

specific primary production (mg C/ mg chla) against temperature °C, with Pb
opt as an overlay. C 

=chlorophyll specific primary production (mg C/ mg chla) with salinity as predictor variable; fitted 

with regression line, slope = 0.16 ± 0.05. D = chlorophyll specific primary production (mg C/ mg 

chla) with CDOMsa absorbance (m-1) as predictor variable; fitted with regression line, slope = -2 ± 1  
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4 Discussion  

All primary production estimates in the Oslofjord transect display an overall similar trend of 

increasing production with higher salinities, and a negative relationship with CDOM absorbance. 

The overall trend of increasing production with increasing salinity is more likely to be an increase 

in production due to the decrease of CDOM absorbance, rather than a response to the salinities 

per se. This is supported by the negative correlation between all estimates and CDOM absorbance, 

and the correlation between higher salinities, less freshwater input from Glomma, and lower 

CDOM absorbance. 

4.1 Optical properties of the Oslofjord 

The physicochemical and optical analysis from the Oslofjord reveal a clear salinity gradient from 

the innermost towards the outermost station in the field transect, with a similar trend observed in 

the optical clarity measured with Secchi depth. This is further supported by the predicted 

endmembers for the fresh and saline water. The predicted attenuation minimum is higher in the 

fresh water compared to the saline water, meaning that the attenuation generally is higher in the 

innermost part of the Glomma estuary, compared to the outer stations. The visualizations of the 

attenuation across wavelength display a similar relationship between stations, with a high 

attenuation coefficient at the innermost station. The high variability (the “noise”) in the 

attenuation for station L1 might be a result of the dark water and sensitivity limitations of the 

sensor. Figure 8 and Figure 9 reveal that CDOM accounts for most of the absorbance in the water 

column, especially in the shorter wavelength of the PAR region. In general, the highest CDOM 

absorbance is found at the Glomma station, L1, with the greatest influence of terrestrial run-off, 

even though the highest absorbance is found at L5 for the last cruise date. However, there is no 

apparent reason as to why this station has one single high extreme for CDOM absorbance, while 

the L1 station is relatively low for the same date. It could be a consequence of localized weather 

increasing the run-off at this particular location, or more likely a measurement error.  
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The wavelength minimum is also higher in fresh water, resulting in a color difference between 

fresh and saline water, with darker or browner water at lower salinity. As the endmembers are 

predicted by use of a linear model over a salinity range from 0 to 33 PSU, it could be argued that 

these results apply to other coastal areas with substantial riverine influence. This is supported by 

Urtizberea et al. (2013), who measured a CDOM attenuation between 0.03 m-1 in clear oceanic 

water and 0.2 m-1 in coastal areas. These measurements align with the predictions in Figure 5. 

However the predictions are for total attenuation, not solely CDOM attenuation, and thus are 

higher. Several studies have observed a trend of darkening waters in relation to increased run-off 

due to afforestation and an intensifying hydrological cycle as a consequence of increasing global 

temperatures, especially in eastern parts of Norway (de Wit et al., 2016; Finstad et al., 2016; 

Frigstad et al., 2020; Opdal et al., 2023). A negative relationship was found between CDOMsa 

absorbance and salinity, with a linear correlation, confirming that the selected transect is indeed a 

gradient of increasing optical clarity when the riverine influence decreases, with the implications 

this has for primary production. Though not extensively investigated for marine environments 

(Frigstad et al., 2020), the darkening, or browning, of lakes due to increased run-off has been 

shown to have detrimental effects on primary production (Thrane et al., 2014). However, the 

darkening of coastal waters has affected the timing of the spring bloom, resulting in a later onset 

of the growing season (Opdal et al., 2019, 2023) 

 

Compared to the optical properties the opposite relationship is seen with the predicted 

endmember for the DIC concentration, Figure 5. The DIC concentration is higher in saline water, 

which is to be expected. The predicted concentrations of DIC are in agreement with concentrations 

previously measured for sea water (Liu et al., 2013).  

4.2 Estimates of primary production and their influencers  

As mentioned above, all estimates display the same overall trend with increasing production with 

decreasing CDOMsa. However, there is a large variability between the estimates. The estimates of 

primary production have different conceptual basis, yielding differences in which parameters are 

being used for the depth integration and conversion to area specific production. The BO-PP uses in 
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situ fluorescence measurements and in vivo absorbance spectra combined with irradiance 

integration to the depth of the pycnocline to estimate areal production. The VGPM is a remote 

sensing chlorophyll based method of quantifying rates, while the 13C-PP is based on carbon 

fixation. The two last methods have a similar approach in estimating areal production based on the 

euphotic depth and a light dependent component. The VGPM also employs Pb
opt and day length as 

variables.  

The VGPM 

The chlorophyll content of phytoplankton biomass is dependent on different environmental 

factors, such as the light intensity or the temperature, and even the phytoplankton community 

composition (Behrenfeld et al., 2005; Desmit et al., 2020). Due to these variations, chlorophyll is a 

poor proxy for estimating carbon biomass, which the VGPM is based upon. While the VGPM does 

include temperature and light as parameters in the calculation, equation 1, the plasticity of 

chlorophyll a is a source of uncertainty in all chlorophyll based estimates of primary production 

(Behrenfeld et al., 2009; Siegel et al., 2013). Figure 13A visualizes the relationship between the 

estimated chlorophyll a concentration and the direct measurements of carbon fixation, revealing a 

positive correlation, suggestion that the chlorophyll as a proxy for primary production is a fair 

assumption for this study.  

 

Another constraint with the VGPM, in this context, is that the model is based on remote sensing 

technology, designed to integrate a large number of spatial-temporal observations to estimate 

global production, as seen in Field et al. (1998). This global perspective reveals a problem with the 

parameterization down to a localized area, yielding less sensitive estimates and underperforms 

compared to local field studies (Behrenfeld et al., 2009).  

The 13C-PP method 

On the other hand, there is a high correlation, 0.9, between the 13C-PP estimates and the VGPM 

estimates of primary production. This linear relationship could be explained by the similar 

approach in determining the areal primary productions for these two estimates, both are 
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dependent on the euphotic depth and surface irradiance. The 13C-PP estimates are generally lower 

than both of the other methods, in fact there is an order of magnitude difference between VGPM 

estimates and 13C-PP estimates. The 13C-PP has however been shown to match well with estimates 

based on radioisotope uptake (14C-PP), even in areas of low production (López-Sandoval et al., 

2018).  

 

As the 13C-PP method has been shown to be a replacement for the 14C-PP method, with a 1:1 

relationship between estimates (López-Sandoval et al., 2018), it is a fair assumption that the 

drawbacks of the 14C-PP method are transferrable to the 13C-PP methods, as they are based on the 

same principles and mostly the same procedure. The bottle incubations using the O2 method is a 

well-known method of measuring NPP in the light bottles and respiration in the dark bottle, 

yielding GPP. However, in 14C-PP bottle incubations there is a large uncertainty in whether it is the 

GPP or the NPP that is measured in the light bottles (Peterson, 1980). Most likely it is a mixture. 

Another factor which contributes to the uncertainty of what is measured in the bottles is the 

length of the incubation period. However, incubation lasting 24 hours, as was done for this study, 

is generally believed to yield a measure of net photosynthesis (Laws et al., 2000). There are also 

constraints with the dark bottle as it is no direct measurement for the respiration losses. This study 

follows the same principles as in López-Sandoval et al. (2019) where the light bottle is a measure of 

NPP and the dark bottle is a measure of the natural abundance of 13C in organic matter.  

 

Some of the estimated low production could be a result of the “bottle effect”, where you observe 

effects on growth that are not a result of the planned experiment. This effect is a known constraint 

on bottle incubation methods, 13C-PP included. Photoinhibition is a widespread observed effect of 

bottle incubations in static surface water, especially in high intensity irradiance situations (Gilbert 

et al., 2000; Peterson, 1980; Steemann Nielsen, 1962). Compared to light limitations, 

photoinhibition is a poorly understood mechanism. Light limitation is a stoichiometric mechanism 

between the absorbed quanta and absorbed CO2, while photoinhibition is a more complex time-

dependent mechanism. The energy from the light absorbance excites the chlorophyll, putting it in 

a high energy state. This high energy can dissipate as heat, a process known as non-photochemical 
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quenching (NPQ). NPQ is a photoprotective mechanism which protects the phytoplankton from 

oxidative stress (Kromkamp et al., 2008; Müller et al., 2001). High intensity irradiance situations 

could also lead to photorespiration, the opposite mechanism of photosynthesis (Peterson, 1980). 

As the bottles in this experiment where incubated at surface level in an outdoor pool, with natural 

lighting, it is plausible that the phytoplankton underwent significant irradiance stress, leading to 

photoinhibition resulting in detrimental effects on the growth.  

 

Temperature is another factor which affects the primary production. Behrenfeld & Falkowski 

(1997a) introduced the Pb
opt as a model to visualize how production is temperature-dependent. 

According to them production increases until the sea surface temperatures reaches 20 °C, when 

there is a shift towards a decrease in production. As visualized in Figure 13B, the estimated 

chlorophyll specific production follows the model below 20 °C, though with large variation. 

However, these temperature-dependent production estimates are based on the SST from CTD-

data, not the actual temperatures in the pool where the bottles were incubated. This is because 

the temperature-data was corrupted and unusable. As the irradiance was high during the 

incubations, especially the last two dates, it is entirely possible that the temperature within the 

pool or even within the bottles surpassed the SST, even with continuous flow of surface water, 

pushing the production over the temperature limit, resulting in lower production. However, both 

the highest irradiance and the highest temperatures where recorded during the last incubation 

period. If there were any detrimental effects of irradiance and temperature during this incubation, 

the resulting estimates should have been lower than the estimates from the previous incubations, 

though they are generally higher for the last date, Figure 7.  

 

Other factors that may limit production in the bottles are grazing, CO2 deficiency and nutrient 

limitation. This method is the only one out of the three that can be influenced by these important 

ecological and ecosystem processes, contributing an insight into dynamics which remains 

undisclosed in the other two methods.  

 

For the Oslofjord there has been an observed shift towards a later onset of the growing season, 
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which could be attributed to the observed reduction in optical clarity (Aksnes et al., 2009; Lundsør 

et al., 2020; Opdal et al., 2019). After the initial phytoplankton bloom the upper water column is 

deprived of nutrients, resulting in a limitation for growth. The spring bloom in the Oslofjord is 

primarily inhibited by phosphorus limitation in the stratified layer, but long term monitoring have 

revealed a persistent nitrogen limitation in the stratified layer, and the chlorophyll content in 

phytoplankton remains low even after increased concentration of phosphorus (Lundsør et al., 

2020). Additionally a study by Andersen et al. (1991) revealed that the microalgae in the Oslofjord 

have a larger capacity for internal storage of phosphorus, compared to nitrogen. However there 

was no observed limitation of algal growth due to nutrient limitation in this experiment. In the 

Oslofjord there is a pattern of a second bloom after the spring flood, where the freshwater bring 

new nutrients to the water column (Lundsør et al., 2020). This flood is observable in Figure 7, when 

there is a considerable shift in the salinity the second innermost station from the first to the 

second cruise date, suggesting that the flood took place somewhere in between these dates. The 

renewal of nutrients associated with spring flood is not correlated with the spring bloom, but it 

could sustain growth through the summer and potentially the autumn bloom (Frigstad et al., 

2020). The VGPM and 13C-PP estimates a higher production for the last date across stations, which 

could be a result of input of new nutrients and stratification of the water column after the flood. 

This pattern is however not noticeable in the BO-PP. All the methods yield different results as to 

when the stations are most productive, which is likely a result of which parameters the methods 

use and the importance of the parameters in the model. There is no clear relationship except the 

optical gradient.  

The BO-PP 

As opposed to the 13C-PP method, the BO-PP method omits constraints associated with bottle 

incubations, and is both fast and cheap in comparison (Kolber & Falkowski, 1993). On the other 

hand the bio-optical estimates are influenced by different factors, one of them being uncertainties 

in the absorbance measurements the calculations are based upon. Due to scattering within the 

spectrophotometer, the algal absorbance could be artificially amplified and thus create an 

overestimation of the algal contribution to the total absorbance (Kirk, 1994). However, part of the 
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possible scattering, e.g. backscattering, was accounted for during calculation of the absorbance 

coefficients.  

 

Another factor which influences the BO-PP estimates is the use of fluorescence measurements as a 

proxy for production. PAM fluorometry yields QYs for photosystem II, as a measurement of the 

utilization of absorbed quanta. The QYs for all stations generally do not exceed 0.5, meaning that 

less than 50% of the absorbed quanta where used in photochemical work, the maximum 

theoretical photosynthetic efficiency is measured to 0.8 (Torres et al., 2021). The remaining energy 

is emitted as fluorescence or dissipated as heat (NPQ). This low efficiency could be a result of the 

samples not being fully dark-acclimated. However, low QYs are shown to be correlated with 

nutrient limitation, more specifically nitrogen stress (Kolber et al., 1988, 1990). This is supported 

by the observed nitrogen limitation in the Oslofjord (Lundsør et al., 2020). The low QYs enhance 

the credibility of nutrient limitations in the incubation bottles.  

 

The calculations of the rates of electron transport are another source of uncertainty with this 

method. The use of QYs from PSII to calculate ETRs has a higher correlation with the production of 

O2, rather than the fixation of CO2 (Lawrenz et al., 2013). The CO2-fixation is assumed to be 

proportional to the ETR, which leads to an overestimation of primary production. However, this 

proportionality is supported for phytoplankton, adding to the credibility of these estimates (Gilbert 

et al., 2000; Kromkamp et al., 2008). On the other hand, ETRs vary with environmental factors and 

the taxonomic composition of phytoplankton communities, similar to the chlorophyll 

concentration and show a higher variability compared to carbon fixation (Lawrenz et al., 2013).  

 

The factor for the ratio of mol fixed CO2 / mol photons is chosen as 0.08 in this study, due to 

physiological limitations in the photosynthetic process, yielding a conservative estimate as the 

theoretical minimum is 0.125 (1 mol fixed CO2/8 mol photons) (Kirk, 1994). However, this might be 

an upper limit to the carbon fixation in natural conditions, resulting in overestimates of primary 

production. Babin et al. (1996) found the maximum quantum yield for carbon fixation to average 
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between 0.03 and 0.05 mol C/ mol photons in eutrophic waters and at approximately 0.005 mol 

C/mol photons in the upper layer of oligotrophic (nutrient depleted) waters.  

4.3 The plausibility of the estimates 

Kromkamp et al. (2008) found a remarkable linear relationship, on the log-scale, between the bio-

optical and 14C-PP methods, with the bio-optical estimates systematically higher than the 14C-PP 

estimates. Using PAM fluorometry the bio-optical estimates were 1.6 times higher than the 14C-PP 

estimates for the same stations. A similar relationship is observed in this study, with a positive 

correlation of 0.8 between BO-PP and 13C-PP, Figure 11. The BO-PP estimates are higher than 13C-

PP, but this is to be expected as the former yields estimates of GPP, while the latter yields 

estimates of NPP. Following this, the rates from Throndsen (1978) should be lower than the BO-PP 

estimates in this thesis, as Throndsen used 14C-PP, but remarkably they are almost identical. 

Throndsen estimated a production around 2.5 mg C/ m2/d, while the estimates from the BO-PP 

range between 0.7 mg C/m2/d and 2.7 mg C/m2/d. It is not prudent to draw conclusions as to why, 

because all PP-estimates are a snapshot of production in the specific area at that specific time. 

However, at the time of Throndsen´s investigation, the Oslofjord, especially its inner part, was 

eutrophic due to sewage from the city of Oslo, which increases the primary production (Braarud, 

1969). As mentioned above drastic measures were taken to reduce the nutrient input in the fjord. 

Alongside this reduction of nutrients there has been an observed reduction in the chlorophyll 

concentration (Lundsør et al., 2020), which could suggest that the productivity of the Oslofjord has 

decreased in the last 30 years. Lundsør et al. (2020) also revealed that the concentrations of 

chlorophyll a do not exceed 12 µg/L, a persistent low concentration since 1990, after a peak in 

1980, when the chlorophyll concentration reached 20 µg/L. A coupling between de-eutrophication 

and reduction in chlorophyll a is not exclusive to the Oslofjord, and the reduction in chlorophyll is 

also linked to higher SSTs (Desmit et al., 2020).  

 

In this study, the chlorophyll a concentration used in VGPM and chlorophyll specific production 

was calculated from the in vivo absorbance peak at 670 nm using the specific absorbance of 

chlorophyll a at 670 nm from Mitchell & Kiefer (1988). The resulting concentrations are consistent 
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with the reported concentrations from Lundsør et al. (2020), which are a result of long-term 

monitoring and the method of measuring chlorophyll a with in vivo absorbance at 665 nm. The 

agreement between these measurements adds to the comparability between these studies.  

 

An interesting observation is that the VGPM yields higher production estimates than the BO-PP, as 

the former is a measure of NPP and the latter is a measure of GPP. Respectively these methods 

have a high correlation with the direct measurements of C-fixation, the 13C-PP. The correlation 

between these methods is slightly lower in comparison, but still high. The VGPM estimates are an 

order of magnitude higher than 13C-PP, and more than double the estimated GPP from the BO-PP, 

further supporting the overestimation by downscaling to localized areas. This overestimation was 

also observed by Hill & Zimmerman (2010), when the estimates revealed an order of magnitude 

error, after retrieving the wrong chlorophyll concentration. The chlorophyll concentration 

multiplied with the euphotic depth is the single most important parameter in determining 

production using VGPM, followed by Pb
opt (Behrenfeld & Falkowski, 1997b). Because of their high 

influence on the estimates, uncertainties in these parameters have large consequences. Carr et al. 

(2006) observed overestimation by the Pb
opt when the SSTs where between 10 and 20 °C. On the 

other hand, the chlorophyll specific primary production is in the same order of magnitude as Pb
opt 

in this study. In addition, CDOM absorption in the water column has proven a vital part of 

ecosystem modeling and remote sensing estimates, though it is not a part of the VGPM version 

used here (Siegel et al., 2013; Urtizberea et al., 2013).  

4.4 The final show-down  

Few studies aim to compare rates of primary production from different methods, and fewer aim to 

test which method is most suitable to answer specific scientific questions (Staehr et al., 2012). This 

thesis aims to fulfill the first, if not the second. While the same overall pattern is visible in all 

estimates, the differences in the calculated rates are quite large. The rates from the 13C-PP method 

are, as the replacement for 14C-PP, regarded as the standard to which everything is compared, due 

to the direct measurements of C-fixation. The 13C-PP are the lowest estimates, and both the rates 

from BO-PP and VGPM are overestimates compared to these rates. However, for the BO-PP, this is 
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an expected and acceptable overestimate as it is a measure of the GPP, compared to the assumed 

NPP estimates from the 13C-PP method. The VGPM has a history of overestimation and should only 

be used as approximations (Carr et al., 2006; Hill & Zimmerman, 2010).  

 

The 14C-PP method has been the preferred method of quantifying primary production, due to its 

highly sensitive measurements and the simplicity of the method (Regaudie-de-Gioux et al., 2014). 

In addition, this method yields a direct measurement of C-fixation. The calculated rates have been 

used in remote sensing calibrations of algorithms retrieving the oceanic primary production, and 

are the empirical basis on which the Pb
opt is built on (Behrenfeld and Falkowski, 1997a). The 13C-PP 

method is a replacement in light of restrictions using the radioisotope. However, the time-

consuming and expensive methodology, in addition to the localized spatial-temporal coverage are 

important drawbacks to keep in mind.  

 

The bio-optical method could increase the spatial-temporal coverage of PP-estimates due to the 

fast and cheap methodology, in both marine and limnic environments (Kromkamp & Forster, 2003; 

Lawrenz et al., 2013). In addition to avoiding the effects of bottle incubations and the extrapolating 

from bottles to in situ, the bio-optical method is certain in that it measures gross primary 

production (Peterson, 1980; Wilhelm et al., 2004). However, the main uncertainty with this 

method is in the assumptions regarding the ETRs. As chlorophyll, ETRs are highly variable with 

environmental factors and the taxonomic composition and display a larger variability in the 

estimates compared to C-fixation measurements (Lawrenz, 2013).  

 

The largest spatial-temporal coverage of PP-estimates is found with using the VGPM, which is 

suited for a global perspective. This method incorporates temperature and light intensity which 

are important factors in the variability of chlorophyll a concentration in phytoplankton biomass 

(Behrenfeld et al., 2005; Desmit et al., 2020). In addition, this method requires no fieldwork as it is 

based on remote sensing, which lessens the time-consumption. However, the variability in 

chlorophyll as a proxy for carbon fixation biomass and in the Pb
opt, are unneglectable factors.  
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In summary all methods have their pros and cons in regards to precision and logistics; expenses 

and time. An important aspect of choosing a method is the spatial-temporal scale of the region 

investigated, in addition to which specific scientific question you want an answer to. For this study, 

due to its localized nature, the 13C-PP method and BO-PP method yields the most plausible 

estimates of primary production.  

 

Kromkamp et al. (2008) found that the turbidity in the water column is the controlling factor for 

the observed variability in the photosynthetic parameters, which can be deduced from the positive 

relationship between the optical gradient and primary production estimates in this study, when 

the increase in salinity is a proxy for the increase in water clarity. Both the link between increasing 

SSTs and turbidity with decreasing chlorophyll are interesting in a climate change perspective, as 

an increase in both is an expected consequence of climate warming (Cadée & Hegeman, 2002; de 

Wit et al., 2016). For the Oslofjord there has been an observed shift towards a later onset of the 

growing season, which could be attributed to the observed reduction in optical clarity (Aksnes et 

al., 2009; Lundsør et al., 2020; Opdal et al., 2019). For this study the increasing production with 

decreasing CDOM indicates that increasing run-off will further influence primary production, by 

contributing to a decrease in the rates of carbon fixation.  

4.5 Future prospects  

The production estimates in this study are all a snapshot of the primary production at the specific 

location at the specific time. To make inferences in a climate change perspective and about the 

long-term effects of increased run-off it would be interesting to have several cruises throughout 

the year, for several years, to observe whether the observed trend in the production is just 

variation or a result of a changing climate. It would also be interesting to investigate other fjords, 

with a varying amount of terrestrial run-off to get an overview and a greater basis for comparative 

studies.  
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An interesting aspect would be the inclusion of nutrient measurements, for further investigations 

of the observed pattern and assess whether there is a trade-off between additional nutrients and 

increased CDOM attenuation related to the spring flood, when it comes to primary production.  

 

It would have been interesting to have 14C-PP estimates for the same samples to investigate 

correlation between the 14C and 13C, which could support the low estimates from the 13C-PP 

method, but unfortunately there is no facility for running this kind of radioisotope experiments at 

the institute. 
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5 Conclusion 

The transect sampled for this study has a clear optical gradient, with a negative correlation 

between CDOMsa absorbance and salinity. This relationship is reflected in the increase of primary 

production estimates with increasing salinity, when the salinity is a proxy for decreasing CDOMsa 

absorbance, thus increasing water clarity. This overall trend is observed in the estimates for all 

three methods. However, there is a large discrepancy between the estimates, due to different 

parameterization and uncertainties within each model. Rates of primary production are difficult 

quantify and no analytical methods are based solely on first principles (Behrenfeld & Falkowski, 

1997b). The VGPM yields estimates an order of magnitude higher than the 13C-PP method, with 

the BO-PP method yielding estimates in between. The BO-PP and the 13C-PP methods are the most 

suitable for localized studies, such as this, due to overestimations by the VGPM as a result of the 

downscaling to a localized spatial area.  

 

As terrestrial run-off is predicted to increase due to intensification of the hydrological cycle and 

afforestation, it is imperative to understand how the coastal primary production is affected by the 

resulting darkening of the water column (Finstad et al., 2016; Frigstad et al., 2020; Opdal et al., 

2023). This study shows that a higher CDOMsa absorbance has a negative effect on primary 

production.  
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Appendix A – supplementary table and figures  

Coordinates  

Table 1: Coordinates of the Oslofjord transect and the UiO fieldstation in Drøbak 

Station Latitude Longitude 

OF2, Missingene 59.18 10.69 

Ø1, Leira 59.13 10.83 

I1, Ramsø 59.11 11.00 

L5, Kjøkøy 59.14 10.96 

L1, Glomma 59.21 10.96 

Drøbak 59.66 10.63 

 

Water absorbance coefficent, 휀𝑤, from Morel & Prieur (1977)  

 

Figure 14: The absorbance coefficient (m-1) in chemically and optically pure water, in the PAR 
region, from Morel & Prieur (1977) 
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Example of CTD profile, from OF2 12th May 2022 

 

 

Figure 15: Example of a full CTD profile, showing salinity (PSU), temperature (°C), the potential 

density anomaly (kg/m3) and the Brunt-Väisälä frequency (N2[s-2]) at OF2 12th May 2022. 

 

Time course of surface solar irradiance, in the PAR region 

 

Figure 16: The surface solar irradiance time course in the PAR region (W/m2) for incubation 1, 12th 

– 13th May 2022, from the STRÅNG database for the coordinates at the Drøbak field station. The 

vertical lines represent t1 and t2, start and end of incubation, used in calculation of the photon flux 

= 30 mol/m2/d 
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Figure 17: The surface solar irradiance time course in the PAR region (W/m2) for incubation 2, 2nd – 

3rd June 2022, from the STRÅNG database for the coordinates at the Drøbak field station. The 

vertical lines represent t1 and t2, start and end of incubation, used in calculation the photon flux = 

52 mol/m2/d 
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Figure 18: The surface solar irradiance time course in the PAR region (W/m2) for incubation 3, 29th 

– 30th June 2022, from the STRÅNG database for the coordinates at the Drøbak field station. The 

vertical lines represent t1 and t2, start and end of incubation, used in calculation the photon flux = 

64 mol/m2/d 
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Cumulative absorbance spectra for all stations and dates 

 

Figure 19: Cumulative absorbance spectra for water, colored dissolved organic matter, detritus 

and photosynthetic pigment. C = Station O1 at the 12th of May in 2022, D = Station I1 at the 12th of 

May 2022, E = Station L5 at the 12th of May in 2022 
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Figure 20: Cumulative absorbance spectra for water, colored dissolved organic matter, detritus 

and photosynthetic pigment. A = Station L1 at the 2nd of June in 2022, B = Station OF2 at the 2nd of 

June 2022. 
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Figure 21: Cumulative absorbance spectra for water, colored dissolved organic matter, detritus 

and photosynthetic pigment. C = Station O1 at the 2nd of June in 2022, D = Station I1 at the 2nd of 

June 2022, E = Station L5 at the 2nd of June in 2022 
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Figure 22: Cumulative absorbance spectra for water, colored dissolved organic matter, detritus 

and photosynthetic pigment. A = Station OF2 at the 29th of June in 2022, B = Station L1 at the 29th 

of June 2022. 
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Figure 23: Cumulative absorbance spectra for water, colored dissolved organic matter, detritus 

and photosynthetic pigment. C = Station O1 at the 29th of June in 2022, D = Station I1 at the 29th of 

June 2022, E = Station L5 at the 29th of June in 2022 
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Quantum yields from PAM fluorometry 

 

Figure 24: Measured QY, on log-scale, at different incubation intensities (µmol quanta/m2/s). PAM 

fluorometry from the 12th of May 2022, across stations. 
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Figure 25: Measured QY, on log-scale, at different incubation intensities (µmol quanta/m2/s). PAM 

fluorometry from the 2nd of June 2022, across stations. 
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Figure 26: Measured QY, on log-scale, at different incubation intensities (µmol quanta/m2/s). PAM 

fluorometry from the 29th of June, across stations.  
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Appendix B – selected scripts  

 

library(ggplot2) 

library(cowplot) 

library(tidyverse) 

library(readxl) 

library(dplyr) 

library(forcats) 

 

my_colour_palette <- c("midnightblue", "blue", "deepskyblue2") 

My_theme = theme( 

 legend.text = element_text(size = 13), 

 legend.title = element_text(size = 13), 

 axis.text.x = element_text(size = 13, angle=90), 

 axis.text.y = element_text(size = 13), 

 axis.title.x = element_text(size = 14), 

 axis.title.y = element_text(size = 14)) 

 

 

 

CTD data  

library(oce) 

library(ocedata) 

 

Example for cruise 1 (repeated for all cruises)  

#L1 

C1_L1 <- read.ctd("L1_12052022.cnv") 

C1_L1_smooth <- ctdDecimate(C1_L1) 

plot(C1_L1_smooth)  
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plotProfile(C1_L1_smooth, "salinity") 

plot(C1_L1_smooth, which = 2, type = "l") #smoothed data 

swN2(C1_L1_smooth)  

which.max(swN2(C1_L1_smooth))  

C1_L1_smooth_df <- as.data.frame(C1_L1_smooth@data) 

C1_L1_smooth_df$depth[which.max(swN2(C1_L1_smooth))] #6.952108 pycnocline 

plot(C1_L1, which=3) # T-S diagram  

 

#L5 

C1_L5 <- read.ctd("L5_12052022.cnv") 

C1_L5_smooth <- ctdDecimate(C1_L5) 

plot(C1_L5_smooth)  

plotProfile(C1_L5_smooth, "salinity") 

plot(C1_L5_smooth, which = 2, type = "l") #smoothed data 

swN2(C1_L5_smooth) 

which.max(swN2(C1_L5_smooth)) 

C1_L5_smooth_df <- as.data.frame(C1_L5_smooth@data) 

C1_L5_smooth_df$depth[which.max(swN2(C1_L5_smooth))] #20.81527  

 

 

#I1 

C1_I1 <- read.ctd("I1_12052022.cnv") 

C1_I1_smooth <- ctdDecimate(C1_I1) 

plot(C1_I1_smooth)  

plotProfile(C1_I1_smooth, "salinity") 

plot(C1_I1_smooth, which = 2, type = "l") #smoothed data 

swN2(C1_I1_smooth) 

which.max(swN2(C1_I1_smooth)) 

C1_I1_smooth_df <- as.data.frame(C1_I1_smooth@data) 
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C1_I1_smooth_df$depth[which.max(swN2(C1_I1_smooth))] #21.82703  

 

#Ø1 

C1_O1 <- read.ctd("O1_12052022.cnv") #Ø1 

C1_O1_smooth <- ctdDecimate(C1_O1) 

plot(C1_O1_smooth) #får 3 plot 

plotProfile(C1_O1_smooth, "salinity") 

plot(C1_O1_smooth, which = 2, type = "l") #smoothed data 

swN2(C1_O1_smooth) 

which.max(swN2(C1_O1_smooth)) 

C1_O1_smooth_df <- as.data.frame(C1_O1_smooth@data) 

C1_O1_smooth_df$depth[which.max(swN2(C1_O1_smooth))] #19.77046  

 

#OF2 

C1_OF2 <- read.ctd("OF2_12052022.cnv") 

C1_OF2_smooth <- ctdDecimate(C1_OF2) 

plot(C1_OF2_smooth)  

 

plotProfile(C1_OF2_smooth, "salinity") 

plot(C1_OF2_smooth, which = 2, type = "l") #smoothed data 

swN2(C1_OF2_smooth) 

 

which.max(swN2(C1_OF2_smooth)) 

 

C1_OF2_smooth_df <- as.data.frame(C1_OF2_smooth@data) 

C1_OF2_smooth_df$depth[which.max(swN2(C1_OF2_smooth))] #19.74144  
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C1_L1_df=C1_L1@data%>% 

 as_data_frame() 

C1_L1_df$Date = "12.05.2022" 

C1_L1_df$Site = "L1" 

C1_L1_df$Pycnocline = C1_L1_smooth_df$depth[which.max(swN2(C1_L1_smooth))] 

 

C1_L5_df=C1_L5@data%>% 

 as_data_frame() 

C1_L5_df$Date = "12.05.2022" 

C1_L5_df$Site = "L5" 

C1_L5_df$Pycnocline = C1_L5_smooth_df$depth[which.max(swN2(C1_L5_smooth))] 

 

C1_I1_df=C1_I1@data%>% 

 as_data_frame() 

C1_I1_df$Date = "12.05.2022" 

C1_I1_df$Site = "I1" 

C1_I1_df$Pycnocline = C1_I1_smooth_df$depth[which.max(swN2(C1_I1_smooth))] 

 

C1_O1_df=C1_O1@data%>% 

 as_data_frame() 

C1_O1_df$Date = "12.05.2022" 

C1_O1_df$Site = "O1" 

C1_O1_df$Pycnocline = C1_O1_smooth_df$depth[which.max(swN2(C1_O1_smooth))] 

 

C1_OF2_df = C1_OF2@data%>% 

 as_data_frame() 

C1_OF2_df$Date = "12.05.2022" 

C1_OF2_df$Site = "OF2" 

C1_OF2_df$Pycnocline = C1_OF2_smooth_df$depth[which.max(swN2(C1_OF2_smooth))] 
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C1_L1_deep = subset(C1_L1_df, depth == "16.982") 

C1_L1_deep$Info = "Deep, 12.05.2022" 

C1_L1_deep$Depth ="Deep" 

C1_L1_shallow = subset(C1_L1_df, depth == "3.536") 

C1_L1_shallow$Info = "Shallow, 12.05.2022" 

C1_L1_shallow$Depth ="Shallow" 

 

C1_L5_deep = subset(C1_L5_df, depth == "41.338") 

C1_L5_deep$Info = "Deep, 12.05.2022" 

C1_L5_deep$Depth ="Deep" 

C1_L5_shallow = subset(C1_L5_df, depth == "3.471") 

C1_L5_shallow$Info = "Shallow, 12.05.2022" 

C1_L5_shallow$Depth ="Shallow" 

 

C1_I1_deep = subset(C1_I1_df, depth == "39.935") 

C1_I1_deep$Info = "Deep, 12.05.2022" 

C1_I1_deep$Depth ="Deep" 

C1_I1_shallow = subset(C1_I1_df, depth == "3.506") 

C1_I1_shallow$Info = "Shallow, 12.05.2022" 

C1_I1_shallow$Depth ="Shallow" 

 

C1_O1_deep = subset(C1_O1_df, depth == "41.311") 

C1_O1_deep$Info = "Deep, 12.05.2022" 

C1_O1_deep$Depth ="Deep" 

C1_O1_shallow = subset(C1_O1_df, depth == "3.505") 

C1_O1_shallow$Info = "Shallow, 12.05.2022" 

C1_O1_shallow$Depth ="Shallow" 
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C1_OF2_deep = subset(C1_OF2_df, depth == "40.518") 

C1_OF2_deep$Info = "Deep, 12.05.2022" 

C1_OF2_deep$Depth ="Deep" 

C1_OF2_shallow = subset(C1_OF2_df, depth == "3.491") 

C1_OF2_shallow$Info = "Shallow, 12.05.2022" 

C1_OF2_shallow$Depth ="Shallow" 

 

C1_df = rbind(C1_L1_deep,C1_L1_shallow, 

C1_L5_deep,C1_L5_shallow,C1_I1_deep,C1_I1_shallow,C1_O1_deep, C1_O1_shallow, 

C1_OF2_deep, C1_OF2_shallow) 

 

 

Creating RDS with CTD data for all stations and dates 

Cruise = rbind(C1_df,C2_df, C3_df) 

saveRDS(Cruise, "ctd.rds") 

 

ctd <- readRDS("ctd.rds") 

 

ctd_shallow <- subset(ctd, Depth == "Shallow") 

 

Secchi-depth 

secchi = read_excel("Secchi.xlsx") 

secchi$Date = as.factor(secchi$Date) 

s1 = subset(secchi, Date =="2022-06-02") 

s1$Date = "02.06.2022" 

s2 = subset(secchi, Date =="2022-06-29") 

s2$Date = "29.06.2022" 

secchi = rbind(s1,s2) 
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#Temperature at each station and date 

p1= ggplot(ctd_shallow, aes(x = fct_inorder(Site),y=temperature, color = fct_inorder(Date)))+ 

 geom_point(size = 3)+ 

 geom_line(aes(group=Info))+ 

 xlab("Station")+ 

 ylab("Temperature ( C) ")+ 

 labs(colour = "Date") + 

 ylim(0, 20) + 

 scale_color_manual(values = my_colour_palette)+ 

 My_theme 

 

#Salinity at each station and date 

p2=ggplot(ctd_shallow, aes(x = fct_inorder(Site), y=salinity, color = fct_inorder(Date) ))+ 

 geom_point(size = 3)+ 

 geom_line(aes(group=Info))+ 

 xlab("Station")+ 

 ylab("Salinity (PSU)")+ 

 labs(colour = "Date") + 

 ylim(0, 33) + 

 scale_color_manual(values= my_colour_palette)+ 

 My_theme 

 

#Pycnocline at each station and date 

p3 = ggplot(ctd_shallow, aes(x = fct_inorder(Site), y= Pycnocline, color = fct_inorder(Date)))+ 

 geom_point(size = 3)+ 

 geom_line(aes(group=Info))+ 

 xlab("Station")+ 
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 ylab("Pycnocline depth (m)")+ 

 labs(colour = "Date") + 

 ylim(0, 25) + 

 scale_color_manual(values = my_colour_palette) + 

 My_theme 

 

#Secchi-depth at each station and date 

p4 = ggplot(secchi, aes(x = fct_inorder(Site), y= Secchi_depth, color = fct_inorder(Date)))+ 

 geom_line(aes(group = Date))+ 

 geom_point(size = 3)+ 

 xlab("Station")+ 

 ylab("Secchi depth (m)")+ 

 labs(colour = "Date") + 

 ylim(0, 10) + 

 scale_color_manual(values = c("blue", "deepskyblue2")) + 

 My_theme 

 

 

plot_grid(p1, p2, p3, p4, labels = c('A', 'B', 'C','D'), label_size = 13) 

ggsave(filename = "CTD.pdf", width = 7.29, height = 4.75)  

 

 

TriOS-data 

 Example for station OF2, cruise 1 

 

station1.1 <- "OF2-1" 

OF2.1 <- dir(station1.1) # List file names 
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# We only use "Spectrum" files from sensor "501A". This sensor faces upward and also measures 

depth. Need sensor "8175" for normalizing to surface 

 

OF2.1 <- OF2.1[grep("Spectrum", OF2.1)] 

OF2.down.1 <- OF2.1[grep("501A", OF2.1)] 

OF2.air.1 <- OF2.1[grep("8175", OF2.1)] 

 

s1.down.1 <- NULL 

for (i in 1:length(OF2.down.1)) { 

 # First read file as a vector of strings 

 file.path <- paste(station1.1, OF2.down.1[i], sep="/") 

 raw.file <- read.table(file.path, sep="\t", as.is=TRUE)$V1 

  

 # Find "Pressure =" line to extract pressure 

 p.line <- raw.file[grep("Pressure", raw.file)] 

 pressure <- as.numeric(strsplit(p.line, "=")[[1]][2]) 

  

 # Find start of spectrum section and read 254 lines from there 

 spec.start <- which(raw.file == "[END] of [Attributes]") + 3 

  

 # Read the file again but only the spectrum this time 

 spectrum <- read.table(file.path, skip=spec.start, nrows=254) 

  

 # Merge spectrum with sensor and time information 

 s1.down.i.1 <- data.frame( 

  id = i,  

  depth = 10.06 * pressure, 

  wl = spectrum$V1, 

  pwr = spectrum$V2) 
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 # Append to spectrum data frame 

 s1.down.1 <- rbind(s1.down.1, s1.down.i.1) 

} 

 

 

s1.air.1 <- NULL 

for (i in 1:length(OF2.air.1)) { 

 # First read file as a vector of strings 

 file.path <- paste(station1.1, OF2.air.1[i], sep="/") 

 raw.file <- read.table(file.path, sep="\t", as.is=TRUE)$V1 

  

  

 # Find start of spectrum section and read 254 lines from there 

 spec.start <- which(raw.file == "[END] of [Attributes]") + 3 

  

 # Read the file again but only the spectrum this time 

 spectrum <- read.table(file.path, skip=spec.start, nrows=254) 

  

 # Merge spectrum with sensor and time information 

 s1.air.i.1 <- data.frame( 

  id = i,  

  wl = spectrum$V1, 

  pwr = spectrum$V2) 

  

 # Append to spectrum data frame 

 s1.air.1 <- rbind(s1.air.1, s1.air.i.1) 

} 
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s1.down.1 <- subset(s1.down.1, wl < 700) # Remove > 700 nm 

s1.down.1 <- subset(s1.down.1, wl > 400) #remove < 400 nm 

s1.down.1 <- subset(s1.down.1, depth > 0) # Remove above surface 

 

 

 

s1.air.1 <- subset(s1.air.1, wl < 700) 

s1.air.1 <- subset(s1.air.1, wl > 400) 

 

 

s1.down.1$pwr.rel <- s1.down.1$pwr / s1.air.1$pwr #normalize to surface  

s1.down.1$Station <- "OF2" 

s1.down.1$Date <- "12.05.22" 

 

field_1 <- rbind(s1.down.1, s2.down.1, s3.down.1, s4.down.1, s5.down.1) #all stations from cruise 

1 

 

trios <- rbind(field_1, field_2, field_3) #all cruise dates 

saveRDS(trios, "trios.rds") 

 

 

trios <- readRDS("trios.rds") 

ctd <- readRDS("ctd.rds") 

ctd_shallow <- subset(ctd, Depth == "Shallow") 

 

 

 

trios_pos <- subset(trios, pwr > 0) 

trios_pos$dsw <- with(trios_pos, factor(paste(Date, Station, wl))) 



83 
 

 

summary(m <- lmer(log(pwr.rel) ~ depth + (depth | dsw), data=trios_pos)) 

 

plot(log(trios_pos$pwr.rel), predict(m)) # Good fit :) 

abline(c(0, 1), lty=2) 

 

dsw <- rownames(ranef(m)$dsw) #date, station, wavelength  

att <- -(fixef(m)[2] + ranef(m)$dsw[, 2]) # Negative slope is attenuation coefficient as function of 

wavelength 

 

date <- factor(sapply(strsplit(dsw, " "), function(x) { x[1] })) 

station <- factor(sapply(strsplit(dsw, " "), function(x) { x[2] })) 

wl <- as.numeric(sapply(strsplit(dsw, " "), function(x) { x[3] })) 

 

df_t<- data.frame(Date=as.Date(date, format="%d.%m.%y"), Site=station, wl, att) 

 

 

ctd_shallow$Date <- as.Date(ctd_shallow$Date, format="%d.%m.%Y") 

 

dfc <- merge(df_t, ctd_shallow) 

 

 

#Plotting the attenuation coefficient over wavelength for each station and date  

df_t %>% 

 mutate(date = fct_relevel(date, "12.05.22", "02.06.22", "29.06.22")) %>% 

  

 mutate(Site = fct_relevel(Site, "L1", "L5", "I1", "O1", "OF2")) %>% 

 ggplot( aes(x=wl, y=att, group=date, color = date)) + 

 geom_line() + 
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 facet_wrap(~ Site) + 

 ylab("Attenuation") + 

 xlab("Wavelength (nm)") + 

 scale_color_manual(values = my_colour_palette)+ 

 My_theme + theme(axis.text.x = element_text(angle=90)) 

 

ggsave(filename = "att.pdf", width = 7.29, height = 4.75) 

 

 

Gas chromatography  

carbon <- read_xlsx("Gassanalyser_Tonje_s.xlsx") 

library(marelac) 

 

t <- 4  

 

T <- 273.15 + t # K 

R <- as.numeric(Constants$gasCt1[1]) # L*atm/K/mol 

 

ph <- carbon$CO2 / 1000000 # (Atm) - assuming unit is ppm partial pressure in headspace  

 

Vw <- 30 / 1000 # Water volume (L) 

Vh <- 20 / 1000 # Headspace volume (L) 

 

# Ideal gas law: p V = n R T -> n = p V / RT 

nh <- (ph * Vh) / (R * T) # Moles CO2 in the headspace 

 

# gas_solubility gives mmol/m3/bar = µM / bar 

gs <- gas_solubility(t = t, S = carbon$Salinity, species = "CO2")  # S= salinity adapted from CTD-data 
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nw <- (ph * gs) * Vw # Moles CO2 in the water after equilibration 

 

C0 <- (nh + nw) / Vw # Initial DIC concentration (µM) before acidification 

 

carbon$C0 <- C0  

 

saveRDS(carbon, "carbon.rds") 

 

 

Prediction of DIC concentration  

C0.min <- aggregate(C0 ~ Station + Date, data=df_light, FUN=min) 

sal.mean <- aggregate(Salinity ~ Station + Date, data=df_light, FUN=mean) 

 

df_1 <- merge(C0.min, sal.mean) 

 

 

m_C0 <- lm(C0 ~ Salinity, data = df_1) 

 

 

 

Predictions of minimum attenuation coefficient and wavelength at minimum  

att.min <- aggregate(att ~ station + date, data=dfc, FUN=min) 

wl.min <- aggregate(att ~ station + date, data=dfc, FUN=function(x) { wl[which.min(x)] }) 

sal.mean <- aggregate(salinity ~ station + date, data=dfc, FUN=mean) 

 

 

wl.min$wl <- wl.min$att 

 

wl.min <- subset(wl.min, select = - att) 
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df_1 <- merge(att.min, wl.min) 

df_1 <- merge(df_1, sal.mean) 

 

 

#Linear models for predictions 

m_att <- lm(att ~ salinity, data = df_1) 

m_wl <- lm(wl ~ salinity, data = df_1) 

 

pred_att <- predict(m_att, newdata = list(salinity = c(0,33)), interval = "confidence") 

pred_wl <- predict(m_wl, newdata = list(salinity = c(0,33)), interval = "confidence") 

pred_C0 <- predict(m_C0, newdata = list(salinity = c(0,33)), interval = "confidence") 

 

columns = c("Variable", "PSU", "fit", "lwr", "upr") 

 

pred_df <- data.frame(matrix(nrow = 6, ncol = length(columns))) 

 

pred_df$Variable <- c("Attenuation", "Attenuation", "Wavelength", "Wavelength", "DIC", "DIC") 

 

pred_df$PSU <- c("0", "33", "0", "33", "0", "33") 

 

pred_df$fit <- c(0.70783984, -0.07175787, 582.4851, 557.8619, 458.7964, 2065.5555) 

 

pred_df$lwr <- c(0.5966106,-0.2110134, 577.5668, 551.7043, 352.0288, 1931.8859 ) 

 

pred_df$upr <- c(0.8190691, 0.06749763, 587.4035, 564.0195, 565.564, 2199.225) 

 

pred_df <- pred_df[6:10] 
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pred_df_att <- subset(pred_df, Variable == "Attenuation") 

pred_df_wl <- subset(pred_df, Variable == "Wavelength") 

pred_df_C <- subset(pred_df, Variable == "DIC") 

 

#95% confidence intervals for attenuation predictions 

p1 = ggplot(pred_df_att, aes(x= PSU, y = fit, color = PSU )) + 

 geom_point(size = 3) + 

 geom_errorbar(aes(ymin = lwr, ymax = upr)) + 

 ylab("Attenuation") + 

 scale_color_manual(values = c("navy", "deepskyblue2")) + 

 My_theme + theme(strip.text.x = element_text(size = 13)) 

 

#95% confidence intervals for wavelength predictions 

p2 = ggplot(pred_df_wl, aes(x= PSU, y = fit, color = PSU )) + 

 geom_point(size = 3) + 

 geom_errorbar(aes(ymin = lwr, ymax = upr)) + 

 ylab("Wavelength (nm)") + 

 scale_color_manual(values = c("navy", "deepskyblue2")) + 

 My_theme + theme(strip.text.x = element_text(size = 13)) 

 

#95% confidence intervals for DIC concentration predictions 

p3 = ggplot(pred_df_C, aes(x= PSU, y = fit, color = PSU )) + 

 geom_point(size = 3) + 

 geom_errorbar(aes(ymin = lwr, ymax = upr)) + 

 ylab("DIC (umol/L)") + 

 scale_color_manual(values = c("navy", "deepskyblue2")) + 

 My_theme + theme(strip.text.x = element_text(size = 13)) 
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Plotting predictions for attenuation minimum, wavelength at minimum and minimum DIC 

plot_grid(p1, p2, p3, labels = c("A", "B","C")) 

ggsave(filename = "pred.pdf", width = 7.29, height = 4.75) 

 

 

Integrating sphere spectrophotometry 

L1_1 <- read.table("L1 C1 F1.txt", header = TRUE, sep = ",") 

as.data.frame(L1_1) 

L1_1$ID = "L1_1" 

L1_1$Station= "L1" 

L1_1$Abs. = L1_1$Abs. - 0.059 

 

 

L1_1_bleach <- read.table("L1 C1 F1 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(L1_1_bleach) 

L1_1_bleach$ID = "L1_1_bleach" 

L1_1_bleach$Station= "L1" 

L1_1_bleach$Abs. = L1_1_bleach$Abs. - 0.024 

 

L1_2 <- read.table("L1 C1 F2.txt", header = TRUE, sep = ",") 

as.data.frame(L1_2) 

L1_2$ID = "L1_2" 

L1_2$Station= "L1" 

L1_2$Abs. = L1_2$Abs. - 0.057 

 

L1_2_bleach <- read.table("L1 C1 F2 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(L1_2_bleach) 

L1_2_bleach$ID = "L1_2_bleach" 

L1_2_bleach$Station= "L1" 
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L1_2_bleach$Abs. = L1_2_bleach$Abs. - 0.037 

 

 

L1_3 <- read.table("L1 C1 F3.txt", header = TRUE, sep = ",") 

as.data.frame(L1_3) 

L1_3$ID = "L1_3" 

L1_3$Station= "L1" 

L1_3$Abs. = L1_3$Abs. - 0.060 

 

L1_3_bleach <- read.table("L1 C1 F3 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(L1_3_bleach) 

L1_3_bleach$ID = "L1_3_bleach" 

L1_3_bleach$Station= "L1" 

L1_3_bleach$Abs. = L1_3_bleach$Abs. - 0.024 

 

 

 

L5_1 <- read.table("L5 C1 F1.txt", header = TRUE, sep = ",") 

as.data.frame(L5_1) 

L5_1$ID = "L5_1" 

L5_1$Station= "L5"  

L5_1$Abs. = L5_1$Abs. - 0.005 

 

L5_1_bleach <- read.table("L5 C1 F1 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(L5_1_bleach) 

L5_1_bleach$ID = "L5_1_bleach" 

L5_1_bleach$Station= "L5" 

L5_1_bleach$Abs. = L5_1_bleach$Abs.- (-0.017) 
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L5_2 <- read.table("L5 C1 F2.txt", header = TRUE, sep = ",") 

as.data.frame(L5_2) 

L5_2$ID = "L5_2" 

L5_2$Station= "L5" 

L5_2$Abs. = L5_2$Abs. -(-0.034) 

 

L5_2_bleach <- read.table("L5 C1 F2 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(L5_2_bleach) 

L5_2_bleach$ID = "L5_2_bleach" 

L5_2_bleach$Station= "L5" 

L5_2_bleach$Abs. = L5_2_bleach$Abs. - (-0.036) 

 

 

L5_3 <- read.table("L5 C1 F3.txt", header = TRUE, sep = ",") 

as.data.frame(L5_3) 

L5_3$ID = "L5_3" 

L5_3$Station= "L5" 

L5_3$Abs. = L5_3$Abs. - (-0.040) 

 

L5_3_bleach <- read.table("L5 C1 F3 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(L5_3_bleach) 

L5_3_bleach$ID = "L5_3_bleach" 

L5_3_bleach$Station= "L5" 

L5_3_bleach$Abs. = L5_3_bleach$Abs. - (-0.070) 

 

 

I1_1 <- read.table("I1 C1 F1.txt", header = TRUE, sep = ",") 

as.data.frame(I1_1) 

I1_1$ID = "I1_1" 
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I1_1$Station= "I1" 

I1_1$Abs. = I1_1$Abs. - (-0.023) 

 

 

 

I1_1_bleach <- read.table("I1 C1 F1 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(I1_1) 

I1_1_bleach$ID = "I1_1_bleach" 

I1_1_bleach$Station= "I1" 

I1_1_bleach$Abs. = I1_1_bleach$Abs. - (-0.053) 

 

 

I1_2 <- read.table("I1 C1 F2.txt", header = TRUE, sep = ",") 

as.data.frame(I1_2) 

I1_2$ID = "I1_2" 

I1_2$Station= "I1" 

I1_2$Abs. = I1_2$Abs. - (-0.016) 

 

I1_2_bleach <- read.table("I1 C1 F2 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(I1_2_bleach) 

I1_2_bleach$ID = "I1_2_bleach" 

I1_2_bleach$Station= "I1" 

I1_2_bleach$Abs. = I1_2_bleach$Abs. - (-0.047) 

 

 

I1_3 <- read.table("I1 C1 F3.txt", header = TRUE, sep = ",") 

as.data.frame(I1_3) 

I1_3$ID = "I1_3" 

I1_3$Station= "I1" 
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I1_3$Abs. = I1_3$Abs. - (-0.019) 

 

 

I1_3_bleach <- read.table("I1 C1 F3 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(I1_3_bleach) 

I1_3_bleach$ID = "I1_3_bleach" 

I1_3_bleach$Station= "I1" 

I1_3_bleach$Abs. = I1_3_bleach$Abs. - (-0.058) 

 

 

O1_1 <- read.table("O1 F1 C1.txt", header = TRUE, sep = ",") 

as.data.frame(O1_1) 

O1_1$ID = "O1_1" 

O1_1$Station= "O1" 

O1_1$Abs. = O1_1$Abs. - (-0.010) 

 

O1_1_bleach <- read.table("O1 F1 C1 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(O1_1) 

O1_1_bleach$ID = "O1_1_bleach" 

O1_1_bleach$Station= "O1" 

O1_1_bleach$Abs. = O1_1_bleach$Abs. - (-0.051) 

 

 

O1_2 <- read.table("O1 F2 C1.txt", header = TRUE, sep = ",") 

as.data.frame(O1_2) 

O1_2$ID = "O1_2" 

O1_2$Station= "O1" 

O1_2$Abs. = O1_2$Abs. - (-0.067) 
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O1_2_bleach <- read.table("O1 F2 C1 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(O1_2_bleach) 

O1_2_bleach$ID = "O1_2_bleach" 

O1_2_bleach$Station= "O1" 

O1_2_bleach$Abs. = O1_2_bleach$Abs. - (-0.072) 

 

O1_3 <- read.table("O1 F3 C1.txt", header = TRUE, sep = ",") 

as.data.frame(O1_3) 

O1_3$ID = "O1_3" 

O1_3$Station= "O1" 

O1_3$Abs. = O1_3$Abs. - (-0.044) 

O1_3_bleach <- read.table("O1 F3 C1 bleach.txt", header = TRUE, sep = ",") 

as.data.frame(O1_3_bleach) 

O1_3_bleach$ID = "O1_3_bleach" 

O1_3_bleach$Station= "O1" 

O1_3_bleach$Abs.= O1_3_bleach$Abs. - (-0.084) 

 

 

OF2_1 <- read.table("OF2 F1 C1.txt", header = TRUE, sep = "," ) 

as.data.frame(OF2_1) 

OF2_1$ID = "OF2_1" 

OF2_1$Station= "OF2" 

OF2_1$Abs. = OF2_1$Abs. - 0.096 

 

 

 

OF2_1_bleach <- read.table("OF2 F1 C1 bleach.txt", header = TRUE, sep = "," ) 

as.data.frame(OF2_1_bleach) 
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OF2_1_bleach$ID = "OF2_1_bleach" 

OF2_1_bleach$Station= "OF2" 

OF2_1_bleach$Abs. = OF2_1_bleach$Abs. - 0.069 

 

 

OF2_2 <- read.table("OF2 F2 C1.txt", header = TRUE, sep = "," ) 

as.data.frame(OF2_2) 

OF2_2$ID = "OF2_2" 

OF2_2$Station= "OF2" 

OF2_2$Abs.= OF2_2$Abs.- 0.058 

 

 

OF2_2_bleach <- read.table("OF2 F2 C1 bleach.txt", header = TRUE, sep = "," ) 

as.data.frame(OF2_2_bleach) 

OF2_2_bleach$ID = "OF2_2_bleach" 

OF2_2_bleach$Station= "OF2" 

OF2_2_bleach$Abs. = OF2_2_bleach$Abs. - 0.056 

 

OF2_3 <- read.table("OF2 F3 C1.txt", header = TRUE, sep = "," ) 

as.data.frame(OF2_3) 

OF2_3$ID = "OF2_3" 

OF2_3$Station= "OF2" 

OF2_3$Abs. = OF2_3$Abs. - 0.068 

 

 

OF2_3_bleach <- read.table("OF2 F3 C1 bleach.txt", header = TRUE, sep = "," ) 

as.data.frame(OF2_3_bleach) 

OF2_3_bleach$ID = "OF2_3_bleach" 

OF2_3_bleach$Station= "OF2" 
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OF2_3_bleach$Abs. = OF2_3_bleach$Abs. - 0.030 

 

 

pigment_df <- rbind(L1_1, L1_2, L1_3, L5_1, L5_2, L5_3, I1_1, I1_2, I1_3, O1_1, O1_2, O1_3, 

OF2_1, OF2_2, OF2_3) 

 

bleached_pigment_df <- rbind(L1_1_bleach, L1_2_bleach, L1_3_bleach, L5_1_bleach, 

L5_2_bleach, L5_3_bleach, I1_1_bleach, I1_2_bleach, I1_3_bleach, O1_1_bleach, O1_2_bleach, 

O1_3_bleach, OF2_1_bleach, OF2_2_bleach, OF2_3_bleach) 

 

pigment_df <- subset(pigment_df, Wavelength.nm. > 399) 

pigment_df <- subset(pigment_df, Wavelength.nm. < 701) 

 

bleached_pigment_df <- subset(bleached_pigment_df, Wavelength.nm. > 399) 

bleached_pigment_df <- subset(bleached_pigment_df, Wavelength.nm. < 701) 

 

pigment_df$Abs. <- pigment_df$Abs. - bleached_pigment_df$Abs. 

 

pigment_df <- aggregate(Abs.~ Wavelength.nm. + Station, data = pigment_df, FUN = mean) 

bleached_pigment_df <- aggregate(Abs.~ Wavelength.nm. + Station, data = bleached_pigment_df, 

FUN = mean) 

  

CDOM absorbance from UV-vis spectrophotometry 

O1_cdom <- read.table("C1O1,3-4m.txt", header = TRUE, sep = ",") 

as.data.frame(O1_cdom) 

O1_cdom$Station= "O1" 

O1_cdom$Abs. = O1_cdom$Abs. - 0.001 

 

L1_cdom <- read.table("C1L1,3-4m.txt", header = TRUE, sep = ",") 



96 
 

as.data.frame(L1_cdom) 

L1_cdom$Station= "L1" 

L1_cdom$Abs. = L1_cdom$Abs. - 0.005 

 

I1_cdom <- read.table("C1I1,3-4m.txt", header = TRUE, sep = ",") 

as.data.frame(I1_cdom) 

I1_cdom$Station= "I1" 

I1_cdom$Abs. = I1_cdom$Abs. - 0.002 

 

L5_cdom <- read.table("C1L5,3-4m.txt", header = TRUE, sep = ",") 

as.data.frame(L5_cdom) 

L5_cdom$Station= "L5" 

L5_cdom$Abs. = L5_cdom$Abs. - 0.000 

 

OF2_cdom <- read.table("C1OF2,3-4m.txt", header = TRUE, sep = ",") 

as.data.frame(OF2_cdom) 

OF2_cdom$Station= "OF2" 

OF2_cdom$Abs. = OF2_cdom$Abs. - 0.000 

 

cdom <- rbind(O1_cdom, L1_cdom, L5_cdom, I1_cdom, OF2_cdom) 

cdom <- subset(cdom, Wavelength.nm. > 399) 

cdom <- subset(cdom, Wavelength.nm. < 701) 

 

Water absorbance coefficient from Morel & Prieur (1977) 

water <- read_xlsx("water abs coeff.xlsx") 

water <- subset(water, Wavelength.nm. > 399 ) 

 

ggplot(water, aes(x=Wavelength.nm., y =Abs_coeff)) + 

 geom_line() + 
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 xlab("Wavelength (nm)") + 

 ylab("Absorbance coefficient per meter") + 

 My_theme 

 

ggsave(filename = "waterabs.pdf", width = 7.29, height = 4.75 ) 

  

Pigment, detritus and CDOM absorbance coefficients 

V <- 250/1000000 # m3  

A <- 363.05/1000000  #m2  

 

path <- V/A 

 

pigment_df$abs_coeff_a <- log(10)*pigment_df$Abs./path 

 

cdom$abs_coeff_dom <- log(10)*cdom$Abs./0.05 

 

bleached_pigment_df$abs_coeff_d <- log(10)*bleached_pigment_df$Abs./path 

 

 

PAR from STRÅNG 

ex1 <- read_xlsx("par-strang1213.xlsx") 

ex1$time.str <- with(ex1, paste0(V1, "-", V2, "-", V3, " ", V4, ":00:00")) 

ex1$time <- as.POSIXct(strptime(ex1$time.str, "%Y-%m-%d %H:%M:%S")) 

 

(sum.par <- 60 * 60 * sum(ex1$V5[19:43]) / 1000000) # J/m2/d fra watt (J/s) /m2 

(par.mol <- 4.57 * sum.par) # Thimijan & Heins (1983) #mol kvanta per m2 per dag 

 

#ca 30 mol quanta per square meter per day. 
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ggplot(data = ex1, aes(y=V5, x =time))+ 

 geom_line(color = "blue")+ 

 ylab("PAR (W/m^2)")+ 

 xlab("Date - Time ")+ 

 geom_vline(xintercept = ex1$time[19])+ 

 geom_vline(xintercept = ex1$time[43])+ 

 My_theme 

 

ggsave(filename = "par1.pdf", width = 7.29, height = 4.75) 

 

PAM fluorometry  

h <- dir(pattern=".txt") 

h <- h[grepl("LC1",h)] 

 

hh <- strsplit(h, " ") 

 

station <- sapply(hh, function(x) { x[1] }) 

 

date <- substr(sapply(hh, function(x) { x[2] }), 1, 8) 

date <- as.Date(date, format="%d%m%Y") 

 

QY <- matrix(NA, ncol=7, nrow=length(h)) 

colnames(QY) <- paste0("L", 0:6) 

 

for (i in (1:length(h))) { 

 df <- read.csv(h[i], sep = "\n") 

 df <- strsplit(df[grep("QY", df[,1]), 1], "\t") 

 QY[i, ] <- as.numeric(sapply(df, function(x) { x[2] })) 

} 
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df <- data.frame(station, date, stack(as.data.frame(QY)))  

EL <- data.frame(ind=paste0("L", 0:6), E=c(0, 10, 20, 50, 100, 300, 500)) 

 

df <- merge(df, EL) 

names(df) <- c("ind", "station", "date", "QY","E")  

 

df %>% 

 mutate(station = fct_relevel(station,  

                "L1", "L5", "I1",  

                "O1", "OF2")) %>% 

 ggplot( aes(x=E, y=QY, shape=station, color = station)) + 

 geom_point(size = 3) +  

 scale_y_log10() + 

 xlab("E (µmol quanta/m2/s)") + 

 My_theme 

ggsave(filename = "QY1.pdf", width = 7.29, height = 4.75) 

 

 

bleached_pigment_df$Abs_d = bleached_pigment_df$Abs. 

bleached_pigment_df = subset(bleached_pigment_df, select = - Abs.) 

 

 

pigment_df$Abs_a = pigment_df$Abs. 

pigment_df = subset(pigment_df, select = - Abs.) 

 

cdom$Abs_dom = cdom$Abs. 

cdom = subset(cdom, select = - Abs.) 
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df_all <- merge(bleached_pigment_df, pigment_df) 

 

df_all <- merge(df_all, cdom) 

 

df_all$Abs_H2O <- approx(water$Wavelength.nm., water$Abs_coeff, 

xout=df_all$Wavelength.nm.)$y 

 

df_all$Date <- "12.05.22" 

 

Cumulative absorbance, OF2 

OF2 <- subset(df_all, station == "OF2") 

 

OF2 <- data.frame(OF2, stack(data.frame(OF2$Abs_H2O, OF2$abs_coeff_dom, OF2$abs_coeff_d, 

OF2$abs_coeff_a))) 

 

p1 = ggplot(OF2, aes(x=Wavelength.nm., y=values, fill=ind)) +  

 geom_area() + 

 ylab("Absorbance (m-1)") +  

 xlab("Wavelength (nm)") + 

 ylim(0,6) + 

 ggtitle("OF2 12/5-22") + 

 scale_fill_manual(name = "Type",values = c("deepskyblue2", "darkgoldenrod3", "bisque4", 

"chartreuse3"), labels = c("H2O", "CDOM", "Detritus", "Pigment"), guide = "legend")+ 

 My_theme 

 

Cumulative absorbance, O1 

O1 <- subset(df_all, station == "O1") 
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O1 <- data.frame(O1, stack(data.frame(O1$Abs_H2O, O1$abs_coeff_dom, O1$abs_coeff_d, 

O1$abs_coeff_a)) 

 

p2 = ggplot(O1, aes(x=Wavelength.nm., y=values, fill=ind)) +  

 geom_area() + 

 ylab("Absorbance (m-1)") +  

 xlab("Wavelength (nm)") + 

 ylim(0,6) +  

 ggtitle("O1 12/5-22") + 

 scale_fill_manual(name = "Type",values = c("deepskyblue2", "darkgoldenrod3", "bisque4", 

"chartreuse3"), labels = c("H2O", "CDOM", "Detritus", "Pigment"), guide = "legend")+ 

 My_theme 

 

 

Cumulative absorbance, I1 

I1 <- subset(df_all, station == "I1") 

 

I1 <- data.frame(I1, stack(data.frame(I1$Abs_H2O, I1$abs_coeff_dom, I1$abs_coeff_d, 

I1$abs_coeff_a))) 

 

p3 = ggplot(I1, aes(x=Wavelength.nm., y=values, fill=ind)) +  

 geom_area() + 

 ylab("Absorbance (m-1)") +  

 xlab("Wavelength (nm)") + 

 ylim(0,6) +  

 ggtitle("I1 12/5-22") + 

 scale_fill_manual(name = "Type",values = c("deepskyblue2", "darkgoldenrod3", "bisque4", 

"chartreuse3"), labels = c("H2O", "CDOM", "Detritus", "Pigment"), guide = "legend")+ 

 My_theme 
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Cumulative absorbance, L5 

L5 <- subset(df_all, station == "L5") 

 

L5 <- data.frame(L5, stack(data.frame(L5$Abs_H2O, L5$abs_coeff_dom, L5$abs_coeff_d, 

L5$abs_coeff_a))) 

 

p4 = ggplot(L5, aes(x=Wavelength.nm., y=values, fill=ind)) +  

 geom_area() + 

 ylab("Absorbance (m-1)") +  

 xlab("Wavelength (nm)") + 

 ylim(0,6) + 

 ggtitle("L5 12/5-22") + 

 scale_fill_manual(name = "Type",values = c("deepskyblue2", "darkgoldenrod3", "bisque4", 

"chartreuse3"), labels = c("H2O", "CDOM", "Detritus", "Pigment"), guide = "legend")+ 

 My_theme 

 

 

Cumulative absorbance, L1 

L1 <- subset(df_all, station == "L1") 

 

L1 <- data.frame(L1, stack(data.frame(L1$Abs_H2O, L1$abs_coeff_dom, L1$abs_coeff_d, 

L1$abs_coeff_a))) 

 

 

 

p5 = ggplot(L1, aes(x=Wavelength.nm., y=values, fill=ind)) +  

 geom_area() + 

 ylab("Absorbance (m-1)") +  
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 xlab("Wavelength (nm)") + 

 ylim(0,6) + 

 ggtitle("L1 12/5-22") +  

 scale_fill_manual(name = "Type",values = c("deepskyblue2", "darkgoldenrod3", "bisque4", 

"chartreuse3"), labels = c("H2O", "CDOM", "Detritus", "Pigment"), guide = "legend")+ 

 My_theme 

 

 

plot_grid(p5, p1, labels = c('A', 'B'), label_size = 14) 

 

ggsave(filename = "pigment11.pdf", width = 7.29, height = 4.75) 

 

plot_grid(p2, p3, p4, labels = c( 'C','D', 'E'), label_size = 14) 

 

ggsave(filename = "pigment1.pdf", width = 7.29, height = 4.75) 

 

 

Spectrally averaged pigment, CDOM, detritus and water absorbance  

abs_coeff_d_df <- subset(df_all, select = - c(abs_coeff_a, Abs_H2O, Abs_dom, Abs_a, 

abs_coeff_dom, Abs_d)) 

 

abs_coeff_d_df$Value <-abs_coeff_d_df$abs_coeff_d 

 

abs_coeff_d_df$Type <- "Abs_coeff_d" 

 

abs_coeff_d_df <- subset(abs_coeff_d_df, select = - abs_coeff_d) 
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abs_coeff_a_df <- subset(df_all, select = - c(abs_coeff_d, Abs_H2O, Abs_dom, Abs_a, 

abs_coeff_dom, Abs_d)) 

 

abs_coeff_a_df$Value <-abs_coeff_a_df$abs_coeff_a 

 

abs_coeff_a_df$Type <- "Abs_coeff_a" 

 

abs_coeff_a_df <- subset(abs_coeff_a_df, select = - abs_coeff_a) 

 

 

abs_coeff_dom_df <- subset(df_all, select = - c(abs_coeff_a, Abs_H2O, Abs_dom, Abs_a, 

abs_coeff_d, Abs_d)) 

 

abs_coeff_dom_df$Value <-abs_coeff_dom_df$abs_coeff_dom 

 

abs_coeff_dom_df$Type <- "Abs_coeff_dom" 

 

abs_coeff_dom_df <- subset(abs_coeff_dom_df, select = - abs_coeff_dom) 

 

 

abs_coeff_H2O_df <- subset(df_all, select = - c(abs_coeff_a, abs_coeff_d, Abs_dom, Abs_a, 

abs_coeff_dom, Abs_d)) 

 

abs_coeff_H2O_df$Value <-abs_coeff_H2O_df$Abs_H2O 

 

abs_coeff_H2O_df$Type <- "Abs_coeff_H2O" 

 

abs_coeff_H2O_df <- subset(abs_coeff_H2O_df, select = - Abs_H2O) 
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df_abs <- rbind(abs_coeff_H2O_df, abs_coeff_a_df, abs_coeff_d_df, abs_coeff_dom_df) 

 

df_abs$Abs_mean <- df_abs$Value/300 

 

saveRDS(df_abs, "df_abs1") 

 

 

Total spectrally averaged absorbance across stations and dates 

df_abs1 <- readRDS("df_abs1") 

 

df_abs2 <- readRDS("df_abs2") 

 

df_abs3 <- readRDS("df_abs3") 

 

df_abs <- rbind(df_abs1, df_abs2, df_abs3) 

 

saveRDS(df_abs, "df_abs") 

 

abs <- df_abs %>% 

 mutate(Station = fct_relevel(Station,  

                "L1", "L5", "I1",  

                "O1", "OF2")) %>% 

 mutate(Date = fct_relevel(Date, "12.05.22", "02.06.22", "29.06.22")) %>% 

 ggplot( aes(fill=Type, y=Abs_mean, x=Date)) +  

 facet_grid(~ Station)+ 

 geom_bar(position="stack", stat="identity") + 
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 scale_fill_manual(name = "Type",values = c("deepskyblue2","chartreuse3", "bisque4", 

"darkgoldenrod3"), labels = c( "H2O", "Pigment", "Detritus", "CDOM")) + 

 My_theme + theme(strip.text.x = element_text(size = 13))+ 

 theme(axis.text.x = element_text(angle=90))+ 

 labs(y = bquote('Absorbance'~(m^-1)), x = "Date")  

abs 

 

ggsave(filename = "abstot.pdf", width = 7.29, height = 4.75) 

 

 

Bio optical rates of carbon uptake, cruise 1 

ctd <- readRDS("ctd.rds") 

 

ctd_shallow <- subset(ctd, Depth == "Shallow" & Date == "12.05.2022") 

 

OF2_pp <- subset(df_abs, Station == "OF2") 

OF2_Pycnocline <- ctd_shallow$Pycnocline[5] 

OF2_Salinity <- ctd_shallow$salinity[5] 

OF2_tot.abs <- sum(OF2_pp$Abs_mean) 

 

OF2_QY <- subset(df, station == "OF2") 

 

OF2_QY_mean <- mean(OF2_QY$QY) 

 

OF2_a <- subset(df_abs, Station == "OF2" & Type == "Abs_coeff_a") 

OF2_cdom <- subset(df_abs, Station == "OF2" & Type == "Abs_coeff_dom") 

 

 

O1_pp <- subset(df_abs, Station == "O1") 
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O1_Pycnocline <- ctd_shallow$Pycnocline[4] 

O1_Salinity <- ctd_shallow$salinity[4] 

O1_tot.abs <- sum(O1_pp$Abs_mean) 

 

O1_QY <- subset(df, station == "O1") 

 

O1_QY_mean <- mean(O1_QY$QY) 

 

O1_a <- subset(df_abs, Station == "O1" & Type == "Abs_coeff_a") 

O1_cdom <- subset(df_abs, Station == "O1" & Type == "Abs_coeff_dom") 

I1_pp <- subset(df_abs, Station == "I1") 

I1_Pycnocline <- ctd_shallow$Pycnocline[3] 

I1_Salinity <- ctd_shallow$salinity[3] 

I1_tot.abs <- sum(I1_pp$Abs_mean) 

 

I1_QY <- subset(df, station == "I1") 

 

I1_QY_mean <- mean(I1_QY$QY) 

 

I1_a <- subset(df_abs, Station == "I1" & Type == "Abs_coeff_a") 

I1_cdom <- subset(df_abs, Station == "I1" & Type == "Abs_coeff_dom") 

 

 

L5_pp <- subset(df_abs, Station == "L5") 

L5_Pycnocline <- ctd_shallow$Pycnocline[2] 

L5_Salinity <- ctd_shallow$salinity[2] 

L5_tot.abs <- sum(L5_pp$Abs_mean) 

 

L5_QY <- subset(df, station == "L5") 
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L5_QY_mean <- mean(L5_QY$QY) 

 

L5_a <- subset(df_abs, Station == "L5" & Type == "Abs_coeff_a") 

L5_cdom <- subset(df_abs, Station == "L5" & Type == "Abs_coeff_dom") 

 

 

L1_pp <- subset(df_abs, Station == "L1") 

L1_Pycnocline <- ctd_shallow$Pycnocline[1] 

L1_Salinity <- ctd_shallow$salinity[1] 

L1_tot.abs <- sum(L1_pp$Abs_mean) 

 

L1_QY <- subset(df, station == "L1") 

 

L1_QY_mean <- mean(L1_QY$QY) 

 

L1_a <- subset(df_abs, Station == "L1" & Type == "Abs_coeff_a") 

L1_cdom <- subset(df_abs, Station == "L1" & Type == "Abs_coeff_dom") 

 

 

 

E_0 <- 30 #mol/m^2/d 

 

E_OF2_pyc <- E_0 * exp( - OF2_tot.abs * OF2_Pycnocline) 

 

delta_E_OF2 = E_0 - E_OF2_pyc 

 

delta_Ea_OF2 = (sum(OF2_a$Abs_mean)/OF2_tot.abs)*delta_E_OF2  
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OF2_pp <- 0.08*delta_Ea_OF2*OF2_QY_mean 

 

OF2_pp_mg <- OF2_pp *12000 

 

 

columns <- c("Station", "Date","Pycnocline", "Salinity", "E_0","E_pyc", "delta_E", "delta_Ea", 

"Abs_a", "Abs_cdom", "Tot_abs", "pp", "pp_mg") 

new_df_OF2 <- data.frame(matrix(nrow = 1, ncol = length(columns))) 

 

new_df_OF2$Station <- "OF2" 

new_df_OF2$Date <- "12.05.22" 

new_df_OF2$Pycnocline <- OF2_Pycnocline 

new_df_OF2$Salinity <- OF2_Salinity 

new_df_OF2$E_0 <- 30 

new_df_OF2$E_pyc <- E_OF2_pyc 

new_df_OF2$delta_E <- delta_E_OF2 

new_df_OF2$delta_Ea <- delta_Ea_OF2 

new_df_OF2$Abs_a <- sum(OF2_a$Abs_mean) 

new_df_OF2$Abs_cdom <- sum(OF2_cdom$Abs_mean)  

new_df_OF2$Tot_abs <- OF2_tot.abs 

new_df_OF2$pp <- OF2_pp 

new_df_OF2$pp_mg <- OF2_pp_mg 

 

 

new_df_OF2 <- new_df_OF2[14:26] 
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E_O1_pyc <- E_0 * exp( - O1_tot.abs * O1_Pycnocline) 

 

delta_E_O1 = E_0 - E_O1_pyc 

 

delta_Ea_O1 = (sum(O1_a$Abs_mean)/O1_tot.abs)*delta_E_O1  

 

O1_pp <- 0.08*delta_Ea_O1*O1_QY_mean 

 

O1_pp_mg <- O1_pp *12000 

 

 

columns <- c("Station", "Date","Pycnocline", "Salinity", "E_0","E_pyc", "delta_E", "delta_Ea", 

"Abs_a", "Abs_cdom", "Tot_abs", "pp", "pp_mg") 

new_df_O1 <- data.frame(matrix(nrow = 1, ncol = length(columns))) 

 

new_df_O1$Station <- "O1" 

new_df_O1$Date <- "12.05.22" 

new_df_O1$Pycnocline <- O1_Pycnocline 

new_df_O1$Salinity <- O1_Salinity 

new_df_O1$E_0 <- 30 

new_df_O1$E_pyc <- E_O1_pyc 

new_df_O1$delta_E <- delta_E_O1 

new_df_O1$delta_Ea <- delta_Ea_O1 

new_df_O1$Abs_a <- sum(O1_a$Abs_mean) 

new_df_O1$Abs_cdom <- sum(O1_cdom$Abs_mean) 

new_df_O1$Tot_abs <- O1_tot.abs 

new_df_O1$pp <- O1_pp 

new_df_O1$pp_mg <- O1_pp_mg 
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new_df_O1 <- new_df_O1[14:26] 

 

 

E_I1_pyc <- E_0 * exp( - I1_tot.abs * I1_Pycnocline) 

 

delta_E_I1 = E_0 - E_I1_pyc 

 

delta_Ea_I1 = (sum(I1_a$Abs_mean)/I1_tot.abs)*delta_E_I1  

 

I1_pp <- 0.08*delta_Ea_I1*I1_QY_mean 

 

I1_pp_mg <- I1_pp *12000 

 

columns <- c("Station", "Date","Pycnocline", "Salinity", "E_0","E_pyc", "delta_E", "delta_Ea", 

"Abs_a", "Abs_cdom", "Tot_abs", "pp", "pp_mg") 

new_df_I1 <- data.frame(matrix(nrow = 1, ncol = length(columns))) 

 

new_df_I1$Station <- "I1" 

new_df_I1$Date <- "12.05.22" 

new_df_I1$Pycnocline <- I1_Pycnocline 

new_df_I1$Salinity <- I1_Salinity 

new_df_I1$E_0 <- 30 

new_df_I1$E_pyc <- E_I1_pyc 

new_df_I1$delta_E <- delta_E_I1 

new_df_I1$delta_Ea <- delta_Ea_I1 

new_df_I1$Abs_a <- sum(I1_a$Abs_mean) 

new_df_I1$Abs_cdom <- sum(I1_cdom$Abs_mean) 

new_df_I1$Tot_abs <- I1_tot.abs 
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new_df_I1$pp <- I1_pp 

new_df_I1$pp_mg <- I1_pp_mg 

 

 

new_df_I1 <- new_df_I1[14:26] 

 

 

E_L5_pyc <- E_0 * exp( - L5_tot.abs * L5_Pycnocline) 

 

delta_E_L5 = E_0 - E_L5_pyc 

 

delta_Ea_L5 = (sum(L5_a$Abs_mean)/L5_tot.abs)*delta_E_L5  

 

 

L5_pp <- 0.08*delta_Ea_L5*L5_QY_mean 

 

L5_pp_mg <- L5_pp *12000 

 

 

columns <- c("Station", "Date","Pycnocline", "Salinity", "E_0","E_pyc", "delta_E", "delta_Ea", 

"Abs_a", "Abs_cdom", "Tot_abs", "pp", "pp_mg") 

new_df_L5 <- data.frame(matrix(nrow = 1, ncol = length(columns))) 

 

new_df_L5$Station <- "L5" 

new_df_L5$Date <- "12.05.22" 

new_df_L5$Pycnocline <- L5_Pycnocline 

new_df_L5$Salinity <- L5_Salinity 

new_df_L5$E_0 <- 30 

new_df_L5$E_pyc <- E_L5_pyc 
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new_df_L5$delta_E <- delta_E_L5 

new_df_L5$delta_Ea <- delta_Ea_L5 

new_df_L5$Abs_a <- sum(L5_a$Abs_mean) 

new_df_L5$Abs_cdom <- sum(L5_cdom$Abs_mean) 

new_df_L5$Tot_abs <- L5_tot.abs 

new_df_L5$pp <- L5_pp 

new_df_L5$pp_mg <- L5_pp_mg 

 

 

new_df_L5 <- new_df_L5[14:26] 

 

 

E_L1_pyc <- E_0 * exp( - L1_tot.abs * L1_Pycnocline) 

 

delta_E_L1 = E_0 - E_L1_pyc 

 

delta_Ea_L1 = (sum(L1_a$Abs_mean)/L1_tot.abs)*delta_E_L1  

 

 

L1_pp <- 0.08*delta_Ea_L1*L1_QY_mean 

 

L1_pp_mg <- L1_pp *12000 

 

 

columns <- c("Station", "Date","Pycnocline", "Salinity", "E_0","E_pyc", "delta_E", "delta_Ea", 

"Abs_a", "Abs_cdom", "Tot_abs", "pp", "pp_mg") 

new_df_L1 <- data.frame(matrix(nrow = 1, ncol = length(columns))) 

 

new_df_L1$Station <- "L1" 
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new_df_L1$Date <- "12.05.22" 

new_df_L1$Pycnocline <- L1_Pycnocline 

new_df_L1$Salinity <- L1_Salinity 

new_df_L1$E_0 <- 30 

new_df_L1$E_pyc <- E_L1_pyc 

new_df_L1$delta_E <- delta_E_L1 

new_df_L1$delta_Ea <- delta_Ea_L1 

new_df_L1$Abs_a <- sum(L1_a$Abs_mean) 

new_df_L1$Abs_cdom <- sum(L1_cdom$Abs_mean) 

new_df_L1$Tot_abs <- L1_tot.abs 

new_df_L1$pp <- L1_pp 

new_df_L1$pp_mg <- L1_pp_mg 

 

 

new_df_L1 <- new_df_L1[14:26] 

 

 

new_df <- rbind(new_df_L1, new_df_L5) 

 

new_df <- rbind(new_df, new_df_I1) 

 

new_df <- rbind(new_df, new_df_O1) 

 

new_df <- rbind(new_df, new_df_OF2) 

 

 

saveRDS(new_df, "pp_sal.rds") 
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pp1_sal <- readRDS("pp_sal.rds") 

pp2_sal <- readRDS("pp2_sal.rds") 

pp3_sal <- readRDS("pp3_dom.rds") 

 

pp_sal <- rbind(pp1_sal, pp2_sal, pp3_sal) 

 

saveRDS(pp_sal, "pp_sal_bo.rds") 

 

 

pp_sal %>% 

 mutate(Station = fct_relevel(Station,  

                "L1", "L5", "I1",  

                "O1", "OF2")) %>% 

 mutate(Date = fct_relevel(Date, "12.05.22", "02.06.22", "29.06.22")) %>% 

 ggplot( aes(x= Salinity, y = pp_mg, colour = Date, shape = Station)) + 

 geom_point(size = 3) + 

 ylab("Carbon uptake mg C/ m2/ day") + 

 xlab("Salinity (PSU)") + 

 ylim(0,3000) + 

 scale_color_manual(values = my_colour_palette)+ 

 My_theme 

ggsave(filename = "biooptical.pdf", width = 7.29, height = 4.75) 

 

 

 

VGPM 

pp_vgpm <- subset(pigment_df, Wavelength.nm. > 630) 

 



116 
 

 

pp_vgpm_OF2 <- subset(pp_vgpm, Station == "OF2") 

 

pp_vgpm_O1 <- subset(pp_vgpm, Station == "O1") 

 

pp_vgpm_I1 <- subset(pp_vgpm, Station == "I1") 

 

pp_vgpm_L5 <- subset(pp_vgpm, Station == "L5") 

 

pp_vgpm_L1 <- subset(pp_vgpm, Station == "L1") 

 

#Day length function from BIOS4400 - Pelagic ecology, adapted from Brock (1981) 

my_function <- function(latitude){ 

 Lat <- latitude # defining the latitude (degrees) 

  

 lat <- 2 * pi * Lat / 360 # Latitude in radians 

 t <- 1:365 # Day of year 

  

 #declination, angle of the sun above the equator (measured in radians)) 

 dec <- 2 * pi * (23.45 / 360) * sin(2 * pi * (284 + t) / 365) 

  

 #cos(ω) as a function of declination (δ), latitude (ϕ) 

 cos.w <- -tan(dec) * tan(lat) 

  

 #restrict −1<cos(ω)<1 

 cos.w[cos.w > 1] <- 1 

 cos.w[cos.w < -1] <- -1 

  

 #calculate the angle (in radians) between south and the rising, or setting, sun. 
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 w <- acos(cos.w) 

  

 # recalculate the hour angle of sunrise into daylength in hours 

 dl <- 2 * w / (2 * pi * (15 / 360)) 

  

 # Trigonometric function because the distance from the Sun to Earth varies throughout the year 

(because of Earth´s elliptical shaped orbit) 

 Rx <- 1 / sqrt( 1 + 0.033 * cos(2 * pi * t / 365)) 

  

 #find the zenith angle or the solar elevation angle at noon by observing that ω=0 at noon (-> 

cos(ω) = 1) 

 # Find the solar elevation angle 

 cos.a <- sin(dec) * sin(lat) + cos(dec) * cos(lat) 

 cos.a[cos.a < 0] <- 0 

  

 SolarK <- 1373 # Solar constant (W / m2) 

 AtmAtt <- 0.5 # Atmospheric attenuation 

 ParFrac <- 0.42 # Fraction PAR (400-700 nm) by energy 

  

 PAR.noon <- AtmAtt * ParFrac * SolarK * cos.a / (Rx * Rx) 

  

 daylength <-return(dl) 

  

 plot(t, dl, type="l", lwd=2, col=2, 

    xlab="Day of year", ylab="Daylength (hours)") 

  

} 
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daylength <- my_function(59) #latitude at Drøbak  

 

 

a <- 0.011 #m^2/mg Chla from Mitchell & Kiefer (1988), at 670 nm 

 

par <- 0.66125 * (E_0/(E_0 + 4.1)) #Behrenfeld & Falkowski (1997) 

 

dl <- daylength[132] #h  

 

 

pb_opt <- function(sst) { 

 return(1.2956 + 2.749e-1*sst + 6.17e-2*sst^2 - 2.05e-2*sst^3 +  

      2.462e-3*sst^4 - 1.348e-4*sst^5 + 3.4132e-6*sst^6 - 3.27e-8*sst^7) 

} 

 

 

OF2_peak_pos <- which.max(pp_vgpm_OF2$abs_coeff_a) 

 

OF2_peak <- pp_vgpm_OF2$abs_coeff_a[41] 

 

OF2_peak_wl <- pp_vgpm_OF2$Wavelength.nm.[41] #671 nm 

 

OF2_trios <- subset(trios, Station == "OF2" & Date == "12.05.22") 

 

OF2_lwr_ep_zone <- approx(OF2_trios$pwr.rel, OF2_trios$depth, 0.01)$y 

 

 

a_OF2 <- OF2_peak/a 
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sst_OF2 <- ctd_shallow$temperature[5] 

 

 

PB_OF2 <- pb_opt(sst_OF2) 

 

VGPM_OF2 <- a_OF2 * PB_OF2 * dl * par * OF2_lwr_ep_zone 

 

 

columns_vgpm <- c("Station", "Date", "Salinity", "Euphotic", "Temperature", "E_0","E_0_func", 

"Chla", "Abs_dom", "Pb_opt", "daylength", "VGPM") 

vgpm_df_OF2 <- data.frame(matrix(nrow = 1, ncol = length(columns_vgpm))) 

 

vgpm_df_OF2$Station <- "OF2" 

vgpm_df_OF2$Date <- "12.05.22" 

vgpm_df_OF2$Salinity <- OF2_Salinity 

vgpm_df_OF2$Euphotic <- OF2_lwr_ep_zone 

vgpm_df_OF2$Temperature <- sst_OF2 

vgpm_df_OF2$E_0 <- 30 

vgpm_df_OF2$E_0_func <- par 

vgpm_df_OF2$Chla <- a_OF2 

vgpm_df_OF2$Abs_cdom <- sum(OF2_cdom$Abs_mean) 

vgpm_df_OF2$Pb_opt <- PB_OF2 

vgpm_df_OF2$daylength <- dl 

vgpm_df_OF2$VGPM <- VGPM_OF2 

 

vgpm_df_OF2 <- vgpm_df_OF2[13:24] 
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O1_peak_pos <- which.max(pp_vgpm_O1$abs_coeff_a) 

 

O1_peak <- pp_vgpm_O1$abs_coeff_a[45] 

 

O1_peak_wl <- pp_vgpm_O1$Wavelength.nm.[45] #675 nm 

 

O1_trios <- subset(trios, Station == "O1" & Date == "12.05.22") 

 

O1_lwr_ep_zone <- approx(O1_trios$pwr.rel, O1_trios$depth, 0.01)$y 

 

a_O1 <- O1_peak/a 

 

 

sst_O1 <- ctd_shallow$temperature[4] 

 

 

PB_O1 <- pb_opt(sst_O1) 

 

VGPM_O1 <- a_O1 * PB_O1 * dl * par * O1_lwr_ep_zone 

 

 

columns_vgpm <- c("Station", "Date", "Salinity", "Euphotic", "Temperature", "E_0","E_0_func", 

"Chla", "Abs_cdom", "Pb_opt", "daylength", "VGPM") 

vgpm_df_O1 <- data.frame(matrix(nrow = 1, ncol = length(columns_vgpm))) 

 

vgpm_df_O1$Station <- "O1" 

vgpm_df_O1$Date <- "12.05.22" 



121 
 

vgpm_df_O1$Salinity <- O1_Salinity 

vgpm_df_O1$Euphotic <- O1_lwr_ep_zone 

vgpm_df_O1$Temperature <- sst_O1 

vgpm_df_O1$E_0 <- 30 

vgpm_df_O1$E_0_func <- par 

vgpm_df_O1$Chla <- a_O1 

vgpm_df_O1$Abs_cdom <- sum(O1_cdom$Abs_mean) 

vgpm_df_O1$Pb_opt <- PB_O1 

vgpm_df_O1$daylength <- dl 

vgpm_df_O1$VGPM <- VGPM_O1 

 

vgpm_df_O1 <- vgpm_df_O1[13:24] 

 

 

I1_peak_pos <- which.max(pp_vgpm_I1$abs_coeff_a) 

 

I1_peak <- pp_vgpm_I1$abs_coeff_a[45] 

 

I1_peak_wl <- pp_vgpm_I1$Wavelength.nm.[45] #675 nm 

 

 

I1_trios <- subset(trios, Station == "I1" & Date == "12.05.22") 

 

I1_lwr_ep_zone <- approx(I1_trios$pwr.rel, I1_trios$depth, 0.01)$y 

 

a_I1 <- I1_peak/a 

 

sst_I1 <- ctd_shallow$temperature[3] 
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PB_I1 <- pb_opt(sst_I1) 

 

VGPM_I1 <- a_I1 * PB_I1 * dl * par * I1_lwr_ep_zone 

 

 

columns_vgpm <- c("Station", "Date", "Salinity", "Euphotic", "Temperature", "E_0","E_0_func", 

"Chla", "Abs_cdom", "Pb_opt", "daylength", "VGPM") 

vgpm_df_I1 <- data.frame(matrix(nrow = 1, ncol = length(columns_vgpm))) 

 

vgpm_df_I1$Station <- "I1" 

vgpm_df_I1$Date <- "12.05.22" 

vgpm_df_I1$Salinity <- I1_Salinity 

vgpm_df_I1$Euphotic <- I1_lwr_ep_zone 

vgpm_df_I1$Temperature <- sst_I1 

vgpm_df_I1$E_0 <- 30 

vgpm_df_I1$E_0_func <- par 

vgpm_df_I1$Chla <- a_I1 

vgpm_df_I1$Abs_cdom <- sum(I1_cdom$Abs_mean) 

vgpm_df_I1$Pb_opt <- PB_I1 

vgpm_df_I1$daylength <- dl 

vgpm_df_I1$VGPM <- VGPM_I1 

 

vgpm_df_I1 <- vgpm_df_I1[13:24] 

L5_peak_pos <- which.max(pp_vgpm_L5$abs_coeff_a) 

 

L5_peak <- pp_vgpm_L5$abs_coeff_a[47] 

 

L5_peak_wl <- pp_vgpm_L5$Wavelength.nm.[47] #677 nm 
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L5_trios <- subset(trios, Station == "L5" & Date == "12.05.22") 

 

L5_lwr_ep_zone <- approx(L5_trios$pwr.rel, L5_trios$depth, 0.01)$y 

 

a_L5 <- L5_peak/a 

 

 

sst_L5 <- ctd_shallow$temperature[2] 

 

 

PB_L5 <- pb_opt(sst_L5) 

 

VGPM_L5 <- a_L5 * PB_L5 * dl * par * L5_lwr_ep_zone 

 

 

columns_vgpm <- c("Station", "Date", "Salinity", "Euphotic", "Temperature", "E_0","E_0_func", 

"Chla", "Abs_cdom", "Pb_opt", "daylength", "VGPM") 

vgpm_df_L5 <- data.frame(matrix(nrow = 1, ncol = length(columns_vgpm))) 

 

vgpm_df_L5$Station <- "L5" 

vgpm_df_L5$Date <- "12.05.22" 

vgpm_df_L5$Salinity <- L5_Salinity 

vgpm_df_L5$Euphotic <- L5_lwr_ep_zone 

vgpm_df_L5$Temperature <- sst_L5 

vgpm_df_L5$E_0 <- 30 

vgpm_df_L5$E_0_func <- par 

vgpm_df_L5$Chla <- a_L5 
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vgpm_df_L5$Abs_cdom <- sum(L5_cdom$Abs_mean) 

vgpm_df_L5$Pb_opt <- PB_L5 

vgpm_df_L5$daylength <- dl 

vgpm_df_L5$VGPM <- VGPM_L5 

 

vgpm_df_L5 <- vgpm_df_L5[13:24] 

 

 

 

L1_peak_pos <- which.max(pp_vgpm_L1$abs_coeff_a) 

 

L1_peak <- pp_vgpm_L1$abs_coeff_a[38] 

 

L1_peak_wl <- pp_vgpm_L1$Wavelength.nm.[38] #668 nm 

 

L1_trios <- subset(trios, Station == "L1" & Date == "12.05.22") 

 

L1_lwr_ep_zone <- approx(L1_trios$pwr.rel, L1_trios$depth, 0.01)$y 

 

 

a_L1 <- L1_peak/a 

 

sst_L1 <- ctd_shallow$temperature[1] 

 

 

PB_L1 <- pb_opt(sst_L1) 

 

VGPM_L1 <- a_L1 * PB_L1 * dl * par * L1_lwr_ep_zone 
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columns_vgpm <- c("Station", "Date", "Salinity", "Euphotic", "Temperature", "E_0","E_0_func", 

"Chla", "Abs_cdom", "Pb_opt", "daylength", "VGPM") 

vgpm_df_L1 <- data.frame(matrix(nrow = 1, ncol = length(columns_vgpm))) 

 

vgpm_df_L1$Station <- "L1" 

vgpm_df_L1$Date <- "12.05.22" 

vgpm_df_L1$Salinity <- L1_Salinity 

vgpm_df_L1$Euphotic <- L1_lwr_ep_zone 

vgpm_df_L1$Temperature <- sst_L1 

vgpm_df_L1$E_0 <- 30 

vgpm_df_L1$E_0_func <- par 

vgpm_df_L1$Chla <- a_L1 

vgpm_df_L1$Abs_cdom <- sum(L1_cdom$Abs_mean) 

vgpm_df_L1$Pb_opt <- PB_L1 

vgpm_df_L1$daylength <- dl 

vgpm_df_L1$VGPM <- VGPM_L1 

 

vgpm_df_L1 <- vgpm_df_L1[13:24] 

 

 

vgpm_df <- rbind(vgpm_df_L1, vgpm_df_L5, vgpm_df_I1, vgpm_df_O1, vgpm_df_OF2) 

 

saveRDS(vgpm_df, "vgpm_df_eu_sal.rds") 

 

 

vgpm_1_sal <- readRDS("vgpm_df_eu_sal.rds") 

 

vgpm_2_sal <- readRDS("vgpm_df2_eu_sal.rds") 
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vgpm_3_sal <- readRDS("vgpm_df3_eu_sal.rds") 

 

vgpm_sal <- rbind(vgpm_1_sal, vgpm_2_sal, vgpm_3_sal) 

 

 

saveRDS(vgpm_sal, "vgpm_sal.rds") 

 

vgpm_sal %>% 

 mutate(Station = fct_relevel(Station,  

                "L1", "L5", "I1",  

                "O1", "OF2")) %>% 

 mutate(Date = fct_relevel(Date, "12.05.22", "02.06.22", "29.06.22")) %>% 

 ggplot( aes(x= Station, y = VGPM, colour = Date)) + 

 geom_point() + 

 ggtitle("Rates of carbon uptake across stations and dates") + 

 ylab("Carbon uptake mg C/ m2/ day") + 

 ylim(0, 6000) + 

 scale_color_manual(values = my_colour_palette) 

 

 

13C-PP 

# 13C:12C in IAEA Pee Dee Belemnite reference = 0.0112372 

# Definition of d13C = 1000 * ((R / R.PDB) - 1) where R is the 13C:12C ratio  

# --> R = (1 + d13C / 1000) * R.PDB 

# Utility functions for converting between isotope deltas, ratios and concentrations 

 

delta2R <- function(delta, R.PDB=0.01123720) { 

 return((1 + (delta / 1000)) * R.PDB) 

} 
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R2delta <- function(R, R.PDB=0.01123720) { 

 return(1000 * ((R / R.PDB) - 1)) 

} 

 

R2conc <- function(R, Ctot) { 

 return(list( 

  C13 = (R / (1 + R)) * Ctot, 

  C12 = (1 / (1 + R)) * Ctot 

 )) 

} 

 

conc2R <- function(C13, C12) { 

 return(C13 / C12) 

} 

 

 

# Rau et al. (1996) Table 1 

# https://www.int-res.com/articles/meps/133/m133p275.pdf 

 

d13C.DIC <-  1.7 

d13C.POC <- -22.2 

 

 

 

# https://www.sigmaaldrich.com/NO/en/product/aldrich/372382  

# 98% NaH13CO3 molecular weight 85.00 

 

# Lopez-Sandoval et al. (2019) 
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# https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lom3.10305  

# added 5 mL 13C.stock (2.18 g NaH13CO3 / L) per liter sample 

 

DIC.stock <- 1000 * (2.18 / 85) # 25.6 mmol/L 

DIC.add <- 1000 * (5 / 1000) * DIC.stock # 128.2 umol/L 

 

df <- readRDS("C_df.rds") 

 

 

df$DIC <- df$C0 #DIC in umol/L 

C.DIC <- R2conc(delta2R(d13C.DIC), df$DIC) 

 

# Calculating the isotope ratio in DIC 

# after the isotope spike at the start of the incubation 

 

df$DI13C <- 0.98 * DIC.add + C.DIC[["C13"]] 

df$DI12C <- 0.02 * DIC.add + C.DIC[["C12"]] 

 

df$d13C.DIC <- R2delta(df$DI13C / df$DI12C) 

 

# Calculating the isotope ratio in POC after incubation 

 

df$POC <- df$C_ug / 12 # POC as umol/L 

C.POC <- R2conc(delta2R(df$d13C), df$POC) 

 

df$PO13C <- C.POC[["C13"]] 

df$PO12C <- C.POC[["C12"]] 
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# POC production as µmol/L over the incubation 

df$delta_POC <- with(df, (PO13C / DI13C) * DI12C) 

 

#Calculating rate 

df$PP <- with(df, (d13C / d13C.DIC) * POC) 

 

df$SIPM <- with(df, (PP*12) * Euphotic * E_0_func) 

 

 

 

#Light and dark bottles 

 

df_light <- subset(df, Incubation == "light") 

df_dark <- subset(df, Incubation == "dark") 

 

d.POC.C.L <- df$delta_POC[1:15] 

d.POC.C.D <- df$delta_POC[16:30] 

 

 

df_light$d.POC.C <- d.POC.C.L - d.POC.C.D 

df_light$delta_C_ug <- df_light$C_ug - df_dark$C_ug 

 

 

d.PP.L <- df$PP[1:15] 

d.PP.D <- df$PP[16:30] 

 

df_light$d.PP.C <- d.PP.L - d.PP.D 
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df_light$SIPM.delta <- with(df_light, (d.PP.C*12) * Euphotic * E_0_func) 

 

 

saveRDS(df_light, "df_light_si.rds") 

 

Comparison 

bo_sal <- readRDS("pp_sal_bo.rds") 

vgpm_sal <- readRDS("vgpm_sal.rds") 

df_light <- readRDS("df_light_si.rds") 

 

 

all <- merge(bo_sal,vgpm_sal) 

all <- merge(all, df_light) 

 

saveRDS(all, "all.rds") 

 

all <- rename(all,  

       PP_BO = "pp_mg", 

       PP_vgpm = "VGPM", 

       PP_13C = "SIPM.delta", 

       CDOM = "Abs_cdom") 

 

 

 

 

library(GGally) 

 

p <- ggpairs(all, columns = c("Salinity", "CDOM", "PP_BO", "PP_13C", "PP_vgpm")) 
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p + theme(axis.text.x = element_text(angle=90))  

 

13C-PP against salinity 

all %>% 

 mutate(Station = fct_relevel(Station,  

                "L1", "L5", "I1",  

                "O1", "OF2")) %>% 

 mutate(Date = fct_relevel(Date, "12.05.22", "02.06.22", "29.06.22")) %>% 

 ggplot( aes(x=Salinity, y = PP_13C, colour = Date, shape = Station)) + 

 geom_point(size = 3) + 

 ylim(0,400) + 

 xlim(0, 25)+ 

 xlab("Salinity (PSU)")+ 

 ylab("Carbon uptake (mg C/m2/d)")+ 

 scale_colour_manual(values = my_colour_palette ) + 

 My_theme 

 

ggsave(filename = "PP13C.pdf", width = 7.29, height = 4.75) 

 

Volumetric production 

all$PP_vol <- 12*all$d.PP.C  

 

p3 = ggplot(all, aes(x= Chla, y = PP_vol)) + 

 geom_point(size = 3) + 

 geom_smooth(method = "lm",se =FALSE)+ 

 ylab("13C-PP (ug/L)")+ 

 xlab("Chlorophyll a (ug/L)") + 

 ylim(0,70)+ 



132 
 

 xlim(0,12.5)+ 

 My_theme 

 

summary(lm(all$PP_vol ~ all$Chla)) 

#4.029   1.483 

 

 

 

SST <- 0:30 

 

df_pb_sst <- data.frame(x= SST, y= pb_opt(SST)) 

 

 

Chlorophyll specific production (mg C / mg Chla) 

 

all$PP_Chla <- (12*all$d.PP.C)/all$Chla  

 

 

 

#Chlorophyll specific production vs temperature  

p4 = ggplot(all, aes(x= Temperature, y = PP_Chla)) + 

 geom_point(size = 3) + 

 geom_line(data= df_pb_sst, aes(x = x, y= y) ) + 

 ylab("Primary production (mg C/mg Chla)")+ 

 xlab("Temperature ( C)") + 

 ylim(0,10)+ 

 xlim(0,30) + 

 My_theme 
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#Chlorophyll specific production vs salinity 

p5 = ggplot(all, aes(x= Salinity, y = PP_Chla)) + 

 geom_point(size = 3) + 

 geom_smooth(method = "lm",se =FALSE)+ 

 ylab("Primary production (mg C/mg Chla)")+ 

 xlab("Salinity (PSU)") + 

 ylim(0,10)+ 

 xlim(0,30) + 

 My_theme 

summary(lm(all$PP_Chla ~ all$Salinity)) 

#0.15523  0.04555 

 

 

#Chlorophyll specific production vs CDOM  

p6 = ggplot(all, aes(x= CDOM, y = PP_Chla)) + 

 geom_point(size = 3) + 

 geom_smooth(method = "lm",se =FALSE)+ 

 ylab("Primary production (mg C/mg Chla)")+ 

 xlab("CDOM (m-1)") + 

 ylim(0,10)+ 

 xlim(0,1.5) + 

 My_theme  

 

summary(lm(all$PP_Chla ~ all$CDOM)) 

#-2.2336   1.2577 
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plot_grid(p3,p4,p5, p6, labels = c("A", "B", "C", "D")) 

 

ggsave(filename = "4siste.pdf", width = 7.29, height = 4.75) 

 

CDOM vs salinity 

p7 = ggplot(all, aes(x= Salinity, y = CDOM)) + 

 geom_point(size = 3) + 

 geom_smooth(method = "lm",se =FALSE)+ 

 ylab("CDOM (m-1)")+ 

 xlab("Salinity (PSU)") + 

 ylim(0,1.5)+ 

 xlim(0,30) + 

 My_theme 

ggsave(filename = "CDOMsal.pdf", width = 7.29, height = 4.75) 

 

summary(lm(all$CDOM ~ all$Salinity)) 

#-0.031962  0.008734 


