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ABSTRACT

An overview is given of approximate effective length formulas. The overview is
limited to formulas that are relevant for the important class of compression mem-
bers defined by constant stiffness and constant axial force along the length, and,
furthermore, limited to members that are either completely unbraced (with zero
shear and free-sway) or fully braced against lateral translation of one end rela-
tive to the other. Whereas most approximate effective length formulas have been
developed for positive end restraints, buckling modes of compression members in
a frame can be associated with both positive and negative end restraints. It is a
main concern of the study to identify the applicability of the various approximate
formulas for a reasonable wide range of positive and negative restraint combina-
tions. Extensive comparisons of approximate predictions with exact effective
length results have been carried out.
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1 Introduction

For the purpose of determining effective lengths (and critical loads) of compres-
sion members for given end restraints, there is a number of aids available. These
include diagrams and formulas for a great number of special cases in various
handbooks etc. In structural design codes and standards, the most typical com-
pression member is that with constant cross-sectional bending stiffness (K1) as
well as constant axial force (IV) along the length (L). For this important case,
aids for unbraced and braced members are also included in some of the relevant
structural analysis and design codes and standards.

Buckling modes of compression members in a frame can be associated with both
positive and negative end restraints (Bridge and Fraser 1987; Hellesland 1992a,
1992b). A range of realistic buckling modes for such restraints are reviewed and
discussed in a companion study (Hellesland 1994). Most of the approximate for-
mulas available have been developed for members with positive end restraints.
Even so, these formulas will often be valid, to various extent, for restraint com-
binations that include negative restraints. The author is not familiar with any
evaluation of the applicability of existing approximate formulas in the negative
restraint range.

The main objective of the present study is to give an overview of some of the
available approximate effective length formulas for “constant stiffness and con-
stant axial force” members, and, further, to establish the accuracy by comparing
approximate predictions with exact results. The extent to which the formulas
are applicable will be sought identified for a reasonable wide range of both pos-
itive and negative restraints. The scope is limited to members that are either
completely unbraced (with zero shear and free-sway) or fully braced against lat-
eral translations of one end relative to the other. The most recently published
formulas will be presented first.

2 Restraint parameters

Effective lengths are functions of the relative magnitude of rotational restraint
stiffnesses k at the two ends and EI/L of the member. Normally, they are
expressed in terms of one of the restraint parameters below. Symbols adopted
here are not necessarily those used in the original presentations.

Relative restraint stiffness, k& (= oo for fully fixed and 0 for pinned end):

_ L
ki = —— = A, B 1
B W
Relative restraint flexibility , G’ (= 0 for fully fixed and oo for pinned end):
EI/L) 1 .
oo ELL) 1 _A.B 9
SEE L i 2)
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Scaled, relative restraint flexibility, G (= 0 for fully fixed and oo for pinned

end) with scaling (or reference) factors b,= 6 for unbraced members and b,= 2

for braced members:

(EI/L) b
ko

o]

Gi=b,

i=AB (3)

ol

Degree of rotational fixity, R (= 1 for fully fixed and 0 for pinned end):

k; 1

R, = = —
ki+cEI/L 1+ c/k;

i=AB (4)

Degree of rotational flexibility, n (= 0 for fully fixed and 1 for pinned end):

eEl)L 1
TR L ks 1+ e

i=AB (5)

For the c—coefficient in the last two expressions, various values can be found in
the literature. The two last expressions are related by n = 1 — R provided the
same c—value is used in both expressions.

Framed compression members.

The rotational restraint stiffness k; at end i of a given member, is equal to the
sum of the rotational stiffnesses of all members that frame into the considered
member end. Thus,

by = Z(b EI/L)an, 1= A, B (6)

In the summation, that includes all members but the considered member itself,
EI. L, and b denote the cross-sectional bending stiffness, length and rotational
stiffness coefficient of the members, respectively. The coefficient b is a function
of the restraint condition at the far end of the member and of its axial force.

For compression members in the summation, a major problem is to assess the
axial force effects on the b—coefficient. In NS 3472 (NSF 1973), a rather com-
mon approximate relationship is given for the axial force effect. A more accurate
approach, that is iterative and therefore more cumbersome to use, has been pro-

posed by Bridge and Fraser (1986).

Continuous compression members/columns.

In typical frames, the restraining elements are typically the beams (girders).
Normally, axial forces (and second order effects of the axial forces) are negligible
in the beams. In a frame with continuous columns (e.g., multistorey frame), the
restraint at an end of a column can be expressed in several ways. One way is to
express it by k = fky, where f is a factor and k3, defined by

k=S (bEI/L), (7)

is the rotational stiffness of the beams framing into the joint (with the considered
column end). Here, subscript b denotes the beams. Normally, axial force effects
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in beams can be neglected. The fraction f, that appropriately may be termed
restraint participation factor (Hellesland 1992a), reflects the interaction between
columns above and below the joint (“vertical interaction”). It is very common
to assume that k, partakes in the restraint of the column(s) above and below the
joint in proportion to the FEI/L-values of the respective columns. Based on this
assumption, the restraint participation factor at a column end 7 becomes

- EIL o
h= S, e ®

The restraint stiffness at a column end 7 can then be written

g EL S EIL), o
ki—fzkb,z—f' W l—A,B (9)

Here, the summations are over all beams (numerator) and columns (denominator)
framing into the joint, and KI/L in front of the fraction is for the considered
column. Substitution of this restraint stiffness expression into, for example, the
G—factor expression above, Eq. 3 gives

_ 2 (EI/L)i _
G; = m 1= A, B (10)

where m = b/b, is a stiffness modifier (defined by the ratio of the real beam
stiffness coefficient, b, and the scaling (reference or datum) value b,. Such G-
factor definitions are well known. In normal practice, m is not included (i.e., it is
taken equal to 1.0). However, the expression is more complete and transparent
with m included.

Although the vertical interaction reflected by Eqs. 8, 9 or 9 suffers from several
shortcomings (Hellesland (1992a), it has been adopted by a great number of codes
and standards around the world. These include AISC (1993 Commentary), ACI
(1989 Commentary), AS4100 (AS 1990), BS 5950 (BSI 1985), Eurocode 2 (CEN
1991), Eurocode 3 (CEN 1992 Annex), NS 3473 (NSF 1989), and many others.

This type of interaction is sometimes referred to as conventional or simple.

3 Hellesland (1988/1994)

Approximate formulas for effective length factors, 3, and inflection point loca-
tions, L4 and Lpg, derived in detail in Hellesland (1994), are summarized below.
One formula is given for the unbraced case, and 5 formulas (giving different re-
sults) for the braced case. They are all derived using a restrained cantilever
member as the base model. The formulas are expressed in terms of end restraints
defined by the so-called degree of rotational fixity factors, R, that reflects the
degree of which the member ends are fixed against rotation. They are normally
between 0 (pinned end) and 1.0 (clamped end), but may also become negative,
and even greater than 1.0 in some cases (Hellesland 1994).



(b)

Figure 1: Unbraced and braced member with positive end restraints

Degree of rotational fixity:

1 1
Ri=— — = i=AB (11)

Unbraced member, c = 2.4

3 2V Ra+ R — R4RB L R; (12)
Ri+ Rp " L Ri+Rp

For 1 > R > 0, the 3—predictions are accurate within about 0 to +2% of exact
results. In the wide range defined by 1.25 > R > —0.4, the accuracy will be
within about £ 3%, and generally well within these percentages. In the latter
range, some cases with F-predictions in excess of about 4 were excluded. Cases
with such effective length factors are believed to be of little practical interest. For
details of selected comparisons, see Table A.1 for exact results and Table B.1la
and Fig. 2 for predictions compared to exact results. Also included in the figure
are results of another 3-expression that will be discussed in Section 5.

Comparatively, predictions using Eq. 12 with ¢= 2.5, Table B.1b, are somewhat
greater (Within 0 to +3% of exact results) for combinations of positive restraints
and somewhat smaller for combinations that include negative restraints. The
difference is not too big, but on the overall it is felt that ¢c= 2.4 is to be preferred
to e= 2.5. Eq. 12, with ¢= 2.5, but written in a different form, was adopted by
NS 3473-1989 (see Section 6).

The segment lengths, directed from a member end to the inflection point, may
be positive or negative. A positive value implies that the direction is from
the considered end and towards the other end. A negative value implies that
the direction is from the considered end and away from the other end. In the
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Figure 2: Unbraced effective length factor comparisons — Approximate vs.
exact results

latter case the inflection point will be on the outside of the member length (on
the theoretical continuation of the buckling curve from the end considered).
Braced member, c = 4.8

2
2 —|— 11Rm2n —I' 0-9Rmar

R;
- 13
R4+ Rp (13)

; &2(1—%3)

B= I

R,uin 1s the algebraically smallest and R,,,, the greatest of R4 and Rp.

For a member with identical restraints at both ends, 3 can be obtained by ap-
plying Eq. 12 to half the member, and can be expressed by 8 = 1/(1 + R;)
(1 = A, B). In order to generalize, R; was above replaced by a weighted mean of

the fixity factors ( 8 =1/(1 + Rum)) to give Eq. 13.

For 1 > R > 0, the accuracy of F—predictions is within about —1.5 and +1% of
exact results. In the wider range of 1 > R > —0.5 , the accuracy is within —1.5
and +5%. Predictions in excess of about 3=2 are not believed to be of much
practical interest in the sense that such members can probably be treated as
flexural restraining members rather than compression members. Further, braced
members with B > 1.0 is not considered too realistic, and have not been evaluated
in any detail. For details of selected comparisons, see Table A.2 for exact results
and Table B.2a and Fig. 3 for predictions compared to exact results.
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Figure 3: Braced effective length factor comparisons — Approximate vs. exact

results (from Hellesland (1994)).

Use of ¢= 2.5, Table B.2b, are found to give slightly greater predictions than use
of ¢= 2.4 for combinations of positive restraints (within + 1.5% of exact results)
and somewhat smaller for combinations that include negative restraints. The
difference is very little, however. On the overall, a slight preference is given to
c= 2.4.

The difference in the c—coefficients for the braced (4.8) and the unbraced case
(2.4) is physically motivated as the formula for the braced member is based on
the same physical model as that used for the unbraced one. Operating with two
different c—coefficient is not a major inconvenience. In particular since the end
restraint assessment normally will be different in the two cases anyhow.

Alternative formulas, braced member with ¢ = 4.8

R;
Ri+ Rp

1 - CZ=0-p

5:1—|—Rm:‘2+RA—|—RB T

(14)

Above, R,, (in the first formulation) is taken as the simple mean of R4 and Rp.

Within the restraint limits 0.7 > R > —0.55, the accuracy of Eq. 14 is generally
found to be well within £+ 2% of the exact results, and for 0.45 > R > —0.4
within + 1%.



For details of selected comparisons, see Table B.3 and Fig. 3. As seen from the
table, acceptable accuracy is also obtained in many cases for negative restraints
outside the right hand side limits above. Outside the upper (left hand) limits,
prediction errors increase to at most -5% (below exact results) in the case of a
member clamped (fully fixed) at one end and flexibly restrained at the other. In
a practical case, it will normally be difficult to obtain full fixity. In recognition
of this, some codes recommend that effective length calculations be carried out
with a restraint stiffness that do not exceed an upper limit. For such cases, Eq.
14, which is attractively simple, is most suitable in practical applications.

Instead of replacing R; with the simple or weighted mean value of the fixity
factors at the two ends, 1+ R; may be replaced by the square root of the product
(1 + RA)(l + RB) Thus,

1
f= \/(1—|—RA)(1 + Rp) (15)

which is also a rather simple and attractive formulation. As far as accuracy is
concerned, this formula is comparable to Eq. 13 for positive restraint combina-
tions, where it is accurate within about -1 and +1.5% (Table B.4a). However, for
positive/negative combinations the accuracy is not as good. It is generally more
conservative. Provided negative restraints are such that R > —0.25, the error
will not exceed about +5%. For negative/negative combinations the accuracy is
better, but still not as good as that of Eq. 13.

Predictions using ¢= 5 are given in Table B.4b. As before, they are found to
give slightly greater predictions than use of ¢= 2.4 for combinations of positive
restraints (within about -0.5 and 4+2% of exact results) and somewhat smaller
for combinations that include negative restraints. However, again the difference
is rather small. Eq. 15 with ¢= 5 can be written in the exact same form as
Newmark’s formula (e.g., Eq. 48, cfr. Section 11).

Alternative formulas, braced member with ¢ = 2.4

Expressed in terms of rotational fixity factors with ¢ = 2.4 (2.5), 8 for a member
with identical restraints at both ends can be expresed by 3 = 1—-0.5R; (i = A, B).
In the general case, it has been found that replacement of R; by the approximate
weighted mean defined by R,,, = 0.4R,.;, + 0.58R,,., give reasonable results.
Then,

G=1—=05Rum =1—02Rn — 0.29R,00 (16)

where, R,,;, and R,,,, are the algebraically smallest and greatest end restraint
factor, respectively.

The accuracy of Eq. 16 is within about -1 and +2% for any combinations of
positive end restraints, which is very acceptable. For positive/negative combi-
nations, the accuracy is not as good. It is comparable, but generally slightly
more conservative than found by Eq. 15. Provided negative restraints are such
that R > —0.25, the error will not exceed about +5%. For negative/negative
combinations the accuracy is better. For details, see Table B.5.



Use of the simple mean of the fixity factors, R, = (R4 + Rg)/2, gives
B=1-05R, =1—025(Rs+ Rg) (17)

For positive end restraint combinations, this equation is found to be accurate
to within about 0 and +7% of exact results. In this restraint range, the error
increases with increasing difference between the end restraints at the two ends.
Thus, for a member pinned at one end and clamped at the other, the effec-
tive length is overestimated by 7%. For positive/negative and negative/negative
combinations the accuracy is acceptable in some cases, but is in general not very
good. For details, see Table B.6. A similar formulation was used in NS 3472 (cfr.
Section 8).

Finally, Eq. 15 ( in which R is defined with ¢=4.8) can be rewritten in terms of
R with ¢=2.4 as

B=1+/(1-05R4)(1 —0.5Rp) = %\/(2 — R4)(2 — Rp) (18)

4 Duan, King and Chen (1993)

Duan, King and Chen (1993) derived —expressions using a best-fit approach in
combination with a so-called partial fraction model.

Unbraced member

3<2: 6 =4 ! ! ! (19)

/ ' N 1402G4 1402G 1+0.01G4GxR

2ma
8>2: b= 20
0.9 4+ +4/0.81 + 4ab ( )
where
GaGp 36

= — 43 : b=———+46 21
“ G4+ Gp Ga+ Gp ( )

For positive restraints, the accuracy of these expressions are within about -1 and
+2%, which is slightly worse than that of Eq. 12. For many combinations involv-
ing negative restraints, the accuracy is somewhat better or comparable to that
for Eq. 12. For details of selected predictions, see Table C.1. The limits (5 < 2 or
> 2), indicating which expression to use, are not always adequate. In the table
locations marked “2)”, predictions could not be obtained with the limitations
given. This is a drawback of the expressions. Also, a “double expression” is in
itself a drawback, in particular since it is rather complicated in comparisons to
alternative expressions for the unbraced case given elsewhere in this report.

Braced member

1 1 1
=1

T 549G4 549G5 10+ GaGg
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For positive restraints, the accuracy of this expression is within about -1 and
+12 % of exact results. The greatest inaccuracy is for cases with one end fully
fixed. For such cases, the above expression is inferior to any of the others in this
study. However, for positive restraints less than full fixity, the accuracy will be
quite acceptable. The expression is not very accurate for negative restraints. See
Table C.2 for details of selected comparisons.

5 FEurocode 3 (1992)

Effective length factor expressions given in Annex E of Eurocode 3 (CEN 1992)
are summarized below. They are expressed in terms of so-called distribution
factors labelled n. The same restraint parameter was used in BS 5950 (BSI
1985), and there labelled k.

Distribution factor (degree of rotational flexibility)

The n-parameters in the code are defined by the sum of I/L of the compression
members at a joint (member end) divided by the sum of I/L of all members at
the joint. In terms of the symbols in the present report, n may be defined by

IR v 171! .
"SI+ S e D =

In the code, a beam stiffness corresponding to full fixity at the far end and neglible
axial force is taken as the reference (datum) case. This corresponds to taking
the previously defined b, equal to 4, and the previously defined stiffness modifier
m = b/4. Tt is described in the text of the code and values are tabulated for other
far end conditions and axial force effects. Although not explicitly shown in the
code formulation, the coefficient m is included here for the sake of transparency.
The above expression implies a vertical interaction defined previously by Eq. 8.
Substitution of the restraint stiffness & by Eq. 9, n can then be written in the
general form given by Eq. 5 with ¢=4, i.e.,

AET/L 1 .
TTUEI LNk 14 k4 (24)

Unbraced member (“Sway mode”)

For the unbraced member case, the code gives

(25)

8: 1 _0-2(77A‘|’77B) _0-1277A77B
/ 1 — 0.8(7]A + 773) + 0.677A773



In order to compare with the formulation given by Hellesland (Eq. 12), it is found
that the n—expression above may be expressed in an alternative form in terms of
fixity factors by

4 — RsRg
8= 26
\/RA + R+ RaRpB (26)

where the R—factors are defined with ¢=2.4. Alternatively, it can be expressed
in terms of G—factors (b, = 6) by

5o \/1.GGAGB LG+ G+ T5 )

N Gis+Gg+75

By comparison with the French rules” Eq. 38, it is seen that the Eurocode expres-
sion for unbraced members is the same as the French one except for the formu-
lation in terms of different restraint parameters. An expression giving identical
results has been developed by Mekonnen (1987).

A closer examination of the Hellesland Eq. 12 and the Eq. 26 above reveals that
they become identical for members that are pinned at one end and for members
with equal end restraints. The difference in the two expressions for other cases is
due to the different displacement assumptions adopted in the derivations of the
expressions.

Effective length predictions by both expressions are compared to exact results in
Fig. 2 for various combinations of positive and negative end restraints.

Results in the shaded area of the figure are obtained for end restraints that are
positive at both ends (1 > R > 0or 0 < n < 1 ). For such cases, the predictions
by the expression above are within about -1 to +2% of the exact results, and
by Eq. 12 within about 0 to +2%. Thus, in the positive restraint range, the
accuracies of the two approximations are almost identical. In cases involving
negative restraints, the predictions by the Eurocode expression are in general not
so good. In the limited range defined by -0.3 < 7 < 1.08 (corresponding to about
1.15 > R(e¢ = 2.4) > —0.15), predictions are within about -3 and +5% of exact
results when (—predictions greater than 4 are excluded. For details of selected
Eurocode comparisons, see Table D.1.

Braced member (“Non sway mode”)

For the braced member case, two expressions are given. They are defined by

B=0.540.14(na + n8) + 0.055(n4 + ng)* (28)

and

_ 1+ 0.145(T]A —+ 77]3) — 0.265774775

b= 2 —0.364(na + 1) — 0.247nang

(29)
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For positive restraints, 0 < n < 1, the accuracy of the two expressions is compa-
rable. Tt is within about 4+ 1.5% and within about -0.5 and +1% for the first and
second expression, respectively. For negative/negative restraint combinations,
none of the two expressions is particularly good. For positive/negative combi-
nations, the first expression provides the better predictions, and within about -4
and +5% for the range 0 < n < 1.7 (1 > R(c = 4.8) > —0.5). For details of

selected Furocode comparisons, see Table D.2 and D.3.

By rewriting the second expression, Eq. 29, in terms of G—factors ( b, = 2) by

3G 4GB + 1.676(GA + GB) +0.732
3G 4GB + 2.394(GA + GB) + 1.464

it can be seen that it is similar, but not identical, to the corresponding French
rules’ Eq. 44 for braced members. The difference is in the coefficients in the two
last terms in the numerator and denominator. The French rules’ expression is
found to be the more accurate of the two over a wider range of restraints. Cfr.
Section 10.

8=

(30)

6 NS 3473 (1989)

In the predecessors to the Norwegian standard for concrete structures NS 3473
of 1989 (NSF 1989), expressions for f—factors were not given. Such expressions,
given in terms of fixity factors, were first included in NS 3473 of 1989 (for unbraced
and braced compression members). The 3 —expression adopted for the unbraced
case was proposed for inclusion in the standard by the author in 1988. It can
be rewritten in the same form as Eq. 12. A value of ¢=2.5 was adopted. As
seen before (cfr. Tables B.1a and B.1b), use of ¢=2.5 results in almost the same
accuracy as use of ¢=2.4. For braced compression members, a f—factor given by
Burheim (1968) was adopted. A review of the this factor is given separately in
Section 9.

7 Mekonnen (1987)

Mekonnen (1987) developed an expression for unbraced members that may be
rewritten in the exact same form as the French rules’ expression for the effective
length of unbraced compression members. It can be given by Eq. 38, by Eq.
27 in terms of G—factors, by Eq. 25 in terms of n-factors or by Eq. 26 in
terms of R—factors. Mekonnen based his derivation on a first order displacement
assumption, and incorporated certain empirical adjustments in order to arrive at
the final expression.

11



8 NS 3472 (1973)

In the first edition of the Norwegian standard for steel structures, NS 3472-1973
(NSF 1973), an effective length factor for fully braced members was given by

,le—SA—SB (31)

where

I  P—Py.
s;=0.25 - 2 A ) i=A,B (32)

Loy 5D
The I and L outside the summations are for the considered member itself. The
summations are over all members framing into the respective end of the member
considered (i.e., they include all members at an end except for the considered
member itself). The s;—parameters are not to be entered with values > 0.2. The
axial force P, positive in compression, is for tension members to be taken equal to
0. Tension members with forces in excess of 0.95 times their design yield capacity
are not to be included in the summations. Py, is the individual members design
buckling load. The members framing into the considered end are assumed to be
pinned at their far ends. (To account for other far end conditions than pinned
ends, the restraint stiffness can be modified).

In order to generalize, Eq. 32 can be rewritten in a more familiar form given by

1+ i

where - e
k= I , = A, B 34
Z< a Pkd)>au,¢ Z (34

is the end restraint stiffness (and not just the stiffness of the restraining beams).
This and the other symbols are all defined previously. The summation is over all
members that branch into end i (A or B) of the one considered (the member itself
is not to be included). The formulation corresponds to that given previously by
Eq. 6. Previously, the b—coefficient was considered to include axial force effect.
However, rather than include it in b, this effect is above explicitly reflected by

the term (1 — P/ Pyq).

Eq. 31 is identical to an expression given in NS 424A, of 1956, which was the
predecessor to NS 3472-1973. However, it is significantly different, and signif-
icantly improved, compared to NS 424A with respect to the definition of the
si—parameters (Eq. 32). In the next (1984) edition of NS 3473, the effective
length factor formula was replaced by a set of diagrams.

In connection with the introduction of NS 3472-1973, Selberg (1972) provided
some background for the given F—factor, but no information was given of the
basis or derivation of the factor. However, it is obvious that it is similar to Eq.
17. A closer comparison reveals that they are identical as far as form is concerned.

12



Differences are due the limitations on s;-values (0.2) to be entered into Eq. 31
and to the use of different c—values ( ¢=2.4 (or 2.5) in Eq. 17 and ¢=3 above
in Eq. 32). With ¢=3, predictions become more conservative than with ¢=2.4
for intermediate restraints, but will still be within about 0 and +7% for positive
restraints as found with ¢=2.4 (cfr. Table B.6).

9 Burheim (1968)

In a study of several aspects of second order analyses, Burheim (1968) also pre-
sented expressions for an effective length factor and for inflection point locations
(segment lengths) of fully braced compression members. They can be given by

7— R,
B=c—"ri—
Li/L =0.007R(14+538) i=A,B (36)

where R,, = 0.5(R4+ Rp) is a mean fixity factor defined with and ¢ = 4. (Instead
of R, Burheim used the symbol n). This g—factor was adopted in NS 3473-1989
(cfr. Section 6). Burheim did not give any background for these equations. It
appears the f—expression was established by some curve fitting procedure for the

symmetrical case, and then extended to the general case through use of the mean
fixity factor. The segment lengths and 3 are related through gL =L — L4 — Lp.

For positive restraints, 1 > R > 0, the accuracy of the f—predictions is generally
somewhat unconservative, but still within about —2.5 and +0.5% of exact results.
In the wider range of 1 > R(¢c = 4) > —0.65, the accuracy is within about —1.5
and +5%. This is comparable to the Hellesland Eq. 13 in this range (it should
be noted that range above corresponds to 1 > R(¢ = 4.8) > —0.5). For details
of selected comparisons, see Table E.1.

Burheim’s Eq. 35 and Hellesland’s Eq. 13 give comparable accuracy for cases
involving negative restraints. Of the f—expressions considered in this study, they
are on the overall the most accurate in this range. Also, they are both attractively
simple. For positive restraints, Eq. 13 is more accurate, and to be preferred. An
advantage of Eq. 13 is also that it can be derived from a rather simple model.

10 French rules (1966)

In the French design rules for steel structures (“Regles” 1966), effective length
and inflection point location expressions were given for both braced and braced
members according to Dumonteil (1992). The formulations below are taken from
Dumonteil (1992). They are given in terms of relative restraint flexibilities that
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may be written

i=AB (37)

Unbraced member

S-QPAPB + 4 PA + PB + 3.75
§ = (Pat rr) (38)
pa+ps+3.75
LA 1 4pB —2pA+375
If > : — == 39
PE = P4 L 2\/ patps+3.05 (39)
LB 1 4pA—2pB‘|‘375
If > : — = = 40
pa = PB L 2\/ pa+pp +3.75 (40)

Regarding inflection point locations, L4 is measured from end A and Lp from
end B. The p—factor above has been adopted by Eurocode 2 (CEN 1992) in
a somewhat different form (cfr. Section 5). Mekonnen (1987) developed a (-
expression that may be rewritten in the exact same form as that above (cfr.
Section 7).

Braced member
_ papB+ 0.7(pa + pp) +0.48
papB +pa+ ps+0.96
LA 03,0B + 0.12 LB LA

s : — =1--—== (42)
L papB + 0.6ps + pp + 0.48

(41)

In terms of G—factors. The expressions above can be expressed in terms of
G—factors (Eq. 3). With b,=6 and p = 0.5G for the unbraced case and with b,=2
and p = 1.5G for the braced case, Dumonteil (1992) rewrote the S—expressions
in the forms below.

1. T T 4 T .
Unbraced case : b= \/ 60A02A++ (é:;_:_;?) 7 (43)
Braced case _3GaG + LA(Gs + Gp) +0.64 (44)

T 3G 4GB + Z.O(GA + GB) + 1.28

Eq. 38 (or Eq. 43, which is the same given before in Section 5 by Eq. 27) is
given in terms of fixity factors by the rather simple Eq. 26. Also Eq. 41 ( or Eq.
44) can be written in a rather simple form in terms of R-factors.

The accuracy of the unbraced member equation has been discussed before in
Section 5 with reference to Fig. 1 and Table D.1.

For positive restraints, the braced member equation, Eq. 41 is accurate to within
about -0.5 and +1.5% of exact results. This is about the same as for several of
the other braced member equations, including the two Eurocode equations. For
cases involving negative restraints, Eq. 41 is on the overall considerably more
acurate than the Eurocode equations, but less accurate than the Hellesland and
Burheim equations (Eq. 13 and Eq. 35). For details of selected comparisons, see
Table F.1.
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11 Newmark (1949)

Newmark (1949) gave a critical load coefficient C', denoted coefficient of end fixity,
for fully braced members. This is the coefficient by which the Euler load of a
pin-ended member was to be multiplied with in order to get the critical load of a
restrained member. Expressed in terms of the effective length factor, 5 = 1/\/5,
Newmark’s expressions become

ﬁ_\/w2+2@ w2+2EBN\/1+0.2EA 1+ 0.2kp

— — & = = 45
7T2—|-4kA 7T2—|-4kB 1—|—04kA 1—|—04k3 ( )

The relative restraint stiffness k = k/(EI/L) was denoted n by Newmark. The
two formulations above give almost identical results. The second formulation, ob-
tained by substituting 10 for 72 in the first formulation, is the one most commonly
used.

Prediction errors are less than 2% according to Newmark. Probably he considered

positive restraints only. The largest errors resulted for k, + EB_ = 10 — 20.
Newmark also gave a simplification, giving errors less than 1.1% for k4 +kp < 1.0,

defined by
1 1
b= ~ — (46)
14+ 2 (kA+kB) 14+0.2(ka + kp)

In terms of G—factors (b, = 2), Eq. 45 (second formulation) can be written

GA—|-04 GB—|-04
4
or
8= G,Gg + 0.4(GA + GB) 4+ 0.16 (48)
| GaGp +0.8(G4 + Gg) +0.64

A closer examination of this formula indicates it can be written exactly in the
same form given by Hellesland in Eq. 15 in terms of R—factors with ¢ = 5 (or
by Eq. 18 in terms of R—factors with ¢ = 2.5). Most likely, therefore, Newmarks
formula has been derived based on the same type model leading to this equation.
Regarding accuracy, reference is made to the previous discussion of Eq. 15 and

Table B.4b.

12 Concluding remarks

An overview of approximate effective length formulas has been given for compres-
sion members with constant stiffness and constant axial force along the length,
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and that were either completely unbraced or fully braced against lateral trans-
lation of one end relative to the other. A more rigorous literature review than
carried out here would most likely have revealed additional formulas than those
included in the present review. Not least the German literature contains a large
number of special cases (e.g., see Petersen (1982)).

Efforts were made to identify the applicability of the various approximate formu-
las, for a reasonable wide range of positive and negative restraint combinations,
by comparisons with exact effective length results. Most of the formulas were
found to provide reasonably good predictions (within about 2%) for positive re-
straints. Not surprisingly, since they were developed primarily for applications in
that restraint range. A few also provide reasonable predictions for cases involving
negative restraints. If only one formula was to be chosen before any other for
each of the unbraced and braced case, it would be Eq. 12 for the unbraced and
Eq. 13 for the braced case. On the overall, they are the two formulas that were
found to give the better prediction accuracy. Also, they are between the most
attractive ones in terms of simplicity of formulation.
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Appendix A —Exact effective length factors

TABLE A.1. Unbraced member — Exact effective length factors (SexacT)
Gr Ga (ka)
0 0.25 1 4 8 +oo —20 —15 —10 —8 -7 —6.5
(c0) | (24) (6) (1.5) | (0.75) | (£0) || (-0.3) | (-0.4) | (-0.6) | (-0.75) | (-0.86) | (-0.92)
-1 0.851 | 0.891 | 1.000 | 1.253 | 1.395 | 1.677 || 1.890 | 1.988 | 2.257 | 2.574 | 2.923 | 3.235
—0.5 | 0.919 | 0.960 | 1.073 | 1.346 | 1.505 | 1.834 || 2.098 | 2.225 | 2.593 | 3.070 | 3.671 | 4.306
—0.25 || 0.958 | 1.000 | 1.114 | 1.395 | 1.562 | 1.917 || 2.209 | 2.353 | 2.781 | 3.371 4.187 5.177
0 1.000 | 1.042 | 1.157 | 1.445 | 1.620 | 2.000 || 2.323 | 2.485 | 2.984 | 3.719 4.868 6.590
0.25 1083 | 1.199 | 1.494 | 1.677 | 2.084 || 2.438 | 2.621 | 3.202 | 4.128 5.834 9.672
1 1.317 | 1.634 | 1.840 | 2.328 || 2.793 | 3.049 | 3.974 | 6.051 00
4 2.036 | 2.332 | 3.179 || 4.315 | 5.212 00
8 2.724 | 4.073 || 7.109 | 14.85
oo (%)
e Due to symmetry, results below the main diagonal are not shown.
ek=k/(EI/L)=6/G
TABLE A.2. Braced member — Exact effective length factors (Sgxacrt)
Gp Ga (ka)
0 0.25 1 4 +oo —4 -2 —1.5 —-1.2 -1 —0.8 —0.6
(c0) (8) (2) (0.5) | (£0) || (-0.5) | (-1) | (-1.33) | (-1.67) | (-2) | (-2.5) | (-3.33)
0 0.500 | 0.555 | 0.626 | 0.675 | 0.700 || 0.730 | 0.769 | 0.802 | 0.844 | 0.896 | 1.010 | 1.452
0.25 0.611 | 0.688 | 0.744 | 0.773 || 0.809 | 0.852 | 0.901 | 0.955 | 1.027 | 1.194 | 2.13
1 0.774 | 0.840 | 0.875 || 0.921 | 0.984 | 1.041 1.116 | 1.222 | 1.497 00
4 0.916 | 0.956 || 1.011 | 1.087 | 1.158 1.257 | 1.398 | 1.824
+o0 1.000 || 1.060 | 1.145 | 1.226 1.338 | 1.509 | 2.059
—4 1.127 | 1.226 | 1.321 1.459 | 1.677 | 2.503
-2 1.348 | 1.469 1.654 | 1.974 | 3.796
—1.5 1.624 1.872 | 2.352 00
—-1.2 2.259 | 3.233
-1 o0

e Due to symmetry, results below the main diagonal are not shown.

ok =k/(EI/L) =2/G
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Appendix B — Effective length factors by Hellesland

TABLE B.1a.

Unbraced member — Sapprox /BrxacT-ratios,

for Bapprox = 2v/Ra + R — RARB/(RA + RB) with ¢=2.4 (Eq.l?).

Gp Ga (Ra)
0 .25 1 4 +oo -20 —15 —10 -8 -7
(1) (.909) | (.714) | (.385) | (£ 0) || (--143) | (-.2) | (--333) | (-.455) | (-.5H6)
—0.50 || 0.967 | 0.976 | 0.982 | 0.976 | 0.975 0.976 | 0.976 | 0.972 0.956 0.925
—0.25 || 0.988 | 0.995 | 0.999 | 0.991 | 0.990 0.993 | 0.993 | 0.991 0.974 | 0.931
0 1.000 | 1.005 | 1.008 | 1.000 | 1.000 1.004 | 1.006 | 1.005 0.986 0.924
0.25 1.011 | 1.014 | 1.005 | 1.007 1.014 | 1.016 | 1.017 | 0.993 0.899
1 1.019 | 1.011 | 1.017 1.028 | 1.034 | 1.040 0.973 1)
4 1.007 | 1.014 1.044 | 1.063 1)
8 1.006 1.062 | 1.035
e R=1/(1404G)
e Due to symmetry, results below the main diagonal are not shown.
e 1) Exact effective length factor is infinite.
TABLE B.1b. Unbraced member — S4pprox /SrxacT-ratios,
for fapprox = 2vV/Ra+ Rp — RaRp/(Ra + Rp) with ¢=2.5 (Eq.12).
Gp Ga (Ra)
0 .25 1 4 +oo -20 —15 —10 -8 -7
(1) (.906) | (.706) | (.375) | (£ 0) || (-.136) | (-.190) | (-.316) | (-.429) | (-.522)
—0.50 || 0.962 | 0.972 | 0.983 | 0.979 | 0.970 0.964 | 0.960 | 0.945 0.916 0.870
—0.25 || 0.986 | 0.995 | 1.002 | 0.996 | 0.987 0.983 0.980 | 0.965 0.932 0.872
0 1.000 | 1.007 | 1.013 | 1.007 | 1.000 0.997 | 0.994 | 0.980 0.941 0.859
0.25 1.015 | 1.021 | 1.014 | 1.008 1.008 1.005 | 0.991 0.945 0.826
1 1.028 | 1.023 | 1.023 1.026 1.026 1.010 0.908 1)
4 1.022 | 1.027 1.046 1.052 1)
8 1.022 1.057 | 0.970

e R=1/(1+0417G)

e Due to symmetry, results below the main diagonal are not shown.

e 1) Exact effective length factor is infinite.
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TABLE B.2a Braced member — S4pprox /BrxacT-ratios,

for ﬂAPPROX = 2/(2 + 11Rm“—b + Ongax) with ¢=4.8 (Eq13)

G Ga (Ra)
0 0.25 1 4 +o0 —4 -2 —1.5 —-1.2 -1 -0.8
(1.0) | (.625) | (.294) | (.094) | (£ 0) || (-.116) | (-.263) | (-.385) | (-.532) | (-.714) | (-1.09)
0 1.000 | 1.004 | 0.991 | 0.986 | 0.985 0.988 0.996 1.007 1.024 1.056 1.162
0.25 1.007 | 1.007 | 1.008 | 1.010 1.015 1.033 1.038 1.059 1.096 1.225
1 0.998 | 1.005 | 1.009 1.016 1.029 1.043 1.067 1.107 1.250
4 0.998 | 1.003 1.011 1.025 1.039 1.061 1.101 1.233
+oo 1.000 1.008 1.021 1.034 1.056 1.091 1.208
—4 1.004 1.016 1.028 1.046 1.075 1.142
-2 1.007 1.016 1.026 1.036 0.928
—1.5 1.001 1.000 0.980 1)
—-1.2 0.946 0.841
e R=1/(1424G)
e Due to symmetry, results below the main diagonal are not shown.
e 1) Exact effective length factor is infinite.
TABLE B.2b Braced member — Sapprox /Prxacr-ratios,
for fapprox =2/(2+ 1.1Rmin + 0.9Rmqas) with ¢=5.0 (Eq.13).
Gp Ga (Ra)
0 0.25 1 4 +oo —4 -2 -1.5 -1.2 -1 —-0.8
(1.0) | (.615) | (.286) | (.091) | (£ 0) || (-.111) | (--250) | (-.364) | (-.500) | (-.667) | (-1.0)
0 1.000 | 1.007 | 0.994 | 0.988 | 0.985 0.986 0.991 0.998 1.008 1.030 | 1.100
0.25 1.013 | 1.014 | 1.013 | 1.013 1.017 1.030 1.031 1.045 1.070 | 1.152
1 1.005 | 1.010 | 1.013 1.017 1.025 1.035 1.050 1.074 | 1.155
4 1.001 | 1.005 1.010 1.018 1.027 1.039 1.061 | 1.117
+oo 1.000 1.005 1.013 1.020 1.031 1.046 | 1.079
—4 0.998 1.003 1.009 1.015 1.022 | 0.999
-2 0.989 0.990 0.987 0.973 | 0.781
-1.5 0.968 0.952 0.905 1)
—-1.2 0.885 0.757

e R=1/(1425G)

e Due to symmetry, results below the main diagonal are not shown.

e 1) Exact effective length factor is infinite.
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TABLE B.3 Braced member — Bapprox /PBrxacT-ratios,

for ﬁAPPROX = 1/(1 + Rm) with ¢=4.8 (Eq14)

Gp Ga (Ra)
0 0.25 1 4 +o0 —4 -2 —1.5 —-1.2 -1 —-0.8
) (.625) | (.294) | (.094) | (£ 0) || (-.116) | (-.263) | (-.385) | (-.532) | (-.714) | (-1.09)
0 1.000 | 0.994 | 0.970 | 0.958 | 0.952 0.950 0.950 0.953 0.960 0.977 1.035
0.25 1.007 | 0.996 | 0.989 | 0.986 0.985 0.994 0.991 1.001 1.019 1.089
1 0.998 | 0.997 | 0.996 0.997 1.001 1.006 1.017 1.036 1.107
4 0.998 | 0.999 1.000 1.005 1.010 1.018 1.037 1.088
+oo 1.000 1.002 1.006 1.010 1.018 1.031 1.064
—4 1.004 1.007 1.010 1.014 1.020 1.003
-2 1.007 1.007 1.004 0.991 0.811
-1.5 1.001 0.986 0.944 1)
—-1.2 0.946 0.821
e Due to symmetry, results below the main diagonal are not shown.
e 1) Exact effective length factor is infinite.
TABLE B.4a Braced member — Sapprox /BexacT-ratios,
for BapPrOX = 1/\/(1 + R4)(1 + Rp) with ¢=4.8 (Eq.15).
Gp Ga (Ra)
0 0.25 1 4 +o0 —4 -2 —1.5 —-1.2 -1 —-0.8
(0 (.625) | (.294) | (.094) | (£ 0) || (-.116) | (-.263) | (-.385) | (-.532) | (-.714) | (-1.09)
0 1.000 | 0.999 | 0.993 | 1.001 | 1.010 1.030 1.071 1.124 1.225 1.476 im.)
0.25 1.007 | 1.002 | 1.008 | 1.015 1.031 1.073 1.110 1.201 1.429 im.)
1 0.998 | 1.000 | 1.005 1.015 1.041 1.076 1.151 1.346 im.)
4 0.998 | 1.000 1.006 1.024 1.052 1.112 1.279 im.)
+o0 1.000 1.004 1.017 1.040 1.092 1.240 im.)
—4 1.004 1.011 1.027 1.066 1.187 im.)
-2 1.007 1.011 1.029 1.104 im.)
-1.5 1.001 0.995 1.014 1)
—-1.2 0.946 0.846

e Due to symmetry, results below the main diagonal are not shown.

¢ 1) Exact factor is infinite.

e im.) Approximate factor is imaginary (root of neg. number).

e Identical results are obtained with S4pprox = 0,5\/(2 — Ra)(2 — Rp) for c=2.4 (Eq.18)
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TABLE B.4b Braced member — Sapprox /PrxacT-ratios,

for BapprOox = 1/\/(1 + R4)(1+ Rp) with ¢=5.0 (Eq.15, or Eq.48 ).

Gr Ga (Ra)
0 0.25 1 4 +oo -4 -2 —-1.5 —-1.2 -1 —-0.8
(1.0) | (.615) | (.286) | (.091) | (£ 0) || (-.111) | (--250) | (-.364) | (-.500) | (-.667) | (-1.0)
0 1.000 | 1.002 | 0.996 | 1.003 | 1.010 1.027 | 1.062 1.105 | 1.185 1.367 | im.)
0.25 1.013 | 1.009 | 1.012 | 1.018 1.032 1.066 1.095 1.165 1.327 im.)
1 1.005 | 1.005 | 1.008 1.016 1.035 1.061 1.118 1.250 im.)
4 1.001 1.001 1.004 1.017 1.036 1.077 1.186 im.)
+o0 1.000 1.001 1.008 1.022 1.057 1.148 im.)
—4 0.998 | 0.999 1.007 | 1.028 1.095 | im.)
-2 0.989 | 0.985 | 0.987 | 1.013 | im.)
—1.5 0.968 | 0.947 | 0.923 1)
—-1.2 0.885 | 0.758
e Due to symmetry, results below the main diagonal are not shown.
e 1) Exact factor is infinite. e im.) Approximate factor is imaginary (root of neg. number).
o Identical results are obtained with Sapprox = 0.5\/(2 — R4)(2 — Rp) for ¢=2.5 (Eq.18)
TABLE B.5 Braced member — Bapprox /PBrxacT-ratios,
for 8 =1—0.2(Rmin + 1.45Rpqs) with c=2.4 (Eq.16).
Gr Ga (Ra)
0 0.25 1 4 +oo —4 -2 —1.5 —-1.2 -1 —0.8
(1.0) | (.769) | (455) | (172) | (£ 0) || (-.263) | (-.714) | (-1.25) | (-2.27) | (-5.00) | (-25.0)
0 1.020 | 1.002 | 0.989 | 1.001 1.014 1.045 1.109 1.197 1.380 1.909 neg.)
0.25 1.020 | 0.997 | 0.998 | 1.005 1.025 1.080 1.140 | 1.290 1.730 | neg.)
1 1.004 | 0.992 | 0.992 1.000 1.028 1.074 1.185 1.529 neg.)
4 1.000 | 0.994 0.992 1.005 1.036 1.117 1.395 neg.)
+oo 1.000 0.993 | 0.998 1.020 | 1.087 | 1.325 | neg.)
—4 1.002 0.994 1.004 1.049 1.238 neg.)
-2 1.002 0.992 1.005 1.118 neg.)
—1.5 0.993 | 0.971 1.005 1)
—-1.2 0.936 | 0.823

e Due to symmetry, results below the main diagonal are not shown. ¢ R = 1/(1 + 1.2G).

e 1) Exact effective length factor is infinite. e neg.) Approximate factor is negative.
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TABLE B.6 Braced member — B4pprox /PBrxacT-ratios,
for =1—-0.25(R4 + Rp) with ¢=2.4 (Eq.17)

Gp Ga (Ra)
0 0.25 1 4 +oo —4 -2 —-1.5 —1.2 -1 —-0.8
(1.0) | (.769) | (.455) | (.172) | (£ 0) || (-.263) | (-.714) | (-1.25) | (-2.27) | (-5.00) | (-25.0)
0 1.000 | 1.005 | 1.017 | 1.047 | 1.071 1.118 1.208 1.325 1.562 2.232 neg.)
0.25 1.007 | 1.009 | 1.028 | 1.045 1.080 1.158 1.283 1.441 2.004 neg.)
1 0.998 | 1.004 | 1.013 1.034 1.082 1.152 1.303 1.748 neg.)
4 0.998 | 1.001 1.012 1.045 1.096 1.213 1.579 neg.)
+o0 1.000 1.005 1.029 1.071 1.172 1.491 neg.)
—4 1.004 1.015 1.043 1.200 1.381 neg.)
-2 1.007 1.015 1.056 1.230 neg.)
—-1.5 1.001 1.005 1.089 1)
—1.2 0.946 0.872

e Due to symmetry, results below the main diagonal are not shown.

e 1) Exact effective length factor is infinite.

e neg.) Approximate factor is negative.

Appendix C —Effective length factors by Duan et al.

TABLE C.1

for Bapprox by Egs. 19 and 20.

Unbraced member — Sapprox /Brxact-ratios,

Gp Ga
0o [ 25| 1 | 4 |tc| 20| 15[ -10] 8] 7
0.5 || 0.967 | 0.974 | 0.979 | 0.975 | 2) || 1.004 | 1.008 | 1.007 | 0.992 | 0.963
—0.25 || 0.989 | 0.994 | 0.998 | 0.990 | 2) || 1.007 | 1.008 | 1.002 | 0.980 | 0.942
0 | 1.000 | 1.005 | 1.008 | 1.000 | 1.000 || 1.007 | 1.007 | 0.996 | 0.968 | 0.915
0.25 1.012 | 1.015 | 1.005 | 1.002 || 1.007 | 1.005 | 0.990 | 0.954 | 0.881
1 1.020 | 1.010 | 1.005 || 1.001 | 0.996 | 0.969 | 0.901 | 1)
4 1.001 | 0.996 || 0.980 | 0.967 | 1)
8 0.988 || 0.967 | 0.921

e Due to symmetry, results below the main diagonal are not shown.

e 1) Exact effective length factor is infinite.

e 2) Predictions not obtained (Egs. 19 and 20 exclude each other).
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TABLE C.2 Braced member — ﬂAPPROX /ﬂEXACT—I'atiOS7 for ﬂAPPROX by Eq.22.

Gp Ga
0 Jo2 | 1 | 4 [0 | 4| 2] 15]-12] -1 ] -08
0 1.000 | 1.013 | 1.004 | 1.001 | 1.000 | 1.003 | 1.010 | 1.020 | 1.034 | 1.060 | 1.143
0.25 1.023 | 1.007 | 1.004 | 1.115 || 0.968 | 0.979 | 0.972 | 0.975 | 0.983 | 1.017
1 0.990 | 0.991 | 1.061 || 0.862 | 0.895 | 0.892 | 0.885 | 0.874 | 0.851
4 0.997 | 1.021 || 1.162 | 0.508 | 0.728 | 0.760 | 0.758 | 0.704
+oo 1.000 || 0.974 | 0.941 | 0.912 | 0.876 | 0.828 | 0.706
—4 0.910 | 0.859 | 0.823 | 0.779 | 0.722 | 0.564
-2 0.803 | 0.761 | 0.707 | 0.630 | 0.381
—1.5 0.710 | 0.644 | 0.545 1)
—-1.2 0.557 | 0.412
e Due to symmetry, results below the main diagonal are not shown.
e 1) Exact effective length factor is infinite.
Appendix D — Effective length factors by Eurocode 3
TABLE D.1 Unbraced member — Sapprox /PrxacT-ratios,
for Bapprox by Eq. 25 (or Egs. 26, 27, 38).
Gr Ga (na)
0 0.25 1 4 +o00 —20 —15 —10 -8 -7
(0) (.143) | (.400) | (.727) | (1.0) || (1.081) | (1.111) | (1.176) | (1.231) | (1.273)
—0.5 | 0.965 | 0.971 | 0.972 | 0.958 | 0.975 1.011 1.035 1.146 1.460 im.)
—0.25 || 0.988 | 0.993 | 0.993 | 0.977 | 0.990 1.026 1.052 1.178 1.618 im.)
0 1.000 | 1.005 | 1.005 | 0.989 | 1.000 1.037 1.065 1.208 1.882 im.)
0.25 1.011 | 1.013 | 0.998 | 1.007 1.045 1.074 1.241 2.503 im.)
1 1.019 | 1.008 | 1.017 1.058 1.095 1.371 im.) 1)
4 1.007 | 1.014 1.080 1.181 1)
8 1.006 1.142 im.)

on=1/(1+(15/G))

e Due to symmetry, results below the main diagonal are not shown.

e 1) Exact factor is infinite.
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e im.) Approximate factor is imaginary (root of neg. number).




TABLE D.2 Braced member — Bapprox /Brxact-ratios, for fapprox by Eq.28.
Cn Ga (na)
0 0.25 1 4 +oo —4 -2 —1.5 —-1.2 -1 —-0.8
(0) (.333) | (.667) | (.889) | (1.0) || (1.143) | (1.333) | (1.5) | (1.714) | (2.0) | (2.667)
0 1.000 | 0.996 | 0.987 | 0.990 | 0.993 1.003 1.020 | 1.040 | 1.068 | 1.116 | 1.252
0.25 1.011 | 1.010 | 1.013 | 1.015 1.022 1.040 | 1.045 | 1.065 | 1.097 | 1.185
1 1.014 | 1.013 | 1.013 1.014 1.016 | 1.020 | 1.026 | 1.035 | 1.054
4 1.007 | 1.005 1.001 0.996 | 0.992 | 0.984 | 0.975 | 0.928
+oo 1.000 0.993 0.984 | 0.974 | 0.961 | 0.938 | 0.851
—4 0.983 0.966 | 0.949 | 0.925 | 0.884 | 0.732
-2 0.938 | 0.911 | 0.869 | 0.799 | 0.511
—1.5 0.871 | 0.811 | 0.707 1)
—-1.2 0.720 | 0.550
o 1= 1/(1+(0.5/G))
e Due to symmetry, results below the main diagonal are not shown.
e 1) Exact effective length factor is infinite.
TABLE D.3 Braced member — Sapprox /Brxact-ratios, for Sapprox by Eq.29.
Gr Ga (na)
0 0.25 1 4 +oco —4 -2 —1.5 —-1.2 -1 —-0.8
(0) (.333) | (.667) | (.889) | (1.0) || (1.143) | (1.333) | (1.5) | (1.714) | (2.0) | (2.667)
0 1.000 | 1.005 | 0.997 | 0.998 | 1.000 1.008 1.020 | 1.044 | 1.075 | 1.132 | 1.334
0.25 1.010 | 0.998 | 0.997 | 0.998 1.005 1.028 | 1.040 | 1.077 | 1.147 | 1.459
1 0.989 | 0.988 | 0.991 0.999 1.018 | 1.045 | 1.098 | 1.208 | 1.946
4 0.989 | 0.994 1.005 1.032 | 1.070 | 1.146 | 1.331 4.04
+oo 1.000 1.004 1.047 | 1.094 | 1.193 | 1.449 60
—4 1.034 1.079 | 1.144 | 1.289 | 1.739 | neg.)
-2 1.151 | 1.263 | 1.550 3.07 neg.)
-1.5 1.466 2.15 neg.) 1)
-1.2 12.2 neg.)

e n=1/(1+(05/G))

e Due to symmetry, results below the main diagonal are not shown.

e 1) Exact factor is infinite.
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e neg.) Approximate factor is negative.




Appendix E — Effective length factors by Burheim

TABLE E.1 Braced member — Sapprox /SrxacT-ratios,
for p = (7T— Rm)/(7T+ 5Ry,) with c=4 (Eq.35).

Gr Ga (Ra)
0 0.25 1 4 +oo —4 -2 —15 | —-1.2 -1 —-0.8
(1.0) | (.667) | (.333) | (.111) | (£ 0) || (-.143) | (-.333) | (-.5) | (-.714) | (-1.0) | (-1.667)
0 1.000 | 0.995 | 0.979 | 0.976 | 0.977 || 0.985 1.000 | 1.020 | 1.053 | 1.116 1.361
0.25 1.003 | 0.994 | 0.993 | 0.995 1.002 1.024 | 1.035 | 1.069 | 1.132 1.396
1 0.993 | 0.995 | 0.997 || 1.003 1.016 | 1.034 | 1.065 | 1.125 1.397
4 0.995 | 0.998 1.003 1.015 | 1.031 | 1.058 | 1.115 1.371
+oo 1.000 1.004 1.015 | 1.028 | 1.055 | 1.104 1.343
—4 1.008 1.016 | 1.028 | 1.048 | 1.090 1.275
-2 1.020 | 1.027 | 1.038 | 1.059 1.054
-1.5 1.026 | 1.025 | 1.014 1)
—-1.2 0.996 | 0.895

e R=1/(142G)

e Due to symmetry, results below the main diagonal are not shown.

e 1) Exact effective length factor is infinite.

Appendix F —Effective length factors by French rules

TABLE F.1 Braced member — Bapprox /Brxact-ratios, for Bapprox by Eq.41 (or Eq.44).

Gp Ga

0 Jo2s | 1 | 4 [0 4| 2] -15]-12] -1 ] -08
0 |l 1.000 | 1.002 | 0.994 | 0.996 | 1.000 || 1.011 | 1.033 | 1.058 | 1.100 | 1.178 | 1.485
0.25 1.013 | 1.008 | 1.009 | 1.011 || 1.020 | 1.044 | 1.058 | 1.095 | 1.164 | 1.256
1 1.005 | 1.004 | 1.006 || 1.010 | 1.022 | 1.038 | 1.067 | 1.123 | 1.373
4 1.001 | 1.001 || 1.003 | 1.010 | 1.021 | 1.041 | 1.085 | 1.280
+50 1.000 || 1.000 | 1.004 | 1.011 | 1.028 | 1.060 | 1.214
4 0.998 | 0.998 | 1.000 | 1.007 | 1.025 | 1.099
9 0.989 | 0.984 | 0.977 | 0.966 | 0.835
—15 0.968 | 0.943 | 0.894 | 1)
—1.2 0.885 | 0.748

e Due to symmetry, results below the main diagonal are not shown.

e 1) Exact effective length factor is infinite.
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