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Buckling of Stiffened Plates using a Shanley Model Approach 
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 Mechanics Division, Department of Mathematics, University of Oslo  

 
 

Abstract - The Shanley model concept is used for simulating the elastic non-linear interaction 
between local buckling and overall buckling of thin-walled columns subjected to axial compression.  
The spring foundation is given a general macro material form for representing the local buckling 
response typical for thin walled cross-sections. For geometrically perfect columns, analytical post-
buckling solutions are derived valid for and any cross-sectional shape. For geometrical imperfect 
columns a numerical procedure is proposed. The numerical method is based on a perturbation 
scheme with arc length control applied in an incremental procedure.  It is demonstrated that the 
numerical method is able to trace unstable equilibrium paths with sharp peaks in the load-deflection 
space. 
 
A simplified two-degree of freedom macro material model is developed, applicable for panels with 
open thin-walled stiffener profiles. Included in the cross-sectional macro model is plate buckling 
interacting with sideways/torsional buckling of the free stiffener outstand and buckling of the 
stiffener web plate.  
 
The present analytical and numerical study verifies that the recognised reduced modulus is an 
important parameter in the non-linear elastic interaction between local and overall buckling of 
stiffened panels.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 Page: 2 
University of Oslo   
Department of Mathematics, Mechanics division  99-1 
Buckling of stiffened Plates using a Shanley model approach 
__________________________________________________________________________________________ 
 
 

 

TABLE OF CONTENTS   
  

Page 
1. INTRODUCTION........................................................................................................................................ 3 

2. THE GENERAL SECTION SHANLEY COLUMN................................................................................... 5 

2.1 General..................................................................................................................................................... 5 
2.2 General formulation ............................................................................................................................... 8 
2.3 Linear spring stiffness .......................................................................................................................... 12 
2.4 Initial postbuckling analysis................................................................................................................. 13 
2.5 Analytical postbuckling solution for geometrically perfect columns................................................ 18 
2.6 Summary and discussion...................................................................................................................... 22 

3. THE SHANLEY MODEL FOR THIN-WALLED CROSS SECTIONS................................................... 23 

3.1 General section macro material formulation...................................................................................... 23 
3.2 Numerical solution method  - Imperfect geometry............................................................................ 25 
3.3 Summary................................................................................................................................................ 27 

4. MACRO MODEL FOR OPEN STIFFENER PROFILES......................................................................... 27 

4.1 General................................................................................................................................................... 27 
4.2 Marguerre’s non-linear plate theory................................................................................................... 31 
4.3 Local buckling of an open profile cross-section.................................................................................. 33 

4.3.1 General........................................................................................................................................... 33 
4.3.2 Buckling modes ............................................................................................................................. 34 
4.3.3 Membrane compatibility conditions .............................................................................................. 37 
4.3.4 Macro material formulation for open sections............................................................................... 39 
4.3.5 Equilibrium formulation ................................................................................................................ 40 
4.3.6 Equilibrium solutions..................................................................................................................... 44 
4.3.7 Stiffness properties ........................................................................................................................ 46 

4.4 Summary and discussion...................................................................................................................... 48 
5. DISCUSSION - VERIFICATION ............................................................................................................. 49 

5.1 General................................................................................................................................................... 49 
5.2 Macro material solutions...................................................................................................................... 50 

5.2.1 Single mode solution ..................................................................................................................... 50 
5.2.2 Closed-form solution - Plate with one longitudinal edge free ....................................................... 51 
5.2.3 Numerical results and comparisons with other solutions............................................................... 53 

5.3 Coupled local and overall buckling solutions ..................................................................................... 54 
5.3.1 General........................................................................................................................................... 54 
5.3.2 Closed form solution – Plate with one longitudinal edge free ....................................................... 54 
5.3.3 Numerical solution - Flat bar profile in tanker deck ...................................................................... 57 
5.3.4 Numerical solution - Coincident overall and local buckling.......................................................... 61 

5.4 Summary and discussion...................................................................................................................... 64 
6. SUMMARY AND CONCLUSION........................................................................................................... 65 

7. REFERENCES........................................................................................................................................... 67 

8. NOTATION ............................................................................................................................................... 70 

Appendix A1   Potential energy of stiffened panel unit - Local modes q1, q2............................................ 75 
Appendix A2  First order energy coefficients - Equilibrium equations in local modes q1, q2 ................... 79 
Appendix A3   Single mode equilibrium equation in closed form............................................................. 80 
Appendix A4  Second and third order energy coefficients ........................................................................ 81 
Appendix A5   Eigenvalues in local modes ............................................................................................... 82 
Appendix A6   Macro material coefficients – Local compatibility conditions .......................................... 83 
Appendix A7   Macro material coefficients – Solution for perfect geometry............................................ 84 
 

 



 Page: 3 
University of Oslo   
Department of Mathematics, Mechanics division  99-1 
Buckling of stiffened Plates using a Shanley model approach 
__________________________________________________________________________________________ 
 
 

 

1.  INTRODUCTION 

Buckling of thin-walled stiffened plates is a subject of continuous interest due to its relevance 
in the design process of technologically important structures such as ship, bridges and 
aerospace constructions. However, despite the huge amount of research results available on 
the subject, there are still many complicated items, which are not satisfactory treated in 
available design codes. The main items to be included in a physically consistent design model 
are the problems of mode interactions and unstable postbuckling behaviour, combined load 
effects, residual stress and heat affect zone effects and geometrical imperfection effects.  
 
After the first warning made by Koiter and Skaloud (1963) against the optimum design 
philosophy of simultaneous local and overall buckling in stiffened panels, the topic of mode 
interactions has been on the agenda among engineers and scientist working in the field of 
structural stability. Van der Neut (1969) demonstrated that the procedure of designing panels 
having close or identical local and overall critical buckling loads lead to unstable postbuckling 
behaviour and increased imperfection sensitivity. Some time before, Graves-Smith 
(1967,1968) analysed the interaction between local and overall buckling in more general 
terms. Subsequently, a series of publications emerged focusing on the complex non-linear 
mode interaction effects and imperfection sensitivity, e.g. Koiter and Kuiken (1971), 
Thompsen and Lewis (1972), Tvergaard (1973).  
 
Thompsen, Tulk and Walker (1974) studied the elastic mode interaction problem from a 
simplified and conceptual point of view using the Shanley model for a panel with stocky 
stiffeners and slender plating. Walker (1975) and Tulk and Walker (1976) showed 
theoretically, as well as by carefully performed laboratory experiments of small scale 
stiffened plates made of araldite, that the reduced modulus factor is an important parameter 
for the stability of the postbuckling response and consequently of the imperfection sensitivity. 
Ellinas and Croll (1977, 1979, 1981) adopted also the reduced modulus concept and 
calculated factors for the case of slender stiffener outstands (flat bar and bulb profiles in ship 
terminology).  
 
The concept of reduced modulus factor in the elastic buckling theory, as developed by  
Thompsen, Walker, Croll and their co-workers, is in principle similar to the reduced modulus 
approach in the inelastic column buckling theory, originally developed by Considere (1891). 
Von Karman (1910) developed the inelastic buckling theory further, with subsequent 
important contributions by Shanley (1947) and Hutchinson (1973). The present work deals 
exclusively with the elastic buckling theory. 
 
The objective of the present work is to develop a simplified numerical buckling model for 
tracing the complete non-linear elastic load-displacement curve of axially compressed 
stiffened plates. This includes the non-linear interaction effects between local and overall 
buckling modes together with geometrical imperfection effects. Such curves provide both 
strength and stiffness properties of compressed panels, which are vital parameters for overall 
strength assessment of larger structures. Geometrical imperfections both in local and overall 
modes are studied, but residual stresses and spread of material plasticity are left out. However, 
by controlling the magnitude of the stresses in critical locations in the panel, the present 
model can be used to assess the ultimate load bearing capacity using a first yield criterion. 
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First yield criteria used in combination with a non-linear elastic analysis are recognised and 
frequently used in simplified buckling models  
 
Moreover, the objective was also to test out the feasibility of the perturbation method as a 
numerical tool for tracing continuous equilibrium curves. Details of the perturbation method 
used in an incremental scheme with arc length control are given in Steen (1998).   
 
The present simplified buckling model is based on a generalised Shanley column formulation 
in which the local cross-sectional behaviour follows a two-dimensional spring law. The two-
dimensional spring law is referred to as a local macro material model or just a macro model. It 
includes the local cross-sectional buckling behaviour in an integrated form coping exclusively 
with local non-linear geometrical effects. For coupling of the local and overall buckling 
effects, the Shanley model ensures a simple treatment of both the continuously changing 
cross-sectional bending and extensional stiffness properties and shift in neutral axis position 
with changing displacements. By using a two-dimensional macro model, the basic 
formulation developed can be used for any type of thin-walled cross-sectional shape, e.g. for 
open profiles, closed profiles, corrugated panels etc. The two-dimensional spring model can 
be extended to a six-dimensional model for use in the strength assessment of stiffened panels 
subjected to combined bi-axial and shear loads. However, the issue of combined loads is not 
addressed in detail in the present report. 
 
In a non-linear analysis the overall cross-sectional bending and extensional stiffness 
properties are state dependent (load-dependent). This means that they will continuously 
change as the external applied load is increased. This effect is treated herein through an 
incremental updated numerical procedure. However, from a design code point of view, an 
even more simplified approach is to be preferred using a fixed set of reduced stiffness factors. 
Such a code model is currently under development, but is not described here. 
 
This report develops specifically a macro material model for stiffened panels with open 
profiles, typically used in steel ships and offshore constructions. For these types of profiles it 
is of particular interest to study mode interactions between overall panel (column) buckling 
and local plate buckling and/or torsional sideways buckling of the stiffener.  
 
A brief summary of the content is as follows. Chapter 2 describes a general formulation of the 
interactive buckling problem of columns using the Shanley model. The general section cross-
sectional response is formulated as a non-linear macro material law without focussing on 
whether the cause of this non-linearity is due to cross-sectional buckling or pure material 
effects. Chapter 3 then describes a macro material law in which the local geometrical buckling 
parameters (qi) of a general thin-walled cross-section become visible. For solving the non-
linear geometrical problem, a perturbation procedure is formulated using an incremental 
approach with arc length control. Chapter 4 is more specific and develops the macro model 
for stiffened panels with open stiffener profiles of type T, L or flat bar, typically used in ship 
and offshore structures. The present report deals exclusively with stiffened panels subjected to 
pure axial loading for which a two-dimensional macro model is sufficient.  Only some very 
general comments are given in Section 3.1, adapted to six-dimensional macro models to be 
used for combined in-plane load situations in stiffened panels.  
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Using the macro material law developed in Chapter 4 some numerical examples, using the 
incremental perturbation method, are presented in Chapter 5. Comparisons with some 
analytical and numerical solutions published in the literature are also given. 
 

2. THE GENERAL SECTION SHANLEY COLUMN 

2.1 General 

 
After several decades of almost no interest in the problem of inelastic buckling of columns, 
Shanley(1947) presented a new approach to the topic and eliminated much of previous 
disagreements on whether to use the tangent or reduced modulus approach. Up to that time 
the reduced modulus load was accepted as the lowest buckling load of geometrically perfect 
straight columns made of inelastic material (von Karman (1910)). Shanley showed, using the 
simple two-spring model illustrated in Fig.1a, that the tangent modulus load was the 
minimum load at which the inelastic column starts to buckle. His findings were well 
documented, both by experiments and by incorporating the mentioned simple spring model 
with bi-linear inelastic material characteristics. In a discussion of Shanley’s paper, von 
Karman agreed with the author’s conclusions.  
 
Chilver and Britvec (1964) studied in more depth the stability of columns in the inelastic 
region and developed a closed form solution for the postbuckling response. They confirmed 
that the tangent modulus load was the smallest possible buckling load and showed that the 
postbuckling equilibrium path approached asymptotically the reduced modulus load for 
increasing deflections (within the limit of moderate rotation theory and inelastic bi-linear 
material response). Hutchinson (1973) generalised the Shanley model by using a continuous 
spring model in order to simulate the uni-axially inelastic response of a real compact cross-
section, Fig.1b. Using this model he studied the initial postbuckling behaviour in the inelastic 
region using asymptotic theories. Tvergaard and Needleman (1975) studied both with 
numerical and asymptotically methods the postbuckling behaviour of inelastic columns with 
and without geometrical imperfections.  
 
Within inelastic column theory it can be stated that the reduced modulus load and tangent 
modulus load has a clear physical interpretation and it is recognised that the tangent modulus 
load represents the mathematically correct initial buckling load for perfect straight columns. 
However, for real columns with geometrical imperfections and residual stresses these theories 
have not been used to any large extent for design purposes. Numerical methods or semi-
analytical methods like the Perry type of approach reviewed below have been preferred. 
 
The publication by Ayrton and Perry (1886) is credited with being the first that focussed on 
the effect of geometrical imperfections and load eccentricities in the study on load bearing 
capability of columns (struts). The load causing the first yield at the extreme fibre in the 
critical section was called an elastic limit load. They showed that this load was a close 
approximation to the ultimate loads for a set of experiments carried out on different types of 
struts. Robertson(1925) developed this method further and showed good correlation with test 
results of initially crooked columns. The simplicity of the approach attracted the engineering 
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community dealing with design, and the Perry-Robertson approach is used in many 
international design codes dealing with buckling of columns as well as stiffened plates and 
cylindrical panels.    
 

 
 

Fig.1 Shanley model, schematically 
 
 

The Perry-Robertson model was developed for the buckling strength assessment of columns 
with compact cross-sections. In order to cope with the structural interaction between local 
cross-sectional buckling and overall column buckling, Thompsen, Tulk and Walker (1974) 
proposed to include the reduced modulus concept. They used the feature of reduced modulus 
in a general context, i.e. they realised that it could be used independently of whether it was the 
material or the local buckling of the cross-section that caused the local stiffness change. They 
made use of the accepted fact that the in-plane stiffness of a compressed geometrically perfect 
plate has an almost constant value beyond initial elastic buckling. To demonstrate the 
importance of this near constant postbuckling stiffness of plates they modelled a stocky 
stiffener with a flexible plate flange, whose effective stiffness was taken to be a fixed value 
(typically 50% of the unbuckled stiffness). For the case of the column buckling in the 
direction giving compression in the plate flange, they showed both theoretically and 
experimentally that the classical Euler column formula with the reduced bending stiffness 
(EI)R of the plate flange included, predicted a safe lower bound buckling strength value. In 
other words their approach predicted a lower bound estimate of the column buckling strength 
with a full elimination of the non-linear mode interaction effect. Ellinas et. al. (1977), Ellinas 
and Croll (1979) and Ellinas and Croll (1981) used the same approach for cases with slender 
stiffeners buckling in a sideways (torsional) mode.  
 
The present work presents an extension of the reduced modulus approach to interactive elastic 
buckling of stiffened panels. A major assumption in the approach, as proposed by Thompsen, 
Walker, Croll and their co-workers, is that the reduced modulus factor is a fixed value. They 
assumed this fixed value to be independent of the plate dimensions, geometrical 
imperfections, and the level of the acting load. This approach can be classified as a lower 
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bound approach, which may be unduly conservative if the elastic local buckling load of the 
cross-section is well above the material yield stress. This is normally the case for ship and 
offshore constructions made of steel. However, the reduced modulus concept is a very 
intuitive and physically appealing approach and it can be extended for a more realistic 
strength assessment. By using a method for continuously updating the current macro stiffness 
properties, instead of using a fixed conservative value, significant improvements may be 
achieved. This is the main topic in the present report and the general section Shanley model 
illustrated in Fig.1c, provides for a simplified treatment.  
 
The stiffened panel layout considered in this report is typical for ship structures. The panel 
rests on transverse girders providing rigid lateral supports as illustrated in Fig.2. The panel is 
wide compared to its length. This means that we can study the panel strength by considering 
an isolated unit. The unit consists of a single stiffener with an associated plate width equal to 
the full stiffener spacing s.  This column model approach will give reasonable results for most 
geometries found in steel ships and offshore structures. It is commonly used in rules and 
guidelines issued by ship classification societies.   

 
 

Fig.2  Stiffened panel with open profiles of flat bar (T or angle) type.  
Overall Euler mode interacting with sideways(torsional) buckling of stiffeners  

and local buckling of plating  
 
 
In the general Shanley model illustrated in Fig.1c, the spring represents the non-linear 
buckling response of the cross-section. Since the spring characteristics represent an integrated 
effect of local buckling and imperfection effects of the whole cross-section, the notion of a 
macro material has been introduced. In the limit of compact cross-sections, the spring 
characteristic represent the uni-axial linear elastic material stress-strain law. In the other limit, 
with very slender cross-sections prone to different types of local buckling, the macro model 
converge towards the lower bound method as proposed by Thompsen, Walker and their co-
workers.  
 
Material yielding is simply checked by evaluating the maximum membrane stress in critical 
locations (hard corners) at the column mid-span length. The problem of inelastic behaviour is 
not treated in depth in this report since this requires a more comprehensive approach. For 
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columns with compact sections such a comprehensive numerical model is documented in 
Steen and Andreassen (1995-I) and Steen and Andreassen (1995-II). This model handles the 
combination of axial load and lateral pressure for a multi-span beam-column and the spread of 
plasticity both in the cross-sections and along the length is included. 
 

2.2 General formulation 

 
The Shanley model in Fig.1c is reproduced with more definitions of parameters in Fig.3. The 
cross-sectional parameters N and M are the resultant axial force and moment, respectively, 
acting at the mid-span of the column. P is the external load always acting in the centroid of 
the column cross-section. The moment M is calculated about the cross-section centroid (X, Y, 
Z co-ordinate system placed as illustrated in Fig.3; centroid Y = 0, Z = 0). Note that a lowe 
case co-ordinate x, y, z system is used later in Chapter 4, with the y-axis laying in the plate 
middle-plane, Fig.8 (Z = z-zG). The rotation θ of the rigid arm is due to the applied load P, 
while θ0 is the initial (stress free imperfection) rotation for zero load. 
 
The two global equilibrium equations of the Shanley model (Fig.3) are according to the theory 
of moderate rotations (sin θ ≈ θ) equal to 
 

P N

PL M

− =
+ − =
                 

  

0

00( )θ θ
        (1) 

 
 

Fig.3  General section Shanley model 
 Example illustration: plate with attached T profile  
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A set of scaled displacement parameters are defined as 
 

 

L/

L/

L/u

00

G

θ=κ
θ=κ

=ε
         (2) 

 
Here uG is the axial displacement of the centroid. For convenience uG is scaled with the full 
stiffener span L giving an axial average strain parameter ε (non-dimensional end-shortening). 
The rotation parameters θ and θ0 are scaled similarly giving a measure κ (and κ0) of the 
curvature of the column at mid-span. A positive ε is defined as a shortening of the column and 
a positive curvature κ gives compressive strains for material points located at Z > 0. 
Moreover, L  is the symbol for the length of the rigid link of the Shanley model. The 
magnitude of L  compared to the full continuous column length L is derived in Section 2.3. 
 
The total cross-sectional forces N and M are defined as  
 

∫∫

∫∫

σ=

σ=

A

x

A

x

dXdZ ZM

dXdZN

        (3) 

 
The term total used here refers to total forces as opposed incremental forces, and the reference 
is always to the undeformed panel described in the rectangular co-ordinate system. Thexσ in 
Eq.(3) symbolises the axial stress in an arbitrary material point in the cross-section and it is 
defined as positive in compression (in buckling theory positive values are mostly used for 
critical loads etc.). When applied to thin-walled sections, the integrations in Eq.(3) will lead to 
sufficiently accurate estimates of the force and moment by letting xσ  be the membrane stress 
in each component plate (i.e. neglecting stress variations across a plate thickness in each 
component plate is a reasonable approximation).  
 
By enforcing the Bernoulli-Euler hypothesis, the strain ε  in an arbitrary point in the cross-
section is related to the axial strain ε and curvature κ of the centroidal reference plane as   
 

κ+ε=ε  Z          (4) 
 
Using Eq.(4) together with non-linear solutions for the membrane stress field in a thin-walled 
built up section (see Section 4.3.3), it can be shown that the membrane stress xσ  in a 

component plate are general functions of the strain ε and curvature κ of the centroid, i.e. 
expressed mathematically as  
 

),(xx κεσ=σ          (5) 
 
Eq.(5) can be interpreted as a general non-linear material law, which substituted into Eq.(3) 
gives the two-dimensional macro material functions on total form as 
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),(MM

),(NN

κε=
κε=

          (6)  

 
Note that in Eqs.(5)(6) xσ , N and M are used as symbols for the respective function as well 
as for the value of the function (stress, force and moment) even though this is not a rigorous 
mathematical notation. 
  
Functions of this type can be derived for any column cross-sectional shape and both the 
material law and the cross-sectional buckling behaviour can be included into these functions. 
Details on how this can be done for a thin-walled cross-section with open profiles are given in 
Chapter 4. At this stage it is sufficient to accept that equations in form of Eq.(6) can be 
derived. These functions describe a non-linear macro material model for the cross-sectional 
behaviour, and it is immaterial at this stage whether the non-linearity is due to local cross-
sectional buckling or due to non-linear elastic material behaviour. 
 
By substituting Eq.(6) into Eq.(1), the cross-sectional forces N and M are eliminated in the 
equilibrium equations at the expense of the average strain ε and curvature κ. For completeness 
of notation the final form of the equilibrium equations are written as 

 

0  ),(M)(LL P

0                     ),(NP

0 =κε−κ+κ
=κε−

       (7) 

 
Eq.(7) is the two overall equilibrium equations in the three unknowns P, ε and κ describing 
the non-linear geometrical response of an initially tilted Shanley column.  
 
Since the two-dimensional non-linear macro material law described by Eq.(6) is central in the 
buckling model developed in this report, it is useful to discuss some of its main properties. By 
expanding Eq.(6) in a Taylor serie around any known equilibrium state Is, the macro material 
law takes the form  
 

L

L

 )KK2K)(!2/1(KKM

 )KK2K)(!2/1(KKN
2

222212
2

2112221

2
122112

2
1111211

+κ∆+κ∆ε∆+ε∆+κ∆+ε∆=∆

+κ∆+κ∆ε∆+ε∆+κ∆+ε∆=∆
 (8) 

 
Here the instantaneous spring stiffness coefficients Kij, Kijk .. etc. are the derivatives of the 
non-linear spring functions and they are defined as  
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KK
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=

=
   (9) 

 
In order to study the postbuckling response of thin-walled columns, and in particular the 
interaction between local cross-sectional and overall column buckling, the first order 
instantaneous stiffness coefficients ijK  are the most important. They are often called the 

tangent stiffness coefficients in non-linear structural terminology and they are generally load 
(state Is) dependent. Higher order stiffness coefficients are also of interest, but have a less 
familiar interpretation in structural analysis. They are not discussed in the present report. 
 
For cold formed or welded thin-walled column profiles, initial local imperfections will always 
be present. The presence of such unavoidable initial imperfections will, even for zero load, 
give values for the instantaneous stiffness coefficients that deviate from the values that can be 
achieved for a geometrically perfect column (linear elastic stiffness properties). These initial 

stiffness values, termed K,K,K 0
ijk

0
ij , in state I 0, will depend on the size and shape of the 

local imperfections, which again are strongly related to the material, fabrication and welding 
procedure used. 
 
The topic of geometrical imperfections and how their magnitude and shape are distributed in 
real thin-walled stiffened panels are not an issue in this report. Here we assume that the 
magnitude of the geometrical imperfections is known input parameters, while the 
imperfection shape is assumed to coincide with the lowest critical eigenmodes. This is a well 
established and normally conservative assumption.   
 
Assuming that some initial geometrical imperfections exist, the buckling displacements will 
grow from the very onset of compressive loading, with the consequence that the spring 
stiffness values gradually decrease. In particular the rate of stiffness degradation will 
accelerate around the minimum local elastic buckling (local eigenvalues) load.  
 
The present chapter solves and discusses properties of the equilibrium equations under 
different assumptions with respect to the characteristics of the spring functions, Eq.(6). 
Section 2.3 solves the problem for compact cross-sections (classical Euler strut) for which 
Eq.(6) are linear spring functions. Section 2.4 presents a general asymptotic postbuckling 
solution valid for perfectly straight columns with non-linear spring stiffness properties. 
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Section 2.5 presents an analytical postbuckling solution valid for perfect straight columns 
with a bi-linear spring function. A more general numerical solution strategy, applicable for 
geometrically imperfect thin-walled columns with a general non-linear spring function, is 
presented in Chapter 3.  
 

2.3 Linear spring stiffness  

 
The simplest case to analyse is the classical case of a compact cross-section and pure linear 
elastic material behaviour according to Hooke’s law )E( x ε=σ . Applying the Bernoulli-Euler 
assumption, Eq.(4), the stress in a material point in the cross-section is given as  
 

[ ]κ+ε=σ Z Ex        (10) 
 

Substituting Eq.(10) into Eq.(3) gives for the spring forces written on matrix form  
 










κ
ε





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


=




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


L

22
L
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L
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L
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KK

KK

M

N
        (11) 

 
In Eq.(11) the linear stiffness coefficients Kij

L are defined as 
 

T
L

22

L
21

L
12
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L
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EIK

0KK
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=
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=

   (12a) ⇒  giving  
κ=
ε=

)EI(M

)EA(N

T

T    (12b) 

 
In Eq.(12) AT is the total cross-sectional area, IT is the moment of inertia of the cross section 
about the centroid z = zG and E is Young’s modulus. It is noted that K12

L is zero, which 
naturally follows from our definition of the reference axis for moment calculation being the 
centroid of the cross-section. Obviously Eq.(11) is the linear version of Eq.(6). 
 
Substituting Eq.(12) into the equilibrium equations, Eq.(7), and solving for the displacement 
parameters ε and κ gives 
 

00
Sh

Sh
0

Sh PP

P

PP

P κ−κ
−

=κ
−

=κ       (13a) 

 
)EA/(P T=ε          (13b) 

 
In Eq.(13a), ShP is the Shanley buckling load defined as 

 

LL

EI
P T

Sh =          (14) 
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In this report the length L  of the rigid link is defined as the length giving the same buckling 
load for the Shanley model as for the classical simply supported continuous Euler column. 
The classical Euler load PE is    
 

P
EI

LE
T= π2

2           (15) 

 
It follows that the present Shanley column length is  
 

L
L====
π2          (16) 

 
Eq.(13a) represents the classical load-displacement solution for an initially bent beam-
column. With reference to the textbook by Croll and Walker (1972) this solution is called the 
linearized equilibrium path even though it gives a non-linear relation between load P and 
displacement κ (θ). In other parts of the literature Eq.(13a) is referred to as a second order 
linearized bending solution. The term )PP/(P ShSh − in Eq.(13a) is generally termed 

amplication factor in the literature. The solution is used in many international codes as basis 
for strength assessment of beam-columns as well as for stiffened plates and shell structures. 
As mentioned previously in Section 2.1, application of Eq.(13a) in combination with a first 
yield approach in an extreme fibre for ultimate capacity assessment, is frequently referred to 
as the Perry-Robertson approach.  
 

2.4   Initial postbuckling analysis  

 
In order to gain insight into the mechanics of non-linear interactive buckling, and in particular 
the interaction between local and overall buckling, it is instructive to start with a study of the 
case of a column with perfect geometry. Perfect means in this context no overall initial 
deflection of the column axis and no local imperfections in the column cross-section. Koiter 
(1945) was the first to develop a general theory for the study of the initial postbuckling 
behaviour of structures with reference to the perfect geometry. His theory can be classified as 
an asymptotic postbuckling method and a readable introduction can be found in the textbook 
written by Brush and Almroth (1975) and Dym(1974). In Steen (1989) the Koiter 
postbuckling parameters for a stiffened panel was derived and compared with a more 
comprehensive solution based on Marguerre’s (1938) plate theory. That model did, however, 
only include the overall panel buckling mode, neglecting interaction with local modes 
altogether.  
 
Setting the initial overall imperfection parameter 0κ  equal to zero, the equilibrium equations 

of the Shanley model, Eq.(7), simplify to  
 

0),(M LL P

0          ),(NP

=κε−κ
=κε−

        (17) 
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Eq.(17) represents two equations in the three unknowns P, ε and κ. Assuming that the 
postbuckling solution can be expanded around the local critical load level PC with κ as a 
continuously increasing parameter, we seek a perturbation solution in the form 
 

L&&&

L&&&

 )( )!21( )(

 )( P)!21( PP)(PP
2

C

2
C

+κ∆ε+κ∆ε+ε=κε=ε

+κ∆+κ∆+=κ=
     (18) 

 
Note that in the expansion Eq.(18), the curvature parameter κ is used as the perturbation 
parameter. A dot over a symbol indicates partial derivative with respect to the curvature 
parameter κ, and C as subscript indicates state IC at which initial elastic cross-sectional 
buckling starts for thin-walled sections. Within the theory of perturbation methods, partial 
derivatives with respect to some control parameter (here κ) are called path derivatives. It is 
noted that in the asymptotic power expansion in Eq.(18), the symbol ∆κ is used in order to 
underline that the curvature parameter in general is an incremental property measured from 
any known state. However, since the power expansion here is measured from a fixed state, 
corresponding to the perfect straight column state IC, the incremental symbol ∆ could be 
avoided for convenience of notation.  
 
Substituting the assumed solution, Eq.(18), into the equilibrium equations, Eq.(17), and 
subsequently carrying out the required differentiation, the following set of incremental 
equilibrium equations are found. 
 
First order: 
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Second order: 
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Higher order solutions can be derived using the same procedure, but are not shown here as 
they are of secondary interest. 
 
The first order solution is of particular interest as it for thin-walled sections controls the initial 
phase of the non-linear coupled postbuckling response in the local and overall column mode. 
Using the definitions for the macro material stiffness coefficients, Eq.(9), and retaining only 
the first order terms, the solution for εΡ && ,  around the critical point IC, i.e. around   
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can be found from Eq.(19) as 
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Retaining only the first order term in Eq.(18) and inserting the solution from Eq.(22), the final 
load-curvature relation of the Shanley model, valid in the close neighbourhood of the critical 
load PC, is summarised as  
     

κ∆
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       (23b) 

 
It is noted that that PE is the classical Euler load for a simply supported column as defined in 
Eq.(15). The stiffness coefficients 22211211 K,KK,K =  are evaluated at state IC. For thin-
walled sections the stiffness coefficients are representative for the integrated cross-sectional 
behaviour described purely by local buckling modes. Derivations of these stiffness 
coefficients belong to a separate non-linear postbuckling analysis of thin-walled cross-section 
and a solution for open stiffener profiles is presented in Chapter 4.  
 
The first order solution presented by Eq.(22), gives a non-zero coefficient P& . According to 
the Koiter theory this implies that the postbuckling response is asymmetric. The postbuckling 
parameter P&  can take on both positive and negative values, depending on the relation 
between the ratio PC/PE and cross-sectional stiffness parameters Kij.  
 
As a conclusion, and with reference to Koiter’s postbuckling theory, the solution of the initial 
postbuckling path, Eq.(22), has revealed that the coupling between local and overall buckling 
mode leads to an initially asymmetric postbuckling behaviour. In other words, as soon as the 
cross-section of the column starts buckling in some local mode at the load PC, overall 
buckling is triggered and the axial load in the column will have to increase or decrease 
depending on the overall buckling direction. This behaviour is in contrast to a column with a 
compact cross-section for which a symmetric buckling behaviour will take place at the 
classical Euler load PE. It can be mentioned that, within the theory of moderate rotations, the 
classical compact Euler column has a symmetric neutral postbuckling equilibrium path, which 
is close approximation up to quite large deflections (elastica).  
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It is also worth noting that a geometrical perfect column made of inelastic material will buckle 
(bifurcate) with an initial load increase beyond the tangent modulus load, independent on the 
overall buckling direction. The reason for this was first pointed out by Shanley (1947) and is 
attributed to the irreversibility of inelastic material response as opposed to an elastic material 
response. 
 
Another aspect of the initial postbuckling solution is illuminated when the result is presented 
in the load-shortening space. This gives possibly the most interesting presentation of the 
results in relation to a wider application. By considering the column (stiffened panel) as an 
integrated part of a larger structure, it will be the in-plane load-shortening response (current 
stiffness) the surrounding structure will sense. Thus load-shortening relations are vital for 
understanding how load redistribute between gross elements in a large structure. 
 
By eliminating ∆κ between the two equations in Eq.(23) the incremental load-shortening 
relation is found as 
 

ε∆=∆ εSP          (24) 

 
where  
 

22TEC

2112
11 K)EI)(PP(

KK
KS

−
+=ε       (25) 

 
The Sε parameter is the overall in-plane extensional stiffness parameter representing the total 
effect of both local cross-sectional buckling and overall column buckling. Eq.(25) is discussed 
in detail in Section 2.5 in connection with the definition of the reduced modulus factor.   
  
It is also of interest to study how the internal moment M at mid-span varies along the initial 
postbuckling path. Retaining only the first order expansion from Eq.(8), the incremental 
moment is given as 
 

κ∆+ε∆=∆ 2221 KKM        (26) 
 

By substituting Eq.(23b) into Eq.(26), the axial shortening ε∆  is eliminated and the final 
incremental moment-curvature relation, valid along the postbuckling path, is found as 

 
κ∆=∆ )EI)(PP(M TEC        (27) 

 
Eq.(27) gives an expression for the internal moment acting at the column mid-span, which 
will counteract the external moment resulting from the axial load P working on a continuously 
increasing arm (lateral buckling displacement). Since it is assumed here that  PC < PE  always, 
it follows that the maximum counteracting moment M will occur for a column design with  
 

EC PP =           (28) 
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That the maximum internal moment M is mobilised for a case with EC PP =  implies the 

highest degree of instability for such a case. In the language of Koiter’s postbuckling theory 
this means the highest level of asymmetric postbuckling behaviour and the most severe 
imperfection sensitivity. This is discussed further in Chapter 4.  

 
With a non-zero first order postbuckling coefficient according to Koiter’s asymptotic 
postbuckling theory, we have identified an asymmetric imperfection sensitive column. For 
small overall initial imperfections (curvature κ0), the limit buckling load PM illustrated in 
Fig.4, can be assessed using Koiter’s formula, see e.g. Budiansky and Hutchinson (1979)  
 

2/1
0

C

M ) P(21
P

P
κ−−≈ &          (29) 

 
Fig.4 below illustrates schematically how an asymmetric postbuckling response for a 
geometrically perfect column (full drawn line) is related to the response of the corresponding 
geometrically imperfect column (dotted lines). The maximum limit buckling load PM will be 
lower than the buckling load PC, and the degree of knock down due to geometrical 
imperfections follows Koiter’s asymptotic formula exactly for very small imperfection levels. 
In other words, the Koiter formula calculates directly the buckling capacity PM for a 
geometrical imperfect column knowing the value of the postbuckling parameter P& . (Instead 
of P&  the symbol a1 is frequently used in the literature for the first order postbuckling 
coefficient and a2 for the second order coefficient, see e.g. Brush and Almroth (1975), Steen 
(1989)).  
 

 
 

Fig.4. Load-buckling deflection response for asymmetric buckling 
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2.5 Analytical postbuckling solution for geometrically perfect columns  

 
It is of interest to derive a general analytical postbuckling solution, which is valid not only in 
the initial postbuckling region as the Koiter theory, but also in the advanced postbuckling 
region. In order to derive such a solution some assumptions have to be made as discussed 
briefly in the following. 
 
The asymptotic postbuckling solution as presented in Section 2.4, assumed the stiffness 
coefficients Kij to be evaluated at the local critical buckling load PC (state IC). Moving along 
the postbuckling path, branching off at PC, the values for the Kij coefficients would normally 
change from the values at PC. In order to cope with this effect, involving a continuously 
updating of the current stiffness coefficients, a numerical solution technique will be needed. 
However, it has for a long time been recognised that the local stiffness coefficients for thin-
walled built up sections in many cases can be considered as having fixed values, valid well 
into the advanced postbuckling region. Such fixed postbuckling characteristics of plate 
elements are confirmed by the analysis presented in Chapter 4 and Chapter 5 in this report. 
See e.g. Rhodes(1982) for a useful review of postbuckling solutions of plates.  
 
By adopting the assumption of fixed postbuckling stiffness coefficients Kij (with values as 
evaluated at PC), an analytical solution for the advanced postbuckling region is presented in 
the following. The derivations are based on the equilibrium equation for a geometrically 
perfect Shanley column, Eq.(17), and by specifying a bi-linear characteristic for the macro 
model.    
 
When assuming the first order stiffness coefficients Kij to be fixed and not varying along the 
postbuckling path, the higher coefficients Kijk ..etc. are zero. It then follows from Eq.(8) that 
the incremental bi-linear spring law for the postbuckling path is given as 
 

κ∆+ε∆=∆
κ∆+ε∆=∆

2221

1211

KKM

KKN
   2112 KK =     (30) 

 
For the case of a geometrically perfect column it follows that at the point of local cross-
sectional buckling, the cross-sectional axial load CN and moment CM  are 
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=
=

         (31) 

 
Using Eq.(30) and Eq.(31) the general non-linear spring law, Eq.(6), takes the form 
 

κ+ε=κε
κ+ε+=κε

2212

1211C

KK),(M

KKP),(N
       (32) 

 
Note that symbol ∆ has been avoided in Eq.(32) for the incremental strain ε and curvature κ 
for convenience of notation. Substituting Eq.(32) into the equilibrium equation, Eq.(17), and 
rearranging gives the analytical load-curvature relation 
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In Eq.(33) PR is the reduced modulus buckling load defined as  
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11

2112
22R −=        (34) 

 
As mentioned in Section 2.2 the present general description of the Shanley spring model do 
not explicitly consider the physical reason for the stiffness coefficients Kij, i.e. it can be either 
due to a purely non-linear elastic material effect or due to a non-linear geometrical effect. 
However, for the solution Eq.(33) to be valid the Kij coefficients must be constants along the 
postbuckling path. Since this is a typical feature for local postbuckling behaviour of thin-
walled sections, it is natural to have this type of response as a reference when discussing the 
solution, Eq.(33). 
 
When analysing Eq.(33) it is useful to be aware of the physical implication of the different 
parameters. For a thin walled cross-section the K11 coefficient represents the axial stiffness 
after local buckling, and it will always be a positive number. The coefficient K22 represents 
the bending stiffness about the centroid of the section, and it will also always be a positive 
number. The coupling term K12 (= K21) represent the shift in neutral axis due to local cross-
sectional buckling. It is negative if the cross-sectional buckling involves a shift in neutral axis 
along the positive z-axis and positive in the opposite case. This sign convention for K12 is 
accompanied with a positive value of the lateral curvature parameter κ when the column 
buckles in the direction of the positive z-axis. 
 
Another parameter entering the analytical postbuckling solution in Eq.(33), is the reduced 
modulus buckling load PR. Since the reduced modulus load for quite some time has been 
recognised as an important concept in the elastic interactive postbuckling theory, and since it 
emerge in the analytical postbuckling solution as parameter, some space are used in the 
following to give a description of its main features.  
 
The reduced modulus load in the elastic interactive buckling theory is defined as the buckling 
load for which the coupled local and overall buckling response will progress along a neutral 
equilibrium path (see e.g. Walker (1975) or Croll and Walker (1972)). This implies that there 
is no incremental load increase (or drop) ∆P along the postbuckling path. Mathematically this 
is expressed as 
 

∆P = 0           (35) 
 
It is seen from Eq.(24) that Eq.(35) is the same as requiering 
 

0S =ε           (36) 
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Rearranging Eq.(36), using Eq.(25), gives the condition for a neutral equilibrium path as 
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In Section 2.4 a general expression for the moment-curvature relationship valid along any 
postbuckling path was found in the form of Eq.(27). Substituting Eq.(37) into Eq.(27) gives 
the moment-curvature relationship valid along the coupled neutral equilibrium path as 
 

κ∆−=∆ )
K

KK
K(M

11

2112
22        (38) 

 
Comparing Eq.(38) and the corresponding moment-curvature relationship for a compact 
cross-section, Eq.(12b) it is natural to define a relative bending stiffness parameter. In the 
literature dealing with elastic interactive buckling this parameter has been called the reduced 
modulus factor, symbolised here as ηBR. It follows from Eq.(38) and Eq.(12b) that it is 
mathematically defined as  
 

κ∆η=∆ )EI(M TBR         (39) 
 
where per definition 
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B as a subscript indicates bending and R for reduced modulus, respectively.  

 
Substituting Eq.(40) into Eq.(34) gives the final compact expression for the reduced modulus 
load as 
 

)LL/()EI(P TBRR η=         (41) 
 
Eq.(41) is similar to Eq.(14) describing the buckling load of the Shanley column, but with the 
reduced bending stiffness of the column instead of the full bending stiffness. 
 
The properties of the analytical postbuckling solution Eq.(33), with reference to Fig. 5 for a 
schematic illustration, are briefly summarised as follows  
 
i) If  K12 < 0 and PC  > PR, the postbuckling path is descending for positive curvature κ 

and it converges towards the reduced modulus load PR as the lower bound value. The 
most descending postbuckling path is identified for PC = PE which indicates the most 
severe imperfection sensitivity for coincident buckling in the local and overall mode. 
Conclusion: unstable postbuckling response. 
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ii)  If K 12 < 0 and PC < PR, the postbuckling path is rising above the initial buckling load 
PC, approaching PR as the upper limit value. Conclusion: stable postbuckling response. 

iii)  If PC > PE the column will buckle in the Euler mode first and local buckling will be 
initiated subsequently with P descending along the secondary postbuckling path.  

 

 
 

Fig.5. Load- curvature (rotation) curves for the geometrically perfect Shanley model, schematically 
 
 
As mentioned in Section 2.4 it is also important to discuss the postbuckling response of the 
coupled local and overall mode in a load-shortening visualisation. For simplicity we use the 
expression for the expanded postbuckling stiffness Sε (around PC), Eq. (25). By introducing 
the reduced modulus load PR, i.e. substituting Eq.(34) into Eq.(25), the axial stiffness 
parameter is rewritten as 
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−
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It is remarked that the axial stiffness as expressed by Eq.(42) includes both the local and 
overall buckling modes in interaction. Eq.(42) reveals interesting features, which are 
illustrated schematically in Fig. 6.  
 
As seen from Eq.(42) the Sε coefficient may take both positive and negative values. The 
actual value depends on the ratios between the stiffness coefficients Kij, the local buckling 
load PC and the overall Euler buckling load PE.  
 
A positive value for Sε larger than full linear stiffness value EAT indicates snap back 
buckling, i.e. the shortening ε has to decrease in order to follow the equilibrium path beyond 
the initial buckling load PC. If the following two conditions are satisfied, i.e. if   
 
 
 



 Page: 22 
University of Oslo   
Department of Mathematics, Mechanics division  99-1 
Buckling of stiffened Plates using a Shanley model approach 
__________________________________________________________________________________________ 
 
 

 

 

11

T

T

22

C

R

EC

K

EA
)

EI

K
1(1

P

P

PP

−−=

=
        (43) 

 
the maximum degree of snap back, i.e. TEAS =ε occurs.   

 
A positive value for Sε less than EAT indicates a stable postbuckling response with a rising 
equilibrium path beyond PC. Moreover a value for Sε equal to zero means neutral stability. 
From Eq.(42) it is seen as that this will be the case if PC = PR.  A negative value for Sε 
represents an unstable postbuckling behaviour with a descending load P accompanied with an 
increase in shortening ε.  
 

 
 

Fig.6 Load-shortening curves for the geometrically perfect Shanley model, schematically 
 
A major feature of the present analytical postbuckling solution is that it approaches the 
reduced modulus load PR in the advanced postbuckling region. Thus by using the reduced 
modulus load as the lower limit for the buckling strength, unstable postbuckling behaviour 
and imperfection sensitivity is eliminated. However, this will be a very conservative approach 
and alternative methods have to be preferred. One alternative will be to use a comprehensive 
numerical procedure tracing the full non-linear equilibrium path as described in Chapter 3. 
 

2.6 Summary and discussion 

 
In this chapter the mechanics involved in the non-linear elastic interactive buckling of 
columns has been explored from an overall point of view. A two-dimensional macro model 
has been introduced for the purpose of describing the integrated effect of the non-linear cross-
sectional response.  
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A Shanley model has been used for coupling the macro model to the overall buckling 
response of the column. Closed form solutions for the coupled postbuckling response has 
been derived using a perturbation expansion approach according to Koiter’s method. Closed 
formed solution for the advanced postbuckling equilibrium path has been found valid under 
the condition of constant postbuckling stiffness coefficients. The advanced postbuckling 
solution verifies that the reduced modulus load gives a conservative assessment of the 
buckling load by completely eliminating the unstable interaction between local and overall 
buckling.  
   
For thin-walled sections the macro material model is a compact way of formulating the local 
cross-sectional buckling response, including the non-linear geometrical effect and linear 
elastic material law (Hooke’s law). This is explained in more depth in Chapter 3 for macro 
material models for thin-walled cross-sections.  
 
The description in this chapter is rather general and does not specifically address the problem 
of buckling of thin-walled cross-sections. However, most of the assumptions implemented 
and special solutions presented are typical for thin-walled sections.  
 

3. THE SHANLEY MODEL FOR THIN-WALLED CROSS SECTIONS 

3.1 General section macro material formulation 

 
In Chapter 2 the two-dimensional macro model was assumed to have the general closed form  
as given by Eq.(6). This form does not reveal the origin for the non-linearity, i.e. whether it is 
due to a material or geometrical effect. In the present chapter, dealing with local buckling of 
thin-walled built up sections, the non-linearity will be linked exclusively to the local 
geometrical effect. This is done mathematically by introducing the K-dimensional 
displacement vector qi, describing all relevant buckling modes in the cross-section. The macro 
model can then be written as functions of the displacement control parameter ε and κ in 
addition to the qi.  
 
For any component plate in the cross-section the total membrane stress in the x-direction can 
generally be written on the form   
 

           )q,,( ixx κεσ=σ    i = 1,2,…,K   (44) 
 
It will be shown in Chapter 4 that functions in the form of Eq.(44) can be written as the sum 
of a linear part and a non-linear part. According to classical buckling theory these two parts 
are the direct applied stresses (prebuckling solution) and secondary stresses (postbuckling 
solution) due to the buckling displacments qi, respectively.   
 
By substituting Eq.(44) into Eq.(3) and carrying out the integrations, the total cross-sectional 
loads can be written in matrix notation as 
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In Eq.(45) the first term represents the linear contribution and the second part represents the 
non-linear geometrical contribution through the functions )q(g),q(g iMiN . The latter 

functions can be derived analytically for a simple two-degree of freedom model, as shown in 
Chapter 4. 
  
For compactness of notation, Eq.(45) can be written as 
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   i = 1,2,…,K   (46) 

 
In the language of perturbation methods a displacement control case in space 
(ε, κ) requires a solution in the form  
 

),(qq ii κε=    i = 1,2,….,K     (47) 
 
of the K local equilibrium equations 
 

0)q,,(f ii =κε       i = 1,2,…,K  (48) 
 
Note that the qi is used as symbols for the functions as well as for the displacement 
parameters, despite the lack of mathematical rigor this notation represents. It is also 
mentioned that it is not always possible to achieve single valued solutions in the form of 
Eq.(47), and it may be necessary to resort to the more general multiple dimensional arc length 
approach, Steen(1998). This is not discussed further here since for the model in Chapter 4 
solutions in the form of Eq.(47) are available. 
 
By substituting the solution Eq.(47) into Eq.(45), the qi parameters are eliminated, and the 
macro material relations take the general form  
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Eq.(49) is from an overall point of the view the same as the macro model, Eq.(6), i.e. the 
displacement parameters qi are hidden. Thus it could equally represent a non-linear elastic 
material, say of rubber, or represent a deformation theory of plasticity. This is the motivation 
for calling this format a macro material formulation.  
 
It follows from Eq.(9) and Eq.(49) that the first order stiffness coefficients are given as 
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      i = 1,2,…,K   (50) 

 
Knowing the analytical expressions for the )q(g iN and )q(g iM functions, the partial 

derivatives iMiN q/q,q/q ∂∂∂∂   are directly available (see Chapter4).  

 
The unit directional path derivatives κ∂∂ε∂∂ /q,/q ii    can be found by solving the 
corresponding equilibrium equations. Substituting Eq.(47) into Eq. (48) and taking the partial 
derivatives with respect to ε and κ, gives two set of equations for finding the unit directional 
path derivatives, i.e. we have  
 

0
fq

q

f

0
fq

q

f

ij

j

i

ij

j

i

=
κ∂

∂
+

κ∂
∂

∂
∂

=
ε∂

∂
+

ε∂
∂

∂
∂

     i, j = 1,2,…,K      (51) 

 
 
The purpose of the present derivation was to demonstrate that the perturbation procedure 
gives a method for explicit assessment of the current macro material coefficients K11, K12, 
K22. In a wider range of application this feature can be utilised for stiffness assessment of 
buckled panels subjected to combined loads, which again can be utilised in FE models for 
ship hull redundancy assessment. This explicit approach is used in Chapter 4 and Chapter 5 
for open thin-walled cross-section. 
 
In the next section, the macro model in the form of Eq.(46) is used together with the global 
equilibrium equations, Eq.(7), to formulate the interactive global and local cross-sectional 
buckling problem of an axially loaded column.  
 
 

3.2 Numerical solution method  - Imperfect geometry  

 
For the case of a column with imperfect geometry both in the form of axial out-of- 
straightness of the column axis (a non-zero κ0) and out-of-flatness of the component plates in 
the cross-section (a non-zero initial displacement vector qi0), it is not possible to derive closed 
form equilibrium solutions. Thus resort to a numerical scheme is necessary. For this purpose, 
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the perturbation procedure used in an incremental scheme, as described in detail by Steen 
(1998), have been adopted.  
 
According to the author’s knowledge, the perturbation method used in an incremental scheme 
for solving structural stability problems is a rather unexplored field. However, since the 
perturbation method is a novel and accepted approach in stability theory, it is natural to 
extend its application for tracing non-linear continuous equilibrium paths. The present 
numerical scheme applies such a strategy by stepping along the equilibrium path from zero 
loads in small increments. A brief description of the method is given in the following while 
Chapter 5 presents two specific examples. 
 
The basis for the numerical model is the analytical macro material model in the form of 
Eq.(46). Assuming that such a set of algebraic equations exists, we substitute Eq.(46) into the 
equilibrium equations, Eq.(7). This gives two non-linear algebraic equilibrium equations in 
the 3 + K unknowns (P, κ, ε, qi) as follows 
 
 

)q,,(M)LLP

)q,,(NP

i0

i

κε=κ+κ
κε=

(  
       (52) 

        
In addition to these global equilibrium equations it is assumed that there exist K local 
equilibrium equations. For the sake of completeness these K local equilibrium equations, 
Eq.(48), are repeated as 
 

0)q,,(f ii =κε   (i = 1,2,…,K)      (53) 
 

In total this gives 3 + K unknowns and 2 + K equations. In a perturbation solution strategy it 
is necessary to choose a control parameter with the property of being continuously increasing 
along the equilibrium path. For the present single load (axial load) column buckling problem, 
the curvature parameter κ will for most cases be such a parameter. However, as shown by the 
analytical solution in Section 2.5, snap back problems may exist for special geometrical 
proportions, with subsequent decrease of the κ parameter. Thus it generally cannot be 
assumed that κ is a continuously increasing parameter and the more generalised concept of 
the arc length parameter, symbolised by η, is a more proper choice. This is more thoroughly 
discussed in Steen(1998) and applied in the following.  
  
The arc length perturbation parameter η is defined as 
 

)PP(P)()()qq(q sss
s

iiis −+κ−κκ+ε−εε+−=η−η &&&&    (54) 

 
Eqs.(52),(53) and Eq.(54) constitutes the necessary 3+K equations in the 3+K unknowns and 
the perturbation solution can now be written as 
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Thus by knowing one equilibrium state Is and the associated first, second (and possibly higher 
order) path derivatives, the next state Is+1 can be found directly by stepping along the 
equilibrium path using small values of the incremental perturbation parameter sη−η=η∆ . It 

is noted that the present arc length concept requires the solution space (P, κ, ε, qi) to be scaled 
such that all parameters are without dimensions. As small s as super or subscript indicates a 
known value in state Is.  
 
The selected size of the incremental perturbation parameter η∆ and the number of terms in the 
power expansion are not a critical issue in this report, since very simple models with few 
degrees of freedoms are used. Naturally, for larger problems with many degrees of freedom, 
the problem of computer time and solution efficiency will be an important issue, but as said 
this topic is not discussed in this report. 
 

3.3 Summary 

 
This chapter presented the concept of a local macro material formulation for thin-walled built 
up sections, introducing the buckling displacement vector qi to describe all relevant local 
buckling modes in a cross-section. Within the perturbation methodology, an explicit form for 
the current macro stiffness coefficients is developed. Moreover, a brief description of an 
incremental perturbation scheme for tracing non-linear continuous equilibrium paths for 
geometrically imperfect columns is given. The arc length along the equilibrium path is chosen 
as the independent perturbation (control) parameter, a choice which enables the procedure to 
pass limit points and snap-back problems as illustrated by examples in Chapter 5.  
 
 

4. MACRO MODEL FOR OPEN STIFFENER PROFILES 

4.1 General 

 
As introduced in Section 2.1, the integrated non-linear geometrical response of a column 
cross-section can be treated as a pseudo material formulation, here called a macro material 
model. In the linear terminology, the macro material concept is well established and 
synonymous with a general section shell element, in which the stiffness properties in all 
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directions can be specified. This is a type of element formulation that is provided in several 
modern general purpose finite element codes, e.g. in ABAQUS(1996).  
 
For describing the non-linear response, the method of including the local cross-sectional 
buckling response as a pseudo material, was first introduced by Smith (1975). His method 
was based on isolation and pre-calculation of the local plate buckling response, generating the 
in-plane average stress-strain behaviour of the plate flange. The local buckling amplitudes 
(present qi vector) was not seen in the procedure. Based on the calculated average stress-strain 
behaviour of the attached plate flange, a general Newton-Raphson type of solution technique 
was used for calculating the interactive column buckling response. This method constituted a 
very interesting approach for simplified buckling analysis of panels with solid stiffeners and 
thin plating, but lacked the generality needed for dealing other types of local stiffener failure 
modes. 
 
The present concept of a macro material model embeds all types of cross-sectional buckling 
modes into the same pseudo spring law formulation. As an example of a specific macro 
model, a simplified formulation for open stiffener profiles attached to continuous plates, 
typical for panel designs in ship and offshore structures has been developed in this chapter. 
With respect to relevant buckling modes this means that torsional stiffener buckling as well as 
stiffener web buckling, interacting with local buckling of the continuous plate, are considered.  
 
As a general introduction to the present macro modelling technique, the six-dimensional 
formulation of a stiffened panel as illustrated in Fig.7, is briefly discussed. Later the two-
dimensional macro formulation sufficient for coping with uni-axially loaded panels is dealt 
with in more detail.  
 
Stiffened panels are built up from thin-walled component plates with certain boundary 
conditions along their junction lines. Integration of the membrane stresses across a panel unit 
section according to a six-dimensional generalisation of Eq.(3), will give for the non-linear 
macro material law, relations in the form 
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      (56) 

 
In this six-dimensional form, it is most convenient to use subscript 1 for the force in x1 
direction, subscript 2 for a force in the x2 direction and subscript 3 for the shear force in the 
x1-x2 plane. The same notation applies for the bending moments acting out-of-plane and for 
the corresponding average reference strains and curvatures. By expanding this six-
dimensional macro material law, as done principally for the two-dimensional spring in Eq. 
(8), and retaining only the first order terms, the incremental macro material law can be 
written as 
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In Eq.(57) the Cij coefficients symbolise the in-plane stiffness properties, the Dij coefficients 
symbolise the out-of plane bending stiffness properties and the Qij coefficients symbolise the 
coupling between in-plane and out-of -plane action. The latter coupling is typical for 
eccentrically stiffened panels, Fig.7, which represent the usual design in ship and offshore 
structures.  

 
It is noted that the twisting moment per unit length for an orthotropic panel unit will be 
different in the two orthogonal directions, i.e. M3’ is different from M3’’, Fig.7. In the 
stiffness relation, Eq.(57), the average sum M3 = ( M3’+ M 3’’)/2 is given. Due to the strict 
matrix convention for stiffness coefficients used here, the twisting coefficient D33 is twice of 
what is often seen in the literature. (In Timoshenko and Woinowsky-Krieger (1959) Dxy  
symbolise the twisting coefficient, i.e. D33 = 2Dxy. In Smith(1990) D66 symbolise the twisting 
coefficient, i.e. D33 = 2D66. In the finite element code ABAQUS (1996) D33

ABAQUS symbolise 
the twisting coefficient, i.e. D33 = 2D33

ABAQUS)  
 
In the present work, the standard text book strain measures are used, see e.g. Brush and 
Almroth (1975). Thus it should be noted that the shear strain ε3 in Eq.(57) is twice the 
classical shear strain (i.e. ε3 = 2ε12 where ε12 is the classical strain tensor component). The 
curvature measures are according to the classical definitions κ1 = - w,11 , κ2 = - w,22 , κ3 = - w,12  
where w symbolise the plate deflection normal to the reference surface and a subscript 1 
represent partial differentiation with respect to co-ordinate x1 etc. ( In ABAQUS(1996) the 
engineering strain measurements are used, i.e. our κ3 is (½)κ12

ABAQUS which explains that D33 
is 2 times D33

ABAQUS ).  

 
 

 
Fig. 7  Six-dimensional macro model for stiffened panels 
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The six-dimensional macro material model is not pursued further in this report since a two-
dimensional representation is sufficient for the study of elastic overall buckling of a uni-
axially loaded column. 
 
The rest of this chapter is exclusively devoted to the development of a two-dimensional 
macro material law for an open thin-walled profile attached to continuous thin plating. The 
open stiffener profile is attached to the plating with a regular spacing s and the geometrical 
layout is as illustrated in Fig.8.  
 

 
 

Fig.8 Geometry of stiffened panel with open T stiffener profile 
 
The two-dimensional macro model assumes that the continuous plating is free to deform in 
the x2 direction due loading in the x1 direction. Likewise the stiffener web plate is free to 
expand in the x3 direction when compressed in the x1 direction. The stiffener flange is 
considered to be a beam element. These assumptions provide for a pure uni-axial nominal 
stress condition for all component plates in the panel. 
 
For convenience of notation the subscript 1 for the axial load and moment respectively (and 
strains ε1 and κ1), is not needed for the present two-dimensional problem and is consequently 
not used in the rest of this chapter.  
 
In Chapter 2, Eq.(9), the first order stiffness coefficients were symbolised as Kij. This has 
been done to avoid confusion with the more general six-dimensional description. In particular 
C11 is not equal to K11, D11 is not equal to K22, etc. This follows from the assumption of free 
transverse displacements of the continuous plating in the x2-direction and the location of the 
reference plane. For the six-dimensional model it will be most convenient to use the 
continuous plating as the reference plane. In the present two-dimensional model it is most 
convenient to use the centroid of the cross-section, since this gives decoupled bending and 
membrane behaviour in the linear elastic range, i.e. K12 = 0 if buckling is excluded.  
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For the sake of brevity, Marguerre’s non-linear plate theory is summarised in the following 
section. This theory has been used for developing the two-dimensional macro model. Both the 
continuous plating and the web stiffener plate have been considered as individual component 
plates using this thin-walled plate theory, while the stiffener flange has been treated as a 
beam. 
 

4.2 Marguerre’s non-linear plate theory 

 
Marguerre (1938) developed a shallow non-linear plate theory, accounting for out-of-flatness 
from perfect form. His theory has been extensively used in the literature for the study of plate 
buckling problems. The theory belongs to the category of non-linear small strain 
approximation and is valid for moderately large deflections, see Brush and Almroth (1975). 
For geometrically perfect plates it resembles the classical von Karman plate theory, see 
Washizu (1975) for a full account of the theory. In this section standard tensor notation is 
used when found convenient.  
 
For illustration, Marguerre’s basic equations are summarised with reference to a single plate 
with geometry as shown in Fig.9. 
 

 
 

Fig.9. Component plate as part of a stiffened panel 
 

 
 
Marguerre’s plate theory applies the classical displacement hypothesis of Love-Kirchhoff, i.e. 
the displacements )w,u( α  of any point outside the reference plane is related to the 

displacements )w,u( α  of the reference plane as  

 

ww

wxuu ,3

=
−= ααα   α, β =1,2     (58) 

 
A bar over the parameter signifies evaluation at any material point in the plate. A Greek letter 
followed by a comma indicates partial derivative with respect to the corresponding 
rectangular xα co-ordinate. Parameters without a bar signify evaluation at the reference 
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surface, which is taken to be the plate’s middle plane. The αu symbolise the in-plane 

displacement in the αx  direction, while w symbolise the displacement normal to the plate 

plane, i.e. in the 3x  direction. 

 
From the Love-Kirchhoff thin-shell approximations it follows that  
 

αβαβαβ κ−ε=ε 3x   α, β =1,2     (59)  

 
The plate middle plane curvature αβκ is defined as  

 

αβαβ −=κ ,w    α, β =1,2     (60)  

 
The membrane strain tensor αβε of the middle plate plane are according to Marguerre’s plate 

theory defined as 
 

)wwwwwwuu(
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The w0 is the stress free initial out-of-flatness of the reference surface and u1 and u2 are the in-
plane displacement in the x1 and x2 direction respectively due to applied loading. 
 
Marguerre’s compatibility equation is given as 
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where the F is Airy’s stress function defined as 
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         (63) 

 
and σ11, σ22, σ12 are the membrane stresses in the plate according to standard tensor notation.  
 
 
In the following sections this non-linear plate theory is used for formulating the local buckling 
and postbuckling problem of stiffened panels with open stiffener profiles.   
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4.3 Local buckling of an open profile cross-section 

4.3.1 General 

 
The present two-dimensional macro model is developed for a stiffened panel with geometry 
as shown in Fig.8. Note that, the rectangular Cartesian system (x, y, z) is used instead of (x1, 
x2, x3) in the present two-dimensional formulation.  
 
The cross-section is assumed to buckle into two different local modes as classified in Section 
4.3.2. This implies that both the continuous plating and stiffener web plate are allowed to 
buckle locally, while the stiffener flange may twist and bend without changing cross-sectional 
shape.  
 
The most important assumption in the present classification of local buckling modes is that 
the junction line between the continuous plating and stiffener web plate are constrained to be 
in the plate plane (x,y). The background for this assumption needs some comments.  
 
In the present model the stiffener web plate is considered to be a component plate with no 
constraint in z-direction, Fig.10. This is a natural assumption as the stiffener profile is only 
subjected to a direct force in the longitudinal x-direction and is free to expand and contract in 
the z-direction. Though, second order membrane stresses may develop in all directions due to 
local buckling displacements out of the (x, z) plane.  However, since the stiffener web plate is 
only supported by a stiffener flange (for T, L and bulb profiles) on the free edge, and a thin 
continuous plating on the other side, it is reasonable to eliminate all second order membrane 
stresses, except in the x-direction. This assumption is called a lower bound approach for plate 
buckling strength assessment and has been used by several authors, see e.g. Rhodes (1982).  
 
The continuous plating in the (x,y) plane can be treated in more general terms with respect to 
the in-plane boundary conditions. For example if the panel is an integrated element in a deck 
field in a ship structure, it may be most realistic to prescribe straight edges free to move in-
plane in the transverse direction. Such boundary conditions allow for full utilisation of second 
order tension and compression fields, which must be carried by neighbouring platefields. This 
type of boundary conditions is much used in the literature and is adopted for instance in Steen 
(1989). However, in the present model a simpler set of unconstrained in-plane boundary 
conditions is used. By using this more conservative edge condition for the longitudinal plate 
edges, lower elastic postbuckling stiffness in the local modes is available, see Rhodes (1982). 
However, since the purpose of the present model is to study the interactive buckling between 
overall and local buckling modes, such differences in in-plane boundary conditions is not an 
issue here. Thus, both the stiffener web plate and the continuous plating have been considered 
as plate elements with no ability to transmit second order transverse or shear membrane 
stresses. This simplifies the construction of the potential energy function, which have been 
used as the basis for the derivation of the local equilibrium equations.  
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Fig.10. Local buckling modes and load system acting on a stiffened panel unit, schematically. 

 
 
 
In Section 4.3.2 two local buckling modes typical for open profiles are described. Section 
4.3.3 apply these modes as input to the Marguerre’s compatibility equations, which solved 
gives the second order membrane stress distributions for the continuous plating and stiffener 
web plate. These membrane stress distributions are then used in Section 4.3.4 for deriving the 
final form of the macro material model. Section 4.3.5 presents a potential energy formulation 
giving the non-linear equilibrium equations for the cross-sectional response. Finally, Section 
4.3.6 derives some closed form equilibrium solutions valid for geometrical perfect cross-
sections.    
 

4.3.2 Buckling modes 

 
Two different local buckling modes for the column cross-section have been considered. They 
are given the notation  q1 and q2 respectively and they have the following characteristics 
 
1) q1-mode: Sideways/torsional buckling of stiffener with associated local buckling of 

plate. Fig.11a. 
 
2) q2-mode: Local buckling of stiffener web with associated local buckling of plate. 

Fig.11b 
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Fig.11a. Torsional stiffener/plate buckling mode 

 
 

 
Fig. 11b. Stiffener web/plate buckling mode 

 
 

The stiffener lateral deflection function ws (perpendicular to x-z-plane) is assumed to take the 
form 
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The plate lateral deflection function wp is assumed to take the form  
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The initial imperfection shapes are assumed to be in the same form as the buckling modes i.e. 
they are defined as 
 
Stiffener: 
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Plate: 
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The deflection amplitudes qis, qi0s are made dimensionless with respect to the stiffener web 
thickness tw. The deflection amplitudes qip, qi0p are made dimensionless with respect to the 
plate thickness tp. The height H represents the mean stiffener height and L is the stiffener 
span, see notation list. 
 
The assumed buckling modes in Eq. (64) to Eq. (67) imply that the stiffener torsional and web 
buckling modes are associated with different wave numbers, p and q in the longitudinal 
direction. It follows that the plate displacement patterns are, per definition, constrained to 
follow the stiffener displacement patterns. The wave numbers p and q are found by 
minimising eigenvalues of the geometrically perfect cross-section (Appendix A5). They are 
kept fixed in the non-linear analysis, implying that local mode snapping is not dealt with. 
Also, as mentioned previously, the geometrical imperfection pattern is assumed to coincide 
with the minimum eigenmodes. This follows from the assumed shapes, Eq.(73) and Eq.(74).   
 
The constraint of having the same wave numbers in stiffener and plate, together with the 
assumption of no relative rotation between these elements along their junction lines, gives a 
reduction of the local degrees of freedom from four to two. Mathematically the constraint 
condition of no relative rotation takes the form 
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and the relations between the qis and qip coefficients are derived as 
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In the subsequent equations the two independent displacement parameters q

1 and q
2 have been 

given the following meaning   
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Substituting these definitions and constraints into Eq. (64) and Eq.(65) gives the final 
expressions for the local buckling modes as 
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For the initial stress free initial imperfections the corresponding assumptions leads to  
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The present assumptions for the local buckling modes are very simplified, but for a large 
range of parameter values, typical for stiffened plates used in ships and offshore structures, 
they will give reasonable strength estimates. They also have the benefit of providing some 
closed form postbuckling solutions as discussed in Chapter 5.  
 

4.3.3 Membrane compatibility conditions  

 
As mentioned previously, the solution of Marguerre’s compatibility equation will give 
explicit expressions for the membrane stresses in a component plate. According to standard 
non-linear buckling theory, the membrane stresses in a plate have two contributions. The first 
contribution is the direct applied stresses while the second contribution is a periodic stress 
field due to plate buckling. Naturally the second order stresses integrated over the plate gives 
no contribution to the applied load, but they will add to the direct stresses giving higher 
stresses in certain locations, i.e. typically along the supported edges, intersections betweeen 
component plates etc. Locations with accumulated stresses are called hard corners positions. 
This latter concept is not pursued further in this report since it is most interesting in 
connection with inelastic material response (ref. Section 2.1).  
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In the present model the expressions for the membrane stresses in the continuous plating and 
in the stiffener web plate, respectively are found as two independent solutions of Marguerre’s 
compatibility equation. The two separate compatibility equations are given as 
 
Plating: 
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Stiffener web plate: 
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To find solutions to these compatibility equations is rather straight forward, but involves some 
tedious algebra, of which are not given here. The procedure is to substitute the derivatives of 
the displacement functions in Eq.(71) to Eq.(74) into the corresponding Eq. (75) and Eq.(76). 
Solving for Airy's stress function F and then using the definitions for the membrane stresses, 
Eq.(63), gives the analytical membrane stress expressions.  
 
The consequence of formulating the membrane compatibility for the plating and stiffener web 
plate as two independent problems is that an assumption of a frictionless membrane 
connection is implicitly used. Said differently, the second order membrane stress and strain 
field in the plating and stiffener web plate is assumed to live their own lives with no transmit 
of second order shear stresses along the junction line (weld). This lack of full membrane 
strain compatibility along the junction line simplifies the model considerably and will give 
relaxed and conservative lower bound strength and stiffness values.  
 
For the continuous plating the membrane stress distribution is found to be 
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For the stiffener web plate the membrane stress distribution is found to be  
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As discussed previously the transverse and shear membrane stresses are neglected in the 
analysis.  
 
In compact form these membrane stress distributions can be given the notation of Eq.(44), i.e. 
they can be written as general stress functions    
 

)q,,( i
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xx κεσ=σ    continuous plating, i = 1,2  (79) 
 

)q,,( i
web

xx κεσ=σ    stiffener web plate, i =1,2   (80) 
 
 
Within the present approximations, it is seen from Eq.(78) that the membrane stress in the 
stiffener web plate is quadratic in q1 and q2. Moreover, it has no x dependence. It is also 
observed that there is no coupling term q1q2.  
 
For the plate, Eq.(77), the situation is more complex in that the membrane stress pattern 
contains a coupling term q1q2, which has a periodic x dependence. When the stress is 
integrated over the plate to find the total load, the coupling term vanishes and gives no 
contribution to the total load.  
 

4.3.4 Macro material formulation for open sections  

 
When the expressions for membrane stress pattern in each component plate is found, as in 
Section 4.3.3, it is straight forward to find the resulting axial force N and bending moment M. 
Substituting the membrane stress pattern, Eq.(77) and Eq.(78) into the definitions for the 
cross-sectional forces of  N and M , Eq.(3), and carry out the integrations, the following 
functions emerge  
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Eq.(81) is the final form of the present two-dimensional macro material model (N, M) 
described by two-degrees of freedom q1 and q2 for the local cross-sectional buckling modes. 
In matrix notation Eq.(81) can be written as 
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The K11

L and K22
L are the linear stiffness coefficients defined in Eq.(12a). The B11, B12, B21 

and B22 are geometrical coefficients given in Appendix 6.   
 
By using the definitions for the current stiffness coefficients, Eq.(50), and Eq.(81), the final 
expressions for the first order stiffness coefficients are found as 
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In a numerical perturbation procedure, evaluation of the current Kij coefficients will follow 
the scheme as presented in Section. 3.1.  
 
In Chapter 5 closed form solutions, based on Eq.(83) for the case of geometrical perfect cross-
sections are derived for some specific examples and comparisons are made with solutions 
found in the literature.  
 
The next section describes the derivations of the equilibrium equations for the local cross-
sectional buckling problem in the q1 and q2 mode.  
 

4.3.5 Equilibrium formulation 

 
The purpose of this section is to formulate a set of local equilibrium equations in the form as 
given by Eq.(53). There are several ways to derive such equations, but the principle of 
stationary potential energy is a convenient method and applied here. The potential energy 
approach makes the formulation compact and it naturally fits into the form of non-linear 
finite-degree-of-freedom discrete stability theory developed by Croll and Walker (1972), 
Thompsen and Hunt (1973), Huseyin (1975) and others. 
 
The potential energy of the stiffened plate is calculated for the unit as shown in Fig.8. 
Assumptions for the buckling modes, compatibility conditions and internal membrane stress 
distributions are as formulated in Section 4.3.2 and Section 4.3.3 respectively. Moreover, as 
was discussed in Section 3.1 the macro formulation is most conveniently formulated as a 
displacement control case. The potential energy of the cross-sectional unit under prescribed 
edge-deflections ε and κ is   
 

∫∫∫ εσ= dz dy dx 
2

1
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Since the analysis is done with displacement control (ε, κ), no external load potential exist. 
Note that in Eq.(84) tensor notation for symbolising the stress and strains σ εij ij,  locally in a 

material point has been used.  
 
The integration of the strain energy over the plate and stiffener unit has separate terms; i.e. the 
strain energy for the continuous plating, the stiffener web plate and stiffener flange are 
separate integrals. 
 
As discussed in Section 4.3.1, the plate and stiffener elements are considered to behave in a 
pure uni-axial manner also when buckling is considered. Koiter (1971) first used this 
approach, and it has been classified as a lower bound method for the postbuckling assessment 
as discussed by Rhodes (1982). Using the thin shell theory described in Section 4.2, and a 
pure uni-axial material law ( 1111 Eε=σ ) in both plate and stiffener, gives the following 
expression for the potential energy under prescribed axial deflection 
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If  and Jp are the moment of inertia and torsional constant of the stiffener flange, respectively. 
The parameter Af is the cross sectional area of the stiffener flange, tp is the plate thickness and 
tw is stiffener web plate thickness. For a complete definition of parameters see the notation 
list. 
 
When applying the thin-shell theory approximations and choosing the middle-planes to be the 
reference planes, the strain energy expression, Eq.(85), is split into a separate bending and 
membrane contribution for each component plate. The bending contribution is a second order 
function in the curvature of the element reference surface meaning that it is a quadratic 
function of the local displacement parameters qi. The membrane contribution is a second 
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order function of the membrane stress xσ  in the plate middle-plane meaning a quartic 
function in the displacement parameters qi. This is well known properties in buckling theory 
of plates, see e.g. Brush and Almroth (1975).  
 
Substituting the assumed deflection functions, expressions for the membrane stresses and 
constraint condition between plate and stiffener, given in Section 4.3.2 and 4.3.3 respectively 
into Eq.(85), the final expression for the potential energy is found to be 
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The a, b, c and g and h coefficients  (with subscripts) are all rather complicated geometrical 
constants and they are given in Appendix A1.  
 
The potential energy function V is a quartic function in the q1 and q2 modes with a quartic 

coupling term 2
2

2
1 qq . Moreover V has terms κεκε 2

2
2

2
2

1
2

1 q  ,q  ,q  ,q  all linear in the control 

displacement parameters ε and κ. V has also a set of constant terms, i.e. the second order 
terms in ε and κ. These latter terms have no importance and vanish when the equilibrium 
equations are derived.   
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Applying the principle of stationary potential energy, i.e. 
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gives the following two equilibrium equations  
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V1 and V2 symbolised the partial derivatives of V with respect to q1 and q2 respectively.  
 
Eq.(88) and Eq.(89) constitute two non-linear cubic equilibrium equations in the two 
unknowns q1 and q2. In the present formulation they are the equations generally written in the 
form of Eq.(53).  
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4.3.6 Equilibrium solutions 

 
When discussing and presenting equilibrium solutions it is important to define under which 
conditions they apply. As the title of the present chapter reveals, only local cross-sectional 
buckling is considered and this applies also for the solutions given in the following. Chapter 5 
presents some specific solutions, which also consider the coupling with the overall column 
mode. 
 
The displacement control option is selected in this study since this gives directly the stiffness 
parameters as defined in Eq.(50). The difference between load control and displacement 
control is more discussed in Steen(1998).    
 
There exist no analytical closed form solution for the set of cubic equilibrium equations, 
Eq.(88), Eq.(89). However, setting the initial imperfection amplitudes to zero (q10 = q20 = 0), 
we obtain the two equilibrium equations as 
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This set of equations has 4 separate solutions as follows 
 
Solution 1: no buckling  
 

q1 = q2 = 0     i.e. - prebuckling solution     (91) 
 
Solution 2: - Single mode buckling in q2 
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Solution 3: - Single mode buckling in q1 
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Solution 4: - Coupled mode in q1 and q2 
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Solution 1 corresponds to no buckling and needs no specific comments. Solution 2, 3 and 4 
are closed form solutions for the buckling mode amplitudes for given prescribed deflection 
parameters ε and κ. They can be visualised as equilibrium surfaces schematically illustrated in 
Fig.12. These equilibrium surfaces have the classical parabolic shape as known from the 
Koiter theory.  
 
The most significant result is solution 4, which gives an explicit closed form solution for the 
case of a coupled simultaneous cross-sectional buckling response into mode q1 and mode q2. 
The solution gives two parabolic equilibrium surfaces which intersect in the four dimensional 
solution space (q1, q2, ε, κ).  
 
The present study does not present any mathematical study of these surfaces and possible 
equilibrium paths across them, as this beyond the scope of the present work. However, based 
on the same closed form solution, Bangstein (1996) discussed some practical consequences. 
He found that for a hinged stiffener (setting the plate area to zero), the non-linear interaction 
between torsional stiffener and web buckling gave in-plane axial postbuckling stiffness 
properties well below the corresponding stiffness values found in the separate modes.  
 
 

 
 
 

Fig.12  Single mode equilibrium surface schematically illustrated  – perfect geometry 
 
 
As already emphasised, the closed form solutions, Eq.(92), Eq.(93), Eq.(94) assumes the 
cross-section to be geometrically perfect. This leads to very simple and useful closed form 
expressions for a qualitative study of postbuckling stiffness. This is explored in the next 
section. 
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4.3.7 Stiffness properties 

 
In Section 2.2 the stiffness properties of locally buckled cross-sections were introduced as the 
tangent stiffness coefficients Kij and Section 2.4 and 2.5 showed the importance of these 
coefficients in determining the coupled local and overall buckling response of columns. This 
section gives a mathematical representation of these stiffness coefficients, as an alternative 
and possibly useful point of view for illuminating their importance.     
 
By using the closed form solutions derived above for geometrical perfect cross-sections it is 
straightforward to show that the Kij coefficients emerge as constants. Substituting Eq.(92) (or 
Eq.(93), Eq.(94)) into Eq.(81) and using the definition of Eq.(9) it follows directly that the 
incremental loads ∆N and ∆M and the corresponding displacements ∆ε and ∆κ is related by a 
linear macro material law. This incremental macro law can be written in matrix notation as   
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As in Section 2.5 the ∆ symbol indicates incremental properties along the postbuckling 
equilibrium surfaces and the Kij are constant coefficients. The complete expressions of these 
coefficients are given Appendix A7. 
 
As explained in Section 3.1, the form of Eq.(95) includes the equilibrium solution, and the 
displacement vector qi is not visible. In a mathematical language, the functions of Eq.(95), can 
be viewed as two-dimensional surfaces in the three dimensional spaces (N, ε, κ) and (M, ε, κ) 
respectively. In the most general non-linear version the stiffness solutions have the form of  
Eq.(6), here repeated as   
 

),(MM

),(NN

κε=
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          (96)  

 
By mapping these functions into the deflection space (ε,κ) as contour plots, the stiffness of the 
cross-sectional response appears as the gradient to fixed contour lines, see Steen (1998).  
 
As indicated for the present local cross-sectional buckling study, the significant finding is that 
the Kij coefficients are constants and not load-dependent in the postbuckling region. 
Mathematically this means that the contour plots will be straight lines in the displacement 
space (ε, κ). 
 
Contour plots are schematically illustrated in Fig.13. In Fig.13a the gradient to the contour 
lines of fixed load N values, in the (ε, κ) space, are given by the mathematical equation 
 

κε +=∆ ii 1211 KKNgrad        (97) 

 
Here the stiffness coefficients K11 and K12 are the components of the gradient to the function 
N in the unit displacement directions ε and κ, respectively. In Fig.13 the unit vectors iε and iκ 
are oriented along the ε-axis and κ-axis respectively. 
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A similar stiffness gradient for the moment function M can be constructed and schematically 
illustrated in Fig.13b. In mathematical terms the M gradient can be written as 
 

κε +=∆ ii 2221 KKMgrad        (98) 

 
In Eq.(98) the stiffness coefficients K21 and K22 are the components of the moment gradient in 
the unit directions ε and κ respectively.  
 

 
a)  Contour plot for fixed N values 

 

 
 

b) Contour plot for fixed M values 
 
 

Fig. 13. Stiffness contour plots for load N and moment M.  
 a) Contour lines ; Force N = constants,   b) Contour lines;  Moment M = constants 
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It is emphasised that Fig.13 is only a schematic illustration of cross-sectional stiffness 
properties in terms of contour plots. The thick line is indicating the (eigenvalue) buckling 
boundary separating the prebuckling and postbuckling region. It is worth mentioning that this 
buckling boundary normally will be a convex curve seen from origo. Thin lines represent 
fixed N (or M) values.  
 
For a cross-section with geometrical imperfections the equilibrium surfaces will be 
continuous. Under such conditions the contour lines will be mapped as continuous curves in 
space (ε, κ), smoothing out the region between prebuckling and postbuckling states.  
 
From a physical point of view, it was illustrated in Chapter 2 that the values of the stiffness 
coefficients Kij were very important for capturing the non-linear structural interaction between 
local and overall buckling. The present discussion has emphasised that the stiffness 
coefficients Kij can be viewed as contour plots of mathematical functions. Whether this 
illustration is of any direct use is a matter of taste, but at least it gives an understanding of the 
importance of the shape of these surfaces. From a physical point of view it is obvious that the 
requirement to accuracy of these surfaces is not equally strict in all regions of the (ε, κ) space. 
Since overall buckling of the present column model starts from the ε-axis, it will be most 
important to have an optimal accuracy for the contour lines along this axis. This conclusion 
support the relevance of the equilibrium solutions for the Kij coefficients presented in this 
chapter (and also some special solutions in Chapter 5), which is founded on some qualified 
approximations for the buckling mode shapes typical for panels subjected to dominating axial 
compression and marginal cross-sectional bending.   
 

 

4.4 Summary and discussion 

 
The chapter starts with a brief introduction to Marguerre’s non-linear plate theory, which is 
used as basis for the derivation of the cross-sectional macro material model.  
 
The rest of the chapter is specifically devoted to the derivation of a two-dimensional macro 
material model for the case of a thin walled cross-section with an open profile shape, typically 
found in panels in ship and offshore constructions. The macro material model is approximated 
as a two-degree of freedom model for a compact treatment of the buckling and postbuckling 
strength. Torsional and web stiffener buckling modes are considered, both interacting with a 
plate buckling mode. 
 
A significant result was the derivation of the macro material coefficients for the case of a 
geometrically perfect cross-section. Under such conditions it was shown that the macro 
material coefficients in the postbuckling region Kij were constants, i.e. they were shown to be  
load-independent in the postbuckling region. The result of constant macro material 
coefficients validate the concept of the reduced modulus load as a safe lower bound limit for 
columns and stiffened panels, eliminating unstable postbuckling behaviour.  
 
The concept of tangent stiffness coefficients was discussed from a mathematical point of view 
using contour lines of equilibrium surfaces. This emphazied the importance of the shape of 
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the equilibrium surfaces in certain regions. Though not discussed in detail here, it is obvious 
that the density and orientation of the equilibrium contour lines in this stiffness spaces will be 
vital for the degree of instability to be expected for the coupled local and overall buckling 
reponse.   
  
Naturally, the present finding of fixed and load-independent stiffness coefficients for perfect 
cross-sections, rest on some very simplified assumptions. Nevertheless, it may be postulated 
that the main physical behaviour is captured and that the present derived properties will be 
very typical for thin-walled built up sections. Thus the present macro model may prove to be 
useful for semi-theoretical design approaches. As verification of the present results, some 
comparisons with results found in the literature are given in Chapter 5.  
 
 

5. DISCUSSION - VERIFICATION 

5.1 General 

 
The main purpose of the present work was to develop a simplified numerical buckling model 
that could handle the severe unstable interaction between local cross-sectional and overall 
buckling in stiffened panels. The presents proposed solution to this problem consist of 
applying a macro material model concept for the pure local geometrical response and using a 
general section Shanley model for coupling the overall response to the local. Thus it is 
convenient to see the model having two separate parts 
 
i) Macro material model for local buckling and postbuckling response assessment.    
ii)  Buckling model (here Shanley) for coupling of local and overall buckling.  
 
In order to verify the model results, comparisons have been carried out at these two levels. 
 
There exist few studies in the literature, which can be categorised as pure macro material 
models formulations and therefore very few comparable solutions are available. However, 
some closed form solutions exist notably derived by Stowell (1951) and Rhodes (1982). In 
addition Ellinas and Croll (1981) presented some numerical solutions for the reduced modulus 
factor for torsional buckling of stiffeners. 
  
For the coupled local and overall buckling case, a closed form solution by Rhodes (1982) can 
be used for direct comparison purposes. This is the only directly comparable closed-formed 
solution found in the literature and it represents an extreme and not very practical case. In 
order to illustrate more practical cases the present numerical model has been tested on two 
examples. The basis is the macro model developed in Chapter 4 combined with the numerical 
incremental perturbation scheme presented in Section 3.2. The first example has typical 
dimensions as used in decks in large steel ships while the second example is constructed in 
order to illustrate the unstable response when buckling into a simultaneous local and overall 
column buckling mode takes place.  
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5.2 Macro material solutions 

5.2.1 Single mode solution  

 
By using Eq.(88), and setting q2 = q20 = 0  the following single mode solution (see Appendix 
A3), can be derived 
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In Eq.(99) the parameters Lε, Lκ are geometrical constants and b2 is Koiter's postbuckling 
coefficient for symmetric structures. The single mode solution written in the form of Eq.(99) 
differs from the classical Koiter solution (see e.g. Dym (1974)) in the two imperfection terms 

2
10101 q2qq3 +   given within the parenthesis. Koiter's solution is only strictly valid for very 

small imperfection levels while the present solution has a wider range of validity.     
 
The single mode version of Eq.(83) for the macro material coefficients Kij is  
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The partial derivatives κ∂∂ε∂∂ /q , /q 11  is from Eq.(51)  
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in which f1 is defined as 
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Using Eq.(101) and Eq.(102) it can be shown that the first order stiffness coefficients Kij can 
be written in the following compact closed form   
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where 
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The form of Eq.(103) is valid for any single degree of freedom system with the geometrical 
constants B11, B21, Lε, Lκ, and b2 as case dependent.  
 
The present single mode solution gives explicit expressions for the macro material 
coefficients Kij. This is a useful property for fast implementation in computerised design 
models.  
 

5.2.2 Closed-form solution - Plate with one longitudinal edge free 

 
In order to obtain simple closed-formed solutions it is of interest to study the case of a 
rectangular plate with one longitudinal edge free and the other three simply supported. This 
plate problem can be interpreted as identical to a flat bar profile attached to plating with no 
axial stiffness. This plate problem was first studied by Stowell(1951) and later by Rhodes 
(1982) who included also the overall buckling effect. Comparisons with these publications are 
therefore included. For the full solution of open profiles attached to a plating with axial 
stiffness, see Appendix A7.  
 
For the isolated flat bar stiffener the geometrical constants B11, B21, Lε, Lκ, εC and b2 take the 
following values  
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The linear stiffness coefficients follows from Eq.(12), i.e. with the present notation for 
stiffener web thickness tw and height H, they become   
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Substituting the expressions for geometrical constraints, i.e. Eq.(105) to Eq.(108), into 
Eq.(103) and setting q10 = 0 the final expressions for the stiffness coefficients where found to 
be  
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It follows directly from Eq.(109) that the postbuckling stiffness in pure axial compression, 
under axial displacement control (prescribed 0=κ ), is   
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This is the same value as originally given by Stowell(1951).  
 
Despite the academic interest of the present simple plate buckling problem it is reassuring that 
the present solution converge towards recognised solutions found in the literature. Similar 
comparisons for the coupled local and overall buckling are given in Section 5.3.2.  
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5.2.3 Numerical results and comparisons with other solutions  

 
Ellinas and Croll (1981) presented numerical results for the reduced modulus factor for 
stiffened plates buckling into a torsional/sideways stiffener mode. They developed a 
numerical scheme, solving the von Karman plate equations with due consideration of the 
boundary conditions between the stiffener web plate, top flange and bottom plate. The plating 
and stiffener bulb flange was treated as beams. They compared their theoretical results with 
small-scale model experiments made of Araldite, in order to capture the pure non-linear 
elastic response. They demonstrated very good correlation between theory and experiments 
and it was shown that the reduced modulus factor was of the order of 0.15-0.20 for the cases 
they studied.  
 
Even though the geometrical proportions of the experimental models of Ellinas and Croll are 
small, and the relative slenderness ratio )t/h( ww  of the stiffener web plate are very much 

higher than what is typical for ship and offshore structures, comparisons are interesting from a 
qualitative point of view. Therefore the present macro model developed in Chapter 4 was used 
to calculate the reduced modulus factors for the Ellinas and Croll examples and the 
comparisons are shown in Table 5.1. 
 
 
Data 
 

 
Case1 – Flat bar 

 
Case 2 – Sym. Bulb 

   tp    [mm] 1.73 1.73 
   s   [mm] 100 100 
   tw  [mm] 1.8 1.8 
   hw [mm] 74 59 
   tf   [mm]  0 5.15 
   bf  [mm]  0 15.1 
   L   [mm] 125 125 
   Reduced modules BRη , Ellinas and Croll (1981) 0.203 0.150 

   Reduced modules BRη , present macro model  0.194 0.124 

 
Table 5.1 Comparisons between calculated reduced modulus factors ηBR;,  

present macro model versus Ellinas and Croll (1981). 
 
 
The comparisons in Table 5.1 shows very good correspondence and the severe bending 
stiffness reductions for very slender stiffeners (high hw/tw ratios, 41 and 33 respectively) 
buckling in a torsional/sideways buckling mode is documented. It is noted that the symmetric 
bulb profile has an even lower reduced modulus factor than the flat bar profile. This is natural 
since when first buckling of a bulb profile takes place, the bulb area itself loose relatively 
more of its axial efficiency compared to for instance cross-sectional area located closer to the 
edge support. A bulb profile will have a higher ideal elastic local buckling stress than a flat 
bar profile of the nominal same dimensions, but that is another discussion and not a part of the 
postbuckling characteristics evaluated here.      
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Moreover, Ellinas and Croll (1981) observed from their numerical model studies that the 
reduced modulus factor was constant for large deformations and thus independent of the value 
of the acting prescribed axial load level P. They concluded that the incremental moment-
curvature relationship was a constant relationship in the postbuckling region. This is the same 
conclusion as found in the present study, here though founded solely on a closed form 
solution. 
 
In short it can be concluded that the stiffness properties of locally buckled cross-sections are 
independent of the level of buckling displacements. This conclusion is based on limited 
studies and simplifying assumptions, but at least for cross-sections where a single mode 
analysis is sufficient, the constant postbuckling stiffness is a realistic feature. For cross-
sections where several local buckling modes will interact, multi-linear postbuckling stiffness 
properties are likely. Eq.(94) indicates this, but this topic is not pursued further in this report. 
 

5.3  Coupled local and overall buckling solutions    

5.3.1 General 

 
This section starts with a brief presentation of the closed form solutions for coupled local and 
overall buckling derived in Sections 2.4 and Section 2.5. Specialising these general section 
solutions for the particular simple case defined in Section 5.2.2 interesting features are 
revealed.   
 
Then two numerical examples are presented, using the macro material model model 
developed in Chapter 4 in combination with the numerical scheme described in Section 3.2. 
Both local and overall geometrical imperfections are studied and the results are presented as 
load-shortening curves.  
 
The two numerical examples have very different geometrical layout of plate and stiffener 
proportions and different types of structural response are illustrated. The first example is a 
typical geometrical layout used in decks in steel ships while the second example is a 
constructed case for illustrating the capability of the model to trace complex unstable 
postbuckling behaviour. By studying the load-shortening response of these examples, and by 
varying the magnitude of the geometrical imperfections, important observations can be 
extracted with respect to both structural strength and stiffness properties. 
 
 

5.3.2 Closed form solution – Plate with one longitudinal edge free 

 
In Section 5.2.2 a closed-formed solution for the postbuckling stiffness coefficients Kij were 
given for a plate with one longitudinal edge free and other three simply supported. This 
example is continued in this section by presenting closed-formed solutions that includes the 
coupling effect with the overall buckling mode.   
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For overview of the presentation the general section solutions given in Section 2.4 are 
repeated here, i.e. Eq.(23), Eq.(24),(25) are rewritten in the forms as the load-curvature 
relation 
     

κ∆=∆ κSP           (112) 
 
and load-shortening  
 

ε∆=∆ εSP          (113) 

 
where per definition the postbuckling coefficients Sκ and Sε are  
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Substituting the macro material solution, i.e. Eq. (109) into Eq.(114) and into Eq.(115), this 
gives for the coupled local-overall postbuckling coefficients the following expressions 
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These solutions are discussed for two extreme cases as follows. First the most severe case of 
coincident buckling is analysed, i.e. requiring   
 

EC PP =            (118) 

 
Substituting Eq.(118) into Eq.(116),(117) gives  
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 )EA( S T=ε      max. snap back   (120) 

 
 
From Section 2.4 it follows that snap-back behaviour will be present if )EA(S T>>∞ ε . 

Eq.(120) gives Sε to be equal to full cross-sectional axial stiffness EAT. This means that the 
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postbuckling response is extremely unstable with a snap-back equilibrium path tangential to 
the linear stiffness prebuckling path at PC.   
 
From Eq.(117) it can be conclude that if PC/PE  > (7/12)  there will always be snap-back 
behaviour. In the limit PC/PE = (7/12) neither negative nor positive axial stiffness is found, i.e. 
the loads drops down at an infinite rate at PC with respect to the axial shortening ε. 
   
 
Another extreme case for discussion is that of  
 

CE PP >>            (121) 

 
Under this condition, Eq.(116) and Eq.(117) becomes   
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It is interesting to observe that the solution of Eq.(123) is exactly the same as given by 
Rhodes (1982). This solution predicts almost zero axial stiffness (1/21 ≈ 0.05) when local 
buckling starts in a stiffener with a long span. This low value has to seen in connection with 
the main assumption for how the external load P acts in the present Shanley model, i.e. it 
always acts in the centroid of the cross-section. 
 
As a final verification of the closed form solution, the reduced modulus factor, given by  
Eq.(40) for a general section shape, is evaluated. Substituting Eq.(109) into Eq.(40) gives 
simply 
 

16

1
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This is also exactly the same value as calculated by Rhodes (1982) using a different approach. 
 
As a final comment on the presented solution for the coupled local and overall response, it is 
emphasised that the external load P always acts in the centroid of the cross-section. This is a 
basic assumption for the present section results, but it affects not the pure macro model 
solutions developed in Chapter 4.  
 
The general section Shanley model was basically constructed with the purpose of throwing 
some light into the non-linear interactive buckling of stiffened panels. It is not a problem to 
extend the model to also cover a continuously moving external load case, as will be most 
realistic for continuous stiffened panels in ship structures. However, this type of extensions 
have to be seen in relation to other types of loading acting typically bi-axial loading, in-plane 
shear, lateral pressure etc. These are all topics that have to be included in complete semi-
theoretical buckling model for stiffened panels. 
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5.3.3 Numerical solution - Flat bar profile in tanker deck 

 
The numerical buckling model, with an implemented incremental perturbation scheme and 
automatic arc length control, has been programmed on a personal computer and tested on two 
examples. 
 
The first example is a stiffened panel of an oil tanker with a displacement of 130 000 tons has 
been chosen. The structural layout for the deck consists of a flat bar profile welded to the 
plating with an equal spacing s. The geometrical proportions and material characteristics are 
given in Table 5.2.   
 
 

 
Data parameters 
 

 
Tanker deck – Flat bar 

   tp  [mm] 18 
   s   [mm] 910 
   tw  [mm] 20 
   hw [mm] 325 
   tf   [mm]  0 
   bf  [mm]  0 
   L   [mm] 4750 
   E [N/mm2]   Young’s modulus 208 000 
   ν                   Poisson ratio 0.3 
   σF [N/mm2]  Yield stress 355 

 
Table 5.2 Geometrical proportions and material parameters.  

Deck panel in a 130 000 tons tanker. 
 
 
It should be noted that the yield stress have no physical implications for the results presented 
in this section. The material yield stress σF is only used for scaling purposes in the numerical 
scheme and in the figures presented. 
 
The present model gives the following values for the ideal elastic local buckling stresses 
(eigenvalue in mode q1, Chapter 4 and Appendix 5) 
 
   MPaC  315=σ         Torsional buckling mode 

 
 
The overall elastic column buckling stress is (Euler load Eq.(15) excluding all local cross-
sectional effects)  
 
   MPa E 772=σ     Euler buckling mode 
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These eigenvalues shows, as expected for typical ship deck profiles that the local buckling 
stress Cσ  is significantly lower than the overall column buckling stress Eσ .  

 
The initial stiffness postbuckling coefficient Sε , as defined in Eq.(115), includes the coupling 
effect between local torsional buckling and overall column buckling. For the present example 
it is found to be  
 
   TEA S 0.334=ε     Overall in-plane stiffness 

 
This means that when the stiffened panel buckles at the local torsional buckling stress of 315 
MPa it will have an axial stiffness of 33 % of the full axial stiffness when further compressed 
into the postbuckling region. 
  
The reduced modulus factor is calculated to be 0.93 which means that the nominal reduced 
modulus stress is σR = 0.93*772, i.e.  
 
   MPa R 718=σ     Reduced modulus stress  

 
These calculated parameters describe the onset of local buckling, initial and advanced 
postbuckling characteristics of a geometrically perfect version of the present stiffened panel. 
A simple interpretation of these parameters gives the following load-shortening characteristic:  
 
Elastic buckling starts with the onset of a local torsional/sideways stiffener mode interacting 
with plate buckling between stiffeners at a nominal stress of 315 MPa. The local buckling 
mode will immediately trigger an interaction with the overall column buckling mode and the 
initial axial stiffness of the panel is 33 % of the full stiffness when compressed beyond 315 
MPa. In the advanced postbuckling region, the axial stiffness will gradually drop and 
approach zero for an axial nominal stress of 718 MPa. 
  
In order to study the behaviour of a geometrically imperfect panel, the imperfection 
amplitudes both in the local q1 mode and overall column mode ξ have been varied 
systematically. Results are presented in the following figures. Note that that notation ξ 
represent the parameter κ in the Shanley model, i.e. the only difference is that ξ is an non-
dimensional parameter and it is defined as the overall lateral displacement scaled with the 
plate thickness tp. The corresponding overall geometrical imperfection is given the symbol ξ0. 
The torsional/sideways imperfection q10s indicates the sideways tilt (non-dimensional with 
thickness tw) of the stiffener (measured at the top of the free stiffener end).  
 
Fig.14 shows the result for the case where the local stiffener and plate imperfection are kept 
constant at a low value, i.e. sideways stiffener tilt is ws10 tq ∗  = 1 mm, which in the present 

model is consistent with a plate imperfection pp10 tq ∗  = 0.9 mm. The overall Euler 

imperfection amplitude ξ0* tp is varied between 1 and 20 mm. In Fig. 14 (and the following 
Figs.15, 16, 17) the horizonal axis represent a non-dimensional axial shortening of the cross-
section centroid symbolised as FF /u/u εε= . The vertical axis represents a non-dimensional 
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axial load FxF /P/P σσ= .  PF is the squash load defined as PF = σF*A T. The corresponding 

squash shortening uF is defined as uF = (σF/E)*L. 
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Fig.14 Load-shortening curves for a stiffened panel with flat bar stiffeners  with almost perfect cross-

sectional shape.  Sideways tilt of stiffener top kept fixed at 1 mm, the overall column imperfection 
amplitude ξ0*t p is varied between 1 to 15 mm 

 
 
It is seen from Fig.14 that the geometrical imperfection in the overall column Euler mode do 
not have any pronounced effect on the load-shortening characteristic until the advanced 
postbuckling region is reached. In the advanced postbuckling region, the axial stiffness 
decreases continuously and approaches zero at value of P/PF of approximate 2.0.  (718/355 = 
2.0  is the scaled reduced modulus load).   
 
In Fig.15 the overall stiffener imperfection is kept constant at a low level, i.e. ξ0 *tp = 1 mm 
while the sideways stiffener imperfection amplitude ws10 tq ∗  is varied between 1 and  20 mm 

(associated plate imperfection q10p = 0.9 to 18 mm).  
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Fig.15 Load-shortening curves for a stiffened panel with flat bar stiffener with variable geometrical 

imperfections in the cross-section and almost perfect straight column axis. 
Sideways stiffener tilt at top varied between 1 to 15 mm and the overall imperfection amplitude ξ0*tp is 

kept fixed at 1 mm 
 

 
Fig. 15 reveals that the geometrical imperfections in the cross-section of the panel have a 
much more pronounced effect on the load-shortening characteristic than the out-of 
straightness of the column axis shown in Fig.14. It is clearly seen that the in-plane stiffness is 
much below the full linear stiffness already from the very start of loading. The highest rate of 
axial stiffness reductions is in the region of the local critical buckling stress 315 MPa. In the 
advanced postbuckling region the effect of the local imperfections is reduced and the 
equilibrium curves for different imperfection levels approach each other.  
 
 
If these results are related to normal shipyard standards it can be expected that the axial 
stiffness of such panels be significantly reduced compared to the full linear stiffness values. 
Normal shipyard standard for the present oil tanker will give out-of-flatness of the order of 5-
10 mm in the plating between stiffeners. Out-of-straightness tilt of flat bar stiffeners is not 
that well documented, but can be estimated to be of the order of 10 mm. This may give typical 
axial stiffness reductions of the order 10-20% as a reasonable estimate for deck designs of 
tankers. It is added as a comment that the present analysis always takes the geometrical 
imperfections to coincide with minimum the eigenmodes as a conservative approach. Actual 
imperfections in welded ship decks will have a complex and random pattern. This fact makes 
the picture more complicated, but does not violate the qualitatively buckling and postbuckling 
results presented here.  
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5.3.4 Numerical solution - Coincident overall and local buckling 

 
As an alternative example, a stiffened panel is constructed with the purpose of illustrating 
unstable postbuckling behaviour. Unstable postbuckling response will typically occur for 
panel designs where the local and overall column Euler buckling eigenvalues are close. In 
order to construct such an example the cross-sectional form of a ship bottom panel was used, 
but the stiffener span was increased significantly compared what is normally found.  
 

 
Data parameters 
 

 
Constructed case – T profile 

   tp  [mm] 13 
   s   [mm] 910 
   tw  [mm] 24.5 
   hw [mm] 400 
   tf   [mm]  19 
   bf  [mm]  90 
   L   [mm] 12000 
E [N/mm2]   Young's modulus 208 000 
   ν                   Poisson ratio 0.3 
   σF [N/mm2]  Yield stress 355 

 
Table 5.3 Geometrical proportions and material parameters  

used in a constructed example illustrating unstable coupled local and overall buckling. 
 
 
The present model gives the following values for the local ideal elastic buckling stresses 
(eigenvalues) 
 

MPaC  313=σ         q1  torsional mode 

MPaC  620=σ                     q2  web mode 

 
The overall column Euler buckling stress, excluding local cross-sectional effects, is  
 

MPa E 320=σ              Euler buckling mode 
 
The low overall elastic buckling stress of 320 MPa is due to the very long stiffener span of 12 
meter.  
 
As for the previous example the axial stiffness parameter Sε is assessed and found to be 
 

TEA S 1.05=ε        Overall axial stiffness 

 
This means that we have a panel design showing snap-back buckling response and is thus 
extremely initially unstable when entering the postbuckling region.  
 



 Page: 62 
University of Oslo   
Department of Mathematics, Mechanics division  99-1 
Buckling of stiffened Plates using a Shanley model approach 
__________________________________________________________________________________________ 
 
 

 

The reduced modulus factor is calculated to be 0.43 which means that the nominal reduced 
modulus buckling stress is σR = 0.43*320, i.e.  
 

MPa R 137=σ     Reduced modulus stress  
 
These parameters, valid for a geometrically perfect panel, then predict a severe unstable 
elastic buckling response as summarised as follows:  
 
The buckling will start at a uniform membrane stress of 313 MPa and is associated with a 
torsional sideways buckling of the stiffener. The local buckling will immediately trigger a 
coupling with the overall column buckling mode, leading to an initial snap-back behaviour. 
The snap-back behaviour means that axial stiffness is no longer available i.e. in order to trace 
the equilibrium path, not only the load P, but also the end-shortening u will initially decrease. 
The unstable equilibrium path will then twist and the axial shortening u will start to increase 
again while the load continues to drop. The nominal stress will then asymptotically approach 
the reduced modulus stress of 137 MPa in the advanced postbuckling region. 
 
As for the previous numerical example, load-shortening curves are generated for different 
levels of geometrical imperfections. The results are shown in the following figures, Fig.16 
and Fig.17 respectively.  
 
Fig.16 shows the result for the case where the local stiffener and plate imperfection are kept 
constant at a low value, i.e. sideways stiffener tilt of the stiffener top is ws10 tq ∗  = 1 mm 

which in the present model is consistent with a plate imperfection of pp10 tq ∗  = 0.7 mm. The 

overall column imperfection ξ0*tp amplitude is varied between 1 and 20 mm. 
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Fig.16 Load-shortening curves for a panel with near coincident local and overall eigenvalues.  
Almost perfect cross-sectional shape with variable  

overall imperfection amplitude ξ0*tp between 1 to 20 mm 
 



 Page: 63 
University of Oslo   
Department of Mathematics, Mechanics division  99-1 
Buckling of stiffened Plates using a Shanley model approach 
__________________________________________________________________________________________ 
 
 

 

 
From Fig. 16 it is seen that the geometrical imperfection in the overall column mode have a 
pronounced effect on the limit load (ultimate strength) while it have no influence on the axial 
stiffness properties before the ultimate load is reached. In the advanced postbuckling region 
the load approach the reduced modulus load and the overall imperfection effect in this region 
is of no significance. 
 
In Fig.17 the overall stiffener imperfection is kept constant at a low level, i.e. ξ0 *tp = 1 mm 
while the sideways stiffener imperfection amplitude ws10 tq ∗  is varied between 1 and 20 mm 

(associated plate imperfection between stiffeners pp10 tq ∗ = 0.9 to 18 mm).  
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Fig.17 Load-shortening curves for a panel with near coincident local and overall eigenvalues. 
  Variable local imperfections in cross-section, range 1 to 20 mm.  

 The column axis is almost perfect assuming a max amplitude ξ0*tp  of  1 mm 
 
 

From Fig. 17 it is seen that the geometrical imperfection in the form of local sideways tilting 
of the stiffener have a pronounced effect on the limit load (ultimate strength) while it have 
marginal influence on the axial stiffness.  In the advanced postbuckling region the load 
approach the reduced modulus load and the imperfection effects in this region vanished. 
 
It is found for this example that the severe non-linear coupling between local and overall 
buckling modes reduce the ultimate buckling capacity to only 176 MPa compared to the 
strength of the geometrically perfect panel of 313 MPa. This 44 % knock down effect is 
assessed for a sideways initial tilt at the free stiffener edge of 20 mm which is slightly less 
than the stiffener web thickness of 24.5 mm  
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This example demonstrates the severe imperfection sensitivity, with respect to ultimate 
buckling capacity, stiffened plates may experience when they are designed with close or 
coincident local and overall eigenvalues. The local imperfections are seen to be most 
influential on the ultimate stress, but also the overall imperfections have a significant knock 
down effect. As for the previous example the axial stiffness before ultimate stress is mostly 
affected by the presence of local cross-sectional imperfections, but to a less degree. Out-of 
straightness of the column axis influences the axial stiffness properties only marginally. 
 
 
 

5.4 Summary and discussion 

 
The present chapter presents some general closed form solutions and two numerical examples 
applying the present theoretical model. Some limited comparisons with solutions found in the 
literature are given. The verification is split in two parts, the first part is given in Section 5.2 
and is exclusively devoted to the macro model developed in Chapter 4.  Section 5.3 is devoted 
exclusively to coupled local and overall buckling.   
 
Section 5.2 and Section 5.3 presents some closed form solutions for the present macro model 
assuming single mode buckling response. Comparisons are given with some analytical 
solutions found in the literature. In Section 5.2 some numerical results for reduced modulus 
factor for slender stiffeners found in the literature is given. Excellent agreement with the 
present model was found.   
 
In Section 5.3 two numerical examples using the present model was presented. The first 
example has typical dimensions as for stiffened panels in large steel ships. The second 
example was constructed in order to illustrate the unstable response typical for panels with 
close local and overall eigenvalue. These examples were generated using the present 
developed incremental perturbation scheme with arc length control.  
 
The two numerical examples illustrate some typical features of non-linear buckling response 
of stiffened panels in the geometrical non-linear range. By varying the imperfection 
amplitudes in the local and overall mode separately, important information as to the strength 
and stiffness characteristics of stiffened panels is uncovered.       
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6. SUMMARY AND CONCLUSION 

 
The main motivation for the present work has been to gain insight into the mechanics of 
geometrically non-linear interactive buckling between local and overall buckling modes in 
stiffened panels. Based on such insight it will be possible to develop useful concepts, which 
can be used in semi-theoretical computerised buckling models for the strength and stiffness 
estimates of such panels.  
 
The present buckling model has two separate parts. The first part deals exclusively with the 
cross-sectional macro material model and the second part, here using the general section 
Shanley model, couples the macro material model to the overall column buckling.    
 
Special efforts have been given to a development of a macro material model, relevant for 
stiffened panels with open profiles as found in ship and offshore constructions. This macro 
model is two-dimensional. This means that it is suited for application to panels exclusively 
subjected to axial loading. For combined loading, such as in-plane bi-axial loading and in-
plane shear, a six-dimensional model is needed. This problem is touched upon, but not 
addressed in detail here. Further, the present macro material model is approximated as two-
degree of freedom model, covering torsional/sideways buckling of stiffeners interacting with 
a plate buckling (q1 mode) and stiffener web buckling also interacting with a plate buckling 
(q2 mode). It is emphasised that the present two-degree of freedom model gives a very crude 
simplification of real structural response, but the model is thought to be relevant for a wide 
range of stiffened panels encountered in ship steel and aluminium constructions. Naturally, 
the present macro model could be further improved by adding more degrees of freedom for 
accurate strength and stiffness estimates. In fact the macro model concept as developed 
herein, is equally applicable for many local degrees of freedom (local displacement vector qi) 
as for few. This makes the model flexible for later extensions. More work in this area is 
needed both with respect to theoretical development of multi-dimensional macro models and 
with respect to verification with other general purpose non-linear finite element codes such as 
ABAQUS (1998). The present report does not include verifications against such advanced 
programs, but includes verification rather on the more conceptual level. In particular can be 
mentioned verifications against other analytical closed formed solutions as well as 
comparisons against some limited numerical results for reduced stiffness parameters, all 
found in the literature.   
 
Another feature of the present work is that it is built on the general non-linear stability theory, 
developed in a discrete finite-dimensional form by Sewell, Thompson, Huseyin and others in 
the seventies in UK. They introduced the perturbation method as a numerical strategy for 
solving sets of non-linear algebraic equations and for studying bifurcations and postbuckling 
behaviour of complex plate and shell problems. This approach has been used herein, however, 
extended for use in an incremental scheme for tracing continuous equilibrium paths, much in 
the same way as done in standard non-linear finite element programs. By using an arc length 
control, it has been demonstrated on two examples that the present approach is capable of 
tracing continuous equilibrium paths with limit points, snap-back behaviour and severe 
imperfection sensitivity. More about this numerical scheme can be found Steen(1998).      
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As a final comment it is emphasised that the present work is mainly devoted to the 
development of simplified buckling models and concepts, at the expense of detailed numerical 
verifications using alternative methods. This has been the strategy selected due to personal 
preferences and supported by the belief that simple models can be used for the construction of 
computerised, fast buckling models. Such models will provide more information and predict 
more realistic strength estimates than current available rules and codes. By reviewing the 
literature on buckling of stiffened plates it is observed that most of it is dedicated to advanced 
numerical studies using different types of standard finite element programs or similar 
software. It is thought that the development of simple and physical models like the present is 
more important for gaining understanding of the buckling phenomena themselves, and this 
subject has not had the attention it deserves in the literature during the last two decades. Thus, 
by ensuring a more proper balance in the future, between the development of physical semi-
theoretical models like the present, and full blown numerical finite element studies, it is 
believed that safe and optimal buckling design procedures are in the hands of designers and 
authorities within a relatively short time.    
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8. NOTATION 

Latin letters 
 
a,b,c  These letters with Latin numbers as subscripts define constants in the potential energy 

function V in the local cross-sectional mode, Appendix A1 
cf  Distance from cross-sectional centroid to stiffener flange middle plane 
A  General symbol for cross-sectional area 
AT  Total cross sectional area of column unit cross-section, AT = (s tp + hw tw + bf tf)  
bf  Stiffener flange width (total width) 
B11 Parameter, defined in Appendix A6 
B12 Parameter, defined in Appendix A6 
B21 Parameter, defined in Appendix A6 
B22 Parameter, defined in Appendix A6 

D Stability determinant, local modes ijVD =  

ef  Eccentricity of stiffener flange centroid relative to stiffener middle stiffener web plane 
E  Young’s modulus 
EIT  Bending stiffness of column 
EAT  Axial stiffness of column 
g    This letters with number 1 or 2 and letter u or θ as subscripts defines constants in the 

potential energy function V in the local cross-sectional mode, Appendix A1 
hw  Stiffener web height (exclusive flange thickness) 
H  Mean section height parameter, H = (tp +tf)/2+hw ) 
I0  Symbol for the unloaded state 
IC  Symbol for the local critical state, perfect geometry, buckling into mode q1 or q2  
Is  Symbol for any loaded state 
IT  Moment of inertia of cross-section about centroid per unit width (about z = zG)  

I f  Moment of inertia of stiffener flange (
2

wwff

ff2
ff

3
ff ))th/(tb1(

tb
etb

12

1
I

+
+= ) 

Jp  Torsional stiffness of stiffener flange ( )tb
3

1
J 3

ffp =  

K

K

K
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21
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K

K

K

K

11
L

12
L

21
L

22
L

  Linear elastic stiffness coefficients for column unit cross-section  

 
L  Length of continous Euler column, full stiffener span for panels 
Lε   Load parameter in local mode, single degree of freedom model, Appendix A3 
Lκ   Load parameter in local mode, single degree of freedom model, Appendix A3 

Macro tangent stiffness coefficients of a general cross-
section evaluated at any state Is .  
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M Total internal moment in column unit about centroid zG at mid-length of column,  
stiffener + plate unit with unit width s, positive give compression for z >zG in stiffener 

MF Scaling first yield moment, MF = EIT θF/L 
N Total internal axial load in column unit, stiffener + plate unit with unit width s, 

positive in compression    
p  Number of half waves in x-direction in web q2 mode 
P  External axial load, positive in compression   
PE  Euler buckling load for perfect stiffener/plate column unit, width s   
PC  Local buckling load for perfect stiffener/plate column unit, width s, mode q1 or q2   
PR  Reduced modulus load of column unit, PRM ≡ ηRMPE   
PM Limit point load from Koiter theory of Shanley column model 
PF  Squash load of column unit, TFF AP σ≡    
PU  Ultimate load capacity of column unit 
 
qi General displacement vector for local cross-sectional modes in macro model, non-

dimensionless 
qi0 General displacement vector for initial stress free imperfections in cross-section, non-

dimensionless 
q1s  Dimensionless sideways deflection amplitude of stiffener top, Eq. (64), Fig.11a 
q10s Dimensionless initial sideways deflection amplitude of stiffener top 
q1p  Dimensionless deflection of plate, torsional stiffener-plate mode, Eq.(65), Fig.11a  
q10p Dimensionless initial deflection of plate, torsional stiffener-plate mode 
q2s Dimensionless deflection amplitude at stiffener web mid height, Eq.(64), Fig.11b 
q20s Dimensionless initial deflection amplitude at stiffener web mid height 
q2p  Dimensionless deflection of plate, stiffener web-plate mode, Eq.(65), Fig.11b 
q20p Dimensionless initial deflection of plate, stiffener web-plate mode  
 
q1 Short notation, q1 ≡ q1s 
q10 Short notation, q10 ≡ q10s 
q2 Short notation, q2 ≡ q2s 
q20 Short notation, q20 ≡ q20s 
 
q  Number of half waves in x-direction in torsional q1 mode 
 

R1 Parameter (
π

≡ 1

H

s

t

t
R

p

w
1 ), Eq.(69) 

R2 Parameter (
H

s

t

t
R

p

w
21 ≡ ), Eq.(69) 

 
s  Stiffener spacing, unit width of column model  
Sκ  Initial postbuckling coefficient, slope of load-curvature relation  
Sε  Initial postbuckling coefficient, slope of load-shortening relation (axial stiffness)  
tp  Plate thickness 
tw  Stiffener web thickness 
tf  Stiffener flange thickness 
uα  In-plane deflection of plate in xα direction, general notation 
u1  In-plane deflection of plate in x1 direction, general notation 
u2  In-plane deflection of plate in x2 direction, general notation 
uG  Relative end-shortening of column cross-section centroid, positive in compression 
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u Relative end-shortening of column cross-section centroid, u ≡ uG in Figs.14,15,16,17 
for convenience 

u  Relative end-shortening of column edges in any point along stiffener height, 

Guuu ==  for z = zG   

uF  Squash axial shortening, uF = εF L 
V  Potential energy per unit volume (AT L), Appendix A1  
Vunit  Potential energy per unit   
w   Plate deflection normal to plate plane, general notation for component plate 
w0   Initial plate deflection normal to plate plane (stress free initial imperfection) 
ws Local sideways deflection of stiffener web plate (deflection in y direction, i.e. normal 

to web plane) 
ws0 Local sideways initial deflection of stiffener web plate (deflection in y direction, i.e. 

normal to web plane) 
wp Local deflection of plate between stiffeners (deflection in z direction, i.e. normal to 

plate plane exclusive overall column deflection) 
wp0 Local initial deflection of plate between stiffeners (deflection in z direction, i.e. 

normal to plate plane exclusive overall column deflection) 
wξ  Overall deflection amplitude of continous Euler column and Shanley 

column, LL L w κ=θ=ξ    

wξ0  Overall deflection amplitude of continous Euler column and Shanley 

column, LL L w 000 κ=θ=ξ    

x  Co-ordinate in for macro model in stiffener direction, laying in plate middle plane 
y   Co-ordinate in for macro model in transverse direction, laying in plate middle plane 
z Co-ordinate for macro model along stiffener web height, laying in stiffener web 

middle plane, centroid z = zG see Fig.10 
X Co-ordinate in Shanley model, laying in centroid of cross-section directed along 

column axis, Fig.3 
Y   Co-ordinate in Shanley model column cross-section, see Fig.3 
Z Co-ordinate in Shanley model column cross-section, see Fig.3 
 
xα  General cartesian in-plane co-ordinate, α = 1, 2 
 
x1  Cartesian in-plane co-ordinate 
x2  Cartesian in-plane co-ordinate 
x3  Cartesian co-ordinate perpendicular to plate plane 
 
zG Centroid of macro model unit; stiffener with full plate width s, z co-ordinate measured 

from plate middle plane, Fig.10. 
 
 
Greek symbols 
 
∆  Symbol for incremental properties 
ε Relative overall strain of column, ε = uG/L 
εC  Relative overall strain at local buckling, E/CC σ=ε  

αβε   General strain tensor, strain in any materail point 

αβε   General membrane strain tensor, strain in any plate middle planes  

η Perturbation parameter, continuously increasing arc length parameter along 
equilibrium path 
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ηBR Reduced modulus factor in bending, non-dimensionless, applies for geometrically 
perfect panels  

θ Relative end-rotation of cross-section ends, positive giving compression in stiffener 
top, angle rotation of Shanley model  

θ0 Initial relative end-rotation of cross-section ends, imperfection, always positive, initial 
angle rotation of Shanley model  

θF First yield rotation, θF = σF L/(Ecf)  

αβκ   General bending strain tensor of plate middle planes  

κ Relative overall curvature of Shanley model, κ = θ/L 
κ0  Relative initial overall curvature of Shanley model, κ0 = θ0/L 
ν Poisson’s ratio 
ξ  Non-dimensional global deflection amplitude, pt/w ξ=ξ  

ξ0  Non-dimensional global imperfection amplitude, p00 t/w ξ=ξ  

αβσ   General stress tensor, stress in any materail point 

αβσ   General membrane stress tensor, stress in any plate middle planes  

Fσ   Yield stress 

xσ   Axial membrane stress in each component plate in cross-section, positive in 
compression 

Cσ    Local ideal elastic buckling stress, local eigenvalue 

Eσ    Overall ideal elastic buckling stress, global eigenvalue (Euler buckling stress) 
 
 
Subscripts and superscripts 
 
s  Parameter evaluated at arbitrary state Is 
C  Critical local state IC , initial buckling in mode q1 or q2   
0 Geometrically imperfect unloaded state I0  
α Index for cartesian co-ordinate xα, α = 1, 2  
β Index for cartesian co-ordinate xβ, β = 1, 2 
B  Bending 
R  Reduced modulus 
x  A bar over a symbol indicates value evaluated outside the reference plane 
 
Notation for derivatives 
 
&P   First order path derivatives of P (& /P P≡ ∂ ∂η ) 
&&P   Second order path derivatives of P (&& /P P≡ ∂ ∂2 2η ) 

&x   First order path derivatives of x (& /x x≡ ∂ ∂η ), general notation 

&&x   Second order path derivatives of x (&& /x x≡ ∂ ∂2 2η ), general notation 

w ,x   First order partial derivatives of w with respect to x (w w x, /x ≡ ∂ ∂ ) etc. 

V i  First derivative of potential energy with respect to qi  
V ij  Second derivative of potential energy with respect to qi and qj  
V ijk  Third derivative of potential energy with respect to qi and qj and qk 
V iε  Second derivative of potential energy with respect to qi and ε  
V iκ  Second derivative of potential energy with respect to qi and κ  
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V ijε  Third derivative of potential energy with respect to qi , qj and ε  
V ijκ  Third derivative of potential energy with respect to qi , qj and κ  

ijV   Stability determinant in local modes 
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Appendix A1   Potential energy of stiffened panel unit - Local modes q1, q2  

 
 
Potential energy )q,q,,(V 21κε  per unit volume  AT L  is  
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The geometrical coefficients are given the following symbolisation  
 
a4  - fourth order q1 mode   
a3  - third order q1 mode   
a21  - second order q1 mode   
a22  - second order imperfection q1 mode   
 
 
b4  - fourth order q2 mode   
b3  - third order q2 mode   
b21  - second order q2 mode   
b22  - second order imperfection q2 mode   
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c4  - fourth order q1 q2 mode   
c31  - third order imperfection q1 q2 mode   
c32  - third order imperfection q1 q2 mode   
c21  - second order imperfection q1 q2 mode   
c22  - second order imperfection q1 q2 mode   
c23  - second order imperfection q1 q2 mode   
 
 
The energy constants entering the potential energy expression V are defined as 
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431 c2c =  
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Load coefficients 
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The h constants are not coupled to the displacement variable q1 or q2 and vanish in 
equilibrium equations. They are therefore of no practical significance are not given here.  
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Parameters entering the energy constants 
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Appendix A2  First order energy coefficients - Equilibrium equations in local modes q1, q2  

 
The principle of stationary potential energy, i.e.  
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gives the following two equilibrium equations as 
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where the first order energy derivatives V1 and V2 is found as 
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Appendix A3   Single mode equilibrium equation in closed form  

 
 
The single mode cases  
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gives a closed form solution for the equilibrium equations 
 
 
The case V1= 0 and q2 = 0 in Appendix A2 is rewritten as 
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Using the relation between coefficients given in Appendix A1, i.e.  
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and substituting these into the equilibrium equation, the following compact form emerge 
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The case of only q2 mode gives a corresponding equilibrium equation in exactly the same 
form as for the q1 mode.  The coefficients Lε, Lκ, and b2 are then defined in terms of the 
corresponding b and g parameters given in the equilibrium equation V2 = 0. 
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 Appendix A4  Second and third order energy coefficients  
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Appendix A5   Eigenvalues in local modes 

 
The stability of an equilibrium state is explored by checking the sign of the stability 

determinant D = ijV  . For the present local two degree of freedom model the stability 

determinant is  
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A positive value indicates a stable equilibrium state while a negative value indicates an 
unstable equilibrium state.   
 
For classical eigenvalue calculations the stability of the perfect flat form is to be investigated, 
i.e. the energy coefficients Vij is to be evaluated for  
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From the expressions given in Appendix A4 this gives the following condition for initial 
buckling of the flat plate into the local buckling modes 
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which have two solutions 
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This means that the eigenvalues in the two local modes are not coupled. For the case of pure 
uni-axial compression, i.e. κ = 0 is prescribed, the eigenvalues for uni-axial shortening are 
found as 
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in mode q1 and q2 respectively. In the present two-degree of freedom model the eigenvalue in 
each mode is minimised with respect to the wave buckling parameter q and p respectively. 
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Appendix A6   Macro material coefficients – Local compatibility conditions 

 
The load-shortening-deflection amplitude relations are 
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The linear constants are defined as  
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where AT is the total cross-sectional area and IT is the moment of inertia about the centroid of 
the cross-section of one unit consisting of one stiffener with associated full plate width. The 
K12

L = K21
L coefficients are zero since the stiffness properties are calculated about the 

centroid of the cross-section. 
 
The geometrical constants coupled to the non-linear cross-sectional buckling modes q1 and q2 

are defined as  
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The integers q and p are the wave number that minimise the local eigenvalue in the q1 and q2 
mode respectively. 
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Appendix A7   Macro material coefficients – Solution for perfect geometry 

 
Single mode solution in q1 mode  
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Single mode solution in q2 mode  
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Coupled solution in mode q1 and q2  
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