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Buckling of Stiffened Plates using a Shanley Modigbroach

EIVIND STEEN

Mechanics Division, Department of Mathematics, énsity of Oslo

Abstract - The Shanley model concept is used for simulatiegelastic non-linear interaction
between local buckling and overall buckling of twalled columns subjected to axial compression.
The spring foundation is given a general macro riatirm for representing the local buckling
response typical for thin walled cross-sections.gemmetrically perfect columns, analytical post-
buckling solutions are derived valid for and angss-sectional shape. For geometrical imperfect
columns a numerical procedure is proposed. The ricah@nethod is based on a perturbation
scheme with arc length control applied in an in@etal procedure. It is demonstrated that the
numerical method is able to trace unstable equilibpaths with sharp peaks in the load-deflection
space.

A simplified two-degree of freedom macro materialdal is developed, applicable for panels with
open thin-walled stiffener profiles. Included iretbross-sectional macro model is plate buckling
interacting with sideways/torsional buckling of tinee stiffener outstand and buckling of the
stiffener web plate.

The present analytical and numerical study verifies the recognised reduced modulus is an
important parameter in the non-linear elastic etéon between local and overall buckling of
stiffened panels.
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1. INTRODUCTION

Buckling of thin-walled stiffened plates is a sudtjef continuous interest due to its relevance
in the design process of technologically importtnictures such as ship, bridges and
aerospace constructions. However, despite the dongeint of research results available on
the subject, there are still many complicated itemfgch are not satisfactory treated in
available design codes. The main items to be iredud a physically consistent design model
are the problems of mode interactions and unstaiguckling behaviour, combined load
effects, residual stress and heat affect zonetsféetd geometrical imperfection effects.

After the first warning made by Koiter and Skalqdd63) against the optimum design
philosophy of simultaneous local and overall butdlin stiffened panels, the topic of mode
interactions has been on the agenda among engewe@scientist working in the field of
structural stability. Van der Neut (1969) demorntsitiahat the procedure of designing panels
having close or identical local and overall critibackling loads lead to unstable postbuckling
behaviour and increased imperfection sensitivigm8 time before, Graves-Smith
(1967,1968) analysed the interaction between lacdloverall buckling in more general
terms. Subsequently, a series of publications eaefgcusing on the complex non-linear
mode interaction effects and imperfection sensytj\e.g. Koiter and Kuiken (1971),
Thompsen and Lewis (1972), Tvergaard (1973).

Thompsen, Tulk and Walker (1974) studied the elastide interaction problem from a
simplified and conceptual point of view using tHeaBley model for a panel with stocky
stiffeners and slender plating. Walker (1975) antk Bnd Walker (1976) showed
theoretically, as well as by carefully performebldeatory experiments of small scale
stiffened plates made of araldite, that the reduwedulus factors an important parameter
for the stability of the postbuckling response andsequently of the imperfection sensitivity.
Ellinas and Croll (1977, 1979, 1981) adopted atsoreduced modulus concept and
calculated factors for the case of slender stiffengstands (flat bar and bulb profiles in ship
terminology).

The concept of reduced modulus factor in the eldmickling theory, as developed by
Thompsen, Walker, Croll and their co-workers, ipiimciple similar to the reduced modulus
approach in the inelastic column buckling theornjgioally developed by Considere (1891).
Von Karman (1910) developed the inelastic bucktimepry further, with subsequent
important contributions by Shanley (1947) and Hutsbn (1973). The present work deals
exclusively with the elastic buckling theory.

The objective of the present work is to developaéified numerical buckling model for
tracing the complete non-linear elastic load-dispiaent curve of axially compressed
stiffened plates. This includes the non-linearretéon effects between local and overall
buckling modes together with geometrical imperfatiffects. Such curves provide both
strength and stiffness properties of compressedlpawhich are vital parameters for overall
strength assessment of larger structures. Geomlatmperfections both in local and overall
modes are studied, but residual stresses and spireaaterial plasticity are left out. However,
by controlling the magnitude of the stresses iticali locations in the panel, the present
model can be used to assess the ultimate loachezapacity using a first yield criterion.



Page: 4
University of Oslo
Department of Mathematics, Mechanics division 99-1
Buckling of stiffened Plates using a Shanley modeparoach

First yield criteria used in combination with a Aarear elastic analysis are recognised and
frequently used in simplified buckling models

Moreover, the objective was also to test out tlasitality of the perturbation method as a
numerical tool for tracing continuous equilibriumrees. Details of the perturbation method
used in an incremental scheme with arc length obate given in Steen (1998).

The present simplified buckling model is based geieralised Shanley column formulation
in which the local cross-sectional behaviour fokoavtwo-dimensional spring law. The two-
dimensional spring law is referred to as a locatmanaterial model or just a macro model. It
includes the local cross-sectional buckling behawvio an integrated form coping exclusively
with local non-linear geometrical effects. For clng of the local and overall buckling
effects, the Shanley model ensures a simple treatafidoth the continuously changing
cross-sectional bending and extensional stiffnesgauties and shift in neutral axis position
with changing displacements. By using a two-dimemai macro model, the basic
formulation developed can be used for any typdiofivalled cross-sectional shape, e.g. for
open profiles, closed profiles, corrugated panglshe two-dimensional spring model can
be extended to a six-dimensional model for uséenstrength assessment of stiffened panels
subjected to combined bi-axial and shear loads.d¥ew the issue of combined loads is not
addressed in detail in the present report.

In a non-linear analysis the overall cross-sectibrading and extensional stiffness
properties are state dependent (load-dependens)nidans that they will continuously
change as the external applied load is increadad.€ffect is treated herein through an
incremental updated numerical procedure. Howevem fa design code point of view, an
even more simplified approach is to be preferredgua fixed set of reduced stiffness factors.
Such a code model is currently under developmentistnot described here.

This report develops specifically a macro mateariatlel for stiffened panels with open
profiles, typically used in steel ships and offghoonstructions. For these types of profiles it
is of particular interest to study mode interactitwetween overall panel (column) buckling
and local plate buckling and/or torsional sidewiayekling of the stiffener.

A brief summary of the content is as follows. Clea# describes a general formulation of the
interactive buckling problem of columns using th@fley model. The general section cross-
sectional response is formulated as a non-linearanaaterial law without focussing on
whether the cause of this non-linearity is duertss-sectional buckling or pure material
effects. Chapter 3 then describes a macro matawiaih which the local geometrical buckling
parameters (jof a general thin-walled cross-section becomibhsFor solving the non-
linear geometrical problem, a perturbation procedsiformulated using an incremental
approach with arc length control. Chapter 4 is nsprecific and develops the macro model
for stiffened panels with open stiffener profilddype T, L or flat bar, typically used in ship
and offshore structures. The present report dealsgvely with stiffened panels subjected to
pure axial loading for which a two-dimensional ntaorodel is sufficient. Only some very
general comments are given in Section 3.1, adaptsik-dimensional macro models to be
used for combined in-plane load situations inestiéid panels.
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Using the macro material law developed in Chapteorfe numerical examples, using the
incremental perturbation method, are presentechapr 5. Comparisons with some
analytical and numerical solutions published inlitezature are also given.

2. THE GENERAL SECTION SHANLEY COLUMN

2.1 General

After several decades of almost no interest irptiedlem of inelastic buckling of columns,
Shanley(1947) presented a new approach to the anpi@liminated much of previous
disagreements on whether to use the tangent ocedduodulus approach. Up to that time
the reduced modulus load was accepted as the Itwekling load of geometrically perfect
straight columns made of inelastic material (vomrKan (1910)). Shanley showed, using the
simple two-spring model illustrated in Fig.1a, tHa tangent modulus load was the
minimum load at which the inelastic column staotbtickle. His findings were well
documented, both by experiments and by incorpaydtiea mentioned simple spring model
with bi-linear inelastic material characteristiisa discussion of Shanley’s paper, von
Karman agreed with the author’s conclusions.

Chilver and Britvec (1964) studied in more depth stability of columns in the inelastic
region and developed a closed form solution forpib&tbuckling response. They confirmed
that the tangent modulus load was the smallesilgedsuckling load and showed that the
postbuckling equilibrium path approached asympatifiahe reduced modulus load for
increasing deflections (within the limit of moderabtation theory and inelastic bi-linear
material response). Hutchinson (1973) generalisedshanley model by using a continuous
spring model in order to simulate the uni-axiatiglastic response of a real compact cross-
section, Fig.1b. Using this model he studied tlitgainpostbuckling behaviour in the inelastic
region using asymptotic theories. Tvergaard anddieean (1975) studied both with
numerical and asymptotically methods the postbagktiehaviour of inelastic columns with
and without geometrical imperfections.

Within inelastic column theory it can be stated th& reduced modulus load and tangent
modulus load has a clear physical interpretatiahitis recognised that the tangent modulus
load represents the mathematically correct ingiadkling load for perfect straight columns.
However, for real columns with geometrical impetii@es and residual stresses these theories
have not been used to any large extent for desigrmoges. Numerical methods or semi-
analytical methods like the Perry type of approamshewed below have been preferred.

The publication by Ayrton and Perry (1886) is ctediwith being the first that focussed on
the effect of geometrical imperfections and loacksdricities in the study on load bearing
capability of columns (struts). The load causingfibst yield at the extreme fibre in the
critical section was called an elastic limit lodthey showed that this load was a close
approximation to the ultimate loads for a set qgfeskments carried out on different types of
struts. Robertson(1925) developed this method éurdind showed good correlation with test
results of initially crooked columns. The simphcif the approach attracted the engineering
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community dealing with design, and the Perry-Ramertapproach is used in many
international design codes dealing with bucklingaiumns as well as stiffened plates and
cylindrical panels.

PRy Py

LLL

two continuous general
springs spring spring
a) b) ¢)

Fig.1 Shanley model, schematically

The Perry-Robertson model was developed for th&limgcstrength assessment of columns
with compact cross-sections. In order to cope wighstructural interaction between local
cross-sectional buckling and overall column buaklifhompsen, Tulk and Walker (1974)
proposed to include the reduced modulus concejgty Tiked the feature of reduced modulus
in a general context, i.e. they realised that ildde used independently of whether it was the
material or the local buckling of the cross-sectioat caused the local stiffness change. They
made use of the accepted fact that the in-plaffaets of a compressed geometrically perfect
plate has an almost constant value beyond initiestie buckling. To demonstrate the
importance of this near constant postbucklingrstigs of plates they modelled a stocky
stiffener with a flexible plate flange, whose etfee stiffness was taken to be a fixed value
(typically 50% of the unbuckled stiffness). For ttese of the column buckling in the

direction giving compression in the plate flandyt showed both theoretically and
experimentally that the classical Euler column folanwith the reduced bending stiffness
(Elr of the plate flange included, predicted a safeeiolound buckling strength value. In
other words their approach predicted a lower bastonate of the column buckling strength
with a full elimination of the non-linear mode irdetion effect. Ellinas et. al. (1977), Ellinas
and Croll (1979) and Ellinas and Croll (1981) uieel same approach for cases with slender
stiffeners buckling in a sideways (torsional) mode.

The present work presents an extension of the egbodulus approach to interactive elastic
buckling of stiffened panels. A major assumptiothi@ approach, as proposed by Thompsen,
Walker, Croll and their co-workers, is that theueedd modulus factor is a fixed value. They
assumed this fixed value to be independent of ldwe pimensions, geometrical
imperfections, and the level of the acting loadisTdpproach can be classified as a lower
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bound approach, which may be unduly conservatitteeifelastic local buckling load of the
cross-section is well above the material yieldsstr@ his is normally the case for ship and
offshore constructions made of steel. Howeveryéideiced modulus concept is a very
intuitive and physically appealing approach anchit be extended for a more realistic
strength assessment. By using a method for contslyapdating the current macro stiffness
properties, instead of using a fixed conservatale®, significant improvements may be
achieved. This is the main topic in the presenbregand the general section Shanley model
illustrated in Fig.1c, provides for a simplifiegatment.

The stiffened panel layout considered in this reotypical for ship structures. The panel
rests on transverse girders providing rigid latetgdports as illustrated in Fig.2. The panel is
wide compared to its length. This means that westadly the panel strength by considering
an isolated unit. Thenit consists of a single stiffener with an associatatepvidth equal to
the full stiffener spacing s. This column modegbigach will give reasonable results for most
geometries found in steel ships and offshore sirast It is commonly used in rules and
guidelines issued by ship classification societies.

RIGID
LATERAL SUPPORTS

Fig.2 Stiffened panel with open profiles of flat T or angle) type.
Overall Euler mode interacting with sideways(torsd) buckling of stiffeners
and local buckling of plating

In the general Shanley model illustrated in Figthe,spring represents the non-linear
buckling response of the cross-section. Sincephiag characteristics represent an integrated
effect of local buckling and imperfection effectsloe whole cross-section, the notionaof
macro materiahas been introduced. In the limit of compact cisssions, the spring
characteristic represent the uni-axial linear edasgterial stress-strain law. In the other limit,
with very slender cross-sections prone to diffetgpés of local buckling, the macro model
converge towards the lower bound method as propmgddthompsen, Walker and their co-
workers.

Material yielding is simply checked by evaluatihg tmaximum membrane stress in critical
locations bard corners)t the column mid-span length. The problem ofaset behaviour is
not treated in depth in this report since this nexgua more comprehensive approach. For
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columns with compact sections such a comprehemsitreerical model is documented in
Steen and Andreassen (1995-1) and Steen and ArsareéE995-11). This model handles the
combination of axial load and lateral pressureafonulti-span beam-column and the spread of
plasticity both in the cross-sections and alongéhgth is included.

2.2 General formulation

The Shanley model in Fig.1c is reproduced with na@®nitions of parameters in Fig.3. The
cross-sectional parameters N and M are the resataa force and moment, respectively,
acting at the mid-span of the column. P is theregidoad always acting in the centroid of
the column cross-section. The moment M is calcdlateout the cross-section centroid (X, Y,
Z co-ordinate system placed as illustrated in Figeditroid Y = 0, Z = 0). Note that a lowe
case co-ordinate X, y, z system is used later mp€n 4, with the y-axis laying in the plate
middle-plane, Fig.8 (Z = zg}. The rotatiorf of the rigid arm is due to the applied load P,
while 6y is the initial (stress free imperfection) rotation zero load.

The two global equilibrium equations of the Shamteydel (Fig.3) are according to the theory
of moderate rotations (sbh= 6) equal to

P-N =0

PL(8+8,)~M =0 (1)

Fig.3 General section Shanley model
Example illustration: plate with attached T prefil
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A set of scaled displacement parameters are defised

E=ug/L
K=0/L (2)
Ko =6,/L

Here wis the axial displacement of the centroid. For @mence d is scaled with the full
stiffener span L giving an axial average strairap@tere (non-dimensional end-shortening).
The rotation parametetsand6, are scaled similarly giving a measuréandk,) of the
curvature of the column at mid-span. A positivie defined as a shortening of the column and
a positive curvature gives compressive strains for material pointstedat Z > 0.

Moreover, L is the symbol for the length of the rigid linktbe Shanley model. The
magnitude ofL compared to the full continuous column length Hésived in Section 2.3.

The total cross-sectional forces N and M are ddfae

N = [[o,dxdz
A

M = [[0,Zdxdz ©

The term total used here refers to total forcespp®sed incremental forces, and the reference
is always to the undeformed panel described imgbh&angular co-ordinate system. Then

Eq.(3) symbolises the axial stress in an arbitraagerial point in the cross-section and it is
defined as positive in compression (in bucklingptlyepositive values are mostly used for
critical loads etc.). When applied to thin-walleztgons, the integrations in Eq.(3) will lead to
sufficiently accurate estimates of the force andn®@wot by lettingo, be the membrane stress

in each component plate (i.e. neglecting stresatuans across a plate thickness in each
component plate is a reasonable approximation).

By enforcing the Bernoulli-Euler hypothesis, thest € in an arbitrary point in the cross-
section is related to the axial straiand curvatur& of the centroidal reference plane as

E=e+7ZK (4)

Using Eq.(4) together with non-linear solutions tlee membrane stress field in a thin-walled
built up section (see Section 4.3.3), it can be shthat the membrane stress in a

component plate are general functions of the straimd curvature& of the centroid, i.e.
expressed mathematically as

0, =0,(&K) ®)

Eq.(5) can be interpreted as a general non-lineaemal law, which substituted into Eq.(3)
gives the two-dimensionahacro materiafunctions on total form as
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N = N(g,K)

M = M(g,K) ©)

Note that in Egs.(5)(6§, , N and M are used as symbols for the respectivetion as well

as for the value of the function (stress, force muminent) even though this is not a rigorous
mathematical notation.

Functions of this type can be derived for any columoss-sectional shape and both the
material law and the cross-sectional buckling behawan be included into these functions.
Details on how this can be done for a thin-wallsass-section with open profiles are given in
Chapter 4. At this stage it is sufficient to acddatt equations in form of Eq.(6) can be
derived. These functions descrégn@on-linear macro material mod&r the cross-sectional
behaviour, and it is immaterial at this stage whethe non-linearity is due to local cross-
sectional buckling or due to non-linear elasticenat behaviour.

By substituting Eq.(6) into Eq.(1), the cross-sawdil forces N and M are eliminated in the
equilibrium equations at the expense of the avestrgéne and curvatur&. For completeness
of notation the final form of the equilibrium eqigats are written as

P-N(e, K) =0
PLL - = 0
(K+Ky)—M(g,k) =0

Eq.(7) is the two overall equilibrium equationghe three unknowns B,andk describing
the non-linear geometrical response of an initiitgd Shanley column.

Since the two-dimensionabn-linear macro material lawlescribed by Eq.(6) is central in the
buckling model developed in this report, it is wsed discuss some of its main properties. By
expanding Eq.(6) in a Taylor serie around any kneguilibrium stateg the macro material
law takes the form

AN = K, A + K ,AK + 1/ 20)(K 1, Ae? + 2K, ASAK + K 1, AK?) + -

(8)
AM = K, A€ + K ,AK + (L1 20)(K 5, A& + 2K , ,AEAK + K ,,AK?) + -

Here the instantaneous spring stiffness coeffisi&qt Kix .. etc. are the derivatives of the
non-linear spring functions and they are defined as
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9°N
Klllz_z
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K11 =¥ 92N
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K., =—— —
K _oM 22 a2 Ky =K; ©)
21 —
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In order to study the postbuckling response of-thatled columns, and in particular the
interaction between local cross-sectional and dvestumn buckling, the first order
instantaneous stiffness coefficieritg are the most important. They are often called the

tangent stiffness coefficients in non-linear stawat terminology and they are generally load
(state ) dependent. Higher order stiffness coefficienesalso of interest, but have a less
familiar interpretation in structural analysis. Vhae not discussed in the present report.

For cold formed or welded thin-walled column pres initial local imperfections will always
be present. The presence of such unavoidablel imitperfections will, even for zero load,

give values for the instantaneous stiffness caefiis that deviate from the values that can be
achieved for a geometrically perfect column (linekastic stiffness properties). These initial

stiffness values, termelslijo, Kijko,..., in state b, will depend on the size and shape of the

local imperfections, which again are strongly redbto the material, fabrication and welding
procedure used.

The topic of geometrical imperfections and howtheagnitude and shape are distributed in
real thin-walled stiffened panels are not an isauais report. Here we assume that the
magnitude of the geometrical imperfections is knamput parameters, while the
imperfection shape is assumed to coincide witHdest critical eigenmodes. This is a well
established and normally conservative assumption.

Assuming that some initial geometrical imperfecsi@xist, the buckling displacements will
grow from the very onset of compressive loadinghwlie consequence that the spring
stiffness values gradually decrease. In partidii@rate of stiffness degradation will
accelerate around the minimum local elastic bugk{lacal eigenvalues) load.

The present chapter solves and discusses propefties equilibrium equations under
different assumptions with respect to the chargsttes of the spring functions, Eq.(6).
Section 2.3 solves the problem for compact crosseses (classical Euler strut) for which
Eq.(6) are linear spring functions. Section 2.4prs a general asymptotic postbuckling
solution valid for perfectly straight columns witlbhn-linear spring stiffness properties.
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Section 2.5 presents an analytical postbucklingtswi valid for perfect straight columns
with a bi-linear spring function. A more generahmerical solution strategy, applicable for
geometrically imperfect thin-walled columns witly@neral non-linear spring function, is
presented in Chapter 3.

2.3 Linear spring stiffness

The simplest case to analyse is the classicalafaseompact cross-section and pure linear
elastic material behaviour according to Hooke’s [@y = E€) . Applying the Bernoulli-Euler

assumption, Eq.(4), the stress in a material poithe cross-section is given as

G, = E[e+2«] (10)

Substituting Eq.(10) into Eq.(3) gives for the spriagces written on matrix form

{N}:{Knt Kutls} an
M K21 K22 K

In Eq.(11) the linear stiffness coefficientgkare defined as

KllL = EAT

K, =K, =0 (12a) = giving N=(EA e (12b)
L M = (EI,)K

K22 = EIT

In EqQ.(12) Ay is the total cross-sectional areaid the moment of inertia of the cross section
about the centroid z 3;and E is Young’s modulus. It is noted thabKis zero, which
naturally follows from our definition of the referee axis for moment calculation being the
centroid of the cross-section. Obviously Eq.(11theslinear version of Eq.(6).

Substituting Eq.(12) into the equilibrium equatipisg.(7), and solving for the displacement
parameters andk gives

P
(=—" Ky =—"—K, =K, (13a)
- Psh =P

£ = PI(EA,) (13b)

In Eq.(13a),P;, is the Shanley buckling load defined as

(14)
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In this report the length of the rigid link is defined as the length givitige same buckling
load for the Shanley model as for the classicapbiraupported continuous Euler column.
The classical Euler load:ks

TCE
PE = |_2 T (15)
It follows that the present Shanley column length i
[=1 (16)
Tl

Eq.(13a) represents the classical load-displaceswdution for an initially bent beam-
column. With reference to the textbook by Croll &ldlker (1972) this solution is called the
linearized equilibrium path even though it givesom-linear relation between load P and
displacemenk (8). In other parts of the literature Eq.(13a) i®redd to as a second order
linearized bending solution. The terRy, /(P, — 1PEQ.(13a) is generally termed

amplication factor in the literature. The solutisrused in many international codes as basis
for strength assessment of beam-columns as wéill asiffened plates and shell structures.
As mentioned previously in Section 2.1, applicatdiizq.(13a) in combination with a first
yield approach in an extreme fibre for ultimateaty assessment, is frequently referred to
as the Perry-Robertson approach.

2.4 Initial postbuckling analysis

In order to gain insight into the mechanics of tioear interactive buckling, and in particular
the interaction between local and overall bucklibgs instructive to start with a study of the
case of a column with perfect geometry. Perfectmadathis context no overall initial
deflection of the column axis and no local impetifats in the column cross-section. Koiter
(1945) was the first to develop a general theoryhe study of the initial postbuckling
behaviour of structures with reference to the mereometry. His theory can be classified as
an asymptotic postbuckling method and a readableduaction can be found in the textbook
written by Brush and Almroth (1975) and Dym(1974)Steen (1989) the Koiter
postbuckling parameters for a stiffened panel vaas/dd and compared with a more
comprehensive solution based on Marguerre’s (1p2&¢ theory. That model did, however,
only include the overall panel buckling mode, netiley interaction with local modes
altogether.

Setting the initial overall imperfection parametey equal to zero, the equilibrium equations
of the Shanley model, Eq.(7), simplify to

P-N(g, k) =0

— (a7
PLLK-M(g, k) =0
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Eq.(17) represents two equations in the three unkedP . andk. Assuming that the
postbuckling solution can be expanded around tt@ keritical load level Pwith k as a
continuously increasing parameter, we seek a fiation solution in the form

P=P(K) = P, + PAK + (I/ 21)P(AK)? +---

(18)

£ = g(K) =€, +EAK + (I/21)E (AK)? +---
Note that in the expansion Eq.(18), the curvatamrametek is used as the perturbation
parameter. A dot over a symbol indicates partialvdéve with respect to the curvature
parametek, and C as subscript indicates statatlwhich initial elastic cross-sectional
buckling starts for thin-walled sections. Withirettheory of perturbation methods, partial
derivatives with respect to some control paramiterek) are called path derivatives. It is
noted that in the asymptotic power expansion irf{I8], the symbol\k is used in order to
underline that the curvature parameter in gensrahiincremental property measured from
any known state. However, since the power expartsoa is measured from a fixed state,
corresponding to the perfect straight column digtthe incremental symbd could be
avoided for convenience of notation.

Substituting the assumed solution, Eq.(18), ineoefuilibrium equations, Eq.(17), and
subsequently carrying out the required differerdigtthe following set of incremental
equilibrium equations are found.

First order:
pu 0N, N
- ) oM oM (19)
PLLK +PLL = (——¢+—)
o€ 0K
Second order:
. 0N, ,0°N, 0°N .. 98°N,_ 0°N,
P=—=©&+ (¢4 K)E+—-¢&+ K
o€ oe 00K os 00K (20)
2 2 2 2
PLLK + 2PLL = oM ;c;+(a '\2"s+a M |‘<)e+a |\2/|é+a M K
oe o< 0€0K o< 0e0K

Higher order solutions can be derived using theesaracedure, but are not shown here as
they are of secondary interest.

The first order solution is of particular interestit for thin-walled sections controls the initial
phase of the non-linear coupled postbuckling respam the local and overall column mode.
Using the definitions for the macro material stfés coefficients, Eq.(9), and retaining only

the first order terms, the solution fBy¢ around the critical point) i.e. around
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K=0 (@)

can be found from Eq.(19) as

S — K11 Pc _
P—[—KZI (_PE (El;)-K,,)+ Klz} (22a)
.| 1 P B
S{Kn o (El) KZZ)} (22b)

Retaining only the first order term in Eq.(18) anserting the solution from Eq.(22), the final
load-curvature relation of the Shanley model, valithe close neighbourhood of the critical
load R, is summarised as

Ap{ﬁ(%(EIT)—KZZMKm}AK (23a)
11 R B
As—[K—Zl(P—E(EIT) Kzz)}AK (23b)

It is noted that thatfs the classical Euler load for a simply suppoxellimn as defined in
Eq.(15). The stiffness coefficients,,,K,, =K,,,K,, are evaluated at state For thin-

walled sections the stiffness coefficients areasentative for the integrated cross-sectional
behaviour described purely by local buckling modevrivations of these stiffness
coefficients belong to a separate non-linear pasiing analysis of thin-walled cross-section
and a solution for open stiffener profiles is preéed in Chapter 4.

The first order solution presented by Eq.(22), gisenon-zero coefficierf . According to

the Koiter theory this implies that the postbucgliesponse is asymmetric. The postbuckling
paramete® can take on both positive and negative valuesemtdipg on the relation

between the ratiodPe and cross-sectional stiffness parameters K

As a conclusion, and with reference to Koiter’stpaskling theory, the solution of the initial
postbuckling path, Eq.(22), has revealed that thgpling between local and overall buckling
mode leads to an initially asymmetric postbucklxgpaviour. In other words, as soon as the
cross-section of the column starts buckling in stwoal mode at the load-Poverall

buckling is triggered and the axial load in theucoh will have to increase or decrease
depending on the overall buckling direction. Thehaviour is in contrast to a column with a
compact cross-section for which a symmetric bugkbehaviour will take place at the
classical Euler loadg?1t can be mentioned that, within the theory ofd®@te rotations, the
classical compact Euler column has a symmetricrakepostbuckling equilibrium path, which
is close approximation up to quite large defleci¢slastica).
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It is also worth noting that a geometrical perfsaumn made of inelastic material will buckle
(bifurcate) with an initial load increase beyond tangent modulus load, independent on the
overall buckling direction. The reason for this viiast pointed out by Shanley (1947) and is
attributed to the irreversibility of inelastic metd response as opposed to an elastic material
response.

Another aspect of the initial postbuckling solutisnlluminated when the result is presented
in the load-shortening space. This gives possh#ynost interesting presentation of the
results in relation to a wider application. By ciolesing the column (stiffened panel) as an
integrated part of a larger structure, it will be in-plane load-shortening response (current
stiffness) the surrounding structure will sensaudload-shortening relations are vital for
understanding how load redistribute between greseents in a large structure.

By eliminatingAk between the two equations in Eq.(23) the increaidoad-shortening
relation is found as

AP =S, Ae (24)
where

S8 — K11+ K12K21
(PC/PE)(EIT)_KZZ

(25)

The S parameter is the overall in-plane extensionalr&fs parameter representing the total
effect of both local cross-sectional buckling andrall column buckling. Eq.(25) is discussed
in detail in Section 2.5 in connection with theidgifon of the reduced modulus factor.

It is also of interest to study how the internalmemt M at mid-span varies along the initial

postbuckling path. Retaining only the first ordepansion from Eq.(8), the incremental
moment is given as

AM =K A€ + K ,,AK (26)

By substituting Eq.(23b) into Eq.(26), the axiabdbning A¢ is eliminated and the final
incremental moment-curvature relation, valid altimg postbuckling path, is found as

AM = (Py/P.)(El;)AK 27)

Eq.(27) gives an expression for the internal monaetihg at the column mid-span, which

will counteract the external moment resulting fritma axial load P working on a continuously
increasing arm (lateral buckling displacement)c8iit is assumed here that YR always,

it follows that the maximum counteracting momentMl occur for a column design with

P. =P (28)
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That the maximum internal moment M is mobiliseddarase withP, = P implies the

highest degree of instability for such a casehinlanguage of Koiter’s postbuckling theory
this means the highest level of asymmetric postingkehaviour and the most severe
imperfection sensitivity. This is discussed furtireChapter 4.

With a non-zero first order postbuckling coeffidi@ecording to Koiter's asymptotic
postbuckling theory, we have identified an asymioétnperfection sensitive column. For
small overall initial imperfections (curvatukg), the limit buckling load R illustrated in
Fig.4, can be assessed using Koiter’s formulagsgeBudiansky and Hutchinson (1979)

FF))_M:]-_Z(_PKO)UZ (29)

C

Fig.4 below illustrates schematically how an asyimim@ostbuckling response for a
geometrically perfect column (full drawn line) eated to the response of the corresponding
geometrically imperfect column (dotted lines). Thaximum limit buckling load & will be
lower than the buckling load-Pand the degree of knock down due to geometrical
imperfections follows Koiter's asymptotic formulaaetly for very small imperfection levels.
In other words, the Koiter formula calculates dikgthe buckling capacity jfor a

geometrical imperfect column knowing the valuetf postbuckling parameté. (Instead

of P the symbol ais frequently used in the literature for the fiostler postbuckling
coefficient and afor the second order coefficient, see e.g. BrughAmroth (1975), Steen
(1989)).

PERFECT
IMPERFECT

Fig.4. Load-buckling deflection response for asymniméuckling



Page: 18
University of Oslo
Department of Mathematics, Mechanics division 99-1
Buckling of stiffened Plates using a Shanley modeparoach

2.5 Analytical postbuckling solution for geometrically perfect columns

It is of interest to derive a general analyticastpoickling solution, which is valid not only in
the initial postbuckling region as the Koiter thgdsut also in the advanced postbuckling
region. In order to derive such a solution somemagtions have to be made as discussed
briefly in the following.

The asymptotic postbuckling solution as presenigsiection 2.4, assumed the stiffness
coefficients K to be evaluated at the local critical bucklingdd# (state ¢). Moving along
the postbuckling path, branching off & Ehe values for the jKcoefficients would normally
change from the values at.Pn order to cope with this effect, involving antimuously
updating of the current stiffness coefficientsuanerical solution technique will be needed.
However, it has for a long time been recognisedtti@local stiffness coefficients for thin-
walled built up sections in many cases can be densd as having fixed values, valid well
into the advanced postbuckling region. Such fixestlpuckling characteristics of plate
elements are confirmed by the analysis present&hapter 4 and Chapter 5 in this report.
See e.g. Rhodes(1982) for a useful review of pa&ling solutions of plates.

By adopting the assumption of fixed postbucklinfreess coefficients K (with values as
evaluated at ), an analytical solution for the advanced posthogkregion is presented in
the following. The derivations are based on thdldgiwm equation for a geometrically
perfect Shanley column, Eq.(17), and by specif@rm-linear characteristic for the macro
model.

When assuming the first order stiffness coeffigag to be fixed and not varying along the
postbuckling path, the higher coefficientg Ketc. are zero. It then follows from Eq.(8) that
the incremental bi-linear spring law for the postding path is given as

AN = K A + K ,AK

K, =K 30
AM =K ,,Ae + K ,,Ak oA (30)

For the case of a geometrically perfect columplibfvs that at the point of local cross-
sectional buckling, the cross-sectional axial |dddand momenM . are

N. =P,

v =0 (31)

Using Eq.(30) and Eq.(31) the general non-lineangdaw, Eq.(6), takes the form

N(g,K) =P, +K € + K K (32)
M(g,K) = K€+ KK

Note that symbaol has been avoided in Eq.(32) for the incrementalrst and curvatur&
for convenience of notation. Substituting Eq.(32pithe equilibrium equation, Eq.(17), and
rearranging gives the analytical load-curvaturatreh
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P _KyEl
ﬂz PR K12 PE (33)
PR 1_&& K
K12 PE
In EQ.(33) R is thereduced modulubuckling loaddefined as
P = (K =272 (LT (34

11

As mentioned in Section 2.2 the present generalright®n of the Shanley spring model do
not explicitly consider the physical reason for stiéness coefficients K i.e. it can be either
due to a purely non-linear elastic material efteotlue to a non-linear geometrical effect.
However, for the solution Eq.(33) to be valid thedoefficients must be constants along the
postbuckling path. Since this is a typical feafimrdlocal postbuckling behaviour of thin-
walled sections, it is natural to have this typeesiponse as a reference when discussing the
solution, Eq.(33).

When analysing Eq.(33) it is useful to be awarthefphysical implication of the different
parameters. For a thin walled cross-section thecBefficient represents the axial stiffness
after local buckling, and it will always be a posgtnumber. The coefficient Krepresents
the bending stiffness about the centroid of théi@ecand it will also always be a positive
number. The coupling termiK(= Kz1) represent the shift in neutral axis due to larabs-
sectional buckling. It is negative if the crosstsm@l buckling involves a shift in neutral axis
along the positive z-axis and positive in the ojfeosase. This sign convention fogHs
accompanied with a positive value of the lateravature parameter when the column
buckles in the direction of the positive z-axis.

Another parameter entering the analytical postbagldolution in Eq.(33), is theeduced
modulusbuckling loadPr. Since the reduced modulus load for quite some hiasebeen
recognised as an important concept in the elaséecactive postbuckling theory, and since it
emerge in the analytical postbuckling solution asameter, some space are used in the
following to give a description of its main featare

The reduced modulus load in the elastic interadiivekling theory is defined as the buckling
load for which the coupled local and overall busglresponse will progress along a neutral
equilibrium path (see e.g. Walker (1975) or CrollaValker (1972)). This implies that there
is no incremental load increase (or drdp) along the postbuckling path. Mathematically this
is expressed as

AP =0 (35)
It is seen from Eq.(24) that Eq.(35) is the sameegsiering

S, =0 (36)

€
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Rearranging Eq.(36), using Eq.(25), gives the damdfor a neutral equilibrium path as

P. KK
—<(El;)=K,, -—%-*%& 37

P, (El;) 22 K., (37)

In Section 2.4 a general expression for the momentature relationship valid along any
postbuckling path was found in the form of Eq.(Z0bstituting Eq.(37) into Eq.(27) gives
the moment-curvature relationship valid along tbepted neutral equilibrium path as

AM = (K ,, —%)AK (38)

11

Comparing Eq.(38) and the corresponding momentature relationship for a compact
cross-section, Eq.(12b) it is natural to definelative bending stiffness parameter. In the
literature dealing with elastic interactive bucklithis parameter has been calilee reduced
modulus factarsymbolised here agsr. It follows from Eq.(38) and Eq.(12b) that it is
mathematically defined as

AM =ngg (El;)AK (39)
where per definition

KK
e = (Ko =22 2) (ELr) (40)

11

B as a subscript indicates bending and R for redluoedulus, respectively.

Substituting Eq.(40) into Eq.(34) gives the finahgact expression for the reduced modulus
load as

Pz = Ner (EIT)/(LE) (41)

Eq.(41) is similar to Eq.(14) describing the bucglioad of the Shanley column, but with the
reduced bending stiffness of the column insteati®full bending stiffness.

The properties of the analytical postbuckling soluteq.(33), with reference to Fig. 5 for a
schematic illustration, are briefly summarisedamvs

i) If Ki2< 0 and R > Pg, the postbuckling path is descending for positivevaturex
and it converges towards the reduced modulus |lqas Phe lower bound value. The
most descending postbuckling path is identifieddgr P= which indicates the most
severe imperfection sensitivity for coincident blirogg in the local and overall mode.
Conclusionunstable postbuckling response



Page: 21
University of Oslo
Department of Mathematics, Mechanics division 99-1
Buckling of stiffened Plates using a Shanley modeparoach

i) If Ki2< 0 and R< Pg, the postbuckling path is rising above the iniiatkling load
Pc, approaching gas the upper limit value. Conclusiatable postbuckling response
i) If Pc > P:= the column will buckle in the Euler mode first dodal buckling will be
initiated subsequently with P descending alongsgeondary postbuckling path.

UNSTABLE

NEUTRAL

STABLE

Fig.5. Load- curvature (rotation) curves for theogeetrically perfect Shanley model, schematically

As mentioned in Section 2.4 it is also importandigcuss the postbuckling response of the
coupled local and overall mode in a load-shortenisgalisation. For simplicity we use the
expression for the expanded postbuckling stifffiggaround R), Eq. (25). By introducing
the reduced modulus loag,R.e. substituting Eq.(34) into Eq.(25), the axgaffness
parameter is rewritten as

S = Pc —Fx

€

(42)

i(F)(: _PE K22
Ky El;

)

It is remarked that the axial stiffness as exprésseEq.(42) includes both the local and
overall buckling modes in interaction. Eq.(42) raiganteresting features, which are
illustrated schematically in Fig. 6.

As seen from Eq.(42) the Boefficient may take both positive and negativiei@a. The
actual value depends on the ratios between tHaeg# coefficients i the local buckling
load R and the overall Euler buckling load.P

A positive value for Slarger than full linear stiffness value EMAdicates snap back
buckling, i.e. the shortenirgghas to decrease in order to follow the equilibrjpeth beyond
the initial buckling load P. If the following two conditions are satisfiedg.iif
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I:)E
K EA 3)

P, =
LN )
P El,” Ky,

the maximum degree of snap back, Bg= EA; occurs.

A positive value for Sless than EAindicates a stable postbuckling response witkiagi
equilibrium path beyondd Moreover a value for;&qual to zero means neutral stability.
From Eq.(42) it is seen as that this will be theech R = Pr. A negative value for:S
represents an unstable postbuckling behaviouravitscending load P accompanied with an
increase in shortenirg

UNSTABLE

STABLE

Fig.6 Load-shortening curves for the geometricalyfect Shanley model, schematically

A major feature of the present analytical postbunckEolution is that it approaches the
reduced modulus loadkih the advanced postbuckling region. Thus by usinegreduced
modulus load as the lower limit for the bucklingesigth, unstable postbuckling behaviour
and imperfection sensitivity is eliminated. Howeuéis will be a very conservative approach
and alternative methods have to be preferred. @emative will be to use a comprehensive
numerical procedure tracing the full non-lineariglguum path as described in Chapter 3.

2.6 Summary and discussion

In this chapter the mechanics involved in the rinedr elastic interactive buckling of
columns has been explored from an overall poivi@#. A two-dimensional macro model
has been introduced for the purpose of descrilhiagritegrated effect of the non-linear cross-
sectional response.
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A Shanley model has been used for coupling the onaodel to the overall buckling
response of the column. Closed form solutionstierdoupled postbuckling response has
been derived using a perturbation expansion appraecording to Koiter's method. Closed
formed solution for the advanced postbuckling eguim path has been found valid under
the condition of constant postbuckling stiffnessftioients. The advanced postbuckling
solution verifies that the reduced modulus loacgia conservative assessment of the
buckling load by completely eliminating the unstalviteraction between local and overall
buckling.

For thin-walled sections the macro material model compact way of formulating the local
cross-sectional buckling response, including the-lineear geometrical effect and linear
elastic material law (Hooke’s law). This is expkahin more depth in Chapter 3 for macro
material models for thin-walled cross-sections.

The description in this chapter is rather genendl @es not specifically address the problem
of buckling of thin-walled cross-sections. Howevagst of the assumptions implemented
and special solutions presented are typical fortalled sections.

3. THE SHANLEY MODEL FOR THIN-WALLED CROSS SECTIONS

3.1 General section macro material formulation

In Chapter 2 the two-dimensiormalacro modeivas assumed to have the general closed form
as given by Eq.(6). This form does not reveal thgio for the non-linearity, i.e. whether it is
due to a material or geometrical effect. In thesprg chapter, dealing with local buckling of
thin-walled built up sections, the non-linearitylivaie linked exclusively to the local
geometrical effect. This is done mathematicallyridyoducing the K-dimensional
displacement vector,cdescribing all relevant buckling modes in thessrsection. Thenacro
modelcan then be written as functions of the displageroentrol parameter andk in

addition to the g

For any component plate in the cross-section tta membrane stress in the x-direction can
generally be written on the form

0, =0,(&K,q) i=1,2,...K (44)

It will be shown in Chapter 4 that functions in floem of Eq.(44) can be written as the sum
of a linear part and a non-linear part. Accordimglassical buckling theory these two parts
are the direct applied stresses (prebuckling soiyitand secondary stresses (postbuckling
solution) due to the buckling displacmenisrgspectively.

By substituting Eq.(44) into Eq.(3) and carrying the integrations, the total cross-sectional
loads can be written in matrix notation as
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{N}:{KML KMLM}}+[9NMJ} i=1,2,...K (45)
M] K, Ky k] [gw(@)

In EQ.(45) the first term represents the lineartgbuation and the second part represents the
non-linear geometrical contribution through theduons g, (q,),9,, (0, )- The latter

functions can be derived analytically for a simple-degree of freedom model, as shown in
Chapter 4.

For compactness of notation, Eq.(45) can be writen

N =N(e,k,q;) i=12,... K (46)
M = M(E,K,qi)

In the language of perturbation methods a displacgmrontrol case in space
(g, K) requires a solution in the form

q, =9, (g,K) i=1,2,.....K (47)
of the K local equilibrium equations
f.(e,,0,)=0 i=1,2,...K (48)

Note that the gs used as symbols for the functions as well ashi® displacement
parameters, despite the lack of mathematical tigernotation represents. It is also
mentioned that it is not always possible to ach&wugle valued solutions in the form of
Eq.(47), and it may be necessary to resort to thiemeneral multiple dimensional arc length
approach, Steen(1998). This is not discussed funée since for the model in Chapter 4
solutions in the form of Eq.(47) are available.

By substituting the solution Eq.(47) into Eq.(4%g q parameters are eliminated, and the
macro material relations take the general form

N - “le (e,
{ }: K Ky { HgN(q.( ))} 12K (49)
M K21 K22 K gM (qi(E1K))
Eq.(49) is from an overall point of the view themngaas the macro model, Eq.(6), i.e. the
displacement parametersage hidden. Thus it could equally represent alim@ar elastic

material, say of rubber, or represent a deformatieory of plasticity. This is the motivation
for calling this format anacro materiaformulation.

It follows from Eq.(9) and Eq.(49) that the firster stiffness coefficients are given as
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K, = KHL +ag_N%
0q, o€

0g, 0q
K12:K12L + agqN%
3 ' 3 i=1,2,....K (50)
K21:K21L+ Iu T
0q, 0¢

Ko = KzzL +agM %
dg; oK

Knowing the analytical expressions for thg (g, anyg,, (g;) functions, the partial
derivativesoq, /dq, , dq,, / 0q, are directly available (see Chapter4).

The unit directional path derivativel), / de,dq, / 9k can be found by solving the

corresponding equilibrium equations. Substitutimg(&7) into Eq. (48) and taking the partial
derivatives with respect tbandk, gives two set of equations for finding the unredtional
path derivatives, i.e. we have

dq; ot Oe
of, %9 , of, _

dq; Ok 0K

o, 0a, of, _

i,j=1,2,...K (51)

The purpose of the present derivation was to detraieghat the perturbation procedure
gives a method for explicit assessment of the atimecro material coefficients; K Kz,

K22. In a wider range of application this feature barutilised for stiffness assessment of
buckled panels subjected to combined loads, whielnacan be utilised in FE models for
ship hull redundancy assessment. This explicit@gogr is used in Chapter 4 and Chapter 5
for open thin-walled cross-section.

In the next section, the macro model in the fornk@f(46) is used together with the global
equilibrium equations, Eq.(7), to formulate theenaictive global and local cross-sectional
buckling problem of an axially loaded column.

3.2 Numerical solution method - Imperfect geometry

For the case of a column with imperfect geometiy o the form of axial out-of-

straightness of the column axis (a hon-zefloand out-of-flatness of the component plates in
the cross-section (a non-zero initial displacenvestor @), it is not possible to derive closed
form equilibrium solutions. Thus resort to a nuroakischeme is necessary. For this purpose,
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the perturbation procedure used in an incremenkarse, as described in detail by Steen
(1998), have been adopted.

According to the author’s knowledge, the pertudratnethod used in an incremental scheme
for solving structural stability problems is a tlunexplored field. However, since the
perturbation method is a novel and accepted approastability theory, it is natural to

extend its application for tracing non-linear cantus equilibrium paths. The present
numerical scheme applies such a strategy by stg@bimg the equilibrium path from zero
loads in small increments. A brief descriptiontod method is given in the following while
Chapter 5 presents two specific examples.

The basis for the numerical model is the analytcatro material model in the form of
Eq.(46). Assuming that such a set of algebraic tougmexists, we substitute Eq.(46) into the
equilibrium equations, Eq.(7). This gives two noreér algebraic equilibrium equations in
the 3 + K unknowns (K, €, g) as follows

P=N(e,K,Q;)

_ (52)

PLL (K +K,) =M(g,K,q;)
In addition to these global equilibrium equationis iassumed that there exist K local
equilibrium equations. For the sake of completetiesse K local equilibrium equations,
Eq.(48), are repeated as

f.(6,k,)=0 (i=12,..K) (53)

In total this gives 3 + K unknowns and 2 + K eqos$. In a perturbation solution strategy it
is necessary to choose a control parameter witpribigerty of being continuously increasing
along the equilibrium path. For the present sihggel (axial load) column buckling problem,
the curvature parametemwill for most cases be such a parameter. Howeaseshown by the
analytical solution in Section 2.5, snap back peoid may exist for special geometrical
proportions, with subsequent decrease oktparameter. Thus it generally cannot be
assumed that is a continuously increasing parameter and theergeneralised concept of
the arc length parameter, symbolisechbys a more proper choice. This is more thoroughly
discussed in Steen(1998) and applied in the foligwi

The arc length perturbation parametéas defined as
r] - r]s = qi (q| _qis) +é(€ _Es) + K(K - Ks) + P(P_ Ps) (54)

Egs.(52),(53) and Eq.(54) constitutes the necesefyequations in the 3+K unknowns and
the perturbation solution can now be written as
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P=P, +P(N-n,)+ W2)P(N-n,)" +-
g=e,+6(0-N,)+W2)EMN-N,)7 +

— . _ . _ 2 .

K=K, +R0=N,) + Q20RO -n,)° + 55)
q, = qu +q1(r] _r]s) + (1/2!)Q1(r] _ns)z +
0, =0, +4,(N—N) + @W2)G,(n-n.)*+--

Thus by knowing one equilibrium statgahd the associated first, second (and possiblyehnig
order) path derivatives, the next statg tan be found directly by stepping along the
equilibrium path using small values of the incremaéperturbation parametém =n -n.. It

is noted that the present arc length concept regire solution space (®,€, g) to be scaled
such that all parameters are without dimensionssrAall s as super or subscript indicates a
known value in state.l

The selected size of the incremental perturbatamameterAn and the number of terms in the
power expansion are not a critical issue in thg@re since very simple models with few
degrees of freedoms are used. Naturally, for |gpgailems with many degrees of freedom,
the problem of computer time and solution efficiemgll be an important issue, but as said
this topic is not discussed in this report.

3.3 Summary

This chapter presented the concept of a local maeterial formulation for thin-walled built
up sections, introducing the buckling displacemettor gto describe all relevant local
buckling modes in a cross-section. Within the pédtion methodology, an explicit form for
the current macro stiffness coefficients is devetbpMoreover, a brief description of an
incremental perturbation scheme for tracing noedmcontinuous equilibrium paths for
geometrically imperfect columns is given. The @mgth along the equilibrium path is chosen
as the independent perturbation (control) paramatehoice which enables the procedure to
pass limit points and snap-back problems as ititistr by examples in Chapter 5.

4. MACRO MODEL FOR OPEN STIFFENER PROFILES

4.1 General

As introduced in Section 2.1, the integrated noedr geometrical response of a column
cross-section can be treated as a pseudo matanaliation, here calledrmacro material
model In the linear terminology, the macro material cgpt is well established and
synonymous with a general section shell elementhiich the stiffness properties in all
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directions can be specified. This is a type of @etformulation that is provided in several
modern general purpose finite element codes, ® ABAQUS(1996).

For describing the non-linear response, the metiiaacluding the local cross-sectional
buckling response as a pseudo material, was finsiduced by Smith (1975). His method

was based on isolation and pre-calculation of dleallplate buckling response, generating the
in-plane average stress-strain behaviour of thie plange. The local buckling amplitudes
(present gvector) was not seen in the procedure. Basedendltulated average stress-strain
behaviour of the attached plate flange, a genesaltbih-Raphson type of solution technique
was used for calculating the interactive columnkting response. This method constituted a
very interesting approach for simplified bucklinggdysis of panels with solid stiffeners and
thin plating, but lacked the generality neededdiealing other types of local stiffener failure
modes.

The present concept of a macro material model emakdypes of cross-sectional buckling
modes into the same pseudo spring law formulasran example of a specific macro
model, a simplified formulation for open stifferaofiles attached to continuous plates,
typical for panel designs in ship and offshoredtites has been developed in this chapter.
With respect to relevant buckling modes this mehastorsional stiffener buckling as well as
stiffener web buckling, interacting with local buicly of the continuous plate, are considered.

As a general introduction to the presergcro modellingechnique, the six-dimensional
formulation of a stiffened panel as illustratedrig.7, is briefly discussed. Later the two-
dimensionamacroformulation sufficient for coping with uni-axiallpaded panels is dealt
with in more detail.

Stiffened panels are built up from thin-wallegimponent platesith certain boundary
conditions along their junction lines. Integratiminthe membrane stresses across a panel unit
section according to a six-dimensional generabsatif Eq.(3), will give for the non-linear
macro material lawrelations in the form

N, =N,(g;,€,,85,K;, K, Ky)
N, =N,(,€,,85,Ky, K5, Ky)
Nj = Ny(€,€,,85, K, Ky, Ky) (56)
M, =M, (€;,€,,€5,K;, Ky, K3)
M, =M,(&;,€,,€5,K;, Ky, K3)

M, =M,(g,,€,,85,K;, Ky, Ky)

In this six-dimensional form, it is most conveniémiuse subscript 1 for the force in x
direction, subscript 2 for a force in thgdirection and subscript 3 for the shear forcéhan t
X1-X2 plane. The same notation applies for the bendiognemts acting out-of-plane and for
the corresponding average reference strains avdtoues. By expanding this six-
dimensionaimacro material lawas done principally for the two-dimensional sgrin Eq.
(8), and retaining only the first order terms, theremental macro material lasan be
written as
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I ANl ] Cll C12 Cl3 Qll Q12 Q13 T A“‘;:l ]
AN 2 C21 C22 C23 Q21 Q22 Q23 ASZ
AN 3 — C31 C32 C33 Q31 Q32 Q33 As3 (57)

AM 1 Qll Q21 Q3l Dll D12 Dl3 AKl

AM 2 Q12 Q22 Q32 D21 D22 D23 AKZ

AM 3 Ql3 Q23 Q33 D31 D32 D33 AK3

In Eq.(57) the ¢ coefficients symbolise the in-plane stiffness @migs, the [ coefficients
symbolise the out-of plane bending stiffness pribgeand the coefficients symbolise the
coupling between in-plane and out-of -plane actidre latter coupling is typical for
eccentrically stiffened panels, Fig.7, which repréghe usual design in ship and offshore
structures.

It is noted that the twisting moment per unit lénfyir an orthotropic panel unit will be
different in the two orthogonal directions, i.eg’Né different from My”, Fig.7. In the
stiffness relation, Eq.(57), the average sugeNI M3+ M3"”)/2 is given. Due to the strict
matrix convention for stiffness coefficients useute) the twisting coefficient4ais twice of
what is often seen in the literature. (In Timosheakd Woinowsky-Krieger (1959),
symbolise the twisting coefficient, i.eg= 2Dyy. In Smith(1990) [gs symbolise the twisting
coefficient, i.e. @s= 2Dse. In the finite element code ABAQUS (1996)4£F°YS symbolise
the twisting coefficient, i.e. R= 2Ds3 >V

In the present work, the standard text book straasures are used, see e.g. Brush and
Almroth (1975). Thus it should be noted that theaststraires in Eq.(57) is twice the
classical shear strain (i.& = 21, wheregs; is the classical strain tensor component). The
curvature measures are according to the classf@littonsk, = - W11, K2= - W22, K3= - W12
where w symbolise the plate deflection normal ®réference surface and a subscript 1
represent partial differentiation with respect teazdinate x etc. ( In ABAQUS(1996) the

engineering strain measurements are used, i.a@I(Y2K15 o 2> which explains that R
is 2 times RF'PAQYS),
N
< L J=—Ns
«&éo — P
sN, N,
N3
Ny x N3
1 —ii
3
. M,
M M -
; Qy f{Mz @_M3
( My
P,

UNIT WIDTH

Fig. 7 Six-dimensional macro model for stiffenadeis
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The six-dimensional macro material model is nospad further in this report since a two-
dimensional representation is sufficient for thedgtof elastic overall buckling of a uni-
axially loaded column.

The rest of this chapter is exclusively devotethtodevelopment of a two-dimensional
macro material lawfor an open thin-walled profile attached to contins thin plating. The
open stiffener profile is attached to the platinthva regular spacing s and the geometrical
layout is as illustrated in Fig.8.

z, XST X, X1
b 7
| f /
| /
-~ - I
PR S Ve | Y |
guisulyniynl Al I el
[ RN || I
H /// tw H l/ L
|1 “|h [/
1% V/ 11/
:::::_'ué::: f 114 ::::J;v::_::
IR ) P

Fig.8 Geometry of stiffened panel with open Testiér profile

The two-dimensionahacro modehssumes that the continuous plating is free tordein
the % direction due loading in the xirection. Likewise the stiffener web plate isefrt®
expand in the xdirection when compressed in thedirection. The stiffener flange is
considered to be a beam element. These assumptiovide for a pure uni-axial nominal
stress condition for all component plates in thegha

For convenience of notation the subscript 1 foratkial load and moment respectively (and
strainse; andk3), is not needed for the present two-dimensionalblem and is consequently
not used in the rest of this chapter.

In Chapter 2, Eq.(9), the first order stiffnessfornts were symbolised as;jKThis has

been done to avoid confusion with the more gersexadlimensional description. In particular
Ci1is not equal to kK, D11 is not equal to k&, etc. This follows from the assumption of free
transverse displacements of the continuous platitige %-direction and the location of the
reference plane. For the six-dimensional modeillthve most convenient to use the
continuous plating as the reference plane. In thegnt two-dimensional model it is most
convenient to use the centroid of the cross-secsioice this gives decoupled bending and
membrane behaviour in the linear elastic rangeKkg= 0 if buckling is excluded.
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For the sake of brevity, Marguerre’s non-lineatglieory is summarised in the following
section. This theory has been used for developiagwo-dimensional macro model. Both the
continuous plating and the web stiffener plate Haaen considered as individual component
plates using this thin-walled plate theory, while stiffener flange has been treated as a
beam.

4.2 Marguerre’s non-linear plate theory

Marguerre (1938) developed a shallow non-lineateptiacory, accounting for out-of-flatness
from perfect form. His theory has been extensiwusigd in the literature for the study of plate
buckling problems. The theory belongs to the categbnon-linear small strain
approximation and is valid for moderately largelegtions, see Brush and Almroth (1975).
For geometrically perfect plates it resembles thesical von Karman plate theory, see
Washizu (1975) for a full account of the theorythis section standard tensor notation is
used when found convenient.

For illustration, Marguerre’s basic equations amasnarised with reference to a single plate
with geometry as shown in Fig.9.

S

X2

Fig.9. Component plate as part of a stiffened panel

Marguerre’s plate theory applies the classicalldgment hypothesis of Love-Kirchhoff, i.e.
the displacementél,,w) of any point outside the reference plane is rdl&ehe

displacementgu,,w df the reference plane as

U, =U, —X;W

a

o a a,B=1,2 (58)
WwW=wW

A bar over the parameter signifies evaluation gtraaterial point in the plate. A Greek letter
followed by a comma indicates partial derivativéhaiespect to the corresponding
rectangular x co-ordinate. Parameters without a bar signify @éai@dn at the reference
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surface, which is taken to be the plate’s middénpl Theu, symbolise the in-plane
displacement in thex, direction, while w symbolise the displacementmal to the plate
plane, i.e. in thex; direction.

From the Love-Kirchhoff thin-shell approximationidallows that
€ = €43 ~X3Kgg a,B=1.2 (59)
The plate middle plane curvatukg, is defined as

Kag =W gp a,pB=1,2 (60)

a

The membrane strain tensey, of the middle plate plane are according to Margtlsmplate
theory defined as

1
€qp :E(“u,s U F W W +WioW +WVGWYB) a,pB=12 (61)

a

The wy is the stress free initial out-of-flatness of théerence surface ang and u are the in-
plane displacement in the and % direction respectively due to applied loading.

Marguerre’s compatibility equation is given as
O%F = El_(W + Wo)zlz —(WHwWg) ;,(WHWg) 5, = (W%uz ~WonW 0,22)J (62)

where the F is Airy’s stress function defined as

0, = F,zz
0, =Fy, (63)
O, = _F;Lz

andoii, 02, 012 are the membrane stresses in the plate accoistgridard tensor notation.

In the following sections this non-linear platedheis used for formulating the local buckling
and postbuckling problem of stiffened panels wipeo stiffener profiles.
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4.3 Local buckling of an open profile cross-section
4.3.1 General

The present two-dimensionadacro modeis developed for a stiffened panel with geometry
as shown in Fig.8. Note that, the rectangular Gatesystem (X, y, z) is used instead af (x
X2, X3) in the present two-dimensional formulation.

The cross-section is assumed to buckle into twierdiht local modes as classified in Section
4.3.2. This implies that both the continuous platmd stiffener web plate are allowed to
buckle locally, while the stiffener flange may ttvésd bend without changing cross-sectional
shape.

The most important assumption in the present ¢leason of local buckling modes is that
the junction line between the continuous plating stiffener web plate are constrained to be
in the plate plane (x,y). The background for tlesuanption needs some comments.

In the present model the stiffener web plate issm®red to be a component plate with no
constraint in z-direction, Fig.10. This is a nat@ssumption as the stiffener profile is only
subjected to a direct force in the longitudinalisedtion and is free to expand and contract in
the z-direction. Though, second order membransesgtgemay develop in all directions due to
local buckling displacements out of the (x, z) glatHowever, since the stiffener web plate is
only supported by a stiffener flange (for T, L dndb profiles) on the free edge, and a thin
continuous plating on the other side, it is reabtm#o eliminate all second order membrane
stresses, except in the x-direction. This assumpsgi@alled a lower bound approach for plate
buckling strength assessment and has been used/érakauthors, see e.g. Rhodes (1982).

The continuous plating in the (x,y) plane can leatied in more general terms with respect to
the in-plane boundary conditions. For exampleéfpanel is an integrated element in a deck
field in a ship structure, it may be most realistiprescribe straight edges free to move in-
plane in the transverse direction. Such boundangitions allow for full utilisation of second
order tension and compression fields, which mustarsged by neighbouring platefields. This
type of boundary conditions is much used in therditure and is adopted for instance in Steen
(1989). However, in the present model a simpleoSenconstrained in-plane boundary
conditions is used. By using this more conservatnge condition for the longitudinal plate
edges, lower elastic postbuckling stiffness inltoal modes is available, see Rhodes (1982).
However, since the purpose of the present modelstudy the interactive buckling between
overall and local buckling modes, such differericas-plane boundary conditions is not an
issue here. Thus, both the stiffener web platetb@aontinuous plating have been considered
as plate elements with no ability to transmit secorder transverse or shear membrane
stresses. This simplifies the construction of tbeeptial energy function, which have been
used as the basis for the derivation of the logallérium equations.
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STRAIGHT

Fig.10. Local buckling modes and load system aatim@ stiffened panel unit, schematically.

In Section 4.3.2 two local buckling modes typiaal dpen profiles are described. Section
4.3.3 apply these modes as input to the Marguecmigpatibility equations, which solved
gives the second order membrane stress distrilsutarthe continuous plating and stiffener
web plate. These membrane stress distributionthareused in Section 4.3.4 for deriving the
final form of themacro material modelSection 4.3.5 presents a potential energy foriiaula
giving the non-linear equilibrium equations for tre@ss-sectional response. Finally, Section
4.3.6 derives some closed form equilibrium solugigalid for geometrical perfect cross-
sections.

4.3.2 Buckling modes

Two different local buckling modes for the colummoss-section have been considered. They
are given the notation; @nd g respectively and they have the following charasties

1) gi-mode: Sideways/torsional buckling of stiffeneriwétssociated local buckling of
plate. Fig.11a.

2) p-mode: Local buckling of stiffener web with assaethlocal buckling of plate.
Fig.11b
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q; - mode: Torsional stiffener / local plate
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Fig.11a. Torsional stiffener/plate buckling mode

A—-A
Fig. 11b. Stiffener web/plate buckling mode

The stiffener lateral deflection function gperpendicular to x-z-plane) is assumed to take th
form

zZ . 1Tq . Tp . T
w_=t —Ssin—Xx + SIn— XSIin—z 64
o =ty (@ SIN- X+ 0y sin-E xsin-_ 2) (64)

The plate lateral deflection functiorn,18 assumed to take the form

q

. L
w, =t,(q,, sin 1 P

X sinﬂy +0,, Sin— xsin2 y) (65)
S L S
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The initial imperfection shapes are assumed tahled same form as the buckling modes i.e.
they are defined as

Stiffener:

W :tw(qlosﬁsin%x+q20s sin? xsin%z) (66)
Plate:

W =1, (Ay0p sinﬂTq X singy + 0500 sinﬂTp xsingy) (67)

The deflection amplitudessfgos are made dimensionless with respect to the séffereb
thickness,}. The deflection amplitudes,qdop, are made dimensionless with respect to the
plate thickness,t The height H represents the mean stiffener heigtL is the stiffener
span, see notation list.

The assumed buckling modes in Eq. (64) to Eqg. if@p)y that the stiffener torsional and web
buckling modes are associated with different wawalvers, p and q in the longitudinal
direction. It follows that the plate displacemeattprns are, per definition, constrained to
follow the stiffener displacement patterns. The ggaumbers p and q are found by
minimising eigenvalues of the geometrically perfactss-section (Appendix A5). They are
kept fixed in the non-linear analysis, implyingtth@cal mode snapping is not dealt with.
Also, as mentioned previously, the geometrical irfgaion pattern is assumed to coincide
with the minimum eigenmodes. This follows from #ssumed shapes, Eq.(73) and Eq.(74).

The constraint of having the same wave numbersffareer and plate, together with the
assumption of no relative rotation between thesmehts along their junction lines, gives a
reduction of the local degrees of freedom from fimutwo. Mathematically the constraint
condition of no relative rotation takes the form

W, o = Wp’y‘y=0 (68)
and the relations between theand g, coefficients are derived as
g =St
Yot HT "
(69)
[ tW s
A, = Iﬁst

In the subsequent equations the two independepiadament parametersand g have been
given the following meaning

4; =05 Q10 = Oaos

_ _ (70)
0, =0x Q0 = g0
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Substituting these definitions and constraints Edo (64) and Eq.(65) gives the final
expressions for the local buckling modes as

Stiffener:

w, =t (ql ﬂLq X+0, sm% xsm%z) (71)
Plate:

W, (t—%—qlsln?x sin— y +tt——q2 sm% Xsin— y) (72)

p

For the initial stress free initial imperfectiof®tcorresponding assumptions leads to

Stiffener:
=t (qm T_q X + 0y smnTp xsm&z) (73)
Plate:
W = (tW %lqmsln%x sin— y +tt__q2° sin T) xsingy) (74)

p

The present assumptions for the local buckling re@de very simplified, but for a large
range of parameter values, typical for stiffenestgs used in ships and offshore structures,
they will give reasonable strength estimates. Tdlsg have the benefit of providing some
closed form postbuckling solutions as discussedhapter 5.

4.3.3 Membrane compatibility conditions

As mentioned previously, the solution of Marguesredbmpatibility equation will give

explicit expressions for the membrane stressesongonent plate. According to standard
non-linear buckling theory, the membrane stressasplate have two contributions. The first
contribution is the direct applied stresses whikegecond contribution is a periodic stress
field due to plate buckling. Naturally the secomder stresses integrated over the plate gives
no contribution to the applied load, but they \ailld to the direct stresses giving higher
stresses in certain locations, i.e. typically altmg supported edges, intersections betweeen
component plates etc. Locations with accumulatexsseés are called hard corners positions.
This latter concept is not pursued further in teigort since it is most interesting in
connection with inelastic material response (retti®n 2.1).
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In the present model the expressions for the memelstresses in the continuous plating and
in the stiffener web plate, respectively are foasdwo independent solutions of Marguerre’s
compatibility equation. The two separate compatipbéquations are given as

Plating:

D4F: EI.(WD +Wp0),2Xy _(Wp +Wp0),xx (Wp +Wp0)vyy _(WIZJO,XY _WpO,xprO,yy)J (75)

Stiffener web plate:

iO,xz -W sO,xxW sO,zz)] (76)

D4F = EI.(WS + WsO),2x2 - (Ws + WsO),xx (Ws + WsO) zz - (W
To find solutions to these compatibility equatiamsather straight forward, but involves some
tedious algebra, of which are not given here. Tloegqxlure is to substitute the derivatives of
the displacement functions in Eq.(71) to Eq.(749 e corresponding Eg. (75) and Eq.(76).
Solving for Airy's stress function F and then usiihg definitions for the membrane stresses,
Eq.(63), gives the analytical membrane stress sgpes.

The consequence of formulating the membrane cobifigtifor the plating and stiffener web
plate as two independent problems is that an agsomgf a frictionless membrane
connection is implicitly used. Said differentlyeteecond order membrane stress and strain
field in the plating and stiffener web plate iswased to live their own lives with no transmit
of second order shear stresses along the junatierfweld). This lack of full membrane
strain compatibility along the junction line sinfs the model considerably and will give
relaxed and conservative lower bound strength #fidess values.

For the continuous plating the membrane stresshision is found to be

0, = E[e - z.K]
—<§t§{(Rl)2[%j @ +2q1qm)+(R2){?j @ +2q2q20)}<1—cosz—"y)
S

(@+pmL)@y* @-pr om0

(@-pmw/L)?+@n/9?)? L s

(q-p1/L)*(17s)" COS(q+p)T[xc052—ny)
(@+p)/L)* + (2m/9)*)* S

- Etg (9,0, + 9,9, +9,0:0)

+ Etﬁ (9,9, + 9,0, +0d,0;0)

For the stiffener web plate the membrane stresshiision is found to be
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0, =Efe+ (z-2c)]

E 2 zY

- (Z(%} tfv (Qf + ZQ1Q10)(ﬁj (78)
E 2 21T

+Z(?j tfv (qg + 2q2q20)(1_ COSF Z))

As discussed previously the transverse and sheabna@e stresses are neglected in the
analysis.

In compact form these membrane stress distributansoe given the notation of Eq.(44), i.e.
they can be written as general stress functions

o, =0, k,q,) continuous plating, i = 1,2 (79)

web

al
I

o, (5K,q) stiffener web plate, i =1,2 (80)

X

Within the present approximations, it is seen fieg(78) that the membrane stress in the
stiffener web plate is quadratic ip gnd . Moreover, it has no x dependence. It is also
observed that there is no coupling terjg.q

For the plate, Eq.(77), the situation is more camph that the membrane stress pattern
contains a coupling termyqp, which has a periodic x dependence. When thessises
integrated over the plate to find the total lod, ¢oupling term vanishes and gives no
contribution to the total load.

4.3.4 Macro material formulation for open sections

When the expressions for membrane stress patteracim component plate is found, as in
Section 4.3.3, it is straight forward to find tlesulting axial force N and bending moment M.
Substituting the membrane stress pattern, Eq.(¥d)Ea.(78) into the definitions for the
cross-sectional forces of N and M, Eq.(3), anmdycaut the integrations, the following
functions emerge

N =K, "€+ B, (07 +20,,0,) + B, (a5 +20,0,)

(81)
M =K, K + B, (07 + 20,00:) + B, (93 + 20,40,)

Eq.(81) is the final form of the present two-dimenal macro material modgN, M)
described by two-degrees of freedopragd g for the local cross-sectional buckling modes.
In matrix notation Eq.(81) can be written as

{N} :|:K11L OL}[E}+{B“ BlZ:||:q122+2qlqu:| (82)
M 0 K, |IK B, By ]0,” +2q,q,
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The Ki1- and K- are the linear stiffness coefficients defined q(E2a). The By, By, Ba:
and B» are geometrical coefficients given in Appendix 6.

By using the definitions for the current stiffnesefficients, Eq.(50), and Eq.(81), the final
expressions for the first order stiffness coeffitseare found as

aq aq
Ky = KML +2B,,(q, + qlo)a_al +2B,,(q, + q20)6_82

0 0
Ky = Kyp" + 2By, (0 + Uyo) T+ 2B, (0 + Ge) 2
0K 0K (83)
_ L 2 aql 2 an
K21 - K21 + BZl(ql +q10)¥+ Bzz (qz +qzo)g

aq dq
Ko = K11L +2B,, (0, +CI10)0_K1+ 2B, (a, +Q2o)a_K2

In a numerical perturbation procedure, evaluatiothe current I coefficients will follow
the scheme as presented in Section. 3.1.

In Chapter 5 closed form solutions, based on E§jf@3he case of geometrical perfect cross-
sections are derived for some specific examplesantparisons are made with solutions
found in the literature.

The next section describes the derivations of thalierium equations for the local cross-
sectional buckling problem in the gnd g mode.

4.3.5 Equilibrium formulation

The purpose of this section is to formulate a $&iaal equilibrium equations in the form as
given by Eq.(53). There are several ways to desiuah equations, but the principle of
stationary potential energy is a convenient methatl applied here. The potential energy
approach makes the formulation compact and it aliyuits into the form of non-linear
finite-degree-of-freedom discrete stability thedeyveloped by Croll and Walker (1972),
Thompsen and Hunt (1973), Huseyin (1975) and others

The potential energy of the stiffened plate is al@ted for the unit as shown in Fig.8.
Assumptions for the buckling modes, compatibilignditions and internal membrane stress
distributions are as formulated in Section 4.3.@ Saction 4.3.3 respectively. Moreover, as
was discussed in Section 3.1 the macro formulasionost conveniently formulated as a
displacement contratase. The potential energy of the cross-sectiamaunder prescribed
edge-deflections andk is

Vi, = % [[[o,&; dxdydz (84)
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Since the analysis is done with displacement cofdra), no external load potential exist.
Note that in Eq.(84) tensor notation for symbolisthe stress and straiiag, €; locally in a

material point has been used.

The integration of the strain energy over the péaté stiffener unit has separate terms; i.e. the
strain energy for the continuous plating, the stifir web plate and stiffener flange are
separate integrals.

As discussed in Section 4.3.1, the plate and sgffelements are considered to behave in a
pure uni-axial manner also when buckling is corrgideKoiter (1971) first used this
approach, and it has been classified as a lowardbmethod for the postbuckling assessment
as discussed by Rhodes (1982). Using the thin gtemky described in Section 4.2, and a
pure uni-axial material lawd;, = E€,;) in both plate and stiffener, gives the following

expression for the potential energy under presdrébeal deflection

3
Et,

Vi :m ”[W,Zxx +w2, 20w W+ 2(1—v)w?xy]dx dy

Plate

+% ”65 dx dy

Plate

Et’
T H[W,Zxx +W2, +2vw W, + 2(1—V)W?X2]dxdz
24(1-V7) gyt wen

+2 [[o? dxdz

Stiff .web

Elf 2
=L [w?, X (85)
Stiff .flange
GJ
p 2
t— IW,XZ‘Z:HdX
Stiff .flange

Af =2
+E J-Ox\ z=HdX

Stiff .flange

I+ and pare the moment of inertia and torsional constattiestiffener flange, respectively.
The parameter s the cross sectional area of the stiffener #angs the plate thickness and
tw is stiffener web plate thickness. For a completinition of parameters see the notation
list.

When applying the thin-shell theory approximatiansl choosing the middle-planes to be the
reference planes, the strain energy expressio(@®qis split into a separate bending and
membrane contribution for each component plate.bEmeling contribution is a second order
function in the curvature of the element referesuwdace meaning that it is a quadratic
function of the local displacement parameterd ge membrane contribution is a second



Page: 42
University of Oslo
Department of Mathematics, Mechanics division 99-1
Buckling of stiffened Plates using a Shanley modeparoach

order function of the membrane stréss in the plate middle-plane meaning a quartic

function in the displacement parametersris is well known properties in buckling theory
of plates, see e.g. Brush and Almroth (1975).

Substituting the assumed deflection functions, esgions for the membrane stresses and
constraint condition between plate and stiffenafeigin Section 4.3.2 and 4.3.3 respectively
into Eq.(85), the final expression for the potdrgizergy is found to be

V(e,K,0;,0,) =

+a,(q,)*
+a,0,0(0,)°
+a,,(0,)° +a,,(05) % (a,)°

+ b4(Q2)4
+ b3q20(q2)3
+b,,(0,)% +b,,(05)%(a,)°

+¢,(9,)°(a,)°
+ Cy0100 (0,)* + 500001, (Gy)*
+ 51010020010, tCypp (q20)2 (Q1)2 + Czs(Qm)z (q2)2

+ 014 (0) *€ + 910010041 € + 1o (1) * K + Gy00l160: K
T 0., (%)23 +05009200,€ T 92 (q2)2 K+ 050002002K (86)

+h,,€° +h ek + hyK?

The a, b, c and g and h coefficients (with sulpss)iare all rather complicated geometrical
constants and they are given in Appendix Al.

The potential energy function V is a quartic fuoatin the gand g modes with a quartic
coupling termg,’q,”. Moreover V has termg,’, q,’K, q,°¢, g,°k all linear in the control

displacement parameteasindk. V has also a set of constant terms, i.e. thergkoader
terms ine andk. These latter terms have no importance and vaviign the equilibrium
equations are derived.
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Applying the principle of stationary potential eggri.e.

a_V:O
0q,
ov _

aq,

(87)
0

gives the following two equilibrium equations

Vl =
+48,(q,)°
+ 3,0, (9,)*
+ 28,0 + 28, (0y0) 0
(88)
+2c,0,(9,)*
+ Cg1010(0,)* + 2C3,000,0
+Cyy0500200, + 2Cx, (CIzo)zch

+20;,0,€ +010010€ + 20360, K + J1g00:0K =0

V, =
+4b, (Q2)3
+ 333('120 (q2)2
+2b,,q, +2b,,(0,)*d,
(89)
+2c,0,(q,)°
+ 2C3101001 0, * 500 (G1)*
+ C1 01082001 + 2C55(010)*

+20,,0,€ + ,0020€ + 20260,K + Jg00 20K =0

Viand \, symbolised the partial derivatives of V with resip® g and g respectively.

Eq.(88) and EQq.(89) constitute two non-linear cudgailibrium equations in the two
unknowns g and g. In the present formulation they are the equatgarserally written in the
form of Eq.(53).
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4.3.6 Equilibrium solutions

When discussing and presenting equilibrium soltibms important to define under which
conditions they apply. As the title of the presemipter reveals, only local cross-sectional
buckling is considered and this applies also ferdblutions given in the following. Chapter 5
presents some specific solutions, which also cenglte coupling with the overall column
mode.

The displacement control option is selected in shisly since this gives directly the stiffness
parameters as defined in Eq.(50). The differenteden load control and displacement
control is more discussed in Steen(1998).

There exist no analytical closed form solutiontfoe set of cubic equilibrium equations,

Eq.(88), EQ.(89). However, setting the initial imfeetion amplitudes to zero {gF o= 0),
we obtain the two equilibrium equations as

d, (4a, (0,)° + 28, + 2¢,(0,)* + 29,,€ + 2g,4K) = 0

(90)
O, (4D, (01,)° + 20, + 26, (0,)* + 29, + 29,4K) =0
This set of equations has 4 separate solutionsllasvé
Solution 1: no buckling
g1=¢=0 i.e. - prebuckling solution (91)
Solution 2: - Single mode buckling iB q
2 1
a, =0, q, =~ (b, +9,,€ +7y0K) (92)
2b,
Solution 3: - Single mode buckling in q
2 1
q, =0, a9, =—F— (a21 Tt ngK) (93)
2,
Solution 4: - Coupled mode in @nd ¢
2 1 C4 C4 C4
= — (22, ——Db,) + (0,5, —20,,)€ + (0, — 20,0)K
(@) %, - (c,)% b, [ (22, b, 21) (b4 Oou ~29y,) (b4 U0 ~2010) } o

2 1 C4 C4 C4
= -(2b,,——2a,,)+ (=g, —2 e+(—=qg,, -2
(d,) 4b, - (c4)2/a4 { (2b,, b, 21) (a4 O —29,,) (a4 O1o gze)K}
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Solution 1 corresponds to no buckling and needspeaific comments. Solution 2, 3 and 4
are closed form solutions for the buckling mode ktonges for given prescribed deflection
parameters andk. They can be visualised as equilibrium surfacessatically illustrated in
Fig.12. These equilibrium surfaces have the clasgi@rabolic shape as known from the
Koiter theory.

The most significant result is solution 4, whickeg an explicit closed form solution for the
case of a coupled simultaneous cross-sectionalibgalesponse into mode @nd mode §
The solution gives two parabolic equilibrium sudaavhich intersect in the four dimensional
solution space (q, €, K).

The present study does not present any mathematichi of these surfaces and possible
equilibrium paths across them, as this beyondc¢bpesof the present work. However, based
on the same closed form solution, Bangstein (188&ussed some practical consequences.
He found that for a hinged stiffener (setting tlhetgparea to zero), the non-linear interaction
between torsional stiffener and web buckling gawplane axial postbuckling stiffness
properties well below the corresponding stiffneslugs found in the separate modes.

di - Qi=qi(&,KX),1=1,2

Fig.12 Single mode equilibrium surface schemalycllstrated — perfect geometry

As already emphasised, the closed form solutiogg9g), Eq.(93), Eq.(94) assumes the
cross-section to be geometrically perfect. Thisidet@ very simple and useful closed form
expressions for a qualitative study of postbuckstiffiness. This is explored in the next
section.



Page: 46
University of Oslo
Department of Mathematics, Mechanics division 99-1
Buckling of stiffened Plates using a Shanley modeparoach

4.3.7 Stiffness properties

In Section 2.2 the stiffness properties of localligkled cross-sections were introduced as the
tangent stiffness coefficients;kand Section 2.4 and 2.5 showed the importandeeskt
coefficients in determining the coupled local anérall buckling response of columns. This
section gives a mathematical representation otteéness coefficients, as an alternative
and possibly useful point of view for illuminatitigeir importance.

By using the closed form solutions derived abovegEpmetrical perfect cross-sections it is
straightforward to show that the; i€oefficients emerge as constants. Substitutingd2y (or
Eq.(93), Eq.(94)) into Eq.(81) and using the dé&fm of Eq.(9) it follows directly that the
incremental loadAN andAM and the corresponding displacemeitsandAk is related by a
linear macro material lawThis incremental macro law can be written in matotation as

ANT_[Ky, Ky, e (95)
MM | |K, K,|lAk
As in Section 2.5 thA symbol indicates incremental properties alongptbstbuckling

equilibrium surfaces and the; l&re constant coefficients. The complete expressdthese
coefficients are given Appendix A7.

As explained in Section 3.1, the form of Eq.(9%)lules the equilibrium solution, and the
displacement vector; ¢ not visible. In a mathematical language, thecfions of Eq.(95), can
be viewed as two-dimensional surfaces in the tmeensional spaces (i, k) and (M,g, K)
respectively. In the most general non-linear versie stiffness solutions have the form of
Eq.(6), here repeated as

N = N(g,K)
(96)
M = M(g,K)
By mapping these functions into the deflection sp@ag) as contour plots, the stiffness of the
cross-sectional response appears as the gradifedocontour lines, see Steen (1998).

As indicated for the present local cross-sectitmi@kling study, the significant finding is that
the K; coefficients are constants and not load-dependehe postbuckling region.
Mathematically this means that the contour plotslvé straight lines in the displacement
space &, K).

Contour plots are schematically illustrated in Egy.In Fig.13a the gradient to the contour
lines of fixed load N values, in the, ) space, are given by the mathematical equation

graddN = K i, +K,i, (97)
Here the stiffness coefficients Kand K, are the components of the gradient to the function

N in the unit displacement directioasndk, respectively. In Fig.13 the unit vectaysandiy
are oriented along treaxis andk-axis respectively.
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A similar stiffness gradient for the moment funatid can be constructed and schematically
illustrated in Fig.13b. In mathematical terms thegMdient can be written as

grad\M = K,i, + K i, (98)

In EQ.(98) the stiffness coefficients#and Ky, are the components of the moment gradient in
the unit directiong andk respectively.

K]l

_“grad AN = K]l EE + K]ZEK

BUCKLING N K
BOUNDARY 12

INCREASING N

||]|_U||h e

gradN = KllL EE

a) Contour plot for fixed N values
M INCREASING

K grad AN = K,; fig + Kp,ii¢
K22

BUCKLING _—* k

BOUNDARY N 21 5

\/ 57
grad M = Ky,L i = /CJ
=7
o

N

N

-

b) Contour plot for fixed M values

Fig. 13. Stiffness contour plots for load N and reatM.
a) Contour lines ; Force N = constants, b) Camtbnes; Moment M = constants
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It is emphasised that Fig.13 is only a schemdtistilation of cross-sectional stiffness
properties in terms of contour plots. The thiclelia indicating the (eigenvalue) buckling
boundary separating the prebuckling and postbugkkgion. It is worth mentioning that this
buckling boundary normally will be a convex cunezs from origo. Thin lines represent
fixed N (or M) values.

For a cross-section with geometrical imperfectihresequilibrium surfaces will be
continuous. Under such conditions the contour lim#isbe mapped as continuous curves in
space &, K), smoothing out the region between prebuckling @ostbuckling states.

From a physical point of view, it was illustratedC@hapter 2 that the values of the stiffness
coefficients K were very important for capturing the non-lineaustural interaction between
local and overall buckling. The present discus$ias emphasised that the stiffness
coefficients K can be viewed as contour plots of mathematicaltfons. Whether this
illustration is of any direct use is a matter cftéa but at least it gives an understanding of the
importance of the shape of these surfaces. Frohysigal point of view it is obvious that the
requirement to accuracy of these surfaces is nadllgstrict in all regions of thee(K) space.
Since overall buckling of the present column madatts from the-axis, it will be most
important to have an optimal accuracy for the contimes along this axis. This conclusion
support the relevance of the equilibrium solutitorshe K; coefficients presented in this
chapter (and also some special solutions in Ch&ptevhich is founded on some qualified
approximations for the buckling mode shapes tygmapanels subjected to dominating axial
compression and marginal cross-sectional bending.

4.4 Summary and discussion

The chapter starts with a brief introduction to Nlarre’s non-linear plate theory, which is
used as basis for the derivation of the cross-aaaitimacro material model.

The rest of the chapter is specifically devotethtoderivation of a two-dimensionalacro
material modefor the case of a thin walled cross-section wittopen profile shape, typically
found in panels in ship and offshore constructidie macro material model is approximated
as a two-degree of freedom model for a compactnreat of the buckling and postbuckling
strength. Torsional and web stiffener buckling nwdee considered, both interacting with a
plate buckling mode.

A significant result was the derivation of the noraterial coefficients for the case of a
geometrically perfect cross-section. Under suchditmms it was shown that the macro
material coefficients in the postbuckling regionwereconstantsi.e. they were shown to be
load-independent in the postbuckling region. Theilteof constant macro material
coefficients validate the concept of the reduceduhas load as a safe lower bound limit for
columns and stiffened panels, eliminating unstabkebuckling behaviour.

The concept of tangent stiffness coefficients wiasussed from a mathematical point of view
using contour lines of equilibrium surfaces. Thisphazied the importance of the shape of
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the equilibrium surfaces in certain regions. Thoanghdiscussed in detail here, it is obvious
that the density and orientation of the equilibricomtour lines in this stiffness spaces will be
vital for the degree of instability to be expectedthe coupled local and overall buckling
reponse.

Naturally, the present finding of fixed and loadlépendent stiffness coefficients for perfect
cross-sections, rest on some very simplified assomg Nevertheless, it may be postulated
that the main physical behaviour is captured aatlttie present derived properties will be
very typical for thin-walled built up sections. Ththe present macro model may prove to be
useful for semi-theoretical design approaches.&#gigation of the present results, some
comparisons with results found in the literature given in Chapter 5.

5. DISCUSSION - VERIFICATION

5.1 General

The main purpose of the present work was to develeimplified numerical buckling model
that could handle the severe unstable interacitwden local cross-sectional and overall
buckling in stiffened panels. The presents propasdation to this problem consist of
applying a macro material model concept for theepacal geometrical response and using a
general section Shanley model for coupling the alVeesponse to the local. Thus it is
convenient to see the model having two separate par

i) Macro material model for local buckling and postking response assessment.
i) Buckling model (here Shanley) for coupling of loaald overall buckling.

In order to verify the model results, comparisoagéhbeen carried out at these two levels.

There exist few studies in the literature, which ba categorised as pure macro material
models formulations and therefore very few complarablutions are available. However,
some closed form solutions exist notably derive®dtywell (1951) and Rhodes (1982). In
addition Ellinas and Croll (1981) presented sommenical solutions for the reduced modulus
factor for torsional buckling of stiffeners.

For the coupled local and overall buckling casepaed form solution by Rhodes (1982) can
be used for direct comparison purposes. This istiyedirectly comparable closed-formed
solution found in the literature and it represemextreme and not very practical case. In
order to illustrate more practical cases the prtasemerical model has been tested on two
examples. The basis is the macro model develop€thapter 4 combined with the numerical
incremental perturbation scheme presented in Se8tih The first example has typical
dimensions as used in decks in large steel shijde We second example is constructed in
order to illustrate the unstable response whenlbgkto a simultaneous local and overall
column buckling mode takes place.
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5.2 Macro material solutions
5.2.1 Single mode solution

By using Eq.(88), and setting g gpo = 0 the following single mode solution (see Apgign
A3), can be derived

LEe+L K=—D @+b,(q, + 30,00 + 20°)) (99)

ql qu

In Eq.(99) the parameters, L« are geometrical constants anddoKoiter's postbuckling
coefficient for symmetric structures. The singledasolution written in the form of Eq.(99)
differs from the classical Koiter solution (see.dgm (1974)) in the two imperfection terms

3,0,, +29,, given within the parenthesis. Koiter's solutisronly strictly valid for very
small imperfection levels while the present solutas a wider range of validity.

The single mode version of Eq.(83) for the macroemal coefficients K is
0
Kll = KllL + 2Bll(cll + qlo)%

0
K12 = KlZL + 2Bll(Ql + qu)%

3 (100)
K21 = K21L + 2821(q1 +Q1o)%
K
0
K22 = K22L +2821(q1 +q10)%
K
The partial derivative®q, /e ,dq, / ok is from Eq.(51)
dq, _  of /ot
0 of, /0
€ 1100, (101)
dq, _  of /oK
0K of, /10q,
in which f; is defined as
fi(e.k,q) =L g+L K- qlq (L+b, (0, + 3,0y + 2003 7)) (102)
1 10

Using Eq.(101) and Eq.(102) it can be shown thafitist order stiffness coefficients;i€an
be written in the following compact closed form
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Ky =Ky +2By, (G, +00)L . Q
Ky = K12L +2B,, (0, +,,)L,Q

) (103)
K21 = K 21 + 2821(q1 + qu)L£Q
Ky =Ky +2B, (0, +0,)L,Q
where
2
Q - (ql + qu) (104)

Oy0 *+ 2D, (0, +0y)°

The form of Eq.(103) is valid for any single degaédreedom system with the geometrical

constants B, B, L¢, Lk, and b as case dependent.

The present single mode solution gives explicitregpions for the macro material

coefficients K. This is a useful property for fast implementatiorcomputerised design
models.

5.2.2 Closed-form solution - Plate with one longitudiedge free

In order to obtain simple closed-formed solutidris pf interest to study the case of a

rectangular plate with one longitudinal edge fred the other three simply supported. This
plate problem can be interpreted as identicalftatdar profile attached to plating with no
axial stiffness. This plate problem was first satbby Stowell(1951) and later by Rhodes
(1982) who included also the overall buckling effé@omparisons with these publications are

therefore included. For the full solution of opaofies attached to a plating with axial
stiffness, see Appendix A7.

For the isolated flat bar stiffener the geometramaistants B, B,;, L, Lk, Ec and b take the

following values

Bll = _EE(t_W)Z H t,
1n§ t'- (105)

B, =-——E(%)?H?t
21 48 (L) w
L=t

€

1" . (106)
L, =-H—

4 €.
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1,12 60~ v)
fc = 12(1- v)(H){ s T )} (107)
SELNLIEES
P2 =50 (0 €.

The linear stiffness coefficients follows from ELRj, i.e. with the present notation for
stiffener web thicknesg, and height H, they become

K, =EHt,
KlZL =
K21L _ (108)
1
K,  =—EH%
22 12 w

Substituting the expressions for geometrical caists, i.e. Eq.(105) to Eq.(108), into

Eq.(103) and settingig)= 0 the final expressions for the stiffness co#édfits where found to
be

=4

Kll_ 9(EAT)
—K.. =—> J3JEAEL)

K, =K, = 8 3V (EA)(EL) (109)
=7

Kzz _12(EIT)

It follows directly from Eq.(109) that the postblick stiffness in pure axial compression,
under axial displacement control (prescribed ), i§

Kll
L
Kll

ol

(111)

This is the same value as originally given by Si{d@51).

Despite the academic interest of the present siplpte buckling problem it is reassuring that
the present solution converge towards recognisketiaos found in the literature. Similar
comparisons for the coupled local and overall hagkare given in Section 5.3.2.
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5.2.3 Numerical results and comparisons with other sohsi

Ellinas and Croll (1981) presented numerical resiat the reduced modulus factor for
stiffened plates buckling into a torsional/sidewaiifener mode. They developed a
numerical scheme, solving the von Karman plate gopumwith due consideration of the
boundary conditions between the stiffener web plaje flange and bottom plate. The plating
and stiffener bulb flange was treated as beamsy Cbmpared their theoretical results with
small-scale model experiments made of Aralditeraer to capture the pure non-linear
elastic response. They demonstrated very goodlatiae between theory and experiments
and it was shown that the reduced modulus factsrafidghe order of 0.15-0.20 for the cases
they studied.

Even though the geometrical proportions of the grpental models of Ellinas and Croll are
small, and the relative slenderness rdtiq /t,, of Jhe stiffener web plate are very much

higher than what is typical for ship and offshameictures, comparisons are interesting from a
gualitative point of view. Therefore the presentnosamodel developed in Chapter 4 was used
to calculate the reduced modulus factors for thie&d and Croll examples and the
comparisons are shown in Table 5.1.

Data Casel - Flat bar Case 2 — Sym. Bull
t,  [mm] 1.73 1.73
s [mm] 100 100
ty [mm] 1.8 1.8
hw [mm] 74 59
t [mm] 0 5.15
b [mm] 0 15.1
L [mm] 125 125
Reduced modules,;, Ellinas and Croll (1981 0.203 0.150
Reduced moduleg,; , present macro model 0.194 0.124

Table 5.1 Comparisons between calculated reducetuias factorsygg;,
present macro model versus Ellinas and Croll (1981)

The comparisons in Table 5.1 shows very good cpomedence and the severe bending
stiffness reductions for very slender stiffenernglth,/t,, ratios, 41 and 33 respectively)
buckling in a torsional/sideways buckling mode asdmented. It is noted that the symmetric
bulb profile has an even lower reduced modulusofaitian the flat bar profile. This is natural
since when first buckling of a bulb profile takdaqge, the bulb area itself loose relatively
more of its axial efficiency compared to for ingtarcross-sectional area located closer to the
edge support. A bulb profile will have a higheratlelastic local buckling stress than a flat
bar profile of the nominal same dimensions, but ihanother discussion and not a part of the
postbuckling characteristics evaluated here.
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Moreover, Ellinas and Croll (1981) observed froritmumerical model studies that the
reduced modulus factor waenstantfor large deformations and thus independent of/tiee

of the acting prescribed axial load level P. Thegatuded that the incremental moment-
curvature relationship was a constant relationshtpe postbuckling region. This is the same
conclusion as found in the present study, hereghdounded solely on a closed form
solution.

In short it can be concluded that the stiffnespgprtes of locally buckled cross-sections are
independent of the level of buckling displacememntss conclusion is based on limited
studies and simplifying assumptions, but at leastfoss-sections where a single mode
analysis is sufficient, the constant postbucklitijress is a realistic feature. For cross-
sections where several local buckling modes wiiact, multi-linear postbuckling stiffness
properties are likely. Eq.(94) indicates this, thi$ topic is not pursued further in this report.

5.3 Coupled local and overall buckling solutions
5.3.1 General

This section starts with a brief presentation efdtosed form solutions for coupled local and
overall buckling derived in Sections 2.4 and Secficb. Specialising these general section
solutions for the particular simple case define8éattion 5.2.2 interesting features are
revealed.

Then two numerical examples are presented, useagiticro material model model
developed in Chapter 4 in combination with the nuoa scheme described in Section 3.2.
Both local and overall geometrical imperfections studied and the results are presented as
load-shortening curves.

The two numerical examples have very different getoical layout of plate and stiffener
proportions and different types of structural resgmare illustrated. The first example is a
typical geometrical layout used in decks in stbgbswhile the second example is a
constructed case for illustrating the capabilityled model to trace complex unstable
postbuckling behaviour. By studying the load-shairtg response of these examples, and by
varying the magnitude of the geometrical imperfatdi important observations can be
extracted with respect to both structural strergtth stiffness properties.

5.3.2 Closed form solution — Plate with one longitudiedbe free

In Section 5.2.2 a closed-formed solution for thstpuckling stiffness coefficients;Kvere
given for a plate with one longitudinal edge freel ather three simply supported. This
example is continued in this section by presentioged-formed solutions that includes the
coupling effect with the overall buckling mode.
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For overview of the presentation the general secautions given in Section 2.4 are
repeated here, i.e. EQ.(23), Eq.(24),(25) are twwin the forms as the load-curvature
relation

AP =S, Ak (112)
and load-shortening

AP =S Ag (113)

where per definition the postbuckling coefficieBtsand $ are

ST T P 114
", PE( 1) ~Kz) + Ky, (114)

S =K KKy
=t (P./P)(El;) - K,

(115)

Substituting the macro material solution, i.e. @49) into Eq.(114) and into Eq.(115), this
gives for the coupled local-overall postbucklingffients the following expressions

S {%(P— - 5/ }/(EA )EL) (116)

sg{ih (25/108 }(EAT) (117)
9" (P./P.)- (7112

These solutions are discussed for two extreme @sstEdlows. First the most severe case of
coincident buckling is analysed, i.e. requiring

P. =P (118)

Substituting Eq.(118) into Eq.(116),(117) gives

—1£: (EA;)(EIL) (119)

S, =(EA;) max. snap back (120)

From Section 2.4 it follows that snap-back behawviwill be present ife >S, > (EA; )
Eq.(120) gives Sto be equal to full cross-sectional axial stiffn&yr. This means that the
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postbuckling response is extremely unstable wihap-back equilibrium path tangential to
the linear stiffness prebuckling path at P

From Eq.(117) it can be conclude thatd® > (7/12) there will always be snap-back
behaviour. In the limit §Pe = (7/12) neither negative nor positive axial si$s is found, i.e.
the loads drops down at an infinite rate @ith respect to the axial shorteniag

Another extreme case for discussion is that of
P. >> P, (121)

Under this condition, Eq.(116) and Eq.(117) becomes

S, = —5ff JEADER) (122)

1
5. = (EAY) (123)

It is interesting to observe that the solution gf(E23) is exactly the same as given by
Rhodes (1982). This solution predicts almost zaral stiffness (1/2% 0.05) when local
buckling starts in a stiffener with a long spanisllbw value has to seen in connection with
the main assumption for how the external load B icthe present Shanley model, i.e. it
always acts in the centroid of the cross-section.

As a final verification of the closed form solutidhe reduced modulus factor, given by
Eq.(40) for a general section shape, is evalu&elstituting Eq.(109) into Eq.(40) gives
simply

1
Ner = E (124)

This is also exactly the same value as calculayddhodes (1982) using a different approach.

As a final comment on the presented solution ferdbupled local and overall response, it is
emphasised that the external load P always atteinentroid of the cross-section. This is a
basic assumption for the present section resultst bffects not the pure macro model
solutions developed in Chapter 4.

The general section Shanley model was basicallgtoacted with the purpose of throwing
some light into the non-linear interactive bucklwigstiffened panels. It is not a problem to
extend the model to also cover a continuously mpeixternal load case, as will be most
realistic for continuous stiffened panels in shipictures. However, this type of extensions
have to be seen in relation to other types of logdicting typically bi-axial loading, in-plane
shear, lateral pressure etc. These are all topathtve to be included in complete semi-
theoretical buckling model for stiffened panels.
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5.3.3 Numerical solution - Flat bar profile in tanker 8ec

The numerical buckling model, with an implementeckémental perturbation scheme and
automatic arc length control, has been programmeal gersonal computer and tested on two
examples.

The first example is a stiffened panel of an aikier with a displacement of 130 000 tons has
been chosen. The structural layout for the declsistgof a flat bar profile welded to the
plating with an equal spacing s. The geometricapprtions and material characteristics are
given in Table 5.2.

Data parameters Tanker deck — Flat bar
t, [mm] 18
S [mm] 910
ty [mm] 20
hy [mm] 325
t [mm] 0
b [mm] 0
L [mm] 4750
E [N/mnf] Young’'s modulus 208 000
Vv Poisson ratio 0.3
oe [N/mm?] Yield stress 355

Table 5.2 Geometrical proportions and material paegters.
Deck panel in a 130 000 tons tanker.

It should be noted that the yield stress have rysiphl implications for the results presented
in this section. The material yield stregsis only used for scaling purposes in the numerical
scheme and in the figures presented.

The present model gives the following values feritteal elastic local buckling stresses
(eigenvalue in mode;gChapter 4 and Appendix 5)

0. =315MPa Torsional buckling mode
The overall elastic column buckling stress is (Eldad Eq.(15) excluding all local cross-
sectional effects)

o, =772MPa Euler buckling mode
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These eigenvalues shows, as expected for typigadsick profiles that the local buckling
stresso . is significantly lower than the overall column kling stresso. .

The initial stiffness postbuckling coefficient Sas defined in Eqg.(115), includes the coupling
effect between local torsional buckling and ovecalumn buckling. For the present example
it is found to be

S, =0.334EA; Overall in-plane stiffness

This means that when the stiffened panel bucklésealbcal torsional buckling stress3i5
MPa it will have an axial stiffness 88 % of the full axial stiffness when further commed
into the postbuckling region.

The reduced modulus factor is calculated t® 88 which means that the nominal reduced
modulus stress isg=0.93*772,i.e.

Oy = 718MPa Reduced modulus stress

These calculated parameters describe the onsetalfduckling, initial and advanced
postbuckling characteristics of a geometricallyf@etrversion of the present stiffened panel.
A simple interpretation of these parameters gitiesollowing load-shortening characteristic:

Elastic buckling starts with the onset of a locastonal/sideways stiffener mode interacting
with plate buckling between stiffeners at a nomstetss o815MPa. The local buckling
mode will immediately trigger an interaction witietoverall column buckling mode and the
initial axial stiffness of the panel 8 % of the full stiffness when compressed bey8i8
MPa. In the advanced postbuckling region, the astithess will gradually drop and
approach zero for an axial nominal stresg18 MPa.

In order to study the behaviour of a geometricetiperfect panel, the imperfection
amplitudes both in the local qnode and overall column mo§éave been varied
systematically. Results are presented in the fatigfigures. Note that that notatign
represent the parametein the Shanley model, i.e. the only differencthe€ is an non-
dimensional parameter and it is defined as theatMeteral displacement scaled with the
plate thickness,t The corresponding overall geometrical imperfect®given the symbdo.
The torsional/sideways imperfectiopgndicates the sideways tilt (non-dimensional with
thickness ) of the stiffener (measured at the top of the &tféener end).

Fig.14 shows the result for the case where thd &igtener and plate imperfection are kept
constant at a low value, i.e. sideways stifferlerstiq,,, Lt,, =1 mm, which in the present

model is consistent with a plate imperfectigg, Lt, = 0.9 mm. The overall Euler

imperfection amplitudég* t,, is varied between 1 and 20 mm. In Fig. 14 (anddhewing
Figs.15, 16, 17) the horizonal axis represent adiorensional axial shortening of the cross-
section centroid symbolised asu. =€/¢.. The vertical axis represents a non-dimensional
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axial loadP/P- =0, /0. B is the squash load defined as=Ro*A 1. The corresponding
squash shortening-is defined asu= (0¢/E)*L.

2
1.5- —1mm
&“ 1- —5mm
A — 10 mm
0.5 —15mn

0

0 1 2 3 4 5 6

U/Ug

Fig.14 Load-shortening curves for a stiffened pamigh flat bar stiffeners with almost perfect csos
sectional shape. Sideways tilt of stiffener topt kized at 1 mm, the overall column imperfection
amplitudeéy*t, is varied between 1 to 15 mm

It is seen from Fig.14 that the geometrical imperéa in the overall column Euler mode do
not have any pronounced effect on the load-shartecharacteristic until the advanced
postbuckling region is reached. In the advancetbpegling region, the axial stiffness
decreases continuously and approaches zero atofRI& of approximate 2.0. (718/355 =
2.0 is the scaled reduced modulus load).

In Fig.15 the overall stiffener imperfection is kepnstant at a low level, i.& *t, =1 mm
while the sideways stiffener imperfection amplitugie, Ct, is varied between 1 and 20 mm

(associated plate imperfectiopog = 0.9 to 18 mm).
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™

2 e
1.5
/‘\ ——1mm
g 1 7= —5mm
~ — 10 mm
0.5 - — 15 mn
0
0 2 4 6

u/Ug

Fig.15 Load-shortening curves for a stiffened pamigh flat bar stiffener with variable geometrical
imperfections in the cross-section and almost ped@aight column axis.
Sideways stiffener tilt at top varied between 13anm and the overall imperfection amplitufd# , is
kept fixed at 1 mm

Fig. 15 reveals that the geometrical imperfectionthie cross-section of the panel have a
much more pronounced effect on the load-shorteciagacteristic than the out-of
straightness of the column axis shown in Fig.1#& tiearly seen that the in-plane stiffness is
much below the full linear stiffness already frame very start of loading. The highest rate of
axial stiffness reductions is in the region of lineal critical buckling stres315MPa. In the
advanced postbuckling region the effect of thellooperfections is reduced and the
equilibrium curves for different imperfection lesepproach each other.

If these results are related to normal shipyarddsteds it can be expected that the axial
stiffness of such panels be significantly reducamhgared to the full linear stiffness values.
Normal shipyard standard for the present oil tankélrgive out-of-flatness of the order of 5-
10 mm in the plating between stiffeners. Out-oéigfintness tilt of flat bar stiffeners is not
that well documented, but can be estimated to hlkecdrder of 10 mm. This may give typical
axial stiffness reductions of the order 10-20% asasonable estimate for deck designs of
tankers. It is added as a comment that the presetysis always takes the geometrical
imperfections to coincide with minimum the eigenmeds a conservative approach. Actual
imperfections in welded ship decks will have a cem@mnd random pattern. This fact makes
the picture more complicated, but does not vidllagequalitatively buckling and postbuckling
results presented here.
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5.3.4 Numerical solution - Coincident overall and locatkling

As an alternative example, a stiffened panel istranted with the purpose of illustrating
unstable postbuckling behaviour. Unstable posthighkiesponse will typically occur for
panel designs where the local and overall columerthuckling eigenvalues are close. In
order to construct such an example the cross-sedtiorm of a ship bottom panel was used,
but the stiffener span was increased significactiypared what is normally found.

Data parameters Constructed case — T profilg
t, [mm] 13
s [mm] 910
ty [mm] 24.5
hy [mm] 400
t [mm] 19
b [mm] 90
L [mm] 12000
E [N/mnf] Young's modulus 208 000
Vv Poisson ratio 0.3
oe [N/mm?] Yield stress 355

Table 5.3 Geometrical proportions and material pasters
used in a constructed example illustrating unstatolepled local and overall buckling.

The present model gives the following values fer ltical ideal elastic buckling stresses
(eigenvalues)

0. =313MPa g torsional mode
0. =620MPa £ web mode

The overall column Euler buckling stress, excludmgal cross-sectional effects, is
0. =320MPa Euler buckling mode

The low overall elastic buckling stress3#0 MPa is due to the very long stiffener span of 12
meter.

As for the previous example the axial stiffnessap@ter Sis assessed and found to be

S, =1.05EA; Overall axial stiffness

This means that we have a panel design showinglsaapbuckling response and is thus
extremely initially unstable when entering the poskling region.
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The reduced modulus factor is calculated t® B8 which means that the nominal reduced
modulus buckling stress a& = 0.43*32Q i.e.

0 =137MPa Reduced modulus stress

These parameters, valid for a geometrically pergfackel, then predict a severe unstable
elastic buckling response as summarised as follows:

The buckling will start at a uniform membrane sére6313MPa and is associated with a
torsional sideways buckling of the stiffener. Thedl buckling will immediately trigger a
coupling with the overall column buckling mode,dew®y to an initial snap-back behaviour.
The snap-back behaviour means that axial stiffreese longer available i.e. in order to trace
the equilibrium path, not only the load P, but &dls® end-shortening u will initially decrease.
The unstable equilibrium path will then twist ahe &xial shortening u will start to increase
again while the load continues to drop. The nomsti@ss will then asymptotically approach
the reduced modulus stressl@7 MPa in the advanced postbuckling region.

As for the previous numerical example, load-shangicurves are generated for different
levels of geometrical imperfections. The resulesstrown in the following figures, Fig.16
and Fig.17 respectively.

Fig.16 shows the result for the case where thd &igtener and plate imperfection are kept
constant at a low value, i.e. sideways stifferleofithe stiffener top isy,, Ct, =1 mm

which in the present model is consistent with aepimperfection ofg,,, Ct, = 0.7 mm. The
overall column imperfectiofg*t, amplitude is varied between 1 and 20 mm.

1,

0.8
el 1 mm
g\:‘ 0.6 / . —5mm
~ 0.4 E— — 10 mm
S —— —15mn

0.2

0

0 2 4 6 8
u/uUg

Fig.16 Load-shortening curves for a panel with neaincident local and overall eigenvalues.
Almost perfect cross-sectional shape with variable
overall imperfection amplitud&*t, between 1 to 20 mm
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From Fig. 16 it is seen that the geometrical img&rbn in the overall column mode have a
pronounced effect on the limit load (ultimate sg#m while it have no influence on the axial
stiffness properties before the ultimate load &hed. In the advanced postbuckling region
the load approach the reduced modulus load anovigrall imperfection effect in this region
is of no significance.

In Fig.17 the overall stiffener imperfection is kepnstant at a low level, i.& *t, =1 mm
while the sideways stiffener imperfection amplitugig, Ct,, is varied between 1 and 20 mm

(associated plate imperfection between stiffeqggd t = 0.9 to 18 mm).

0.8
[\\M- —1 mm

0.6 N —5mm
04 — 10 mm
/ \ _ — 15 mn

0.2

P/Py

u/Ue

Fig.17 Load-shortening curves for a panel with neaincident local and overall eigenvalues.
Variable local imperfections in cross-sectionpga 1 to 20 mm.
The column axis is almost perfect assuming a maplitude&y*t, of 1 mm

From Fig. 17 it is seen that the geometrical imge&rdn in the form of local sideways tilting
of the stiffener have a pronounced effect on tim lioad (ultimate strength) while it have
marginal influence on the axial stiffness. In #uvanced postbuckling region the load
approach the reduced modulus load and the impeamfeeffects in this region vanished.

It is found for this example that the severe noedir coupling between local and overall
buckling modes reduce the ultimate buckling cagaocitonly176 MPa compared to the
strength of the geometrically perfect paneBd8 MPa. This 44 % knock down effect is
assessed for a sideways initial tilt at the fréféesier edge of 20 mm which is slightly less
than the stiffener web thickness of 24.5 mm
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This example demonstrates the severe imperfectinsitsvity, with respect to ultimate
buckling capacity, stiffened plates may experiemben they are designed with close or
coincident local and overall eigenvalues. The latglerfections are seen to be most
influential on the ultimate stress, but also therall imperfections have a significant knock
down effect. As for the previous example the agidfness before ultimate stress is mostly
affected by the presence of local cross-sectionpérfections, but to a less degree. Out-of
straightness of the column axis influences thel a&titiness properties only marginally.

5.4 Summary and discussion

The present chapter presents some general closads&utions and two numerical examples
applying the present theoretical model. Some lichdemparisons with solutions found in the
literature are given. The verification is splittimo parts, the first part is given in Section 5.2
and is exclusively devoted to the macro model dgpesd in Chapter 4. Section 5.3 is devoted
exclusively to coupled local and overall buckling.

Section 5.2 and Section 5.3 presents some closedsolutions for the present macro model
assuming single mode buckling response. Compares@ngiven with some analytical
solutions found in the literature. In Section Sohe numerical results for reduced modulus
factor for slender stiffeners found in the literatis given. Excellent agreement with the
present model was found.

In Section 5.3 two numerical examples using thegmemodel was presented. The first
example has typical dimensions as for stiffenecefzaim large steel ships. The second
example was constructed in order to illustrateuthgtable response typical for panels with
close local and overall eigenvalue. These exanwéze generated using the present
developed incremental perturbation scheme witheargth control.

The two numerical examples illustrate some typieatures of non-linear buckling response
of stiffened panels in the geometrical non-linearge. By varying the imperfection
amplitudes in the local and overall mode separabelgortant information as to the strength
and stiffness characteristics of stiffened pargelsicovered.
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6. SUMMARY AND CONCLUSION

The main motivation for the present work has beegain insight into the mechanics of
geometrically non-linear interactive buckling beemdocal and overall buckling modes in
stiffened panels. Based on such insight it wilplessible to develop useful concepts, which
can be used in semi-theoretical computerised bugkhodels for the strength and stiffness
estimates of such panels.

The present buckling model has two separate pemntsfirst part deals exclusively with the
cross-sectional macro material model and the separtdhere using the general section
Shanley model, couples the macro material modgidamverall column buckling.

Special efforts have been given to a developmeatroficro material model, relevant for
stiffened panels with open profiles as found irpsdmd offshore constructions. This macro
model is two-dimensional. This means that it idgesifor application to panels exclusively
subjected to axial loading. For combined loadinghsas in-plane bi-axial loading and in-
plane shear, a six-dimensional model is needed. @ioblem is touched upon, but not
addressed in detail here. Further, the presentamaaterial model is approximated as two-
degree of freedom model, covering torsional/sidesn@yckling of stiffeners interacting with
a plate buckling (gmode) and stiffener web buckling also interactiith a plate buckling
(02 mode). It is emphasised that the present two-@egiréreedom model gives a very crude
simplification of real structural response, but thedel is thought to be relevant for a wide
range of stiffened panels encountered in ship steglaluminium constructions. Naturally,
the present macro model could be further improwedduding more degrees of freedom for
accurate strength and stiffness estimates. Irtli@anacro model concept as developed
herein, is equally applicable for many local degrekfreedom (local displacement vectgr g
as for few. This makes the model flexible for lsggtensions. More work in this area is
needed both with respect to theoretical developroemtulti-dimensional macro models and
with respect to verification with other general pase non-linear finite element codes such as
ABAQUS (1998). The present report does not inchagléfications against such advanced
programs, but includes verification rather on trerenconceptual level. In particular can be
mentioned verifications against other analyticakeld formed solutions as well as
comparisons against some limited numerical re$oitseduced stiffness parameters, all
found in the literature.

Another feature of the present work is that itudittion the general non-linear stability theory,
developed in a discrete finite-dimensional form3awell, Thompson, Huseyin and others in
the seventies in UK. They introduced the pertudmathethod as a numerical strategy for
solving sets of non-linear algebraic equationsfandtudying bifurcations and postbuckling
behaviour of complex plate and shell problems. Bipigroach has been used herein, however,
extended for use in an incremental scheme forrgacontinuous equilibrium paths, much in
the same way as done in standard non-linear fahément programs. By using an arc length
control, it has been demonstrated on two examphasihe present approach is capable of
tracing continuous equilibrium paths with limit pts, snap-back behaviour and severe
imperfection sensitivity. More about this numeriseaheme can be found Steen(1998).
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As a final comment it is emphasised that the prieserk is mainly devoted to the
development of simplified buckling models and cqoiseat the expense of detailed numerical
verifications using alternative methods. This hasrbthe strategy selected due to personal
preferences and supported by the belief that sirmpléels can be used for the construction of
computerised, fast buckling models. Such modelsprilvide more information and predict
more realistic strength estimates than currentabiai rules and codes. By reviewing the
literature on buckling of stiffened plates it issebved that most of it is dedicated to advanced
numerical studies using different types of standiite element programs or similar

software. It is thought that the development ofderand physical models like the present is
more important for gaining understanding of thekiing phenomena themselves, and this
subject has not had the attention it deservesatitdrature during the last two decades. Thus,
by ensuring a more proper balance in the futureydren the development of physical semi-
theoretical models like the present, and full blavamerical finite element studies, it is
believed that safe and optimal buckling design @doces are in the hands of designers and
authorities within a relatively short time.
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8. NOTATION

Latin letters

a,b,c

These letters with Latin numbers as sultsatigfine constants in the potential energy
function V in the local cross-sectional mode, ApgigrAl

Distance from cross-sectional centroid to stiffefifenge middle plane

General symbol for cross-sectional area

Total cross sectional area of column unit cresgisn, Ar= (st + hytw+ by tr)
Stiffener flange width (total width)

Parameter, defined in Appendix A6

Parameter, defined in Appendix A6

Parameter, defined in Appendix A6

Parameter, defined in Appendix A6

Stability determinant, local modds3 = ‘Vij‘

Eccentricity of stiffener flange centroid relaito stiffener middle stiffener web plane
Young’'s modulus

Bending stiffness of column

Axial stiffness of column

This letters with number 1 or 2 and letter ® as subscripts defines constants in the
potential energy function V in the local cross-g@wl mode, Appendix Al

Stiffener web height (exclusive flange thickness)

Mean section height parameter, H 7+()/2+h, )

Symbol for the unloaded state

Symbol for the local critical state, perfect gextry, buckling into modepr @

Symbol for any loaded state

Moment of inertia of cross-section about centimed unit width (about z =2

2 b, t,
f 2 )
(1+ bf tf /(hwtw))

Moment of inertia of stiffener flangd ( = 1—12 b, 3tf +e

Torsional stiffness of stiffener flangd (= % b t,°)

Macro tangent stiffness coefficients of a generass-
section evaluated at any staje |

Linear elastic stiffness coefficients for colunmmit cross-section

Length of continous Euler column, full stiffengpan for panels
Load parameter in local mode, single degreesgfdom model, Appendix A3
Load parameter in local mode, single degreesgfdom model, Appendix A3
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q
Gio

Qis
qlos
qlp
Q1op
Qs
O0s
O2p
q20p

Oh
Cho
0 7]
020

Ry

Total internal moment in column unit about cefdra; at mid-length of column,
stiffener + plate unit with unit width s, positigéve compression for z g4n stiffener
Scaling first yield moment, M= Elr 6¢/L

Total internal axial load in column unit, stifien+ plate unit with unit width s,
positive in compression

Number of half waves in x-direction in wepmode

External axial load, positive in compression

Euler buckling load for perfect stiffener/plagumn unit, width s

Local buckling load for perfect stiffener/plat@wmn unit, width s, mode;®r ¢
Reduced modulus load of column unigu2 nrmPe

Limit point load from Koiter theory of Shanley cohn model

Squash load of column uni®: =0 A

Ultimate load capacity of column unit

General displacement vector for local cross-saatimodes in macro model, non-
dimensionless

General displacement vector for initial strese fraperfections in cross-section, non-
dimensionless

Dimensionless sideways deflection amplitude iffiester top, Eq. (64), Fig.11a
Dimensionless initial sideways deflection ampléuaf stiffener top
Dimensionless deflection of plate, torsionalfetier-plate mode, Eq.(65), Fig.11a
Dimensionless initial deflection of plate, torsabstiffener-plate mode
Dimensionless deflection amplitude at stiffenebwad height, Eq.(64), Fig.11b
Dimensionless initial deflection amplitude atfstifer web mid height
Dimensionless deflection of plate, stiffener weaate mode, Eq.(65), Fig.11b
Dimensionless initial deflection of plate, stiflarweb-plate mode

Short notation, £ Qs
Short notation, §= Guos
Short notation, £ Ops
Short notation, §= tpos

Number of half waves in x-direction in torsiomggimode

t
Parameter R, E—Wil), Eq.(69)
t, HTt

p

t
ParameterR ,, E—Wi), Eq.(69)
t, H

Stiffener spacing, unit width of column model

Initial postbuckling coefficient, slope of load+wature relation

Initial postbuckling coefficient, slope of loatieatening relation (axial stiffness)
Plate thickness

Stiffener web thickness

Stiffener flange thickness

In-plane deflection of plate in,xdirection, general notation

In-plane deflection of plate in xlirection, general notation

In-plane deflection of plate in xlirection, general notation

Relative end-shortening of column cross-sectemtroid, positive in compression
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u Relative end-shortening of column cross-sectamtroid, u= us in Figs.14,15,16,17
for convenience

u Relative end-shortening of column edges in anytpalbng stiffener height,
u=u=ugforz=z

Ur Squash axial shortening; m1eg L

\% Potential energy per unit volume+(A), Appendix Al

V unit Potential energy per unit

w Plate deflection normal to plate plane, geneodifition for component plate

Wo Initial plate deflection normal to plate plarstréss free initial imperfection)

Ws Local sideways deflection of stiffener web plalef{ection in y direction, i.e. normal
to web plane)

Wso Local sideways initial deflection of stiffener wplate (deflection in y direction, i.e.
normal to web plane)

Wp Local deflection of plate between stiffeners (defion in z direction, i.e. normal to
plate plane exclusive overall column deflection)

Wpo Local initial deflection of plate between stiffeaédeflection in z direction, i.e.
normal to plate plane exclusive overall column elgfbn)

W Overall deflection amplitude of continous Euletusnn and Shanley
columnw, = OL =k LL

Weo Overall deflection amplitude of continous Euletwrnn and Shanley
columnw,, =6, L =K, LL

X Co-ordinate in for macro model in stiffener diien, laying in plate middle plane

y Co-ordinate in for macro model in transvergedion, laying in plate middle plane

z Co-ordinate for macro model along stiffener welght, laying in stiffener web

middle plane, centroid z -szee Fig.10

X Co-ordinate in Shanley model, laying in centrofccross-section directed along
column axis, Fig.3

Y Co-ordinate in Shanley model column cross-sectsee Fig.3

Z Co-ordinate in Shanley model column cross-secser Fig.3

Xa General cartesian in-plane co-ordinate; 1, 2

X1 Cartesian in-plane co-ordinate

X2 Cartesian in-plane co-ordinate

X3 Cartesian co-ordinate perpendicular to plateglan

Zc Centroid of macro model unit; stiffener with fpliate width s, z co-ordinate measured

from plate middle plane, Fig.10.

Greek symbols

Symbol for incremental properties

€ Relative overall strain of columa,= us/L

€ Relative overall strain at local buckling, =0 /E

€ap General strain tensor, strain in any materaihpoi

€ap General membrane strain tensor, strain in ang pheddle planes

n Perturbation parameter, continuously increasindeargth parameter along

equilibrium path
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Ner

Reduced modulus factor in bending, non-dimensgmlapplies for geometrically
perfect panels

Relative end-rotation of cross-section ends, p@sgiving compression in stiffener
top, angle rotation of Shanley model

Initial relative end-rotation of cross-section snunperfection, always positive, initial
angle rotation of Shanley model

First yield rotationfr = or L/(Ec)

General bending strain tensor of plate middieesa

Relative overall curvature of Shanley modet; 6/L
Relative initial overall curvature of Shanley netck, = 8,/L
Poisson’s ratio

Non-dimensional global deflection amplitude= w /t,

Non-dimensional global imperfection amplitudg, = w, /t,
General stress tensor, stress in any materait poi
General membrane stress tensor, stress in argymlddle planes

Yield stress

Axial membrane stress in each component platedss-section, positive in
compression
Local ideal elastic buckling stress, local eiggne

Overall ideal elastic buckling stress, globglesivalue (Euler buckling stress)

Subscripts and superscripts

X AW QROoNMNH’

Parameter evaluated at arbitrary state |

Critical local stated, initial buckling in mode gor g

Geometrically imperfect unloaded stage |

Index for cartesian co-ordinatg,xx = 1, 2

Index for cartesian co-ordinatg, 8 = 1, 2

Bending

Reduced modulus

A bar over a symbol indicates value evaluatedidethe reference plane

Notation for derivatives

First order path derivatives of PE 9P/ 07)

Second order path derivatives of P% d° P/ 0/7%)
First order path derivatives of X dx /07 ), general notation

Second order path derivatives of % 0°x/d77%), general notation
First order partial derivatives of w with respeei (W , = 0w /0X) etc.

First derivative of potential energy with respect

Second derivative of potential energy with respec and g
Third derivative of potential energy with resptx) and gand ¢
Second derivative of potential energy with respeg ande
Second derivative of potential energy with respeq andk



Page: 74

University of Oslo
Department of Mathematics, Mechanics division 99-1
Buckling of stiffened Plates using a Shanley modeparoach

Vi Third derivative of potential energy with resptey , g ande
Vi Third derivative of potential energy with resptey , g andk

‘Vij‘ Stability determinant in local modes
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Appendix Al Potential energy of stiffened panel unit - Localdes g

Potential energ (¢,k,q,,q, per unit volume AL is

V(E’ K!ql’qz) =

+a,(q,)*
+a,0,0(a,)°
+a,,(0,)° +a,,(0y,) *(ay)

+b,(q,)*
+b3Q2o(Qz)3
+b,,(0,)% + by (05) % (d,)?

+c¢,(a,)%(a,)?
+ 031Q10q1(Q2)2 * C3,000, (q1)2
+ C103002000:02 + C55(00) * (A1) + C55(Ay0) *(01,)

+0., (Q1)2 U+0;,00100:U + g9 (q1)2 0+ 9,600100,0

+ 950 (02)° U+ G400200,U + 926 (0,)* 8 + G 600,00,0

+h u?+h,ud+h,6°

The geometrical coefficients are given the follogvsymbolisation

a, - fourth order gmode

a - third order g mode

& - second order;gnode

&> - second order imperfection mpode

b, - fourth order gmode

bs - third order g mode

b,; - second order,qnode

b,, - second order imperfection mpode
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c4 - fourth order g mode

Cz1 - third order imperfection;gpp, mode
Cs2 - third order imperfectionigpp, mode
C21 - second order imperfection g mode
C22 - second order imperfection g mode
C23 - second order imperfection g mode

The energy constants entering the potential enexpyession V are defined as

2
t "HL(D,* +6(1- v)(%) D,%)

_ E 3 5p 44, 1 2 2
a4 —m|:§85|_tp Rl Dl +g HLtWYl +bftf LY1j|
8, = 4a,
%tpSLSYYlRf +;2
_ E |96(1-Vv9) 1441-v°)
" V| 1 1 1)’
v +—IftW2LD14+—Jp(—j t,’LD,?
4 8(1+ V) H
a22:4'a4
b, = i{it;’sm;‘ D,’ +3 HLtWYZZ}
2V, 1128 2
b, = 4b,
;ztp?’LsYYszz +;2tW5HL D, +(
b = E | 96(1-Vv“) 96(1-v°) H
21 -\,
VvoI 2
R (Ej D,?
P 81+ V) \H
3 1 D2DRERE +— t Y, RIRE +
_E 64 ° 12t 10247 P Y% 1024
Ca =gy B° 2 1
vol +HLIW(:—3_FJY1Y2
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Cs3 = Cyy
12, 41 21 25 2 2 2 4 25 2 2 4 2 2
. E s atp D1 Dz Rl Rz +Mtp Y22R1 Rz +@tp Y33R1 Rz
21 " v, ‘P
2V +4HLt,, (% - %)YlY )

_ E 2 4 2p 2 2 4 2p 2
C,, —mtpLS[@tp Y22R1 R2 +@tp Y33Rl R2 }
Cy3 = Cy

Load coefficients

O =~ Z/E {%tpsitplelezuF +§Htw2YleF + 2bfthluF}
T
gluO = 2glu

Oy = %{tpsitpzof&zzeep ~Ht,°Y,8, 1—12 (3H - 4z.) - 2b,t,Y,0,.(H - zG)}

T

G0 = 205

9, = _2AE {tps%tpszRqu +2HtWY2uF}
T

gZuO = 292u

E 1 1
020 = 5, [tpsztpzDzszzzGGF - HtWZYZGFE(H - 2zG)}
T

9200 = 20

The h constants are not coupled to the displacewsgiable g or ¢ and vanish in
equilibrium equations. They are therefore of nacpeal significance are not given here.
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Parameters entering the energy constants

Y, =t,'D,’ /4
Y, =t,'D,* /8

<
N
|
7\
—
o]
+
k)
i
N
N
O
n
[e¢]
\\I
/ﬁxl
o)
|
©
N
[l
N—
N
+
O
S
N
]
N

4 2
Tt Tt
Yo = ((q-p)j D,’ ((q+p)j +D,’
L L
Rlzﬁl
tpHT[
RZZE
t,H
H=1p +h, +=
2 2

u
P ==
v < El®.
F
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Appendix A2 First order energy coefficients - Equilibrium etjons in local modes;gop

The principle of stationary potential energy, i.e.

ov

Y -0
0q,
LA
0d,

gives the following two equilibrium equations as

V,=0
V,=0

where the first order energy derivativesand \ is found as

Vv, = V, =

+4a,(qy)° +4b,(q,)*

+38, G ) +3b,0,0(0)°

+28,,0, + 28,( Gy)” q +2b,,0, + 2b,,(0,9* G
+2¢,0,(0,)° +2¢,0,(qy)°

+C31010(A2)* +2C;, G0 G G +25,0100,0, % C50x{ @)
+Cy1010U2002% 2 Cof G29° G +Cy1010U200:*+ 2 €4 A1)° G

+20,,0:€ + GuothE + 205 OK + Gp oChK +20,,0,€ + Qo0 0o + 20 AK + Gy o 0K
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Appendix A3 Single mode equilibrium equation in closed form
The single mode cases

a_V:O;qZ:O or a_V:O;qlzo

oa, od,
gives a closed form solution for the equilibriunuatijons
The case ¥= 0 and g= 0 in Appendix A2 is rewritten as

da 3 2a

- [(Zgluql + glqulo)s + (Zgleql + gleoqlo)K] = zazlql 1+_4 (q12 +_3q1q10 +—22q102)

b21 4a4
Using the relation between coefficients given irpApdix Al, i.e.
a, =4a,
a'22 = 4a4

gluO = 2glu
G100 = 2036

4a,

and substituting these into the equilibrium equattbe following compact form emerge

Le+L K=—D [14b, (g, + 30,050 + 20°)

4, + 0y

where per definition

LE - glu

Q

21
_ 9 e=u/L
1 K=0/L

—

K

L

4

(o
N
1
|

21

The case of onlygmode gives a corresponding equilibrium equatioexactly the same
form as for the gmode. The coefficients:|Lx, and b are then defined in terms of the

corresponding b and g parameters given in theibquiin equation ¥ = 0.
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Appendix A4 Second and third order energy coefficients

Second order energy derivatives

V11 = V22 =

+12a,(q,)? +12b,(q,)’

+ 68,00, +6b,0,,0,

+ 2a21 + 23-22 (Qm)z + 2b21 + 2b22 (Q2o)2 V.=V, =
12 — 21—

+4c,q,0
2 2 4412
+20,(%) +20,(@) + 23,000, + 2C3,0,00;
* 20500204, * 2050100, 4, 0l
™M1
+ 2(:22 (qZO)2 + 2023 (q10)2
+29,,€+29,4K +29,,& + 20K

Third order energy derivatives

Vi = Vo =
+24a,0, +24b,q,
+ 6350, +6b,0,,

V112 = V211 = V121 = V221 = V122 = V212 =
+ 4C4q2 + 2032q10 + 4(':4ql + 2C31q10

Energy derivatives with respect toagd control parameters u aéd

Vi =20,,0; + 09340010 Vie =20,
Vik =204
Vi =20550; + 9160010
Vo =20,
Ve =20,,0, 9240020 Vox =205
Vo = 20560, + 960020 Vi =0

V12K = O
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Appendix A5 Eigenvalues in local modes

The stability of an equilibrium state is explorgddinecking the sign of the stability
determinant D %Vij‘ . For the present local two degree of freedom rhibdestability

determinant is

Vll V12
V21 V22

D= =V Vy, - V122

A positive value indicates a stable equilibriuntestahile a negative value indicates an
unstable equilibrium state.

For classical eigenvalue calculations the stahilftthe perfect flat form is to be investigated,
i.e. the energy coefficients;\s to be evaluated for

q, =0
9, =0
Oy =0
Oz =0

From the expressions given in Appendix A4 this githee following condition for initial
buckling of the flat plate into the local bucklingpdes

vV, O
0 V,,

D= =V,V,, =0

which have two solutions

V,=0
V,, =0

This means that the eigenvalues in the two localea@re not coupled. For the case of pure
uni-axial compression, i.&.= 0 is prescribed, the eigenvalues for uni-axiaireening are
found as

__9u
fa =, o, =Ee
" with corresponding nominal buckling stressés  —
e = _9u Oc, = Egg,
Cc2 b
21

in mode g and g respectively. In the present two-degree of freeduodel the eigenvalue in
each mode is minimised with respect to the wav&ling parameter g and p respectively.
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Appendix A6 Macro material coefficients — Local compatilyildonditions

The load-shortening-deflection amplitude relatians

N(e, K,0,,0,) = Ky, e + K, K+ By, (7 +20,0,5) + By, (05 + 20,0,)
M(€,K,0y,0,) = K, € + K, K + By, (07 + 20,0,) + B, (O3 + 2,0,5,)

The linear constants are defined as

Ky =EA;
K, =0
K21L =

L _
K22 _EIT

where A is the total cross-sectional area apdlthe moment of inertia about the centroid of
the cross-section of one unit consisting of orféesier with associated full plate width. The
K12~ = Ko1" coefficients are zero since the stiffness propsrire calculated about the
centroid of the cross-section.

The geometrical constants coupled to the non-line@ss-sectional buckling modesand g
are defined as

3 2

E. . m)|1t tba [t = z(nqj
B,=——t, 2 —||==2|(h, +2)°-| 2| [+b,t, |[-—t SR —
11 4W(Lj|:3H2[(w 2) 2 f*f 8 w 1 |_

2 2
B, = _Etw3(mj h, _%tp?’stz(%)

e 52 o 4] i 4]
4 L) |4H 2 2 3H 2 2

E T 2 E ™ 2
2 2 2
_th [Tj (H —Zg )bftf +§tp (Tj Rl ZthS

_ E 3( TP 2 1 t t E 2 2( TP 2
822__§tw (T) l:a((hw +Ep)2_(3p)2 _Zehw _gtp SRZ T Zth

The integers g and p are the wave number that nsaithe local eigenvalue in theand g
mode respectively.
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Appendix A7 Macro material coefficients — Solution for petfgeometry

Single mode solution in;gqnode

1. 9

K.=K.,"-=B, 2
11 11 51 a,

1. 9
K -=-B,, 2
12 5 D1 a,

1 0.,
K21 _5821 az

Single mode solution in,gnode

1. 0,
Kll = K11L _EBlzb_z

4

1.9
K12 = _EBlzb_ze

4

1, 9.
K, =-=B, b2
21

I\)

Coupled solution in mode, @nd ¢

B
Ky =Ky _{—lcl/b(b U0 ~20.,) + W(—gm _292u):|
4 4/, 3y
B B,
K. =- 11 12 C, -9
12 I _C4/b (b gZG gle) 4b —C4/a (a4 gle gZG)i|
B B,
Ko =~ ﬁ b, 0~ Zglu) w(_gm 292u>j|
L 4

BZl

B
K,, = K22L —[W(b O —203) + 4[)_—2024/4 _919 2929)}



