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Abstract
With the emergence of IoT and microcontrollers in general, as well as ad-
vancements in machine learning processes, the desire to continuously au-
tomate and process the world on smaller and smaller mediums has grown
with the shrinking of computational power. Known libraries exist for devel-
oping ML models for inference on devices, however, the act of decentralizing
the entire training process to devices is still in its infancy. As such this task
seeks to address the potential of deploying such machine learning capa-
bility on microcontrollers and explore what improvements can be gained
by leveraging federated learning to have small devices cooperate in creat-
ing a large enough, and sufficiently accurate mode for different use cases.
The thesis seeks to test that primarily by running on-device LSTM model
training on PM10.0 data gathered by NILU, however briefly explores the
potentials of on-device training of DNNs, and CNNs for image classifica-
tion specifically.
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1 Introduction
1.1 Overview
By leveraging advancements in artificial intelligence (AI) and cloud com-
puting as well as in microcontrollers and the Internet of Things (IoT), in-
dustry 4.0 has exponentially improved operational and manufacturing pro-
cesses. Practical application of edge IoT in particular has been improved
by having the data provided by sensors more accurately interpreted by ma-
chine learning (ML)-driven cloud service deployments. Decisions thereafter
dictate the behavior of actuator microcontrollers or can serve other ana-
lytical purposes. Automation of complex tasks using such IoT nodes has
naturally shown its benefits in terms of efficiency, ultimately resulting in
monetary gain for adopters of the technology. However, while the concept
has proven beneficial for many such operational and manufacturing pro-
cesses, the practical application of the technology is still in its infancy. As
such, a number of issues and areas in need of improvement have been iden-
tified. Relevant issues include those related to data privacy as centralized
storage of data has proven to be vulnerable to leaks, in addition to the issue
of lacking training data necessary for achieving viable AI models.

In the case of IoT devices controlled using centralized artificial intelli-
gence (AI), standard issues suffered include the lack of data set necessary
for viable model generation, as well as the latency between sensors, cloud
service, and edge device, as well as the privacy implications involved in
traditional centralized deployments[29]. Therefore, advancement in exist-
ing services can be achieved by improving existing processes or changing
the overall architecture of existing implementation to eliminate the issues
entirely.

1.2 Research Questions
The project will revolve around creating a test bed for deploying federated
learning on resource-constrained devices. As available libraries for infer-
ence do not provide functionality for training on microcontrollers, the first
and foremost requirement is creating a system that allows for efficient on-
device training of common types of neural networks. The three types of
neural networks explored for on-device training are deep neural networks,
Convolutional neural networks, and recurrent neural networs, focusing in
particular on long short-term memory. These were chosen as they cover
several ML use cases well. Finally, FL will be explored as the means of
training the models, and aspects of model compression before and during
FL, as well as data distribution, number of participants, and other vari-
ables, will be evaluated to find the optimal setup. In the end, parameters
for on-device training and the FL context and training parameters will be
assessed to conclude the viability of tiny and federated ML, and how to best
deploy it.

Because of the constraints faced by microcontrollers in the form of lim-
ited storage and computational ability, the extent to which fully trainable
models can be deployed on modern IoT devices is in need of this exploration
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as sacrifices in terms of data quantity, model size, number of parameters,
and data types might be needed to obtain the best possible outcome. This is
of course necessary as the model and data would have to fit on the device,
but it is also especially necessary as fitting the model in SRAM signifi-
cantly reduces power usage[10] and increases computational speed by not
needing to access parameters in flash memory. With the emergence of fed-
erated learning, privacy has become more secure by removing the need for
the transferal and central storage of data[18], the added benefit however is
the access to more data through collaborative effort and potentially having
varying parameters. As such, exploring the potential of offsetting poten-
tial on-device training optimization trade-offs through federated learning
is necessary to comprehend the limits and potential of ML on microcon-
trollers.
Therefore the research questions are as follows:

1. Can sufficiently accurate models be generated from distributed ma-
chine learning on resource-constrained devices

2. What are the potential benefits and drawbacks of combining federated
learning and tiny machine learning?

3. What factors impact the system performance for using federated learn-
ing in IoT applications and how can the system performance be opti-
mized?

1.3 Methodology
The research starts with a literature study to understand existing work
on model compression, Federated Learning, and Tiny machine learning,
respectively, and together to understand the state of the art in FL using
microcontrollers. Thereafter the framework for on-device training was de-
veloped in an iterative process as meetings with the supervisor were held
roughly bi-weekly, which served as points to re-evaluate the path forward.
In order to prioritize the order of tasks to complete, a simple scrum board
was utilized to keep track of what had to be done and at what point func-
tionalities were in the development. As the development of the project
started, certain focuses changed. Due to the lack of on-device training li-
braries for microcontrollers, the priority of the thesis shifted to developing
that after having explored the existing libraries which are used only for in-
ference, and realizing their limitations. As such creating an extensive test
bed for on-device training for microcontrollers compatible with federated
learning became the core focus.

The data used during training of the ML algorithms include secondary
sourced real-world data from NILU for testing of LSTM training, while
CIFAR-10 was used for testing of DNN and CNN training. The federated
learning process was implemented and tested by running the on-device
training on several Arduino and Sparkfun devices connected to the com-
puter through the serial port with the FL happening through a Python
script working as a server. For the sake of learning, simulations were also
run using the same code, with an excessive number of devices with various
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distributions of data to acquire knowledge unobtainable with the physical
test bed.

In order to evaluate the performance of the models tested, various com-
mon metrics for evaluating neural networks are employed. LSTMs for pre-
dicting digits on time series data use the Mean Squared Error loss function,
and Mean Average Percentage Error as metrics for understanding the ac-
curacy. DNN and CNN both rely on accuracy, F1 score, precision and recall
to gain an understanding of their performance. Finally, federated learn-
ing uses the same metrics for garnering an understanding of the model
performance after each weight averaging. However, as it is decentralized,
other metrics are needed to evaluate the efficiency of the communication.
As such, metrics regarding communication cost and convergence statistics
are based on the number of federated learning rounds and local episodes.
Thereafter, understanding the implications on power consumption is neces-
sary to estimate the actual real-world applicability of the neural networks
as both model size and computation complexity can be represented in the
power consumption of the microcontroller. The performance of the model
can further be understood when taking the power into account.

1.4 Contribution
1. A library bringing machine learning capabilities to resource-constrained

IoT nodes

2. Establish reasons for why federated learning in the context of IoT can
be preferable to centralized learning with an edge-based model

3. Illuminate potential trade-offs to costs, performance, and accuracy
when optimizing aspects of on-device training

1.5 Structure of Thesis
Chapter 1: Introduction The introduction explains the purpose
of the thesis and a general overview, highlighting the research questions,
explaining the methodology, and listing the contributions.

Chapter 2: Background The background chapter covers essential
theory in relation to ML and FL, as well as explains aspects of micro-
controllers in general and their viability for use in complex computation.
Thereafter, existing works on similar topics both regarding on-device train-
ing alone and FL in general are assessed. Finally, the overall situation of
FL and ML on microcontrollers is discussed, addressing requirements for
its viability.

Chapter 3: Related Works An analysis of related works regarding
on-device training of machine learning models for microcontrollers, general
state-of-the-art training strategies in the context of both centralized and
federated machine learning, and finally, compression methods for machine
learning models are addressed.
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Chapter 3: Proposed Framework The implementation is de-
scribed to illustrate what was done to achieve the results of the thesis.
Reasons for choices regarding implementation, neural networks used and
their parameters, and choices in algorithms like compression are explained.
Finally, the unaddressed work is summarised.

Chapter 4: Evaluation The chapter covers the tests done and re-
sults generated, showing different effects of adjustments made to the vari-
ous parameters involved in the training of neural networks and in different
FL contexts. Based on the data gathered, a final discussion and evalua-
tion of the viability of tiny ML in conjunction with Federated learning for
training sufficiently accurate models for common ML problems, using DNN,
CNN and LSTM to test image recognition and time series prediction will be
done for to further extract information from the results.

Chapter 6: Conclusion & Future Work Finally, the thesis will
conclude with an explanation of the selected best approach to the scenar-
ios, then address the parameters for on-device and federated learning re-
spectively, and their effect on performance and quality, in addition to a
guideline to potential trade-offs possible for gains in specific areas. Then
in the end insight will be provided into future work which would be ben-
eficial to pursue after the thesis, particularly covering ways of extending
this work, addressing weaknesses present, and other strategies for train-
ing which should be addressed.
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2 Background
In order to address the specific issues related to the on-device deployment
of machine learning and the potential of its use together with Federated
learning, some fundamentals need to be understood. Technical aspects
of machine learning are briefly explained to provide an understanding of
the architectures to be deployed on the devices, as well as alternatives in
parameters, what potential benefits they pose, and the potential costs of
choosing them. Secondly, the known constraints of microcontrollers are ad-
dressed, and known optimization strategies for decreasing ML model sizes
to alleviate these issues are described, as well as methods for reducing the
quality loss of deploying such optimization strategies. Finally, the state
of training paradigms like centralized learning and federated learning are
presented, highlighting features that might make them more or less de-
sirable based on the deployment circumstance, focusing on the use-case of
deployment for microcontrollers. Additional information like relevant tech-
nologies, evaluation metrics, and common microcontrollers are also briefly
addressed for a complete overview of the fundamentals crucial to following
the approach in the thesis.

2.1 Artificial Neural Networks
An artificial neural network is a computational model inspired by the struc-
ture and function of biological neural networks, which are the basic build-
ing blocks of the brain. It is a powerful tool for solving complex problems in
various fields, including pattern recognition, image and speech recognition,
natural language processing, robotics, and control systems. The structure
of an artificial neural network consists of layers of interconnected nodes,
called neurons, which process and transmit information. Each neuron re-
ceives input from multiple other neurons, performs a nonlinear transfor-
mation of the input, and produces an output that is transmitted to other
neurons in the next layer. The connections between neurons are weighted,
which allows the network to learn from data by adjusting the weights to
minimize a loss function. Training an artificial neural network involves
feeding it with a set of input-output pairs and adjusting the weights of the
connections to minimize the difference between the predicted and actual
outputs. This process is typically done using a variant of the stochastic gra-
dient descent algorithm, which updates the weights based on the gradient
of the loss function with respect to the weights.

2.1.1 Deep Neural Networks
A deep neural network is a specific type of ANN which is built up of hidden
layers between the input and output layers. The hidden layers consist of
weights and a bias where each neuron is connected to the former and latter
neuron layers. As a result, the number of parameters is large relative to the
training data and may result in overfitting due to the complexity as it mem-
orizes training data instead of patterns. It also has a black-box nature due
to the difficulty of understanding how it reaches its conclusion. However,
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Input
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layer

Output
layer

Figure 1: A simple DNN with input size of 4, 5 nodes in hidden layer, and
single output node

due to the simple architectural design and computation, it is a relatively
reliable and easy way of creating an ANN.

2.1.2 Convolutional Neural Networks
A Convolutional Neural Network (CNN) is a type of deep neural network
that is commonly used for image classification, object detection, and other
computer vision tasks. A CNN is designed to recognize patterns and fea-
tures in images by using a special type of layer called a convolutional layer.
This layer applies a set of filters to the input image, which extracts features
such as edges, lines, and corners. The output of the convolutional layer is
then passed through a non-linear activation function, such as ReLU (Rec-
tified Linear Unit), to introduce non-linearity into the model. The output
of the convolutional layers is then passed through one or more fully con-
nected layers, which perform the final classification task. The fully con-
nected layers take the output of the convolutional layers and transform it
into a prediction for each class in the classification task. CNNs have been
very successful in image classification tasks, achieving state-of-the-art re-
sults on large datasets such as ImageNet. They have also been used for a
variety of other tasks, including object detection, image segmentation, and
even natural language processing.

2.1.3 Recurrent Neural Network: Long Short-Term Mem-
ory

LSTM stands for ”Long Short-Term Memory,” and it is a type of recurrent
neural network (RNN) that is designed to handle the problem of vanishing
gradients that can occur in traditional RNNs[13]. An LSTM network in-
cludes a memory cell that can store information over long periods of time.
There are three main gates that control the memory cell, the input gate,
the output gate, and the forget gate. These gates control the flow of in-
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Figure 2: Basic design of an LSTM cell

formation in and out of the memory cell and give the network the ability to
selectively forget or remember information based on what is needed. LSTM
networks have been successful in a vast variety of applications, including
speech recognition, language modeling, and machine translation. In addi-
tion, they are particularly well-suited for tasks that involve sequences of
data, such as predicting the next word in a sentence or the next frame in a
video, or the next number in a sequence. The training process of an LSTM
typically involves using backpropagation through time (BPTT), a variant of
backpropagation that takes into account the temporal nature of the data.
The way BPTT works is by unrolling the network through time and cal-
culating gradients at each time step, which are then used to update the
network’s parameters when the backpropagation takes place.

2.2 Activation Functions
Activation functions are important parts of neural networks. They can de-
termine the output of a node when given input and can be applied in dif-
ferent scenarios based on their properties. Their practical effect can range
from assisting in convergence speed to allowing the network to be trained
in the first place. Some activation functions like Sigmoid and softmax are
more commonly applied on the output layer as Sigmoid works well for bi-
nary and multilabel classification due to the input resulting in a certainty
percentage for every output, while softmax better handles multiclass clas-
sification. Meanwhile, other activation functions are more commonly seen
applied to the hidden neurons like ReLu in CNN for assisting complex pat-
tern recognition and Tanh in the output gate in LSTM for determining the
output from the cell state which can be any real number.
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2.2.1 Sigmoid

σ(x) =
1

1 + e−x
(1)

The sigmoid activation function is a mathematical function that is often
employed as the non-linear activation function in neural networks. It maps
any input value to an output value between 0 and 1 based on an S-shaped
curve, making it particularly useful in applications where the output needs
to be constrained within a specific range. It is often used in neural networks
to introduce non-linearity into the model, allowing it to learn and represent
more complex relationships between the inputs and outputs. Specifically,
the sigmoid function is typically applied to the output of each neuron in
a neural network, which allows the neuron to produce an output that can
take on continuous values between 0 and 1. As an example, if the input
is close to negative infinity, the sigmoid value approaches 0, if input is 0
sigmoid returns 0.5, and digits close to infinity return 1. This allows the
network to learn more complex decision boundaries and produce more nu-
anced outputs. Despite its viability, the Sigmoid function has some draw-
backs, particularly with respect to vanishing gradients, which can occur
when the input to the function is very large or small. This can make train-
ing neural networks with Sigmoid activation functions challenging, partic-
ularly in deep neural networks where the gradient can become very small
as it is propagated back through the layers. This can however be mitigated
to some extent with careful tuning and regularization.

2.2.2 Softmax

softmax(z)i =
ezi∑K
j=1 e

zj
(2)

The softmax activation function is commonly used in neural networks for
multiclass classification problems. It is a generalization of the sigmoid ac-
tivation function and maps a K-dimensional vector of real values to a sim-
ilar dimension vector of values between 0 and 1 that add up to 1. It is
often used as the final activation function in a neural network for multi-
class classification problems. Specifically, the output of the network’s last
layer is fed through the softmax function, which produces a probability dis-
tribution over the possible classes. The class with the highest probability
is then selected as the predicted class for the input. The softmax function
is particularly useful for problems where the output needs to be a prob-
ability distribution over a set of classes. It is also differentiable, which
makes it suitable for use in backpropagation-based learning algorithms,
such as stochastic gradient descent. However, a drawback that softmax
has is that it can suffer from numerical instability when the input values
are very large or very small, these issues can also, like with sigmoid, be
mitigated through regularization techniques and careful implementation.

2.2.3 Rectified Linear Unit
ReLU(x) = max(0, x) (3)
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The Rectified Linear Unit (ReLU) activation function is widely used non-
linear activation function and is a simple linear function that returns the
input value if it is positive, and zero if it is not. It has several advan-
tages over other activation functions. First, it is computationally efficient
to compute, second, it promotes sparsity in neural networks, which helps
in preventing overfitting and improve generalization performance. Third,
it does not suffer from the vanishing gradient problem in other functions
like sigmoid and tanh. It also has drawbacks however, with one being the
”dying ReLU” problem, which can occur when a large portion of the neu-
rons in a network become output zero for all inputs, effectively becoming
”dead”. An example of when this dying ReLu problem can happen is when
the weights of the neurons are initialized in such a way that they push
the neurons into the zero region of the function, and the training process
doesn’t help the neurons recover. Alternatives to standard ReLu to address
this problem have been made, i.e. leaky ReLU, where a small non-zero out-
put for negative input values is allowed, and the exponential ReLU, where
the transition between the zero and non-zero regions is smoother.

2.2.4 Tanh

tanh(x) =
ex − e−x

ex + e−x
(4)

2.3 Gradient descent algorithms
The gradient descent algorithm utilized by a model serves as a core feature
in how the training process is handled, as it provides an essential mecha-
nism for learning from data. These algorithms are optimization procedures,
designed with the purpose of iteratively changing the weights of a model to
decrease the loss from the loss function[25]. For example, in an image clas-
sification problem using supervised learning, the loss function quantifies
the discrepancy between the predictions made by the model and the ground
truth values. Finding the model parameters that decrease this discrepancy
as much as possible becomes the aim of the algorithm, enabling the model
to learn from the data. As such leveraging the loss function’s gradient, or
the first derivative is an integral part of the process. The purpose of the
gradient descent is to provide the direction of the steepest ascent, meaning
the direction where the loss output increases the fastest, then take a step in
the opposite direction. The goal is, therefore, to take a step in the steepest
descent incrementally until the minimum is reached. When a minimum is
eventually reached there is still no guarantee that the optimal model has
been achieved as it is uncertain whether the minimum has been met is
the global or a local minimum. Stochastic gradient descent is the most ba-
sic form of this gradient descent but other functions like RMSProp, which
introduces an adaptive learning rate, and ADAM which is Momentum in
addition to adaptive learning, have been developed to explore better means
of finding the global minimum. These are presented below.
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2.3.1 Stochastic Gradient Descent
wt+1 = wt − η∇f(wt) (5)

Stochastic gradient descent (SGD) has emerged as a popular optimization
technique for training machine learning models, deep neural networks in
particular. It is high in both efficiency and robustness in dealing with large-
scale datasets, which are common in modern ML applications. It differs
from traditional gradient descent, where the entire data set is processed
to compute the gradient of the objective function, SGD approximates the
true gradient by considering a random subset, or mini-batch, of the data at
each iteration. This randomization introduces inherent noise into the op-
timization process, reducing the computational burden and enabling SGD
to escape shallow local minima and saddle points that may hinder the con-
vergence of other optimization methods. Furthermore, SGD can be easily
combined with momentum-based techniques, adaptive learning rates, and
regularization strategies to improve its convergence properties and gen-
eralization performance. Despite its simplicity, SGD has proven to be a
powerful tool for solving complex learning problems, contributing signifi-
cantly to the advancement of state-of-the-art machine learning algorithms
and applications.

2.3.2 RMSprop
E[g2]t = ρE[g2]t−1 + (1− ρ)g2t

wt+1 = wt −
η√

E[g2]t + ϵ
gt

(6)

RMSprop, short for Root Mean Square Propagation, is an adaptive opti-
mization algorithm that has gained significant attention in the field of ma-
chine learning, particularly in training deep neural networks. Introduced
by Geoffrey Hinton, RMSprop is designed to address the challenges posed
by the non-convex optimization landscapes that are typical in deep learn-
ing problems, such as vanishing or exploding gradients and poor condition-
ing. The central idea behind RMSprop is to maintain a running average
of the squared gradients for each model parameter and to normalize the
parameter updates with the square root of these averages. This normal-
ization effectively adapts the learning rate for each parameter, allowing
the algorithm to make larger updates for infrequently updated parameters
and smaller updates for those that change more frequently. As a result,
RMSprop exhibits a more stable and efficient convergence behavior, par-
ticularly in high-dimensional, non-convex optimization problems. More-
over, the algorithm is relatively simple to implement and has only a few
hyperparameters, making it easy to incorporate into existing optimization
frameworks. The widespread adoption of RMSprop in training deep learn-
ing models has facilitated the development of more accurate and robust
algorithms, which has in turn led to substantial advancements in various
applications, including computer vision, natural language processing, and
reinforcement learning.
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2.3.3 ADAM
mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

wt+1 = wt − η
m̂t√
v̂t + ϵ

(7)

The ADAM (Adaptive Moment Estimation) optimizer, proposed by Kingma
and Ba, has rapidly become a popular choice for training machine learn-
ing models, particularly deep neural networks, due to its remarkable effec-
tiveness and efficiency in handling complex optimization problems. As an
adaptive optimization algorithm, ADAM combines the advantages of two
key techniques: momentum-based methods and adaptive learning rates,
which are exemplified by RMSprop. By maintaining separate running av-
erages of both the first moment (mean) and the second moment (uncentered
variance) of the gradients, ADAM dynamically adjusts the learning rate for
each model parameter throughout the optimization process. This adaptive
behavior enables the algorithm to navigate high-dimensional, non-convex
landscapes with greater ease and precision, often converging faster and
more consistently than other optimization methods. Furthermore, ADAM
is robust to various gradient-related issues, such as sparse gradients, that
can impede the training of deep learning models. The algorithm’s simplic-
ity and minimal computational overhead make it an attractive choice for
a wide range of applications, from computer vision and natural language
processing to reinforcement learning and generative modeling. The success
of ADAM in both research and industry settings highlights its considerable
impact on the development of state-of-the-art machine learning techniques
and underscores the importance of continued advancements in optimiza-
tion algorithms for the future of artificial intelligence.

2.4 Microcontrollers
The battery is as with any device an issue that persists with technological
advancement, and with a greater workload placed on the microcontrollers,
it is a special issue in need of being addressed. A coin battery commonly
used for low-power IoT devices like the Sparkfun Edge 2 and the Arduino
Nano 33 IoT is CR2032, it might hold 2,500 J which would last the device
roughly a month if running at 1 mW[29]. Since it is desirable to develop
something functional on several different devices and thus the potential
difference in battery size, making sure that the neural network is able to
fit directly on SRAM is crucial for ensuring QoS with heterogeneous tech-
nology due to the difference in power requirements based on ease of access
to data as discussed in section 2.4.1. As power consumption is an inconve-
nient bottleneck for the deployment of wireless or low battery size projects,
the development of on-device functionality needs to focus on memory usage
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and computational costs with a focus on optimising when possible. Bat-
tery issues can also come in the form of communication costs however as
mentioned in Section 2.6.2, FL might provide regular updates.

2.4.1 Limitations
Memory The difficulties of memory on embedded devices in terms of
read-only storage and SRAM does not only concern the ability to deploy the
model on the device, but also the capacity at which the device is able to run
inference on the model. For optimising battery usage it is desirable for the
network to fit onto the SRAM as 32bit SRAM access requires 5pJ, while
dynamic RAM (DRAM) requires 640pJ[10]. Tensorflow Lite Micro has been
developed with devices with low SRAM in mind, having been designed to
work on devices with as low as 4 KB to 20 KB SRAM[29], but the design of
the application decide footprint and engineering decisions can have signifi-
cant influence. Memory optimisation consequently becomes a core principle
in lowering battery usage, but will also ensure less computational cost pos-
sibly resulting in faster on-device training.

Computational power Like memory and battery, computational
capabilities might vary which affects the speed in particular of training.
While development on-device must be done with all attributes in consider-
ation for the best possible QoS, the FL algorithm might be sub-optimal with
devices with particularly low computational power as such stragglers stifle
model updates. Some specific devices or devices in special circumstances
might disproportionately affect the speed of the model generation or up-
dating as FedAvg attempts to provide a guarantee of opimisation by syn-
chronously training a joint model[18], meaning that in a large network of
devices, specific subsets will have more significant effects. Computational
power is therefore something to take into account in the implementation
of the FL aspect since different approaches to dealing with slower devices
yield different benefits. Abandoning stragglers after a certain timestamp
can be an option, or to have specifically dedicated devices responsible for
learning whitelisted, or finally to select a random subset responsible for
model updates instead of all in hopes of minimizing chances of being af-
fected by stragglers. Accuracy would then need to be compared to time and
energy cost saved, and privacy might have to be addressed if some devices
are too prevalent in the training subset potentially causing unintentional
memorization to develop as described in 2.6.2. Computational power, there-
fore, needs to be addressed when developing the on-device functionality and
taken into account in the overall system.

2.4.2 Optimizations
When developing computationally complex tasks on microcontrollers there
are several possible ways of optimizing processes which might rarely be con-
sidered in systems with fewer constraints. Independently from strategies
tailored for ML model compression, which are more thoroughy discussed in
section 2.5, some strategies exist for general arithmetic which serves as a
foundation for machine learning optimizations, but are also powerful when
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used independently. These strategies include optimizing for efficient mem-
ory use, employing fixed-point arithmetic, using function inlining,

Efficient memory usage As mentioned previously and described
further in section 3.3, breaching the SRAM of the device and relying on the
flash memory significantly increases the power consumption while slowing
down computation[10]. Various methods for having efficient memory us-
age are therefore necessary, most of which encompass good code practice to
not be wasteful of resources, while architecture-specific optimization might
also be available. Using appropriate data types can reduce memory require-
ments significantly as 32-bit floats might be sufficient rather than 64-but
floats, in addition, limiting global variables can be smart as they can tie up
memory unnecessarily while local gets freed when out of scope. Using the
’PROGMEM’ keyword on AVR architecture for read-only variables can be
smart to place less frequently used variables in flash memory instead of in
SRAM so that there is more free space for more frequently used variables,
but since it does increase access time not all constant variables benefit from
it necessarily. Minimizing the dynamic memory allocation or reusing ex-
isting buffers naturally mitigates excessive memory usage as performing
operations without intermediary new dynamically allocated variables re-
moves unnecessary initialization and computation steps, while similarly,
not leveraging sufficiently sized existing also requires initialization and
thus takes up the memory until deallocation takes place. In addition, when
calling functions and passing by value, the passed data is copied, thus tak-
ing up twice the space necessary in many cases, though can be mitigated
by passing by reference when appropriate.

Fixed-point and Integer arithmetic While microcontrollers tend
to have a floating point processing unit available, for example Arduino nano
33 BLE through its ARM Cortex-M4 CPU, generally using integer arith-
metic is faster. Fixed point arithmetic can be beneficial when there is no
need for high-precision arithmetic as it can be faster and require less power
than floating point arithmetic. It can be used to make the computation of
floats more efficient by instead representing them as integers while dedicat-
ing a number of bits in the integer as the decimals, for example by having
an 8-bit integer with the 4 left bits signifying integers and the 4 right bits
representing the decimals of the original floats. The calculation of the float
based on designated bits is shown in equation 8, where for example the
binary point number ’0011.1100’ is the same as ’3.75’.

D =

n∑
i=1

bi × 2−i (8)

The issue with such arithmetic however is that the range and precision is
very limited compared to using floating-point numbers and are determined
by the bits allocated, making them less appropriate for applications where
high precision or large dynamic ranges are required.

Instead of allowing for representing floating-point numbers at all in in-
tegers, the numbers can be fully turned into integers which makes the com-
putation more straightforward, while benefiting from the gains in computa-
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tional performance. Examples of achieving this integer arithmetic include
just multiplying the number by a scaling factor to make the n-th decimal
the first digit and then doing the arithmetic on the integer before dividing
and having to obtain the floating-point number. In additon, quantization,
which is further discussed in section 2.5.2, is a means to map a range of
values to a discrete set of values, enabling the developer to map floats to
integers. This is commonly used for inference on ML models as it both
reduces size and enables leveraging of the faster integer arithmetic on mi-
crocontrollers.

Function Inlining When calling functions there is a certain amount
of overhead required due to the need to jump to the function’s code, push
the parameters to the stack, pop the return address off the stack, and fi-
nally restore the state when the function returns, these overhead elements
are all eliminated by inlining the function. The inlining instead replaces
the function with the function body itself, which also allows for better op-
timization of the code by the compiler. It can also benefit the program by
improving the cache locality as the code that is executed is kept together in
the same place, which reduces instruction cache misses. The drawback of
using inlining however is that it might introduce bloat as it increases the
size of the executable due to the function call being replaced with its code.
As such, if the function is too large or used a significant enough amount of
times, the inlining might be detrimental to the overall performance.

Loop Unrolling In neural networks, there is a lot of calculation us-
ing tensors, implementing the operation, therefore, requires a significant
amount of nested loops as arrays of different dimensions need to have their
individual values accessed. Looping, however, comes with some overhead
due to the instructions determining whether to stop or continue, this in-
cludes initialization when setting up the loop counter, condition checking to
determine if it should continue, counter update, and branching when loop
condition is met. A means to remove this overhead is loop unrolling which
consists of duplicating code to reduce the number of loop iterations[1]. In
an example where a program loops over a function 4 times, the code can
either be copied 4 times with relevant indices declared manually, or have
the loop the operation twice on index and index i+1, making it only have to
loop 2 times instead. Having the loop body executed multiple times per it-
eration, therefore, negates the potentially unnecessary control instruction,
however, it comes at a cost. Loop unrolling means duplicating the code lead-
ing to more memory consumption at the cost of potentially minor efficiency
gains. Therefore when considering loop unrolling, it is wise to not employ it
where the code body to duplicate is large, especially as a larger code again
can lead to an increased number of cache misses as well as the memory
consumption rising.

2.4.3 Arduino
The Arduino platform has become central in microcontroller-based hard-
ware development with its open-source nature, allowing a multitude of cre-

14



ative, educational, and professional innovations through its ease of devel-
opment. Its design, characterized by a physical board hosting a microcon-
troller, is complemented by a set of input and output pins that provide an
interface for an array of sensors, actuators, as well as other peripheral de-
vices, making it a versatile choice for various applications. The platform’s
strength also lies in its integrated development environment (IDE) due to
its user-friendliness. This allows developers to write code in a high-level,
simplified C++ language, upload it to the Arduino device, and execute the
program. The IDE is versatile in that it promotes accessibility, makingf
Arduino serve as a suitable starting point for those exploring embedded
systems development, while also offering enough depth for seasoned devel-
opers to build complex systems.

The Arduino Nano 33 BLE, a variant of the Arduino platform, covers all
of these features in a more compact form while adding support for Bluetooth
Low Energy (BLE) communication. The BLE capability expands the range
of possible applications, particularly ones related to the development of IoT,
where the need for low-power, short-range wireless communication is espe-
cially important, commonly with an edge device. Furthermore, the Arduino
Nano 33 BLE contains the nRF52840 microcontroller from Nordic Semi-
conductor. It is very power-efficient, while boasting a 64 MHz clock speed,
1MB of flash memory, as well as 256KB of SRAM, offering a significant leap
in computational capabilities for IoT applications. It also provides an FPU
and digital signal processing instructions, making it particularly suitable
for running complex algorithms such as those used in machine learning.

2.4.4 Sparkfun
In addition to Arduino, SparkFun has become a prominent participant in
open-source hardware contributing to the democratization of the develop-
ment of electronics and embedded systems. They offer a broad range of
products, from sensors and microcontroller boards to robotics and machine
learning kits. One of SparkFun’s notable development boards in the realm
of microcontrollers and machine learning is the SparkFun Edge Develop-
ment Board, which is powered by the Apollo3 Blue microcontroller from
Ambiq. The Apollo3 Blue comes with 1MB flash like the arduino, but pro-
vides 384KB SRAM. It is especially significant in this realm as it was de-
veloped with power efficiency in mind, making it particularly suitable for
edge computing and ML applications where power consumption is such a
critical consideration. The Apollo3 Blue microcontroller integrates a high-
performance ARM Cortex-M4F processor, which by default runs at 48MHz,
but is capable of 96MHz with its burst mode, while also offering a low-
power mode that consumes less than 5µA/MHz. This combination of high-
performance processing and low-power operation has made the SparkFun
Edge a solid platform for developing power-sensitive IoT and ML applica-
tions.

2.5 Model Compression
As the constraints of microcontrollers have been highlighted, and optimiza-
tions shown previously for general arithmetic and code execution, specific
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methods to compress and therefore optimize memory consumption and speed
of ML models remain as a core aspect for on-device deployment. Compres-
sion techniques attempt to reduce inference speed or number of weights,
or the size of existing weights through various means and for various pur-
poses. For model size compression, knowledge-distillation can be used as it
created a high-performing smaller model based on a more complex, while
for inference only, weight quantization can be used as decreases the mem-
ory requirement of each weight for example from 32-bit float to 8-bit in-
teger. While all model size compression optimizes for speed for due to re-
quiring less computation, other specific optimizations exist, for example,
pruning which removes unnecessary connections, allowing for faster calcu-
lations, and in addition, weight quantization is worth to be mentioned as
it increases inference speed by allowing integer arithmetic as described in
section 2.4.2. Finally, weight clustering (Huffman-encoding) is a means to
compress the weights to allow for faster transmission of weights between
devices, as they would have to be decompressed before use in inference or
training. All of these compression methods will be more thoroughly de-
scribed below.

2.5.1 Weight Pruning
Weight pruning is a popular model compression technique used in deep
learning that aims to reduce the number of parameters in a model with-
out significantly sacrificing accuracy. With the ever-increasing complexity
of deep learning models, model compression techniques have become es-
sential for enabling the deployment of deep learning models on resource-
constrained devices. It works by selectively removing or ”pruning” weights
in the network that contribute less to the overall performance of the model.
The idea is to remove redundant connections and parameters from the net-
work, resulting in a more compact and computationally efficient model. By
removing unnecessary weights from the network, weight pruning reduces
the model’s memory footprint and the number of floating-point operations
required during inference, resulting in faster and more energy-efficient
models.

2.5.2 Quantization
Quantization is a popular technique used in model compression that aims to
reduce the storage and computational requirements of deep learning mod-
els. Deep learning models often contain millions of parameters, which can
make them challenging to deploy on resource-constrained devices such as
smartphones and embedded systems. Model compression techniques such
as quantization are therefore essential for enabling the deployment of deep
learning models in such environments.

Quantization involves representing the parameters of a deep learning
model using fewer bits than their original representation. The most com-
mon type of quantization is integer quantization, which represents the
model’s parameters using integers instead of floating-point numbers. The
number of bits used to represent each parameter determines the precision
of the quantization. For example, if each parameter is represented using
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8 bits, it is called 8-bit quantization. Quantization can be performed in
several ways, including post-training quantization and quantization-aware
training. In post-training quantization, the model is first trained using
floating-point arithmetic and then quantized to an integer representation.
Quantization-aware training involves training the model directly in its quan-
tized form, ensuring that the quantized model’s performance is similar to
the original model. While quantization can significantly reduce the stor-
age and computational requirements of deep learning models, it can also
lead to degraded model performance if not done correctly. To ensure that
the quantized model’s accuracy is not compromised, the quantization pro-
cess must be carefully tuned to balance the trade-off between model size
and performance. This can involve selecting an appropriate quantization
bit width, selecting a suitable quantization algorithm, and fine-tuning the
quantized model to ensure that its performance is similar to the original
model. Quantization can be used in combination with other model com-
pression techniques, such as weight pruning, to further reduce the model’s
size and improve its efficiency. While quantization can be challenging to im-
plement, it is an effective technique for compressing deep learning models,
making them more efficient and enabling their deployment on resource-
constrained devices. As such, it remains an active area of research in deep
learning and model compression. New and improved quantization tech-
niques and algorithms are being developed to achieve better compression
rates and model performance.

2.5.3 Knowledge-Distillation
When desiring to deploy a smaller version of a model to more a resource-
constrained device, a means to extract the knowledge from the bigger model
into a smaller can be beneficial to mitigate having to re-train, while poten-
tially achieving better results than though such re-training. Knowledge-
distillation provides this by having a larger and more complex model de-
noted as the ”Teacher” model transfer its knowledge to a smaller and sim-
pler model denoted as the ”student”[4]. By doing this, the goal is to leverage
the power of the resource-intensive complex model on a smaller model while
maintaining efficiency. The knowledge distillation process takes place by
first of all having the student replicate the output of the teacher, but more
significantly mimic the entirety of the behaviour of the teacher in general.
This means having the student learn the representations the teacher learns
and how it generalizes, which is done by having the output probabilities
of the teacher serve as soft targets, not hard ground truths, as they pro-
vide richer and more informative training signals due to them capturing
the teacher’s certainty of its predictions. When training on such proba-
bility distribution the student can implicitly learn how the teacher might
miss categorise slightly and provide higher probability output to incorrect
classes. After this training process, the student should have comparable
performance to the teacher.
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2.6 Training Paradigms
2.6.1 Centralized Learning
As science and technology surrounding AI and microcontrollers developed
independently, the combination of the two focused on leveraging the in-
dividual technologies’ strengths, through the traditional means of having
a centralized AI server with external microcontrollers. While it garnered
beneficial results, the architecture of such solutions comes with inherent
flaws whose solution requires a change in the fundamental structure of the
service. The issues concern problems surrounding privacy, training and
energy cost, latency, and data-transmission volume[2].

Privacy Data privacy is an emerging issue as a regulation requiring
strict procedures for preventing unwanted access to private data emerges.
As such, privacy becomes both an ethical and legal aspect that has to be ad-
dressed for any products. The issues come in the form of training data sets
used for the machine learning model, in regards to how the data is stored
in a dedicated facility which might be vulnerable to leaks as they become
a target for attacks. It opens up more security holes in terms of personnel
working there as well since if given access, the security of the data depends
on the individuals’ integrity. In addition, edge-device sensors providing the
data to the model, either for processing or perhaps for training could inher-
ently have the flaw of directly providing potentially sensitive data which
may be accessed by others[27]. In the healthcare sector, these could be
measurements made by small sensors which together might disclose pri-
vate information about the individual. The presence of such issues makes
the service go against the General Data Protection Regulation[5] (GDPR)
as well as other national and international data privacy laws, which would
make individuals deploying the technology liable for fines while stopping
the operation of the service.
Communication between devices and servers as well as the training pro-
cess can be restricted from posing privacy risks through decentralization of
the intelligence by bringing more of the processes on the edge thems could
enable training to take place by having each edge device train locally and
thereafter pass the weights to a center which aggregates them to a model
based on the distributed training[18]. Thereafter, the edge devices would
no longer need to communicate with central intelligence for inference as it
can be handled locally, removing the privacy vulnerability of transmission
of data.

Cost: Training, electricity, and CO2 Traditional centralised
learning comes with high cost in terms of time, electricity, and potentially
CO2 production as it relies on being able to train potentially multiple net-
works to a sufficient standard for deployment. This is especially an issue
with the issue of a growing number of heterogeneous devices needing in-
ference functionality, meaning that similar networks might be trained for
a number of times consistent with their number of deployment scenarios[3]
increasing the cost as a result. Figure 5 illustrate different centralised
learning models with their training time, CO2 emissions, and cost of train-
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ing on Amazon Web Services if the number of deployment scenarios is 40.
The figure makes it clear that requiring regular training of new models
is both costly and comes with some CO2 emission consequence which has
fortunately been reduced over time. Continuously generating new models
in this manner quickly adds up time, however, especially given that the
amount of IoT devices in use is increasing rapidly as it was estimated that
250 billion microcontrollers were deployed in 2020 and that it would in-
crease by 40 billion in 2 years[27]

Reducing Latency Devices communicating with one another will
require some varying degree of latency which affects the efficiency of the
service provided. As a minimum of two messages needs to be sent if infer-
ence happens on the server, the reaction from sensing to acting for micro-
controllers cannot be assumed to be close to instant or close to average infer-
ence time, as communication time, as well as inference time, can be varying
depending on connection and server availability. Taking this into account,
the application of such solutions will be restricted in environments where
safety outweighs the need for autonomy, potentially missing large markets
and overall indicating an undesired lack in quality which any firm would
benefit from not being present. Therefore, reducing or even eliminating la-
tency is paramount in ensuring the viability of this technology as well as
widespread adoption. An intuitive approach to fixing this is decentralising
the inference to the edge devices themselves to eliminate the communica-
tion time and perhaps gain more consistent inference time as is discussed
further in later sections.

Re-usability The centralized ML solutions may inhibit portability and
thereby re-usability due to the nature of privacy concerns in how the in-
telligence is trained, as well as architecture not being accommodated for
change in the environment without potentially expensive updates in later
iterations. Ideally an architecture better suited for varying environments
where several topic-specific models can be deployed which potentially learn
based on the individual situation, not based on a fully predefined model.
An example of this is how Internet Service Providers (ISPs) might desire
to classify the applications of the packets with encrypted payload flowing
through the network for security and quality of service purposes as pre-
sented in the following paper [21]. In such an example centralized machine
learning would be detrimental to the longevity of the model as the emer-
gence of new applications would render it less usable over time unless the
new data is manually gathered for updating the model. Simultaneously
training such a model comes with significant privacy concerns as training
depends on data of user traffic which is among what the GDPR aims to
protect. Re-usability concerns itself with the portability of the solution in
that the model and models with no or minimal degree of adaptability which
needs large iterative updates are not necessarily reusable outside their ex-
act context and potentially not outside a specific time frame. Architecture
that is able to provide a greater variation in data received, preferably with
built-in data-sampling techniques for enabling real-time model updating is
a potential solution that can improve existing services that deal with chang-
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ing environments (e.g. ISP traffic classification, or industrial contexts in
which technological components are replaced and improved). A centralized
solution for this is online learning which enables continuous model training
with the introduction of new data, and thereafter adjusts the model with
the potential of converging equally fast as batch learning[16], however, it
likely still suffers mentioned centralised learning pitfalls. This would also
address re-usability in other contexts as generic models and software can be
provided and improved based on specific surroundings, instead of building
new context-specific models from centralised data set with each new ML
solution. In the example of traffic classification, providing access to local
data on external devices for training can assist in improving performance
over time and discovering the new emerging applications over time[21],
consequently enabling both model and implementation re-usability to a
greater extent than traditional implementations. The motivation for this
is saving cost in terms of money and electricity for updates, which in turn
concerns itself with the environmental impact of the solution, an increas-
ingly important aspect of ML and artificial intelligence in general as carbon
emissions have become a factor to consider[6]. Carbon emission is signif-
icant independently of centralised learning, but there are indications that
alternative ML solutions like Federated Learning show lower emission[22],
which is achieved through for example negating the need for massive cool-
ing systems. However, variables such as device location, the primary en-
ergy source in the country, model architecture, and aggregation strategy,
can affect this significantly for better or worse.

2.6.2 Federated Training
Federated learning (FL) is a machine learning technique developed by Google
with the intention to enable independent mobile devices to train ML models
collaboratively without sharing raw data, thereby decoupling ML training
from a central cloud data storage[2]. Its primary intended area of appli-
cation was initially mobile phones, due to its potential to improve existing
AI-assisted processes to eventually improve user experience, these include
next-word-prediction, text entry on touch-screen keyboard, and voice recog-
nition [18].

Sensitive Data A primary motivation for the implementation of FL
in favour of data center training on persistent data is the inherent qual-
ities ensuring the protection of the data itself as well as the identity of
participating devices[18]. Privacy for sensitive data is enhanced through
the architecture since it enables differential privacy (DP), which is a means
to describe the patterns in a data set without disclosing the individual con-
tents, meaning that a central server has no access to raw data[2]. As its
initial intended purposes were for mobile phones, FL was also developed
with anonymisation in mind as it was undesirable to be able to trace back
to the device based on updates received in case there is any parse-able sen-
sitive data within the weight updates[2]. In order to respect the principle
of data minimisation, three particular principles are incorporated into the
structure. These are focused collection, i.e. only transmitting minimal up-
dates and limiting local data access at all stages, early aggregation, i.e.
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processing individual devices’ data as early as possible, and minimal reten-
tion, i.e. discarding processed and collected data as soon as it can[2]. The
area is however continually developing since, after its inception, further de-
velopment focused on improving privacy has emerged. DP-FedAvg was for
example developed with the intention of improving device level DP which
helps ensure that training is not too sensitive to one or more specific devices
over others[2]. In addition, algorithms for empirical privacy auditing have
been developed for discovering unintended memorisation in FL potentially
caused by unique sequences from specific devices when training to further
optimise anonymity[2].

Algorithm 1 Federated Averaging Algorithm. (FedAvg) [18]
clients with index k, E is number of local epochs, B is local minibatch size,
and η is learning rate
Server Side

initialize w0

for each round t = 1, 2, ... do
m← max(C ·K, 1)
St ←(random set of m clients)
for each client k ∈ St in parallel do

wk
t+1
← ClientUpdate(kt, wt)

end for
wt+1 ←

∑K

k=1

nk

n wk
t+1

ClientUpdate(k,w):
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∆ℓ(w; b)

end for
end forreturn w to server

Federated Averaging Algorithm Federated learning was first
introduced using the federated averaging algorithm as described in algo-
rithm 1. It works by training for t number of times, by taking a fraction C
of the total number of clients K and selecting a random set of m clients. For
each client k, the current rounds weights wt are sent to the client which
runs stochastic gradient descent for E epochs and then returns updated
weights to the server. The server thereafter aggregates the weights to ob-
tain the average weight which is to be used in the next iteration[18]. In
order to obtain the best-shared model across clients, the federated aver-
aging algorithm uses a global loss which is a weighted average of each
client’s loss as shown in equation 9. For each client k it computes the loss on
the client-side using its loss function Fk(w), commonly cross-entropy loss,
which is thereafter weighed by the size of the clients’ data set. The devices
with larger data set size will thereby have correspondingly larger losses
and weights[18].
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f(x) =

K∑
k=1

nk

n
Fk(w) (9)

Model Size An issue present both in the case of models generated by
centralized learning as well as those of FL is the model size. This issue is
of particular concern for embedded devices as more than 1 MB of available
storage is rarely found, and static RAM (SRAM) is often either 512 KB or
less[29]. Size increase in models makes memory a bottleneck for deploying
them for inference, especially in the context of microcontrollers as the per-
formance gains from increasingly improving models cannot fit into memory.
The model growth over can be seen in figure 3.

Figure 3: Growth of model size over the years[19]

Communication cost Traditional solutions suffer power costs sur-
rounding the abundance of potential communication, where microcontrollers
might have to send raw data to a central server for inference and thereafter
receive a decision. FL solves this by enabling the devices to run the infer-
ence themselves, saving the communication which was required with each
classification, however, communication cost will now come in the form of
passing of weights to other devices or receiving updated weights[18]. This
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communication is commonly done by having a common fog node request
model updates, then receiving them to perform the federated averaging al-
gorithm as seen in algorithm 1 and thereafter pass updater weights back.
Whether this approach induces more power cost depends on the specific im-
plementation, but generally, a significant reduction is to be expected, as the
developers of the federated averaging algorithm reached a 10-100X reduc-
tion in required communication rounds compared to synchronized stochas-
tic gradient descent[18].

2.7 Evaluation Metrics
2.7.1 Classification Accuracy

Accuracy =
Number of correct predictions
Total number of predictions

(10)

Classification accuracy is a commonly used metric for evaluating the per-
formance of machine learning models in classification tasks. It measures
the percentage of correctly classified samples out of the total number of
samples in the test set.

2.7.2 Mean Absolute Error

MAE =
1

n

n∑
i=1

|yi − ŷi| (11)

Mean absolute error (MAE) is a popular loss function and metric used in
machine learning for regression tasks. It measures the average absolute
difference between the predicted and actual values of a target variable.
Unlike mean square error (MSE), which penalizes large errors more than
small errors due to the squared term, MAE treats all errors equally. It has
several advantages over MSE. Firstly, it is more robust to outliers since it
does not heavily penalize large errors like MSE does. Secondly, it is easier
to interpret since it is in the same units as the target variable. Finally, it is
computationally more efficient since it does not involve the costly squared
term. MAE can be used as a loss function in various machine learning al-
gorithms, including linear regression, decision trees, and neural networks.
Like MSE, MAE is a differentiable and continuous loss function that can
be optimized using gradient-based methods, such as stochastic gradient de-
scent.

2.7.3 Mean Square Error

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (12)

Mean square error (MSE) is a popular loss function used in regression tasks
that measures the average squared difference between the predicted and
actual values of a target variable. However, it is not commonly used in
classification tasks since the output of a classifier is usually a categorical
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variable, rather than a continuous variable. In classification tasks, cross-
entropy loss is the most commonly used loss function.

2.8 Mean Absolute Percentage Error

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (13)

The Mean Absolute Percentage Error (MAPE) is a core metric in the field
of predictive analytics and forecast accuracy and works by quantifying the
level of error in predictions involving continuous variables. The metric, as
seen in equation 13 is calculated as the average of the absolute percent-
age differences between ground truth and prediction made by the model.
It offers the advantage of scale independence, which makes it useful for
comparing the accuracy of different models and data sets. A drawback of
the metric however is that in scenarios in which the ground truth holds
zero or near-zero values, the computation of percentage error could lead to
extremely high which distorts the overall error metric. As such

Also, as it is an absolute metric it does not differentiate between over-
prediction and underprediction, which might be necessary

2.9 Edge ML Architectures
2.9.1 Edge vs cloud
As the computational power at the edge increases and concerns regard-
ing privacy and latency issues with relying heavily on a distant cloud in-
creases, edge computing as a computational paradigm has gained promi-
nence. It seeks to bring computation and data storage closer to the location
where it’s needed, with the goal of achieving better response times and save
bandwidth, as well as reducing the privacy concerns with transmission and
storage on the cloud. The desire to have local processing and storage is
particularly beneficial in the context of the emerging IoT systems, as vast
quantities of data are produced by an immense number of devices, which
would be time-consuming and expensive to transmitt to a distant server for
processing. Edge computing offers several significant advantages compared
to traditional centralized computing. First and foremost, by processing data
closer to users or IoT nodes it can significantly reduce latency, as near real-
time responsiveness can be achieved, which is crucial for time-critical appli-
cations such as autonomous vehicles, industrial automation, and real-time
data analytics. Second, edge computing can save on bandwidth and reduce
network congestion by reducing the need for long-distance data transmis-
sion, which leading to more efficient use of network resources. lastly, pro-
cessing data locally can enhance the privacy and security of the data, as
sensitive data doesn’t have to leave the local network making transmission
and storage far less of a concern. This is especially because there would no
longer be a single point of failure which could compromise all data, in the
event that an edge gets compromised, the effect is far less significant.

There are certain challenges posed by edge compuring however as they
tend to have significantly less computational power and storage capacity.
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This limits the complexity of potential tasks and deployment scenarios
compared to the cloud counterparts. In addition, the management of edge
devices, especially when considering connected IoT devices will be signifi-
cantly more complex than simply managing a cloud. The advancement in
both hardware and software however continues to demonstrate the poten-
tial of edge computing as techniques for model compression and hardware
acceleration are created and allow for new use-cases, as well as techniques
like federated learning which makes significant use of edge nodes for a com-
plex task without as high requirements as traditional centralized learning,
as such, edge-computing has rapidly emerging new efficient, responsive and
privacy-preserving applications which are competitive with similar cloud
solutions.

2.10 Implementation Technologies
2.10.1 TensorFlow
Tensorflow is a software library for numerical computation and machine
learning commonly used in both industry and academia to develop and de-
ploy ML models. It is particularly used for deep learning, such as image
recognition, speech recognition and language processing. Tensorflow sup-
ports a range of languages, including Python, C++ and Java, and in the
case of Python provides a high-level API called Keras which simplifies the
process of building and training further increasing its popularity. Because
of this abundance of functionality which needs to be heavily optimized for
performance improvements, it it typically used on desktops and servers.

2.10.2 TensorFlow Lite
Because of the vast array of functionality and complexity in optimization,
standard TensorFlow is however unsuitable for smaller devices like phones.
Due to the limitation in resources, deployed models on phones is likely
to have slower performance and therefore increased energy consumption.
While this is caused by a model and library size issue, it can also be at-
tributed to differences in hardware and software architecture. Mobile de-
vices tend to use different processors and operating systems, making ar-
chitecture a barrier to optimizations, and making the quality of developed
models suffer further.

To address this issue TensorFlow Lite has been developed to fit on mo-
biles with mobile-specific optimizations. It includes a subset of TensorFlow
functionality suitable for mobile applications, and tools for model optimiza-
tion and compression for improved performance.

2.10.3 TensorFlow Lite Micro
TensorFlow Lite Micro is a subset of TensorFlow Lite designed for more
resource-constrained devices like microcontrollers, and is therefore opti-
mized for small-memory, low-power devices such as wearables, sensors, and
other IoT devices. It allows for running models on devices with as little as
16kb as the subset of operations available is small and heavily optimized.
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Because of the resource constraints, it has however been developed with
inference in mind as such it lacks on-device training capability in favor of
more operations for just inference and a smaller size to fit more devices.
Backpropagation requires space to store each weight’s gradients and learn-
ing rate, roughly doubling the memory requirement during training, while
optimizers like ADAM can cause the memory consumption to triple. As
such, adding training capability for all operations would increase library
size significantly, and having the capability at all is low priority due to per-
formance issues.
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3 Related work
As the application of ML techniques on resource-constrained devices has
gained significant attention in recent years with the emergence of IoT in
the form of wearable gadgets, mobile phones, and devices for industrial
automation, researchers have explored various strategies for implement-
ing tiny ML. To efficiently implement sufficiently accurate, fast and cost-
effective ML models on such constrained devices core areas studied in-
clude, but are not limited to, on-device training, federated learning, and
model compression. As such, this related work section aims to provide an
overview literature considered the most pertinent in this area, highlighting
challenges faced in this area, the methodologies, and key advances achieved
by the researchers. The review is structured in three themes: (1) ML train-
ing on microcontrollers, focusing on techniques and methods for training
ML models with respect to resource constraints; (2) Federated learning,
which explores the advances in the decentralized learning paradigm to en-
able collaborative model training using several devices to address privacy
and cost concerns, the paradigm is explored independently and in relation
to microcontrollers, finally (3) model compression is investigated to under-
stands means of reducing model complexity and size to enable deployment
on resource-constrained devices. By examingint he developments in these
areas, the goal is to comprehensively cover the current state of the art and
potential avenues for future research for ML on microcontrollers.

3.1 Current standing of on-device training
While ML model inference for resource-constrained devices has been exten-
sively researched and tested, resulting in libraries such as Tensorflow Lite
& Lite Micro and PyTorch Lite, actual on-device training has garnered less
attention. This section is dedicated to the discussion of notable works and
implementations which cover this area. The works include TinyFedTL by
Kavya Kopparapu and Eric Lin[15], the on-device training work by Grau
et al.[17], development of tiny Online ML by Haoyu et al.[24], Ravaglia Et
al.’s platform for tinyML continual learning[23], Over-the-air tinyML model
deployment by Sudharsan Et al.[28], and finally EtinyNet by Xu Et al.[7].
Collectively these works aim to advance the state-of-the-art of ML model
training on IoT and contribute to ultimately facilitating viable implemen-
tation with and without FL.

3.1.1 On-device training of FC-layers
TinyFedTL is a notable implementation of federated learning on microcon-
trollers done by demonstrated by Kavya Kopparapu and Eric Lin[15]. The
primary objective of the implementation is to enable on-device model train-
ing for the purpose of federated learning to allow continuous learning for
improving mode over time using locally stored data. A significant challenge
faced is the aforementioned issue of known tinyML frameworks lacking
support for such on-device training in favor of only supporting inference
on static models. To address the challenge, the resulting implementation
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thereby demonstrates on-device training by removing the final fully con-
nected (FC) layer of a CNN to create a feature extractor. The CNN is con-
verted into a Tensorflow Lite Micro model which is deployed on the micro-
controller and used for inference through the interpreter, however without
any training capability. This is followed by a self-implemented FC layer,
which enables the conversion of features gained from CNN to be parsed into
probabilities through FC layer and a Softmax activation function. Lastly,
a self-implemented backpropagation function allows training of this final
FC layer for the actual on-device training to take place. The need to self-
implement these ML components rather than relying on existing tinyML
libraries demonstrates a lack of standardization and state-of-the-art solu-
tion for training on resource-restricted devices, further showing an inhibit-
ing factor in the general research and adoption of federated learning in the
context of IoT. As such, the need to reinvent the wheel by creating these
components is a consistent issue in all related research.

The TinyFedTL[15] effectively demonstrates the viability of on-device
training in both accuracy and speed. It makes use of ImageNet and Visual
Wake Words dataset and two compressed versions of MobileNetV2 models
taking up 210kB of DRAM and 657KB of program storage but does not face
any further memory demands due to FL allowing input data to be discarded
and not stored post model update. The findings indicate that number of de-
vices affects validation accuracy negatively, and a proposed cause is that
individual progress can be cancelled out by the weight averaging of the
FL algorithm. The accuracy also showed to stabilise around 3000 train-
ing examples, indicating issues of reaching local optima potentially due to
the simplicity of optimiser used. In terms of performance, the TinyFedML
implementation spent 8-10 seconds on the image capturing and inference
due to having buffer from Arducam data processing, training 20 episodes
of local epochs took 214ms, and upload/download of weights and bias data
took over 30 seconds each way. As such it demonstrates that there is gain
to be had in pursuing further advancement in the technology, in particular
regarding function for optimization and support for better weight decay, FC
layer implementation and communication cost.

Work seeking to address on-device training issues has emerged follow-
ing TinyFedML, an example of with is ”On-Device Training of Machine
Learning Models on Microcontrollers with Federated Learning”[17] by Grau,
Marc Monfort, Roger Pueyo Centelles, and Felix Freitag. The focus of and
greatest contrast from TinyFedML[15] is that rather than starting off with
a predefined model it aims to generate one from scratch to gain insight into
trade-offs from FL design space in the context of the resource constraints
present on the microcontrollers, and experimentation is done using key-
word spotting as ML purpose with custom created dataset. As the network
is not pre-made with a suitable size, a custom-feed forward neural network
using a single 25-node hidden layer was defined, with 650 node input layer
and a 3 node output layer. The network has a sum of 16325 weights and
28 biases represented by 4B floats making up for a total size of 65412B
( 63.97kB) which is able to fit on most SRAM. In addition, it seeks to han-
dle gradient descent more optimally and does so using the hyper-parameter
momentum to maintain a consistent direction in the descent by combining
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the previous vector with a default value of 0.9.
The resulting implementation benefits primarily from the size differ-

ence in the network as the computational and communicative cost is re-
duced[17]. As communication requires a total of 130kB, sending a data
sample required 2.49s. The FL algorithm naturally executed at different
speeds depending on the number of participating clients; 1 client required
7.12s, two required 7.85s, and three 8.22. The resulting performance of
the implementation is expressed in loss epochs with a potentially different
frequency of federated learning rounds and explored 4 particular points of
interest: efficiency of training with no FL, the effect of the number of FL
rounds, hidden layer size effect and effect of training on non-IID data. Indi-
vidual training on each device showed a decline in loss over time but could
have significant spikes in later epochs higher than initial ones indicating
inconsistency likely caused by lack of data. With federated learning intro-
duced the decline in loss happens far sooner, and with a FL round at every
2nd epoch, the loss becomes consistently low after 25 epochs, while with a
FL round at every 30th epoch same loss result is achieved between 60 and
85 epochs depending on the device. This illustrates the trade-off present in
communication cost versus loss, as frequent FL rounds decrease loss more
rapidly in terms of the number of epochs but based on execution time and
potential power consumption cost it might be faster or more optimal long
term with less frequent FL rounds as the communication between devices
is reduced significantly which would be increasingly visible with the num-
ber of devices. An issue seen in TinyFedML was a decrease in accuracy with
the number of devices[15] as mentioned which was likely caused by signifi-
cant improvements from devices fading out with each weight averaging. As
such with a lower frequency of FL rounds, their on-device improvements
might become more visible as differences in weights can become significant
enough to provide more of an impact, however, this was not addressed. The
number of nodes in the hidden layer affected loss over epochs in that a
higher amount seemed to be better, the tested amounts were 5, 10, 20, and
25, and likely higher amounts would decrease loss faster. The downside of
more nodes is that it would be at the cost of model size which affects the
speed of computational inference, training, FL, and communication speed,
and can risk not fitting on SRAM. Non-IID-data is quickly trained on each
separate device with no FL if trained to a specific word, but when averag-
ing weights the loss is increased significantly with great variation in each
epoch, though seemingly declining slowly. As such different aspects of sig-
nificance in the design of federated tiny ML are explored and vulnerabilities
in architecture are made apparent, indicating a need for tried and tested
tools specifically for on-device training.

Even though training of ML models on microcontrollers proves to be
possible when self-implementing the models in their entirety not relying
on inference using static model interpreters, a hybrid of static and train-
able models is the more common approach. While TinyFedTL uses a CNN
feature extractor before a FC layer, Haoyu et al. deploys an autoencoder
which is followed by their self-implemented TinyOL system with trainable
weights[24]. The purpose is to enable incremental on-device training on
streaming data to allow for model adaptation based on new working con-
ditions and general model improvement over time. As such the core fea-
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ture proposed is a manner in which to improve independent devices re-
gardless of each other over time for different circumstances, allowing for
expansion to support new classes as they are encountered in the datas-
tream. The TinyOL approach was demonstrated with two anomaly detec-
tion autoencoder use cases, namely Fine-Tuning, and Multi-anomaly clas-
sification, and the experiment was conducted by collecting vibration data
from a USB fan that had three states, either normal, tilted, or stuck. The
Fine-tuning approach consists of adapting the pre-trained autoencoder, as
the initial model will have a different reconstruction error distribution due
to deviations from the training data in the positioning of the microcon-
troller. When applying the TinyOL system for 2000 iterations using data
streamed through Bluetooth, the fine-tuning of model weights is performed
as the model adapts to the new rapidly as only minor changes are needed
on the pre-trained weights. The resulting reconstruction error distribution
is thereafter significantly more similar to the distribution generated by the
training dataset.
Multiclass-Anomaly classification differs from fine-tuning by instead hav-
ing the autoencoder provide a classification at runtime and use it in ad-
dition to the construction error as input features to classify status incre-
mentally. The training was thereby conducted by regularly switching the
position of the device while providing labels to emulate real-world variabil-
ity, in addition, if provided with an unknown new label, the TinyOL layer
can accommodate it by updating the layer structure for a new class. When
testing the performance, the F1 score on the normal class showed to be
significantly higher than the two anomaly classes which was speculated
to be caused by the autoencoder only having been trained on the normal
state and not anomaly. This indicates the need for more layers compatible
with training as static models are likely to eventually inhibit the quality.
When comparing online and offline training the figure, it is apparent that
the amount of data has a significant impact on the model performance, and
that the performance of offline training outperforms online after 50 epochs
of training.
It can therefore be concluded that if the pre-trained model is sufficiently
generalized, the addition of an adaptable layer, whether TinyOL[24], or a
simple FC layer as demonstrated in TinyFedTL[15], on top of the static
component allows for high performing fine-tuning of models with limited
on-device training. The approach of not deploying a static model, but in-
stead a fully trainable model demonstrated by Grau Et al.[17] showed promise
as even with a small hidden layer size in the range between 5 to 25 neu-
rons had a sufficient decrease in loss and claims comparable accuracy to
server trained model is achieved. However, the approach is simple as it is
just a single hidden layer of DNN, and the complexity is high as 80% of the
SRAM is consumed primarily due to the weights associated with the 650-
node input layer and 25-node hidden layer, as such exploring alternative
neural networks approaches for the use-case can be beneficial. In addition,
as these approaches consist of only trainable FC layers, need to explore
fully trainable neural networks is evident as more advanced approaches
often simply rely on the static model.
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3.1.2 On-device CNN
A CNN implementation aimed at resource-constrained microcontrollers with
SRAM of at most 320KB and 1MB Flash memory has been explored by
Xu Et al.[7] resulting in their EtinyNet CNN architecture designed for
high parameter efficiency. The necessity for specialized architecture for
microcontrollers is made visible by the fact that conventional NN architec-
tures designed for devices with more limited resources, commonly mobile
devices, still greatly exceed the capacity of microcontrollers. For exam-
ple, MobileNetV2 after 8-bit quantization still exceeds the 320kb SRAM
limit by 250%[26]. As such EtinyNet proposes an adaptive scale quanti-
zation (ASQ) method to alleviate the undesired effects of known quantiza-
tion schemes while improving the accuracy of quantized tiny models. This
is achieved in part by using linear depthwise blocks (LB) and dense lin-
ear blocks (DLB). LB is a depthwise convolution followed by a pointwise
convolution and finally another depthwise convolution, the resulting block
enhances parameter efficiency by increasing the proportion of depthwise
convolutions. DLB serves as a dense connection into LB used to increase
the width of the network to compensate for the restrictions in the number
and size of CNN feature maps. This is done by concatenating the input
feature map with the output feature map of the pointwise convolution. The
stacking of these LBs and DLBs thus allow for lower memory runtime than
when using solely conventional convolutional layers.
The second proposed method, ASQ, addresses the shortcomings of DoReFa
quantization which is apparent when used on low-bit widths like 4-bit. It
works by rescaling the original weights of the CNN by using a trainable
parameter to control new rescaled weights’ distribution smoothness, there-
after, clamping the weights to fit the range [-1, 1] is done using the tanh-
function, and finally, a linear quantization function is applied. The param-
eter being trainable allows ASQ to balance minimizing quantization error
and maximizing information entropy by adapting to the optimal distribu-
tion of quantized weights for each layer. As a result with a model size
of 340KB, EtinyNet 0.75 achieved 57% top-1 ImageNet accuracy when us-
ing the ASQ quantization, however with DiReFa quantization it achieved
only 43.3%. In addition, when tested on a commercial microcontroller it
achieved 56.4% on Pascal VOC. EtinyNet therefore especially demonstrates
how CNNs can leverage more creative architectural choices as layers and
their interconnections can have more variability than traditional DNNs
making it evident that these layer connections are especially in need of
more research.

3.1.3 Remote model deployment
Whether in the context of federated learning or for ML capability on in-
dependent devices, it has become an increasing need to be able to update
such models remotely. In industrial IoT context, this might be because the
devices are cumbersome to get to, or due to the sheer amount which might
be needed for an update, while the viability of FL significantly increases
when not relying on a cable connection. OTA-TinyML by Sudharsan Et
al.[28] addresses this issue, discussing the challenges of remote deployment
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of models while introducing hardware friendly strategies for fetching and
storing TinyML models from a cloud server in addition to supporting ef-
ficient loading and execution of said models. The TinyML models utilised
are Tensorflow lite models which are stored as the serialization format Flat-
Buffers.

The challenges addressed by the paper are notable as they will serve as
a bottleneck to overall commercial viability of TinyML as well as especially
reduce the quality of FL due to the amount of communication required.
They present the challenges at four levels. Firstly, the IoT hardware level
deals with the heterogenous characteristics which need to be considered to
ensure model compatibility and avoid bricking the device. Secondly, net-
work and transport level challenges concern securing uninterrupted trans-
missions which requires the networks to scale and adapt to efficiently han-
dle the traffic. Thirdly the cryptography level presents challenges due to
the fact that optimized cryptographic libraries like TinyCrypt or Mbed TLS
are required, so an appropriate needs to be selected, and they are less safe
than the standard serverside cryptography strategies. Finally remote de-
vice management and operating system level is of concern as management
systems need to be first and foremost secure, but also potentially compati-
ble with shredded operating systems, for example Mbed OS or FreeRTOS.
There are several suggested techniques for handling these issues. To solve
hardware level issues, devices can be batched based on their hardware and
software status, and can incrementally roll out updates. For ensuring se-
cure channels for deploying OTA updates, channels like MQTT, which is
thoroughly discussed later, can be used, in additon, data should be en-
crypted for protection, and physical security can be better ensured with
tamper proof screws. Network congestion can be prevented by using a
priority-based progressive deployment to ensure timely updates of model
to handle the traffic. Authenticity can be ensured by having OEMs sign
and hash firmware images for end-to-end integrity protection, devices can
also verify models received by using public signing certificates and meta-
data. Finally, failure recovery should be possible by reverting to the pre-
vious model in case of a failed update, in addition, this should come in
addition to enabling remote login and device log extraction.

In order to actually deploy the ML models, they concluded that the .h file
containing the flatbuffer should be fetched from server using the http.get()
method of the HTTOPClient object. Storage of the model takes place by
reading the model in .bin format, thereafter allocating memory for it and
copying the content byte-by-byte into SRAM during inference time. As such
storing in binary format and securing SRAM storage is further proven to
be the most optimal for microcontrollers.

3.2 Communication and aggregation for FL
A few works regarding general training strategies as well as federated
learning strategies are addressed in this section.
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3.2.1 General training strategies
In addition to the aforementioned advancements in on-device training, there
have been advancements specifically in the area of the training both specif-
ically in relation to, and independently from, resource-constrained devices
which provide value to FL on IoT.

Challenges in federated learning, in general, include asynchronous par-
ticipating devices and preventing malicious devices from participating, ”CoLearn”[8]
by Feraudo, Angelo, et al. is a means to solve these issues in the context
of IoT. It proposes the use of Manufacturer Usage Description (MUD) with
IoT devices as well as a publish/subscribe system using a message querying
telemetry transport (MQTT) broker. MUD aspect of the implementation as-
sists in ensuring the safety of connected devices by having the MUD man-
ager manage valid devices available for the centralized FL server, these
devices are added to the whitelist through the devices themselves making
a DHCP request to the MUD manager, authentication files will thereafter
be stored in an external database. The architecture of CoLearn can be seen
in Figure 4 specifying the communication between MUD implementation
DHCP server, FL server, and devices. The issues concerning devices be-

Figure 4: The architecture of CoLearn[10]. Note: ”Thing” refers to IoT
device.

ing asynchronous are appeased using the aforementioned publish/subscribe
pattern by dedicating the FL server to being coordinator (seen in figure 4)
and having it subscribe to a specific topic for it to receive status updates
from publishers, i.e. IoT devices, through an MQTT broker. Devices can
have 3 states: Ready for training, inference on local data, or not ready. As
such devices can publish when they are ready to participate in an FL round,
allowing the FL server to use only available devices after a sufficient num-
ber are ready.

Though it provides a larger degree in the safety of operation the critical
aspect of implementation viability is the additional communicative require-
ments, and the potential effect of only training on the devices declared to be
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ready and not all. Aspects of implementation were tested using IoT BoTnet
identification dataset and feed-forward neural network with 2 hidden lay-
ers of 50 and 40 neurons respectively. The loss decreases with the number
of iterations but is mostly unaffected by the number of FL rounds which
is attributed to the fact that the data used was independent and identi-
cally distributed on the devices. Another metric discussed by the authors
of ”CoLearn”[8] is temperature as it is desirable to stay under what might
cause thermal throttling as well for saving electricity. In idle operation
the device (Raspberry Pi 3 in this case), ran at 50°C, while 1000 and 3000
iterations increased the temperature by an average of 5.875°C and 6.75°C
respectively, indicating temperature increases based on iterations illustrat-
ing another trade-off. The other area of significance is that it compared
the aforementioned model training with a similar solution utilising Secure
Multi-Party Computation (SMPC) privacy-protecting computational algo-
rithm. The implementation using SMPC however proved to be inefficient
as the training time increases far more significantly increasing batch sizes.
The core value of CoLearn is however the demonstration of a more secure
FL implementation that does not introduce an excessive burden on clients
as it’s designed with resource constraints in mind.

Designing with constraints of specific devices can be a burden due to
the heterogeneity in available devices to use for a potential purpose while
it’s costly in terms of electricity and thereby CO2 emissions to train neu-
ral networks from scratch. A solution intended for this purpose is ”Once-
For-All”[3] (OFA) by Cai, Han, et al. which aims to train one network
which is to allow for the extraction of sufficiently accurate sub-networks for
the intended purpose and device from a larger OFA network without hav-
ing to train the sub-networks, in turn accommodating for dynamic deploy-
ment environments. The implementation is a convolutional neural network
trained on ImageNet, with a progressive shrinking (PS) algorithm assisting
in maintaining accuracy. During training, it samples a few sub-networks
with each update for training, but in order to reduce model size parameters
are shared between the sub-networks resulting in only 7.7M, this means
that interference between sub-networks is imminent during training. The
PS algorithm is implemented to ensure that training is done to the largest
network while later fine-tuning the smaller sub-networks as they are added
to the sample, this minimises the interference of sub-network training on
especially the larger ones, thereby improving accuracy significantly. The
top1 ImageNet accuracy with 230M MACs using PS reached 76.0% while
without PS and with 235M MACs reached 72.4%, and for comparison, a pre-
vious state-of-the-art hardware-aware neural architecture search (NAS) so-
lution MobileNetV3-large had a top1 accuracy of 75.2% with 219M MACs. A
core benefit of OFA is the constant GPU hour training cost independently of
deployment scenarios (N), whereas MobileNetV3-large would require 180N
GPU hours, training the OFA network takes 1200 GPU hours on 32 V100
GPUs. However for increased accuracy fine-tuning can be applied to spe-
cialised sub-networks in the OFA network which for 25 and 75 epochs in-
creased the top1 accuracy to 76.4% and 76.9% respectively however with
GPU hours now being 1200+25N and 1200+75N respectively. The details
of OFA network performance in comparison to other state-of-the-art can be

34



Figure 5: Various differences between variations of OFA and other previous
hardware-aware methods on Pixel 11 phone[3]

seen in Figure 5. In addition, the CO2 emissions were lower than the previ-
ous state-of-the-art solutions where for example the OFA networks with no
fine-tuning epochs produced 340lbs of CO2 compared to MobileNetV3-large
producing 1800lbs when N = 40. Within the context of IoT suffering from
potential resource constraints and heterogeneity in hardware, OFA can pro-
vide the benefit of efficiently producing multiple sets of suitable networks
efficiently which can thereafter be part of their own continuous federated
learning cycle with devices sharing sub-network. It can function indepen-
dently in creating these models for immediate use in practical applications,
or work as a starting point in for example the CoLearn[8] implementation
to allow the independent devices to change their given network over time.
These aspects are unexplored however as the focus is a better centralised
learning strategy for different deployment scenarios, and the OFA solution
might therefore suffer the privacy and practical drawbacks federated learn-
ing seeks to alleviate described in section ??. It is still evidently valuable
though, especially in its handling of heterogeneity, and the possibility of
accurate small networks potentially able to fit on SRAM.

3.2.2 Federated Learning Optimizations
The process of ML model pruning is a mature means of compressing models
by removing weight connections in neural networks, but not in the context
of federated learning especially in conjunction with TinyML. Huang Et al.
address this in their work on FedTiny[14], a pruning framework for pruning
on the resource-constrained devices themselves as a means of fine-tuning
to local data, while also attempting to alleviate biased pruning which might
be caused by unseen heterogeneous data over devices by introducing batch
normalization selection module.

The batch normalization selection takes place and updates the measure-
ments for all candidate models before the evaluation so that a less biased
initial coarse-pruned model can be selected before evaluation. The progres-
sive pruning which takes place on the devices aim to further fine-tune the
provided model by growing and pruning in accordance with average impor-
tance scores. The memory footprint and computational cost is thus reduced.
Only top-K importance scores of the pruned parameters are maintained and
the optimal structure is progressively approached. When deploying such a
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pruning strategy not much accuracy was sacrificed on larger models, as it
had only 1.5% lower accuracy than resnet18, however having a 1.5% better
top-1 accuracy. It was however only tested on Raspberry Pi 3B making its
potential in smaller microcontrollers less certain.

3.3 Compression for FL and IoT
Works concerning issues of deploying ML on tiny devices have been devel-
oped to solve both practical issues of enabling functionality, as well as opti-
misations of process improving all aspects of the existing implementation.
As previously stated, power usage and memory usage go hand in hand in
ensuring optimisation of both computational speed and viability of battery-
powered remote devices.

In order to cope with the requirements of the model size described in sec-
tion 2.4.1, so that model will fit on the device and preferably run on SRAM
explained, Song Han, Huizi Mao, and William J. Dally proposed deep com-
pression of neural networks (NN) using pruning, trained quantization, and
Huffman coding, hereby referred to as simply deep compression[10]. Net-
work pruning is the model compression technique where less significant
weights/neurons are removed from the NN to reduce its size while main-
taining the accuracy to a variable yet fair extent. Trained quantisation
will further assist in compressing the NN by reducing the number of bits
needed to represent the weights. Weight sharing is thereafter applied to
each layer making all weights that fall into the same cluster share the
same weights reducing the amount of trainable weights in the network.
Finally, Huffman encoding is used to make common symbols represented
with fewer bits with its lossless compression, this alone could reduce the
network storage by 20%-30% performed on data set with previous compres-
sion methods applied. For further understanding of the individual effect,
pruning on AlexNet resulted in 9X reduction in parameters, but can be
more or less depending on the network, performing weight quantization
thereafter was able to quantize to 8-bits, i.e. 256 shared weights, for all
convolutional layers and 5-bits for fully connected layers with no accuracy
loss. When using the described deep compression on AlexNet, the network
size was reduced from 240MB to 6.9MB, i.e. 35X compression rate to 2.87%
of original accuracy. The goal of this research was to improve the capabil-
ities of networks running on mobile applications, meaning that after com-
pression the AlexNet would fit on the SRAM on relevant devices. However,
as SRAM on microcontrollers is mostly 512KB or less[29], the need for ef-
fective compression and therefore the value of deep compression becomes
more evident. The necessity is visible in the aforementioned battery con-
straints of microcontrollers, as for example under 45nm CMOS technology
32bit SRAM memory access takes 5pJ while DRAM requires 640pJ, mean-
ing that running a 1 billion connection neural network at 20 frames per
second (Hz) would require 12.8 Watts using DRAM while SRAM would re-
quire 0.1 watts[10].

The accuracy of the networks after different compression strategies were
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Figure 6: Deep compression: Accuracy loss based on model size ratio and
compression methods performed on AlexNet[10]. Also showing SVD, an-
other independent method of compression.

shown to generally decrease after the 8% mark as shown in figure 6 which
was performed on AlexNet. However, it becomes apparent that pruning
and weight quantization together have less of an effect on accuracy when
combined than when used individually in the context of this experiment,
while simultaneously decreasing network size. The justification for weight
quantization’s positive effect on pruned networks is because given the same
amount of centroids the quantization causes less loss on networks with
fewer weights, visible in the aforementioned figure as AlexNet goes from 60
million weights to 6.7 million weights post pruning. Deep compression can
therefore be viewed as a particularly effective network compression strat-
egy while it is evident the accuracy cost is unlikely to inhibit the quality of
service. As such, even if it’s intended for mobile applications it is applicable
for the networks meant for more constrained devices as well, however, the
degree to which it is able to compress networks is not too consistent, as it
saw a range of 35X to 49X compression rate independently of initial size in
MB. It is therefore still relevant to train the initial network with its size in
mind to eventually reduce it to less than 512kb to fit on SRAM.

3.4 The situation as a whole
Despite the potential benefits of on-device training for microcontrollers, the
adoption and study of this approach have been limited. As highlighted in
previous sections, the primary reasons is the resource constraints of micro-
controllers, which typically possess limited computational power, memory,
and energy reserves. These constraints pose significant challenges in im-
plementing complex machine learning algorithms, particularly deep learn-
ing models that require substantial computational resources. Additionally,
the heterogeneity of microcontroller hardware and the absence of standard-
ized platforms make it difficult to develop generalizable solutions that can
be widely adopted across different devices.

Moreover, the existing research on machine learning for microcontrollers
has primarily focused on efficient inference rather than training. This is be-
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cause inference is more frequently employed in real-world applications, so
optimizing for it yields more practical benefits. Furthermore, the current
research on on-device training has predominantly centered around more
powerful devices, such as smartphones and edge devices, as they offer a
better balance between resource availability and mobility. Consequently,
the limited research focus on microcontroller-based on-device training has
led to a dearth of mature tools, libraries, and frameworks that can facilitate
its adoption.

As for federated learning in the context of on-device training, the scarcity
of studies can be attributed to several factors. First, federated learning
was originally proposed as a means to address privacy concerns in the con-
text of centralized training, where the primary objective is to aggregate
and learn from decentralized data without exposing individual data points.
This motivation is less relevant in the context of on-device training, where
the learning process occurs locally, inherently preserving data privacy.

Second, the communication overhead associated with federated learn-
ing can be substantial, particularly when dealing with microcontrollers.
These devices have limited bandwidth and energy resources, which could be
quickly depleted by the frequent exchange of model updates necessary for
federated learning. This can be especially problematic in settings with in-
termittent or unreliable network connectivity, further hindering the adop-
tion of federated learning in on-device training contexts. Lastly, the lack
of a well-established ecosystem for on-device training in microcontrollers
also extends to federated learning. Without the necessary tools, libraries,
and frameworks, researchers and practitioners are less likely to explore
federated learning for on-device training on microcontrollers. This, in turn,
results in a limited understanding of its potential benefits and challenges,
impeding its widespread adoption and further study. In the discussed re-
lated works, it is evident that individual aspects regarding on device train-
ing, efficient training and communication, and means to reduce memory
and computational cost of ML have been understood, but experiments com-
bining all aspects sufficiently is especially lacking. As such the proposal of
this thesis is to provide guidelines on best practices on means to leverage
on-device training optimization in conjunction with FL and compression
strategies
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4 Proposed Framework
As the benefits of TinyML have been made evident, and the advances in
the fields of on-device training, federated learning, and model compres-
sion have taken place it is clear that real-world applicability is imminent.
These technologies enable low-power, resource-constrained devices to per-
form complex tasks while preserving user privacy and reducing data trans-
fer overhead. In this proposal, we present an approach for deploying and
training fully trainable models for on-device training on microcontrollers,
and how they can best benefit from the strengths of Federated learning to
mitigate issues regarding their resource constraints, talked about in sec-
tion 2.4.1. The framework deals with four key aspects of model deployment
and training to be able to develop each core functionality with regard to
each other. Firstly, compression methods for a centralized model in order to
better fit on microcontrollers are explored, secondly, the on-device training
is developed to function independently of FL while being compatible with
the compressed model and deploying necessary techniques for improving
the general training, thirdly, federated learning is added to the context to
further understand the potentials in model improvement based on distri-
butions of device and data and how weight averaging can be handled for
best result, and finally the strategies for enabling more efficient communi-
cation for federated learning is addressed to further improve the context
as a whole. Our solution aims to empower edge devices with the abil-
ity to adapt and learn in real time, thereby enhancing their performance
and robustness while maintaining resource efficiency. This section provides
an overview of the proposed implementation, justifications for decisions in
the development process, its significance, and its potential impact on the
broader machine-learning landscape.

4.1 Proposal
The proposal of this thesis is a systematic approach to principles in ap-
proaching implementing Tiny and Federated machine learning and thus
serves as a framework for the readers to best develop the cooperating nodes,
especially with a particular focus on RNNs using LSTM. LSTMs are the
primary concern as the implementation of on-device training of such lay-
ers or even RNN architecture is severely underrepresented in the field,
which is reflected by the lack of works related to it in the related works
section, as such, investigating it specifically becomes a core contribution.
This proposal includes the suggested practice of handling model compres-
sion of a pre-trained model in preparation for on-device deployment and
FL, but also general compression of both models, communication between
device and server, as well as means to reduce unnecessary weight averag-
ing on the server. The proposed fully trainable models on microcontrollers
are designed to have standard architecture and layers commonly found in
larger models for FL compatibility with Tensorflow models, while exploring
the potential of FL, as well as compression-aware techniques incorporated
and adjustable by the developer with the purpose of assisting in lowering
communication cost, speeding up computation, and improve convergence
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by only transferring that of significance, and end up with a best possible
final model for inference. In regards to the compression techniques, in par-
ticular, practical implementation and testing of quantization-aware train-
ing capability on microcontrollers were conducted to assess its viability in
smaller models and specifically on LSTMs. This is done as quantization is
the eventual final step taken before the deployment meaning that train-
ing in preparation for it should be done to decrease the accuracy loss. In
addition, the communication cost decrease of routinely using quantized 8-
bit integers instead of 32-bit floats is desirable. The aspects of value the
proposal can be summarised as follows

Serverside PRE-Fl compression As inference tends to be the
standard goal of the use of ML with IoT devices, several compression tech-
niques which can be done on servers are tested with the purpose of assess-
ing their potential effect when the goal is deployment on microcontrollers.
In addition, knowledge distillation is presented as an especially significant
compression strategy in this context, as it shows the most potential partic-
ularly because of its potential in use with the conventional strategies for
tinyML model compression.

FL communication cost reduction The effects of various means
of attempting to reduce the communication cost with the server are ad-
dressed in relation to figures generated in other test cases. These include
technical aspects of on-device training as well as systematic decisions in
the learning process and the consequences.

On device training Aspects of the training process can be adjusted
and considered when developing on-device training individually, as well as
what is good practice when it is in a federated learning context. The param-
eters which degrade performance are discussed to assess potential means
of mitigating the loss of precision, while the

4.2 Library and system architecture
There are two core parts that the system is divided into, namely end de-
vices and edge servers. The end devices consist of several Arduino nano
33 BLE Sense, and Sparkfun Edge Apollo 3, both with 1MB flash storage
and 256KB and 384KB of SRAM respectively. The second layer consists of
the edge server which is connected to the end devices through a serial port.
As end devices train on their available dataset, their local weights are rou-
tinely sent to the edge server, the edge server then runs federated averaging
to create new weights and redistributes the new and updated weights. Fi-
nally, the edge servers are connected to can be connected to a cloud server
which functions as primarily a means to gather and process data but also
could have the potential to run FL on multiple edge nodes. In a practical
test bed, this was done using my computer as a sort of cloud, with a rasp-
berry pi 3 node serving as the edge node connected to edge devices through
usb. The implementation was however impractical as I only had one Rasp-
berry pi 3 with limited USB ports, so when testing on the microcontrollers
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my computer served the purpose of both cloud and server. When the system
is first initialized, the cloud server could be responsible for running various
compression algorithms including quantization and teacher-student com-
pression, to downsize the larger pre-trained model to a predetermined size
pre-configured on the edge servers and end devices. However, as the main
goal is testing on-device training specifically, the layers above, in particular
edge, is focused primarily on the federated averaging of newly initialized
models on the device. This will be done using CNNs and especially LSTMs
to cover a wider set of use cases for a more generalized understanding,
while DNNs are also addressed briefly as it is a simple implementation
next to the two other architectures.

4.3 On-Device implementation
Using a simple self-made c++ library developed for on-device learning on
Arduino and Sparkfun, models can be implemented easily by stacking the
necessary layers and connecting the relevant input and output. An exam-
ple of this can be seen in the code listing 1. To ensure full control of memory
expenditure, variables and arrays that need dynamic allocation are pointer
arrays and the necessary computation on such vectors are handled by ex-
tensive use of loops. This is relatively slow compared to the backend of
typical libraries which handles these operations but gives full control over
memory usage without overhead.

An example of such a matrix calculation using said pointer arrays can be
seen in the loop calculating the gates of the a cell in the model in listing 2.
While likely an insignificant factor to the overall performance of the model,
it also shows loop unrolling, as weights are indexed using an enum instead
of the additional loop. When talking about LSTM specifically the terms
”unit” and ”hidden size” are used interchangeably, but in the context of this
task it means both the number of hidden weights, as well as the number of
cells in the layer.

4.4 Data used
The data used in this project is the CIFAR10 image dataset for CNN and
DNN training, and air quality data from Norsk Institutt for luftforskn-
ing (NILU) for the LSTM training. The CIFAR10 dataset is widely used
in computer vision ML model benchmarking and consists of 60000 32x32-
pixel RGB images uniformly distributed across ten classes: Airplane, au-
tomobile, bird, cat, deer, dog, frog, horse, ship, and truck. Due to its small
size, diversity of classes, and equal number of samples per class, it ensures
balanced distribution for accurate evaluation and thus serves as a solid
dataset for comparing various types of models from traditional approaches
like Support Vector Machine to advanced ones like CNN.
The air quality data for testing LSTM was generated by (NILU) and con-
tains the measurement of PM10.0 data from one of 15 locations in Oslo
with timestamp intervals of every 15 seconds between the date and time
2022-05-16 13:09:15 and 2022-05-27 11:01:45 in the form of a CSV[20]. The
content of the CSV file consists only of the time stamp and PM10.0 mea-
surement at said time, when exporting data from the websites, quality as-
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Listing 1 Implementation of a simple CNN forward and back propagation
sequence

1 //Forward

2 convl1->forward(conv_input, conv_output); // Conv2d layer

3 maxpool1->forward(convl1->filters, conv_output, pool_output); // Maxpool2d layer

4 flatten(convl1->filters, pool_output, mpoutsize, 1, model->batch, f_output); // Flatten

5 model->forward(f_output, output); // Dense layer

6

7 l2_error=lambda*L2(model->weights, model->in_sz, model->out_sz, model->batch)/2;

8 error=cross_entropy_loss(output, ground_truth, model->batch, model->out_sz)+l2_error;

9 acc=accuracy(output, ground_truth, model->batch, model->out_sz);

10

11

12 if(verbose == true){

13 if(local == true){

14 cout << "Softmax ";

15 for(int y=0; y < model->out_sz; y++){

16 cout << output[0][y] << " ";

17 }

18 cout << endl;

19 cout << "\tLoss " << error << "\n";

20 loss_list[epi] = error;

21 }else{

22 Serial.print("\tsoftmax");

23 Serial.println(output[0][0]);

24 Serial.println(output[0][1]);

25 for(int y=0; y < model->out_sz; y++){

26 Serial.println(output[0][y]);

27 }

28 Serial.println(error);

29 }

30 }

31

32 if(epi == local_episodes-1){

33 cout << "Train Accuracy: " << acc << std::endl;

34 }

35

36 //Backward

37 model->backward(output, ground_truth, loss, f_output, LR, lambda);

38 inverse_flatten(convl1->filters, loss, mpoutsize, 1, model->batch, gradients);

39 maxpool1->backward(gradients, inverse_maxpool);

40 convl1->backward(conv_output, conv_input, inverse_maxpool, LR);
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Listing 2 The gate calculations within the LSTM cell

1 for(int i = 0; i < hidden; i++){

2 sum_i = 0;

3 sum_f = 0;

4 sum_o = 0;

5 sum_c_ = 0;

6

7 for(int j = 0; j < input_size; j++){

8 sum_i += weights[IFCO::I][j][i] * x_t;

9 sum_f += weights[IFCO::F][j][i] * x_t;

10 sum_o += weights[IFCO::O][j][i] * x_t;

11 sum_c_ += weights[IFCO::C][j][i] * x_t;

12 }

13 for(int j = 0; j < hidden; j++){

14 sum_i += hidden_weights[IFCO::I][j][i] * prev_h[0][i];

15 sum_f += hidden_weights[IFCO::F][j][i] * prev_h[0][i];

16 sum_o += hidden_weights[IFCO::O][j][i] * prev_h[0][i];

17 sum_c_ += hidden_weights[IFCO::C][j][i] * prev_h[0][i];

18 }

19 sum_i += biases[IFCO::I][i];

20 sum_f += biases[IFCO::F][i];

21 sum_o += biases[IFCO::O][i];

22 sum_c_ += biases[IFCO::C][i];

23

24

25 i_t[0][i] = sigmoid(sum_i);

26 f_t[0][i] = sigmoid(sum_f);

27 o_t[0][i] = sigmoid(sum_o);

28 _c[0][i] = tanh_func(sum_c_);

29

30 }

31
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surance, and quality control values follow to indicate the overall value of
the data, but these have been filtered out of the file.
As the end devices used in the project do not possess the capability of gath-
ering such data themselves they need to be loaded onto the device before
starting the training process. As such the data has to be formatted to re-
spect the resource constraints present. This is done by formatting the data
into arrays of the desired input size, which in this case is (12, 1), and scal-
ing the numbers on a range from -1 to 1. This scaling is done as ensuring
that all input features are on a similar scale should help the model con-
verge faster, in addition, the tanh and sigmoid activation functions used in
the LSTM cell gates also have ranges of -1 to 1 and 0 to 1, respectively, as
such if the input data is much larger or smaller than the range of these ac-
tivations, the consequence might be vanishing or exploding gradients. The
data is thereafter loaded onto the device to be used in the training phase,
by default each device gets 500 datasamples each for their dataset unless
stated otherwise in the evaluation section.

4.5 Models Used
Due to the goal of testing a greater variety of tinyML with FL use-cases,
compatibility with three different NNs was implemented in favor of fo-
cusing on one alone. DNN was chosen due to the fact that it is a compo-
nent of other neural networks and can function as the sole trained layer
in a greater network, but also because of its general use in multiple prob-
lems and low complexity. CNN is the standard for image classification and
with the need for surveillance over people and industrial machinery, hav-
ing access to training in computer vision on resource-constrained micro-
controllers could be beneficial to ensure safety in dangerous work areas.
Finally, LSTM is used for time series prediction in cases where predict-
ing the future based on previous events in their specific time sequence is
necessary. In an industrial context, LSTM could be beneficial for detect-
ing developing anomalies in machinery based on several data, for example,
familiar pressure and temperature changes over a set timeframe might in-
dicate imminent failure.

4.5.1 Deep Neural Network
The implementation of DNN capability is a natural addition as the core
component, the FC layer, tends to be the final layer of several other NN
architectures, this was demonstrated in the Related Works section by both
TinyfedTL[15], and TinyOL[24] where they deploy a trainable FC layer at
the end of a static Tensorflow Lite model, while also showing promise in-
dependently like in the work by Grau et al.[17] where a full DNN was de-
ployable. Whereas TinyFedTL and TinyOL were intended for image recog-
nition, Grau et al used their DNN for voice recognition, in addition, it can
be viable in text classification and tabular data analysis. As it works as a
jack of all trades, but master of none, it is clear that when exploring the po-
tential of TinyML, other architectures more suitable for specific tasks are
also necessary which is why this work focuses primarily on the other two
NNs.
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As described in the background section, DNNs are fully connected, mean-
ing that the weights and biases per layer would equate to input size *output size+output size.
This means that the feature extraction is on the context as a whole and
that consequently the weights needed to achieve similar accuracy as more
advanced architectures come at the cost of scaling up layer sizes or alter-
natively increasing the number of layers. For example, for image recogni-
tion, DNNs lack the ability to handle spatial information or local patterns
whereas CNN can utilize filters for capturing these local spatial patterns
and take advantage of the hierarchical nature of images, while also us-
ing the filters for weight-sharing. As such DNN becomes competitive by
increasing complexity against an architecture with inherently lower de-
mands. However, based on the complexity of the task, DNNs might still
be sufficient in instances with non-spatial and non-temporal data, or in in-
stances where feature extraction has taken place prior to the DNN, and can
achieve comparable results to other models if input data is less complex.

As a result, the implementation of DNNs is natural for testing a common
use case for ML in general, while the simple architecture means there is
little room for architectural change in the pursuit of a faster or smaller
model. This makes DNNs good for benchmarking and gaining insight into
the performance and optimization of other architectures.

4.5.2 Convolutional Neural Network
Convolutional Neural Networks are necessary for testing the limits of mi-
crocontroller on-device training for computer vision as it is the convolu-
tional layer that enables the capturing of local spatial information for fea-
ture extraction. Based on CNNs better architectures have emerged like
ResNets[11], however, these require an increase in parameters and mem-
ory consumption in both training and inference. As such, standard CNNs
are sufficient in testing image recognition as the primary goal is to achieve
fast viable models with low memory usage and efficient communication
with the server, making the more advanced alternatives that are known to
require more parameters less viable. ResNets’ higher parameter require-
ments stem from their skip connections and additionally required layers,
which decrease their scalability and make them less attractive for micro-
controllers. Nevertheless, with convolutional layers viable, extending the
class to allow for residual connections can be done if desired, however, con-
forming to this architecture might negatively impact the customizability of
the model architecture as the required additions remove from other alter-
native layers which might be more suitable when designing NN model for
specific use-cases.

4.5.3 RNN: Long Short-Term Memory
For the purpose of handling sequential data, like time-series data or nat-
ural language processing tasks LSTM is a suitable candidate architecture
due to several reasons. Previous RNN structures were insufficient at han-
dling long-range dependencies in sequential data due to them suffering
from vanishing and exploding gradients, however, LSTMs mitigate the is-
sue through a gating mechanism. This mechanism enables LSTMs to main-
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tain information across longer sequences while selectively remembering
and forgetting, which allows them to capture long-range dependencies in
addition to being more robust to noise in the input data. The versatil-
ity due to improved handling of data is therefore especially valued since
when intended to deploy on microcontrollers, the variability in real-world
data can impact the performance significantly as the training set might
not be entirely representative as shown in Haoyu et al.’s TinyOL[24]. Mi-
crocontrollers will possess less data-processing due to resource constraints,
inherently making it subject to more noise in the data-set, while in addi-
tion, the intention of making use of the models in an industrial IoT FL
scenario makes the data more vulnerable to a larger number of variations
in environment, with adjacent machinery potentially impacting the sen-
sors differently. Thus, better long-term feature extraction is necessary for
gathering the desired features efficiently, while forgetting what features
learned which are deemed unnecessary. Therefore, the federated learning
process can also become like a federated forgetting process for what they
collectively want to disregard when training.

While LSTMs are still a popular choice in general when dealing with
time-series data, transformers become the new state-of-the-art in handling
sequence-based tasks, however, there are core differences that make LSTMs
more desirable for microcontrollers and FL specifically. Firstly, the reduced
complexity increases parameter and energy efficiency as fewer weights are
needed to be kept which transformers need for the attention mechanism
and additionally required layers. In a scenario where the LSTM input-
to-hidden, hidden-to-hidden and cell-to-hidden weights are 512, the LSTM
would contain 784432 weights whereas a single layer transformer of sim-
ilar size would require 33% more for the self-attention layer alone, while
input-to-hidden and hidden-to-output weights are also required, which can
increase the requirement significantly based on the hidden size and neu-
rons for FC layer. In addition to the size issue of transformers, however,
LSTMs are better for incremental training whether online or normal in-
cremental as they adapt to new data in a sequence. Transformers require
entire sequence to be available at once for training, making it less suitable
for scenarios where data is streamed or where it is undesirable to store long
data sequences.

As a result, LSTM is favored as a good architecture for microcontrollers
due to their size, inherent processing of data, and increased compatibility
with incremental and therefore online and federated learning.

4.6 Training Processes: Federated and Central on-device
In order to compare the results from the different models present in evalu-
ation, models were tested by running both federated learning and training
alone on their own dataset.

4.7 Server-Side weight averaging
The server-side weight averaging during federated learning was done using
a standard federated averaging algorithm which adds all the weights from
each device and averages it. The implementation of the averaging waits
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for all devices to finish their local episodes before performing the averag-
ing, as it gives a more balanced overview of performance and devices an
equal impact on the weights. The default training parameters for federated
learning in this implementation it that there are 24 federated rounds, with
each device having 5 local episodes, however, alternatives are explored.

4.8 Measurement of Metrics
Each separate device calculates its loss based on its training data during its
training process, in the case of LSTM, the MSE loss is utilized. After each
device has finished training, each device is tested through the validation
dataset before the federated averaging happens to obtain the MAPE and
MAE scores

4.9 Model Compression before and during FL
In the context of federated learning, server-side compression plays a criti-
cal role in addressing communication overhead and bandwidth limitations,
which are particularly crucial when dealing with resource-constrained de-
vices. By applying compression techniques before or during federated learn-
ing, it is possible to reduce the amount of data exchanged between the
server and the participating devices, thereby minimizing communication
latency and preserving the energy resources of the devices. As such, testing
the overall viability of compression whether with the purpose of creating a
good pre-trained model for fine-tuning using on-device training and FL or
just in order to deploy a finalized model for on-device inference alone is nec-
essary in order to gauge the value of the on-device training. As some degree
of compression is inevitable when the model is done training centralized, or
federated, some understanding of how this process

Server-side compression can be employed before federated learning to
reduce the size of the initial model that is transmitted to the participating
devices. By compressing the model, the server can ensure more efficient
distribution of the model to the devices, allowing them to begin the local
training process sooner. Several model compression techniques, such as
weight pruning, quantization, and knowledge distillation, can be applied
to achieve this goal. These techniques focus on reducing the redundancy
in model parameters, lowering the precision of the weights, or transferring
knowledge from a larger model to a smaller one, respectively, while main-
taining the model’s performance.

Updates can be done during the federated learning process which acts
as a compression of the FL process itself by compressing the model as usual
but also optimizing the algorithm to better handle the weights transmitted
from the devices, improving the weight averaging process speed and con-
vergence rate. This usually consists of gradients or weight deltas and can
be compressed using techniques like lossy compression, sparsification, or
sketching algorithms. Lossy compression reduces the precision of the model
updates but maintains their overall structure, whereas sparsification in-
volves retaining only a subset of the most significant updates. Sketching
algorithms, on the other hand, provide compact representations of the up-
dates, allowing the server to reconstruct an approximation of the original
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data. By compressing the updates, the server can reduce communication
overhead while aggregating the updates from multiple devices.

As such, server-side compression plays a pivotal role in optimizing the
federated learning process, particularly when working with resource-constrained
devices. By compressing the model and the updates before and during fed-
erated learning, it is possible to mitigate communication overhead, reduce
latency, and conserve energy resources, ultimately leading to a more effi-
cient and scalable federated learning system.

4.9.1 Before On-Device Deployment
Various techniques have been employed to achieve the best possible tinyML
model before FL training, including weight quantization, pruning, and weight
clustering with Huffman encoding. As discussed in section 2.5, Weight
quantization involves reducing the number of bits used to represent the
weights in the model, thus decreasing the overall memory requirements.
Pruning, on the other hand, eliminates redundant or less significant con-
nections within the network, leading to a sparser model with fewer pa-
rameters. Huffman encoding further compresses the pruned and quan-
tized model by employing a variable-length coding scheme based on the
frequency of weight values, enabling more efficient storage.

One of the particular, most promising, approach for model compres-
sion is the teacher-student paradigm, where a smaller student model is
trained to mimic the behavior of a larger, more accurate teacher model.
The student model learns from the teacher’s outputs or intermediate rep-
resentations rather than directly from the ground truth labels, effectively
transferring the knowledge from the teacher model to the student model.
This process allows the student model to achieve a high level of accuracy
while being more compact and computationally efficient, making it well-
suited for deployment on resource-constrained microcontrollers. By com-
bining the teacher-student paradigm with other compression techniques,
such as weight quantization, pruning, and Huffman encoding, it is possible
to create highly efficient, low-memory footprint models that can effectively
operate on microcontrollers while maintaining satisfactory performance.

4.9.2 During Federating Learning
The deployment of machine learning models on microcontrollers demands
the use of compression methods not only after the training process but also
during training, to ensure the resulting models are both efficient and ac-
curate. Quantization-aware training (QAT) is one such technique that in-
corporates quantization into the training phase itself, allowing the model
to learn to adapt to the reduced numerical precision of weights and activa-
tions. By simulating the effects of quantization during training, QAT en-
sures that the model’s performance remains robust even after the weights
are quantized for deployment on microcontrollers.
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4.10 On-device optimizations
Optimization of the on-device training process includes a few key parts
which are explored in this thesis. The

Compact architectures Different model sizes were tested to as-
sess how the number of weights might affect the different performance
metrics of the model as a whole. The standard LSTM model has 16 units,
which is significant for both how many weights the layer has, as well as how
many cells the layer possesses for the data to pass through. In addition, a
smaller model of 8 units was tested for comparison and a larger model of
64 units. The units become significant for the overall speed of the models
as the increases in it will rapidly require more storage for weights which
means more values for matrix multiplication, while also adding another
entire computation step for each unit through the cell.

Quantization-aware training Quantization-aware training is briefly
explored to address the concerns of performance loss whether for whether
when the model is finally quantized for inference, or if it would be desired
to quantize the model for weight transfers.

4.11 Unaddressed Work
This section is for planned work which I wanted to complete but could not
due to low gain, and the amount of work necessary to implement other
factors.

4.11.1 Power consumption measurements
I attempted to benchmark the power consumption of various deployments
of models on an Arduino and attempted to use two separate USB multime-
ters of different brands to read the current, but it was unable to read the
low current. The benefit of having this metric is to further see the effect
of different storage of different variables on the device, i.e. the effects of
locating them on SRAM vs flash memory. As it could not be measured, the
implementations were made entirely with the goal of fitting on SRAM with
enough complexity to be able to provide value.

4.11.2 Model or data on Flash memory vs SRAM
As having especially the NN model on SRAM is significant for computa-
tional speed on microcontrollers[10], benchmarking the consequences of
utilising the flash memory just for the sake of benchmarking is unneces-
sary for the task. This is especially relevant as strategies for using the
flash memory are primarily through constants, meaning that even in a
real-world scenario with continuous data sampling it would not be very vi-
able for storing ever-changing datasets either, while in addition, very little
SRAM should be needed for a sufficient batch variable to store the streamed
data temporarily before deleting it. The concern of flash memory is more

49



relevant when concerned with inference as the weights in that case are
static and have the potential to be placed in flash.
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5 Evaluation
The evaluation section will cover experiments on different system variables
to find ones that provide sufficient performance to the models being trained.
It will address experiments on compression for inference, the behavior of
on-device training based on the various parameters, and the effects of train-
ing strategies commonly employed server-side instead used in on-device to
investigate the potentials. While DNNs and CNNs are briefly addressed,
the focus is on RNNs using LSTMs. All the graphs present are created
using python with Matplotlib for the plotting.

5.1 Set-up
To run the tests used to generate the data in the evaluation, both simula-
tions and a real-world test bed were used. The simulations were scripted
in C++ to be entirely compatible with the code which was deployed on the
device and serves the purpose of better exploring the effects of various pa-
rameters which the test bed cant cover, e.g. having more devices available.
The test bed consists of a maximum of 3 Arduino Nano 33 BLE Sense de-
vices, and 2 Sparkfun Edge Apollo 3 devices, connected to a computer that
handles the federated learning process using a Python script, through a
USB cable for serial port communication. The computer that is used to
record the performance has an ASUS GeForce RTX 2080S GPU with 6 GB
memory, an Intel Core i9-10900 CPU at 2.80GHz, 32 GB RAM, and running
Windows 11.

For reproducibility to allow for more extensive testing on LSTM sce-
narios, the models are initialized with same weights using a stored set of
Xavier/Glorot initialized weights as they work well with networks with sig-
moid activation[9].

5.2 Pre-FL Model Compression
To see how good a couple of relevant, well-performing, models could be-
come after applying compression, some evaluations of compression strate-
gies that would take place before distributing the model for FL or Inference
is needed.

5.2.1 CIFAR10 Image Classification
Methods for compression before the federated learning process takes place
to discover what server-side compression can be applied to the pre-trained
model to garner the best result in the least accuracy loss compared to model
size reduction. In particular, the knowledge distillation technique is core
before the FL rounds take place as it is a very effective way of creating a
much smaller student model with similar accuracy as the larger teacher
model[4]. As we assume that the model architecture and weights will be
identical on all devices participating in the federated learning and there-
fore that the dimensions of the weights will remain the same, knowledge
distillation becomes the natural first step to preparing the model for devices
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if a pre-trained model is desired for fine-tuning or inference. Alternatively,
a small model with a similar size to the student model can be initialized
with random weights and trained on the same data used by the teacher-
student strategy, however, this tends to yield lower performance[12]. As
such when deciding on a model to use for Tiny and Federated ML, firstly
the teacher model is trained, thereafter a smaller model of similar archi-
tecture is made, though not necessarily completely similar, and knowledge
distillation can take place on said model. Finally, other compression algo-
rithms which can be done both before FL starts and during the process can
be applied, i.e. pruning, quantization, and weight clustering, which were
addressed in deep-compression[10]. To illustrate the effect of each, figure
1 shows their use alone and in various combinations on an alexnet trained
on CIFAR10, where each of the students’ layers has 25% of the units the
teacher has. This demonstrates how effective the combination of all four
can be, as an accuracy loss of 1.2% is the only price to pay for a 99.3%
model size reduction.

Model Size Accuracy
gzipped Keras model 77329 0.698

Pruned-TFlite 2827639 0.708
Quantized-TFlite 232874 0.699
Distilled-TFlite 2827639 0.708

Pruned, Quantized-TFlite 10761290 0.710
Distilled, Pruned, Quantized-TFlite 10763536 0.710

Table 1: Result from various compression strategies and their combina-
tion on an AlexNet. Each layer in the student has 25% of the units of the
teacher’s layers.

Based on the figure, it is clear that knowledge distillation, particularly
on, and especially in conjunction with others, is sufficient for creating sig-
nificantly accurate models. When attempting to train the distilled, pruned,
quantized model from scratch, reaching a similar point with freshly ini-
tialized weights proved to be unlikely as a model with lower weights will
struggle to gain the generalizations a larger model would.

5.2.2 PM10.0 Time-series classification
Secondly, in order to see the potential of smaller and, compressed LSTM
models on time-series data, a roughly 49,985-weight 2-LSTM layer model
was made and trained, then distilled into a model with 329 weights. The
resulting compared prediction is visible in figure 7 where the original LSTM
had MAPE of 60.18% while the distilled model had a MAPE range of roughly
60%+/-2%, with the case in the image figure slightly smaller MAPE at
58.69%. Such a MAPE is generally not considered, too good but as has
been mentioned and will be seen in later figures, it likely happens due to
the predictions being on a range from 0.0 to 1.0, in which MAPE might
struggle. However, the general trend of the true data is followed by both
models, indicating that the model is at least viable to some degree
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Figure 7: Original two-layer 64-unit RNN with LSTM vs Distilled, com-
pared to the true data

5.3 Evaluation of Neural Networks on Microcontrollers
The general viability of the models for on-device training is discussed with
examples demonstrated for on for the implications of on-device training. As
both CNNs and DNNs are relatively mature architectures in this context,
the general comparison and contrast here and in later sections will be fo-
cused primarily on the LSTM model as it is the area with the least FL and
tinyML implementations, as I have not any relevant articles for it, contrary
to the two others. DNNs and CNNs are however briefly assessed.

5.3.1 Deep Neural Network
Standard deep neural networks generally require more parameters for less
performance than what a CNN usually does, so on its own it performed
sub-par as it would have to eat up more of the space which is needed for
data especially in image classification. No result of significance was yielded
alone which the two other models outperform it in the scenarios with the
dataset used. While not very viable for on-device in its entirety, naturally
both other models use the core component of a dense layer at the end to
process the output, whether classification or regression, so it serves that
purpose well as known from standard ML practice.

5.3.2 Convolutional Neural Network
The model briefly testes here was a CNN consisting of a convolutional layer
with 16 filters and 3x3x3 kernel size for RBG channels, thereafter a max-
pooling with 2x2 kernel, flattening and a dense layer. The model size is
therefore small enough to easily fit on data, which is necessary for to fulfill
the immense memory requirement that the image dataset will place on the
model. As seen in figure 8 the loss curve is smooth as it is converging neatly,
and the accuracy signifies it training, albeit not very well. There is plenty of
room for improvement on accuracy, but the converging reaching its minima
indicates that a greater dataset is needed. The data aforementioned data
requirement however poses the greatest resistance to this as an image of
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Figure 8: Loss and accuracy of a CNN trained on a single device

size 32x32x3 than 13.5KB, meaning that when relying on storage of data
samples instead of streaming or self-sampling the data will always be min-
imal and which can make FL training less fruitful as the devices doesn’t
have access to learn enough common generalizations, this is discussed fur-
ther in section 5.5.3. And it can be assumed that generally, the model will
face similar problems as the big LSTM model in figure 14, whose devices

5.3.3 Long Short-Term Memory
Lstm was implemented firstly with the intention of only having one layer
which could be sufficiently good, which is followed by the dense layer. This
is because the significant amount of output generated by the LSTM with
return sequences set to true, as well as the second layer having a need for
the storage of its own intermediate variables would place a significantly
greater burden on the device in terms of computation time and storage.
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(a) The MSE (b) The MAPE

Figure 9: 64 Units LSTM training and validation results of 5 devices
trained with FL. Each has 100 data samples to train with.

Figure 9 illustrates that a relatively low amount of weights on a sin-
gle layer can demonstrate a relatively well-improving performance on time
series prediction when considering just the MSE loss metric, and how fed-
erated learning is viable for this. The model has a 16-unit layer taking
12 inputs, and a dense layer with a single output, this equates to 1152
weights, which when using 32-bit floats means it requires 4.56KB, with
an additional 0.7KB per unit for backpropagation intermediate variables,
which is a total of 16.06KB, 6.2% of the SRAM limit posed by an Arduino. It
is noteworthy that after every FL weight averaging it increases the loss as
generalizations inappropriate for independent devices are gained, however,
the overall performance improves consistently. This is particularly notice-
able with ”device1” whose loss progression indicates that the federated av-
eraging of the weights is generally to the detriment of its individual model
as it jumps significantly. A notable observation is how the increases in MSE
whether at the start of each FL round or in the middle of FL rounds are not
reflected in the MAPE score. The cause for this deviation of metrics which
are both supposed to represent the quality progression during the training
process is likely the fact that they emphasize different aspects of the error.
As stated before, while MSE is sensitive to large errors, i.e. through having
few but large outliers, the MAPE deals with average values, which are nat-
urally less affected by outliers. As such The MAPE is a better generalized
indicator of how the progression of how the training is proceeding. There-
fore, based on figure 9, it can be assumed that the spikes presented in the
MSE by weight averaging are not detrimental to the average performance.
The best average MAPE presented indicates a 5̃6% deviation from the de-
sired output on average, which signifies the accuracy of the model being
very low, however, some of this could be attributed to the prediction range
being values from 0.0 to 1.0, which makes the MAPE score suffer in cases
where the ground truth as well as predictions are closer to 0.0.
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Figure 10: MAE of model in figure 9

To demonstrate the improvement in the model’s accuracy overall, the
MAE score can be used instead as it does not suffer the same issue of sig-
nificantly increasing the percentage error when the true value is closer to
0. As such, in Figure 10 it becomes clearer that even if the MAPE shows an
increase around the end of the training, this can be due to slightly higher
predictions on values with lower ground truths, and not entirely deteriora-
tion of the model as a whole due to overfitting. The model is however still
objectively quite unbalanced, so finding means to improve it is necessary.

(a) The MSE (b) The MAPE

Figure 11: 8 Units LSTM. 5 devices training on 500 unique samples with
FL.

Figure 11 shows a MAPE score which at its lowest point dips below the
value of the original and distilled pre-trained model discussed in section
5.2.2. The actual

In order to compare the effect of parameter size figure 11 can be used,
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as it has a unit size of 8 instead of 16, meaning it has 28% of the weights
of the model in 9. It demonstrates that similar performance curves and
even faster converging could be achieved with a smaller model even when
trained from scratch. The loss function is more stable Based on the previous
rationale for the deviances between the metrics used, this signifies smaller
models perhaps having fewer outliers than models with a larger sum of
weights. This makes sense as the larger sum of weights will try to learn
from more complex patterns of the input data. Based on these measure-
ments it can therefore seem possible that a larger model is more heavily
reliant on either a greater dataset or more training on the smaller dataset
to decrease the outliers. This raises the question of what the balance of
FL rounds and local episodes should be to obtain a better result. Overall
though, having a more diverse and greater dataset is generally known to
produce better models, as such the relationship between performance when
training on a smaller or larger subset of on-device data, the sum of total
data in the FL process, and its distribution between devices is also neces-
sary for a more complete picture of performance. These aspects are further
discussed in the sections below.

5.4 Federated vs. Centralized Tiny Machine Learning
While the potential benefits from Federated learning have been presented
in the form of systematic benefits to privacy, and latency as far less com-
munication is needed, trade-offs can also be addressed as the training of
individual models is likely to negatively affect other devices’ weights

(a) The MSE (b) The MAPE

Figure 12: A single device training the same model as in figure 9

Figure 9 demonstrated the potential effect on the loss and metrics when
the training only takes place on a single device using a dataset size of 2500
as if it had all 5 devices’ data, the learning rate was also decreased as. The
loss indicates that the outlier errors are increasing among epoch
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5.4.1 Accuracy
The accuracy of the LSTM is assessed by considering the loss function MSE,
as well as the MAPE, and MAE metrics, which were tested against the eval-
uation set. In regards to LSTM, the MAPE reached by the on-device trained
model approaches similar values as the original and distilled lstm models
highlighted in the compression section 5.2.2. Though training on a smaller
dataset, the 16-unit model in figure 9 and its smaller counterpart in figure
11 dip under the 60 MAPE in their best FL round. In general, however, the
models are currently incredibly inconsistent, as the regular increase, and
thereafter drop in MSE score tells us that there are at least a few signifi-
cant outliers. It is however important to note that in figure 17 where 2000
data samples are present on each device, ”device2” and ”device3” perform
significantly better than ”device3” based on MSE. Considering how previ-
ous models have one or more devices using the samples within the range
of the same 2000 samples, it then also makes sense why some devices in
other presented figures in this section have sudden sharp loss increases as
they might be training on flawed data or data that deviates from the norm.
Regardless of the high MSE on ”device1” in the aforementioned figure, how-
ever, the MAPE on validation is performing better than others. Therefore,
based on the comparison of said figure ?? and figure 14 with significantly
more weights but the same dataset as the standard model in figure 9, it
seems like a greater dataset on-device is more significant than a bigger
model with fewer data. Ideally, both concerns would be addressed by hav-
ing real-time sampling, which is mentioned further in section 6.5.3.

5.4.2 Communication Cost
The communication cost when running FL will naturally increase with the
number of dedicated set FL rounds, or with a lower number of local episodes
if there is no maximum amount of FL rounds. When attempting to run the
LSTM model with half the number of fl rounds and twice the amount of
local episodes as seen in figure 13, it resulted in slightly lower peaks of
MSE on most of the devices which indicates the higher amount of local
episodes enables the individual models to have fewer outliers. The cost of
this is however also a slightly higher MAPE. As such the communication
cost of federated learning can be cut with such a sacrifice in this particu-
lar scenario. An additional means of cutting communication costs during
federated averaging is by quantizing the weights from 32-bit floats to 8-bit
ints, but this comes at an accuracy loss which can potentially be mitigated
by quantization aware training.

5.5 Optimizing the Federated Learning on IoT devices
Some of the strategies attempted to improve the federated learning pro-
cess when using on-device training. The focus of these tests will be on the
training of RNNs using LSTMs in particular.
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5.5.1 FL rounds to local episode ratio

(a) The MSE (b) The MAPE

Figure 13: Same model and initial weights as Figure 9, with half the FL
rounds, but double the local episodes.

While parameter aspects like weights and data available have known ef-
fects on the overall performance of a model, the ratio of local episodes to FL
rounds is relevant too as it might affect the time it takes to converge, while
allowing the model weights to accommodate the local data well. It would be
desirable to reduce the number of FL rounds in order to cut communication
costs, but the consequence might be local overfitting as the data they train
on is restricted. In the case of figure 13, it is clear that the MAPE suffers
in comparison to the counterparts with fewer local episodes.
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5.5.2 Model-size to data-set size

(a) The MSE (b) The MAPE

Figure 14: Same model as Figure 9, but with 64 units instead of 16. Same
size dataset-size per device, 500 sequences.

Figure 15: MAE of model in figure 14

As can be seen in the different figures, including 14 and its smaller ver-
sion 11. Different numbers of weights hold different implications for perfor-
mance, as the individual models might become overfitted based on the data
available, or the training set of some devices align better than others, re-
sulting in an unfair federated learning process with stragglers. The bigger
version of these models can be seen in figure 14 and shows this even bet-
ter in the later stages as ”device5”’s loss function is increasing significantly
more than others, while also being a straggler in other, smaller models as
well.
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5.5.3 More devices with fewer data

(a) The MSE (b) The MAPE

Figure 16: Same model as Figure 9, with 3 additional devices and 300 data
samples per device

The degree to which the datasets present in total, distributed across all
single devices, can be considered part of the whole dataset needs to be ad-
dressed. The potential costs to performance by not having all data sam-
ples present locally are significant especially in relation to the previously
discussed section, because our ability to compensate for lowering the local
datasets to afford a greater model size might be worth the cost based on
the amount of devices we have to compensate for it. Figure 13 displays the
effect of adding 3 devices each with 300 data samples to contribute to the
pool of the total dataset. The variability in device performance is a signifi-
cant issue here as some seem to have questionably low MSE while having
a MAPE which conforms to what is expected.
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(a) The MSE (b) The MAPE

Figure 17: Same model as Figure 9, with only 3 devices, and 2000 data
samples per device

To contrast the model in figure 16, there is a FL scenario with only 3
devices and 2000 samples of data each can be seen in figure ??, where the
total dataset requires a total of 101.5KB of storage. The effect of having
fewer devices with albeit a significantly greater set of data far outperforms
the scenario with fewer data and more devices. It is important to consider
that each device’s validation set is determined based on the size of its train-
ing set, so the comparison of the models shows their performance relative
to each other with different validation. This would indicate that even if the
data is distributed well between more devices, their ability to generalize
on the data is significantly lower. The cause for this could be that what
little each device gains of knowledge from their smaller dataset ultimately
goes to waste as it is not reflected in the performance on the smaller vali-
dation set. In addition, when comparing it to the model with a significantly
greater number of weights present in figure ??, it further underlines the
issue of on-device generalizations being unusable as especially in a model
with a greater number of parameters, it is likely to overfit on the specifics of
the limitations. As such, the question turns into questioning what the opti-
mal model size to dataset ratio is, with the number of devices assisting just
participating as they cannot compensate for a significant lack of data on
other devices unless their models are small enough to automatically obtain
generalizations which is applicable to all, at the cost of not having as great
of a peak performance. This further highlights desire for datastreaming or
live data acquisition.
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5.5.4 Quantization Aware Training

(a) The MSE (b) The MAPE

Figure 18: Same model and initial weights as Figure 9, trained Quantiza-
tion Aware Training

When compression-aware training takes place, a decrease in performance
is expected overall as the weights are trained to suit the loss which is
incurred by the compression. In particular quantization-aware training
as discussed previously seeks to emulate quantization during training so
that the final quantized model is more accurate than a model which has
been solely trained on unquantized, standard 32-bit floating point num-
bers. When testing this on the standard 16-unit lstm model, as seen in
figure 18, it is clear that the training process suffers too much from the
loss of precision in the conversion. Similarly, as before, one device suffers
from severely high loss, and in addition, another device is struggling with
what seems like vanishing gradients. Ultimately, deploying quantization-
aware training on these smaller models is definitely not a worthy pursuit
in this type of implementation. If the model had been larger and trained
in a centralized manner then had post-training quantization deployed, in
all likelihood the models would have had fair accuracy, but when training
the models on devices with limited datasets they struggle with obtaining
solid generalizations in general meaning that what little progress is gained
more easily disappears in the precision loss of 32-bit float to 8-bit integer
quantization during training. It does however raise further questions re-
garding how effective it would be if dataset could be obtained in real-time,
effectively granting the devices a more fair dataset for them to train on
as outliers in the dataset would not make devices have such a significant
negative effect.
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6 Conclusion & Future work
This section concludes the deductions made from my work regarding on-
device training of different models with the use of Federated learning. The
approach of focusing on LSTM models and time series classification over
image classification was due to fact that it is the least explored area within
this topic, as such the results evaluated previously and evaluated here will
focus on it, though a lot of the general observations can be considered for
the other models as well.

6.1 The approach in general
When deploying on device training on a microcontroller, performance was
dependent on multiple variables, and if tuned incorrectly they worked against
each other more than not, but the performance that could be comparable,
albeit on a far lower amount of data, shows potential to be reached with fur-
ther advancement. Federated learning was seeking to address the privacy
concerns regarding centralized data storage, and it effectively solves this
issue of global training concern assuming a big enough model is present
with enough data. In the context of FL on microcontrollers however the
answer isn’t as clear as it becomes very dependent on the accuracy needs
of the model, and therefore what implications that would have on the size
of the model. However, if we can assume that the data can be streamed or
sampled in any way, it solves the issue of being concerned about how much
data is available, making FL on IoT far more accessible. As such, deploy-
ing the LSTM model for predicting PM10.0 on the actual sensors used by
NILU, could be a very possible reality.

6.2 Accuracy
The accuracy of the produced models to not compare with the compressed
models generated from knowledge distillation, and the limited data I was
able to allocate onto the device would negatively impact the pre-trained
model as the generalizations learned from the teacher, not the dataset it-
self, would get replaced by an inferior training process. When considering
accuracy for on-device training the most significant aspect to consider is
the data allocated more often than not as devices with sufficient data can
help each other but devices with too little will obstruct each other’s conver-
gence as the wrong generalizations are made. As such, an overall good and
permissible performance of on-device trained models, in particular LTSMs,
is possible as the variables used in the evaluation indicate a trend of being
able to fine-tune the device size to model size as one can start with a smaller
model test in relation to the dataset as a smaller model is likely to perform
better regardless after the sweet spot is found the new devices with similar
dataset size can be added without impacting performance negatively.

6.3 Communication Cost
The communication cost will be relatively high in situations with a low data
amount available as a higher amount of local episodes will more likely lead
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to overfitting on devices, making the federated averaging detrimental to
the overall performance of the devices in general. Assuming that the data
is sufficient leaves more room for having fewer FL rounds, but the perfor-
mance of the other models is supposed to also rely on each other device so
ideally there would still be some frequent federated averaging. Quantiza-
tion, which is used for model compression can also be used for communica-
tion, allowing for the transferral of integers instead of floats, as the models
would eventually be quantized for inference in the end anyways once FL
has been completed, having a model that doesn’t suffer much loss for quan-
tization would be ideal. I tried to implement that through Quantization-
aware training however the small model, with perhaps the small dataset
couldn’t learn anything from it, so quantization would have to be applied
without any preparation in this case.

6.4 Overall
The approach i chose of relying on data stored on the device proved to be
a great hurdle in acquiring new knowledge as being concerned with data
distribution and overfitting on the same dataset every FL round became a
more significant worry than potential advances that do not concern basic
ML problems. In any case, it seems like the current best approach for most
accurate predictions microcontrollers is model compression for inference,
and facilitating a means to gather sensor data to a more powerful edge node
that does the machine learning, then distributing the model for inference
would yield better results in most practical applications.

The use of federated learning on IoT nodes is still a significant topic in
certain scenarios as cases where the data for training is simple, i.e. from
various sensors, should be able to generate sufficiently accurate models in
and for the dataset. Such examples include in particular the industrial con-
texts where various data can be easily gathered and trained on. In addition,
deploying ML on such devices would be beneficial instead of an edge node
as they might have some actuation power that would be desired to have au-
tomated, and latency would place a burden. As well as the fact that when a
model is deployed, even if pre-trained it would need to be fine-tuned to the
specific scenario to be viable at all.

6.5 Future Work
There are a lot of opportunities for future work in FL for tinyML on-device
training based on this project particularly in terms of RNN on microcon-
trollers. This section will include such future topics which can be used to
extend or improve the existing project, and general work that would be a
good addition to this work to address issues.

6.5.1 Support more layer types and ML techniques
Increased support for a variety of standard layers, like GRU and transform-
ers for RNNs is necessary to test and compare the different capabilities and
costs to better assess which architecture is the most appropriate for differ-
ent IoT on-device training deployment scenarios. Layers higher in complex-
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ity might be favorable as they converge faster and be worth the additional
load if it means cutting down on federated learning rounds.

6.5.2 Optimisation for the ML computation on Devices
The current implementation uses dynamically allocated pointer arrays to
handle the storage of various arrays of different dimensions and performs
the various operations in loops. Solutions leveraging faster and more opti-
mized means for computing these operations would be beneficial in order to
speed up the process without incurring much overhead from importing the
library. In addition, exploring the different benefits of leveraging device-
specific optimizations for different IoT nodes where applicable would make
for an interesting comparison of various devices working on the same prob-
lem.

6.5.3 Training on Data Gathered Real-Time and Online
learning

Because the devices used in this project do not possess the capability of
gathering data and generating a data set out of it, conducting a similar
experiment with data gathering, especially in the context of RNNs, could
allow a significantly higher dataset as old samples could get removed. If
implemented, this could allow for in addition to standard training, this en-
ables online learning of various models. As RNN time-series prediction
data has the potential to generate its own truths

6.5.4 Alternative FL Algorithms
Algorithms that handle different federated averaging differently to opti-
mize for overall performance would be key in improving my solution as
there were always devices with datasets that deviated heavily from the
norm. This could include checking for the uniqueness in the weights on
each device and assessing whether including them in the update would
be detrimental or positive overall. This is especially an interesting topic
when using real-time data acquisition as there would always be potential
for faulty data to appear.
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