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Abstract - The perturbation method is applied in an incremental scheme for tracing non-linear 
equilibrium paths of structures which are subjected to a set of simultaneously acting external loads. 
The method is based on the discretesized version of the non-linear stability theory and it is used for 
solving non-linear algebraic equations. In order to pass limit points the direct arc length concept is 
introduced. The method is especially adapted to the solution of plate buckling problems for which 
both strength and in-plane stiffness properties are important parameters. As an example the 
perturbation procedure was used for solving a simple plate buckling problem, for which a closed 
form solution exist, and the results were compared against a recognised non-linear finite element 
program. 
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1.  INTRODUCTION 

The most significant contribution within the field of non-linear buckling theory of structures 
was the development made by Koiter (1945) and first presented in his classical thesis of 1945. 
He classified the postbuckling behaviour according to the stability of the critical load itself, 
and introduced useful concepts for postbuckling and imperfection sensitivity. Two decades 
later, in the beginning of the sixties, Budiansky and Hutchinson (1964) developed this theory 
further. The theory was subsequently applied to several shell buckling problems (Hutchinson 
1967, Budiansky and Amazigo 1968, Hutchinson 1968, Budiansky 1969). Budiansky (1974) 
has provided a comprehensive summary of the theory.  
 
The basis for this non-linear buckling theory is the application of perturbation methods by 
which the equilibrium curve in the postbuckling range is approximated as a power series 
expanded around the critical load. For unstable structures, which could be analysed with 
sufficient accuracy with one single degree of freedom, the buckling capacity of a 
geometrically imperfect structure was related to the imperfection amplitude through very 
compact and practical formulas. A comprehensive review of the theory is given by 
Hutchinson and Koiter (1970).  
 
A parallel development of a more general non-linear buckling theory was initiated in the U.K. 
in the beginning of the sixties. These theories by Sewell (1965,1968), Thompson (1965), 
Thompson and Hunt (1973), Huseyin (1975) and others were based on a discretized version of 
structural non-linear theories and the static perturbation method was introduced for explicit 
solutions of the postbuckling behaviour. Chilver (1967), Johns (1971), Supple (1967) and 
others have studied structural models with several degrees of freedom for the identification 
and classification of coupled postbuckling paths. Thompson and Hunt (1984) developed the 
procedure further and made analogies to catastrophe theory. 
 
The general Koiter theory have been used by several authors with the purpose of calculating 
buckling strength of thin-walled plate and shell structures. Notable among these are Benito 
and Sridharan (1985), van Erp and Menken (1991) and Lanco and Garcea (1996). All these 
applications can be classified as asymptotic in the sense that they are based on a Taylor 
expansion around the critical state.   
 
The more traditional approach, used in commercial finite element programs, is to solve the 
structural problem using an incremental solution procedure. The literature on this type of 
numerical analysis is very extensive and within the engineering field, the first publications 
emerged in the early sixties in connection with the development of the finite element method. 
It is not the purpose to review this topic here but it can be stated that Riks (1972, 1979) were 
among the first to formulate the arc length concept for passing limit points. The Riks method 
has been recognised as a powerful strategy and more recent reviews of this numerical 
technique can be found in Crisfield and Shi (1991) and Carrera (1994). Stoll (1994) applied 
the Riks method for the detailed study of the snap phenomenon in buckled plates.   
 
The motivation for the present work has been on different levels. First of all it is has been the 
purpose to explore the possibilities of the perturbation method as a numerical tool for solving 
structural stability problems within the field of thin-walled plate and shell structures. The 
Koiter theory, as described by the different authors referenced above, is the obvious example 
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of such an application. However, these applications are constructed with the main purpose of 
exploring the postbuckling behaviour around a critical point, which is normally to be 
understood as the classical buckling load. Since the perturbation method is based on a power 
series expansion, these analyses are only valid in the close vicinity of the critical point itself. 
This is a serious restriction to their practical usefulness.  
 
However, it is obvious that the perturbation method can be used also in an incremental 
scheme, in which the total equilibrium path from the unloaded state to an advanced 
postbuckled state can be followed. Such an application is explored herein and the present 
author is not familiar with similar applications of the perturbation method in the literature.  
 
The perturbation method is used as a tool for solving algebraic non-linear equations. The 
procedure of discretization of the structural problem, which generates the algebraic equations, 
can be chosen as matter of personal preference or more wisely as function of the actual 
problem in hand. For some problems the finite element method is to be preferred while for 
other problems a Rayleigh-Ritz technique based on a Fourier expansion of the deflections 
may be a more efficient choice. The perturbation method as a numerical tool is equally 
applicable.  
 
The procedure herein is restricted to the study of what is often referred to as an imperfect 
system. This means briefly that geometrical imperfections are added in all degrees of freedom 
and buckling deflections will start to grow from the onset of applied loading. Conceptually 
thus only limit point buckling is handled and bifurcation type of buckling is suppressed.  
The main field of application of the proposed perturbation procedure is seen within the field 
of the development of simplified buckling models. This means buckling models with a limited 
number of degrees of freedom and which describes the structural response with sufficient 
accuracy for design purposes. Thus, the procedure described herein is not developed to a level 
that makes it competitive with full blown non-linear finite element programs. In order to 
provide this, stability and bifurcation buckling criteria have to be included. Such criteria are 
readily available within the field of perturbation methods as part of the study of singular 
solutions, but they are not explored herein.  
 
Within the field of ship and offshore constructions, which are mainly constructed of thin 
walled stiffened plates and shells, the existing design methods are very simplified and very 
often based on crude empirical approximations. With the steady development of the personal 
computers more and more of the analyses of such structures are done by numerical tools, 
typically large linear finite element models. Thus a need emerge that facilitates strength 
assessment procedures which match the detailed information of the actual stress flow in the 
structure. The motivation for applying crude formulas for strength control is reduced and it 
may be material to be saved and safety to be gained by using more advanced design methods. 
From this perspective it lies a motivation for applying more advanced buckling check 
procedures of plates and shells.  
 
It has been the purpose herein to focus on strength and stiffness properties of plates, which is 
seen as the basic units in large ship and offshore structures. By using a Rayleigh-Ritz 
disctretization of deflections in terms of Fourier expansions, the buckling behaviour of plates 
can be described by sufficient accuracy using only some few degrees of freedom and the 
computer time to assess the strength is minimal. The buckled plate can be considered as 
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macro material in an overall sense and it is believed that the perturbation procedure provides 
an improved understanding of the concepts of buckling, postbuckling and imperfection 
sensitivity.  
 
With this as the motivation, the present report starts in Chapter 2 with a general description of 
the perturbation method and some of the basic concepts used in the general non-linear 
stability theory are illustrated. For structural problems with multiply acting independent loads 
the concept of equilibrium surface is central. Chaper 2 focuses on the study of the 
mathematical local shape of the equilibrium surface and it is shown how the perturbation 
method provides this information. Chapter 2 starts with a presentation of the standard load or 
displacement control procedures, and it is shown how these fail to predict snap buckling 
behaviour. The direct arc length concept is then introduced as a method for solving these 
problems. In a mathematical language this means a numerical strategy with capability to pass 
folds and limit points on the equilibrium surface. The perturbation procedure calculates the 
local shape of the equilibrium surface and the application of these properties is further 
discussed in Chapter 3 in connection stiffness properties of the structure. Within 
geometrically non-linear plate theory it is shown how the perturbation procedure provides 
directly the coefficients to be used in the assessment of the instaneous plate stiffness 
properties. The concept of the macro material is introduced.  
 
The perturbation procedure together with the direct arc length concept provides the path 
derivatives in the direction of the prescribed load path. These path derivatives, used in an 
incremental procedure, are used directly for tracing the equilibrium curve. As a post-
calculation feature, the associated multiple path derivatives in each state along this curve can 
be assessed. This gives the directional stiffness coefficients for the structure in all load 
directions. The first order directional stiffness coefficients calculated from the perturbation 
procedure are the same as the tangent stiffness matrix coefficients used in traditional solution 
procedures, which connect the incremental external loads to the corresponding incremental 
deflections.  
 
In Chapter 4 an unstiffened plate subjected to biaxial in-plane loads is analysed as an 
example. Only one term is used in the Rayleigh-Ritz discretization of the out-of plane 
deflection and, through the use of compatibility conditions between out-of plane and in-plane 
deflections, a single degree of freedom model is derived. This gives a closed form solution 
which is compared against the perturbation method used in an incremental scheme and 
comparisons with numerical results using the recognised non-linear finite element program 
ABAQUS (1994) is also included. The example is solved using both load and displacement 
control, since this single degree of freedom model does not possess snap buckling features. 
The closed form solution, in terms of the macro material coefficients, are calculated and 
compared against the numerical results. 
 
As a continuation of the study reported herein, a more extensive plate buckling model is 
developed for stiffened plates in Steen (1999). That model is based on a generalisation of the 
Shanley model concept and the emphasis is on the interaction between what is defined as 
local buckling modes and overall buckling. It is shown how the interaction of buckling modes 
leads to unstable postbuckling behaviour and it is demonstrated that the perturbation method, 
used in an incremental scheme with the arc length as control parameter, is able to pass the 
sharp peaks and limit points in load-deflection space.   
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The methods developed herein assume the existence of a set non-linear algebraic equilibrium 
equations on total form, and as such the presented procedure is based on material 
characteristics according to Hooke’s law. The case of a non-linear elastic-plastic material 
characteristic requires a virtual work formulation in general. This type of behaviour is not 
considered in this report, but such an application, using the perturbation procedure in an 
incremental scheme, can be found in Steen and Andreassen (1995-I, 1995–II). 
 
Tensor notation with the standard summation convention is used for the most part. However, 
vector symbols are also introduced when found convenient.  
 

2.  DESCRIPTION OF THE PERTURBATION METHOD FOR MULTIPLE 
LOADS  

2.1 General 

As mentioned in the introduction there exist many methods for solving non-linear equations 
and the choice of the most optimal is to a large degree a matter of personal preference. In the 
present work the perturbation method, introduced in the non-linear discrete stability theory by 
researchers such as Sewell, Thompsen, Huseyin and others, has been applied. The present 
exposition is meant only as an introduction to the method and a readable full account of the 
theory in the context of multiple loads can be found in the book by Huseyin (1975). 
 
The present application of the perturbation procedure is used for tracing smooth equilibrium 
paths. This means that bifurcation buckling is avoided by considering an imperfect structural 
system adding geometrical imperfections in all degrees of freedom. The study of critical 
points in general, as part of the study of singular solutions of the perturbation procedure, is 
not addressed in the present work.  
 
The perturbation method is a very systematic procedure and it gives sets of linear equations to 
be solved. The unknowns in the procedure are the rate of change of the deflection parameters, 
i.e. that is the first order rate of change, second order rate of change etc. of the deflection 
parameters. The rate of change is defined with respect to some chosen perturbation parameter. 
The clue in an automated calculation procedure is that the perturbation parameter must be 
chosen in such a way that it is always continuously increasing along the specified load path. 
This is discussed in more detail below.  
 
The rate of the deflection parameters or of any other state variable are called path derivatives 
and as soon as these are known the incremental deflection from the known equilibrium point 
to the next can be found using the power series expansion principle. In more standard 
numerical schemes, such as Newton-Raphson, the incremental deflections are directly the 
unknowns in the procedure and not the rates of deflections. This is discussed more in detail 
under Section 2.3. 
 
The needed number of terms in a perturbation expansion in a practical case will be an issue 
for discussion. In the present work the expansion has not been carried out further than to the 
second order which means that the curvature of the equilibrium path is evaluated. This is the 
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level of expansion used in the Koiter theory, and together with sufficiently small increments 
of the perturbation parameter, this will be a reasonable approximation. Compared to standard 
incremental schemes, the second order perturbation expansion can be interpreted as a 
substitute for the equilibrium control used in traditional Newton-Raphson iterations on the 
total equilibrium equations. 
 
The selection of the perturbation parameters is also an important issue in the context of 
solution algorithms. The most convenient choice will be to select a pure load or displacement 
control, as this will give the simplest sets of equations. However, to choose load or 
displacement control in an actual case needs some qualified knowledge of the expected non-
linear response of the problem in hand.  
 
The normal conception of load or displacement control is that the respective parameter is used 
as a control variable. This means, say for load control, that the loads are incremented along 
the prescribed load path and the corresponding deflections are calculated. However, in a 
perturbation approach the chosen control variable have to be continuously increasing along 
the prescribed load path. Obviously, say for a buckling problem, the load is not a proper 
control parameter since the load will reach a maximum value for then to unload. This will 
give a singular case at the maximum load point and load control will not work for the purpose 
of identifying the buckling load. Exactly the same arguments can be followed in the case of 
displacement control. Displacement control will normally succeed in identifying the buckling 
load, but may fail to trace the subsequent equilibrium path due to possible snap back 
deflections (deflections have to be reduced in order to achieve equilibrium).   
 
To overcome such problems the direct arc length method is introduced. The arc length 
method, in the context of the perturbation procedure, gives large flexibility as it can be 
combined with any prescribed path in the load space or displacement space. For example in 
standard buckling analysis it will be normal to specify a set of simultaneously acting loads. 
The arc length method then follows the specified route in load space until it ends up at this 
specified load point. If the load point is outside the buckling boundary the procedure identifies 
the point along the specified load path that corresponds to buckling and it will try to reach the 
specified load point in an advanced postbuckled state if it exists.  
 
For the purpose of illustrating some of the problems to be encountered in the solution of a 
non-linear stability problem the pure load or displacement control cases are presented in 
Section 2.2. This description is meant as an introduction to the perturbation procedure and it 
shows how the load or displacement variables fail as efficient perturbation parameters. The 
equations up to second order are derived which provides the solution of the corresponding 
path derivatives. These path derivatives, valid for multiple loads are informing about the local 
shape of the equilibrium surfaces in all directions around any specified point. These multiple 
directional path derivatives are interesting in the sense that they assess the rate of growth of 
each deflection coefficient qi with respect to a unit change of the different loads. They are 
used as parameters in the assessment of the instaneous stiffness coefficients as explained more 
in detail in Chapter 3. 
 
In Section 2.3 the multiple directional path derivatives are derived in the context of the 
multidimensional arc length concept. This is the general approach, which have to be used 
unless a load or displacement control is known a priori to give a stable solution for the 
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problem in hand. Since the independent perturbation parameters are chosen as the arc length 
coordinates along the equilibrium surface, the corresponding multiple directional path 
derivatives may have little direct interest as they are hard to connect to any physical 
understanding. However, they can be used as parameters for assessing the more familiar 
directional stiffness coefficients of the structure. It is worth noting that the first order 
directional stiffness coefficients are the same as the tangent stiffness matrix coefficients used 
in traditional Newton-Raphson type of incremental solution procedures.   
 
For multiple loads it is necessary to define a load path in load space or displacement space, 
whichever is the most relevant for the problem in hand. This is explained in Section 2.4 and it 
is shown how the problem will be reduced from a multiple load case to a single load case as 
soon as the path in load or displacement space is specified. Further, based on the direct arc 
length concept and a single load parameter, linear equations for the first order and second 
order path directed derivatives are derived. This provides the necessary information for 
finding the displaced structural configuration as it changes along the prescribed load path.  
 
Section 2.5 gives an overview of the total calculation procedure seen as an incremental 
scheme for tracing non-linear equilibrium paths with the purpose of both identifying 
maximum load bearing capacity and as a procedure for assessing the current instaneous 
stiffness properties along the equilibrium path.  
 
The general problem to be considered is stiffened plates subjected to a combination of 
multiple loads, Fig.1. Simultaneously acting loads on a stiffened plate element in a marine 
structure are: 
 
i) axial compression/tension (in direction of stiffeners) 
ii) transverse compression/tension (in direction normal to stiffeners) 
iii) in-plane moment at edges x1 = const.   
iv) in-plane moment at edges x2 = const. 
v) in-plane shear loads 
vi) lateral pressure, acting normal to the plate plane  
 

 
 

Fig.1 Multiple loads acting on a stiffened plate 
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Several symbols are adopted that, for convenience, are given a rather generalised meaning. It 
is helpful to define the following ones a priori: 
 
qi      with i = 1,2,..., M, represents the displaced configuration of the structure and M is the 

total degrees of freedom. The qi represent the displacement vector. 
Λα with α = 1,2,..., K, represents physical loads (axial, transverse, shear, lateral pressure 

etc.). 
∆α     with α = 1,2,...,K, represents in-plane end-shortenings of plate edges.         
 
All of these parameters will normally be given a non-dimensional form in specific examples. 
 

2.2 Load or displacement control 

 
For the purpose of illustrating important aspects that need to be accounted for in a general 
solution strategy, it is useful to start with a discussion of the standard load control and 
displacement control cases. 
 
For the multiply loaded stiffened plate problem with K independent loads Λα acting, the 
structural theory provides M equilibrium equations. These equations may have been obtained 
by finite element discretizations, Rayleigh-Ritz technique or any other preferred procedure for 
transforming the continuos structural problem to its disctretized counterpart. The resulting 
equilibrium equations may be written in the following form 
 

f qi j( , )Λα = 0   i, j = 1,2,...,M;  α = 1,2,...,K       (1) 

 
The solution of eq.(1) is written in parametric form as 
 

q qi i= ( )Λα   i = 1,2,...,M;  α = 1,2,...,K     (2) 

 
If a solution in the total form of eq.(2) was available it would imply that, for a set of 
prescribed loads, the deflected configuration of the structure is directly assessed and thus it 
follows that stress and strains in any point in the structure as function of loads could be 
calculated. However, such closed form solutions are not available in general and it is 
necessary to resort to a numerical solution strategy. 
 
In the form of eq.(2), the loads Λα are used as the control parameters, i.e. the loads are chosen 
as the perturbation parameters. Eq.(2) may be interpreted as an equilibrium surface in the 
M+K dimensional space as illustrated in Fig.2. The solution expanded around a known point 
Is (representing any loaded state or the unloaded state) becomes  
 

L ))((q
!2

1
)(qqq s,s,is,is,ii +Λ−ΛΛ−Λ+Λ−Λ+= ββαα

αβ
αα

α    (3) 

 
A Greek superscript on the qi parameters indicates partial differentiation with respect to the 
corresponding load variable. A subscript s indicates that the variable is evaluated at an 
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arbitrarily equilibrium state Is. A necessary requirement for the path derivatives qi
α  and qi

αβ 

etc. to have a unique solution is that the functions, eq.(2), are single valued around any point 
Is on the equilibrium surfaces, Fig.2. The left sketch in Fig.2 indicates a single valued 
function, which implies that the load parameters will work satisfactory as perturbation 
parameters. A practical example of such a case will be an unstiffened plate subjected to a 
normal pressure. The right sketch in Fig.2 indicates a multiply valued function, which implies 
that the load parameters could not be used as perturbation parameters. This represents the 
general case of a buckling problem in which the loads reach some upper limit load (stability 
or buckling boundary) for then to unload. 

 

 
 

Fig. 2 Equilibrium surface under multiple loads Λα , Λβ etc. 
 

Under load control, snap buckling to an advanced stable equilibrium state, associated with a 
large change in deflected form, may take place. This snap will be dynamic and may be very 
violent. The simplest case illustrating such behaviour is the classical arc problem given in 
standard textbooks in structural mechanics.  
 
Alternatively, instead of loads, it would be natural to choose the in-plane edge displacements 
(end-shortenings ∆α ) as the control parameters. The equilibrium equations are then 
transformed to 
 
 

f qi j( , )∆α = 0   i, j = 1,2,...,M;  α = 1,2,...,K      (4) 

 
 with a solution in the parametric form as 
 

q qi i= ( )∆α          (5) 

 
This solution may be interpreted as an equilibrium surface in the space as illustrated in Fig.2 
but now with the displacements ∆α as parameters on the horizontal axes instead of the loads 
Λα. In particular the right sketch in Fig.2 can be used as illustration of any general situation of 
multiple valued equilibrium surface since the horizontal axes can be interpreted as loads, 
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displacements or in principle any chosen set of control parameters. The solution of eq.(5) 
expanded around a known state Is becomes  
 

L ))((q
!2

1
)(qqq s,s,is,is,ii +∆−∆∆−∆+∆−∆+= ββαα

αβ
αα

α   (6) 

 
In order to find the path derivatives, which is now defined as the rate of change with respect 
to the displacements ∆α and not the loads Λα, eq.(5) is substituted back into eq.(4) to give 
 

0)),(q(f ji =∆∆ αα   i, j = 1,2,...,M;   α = 1,2,...,K    (7) 

 
Partial differentiation of eq.(7) with respect to any ∆α  gives the following set of linear 

equations in terms of the unknown first order path derivatives α
iq  

 

0fqf ij
j

i =+ αα   i, j = 1,2,...,M;  α  = 1,2,...,K   (8) 

 

The j
if  is used as a symbol for the partial differentiation of the function fi with respect to any 

displacement parameter qj, and α
if  is used a symbol for the partial differentiation of the 

function fi with respect to any control parameter ∆α  (or Λα  ). 
 
Similarly, second order differentiation of eq.(7) gives the following set of linear equations in 

terms of the unknown second order path derivatives αβ
iq  

 

0fqfqfqqf ij
j

ij
j

ikj
jk

i =+++ αββααββα  i, j, k = 1,2,...,M; α,β  = 1,2,...,K (9) 

 
 

The solution of these sets of linear equations, in terms of the first order path derivatives αiq , 

second order path derivativesαβ
iq etc., gives parameters that describe the local form of the 

equilibrium surface in all directions in the close vicinity of an arbitrary state Is. The actual 

state enters the problem through the load dependent coefficients j
if , α

if  etc. since these 

coefficients are functions of the actual iq  and ∆α values representative for a state Is.  In order 
to determine the actual states of interest in a practical case, the loading path in load or 
displacement space has to be specified. A fixed load path will in practice always start from the 
unloaded state and this implies that the travel route along the equilibrium surfaces may take 
forms as illustrated schematically in Fig.2. The specification of arbitrarily load paths is 
discussed more in detail in Section 2.4.  
 
From this presentation it is illustrated that neither the loads nor the displacements are suited as 
control parameters due to the possibility of a multiple valued equilibrium surface which will 
give snap buckling problems. Load or displacement control may be used in special cases for 
which there is no chance of snap buckling. Lateral pressure loads on a flat unstiffened plate is 
such a case. Thus, in the general case alternative methods are needed and this leads to the 
introduction of the arc length concept described next in Section 2.3. 
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2.3 Direct arc length method 

 
In view of the problems identified above, it is obvious that a very general strategy is needed to 
trace solutions in the general case of several simultaneously acting physical loads. One of the 
pioneers in the development of the perturbation method was Sewell. He published a series of 
papers in the late sixties and the beginning of the seventies treating all aspects of postbuckling 
behaviour of general non-linear systems. His approach is rather mathematical and beyond the 
level of the present application. However, he was among the first to apply a definition of the 
independent perturbation parameter as a ray in the load-deflection space with a fixed 
direction, Sewell(1968). The most convenient direction for obtaining solutions was proposed 
to be the direction of the tangent to the equilibrium curve. Thus Sewell used the same strategy 
as proposed at later stage by Riks (1979). Riks called this approach the arc length method and 
many researchers have applied this concept successfully in connection with incremental 
numerical Newton-Raphson type of procedures.  
 
To our knowledge no one has applied the concept of arc length, within an incremental 
perturbation scheme, for solution of stability problems of structures. The purpose of such a 
procedure is to trace equilibrium paths across a general equilibrium surface with folds and 
limit points, and to assess the buckling boundaries together with the instaneous stiffness 
properties. Since the arc length method was first proposed within the field of perturbation 
methods of non-linear systems, it is pertinent to try to use it within this field also in a setting 
that can be a viewed as an engineering oriented approach.    
 
In a system with M independent deflection parameters qi and K independent load parameters 
Λα  (or deflection parameters ∆α ) it is assumed that there may be defined K independent 
perturbation parameters ηα such that the solution to eq.(1) is always single valued and can be 
expressed in the parametric form  
 

)(

)(qq ii

αββ

α

ηΛ=Λ
η=

  i = 1,2,...,M;   α, β, γ = 1,2,..., K    (10) 

 
Eq.(10) expanded around an arbitrary equilibrium state Is gives 
 

L

L

 ))((
!2

1
)(

 ))((q
!2

1
)(qqq

s,s,s,s,

s,s,is,is,ii

+η−ηη−ηΛ+η−ηΛ+Λ=Λ

+η−ηη−η+η−η+=

γγαα
αγ

βαα
α

βββ

ββαα
αβ

αα
α

  (11) 

 
As before, a Greek superscript α on the qi and Λβ indicates partial differentiation with respect 
to the corresponding perturbation parameter ηα etc. A subscript s indicates that the parameter 
is evaluated at state Is. The ηα parameters are to be chosen such as to ensure single valued 
solutions around the known point Is. From the general shape of the equilibrium surfaces with 
folds etc., it will be appropriate to adopt a multi dimensional arc length concept where the ηα 
parameters are curvilinear coordinates following the curved equilibrium surface. We can then 
imagine that the concept of using the curvilinear coordinates as control parameters will map 
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the folded multiple valued surface of Fig.2 (right sketch) to the left sketch with the curvilinear 
coordinates η1, η2, … etc. being stretched out as rectangular coordinates.  
 

 
 

Fig.3 Curvilinear coordinates ηα following the equilibrium surface  
 

 
Substituting the parametric solution of eq.(10) into eq.(1) gives 
 

0))(),(q(f ji =ηΛη αβα   i, j = 1,2,...,M;  α,β = 1,2,...,K   (12) 

 
Differentiate eq.(12) once with respect to one ηα gives 
 

0fqf ij
j

i =Λ+ α
β

βα    i, j = 1,2,...,M; α, β,= 1,2,...,K  (13) 

 

Here is per definition ji
j

i q/ff ∂∂≡ , β
β η∂∂≡ /ff ii , α

α η∂∂≡ /qq ii  and αβ
α

β η∂Λ∂≡Λ / . 

Eq.(13) represent  M*K linear equations in the total M*K+K*K unknowns α
β

α Λ,q j . Thus 

there is K*K equations lacking in order to be able to solve this first order problem. These 
equations are provided through the definition of the K independent perturbation parameters.   
 
The definition of a set of efficient general perturbation parameters is very important in order 
to pass limit points and folds on the equilibrium surface. An intuitive approach will be to use 
a set of parameters that describe the tangential directions to the equilibrium surface in a 
known point Is. Then by expanding the solution to the first, second or higher degree with the 
tangential directions as coordinates and by specifying small increments along these tangents, 
the neighbouring equilibrium points can be can be found.  The tangents can be considered as 
following a set of curvilinear coordinates ηα at Is , Fig.3. This approach is a generalisation of 
the arc length concept introduced by Sewell (1968) within the field of perturbation theory, as 
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it considers K independent load parameters instead of one.  When a load path in load space or 
displacement space is defined the multiple load specification resembles the single load case as 
explained more in detail in Section 2.4.  
 
Let us assume that a set of K coordinates ηα follows the equilibrium surface. From differential 
geometry (e.g. Wempner, 1973) this is the same as viewing eq.(10) as a K dimensional 
surface in the M+K dimensional rectangular space in terms of a set of K curvilinear 
coordinates ηα, Fig.3. Then we implicitly assume the existence of functions in the form  
 

),...,,(

),...,,(qq

K21

K21ii

ηηηΛ=Λ
ηηη=

ββ

  i = 1,2,...,M;   α, β, γ = 1,2,..., K  (14) 

 
Assuming now that one of the curvilinear coordinate, say η1, represent a continuous curve 
along the equilibrium surface with start in origin. Moreover, assuming that the coordinate 
along this curve describes the arc length across the equilibrium surface, we know that the first 
order rate of change of the position vector (measured from origin to a point Is on the surface) 
along this curve is a unit tangent vector, say i1. From mathematics we have that the tangential 
ray in this point can be expressed as 
 

)(c)qq(c)( s,
1

s,ii
1

is,11 βββ Λ−Λ+−=η−η      (15) 

 
Here )( s,11 η−η are the incremental coordinate in the direction of the tangent i1 and )qq( s,ii −  

and )( s,ββ Λ−Λ represent incremental coordinates along the respective rectangular axes. The 
1

ic  and 1cβ  coefficients are the corresponding direction cosines between the unit tangent i1 

and the respective rectangular axes. Since the directional cosines are the same as the first 
order path derivatives of a parametric representation of a curve in space, it is a very intuitive 
approach to define the tangential direction to be the independent coordinate.  
 
From this it follows that a multidimensional set of incremental coordinates along the 
corresponding tangential direction is defined as     
 

)()qq(q s,s,iiis, ββ
α

β
α

αα Λ−ΛΛ+−=η−η      (16) 

 
where we have used the following notation 
 

α
β

α
β

αα

Λ≡

≡

c

qc ii          (17) 

 
By requiring additionally that the curvilinear coordinates ηα constitutes an orthogonal set, the 
first order differentiation of eq.(16), with respect to some ηγ ,  gives the following set of 
equations  
  

αγγ
β

α
β

γα δ=ΛΛ+ii qq        (18) 
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The αγδ  is the Kronecker delta and eq.(18) represent a set of  K*K second order equations in 
the first order path derivatives. Together with eq.(13) a strategy for finding the solution can be 
formulated. This is explained in more detail in Section 2.4 for the case of a single load defined 
as a load path in load or displacement space. 
 
At this stage, it is pertinent to comment on the first order perturbation problem derived here, 
as compared to the Riks(1979) arc length method. The Riks application was originally 
formulated in terms of only one load parameter, say Λ, and for the purpose of comparison, 
eq.(13) and eq.(18) will then be simplified to 
 

0fqf ij
j

i =Λ+ Λ &&        (19a) 

1)(qq 2
ii =Λ+ &&&        (19b) 

 
A dot over the parameter symbolise the path derivative with respect to η, i.e. η∂∂≡ /qq ii& , 

η∂Λ∂≡Λ /&  and Λ∂∂≡Λ /ff ii ( η= s = arc length in Riks notation).  Eq.(19) constitutes M 

linear equations and one second order equation in the unknowns iq&  and Λ& , and are the same 
as given by Riks(1979). In the Riks method it is assumed that these first order rates have been 
computed and they are used as fixed numbers in the single load version of eq.(16), which can 
be written as  
 

∆ΛΛ+∆=η∆ && ii qq         (20) 
 
In eq.(20) the following incremental parameters is introduced; s,η−η=η∆  , 

)qq(q s,iii −=∆ and )( s,Λ−Λ=∆Λ . For a single load parameter the total equilibrium 

equations, eq.(1), are rewritten as 
 

0),qq(f jji =∆Λ+Λ∆+          (21) 

 
In the Riks method η∆ is specified as a small number. Assuming that eq.(20) is valid for this 
small value of η∆ , eq.(20) together with eq.(21) is solved using a Newton-Raphson iteration 

procedure finding the incremental properties iq∆ and ∆Λ . This is what is often referred to as 
the equilibrium control procedure.  
       
By using eq.(20) an approximation is introduced in the Riks procedure valid for small values 
of the incremental arc length parameter η∆ , and special techniques are applied in order to 
obtain valid solutions in the iterative procedure. This is not discussed further herein. 
 
However, the present approach is to use the perturbation method in a straightforward 
incremental scheme. This means that the path derivatives will be used directly for finding the 
next equilibrium state and the use of eq.(20), eq.(21) and Newton-Raphson iterations on the 
total equilibrium equations are abonded.  
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The perturbation procedure is based on finding and using directly the path derivatives (rates) 
evaluated in a known state.  For the present purpose an expansion to second order is explored, 
as this is consistent with the Koiter theory. Eq.(11) specialises for a single load parameter to  
      

  

L&&&

L&&&

 )(
!2

1

 )(q
!2

1
qq

2

2
iii

+η∆Λ+η∆Λ=∆Λ

+η∆+η∆=∆
       (22) 

 
Thus, knowing the path derivatives in a state, the next state can be found by specifying 
sufficiently small values of the arc length parameter η∆ . Moreover, these path derivatives are 
exact in a known point and the approximation in the perturbation procedure is then related to 
the problem of how may terms in the expansion that needs to be included. In the present 
context only second order terms are used combined with sufficiently small values of the arc 
length parameter η∆ . The second order term corresponds then, in a sense, to the equilibrium 
control in the Riks method.  
 
The formulation of the second order problem is carried out in the following for a system of 
multiple loads. 
 
Further by differentiation of eq.(13 ) once more gives with respect to some ηγ gives 
 

0ffqf

qfqqf

iij
j

i

j
j

ijk
jk

i

=Λ+ΛΛ+Λ+

+
αγ

β
βα

β
γ

λ
βλα

β
γβ

αγαγ

 i = 1,2,...,M;  α, β, γ,λ = 1,2,..., K (23) 

 
Similarly, by differentiation of eq.(18 ) once more gives with respect to some ηλ gives 
 

0qqqq iiii =ΛΛ+ΛΛ++ αλ
β

γ
β

γλ
β

α
β

αλγγλα      (24) 

 
Eq.(23) and eq.(24) constitutes a set of  K*K*M+K*K*K linear equations in the same number 
of unknowns for finding the second order path derivatives. By utilising the symmetry 
properties of the second order path derivatives qi

γλ and Λβ
γλ in γ and λ, the number of 

unknowns and the corresponding equations will be reduced to (1/2)*(K2+K)(M+K). 
 
This sequence of differentiation can be carried out further to any order wanted. For practical 
purposes the necessity for higher order path derivatives is not obvious as the degree of 
expansion is strongly linked to the chosen increment size of the control parameter. In practical 
implementation, the increment size can be varied as function of degree of path complexity, 
that is as function of the curvature of the path. By applying a second order expansion 
approach, combined with some type of curvature dependent increment control, equilibrium 
paths can be followed. However, the general topic of selecting the optimum solution strategy 
will be strongly problem dependent and in the present report this is not discussed in any 
detail.   
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2.4  Loading sequences and definition of buckling 

 
In buckling calculations the main objective is to identify the maximum values of the 
simultaneously acting physical loads Λ1, Λ2, Λ3 .... etc. that the structure may carry. For 
multiply acting loads this means it is necessary to identify a buckling (stability) boundary 
(surface) in the load space. This buckling boundary can be described by an equation in the 
form  
 

gu = gu(Λ1, Λ2, Λ3 ....) = 0        (25) 
 
Loads outside this surface may be possible, but they will normally represent an advanced 
postbuckled or collapsed state that is of secondary importance in buckling assessments. Thus, 
it is of main importance to identify the buckling boundary gu = 0 that represents the critical 
combination of loads at which the structure will collapse under the condition of load control, 
see Fig.3 and Fig.4. 
  

 
 

 
Fig. 4 Buckling boundary and load paths in load space 

 
In practice, when a buckling calculation is to be carried out, it is necessary to relate the loads 
to each other in some way, i.e. to decide on the load path in load space, Fig.4. The definition 
of a load path in load space is done by specifying load functions in the form 
 

)t(αα Λ=Λ           (26) 

 
In eq.(26), t is the pseudo time parameter which is defined as taking positively increasing 
values along the load path and the load functions are always defined as single valued 
functions of t. This is a parametric representation of the load path in load space and the 
multiple load problem is transformed to a single parameter problem.  
 
An automated calculation procedure will then determine at which point along the defined load 
path that corresponds to collapse/buckling of the structure. For combined loads this means 
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finding at which point the defined load path crosses the buckling boundary in load space as 
indicated in Fig.4. The present perturbation procedure identifies this cross point as the 
buckling point under load control. In the right most sketch in Fig.4 two different load paths is 
crossing at the same point on the buckling boundary. This illustrates that elastic material 
behaviour leads to a unique stability boundary independent of the load path.  
 
The present perturbation procedure with arc length control is capable of tracing the 
equilibrium curve beyond the buckling point. In load space, immediate after the buckling 
boundary is reached, the equilibrium path will be traced in the direction of the tangent to the 
path at the buckling boundary, though in the reversed direction. The equilibrium path beyond 
the buckling boundary is called the postbuckling (or postcollapse) curve and represents 
descending loads close to the buckling boundary. The unloading may be sudden or more 
gradual depending on the structural problem analysed. This part of the equilibrium surface 
represent unstable equilibrium states in case of load control. However, in an advanced 
deflected state the loads may start to increase once more and even exceed the first stability 
boundary (e.g., as in case of snap-through of the classical shallow arc problem).  
Thus, even though stable equilibrium states in some cases can be found outside the first 
buckling boundary, such states are associated with quite large displacements and they will 
normally have limited practical interest for design purposes.   
 
For the case of a single load parameter Λ, it is possible to visualize the control parameter η as 
the arc length along the equilibrium curve in the Λ - qi space, Fig.5a. Thus, we have a unique 
direction for a positive loading and the maximum possible value (locally) for Λ is identified 
as the load Λu corresponding to collapse under load control. 
 
 

    
 

Fig.5 Equilibrium surfaces under multiple loads 
 
For a set of multiple independent loads, the equilibrium surface will have folds and buckling 
under load control will take place for prescribed load paths that crosses these folds, Fig.5b or 
Fig.3. Viewed in the load space (Λα - Λβ), the edges of the folded equilibrium surface will be 
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mapped as the buckling boundary. In the tension dominated regions no buckling boundary 
exists. 
 
In order to reach the buckling boundary, the load path under multiple loads has to be 
specified. The most general case will be to prescribe a continuous, curved load path as given 
by eq.(26). In practise a continuous load path will be approximated by a set of subsequent 
linear loading segments. A point m in the load space is given the notation 
 

(Λ1, Λ2,..., ΛK)m     m = 1,2,...,L     (27) 
 
By letting the number of linear piecewise load paths approach a high number (L ⇒ ∝) any 
continuous, arbitrary load path can be specified. 
 
In an incremental perturbation scheme, each linear load path sequence can be traced by the 
use of a single load multiplier, Λ. This parameter is assigned values in the range 0-1 between 
any state m and m + 1, Fig.5. The index notation of Im and Im+1 etc. should not be confused 
with the state indication of Is, Is+1 etc. The m index is used for states along the piecewise 
linear prescribed load path, and Is is any state on the equilibrium surface. In other words, 
along a prescribed load path in load space, there are many states Is between state Im and Im+1. 
A state Im may be defined outside the buckling boundary and it may be outside the 
equilibrium surface in general. 
 

 
Fig.6 Piecewise linear loading sequence in load space 

  
 
The definition of Λ as the single load multiplier during a general linear step in the specified 
load path follows from  
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Eq.(28) defines a piecewise proportional loading path through space, i.e. for Λ = 0 the loads 
correspond to state m, while by linearly scaling Λ to unity, state m+1 is reached. This 
procedure will be followed sequentially from the unloaded state to the final state defined. 
 
With this definition of loading sequence under multiple loads, the equilibrium equations, 
eq.(1), can be written as 
 

f qi j m m m( , ( )), , ,Λ Λ Λ Λα α α+ − =+1 0        (29) 

 
where Λ is the single load multiplier and  Λα,m and Λα,m+1 are considered to be fixed 
parameters for the actual loading segment to be traced.  In each linear load sequence the 
solution may then be written as a function of a single parameter η as 
 

q qi i=
=

( )

( )

η
ηΛ Λ

         (30) 

 
This solution expanded around Is gives 
 

L&&&

L&&&

 )(
!2

1
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 )(q
!2

1
)(qqq

2
sss

2
sisis,ii

+η−ηΛ+η−ηΛ+Λ=Λ

+η−η+η−η+=
     (31) 

 
A single dot over the parameter symbolises the first order derivative with respect to η as 
explained before, two dots over the parameters symbolises second order derivative with 
respect to η etc.  
 
In order to provide the sufficient number of equations, the perturbation parameter η has to be 
defined. As in Section 2.3 the arc length concept is adopted and eq.(16), is for the single load 
case, simplified to  
 

)()qq(q ss,iiis Λ−ΛΛ+−=η−η &&        (32) 

 
Together with the equilibrium equations, i.e. eq.(29), this definition of the perturbation 
parameter gives a sufficient set of equations for a proper formulation of the problem. The 
unknowns in the problem are the path derivatives of the deflection parameters qi, i.e. 
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         (33) 

and the path derivatives of the single load multiplier Λ, i.e. 
 

M

&&

&

Λ
Λ

          (34) 

 
The calculation of the change of each load component Λα along the load path follows from 
the expansion  
  

L&&&  )(
!2

1
)( 2

sss, +η−ηΛ+η−ηΛ+Λ=Λ αααα     (35) 

 
The path derivatives of each load component follows from eq.(28), i.e. 
 

M

&&&&

&&

       

)(

       )(

m,1m,

m,1m,

α+αα

α+αα

Λ−ΛΛ=Λ

Λ−ΛΛ=Λ

       (36) 

 
 
 
Having provided the necessary non-linear algebraic equations, i.e. eq.(29) and eq.(32), the 
perturbation procedure will generate a sequence of equations which solved gives the path 
derivatives in state Is. The following formulation is a specialisation of the multiple load 
parameter case presented in Section 2.3.   
 
The first order partial differentiation of eq.(29) and eq.(32) with respect to η gives   
 

0fqf ij
j

i =Λ+ Λ &&     i,j = 1,….,M     (37a) 

1qq 2
ii =Λ+ &&&      i,j = 1,….,M     (37b) 

 
This gives M linear and one second order equation in the M+1 unknowns. They are the single 
load version of the multiple load equations as derived in Section 2.3 and as discussed in 
connection with the Riks method. Eq.(37b) is a second order equation and thus two solutions 
of the equations are possible. A strategy for selecting the relevant solution is needed and is 
explained in the following. 
 
A column solution matrix for state Is is assumed in the form 
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First, the linear set of equations in eq.(37) are rearranged to the following format 
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or in the compact form as 
 

Λ−= Λ && fqf            (40) 
 
where per definition 
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The solution of eq.(41) with respect to &q  is written as 
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where per definition 
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The solution of eq.(40) requires a non-singular matrix f , which is always satisfied except at 
critical points. In an incremental procedure the matrix f is never evaluated precisely at a 
critical point and thus the case of singular solutions is avoided. However, in order to have a 
complete numerical method, critical points should be identified as part of an automated 
procedure, but this topic is not pursued in this report. 
  
By substituting eq.(42) into the second equation in eq.(37) two possible solutions for the &x  
are obtained. They are denoted by as 
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and  
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where 
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The di constants are defined in eq.(43). 
 
Obviously eq.(44) provides two solutions with the same numerical value but with opposite 
signs. In the M+1 dimensional space, spanned by the qi and Λ, the different solutions will 
both correspond to unit tangent vectors along the equilibrium curve. One unit tangent will be 
in the direction of increasing arc length η and the other will be in the opposite direction. The 
solution of interest is corresponding to the continuos increase of the arc length as this 
describes the progress along the specified load path.   
 
Which solution that corresponds to the continuous increase of the arc length parameter η, will 
depend on the actual state along the equilibrium path. Typically, the positive root is the 
correct in the origin (zero loads). The positive root will continue to be the correct until a point 
is reached where the first order rate of the load parameter becomes zero. This will be at the 
buckling point (singular point), or more specifically at the point where the load path intersects 
the buckling boundary. Beyond this point the negative root becomes the relevant choice, since 
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this describes progress along the equilibrium surface. In other words, when &Λ = 0 is found 
along the prescribed load path, the buckling point under combined loads are reached.  
 
In an automated calculation procedure the correct solution needs to be picked up at each state 
evaluated. For this purpose a maximum smoothness philosophy can be used. The maximum 
smoothness of the equilibrium path can be expressed as the minimum angle between 
neighboring solution tangent vectors, say between the direction tangent vector in the previous 
known state Is-1 and the current Is state. Mathematically a maximum smoothness criterion can 
be formulated as follows. 
 
The first order solution, eq.(37), can be written as a tangent vector t to the equilibrium path in 
the solution space. It is defined as  
 

t i i i i= + + + +& & & &Λ Λ q q qM M1 1 2 2   L       (45) 
 
The i are the unit vectors along the respective axes in solution space and t is, eq.(36b), the  
unit tangent vector. In order to provide a smooth equilibrium curve the angle between two 
successive tangent vectors, say between the state Is-1 and Is should be small. This can be 
formulated by calculating the scalar product between the corresponding tangent vectors. The 
necessary condition for a smooth equilibrium path is that the scalar product is larger than 
zero. This corresponds to an angle between successive tangent vectors less than 90 degrees. 
This is expressed as  
 

0qq s1ss,i1s,i >ΛΛ+ −−
&&&&         (46) 

 
In eq.(46) summation is not carried out over s  The small s as subscript is a state indicator 
only. 
  
The criterion of eq.(46) is the same as formulated by Stoll(1994). The selection of the relevant 
solution is to decide whether    
 

&Λ+ > 0           (47a) 
      
or  
 

&Λ− < 0          (47b) 
 
Physically the positive solution corresponds to a state before buckling and the negative root 
corresponds to a state beyond buckling (i.e. after a local maxima/minima in Λ).  
 
The perturbation procedure is very systematic and the expansion can be carried on to any 
order required. In an incremental perturbation scheme, the second order expansion is 
necessary as a compensation for the neglecting of equilibrium corrections. Second order 
expansion is the level used in the classical Koiter theory and it is considered to be an 
appropriate approximation as long as sufficiently small increments along the equilibrium 
curve is prescribed.    
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Differentiation of eq.(37) with respect to η gives 
 

0ffqfqf2qqf i
2

ij
j

ij
j

ijk
jk

i =Λ+Λ++Λ+ ΛΛΛΛ &&&&&&&&&      (48a) 

0qq ii =ΛΛ+ &&&&&&          (48b) 
 
Eq.(48) are N+1 linear equations in N+1 unknowns for finding the second order path 
derivatives Λ&&&& ,q j .  

 
With the path derivatives & ,&& ..., & , && , ..q qi i Λ Λ known at state Is, the new state Is+1 is found from 

eq.(31) by prescribing the incremental arc length parameter ∆η= (η-ηs) as a sufficiently small 
value. 
 
 
 
 

2.5  Summary - incremental perturbation scheme 

 
Chapter 2 gives a description of the perturbation method as a tool for solving non-linear 
structural problems with special emphasis on buckling strength assessment. The present 
application is within the solution of non-linear algebraic equations, which typically emerge, in 
structural theories formulated by using finite element or Rayleigh-Ritz discretizations of the 
displacement field.  The most known application of the perturbation method is the theory 
developed by Koiter, Sewell, Thompson and others. In the literature the asymptotic Koiter 
theory has been used for detailed studies of postbuckling paths through critical points. 
However, the present approach is to apply the perturbation method in an incremental scheme. 
This means that the equilibrium curve of an imperfect structure is traced by stepping along the 
equilibrium path in small increments as is done in traditional incremental numerical schemes 
typically used in commercial finite element programs. By using the perturbation method up to 
a second order expansion around a known state, this can be an alternative to the traditional 
approach using Newton-Raphson iterations for equilibrium control. 
 
For multiple acting loads it is shown how the perturbation procedure systematically provides 
parameters that describes the local shape of the equilibrium surface in all directions. These 
parameters are not used in the solution process directly, but are evaluated as a post-calculation 
feature at each known state with the purpose of estimating the current stiffness properties in 
all external load directions. The first order stiffness coefficients provided by the perturbation 
method is the same as the coefficients in the instaneous tangent stiffness matrix used in 
traditional finite element analyses. This application is more explored in Chapter 3.     
 
In order to obtain solutions using the perturbation method, it is important to choose effective 
perturbation parameters. Section 2.2 describes the standard load or displacement control 
methods and the problems connected to their application are identified. In an automated 
incremental procedure the perturbation parameter has to be a continuously increasing variable 
along the specified load path. Obviously, for buckling problems applying a load control, the 
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load will not be a proper parameter, while a displacement parameter may serve the purpose. 
Thus, from a general point of view, an alternative to load or displacement control is needed 
and the direct arc length concept is adopted. 
  
The direct arc length method is described for multiple loads in Section 2.3 and it is specialised 
for a single load parameter in Section 2.4. By choosing the arc length as perturbation 
parameter the problem of passing limit points have been solved. The present direct arc length 
method is discussed in relation to the arc length method first proposed by Riks(1979) within 
numerical analysis. It is identified that the first order perturbation solution is the same as the 
Riks method, but the application of the solution in the present perturbation scheme is 
different. The perturbation procedure proposed here applies the first order and second order 
solution directly in order to obtain the next equilibrium state while the Riks method applies 
the first order solution together with a Newton-Raphson equilibrium control using the total 
equilibrium equations. 
     
The purpose of the present incremental perturbation procedure is to trace a load path across 
the equilibrium surface as schematically illustrated in Fig.2. The load path will in a practical 
case start in the origin of a rectangular coordinate system, which is normally defined to be an 
unloaded state. For the sake of overview it may be convenient to illustrate the incremental 
perturbation procedure in a flow chart as given in Fig.7. The starting point in a calculation 
loop is any known state Is and the calculation procedure can briefly be summarised as follows.  
 
1.  A known equilibrium state is termed Is and is located on the equilibrium surface. All 

state variables are treated as constants in a given state.   
 
2.  Calculate the first order and second order rates of change of the deflections and loads 

with respect to the chosen perturbation parameter, describing progress along the 
specified load path. These rates of change are found using sets of linear equations 
derived from the perturbation procedure. For convenience, the load-deflection curve 
can be viewed as a parametric space curve in a M+K dimensional rectangular 
coordinate system with the arc length along the curve as the independent perturbation 
parameter. The rates of change are calculated along this equilibrium curve. Applying 
the arc length concept, this means that the first order rate of change corresponds to the 
tangential direction of the load-deflection curve and the second order rate of change 
corresponds to the curvature. Higher order path derivatives beyond second order can 
be derived but are not considered in this report. 

 
3.  Calculate the first order and second order rates of change of the deflections and loads, 

which describes the shape of the equilibrium surface in different directions. These 
rates of change are found using sets of linear equations derived from the perturbation 
procedure and they can be used for assessing the current stiffness properties of the 
structure in the different load directions.  

 
4.  Calculate the new state Is+1 along the equilibrium curve, corresponding to the specified 

load path in load or displacement space, using the first order and second order rates of 
change of the deflections and loads as found in step 2. Possible limit points and snap 
buckling will be identified as cross-points between the specified load path and the 
buckling boundary. 



 Page: 27 
University of Oslo   
Department of Mathematics, Mechanics Division  
Application of the Perturbation Method to Plate Buckling Problems  No. 98-1 
__________________________________________________________________________________________ 
 
 
 

 
Fig. 7 Incremental perturbation scheme 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             Fig. 7  Numerical solution procedure 
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3.  STIFFNESS AND FLEXIBILITY PROPERTIES 

3.1 General 

In Chapter 2 the perturbation procedure was described as a general method for tracing 
equilibrium paths in the solution space spanned by M independent internal deflection 
parameters qi and K independent external load parameters Λα or alternatively K external 
deflection parameters ∆α. By specifying a load path in load space (Λ1, Λ2,…., ΛK ), or 
alternatively in deflection space (∆1, ∆2,…. , ∆K), the perturbation method was discussed in 
the context of tracing the equilibrium path in the M+K dimensional space with the localisation 
of the buckling boundary as the ultimate goal. 
 
However, the stiffness properties of the structure have not been considered in an explicit 
manner so far and this item is explored in some detail in the present chapter. By stiffness 
properties are understood the change of an external load component per unit change of a 
corresponding external deflection component. In traditional linear analysis the stiffness matrix 
relates the external loads to the corresponding deflections. In non-linear analyses the tangent 
stiffness matrix relates the incremental loads to the corresponding incremental deflections.  
 
In the following the stiffness evaluations is explored as a natural part of the incremental 
perturbation procedure and it is shown how the multiple path derivatives derived in Chapter 2 
are used as parameters in the assessment of the stiffness coefficients. The stiffness estimates 
can be considered as a post-calculation feature using the multiple path derivatives already 
found as part of the solution process.  
 
In this general introduction, stiffness coefficients up to second order are derived in order to 
illustrate the general principle. However, in Section 3.2 dealing with non-linear plate theory, 
only first order stiffness coefficients are derived as these represent the familiar tangent 
stiffness matrix and can be related to a clear physical understanding. 
 
The most general way to describe the stiffness properties of a non-linear structure is to assume 
the existence of solutions relating the external loads to the corresponding prescribed external 
deflections, i.e.  
 

),...,,( K21 ∆∆∆Λ=Λ αα    α = 1,2,...,K    (49) 

 
or alternatively, the inverse form expressing the deflections as functions of the external loads, 
i.e. 
 

),...,,( K21 ΛΛΛ∆=∆ αα    α = 1,2,...,K    (50) 

 
Such solutions are normally not possible to derive in closed form, but in an incremental 
perturbation procedure, the expanded form of these solutions can be utilised.  
 
Eq.(49) gives the loads as function of deflections and is the natural form when a load path in 
the deflection space is defined. Eq.(50) gives the deflections as function of external loads and 
is the natural form when a load path in the load space is defined.  
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For illustration a case with displacement control is chosen. By expanding the load-deflection 
form of eq.(49) the stiffness properties appears as the coefficients in the series, i.e. 
   

L KK +∆∆∆∆+∆∆=∆Λ δβαβδβαβα   α,β,δ = 1, 2 ,..., K  (51) 

 
where per definition 
 

δβ

α
αβδ

β

α
αβ

Λ∂∆∂
Λ∂

=

∆∂
Λ∂

=

2

! 2

1
K

K

   α,β,δ = 1, 2 ,..., K   (52) 

 
The symbol ∆ (without subscript) indicates incremental properties and eq.(51) gives a power 
series approximation around a known state Is. Kαβ is the first order stiffness coefficients which 
is the same as the tangent stiffness matrix in traditional finite element analysis. Kαβδ is the 
second order stiffness coefficients representing the curvature of the load-deflection relation. 
The expansion can be carried out further, but at this stage the higher order stiffness 
coefficients are only of academic interest.   
 
The basis for calculating the stiffness coefficients according to the definition of eq.(52) is to 
have compatibility conditions derived in an algebraic form, i.e. the external loads are 
expressed as functions of the external deflections and the internal degrees of freedom. 
 
For the case of displacement control, the compatibility conditions will be non-linear functions 
in the form  
 

)q,( iβαα ∆ℑ=Λ  (53) 

 
As an example, in Chapter 4 the functions αℑ  are derived for the case of biaxial loads of 

unstiffened plates.  
 
In linear analysis eq.(53) resembles eq.(49) and the solution will take the linearized form   
 

βαβα ∆=Λ K     α,β = 1, 2 ,..., K  (54) 

 
where Kαβ are the elements in the linear stiffness matrix derived from the assumption of linear 
elastic material behaviour. For displacement control, solutions in the form of eq.(5) is 
substituted into eq.(53) to give 
   

))(q,( i ββαα ∆∆ℑ=Λ  (55) 

 
By using eq.(52) and differentiating eq.(55) once with respect to any ∆β it follows that 
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= i
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q
K   α,β,δ = 1, 2 ,..., K   (56) 

 
Similarly, using the definition of eq.(52) and differentiating eq.(56) with respect to any ∆δ it 
follows that 
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 α,β,δ = 1, 2 ,..., K (57) 

 
 
These derivations shows that the first order stiffness coefficients Kαβ can be calculated for a 
known state Is since they depend solely on the multiple path derivatives β∆∂∂ /qi calculated in 

case of displacement control, and the derivatives of the known compatibility functions αℑ . 

 
Further, the second order stiffness coefficients depend on both the first order path derivatives 

β∆∂∂ /qi  and second order path derivatives δβ ∆∂∆∂∂ /qi
2  and the derivatives of the known 

compatibility functions αℑ . 

 
In the case of load control, the basis for the expansion will be eq.(50) and flexibility 
coefficients instead of stiffness coefficients are derived directly. The derivation of the 
flexibility coefficients will follow exactly the same procedure as described above, with 
eq.(53) inverted giving displacements as functions of loads as the basis, i.e.  
 

)q,( iβαα Λℜ=∆  (58) 

 
Since the expression for the flexibility coefficients are equivalent to the stiffness coefficients 
with the displacements ∆α substituted for the loads Λα and vice a versa, these are not 
explicitly shown.  
 
As discussed previously, neither direct application of load nor displacement control will be an 
effective strategy for solving buckling problems in general and the direct arc length method 
will be preferred. When applying the arc length method as the numerical method, the load or 
displacement control is to be understood solely as whether the specified load history is given 
in load or displacement space.  
 
In order to avoid too much duplication, the illustration of this general case, is left to Section 
3.4 where the stiffness properties of flat plate structures are described.  
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3.2 In-plane stiffness properties of flat plates 

 
In analysing a structure of which a stiffened plate is the basic unit, it is of practical value to 
assess the in-plane stiffness of stiffened plate elements, which are subjected to combined in-
plane loads and lateral pressure from sea or cargo. The purpose may be to illustrate the 
deviation from the normal assumption of linear elastic behavior described by Hooke’s law, 
which are the basic prerequisite used in traditional FE analyses.  
 
The instantaneous stiffness properties in the same directions as defined by the directions of 
the external loads are interesting from the point of view of structural redundancy and 
redistribution of forces. These stiffness (or flexibility) coefficients can be evaluated to any 
order, however, in this chapter the derivation is not shown further than to the first order. This 
corresponds to the familiar tangent stiffness properties in all load directions, which are 
properties that have a clear physical interpretation and which can be seen as representing the 
instantaneous linearized stiffness behaviour. 
 
In Chapter 2 the multiple dimensional path derivatives, describing the local form of the 
equilibrium surface in all directions, were derived. These path derivatives are necessary 
parameters in the assessment of the stiffness coefficients as will be shown in this chapter. In 
order to be complete, both load control and displacement control are considered first as 
separate cases consistent with the treatment in Section 2.2. For the general case of load or 
displacement control of the load history in combination with arc length control for numerical 
solutions, the derivation of stiffness coefficients are shown in Section 3.4.4. 
 
A stiffened plate is in principle a two dimensional structure in the x1 -  x2 plane. The boundary 
of the plate lies in a flat plane and it is assumed that the plate edges remain straight during 
deformation. From an overall point of view the stiffened plate may be seen as an anisotropic 
macro material with general non-linear stress-strain relations. This means that the 
geometrically non-linear behaviour of the entire platefield is included in the macro material 
format. From a mathematical point of view this means that the internal degrees of freedom, qi, 
are hidden in the macro format (i.e. hidden in the stiffness or flexibility coefficients), but of 
course they are present in the calculation of the equilibrium problem. Thus, the concept of a 
macro material is more a conceptual model rather than a physical one, as it may be attractive 
to see a locally buckled plate in a large structure as soft “material” as opposed to its 
unbuckled opponent.   
 
In a material formulation it is natural to use the stress-strain symbols σ - ε , and the following 
notation is introduced 
 

),...,,(),...,(

)p,,...,(),,...,(

1K211K21

1K21K1K21

−−

−−

εεε≡∆∆∆
σσσ≡ΛΛΛΛ

     (59) 

 
The σα are the in-plane average stresses (or loads per unit width) and the εβ are the 
corresponding relative in-plane shortenings (average strains) of the plate edges. It is assumed 
that the plate edges is forced to remain in the plate plane during deformation (plate supported 
by a laterally stiff girder system or equivalent) and thus the out-of plane deflections of the 
plate edges are disregarded. The external displacement vector ),...,,( 1K21 −εεε  then only 
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represent the in-plane relative plate edge deflections. In the present notation the lateral 
pressure p is separated from the in-plane average stress σα due to the principal difference in 
response it produces.    
 
For the present application of the in-plane load-shortening relations of flat plates, eq.(49) can 
be viewed as a generalisation of a non-linear material law, i.e. it is written in the present 
notation as  
 

)p,,...,( 1K −21αα εεεσ=σ         α = 1, 2 ,..., (K-1) (60) 

 
Eq.(60) can be seen as a non-linear material description of the plate response in which the 
internal degrees of freedom qi are eliminated. More specifically this means that eq.(60) can be 
classified as a macro material description of the in-plane plate response in the sense that both 
the material law (i.e. Hooke’s law) and the non-linear geometric behaviour of the entire 
platefield is included in the same formulation. 
  
Eq.(60) is suited for strain control (strain = shortening = relative displacement of plate edges) 
since the loads are given as functions of the strains. The functional relationships of eq.(60) are 
not possible to derive in closed forms, but in an incremental perturbation procedure these total 
relations emerge in the expanded form around a known state Is as 
 

L pC  pC2C       

pCC
2

ppp

p

+∆+∆ε∆+ε∆ε∆+

∆+ε∆=σ∆

αβαβδβαβδ

αβαβα
 α, β, δ = 1, 2,., (K-1) (61) 

 
The macro material coefficients are defined by 
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    α, β, δ = 1, 2 ,..., K-1   (62) 

 
It is illustrative to use matrix notations and to retain only the first order terms. From eq.(61) 
the first order incremental relations between in-plane loads and in-plane displacements are 
written as  
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Cij is the tangent stiffness matrix and Cip are the coefficients representing the change of in-
plane loads per unit change of the lateral pressure. All coefficients are dependent on the state 
Is at which they are evaluated. 
 
For load control the inverted form of eq.(60) is more suited. This gives relations in the general 
form as 
 

)p,,...,( 1K −21αα σσσε=ε         α = 1, 2 ,..., K-1 (64) 

 
and the shortenings can be calculated as functions of the specified loads. The expanded form 
of eq.(64) around a known state Is are 
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where the macro flexibility coefficients are defined by 
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    α, β, δ = 1, 2 ,..., (K-1)  (66) 

 
It is illustrative to use matrix notations and to retain only the first order terms. From eq.(65) 
the first order incremental relations between strains and in-plane loads are written as  
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M ij is the tangent flexibility matrix and Mip are the coefficients representing the change of in-
plane shortenings per unit change of the lateral pressure. All coefficients are dependent on the 
state Is at which they are evaluated. 
 
The present introduction defines the in-plane stiffness and flexibility coefficients for flat 
plates. Section 3.4 illustrates how these coefficients are calculated using Marguerre’s non-
linear shallow plate theory. 
 
 
 

3.3 Graphical description of stiffness properties  

 
It may be useful to illustrate the in-plane stiffness relations or the flexibility relations 
graphically. The stiffness relations are given by eq.(60), i.e. 
 

)p,,...,( 1K −21αα εεεσ=σ         α = 1, 2 ,..., (K-1) (68) 

 
while the flexibility relations are the inverse, i.e. 
 

 )p,,...,( 1K −21αα σσσε=ε         α = 1, 2 ,..., (K-1) (69) 

 
Only the stiffness point of view is explained below since the flexibility version will be 
equivalent with shortenings, εα, taking the place of the loads, σα, and vice a versa.  
 
From eq.(68) the (K-1) loads, σα, may be viewed as (K-1) multi-dimensional functions of the 
(K-1) independent shortening parameters εα and lateral pressure p.  For fixed values of the 
loads σα, these functions will be mapped as potential curves in the deflection space, as 
illustrated in Fig.8. The gradient to the surface, eq.(68), is per definition  
 

ppp CC
 p

iiii αβαβ
α

β
β

α
α +≡

∂
∂σ

+
∂ε
∂σ

=σ∇∇∇∇      (70) 

 
and the gradient vector ασ∇∇∇∇  normal to the potential lines. In other words, the first order 

stiffness coefficients αβC  (and pCα ) represent the components of the surface gradient of the 

macro material law. Included in the macro material law are both constitutive relations and 
geometrical non-linear effects of the whole platefield. In the present setting of in-plane 
stiffness evaluation, the maximum stiffness will follows from Hooke’s law. Deviation from 
Hooke’s law is due to initial out of flatness and buckling. Moreover, high stiffness will be 
associated with marginal buckling effects while low stiffness is associated with significant 
buckling effects. 
 
If the orientation of the potential curves varies as a function on the loading, i.e. if they depend 
on the combination of acting loads, this indicates that buckling will influence the 
maximum/minimum stiffness directions. This is more discussed in the example included in 
Chapter 4 where also flexibility potential curves are included.      
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The load history is defined as a path in load or displacement space as discussed in Section 2.4. 
This path will be viewed as a curve starting at the origin and taking different directions 
according to the load path definition. Say, if the load history is defined in the load space as a 
straight line it will be mapped into the displacement space ),...,,( 1K21 −εεε  as a curved path 
and vice a versa. 
 
From the point of view of illustrating stiffness properties the load history is viewed in 
displacement space )p,,...,,( 1K21 −εεε . The load history may be directly specified in this space 
or calculated from a load history specification through solution of the equilibrium equations. 
In any case the equilibrium solution may be written as an equilibrium path in the load-
shortening spaces (σ1, εβ, p), (σ2, εβ, p)... etc. as radius vectors r 1, r 2..., etc.  
 

r i i iα α β βη σ η ε η η( ) ( ) ( ) p= + + p( )     α, β = 1,2...,K  (71) 

 
Here i is the unit vector in the direction of stress σα, iβ is the unit vector in the corresponding 
εβ direction and ip is the unit vector in the direction of lateral pressure p. If an equilibrium 
path is viewed in the displacement space )p,,...,,( 1K21 −εεε , it may take forms as illustrated in 
Fig.8. Fig. 8 illustrates two different equilibrium paths 1 and 2, which intersects at a given 
point. Through the same point is drawn a unique potential curve (σα = const.) with the 
gradient pointing in the direction of increasing load σα. By having only one potential curve 
through a given point it is illustrated that the strength and stiffness properties of structures, 
behaving according to the linear elastic material law, will not depend on the load history. 

 
Fig.8. Geometrical interpretation of load-shortening stiffness 

 
The tangent vector tα to the equilibrium path is the first derivatives of eq.(71). 
 

t = r i i iα α α β βη σ η ε η η& & & & ( )( ) ( ) ( ) p= + + p      (72) 
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which is a unit vector since η is the arc length along the curve. The curvature vector κκκκ is 
defined as the second derivatives of the radius vector r , i.e. the curvature vector is given by 
the second derivatives of eq.(71). 
 

pββααα  )(p)(ε)(σ)(= iiir η+η+η=η &&&&&&&&κκκκ      (73) 

 
The unit vector along the curvature vector is accordingly 
 

n = i i iα
α

α

α

α

β

α
β

α

σ η ε η ηκκκκ
κκκκ κκκκ κκκκ κκκκ

= + +
&& && &&( )( ) ( )

p

p
     (74) 

 
 
where 
 

[ ]κ σ ε εα α β β= + +(&& ) && && (&&)2 2 1 2p        (75) 

 
 
The stiffness property in the direction of the load path is the scalar product of the surface 
gradient ασ∇∇∇∇ and the unit vector εt in the direction of the load path in the displacement space 

)p,,...,,( 1K21 −εεε ,  i.e. 
 

εαα ⋅σ∇≡ tC      α = 1,2,..,(K-1)      (76) 

 
The presented geometrical point of view may be useful for the understanding of the stiffness 
properties in general and the concept of potential curves may be illustrative for deciding the 
maximum/minimum directions of stiffness of the structure. Flexibility illustrations are the 
inverted point of view and both types of presentations are given in the example in Section 4.4. 
  

3.4  Geometrically non-linear plate theory 

3.4.1 General 

 
For the purpose of buckling calculations, the von-Karman(1910) equations valid for moderate 
rotations have been used extensively in the literature. His theory is based on the classical 
Love-Kirchhoff hypothesis valid for thin shells. Marguerre(1938) extended the von-Karmans 
theory by adding initial out of flatness. This theory is frequently referred to as shallow shell 
theory (e.g. in Washizu(1975)) and is the basis for the equations given in the present chapter 
and Chapter 4. These theories are not described in any detail here as the reader may find a full 
account in e.g. Washizu(1975). 
   
In Marguerre’s non-linear plate theory the compatibility condition may be solved explicitly 
giving load-shortening-displacement relations in the general form (see eq.(53)) 
 

)q,( jβαα εℑ=σ  (77) 
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In Chapter 4 the exact form of these equations are given for a single degree of freedom plate 
buckling model. These functions describe only compatibility between in-plane and out-of 
plane deflections excluding equilibrium. Eq.(77) is inverted to give 
 

)q,( jβαα σℜ=ε  (78) 

 
When analysing a plate buckling problem the loading has to be specified as a path either in 
the load space (see Fig.6) or alternatively in the displacement space. Moreover, the most 
frequent method is to express equilibrium condition in terms of the loads. Typically will be 
the stationary condition of a potential energy V in which V is expressed in terms of a set of 
external prescribed loads σα . This leads to equilibrium equations in the form 
 

0)p,q,(f ii =σα         (79) 

 
When a potential energy V in terms of loads is formulated, the applied external loads have 
been constrained to be independent. However, for stiffened panels that are parts of larger 
structures it may be more convenient to prescribe some external displacements rather than 
loads allowing then for load redistribution at the boundaries between different elements. 
Displacement control can also be formulated using the potential energy principle and leads to 
equations on the form 
 

0)p,q,(f ii =εα         (80) 

 
Having specified the load path, the equilibrium states are found along this path, using the 
most appropriate solution procedure. The most simplified procedure will be to use the load or 
displacement control technique directly, as described in Section 3.4.2 and 3.4.3. However, as 
explained before, the more general procedure of direct arc length method is normally to be 
preferred and this procedure is described in Section 3.4.4. 
 
The lateral pressure is per definition load intensity and is separated from the other load 
components. It can be combined with either the loads, σα, or displacements, εα, in the 
definition of the load history. 
 

3.4.2 Displacement control 

 
For direct displacement control of the solution, the basis is the equilibrium equations in the 
form of eq.(80). As illustrated in Section 2.2 solution to eq.(80) are sought in the form 
 

)p,(qq jj βε=     (81) 

    
Substituting eq.(81) into eq.(77) gives the macro material form 
 

))p,(q,( i ββαα εεℑ=σ   (82) 
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Using the definition in eq.(62) together with the compatibility condition eq.(82), gives for the 
first order stiffness coefficients 
 

β
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β
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αβ ε∂
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+
∂ε
ℑ∂

≡ i

i

q

q
C      (83a) 
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C i
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p ∂
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+
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≡ αα
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The derivatives βα ε∂∂ℑ / , iq/ ∂∂ℑα  are readily available from eq.(77). However, the path 

derivatives αε∂∂ /qi , p/qi ∂∂  are found solving a linear set of equations. Substituting eq.(81) 

into eq.(80) gives the equilibrium equations in the form 
 

0)p,),p,(q(f ji =εε ββ  (84) 

    
Differentiating eq.(84) once with respect to εβ gives 
 

0
fq

q

f ij

j

i =
ε∂
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ε∂
∂

∂
∂

ββ

 (85a) 

0
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p
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q

f ij
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i =
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+
∂
∂

∂
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 (85b) 

 
    
which is a set of M*K linear equations for finding the path derivatives βε∂∂ /qi , p/qi ∂∂ . 

 
This shows that displacement control of the solution procedure gives direct calculation of the 
stiffness coefficients Cαβ and Cαp.   
 
 

3.4.3 Load control 

 
For direct load control of the solution, the basis is the equilibrium equations in the form of 
eq.(79). As illustrated in Section 2.2 solution to eq.(79) are sought in the form 
 

)p,(qq jj βσ=   (86) 

    
 Substituting eq.(86) into eq.(78) gives the inverted macro material form 
 

))p,(q,( i ββαα σσℜ=ε   (87) 

 
Using the definition in eq.(66) together with the compatibility condition eq.(87) gives for the 
first order flexibility coefficients 
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β

α

β

α
αβ ε∂

∂
∂
∂ℜ

+
∂ε
ℜ∂

≡ i

i

q

q
M      (88a) 
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p ∂
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The derivatives βα ε∂∂ℜ / , iq/ ∂∂ℜα  are readily available from eq.(78). However, the path 

derivatives ασ∂∂ /qi , p/qi ∂∂ are found solving a linear set of equations. Substituting eq.(86) 

into eq.(79) gives the equilibrium equations in the form 
 

0)p,),p,(q(f ji =σσ ββ  (89) 

    
Differentiating eq.(89) once with respect to σβ gives 
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q
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 (90b) 

 
which is a set of M*K linear equations for finding the path derivatives βσ∂∂ /qi , p/qi ∂∂ .  

 
This shows that load control of the solution procedure gives direct calculation of the 
flexibility coefficients Mαβ and Mαp.     
 

3.4.4 Arc length method 
 
As discussed in Section 2.1 the direct application of load or displacement control fails as 
solution strategies for cases associated with multiple valued equilibrium surfaces. However, in 
any case, a definition of a load path in the (σ1 , σ2 , … , p) space or in the displacement space 
(ε1 , ε2 , … , p) is needed. Thus, from this load history point of view, the case can be either 
load or displacement controlled. In order to obtain solutions for a general case the load or 
displacement control cases are combined with the application of the direct arc length method.  
 
For illustration a load history, defined in the load space (σ1 , σ2 , … , p), is used below. 
According to the arc length procedure in Section 2.1 the solution of the equilibrium problem 
is sought in terms of a set of independent arc length parameters (η1 , η2 , … , ηK-1, p). In the 
present notation the solution in the form of eq.(10) is rewritten as 
 

)p,(qq jj βη=   (91a) 

)p,( βαα ησ=σ   (91b) 

    



 Page: 40 
University of Oslo   
Department of Mathematics, Mechanics Division  
Application of the Perturbation Method to Plate Buckling Problems  No. 98-1 
__________________________________________________________________________________________ 
 
 
 The first order expansion of eq.(91) reads  
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The path derivatives β
β η∂∂≡ /qq ii , p/qq i

p
i ∂∂≡ , βα

β
α η∂σ∂≡σ / , p/p ∂σ∂≡σ αα  are 

found from the perturbation procedure for multiple loads as outlined in Section 2.2.  
 
Substituting eq.(91a) into eq.(77) gives the macro material form 
 

))p,(q,( i ββαα ηεℑ=σ   (93) 

 
The first order in-plane stiffness coefficients are defined according to eq.(62). Using this 
definition in combination with eq.(93) gives  
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The derivatives βα ε∂∂ℑ / and iq/ ∂∂ℑα  ( p/ ∂∂ℑα = 0) are readily available from eq.(77) by 

forming the partial derivatives of the known functions αℑ . The missing parameters are 

βγ ε∂η∂ / and p/ ∂η∂ γ . In order to provide these parameters eq.(78) is used. Substituting 

eq.(91) into eq.(78) gives 
 

))p,(q),p,(( i γγβαα ηησℜ=ε   (95) 

 
By differentiating eq.(95) with respect to any ηγ gives  
 

γ

α

γ

β

β

α

γ

α

η∂
∂

∂
∂ℜ

+
η∂
σ∂

σ∂
∂ℜ

=
η∂
ε∂ i

i

q

q
 (96) 

 
Similarly, by differentiating eq.(95) with respect to p gives  
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This provides equations for the direct calculation of the γα
γ

α η∂ε∂≡ε /  and γ
γ η∂∂≡ /pp  

coefficients. However, these coefficients are the inverted of the coefficients used for 
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calculating the stiffness parameters in eq.(94). The inverted coefficients are obtained by 
assuming the shortenings to depend on the arc length parameters as 
 

)p,( βαα ηε=ε   (98) 

 
The first order expansion of eq.(98) gives in matrix notation  
 

p p ∆+η=ε JJ ∆∆∆∆∆∆∆∆         (99) 
 
where the Jacobian matrices are defined as  
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and  
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The symbol ε∆∆∆∆  is a column matrix notation for the K-1 edge shortenings, εα, and η∆∆∆∆  is a 

column matrix notation for the K-1 arc length parameters, ηα. Inverting eq. (99) gives 
 

p p1 ∆−ε=η − JJ J -1 ∆∆∆∆∆∆∆∆        (101) 
 

where the inverted Jacobian matrices are defined as 
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These inverted Jacobians contain the final coefficients for evaluations of the stiffness 
parameters as defined in eq.(94).  
 
For a prescribed load history in shortening space, the procedure for calculating in-plane 
stiffness properties follows exactly the same pattern as described above. The loads will take 
the place of shortenings and vice a versa. Thus, there is no need for a detailed presentation of 
this case. 
 

3.5 Summary 

 
The present chapter starts with a general description of the non-linear stiffness properties of 
structures. The expanded form of the non-linear load-deflection relations defines the current 
stiffness coefficients. Moreover, by providing compatibility conditions in a special functional 
form, the connection between the stiffness coefficients and the path derivatives available from 
the perturbation procedure is established. 
 
The stiffness properties are discussed in more detail in connection with in-plane behaviour of 
flat plates. The geometrical point of view of potential lines are described as a way of 
illustrating the continuous change of stiffness (or flexibility) of plates as a function of the 
applied loading. For the purpose of having a simple notation, the concept of macro material is 
introduced embracing both the constitutive and geometrically non-linear behaviour of the 
whole panel into one pseudo material model.   
 
The procedure for calculating stiffness properties of flat plates within Marguerre’s plate 
theory is discussed. The general case of a direct arc length method and the connection to the 
path derivatives for multiple loads is given a detailed treatment. As special cases are included 
the more simplified load and displacement control cases.           
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4.  APPLICATION ON A  BIAXIALLY LOADED RECTANGULAR 
UNSTIFFENED PLATE  

4.1 General 

 
As an example the case of a rectangular plate subjected to biaxial compression has been 
analysed. The main purpose is to illustrate the macro material properties in the form of 
stiffness and flexibility coefficients. Secondly, the incremental perturbation procedure as a 
numerical tool has been tested even though it is realised that the example is very simplified as 
it involves only a single degree of freedom. The advantage of using a single degree of 
freedom model is that a closed form solution exist and comparisons with numerical results is 
then gives some measurements of the efficiency of the procedures. A more extensive three 
degree of freedom model handling mode interactions in stiffened panels is treated in 
Steen(1999).   
 
The other purpose of the present example is to demonstrate how the in-plane stiffness (and 
flexibility) properties change for plates subjected to biaxial loads. Particularly, the region of 
compressive stresses will influence the stiffness properties and is of special interest.   
 
Within the assumptions of Marguerre’s plate theory Steen (1984) showed that the potential 
energy of an isotropic simply supported unstiffened rectangular plate subjected to biaxial 
loads and lateral pressure has the form 
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where per definition 
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The potential energy V, eq.(103), is expressed in terms of the load σ1 in the longitudinal 
direction (x1-direction), the load σ2   in transverse direction (x2-direction) and lateral pressure 
p normal to the plate plane (x3-direction) and this form is appropriate for load control of the 
load history. Furthermore, q1 is the additional deflection amplitude normal to the plate plane, 
which is to be associated with a chosen buckling half length 1l in the x1-direction and 2l in 
the x2-direction, and q10 is the corresponding initial imperfection amplitude taken to be in the 
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same form. In the present application the half wavelengths are considered as having fixed 
values. These half wavelengths can be found from e.g. an eigenvalue minimisation procedure 
when the load history is defined. The assumption of a fixed buckling shape pattern limits the 
range of validity of the present model, since mode change during the load history is not 
captured. An example, demonstrating the effect of this limitation, is presented in Section 4.4. 
 
The deflection parameters q1 and q10 are non-dimensional versions of the lateral deflection 
amplitude w and δ, respectively. The scaling parameter has been chosen as the plate thickness 
tp, see eq.(104). In eq.(103), E and ν are the isotropic material parameters, i.e. Young’s 
modulus and Poisson’s ratio respectively.  
 
It was further shown (Steen 1984) that the load-shortening-deflection relations in the general 
total form ( i.e. eq.(77); αℑ  functions) can be written as 
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which inverted gives (eq.(78); αℜ  functions) 
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Equilibrium equations in the form of eq.(79) can be derived from the principle of stationary 
potential energy, i.e. 
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From the definition of eq.(107) and eq.(103) it follows that the equilibrium equation is   
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4.2 Numerical solution – Perturbation scheme 

4.2.1 General 

 
In the following the necessary equations are given for solving the equilibrium problem of a 
biaxially loaded plate under the condition of a prescribed path in the load space. These 
equations can be used for any prescribed path in general, but herein they are used for the 
purpose of illustration stiffness properties of plates. This means that the load paths are given a 
special form in load space in order to provide the sought stiffness contour plots as explained 
in more detail in Section 4.2.2. Alternatively, a set of equations can be derived appropriate for 
displacement control and for the purpose of illustrating flexibility curves. Both approaches are 
used in order to generate the results in Section 4.4.  
 
The definition of a single load parameter Λ, describing any multi-linear load path through 
load space, is according to eq.(28)     
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Eq.(109) is substituted into eq.(108), and the equilibrium equations thus shift from one set to 
the next, depending on which linear piece of the load path that is currently traced.  
 
The assumed perturbation solution along the prescribed load path, expanded around a state Is , 
is  
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The first order path derivatives of the loads are  
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and second order path derivatives 
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The loads along the equilibrium path are calculated from 
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Knowing the loads, the end-shortenings may be calculated from the total relations, eq.(106). 
 
Applying the direct arc length method for tracing the equilibrium path, the first and second 
order sets of perturbation equations for the single degree of freedom plate buckling model is 
given below. 
 
The first order perturbation equations are taken from eq.(37), i.e. the first order solution is 
found by solving the following set of equations  
 

1qq

0fqf
2

11

1
11

1
1

=Λ+

=Λ+
&&&

&&
        (114) 

 
The coefficients in the first order equations are 
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The second order solution is found from eq.(48), i.e.  
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The coefficients in the second order equations are 
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Following the scheme as summarised in Section 2.5 any specified path in load space can be 
traced.  
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4.2.2 Flexibility and stiffness calculation 

 
For the purpose of illustrating the flexibility or stiffness properties of plates, potential curves 
as generally described in Section 3.3, may be used as an alternative to the conventional load-
shortening presentation. It has the advantage of embracing a lot of information of the plate’s 
strength in different directions into one diagram and it is a form that is consistent with the 
macro material concept. The terminology of contour plot is also commonly used for 
illustrating variations of two-dimensional functions and this notation is used herein with the 
same meaning as potential curves.   
 
In Section 4.2.1 the equilibrium equation was derived in terms of loads and not displacements. 
It follows then that stiffness curves may be generated by prescribing a set of load histories in 
load space, (σ1 - σ2) according to the pattern described below.  By mapping the corresponding 
response curves in the shortening space (ε1 - ε2), contour lines emerge illustrating the stiffness 
properties.  
 
Since a stiffness curve is valid for a fixed value of a load parameter, say σ1= 0,6 σF (σF is the 
yield stress of the material), the load history has to be prescribed in two steps. The first step 
will be to increase the load acting in one direction, say σ1, up to the desired level. This level 
of σ1 can be reached by prescribing any general load path in load space. A natural choice will 
be to define a linear path by scaling up the load σ1 to the actual desired value, while 
simultaneously prescribing σ2 to be zero. The next step will then be to fix the σ1 value while 
prescribing an increased or decreased value of the other load parameter σ2. By mapping the 
response in the shortening space, ε1 - ε2, and by retaining only the second sequence, the 
potential stiffness curve will be visualised as a curve valid for a fixed value of, say σ1. By 
generating a set of potential curves with the same incremental load value, ∆σ1= fixed, 
between each curve, a map is generated that illustrates the stiffness for load direction σ1.  
 
The procedure described above gives potential curves for stiffness evaluations of the plate in 
an overall sense. It is a way of describing the plate’s ability to carry loads in the different 
loading directions, and it has to be seen as an alternative method for strength and stiffness 
presentation. Moreover, to generate these curves requires many load histories to be calculated.   
 
The normal case for strength evaluation will be to have a given load history and to estimate 
the strength following this prescribed load path. The present method, using the arc length 
approach, provides the calculation of the stiffness coefficients C11, C12 and C22 along the 
specified path using the procedure as outlined Section 3.4.4.  
 
For the purpose of practical applications it is useful with closed form solutions. In Section 4.3 
the present single mode analysis is rewritten in a compact closed form and the stiffness 
coefficients are given explicitly. In Section 4.4, contour plots for both flexibility and stiffness 
properties are presented for a square plate and comparisons between closed form solution, 
perturbation solution and numerical results using ABAQUS are presented.  
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4.3 Closed form solution 

 
Eq.(108) is the equilibrium equation for the case of biaxial loading and lateral pressure.  
By defining a parameter Λσ as  
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and neglecting the lateral pressure, p, eq.(108) may be rewritten in the following compact 
form 
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where per definition 
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The parameter Λσ is a load parameter, representing the combined load effect. It takes the 
value of unity at the classical buckling level for combined loads (eigenvalues). 
 
By substituting eq.(106) into eq.(119), with the purpose of eliminating the loads at the 
expense of the shortenings, and now defining a parameter Λε as 
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 the following closed form equilibrium equation is found  
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where per definition 
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For comparison, the Koiter theory (Hutchinson and Koiter 1970) gives the following form of 
the equilibrium equation 
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It is seen that the present closed form solution for plates, based on Marguerre’s plate theory, is 
very similar to the Koiter equation apart from two terms coupled to the initial imperfection 
amplitude q10.  For small imperfection amplitudes the two solutions converge while for larger 
imperfection amplitudes the present solution predicts more optimistic results. 
 
The in-plane stiffness properties, expressed by the Cαβ, will be load dependent and the 
coefficients at each load level can be calculated using the perturbation procedure as described 
in Section 3.4. However, it is possible to derive analytical expressions for the stiffness 
coefficients in the case of zero load and valid for a geometrically imperfect plate. Using the 
method in Section 3.4 and after a lot of tedious algebra, the following expressions emerge  
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where per definition 
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The same method can be used for derivation of the stiffness coefficients of a geometrically 
perfect plate (q10 = 0). In that case these coefficients are often referred to as the initial 
postbuckling coefficients as they describe the stiffness at the point of initial buckling 
following the deformations into the subsequent postbuckling region. The stiffness coefficients 
are expressed as in eq.(125) but with the coefficient A calculated from 
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instead of from eq.(126). Comparing eq.(126) and eq.(127) shows that the initial postbuckling 
stiffness properties of geometrically perfect plates are constants and equal to the initial 
stiffness of plates with large initial imperfections (q10 >>1). 
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For a perfect square plate the postbuckling stiffness coefficients defined by eq.(125) and 
eq.(127) takes the compact form  
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Here the modified material constants E* and  ν* are defined as 
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From these simple expressions it is concluded that an elastically buckled square plate has 
stiffness properties as an elastic isotropic material with 50% of Young’s modulus and with a 
negative Poisson effect equal to  – 0.35 for steel material with ν = 0.3. 
 
 

4.4 Numerical results - Comparative study 

 
For comparison purposes between the closed form solution and the numerical perturbation 
procedure a square plate with the following properties have been analyzed 
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However, before presenting the non-linear results for the plate, it is of interest to first illustrate 
contour plots according to Hooke’s law for a material micro point. Flexibility curves for in-
plane strain ε1 for a biaxial stress situation are shown in Fig.9. 
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Fig. 9. Contour plots of flexibility for ε1, biaxial plane stress situation in a material point according to 
Hooke’s law.  ε1 ∈ [ -0.6 to 0.6] εF , ∆ε1 = 0.2 εF .  

 
  
Results showing the non-linear response of the plate are presented in Fig. 10, 11 and 12. 
These results include imperfections and geometric non-linearity effects. Conceptually, these 
results may be considered as material properties of a macro material point, i.e. the plate as a 
whole. 
 
It was found most convenient to present the results as contour plots in the form of flexibility 
curves. This was due to the non-linear finite element code ABAQUS(1994) which was most 
conveniently run in a displacement control mode with prescribed straight edges. The 
ABAQUS model had a mesh of 20x20 using thin shell elements S9R5.  
 
The non-linear macro results are presented in Fig.10 for the considered near geometrically 
perfect plate square plate (q10 = 0.01). It is seen that the perturbation solution follows very 
accurately the closed form solution. In the figure the closed form solution and the perturbation 
solution are indistinguishable. The perturbation solution is based on a second order expansion 
together with small increments of the arc length parameter η of the order of 0.01. In the same 
figure are added results from the ABAQUS analyses. It is shown that the ABAQUS results 
follows very closely the closed form solution up to certain point for then to suddenly change 
direction. This change of direction of the equilibrium path is associated with change of 
buckling mode from a single half wave in transverse direction to three halfwaves. This 
phenomenon is referred to as mode snapping in the literature, and the present single degree of 
freedom model is not capable of predicting such change of modes.  
 
From a structural point of view, Fig.10 illustrates the sudden change of in-plane 
flexibility/stiffness against relative edge shortening ε1 as soon as the stability boundary 
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(eigenvalues) is crossed. It is observed that the density is increased and direction turned of the 
potential curves beyond the buckling boundary. Below the buckling boundary (lower left part 
of diagram) the loads are in tension in both directions and the contour lines describes Hooke’s 
law. This prediction is consistent with the simple solution given in eq.(129), which gives a 
50% stiffness reduction in the postbuckling region together with a negative Poisson effect.   
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Fig. 10. Contour plots of flexibility curves for a biaxially loaded, geometrically perfect square plate,  ε1 ∈ 
[ -0.6 to 0.6] εF , ∆ε1 = 0.2 εF . Comparison between closed form solution, numerical perturbation solution 

and non-linear finite element results/ABAQUS. 
Square plate with dimensions, a = b =1000 mm,  t =12 mm, δ = 0.12 mm. 

 
 
In Fig.11 results are presented for the same plate, but with a geometrical imperfection 
amplitude of δ = 6 mm (q10 = 0.5) and with the load axes limiting the interesting response to 
stay within the yield stress.  It is shown that the numerical perturbation procedure follows 
very accurately the closed form solution and ABAQUS results, and the curves are almost 
coincident.  
 
From a structural point of view it is seen that the effect of increasing the geometrical 
imperfection is to give a more gradual transition between the prebuckling flexibility and 
postbuckling flexibility around the buckling boundary.  
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Fig. 11. Contour plots of flexibility curves for a biaxially loaded, geometrically imperfect square plate, ε1 
∈ [ -0.6 to 1.0]εF , ∆ε1 = 0.2εF. Comparison between closed form solution, numerical perturbation 

solution and non-linear finite element results/ABAQUS.  
Square plate with dimensions, a = b =1000 mm, t =12 mm, δ = 6 mm. 

 
 
As discussed in the text, contour plot of stiffness properties is the inverse of the flexibility. 
For the purpose of being complete the stiffness variations for the load σ1 in the shortening 
space (ε1, ε2), of the example in Fig.11, is presented in Fig.12. This figure also shows that the 
perturbation solution coincides with the closed form solution and in Fig.12 it is not possible to 
distinguish between them.  
 
As seen in Fig.12 the potential stiffness curves are more spread in the postbuckling region 
(upper right part) than in the tension region (lower left part) where they also are oriented in 
the opposite direction. This illustrates the reduced stiffness properties for compressive loads 
and a change of the Poisson effect from positive in the tension region to negative in the 
compressive region.   

              Closed form                  ABAQUS                       Perturbation 
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Fig. 12. Contour plots of stiffness curves for a biaxially loaded, geometrically imperfect square plate,  σ1 

∈ [ -0.6 to 1.0] σF , ∆σ1 = 0.2 σF . Comparison between closed form solution, numerical perturbation 
solution. 

Square plate with dimensions, a = b =1000 mm,  t =12 mm, δ = 6 mm. 
 
 

5.  CONCLUSIONS 

The general perturbation method for discrete systems, developed for the purpose of analysing 
stability properties of structures, is described. In the present work the main emphasis is on 
tracing the complete non-linear equilibrium path from the unloaded state to limit points and 
with subsequent assessment of the initial postbuckling region of geometrically imperfect 
structures. The perturbation method is applied up to a second order expansion of the 
equilibrium path and the procedure is embedded in an incremental scheme. The second order 
expansion is adopted as a substitute for the standard equilibrium control applied in more 
traditional incremental numerical methods. The arc length concept for multiple loads is 
introduced for passing limit and snap back points along the equilibrium surface. The direct arc 
length method, applied in a perturbation scheme, is discussed in relation to Riks’ method, 
which is a method that is accepted as one of the most efficient in numerical analysis of 
instability problems.    
 
The incremental perturbation scheme is applied to a simple single degree of freedom system 
of a biaxially loaded plate, and it is shown that the numerical results very closely compare 
with a closed form solution. Included are also results obtained using the non-linear finite 
element code ABAQUS. The present example is rather simple and does not give conclusive 
answers on the efficiency of the present proposed numerical scheme. However, the 
incremental perturbation scheme presented here has been developed with the main purpose of 

Perturbation Closed form 
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solving buckling problems that can be described with relatively few degrees of freedom.  
From this point of view the method works very satisfactory and in Steen(1999) the procedure 
is applied to a more complex plate model. In that model the non-linear interactive response 
between local and overall buckling of stiffened panels is addressed.  
 
Properties are shown for a biaxially loaded unstiffened plate as a specific example. The 
stiffness and flexibility properties are presented as contour plots. This way of showing the 
results gives a new understanding of the actual buckling process under multiple loads and it 
embrace a lot of information into one diagram. The contour plots can be interpreted as an 
illustration of the macro material concept in the sense that it includes both the material and 
geometrical non-linear behaviour of the whole panel into one diagram.  
 
From an overall point of view, an isolated flat panel in a large structure may be seen as macro 
material and the change of in-plane stiffness properties due to geometrical imperfections, 
residual stresses, lateral pressure and buckling behaviour can be all included in the macro 
material description. The results emerge as orthotropic material parameters, which can 
subsequently be used as input material properties in large linear finite element models e.g. of 
ship hulls. This approach provides a more realistic global redistribution of the stresses in the 
structure than that provided by the normal assumption of linear isotropic material properties 
according to Hooke’s law used in standard linear analyses.   
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7. NOTATION 

Latin letters 
a  Plate length in x1 direction 
b  Plate length in x2 direction 
tp  Plate thickness 
t   Pseudo time parameter 
w   Plate deflection normal to plate plane, used here as amplitude 
p  Lateral uniform pressure acting normal to plate  
gu  Buckling boundary function (gu = 0; buckling boundary equation) 

1l   Wave length of buckling pattern in x1 direction ( m/a1 =l ) 

2l   Wave length of buckling pattern in x1 direction ( n/b2 =l ) 
E  Youngs’ modulus 
ν      Poisson’s’ ratio 
m  Number of half waves in x1-direction 
n  Number of half waves in x2-direction 
M  Total number of degrees of freedom 
K  Total number of independent loads (or edge displacements) 
x1,x2,x3  Rectangular coordinate system 
 
Greek symbols 
σF  Yield stress, (only used for scaling purposes in this report) 
σα  Average membrane stress   
σ1  Average membrane stress in x1 direction, positive in compression  
σ2  Average membrane stress in x2 direction, positive in compression  
εα  End-shortening of plate edges   
ε1  End-shortening of plate edges (av. strain), x1 direction, positive in compression  
ε2  End-shortening of plate edges (av. strain), x2 direction, positive in compression 
Λ  General load parameter, non-dimension 
Λα  General load parameter, non-dimension 
∆α  General displacement parameter, non-dimension 
∆  Symbol for incremental property 
δ      Initial plate imperfection amplitude, stress free 
η  Perturbation parameter, arc length along equilibrium curve 
ηα  Perturbation parameter, arc length along equilibrium surface, multiple dimensional 

αβδ   Kronecker delta 
 
Vector, matrix, tensor symbols 
f i  Equilibrium functions (fi = 0; equilibrium equations) 
qi  General degree of freedom parameter, non-dimension 
qi0  Initial general degree of freedom parameter, stress free, non-dimension 
di   Element in column matrix, see eq.(43) 

α
β

α

c

ci
  Directional cosines of equilibrium path in load-deflection space, see eq.(17) 

∇   Symbol for vector gradient 
i  Unit vector in direction of ant load σα , see eq.(71), presentation of stiffness  
iβ  Unit vector in direction of any εα , see eq.(71), presentation of stiffness 
ip  Unit vector in direction p , see eq.(71), presentation of stiffness 
r α  Radius vector in (σα, ε1, ε2,.., εK, p) space, presentation of stiffness 
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tα  Tangent  vector in (σα, ε1, ε2,.., εK, p) space, presentation of stiffness 
tε  Tangent  vector in (ε1, ε2,.., εK, p) space along prescribed load history 
κκκκα  Curvature vector in (σα, ε1, ε2,.., εK, p) space, presentation of stiffness 

ακκκκ   Length of curvature vector κα, see eq.(75) 

nα  Unit vector in (σα, ε1, ε2,.., εK, p) space along curvature vector κα 
iΛ  Unit vector in solution space along Λ axis 
i i  Unit vector in solution space along qi axis 
x&   General solution vector, see eq.(38) 

+x&   First solution vector, see eq.(44a) 

−x&   Second solution vector, see eq.(44b) 

q&   Displacement vector, see eq.(41) 

[ ]j
if≡f  First order matrix, see eq.(41) 

[ ]ΛΛ ≡ iff  First order column matrix, see eq.(41) 

[ ]βα η∂ε∂≡ /J Jacobian  matrix , see eq.(100a), inverted see eq.(102a) 

[ ]p/p ∂ε∂≡ αJ Jacobian  column matrix , see eq.(100b) 

±Λ&   Two solutions for the first order load rate, see eq.(44c) 

αβK   First order stiffness coefficients, see eq.(52) 

αβδK   Second order stiffness coefficients, see eq.(52) 

αβC   First order in-plane stiffness coefficients of flat plates, see eq.(62) 

pCα   First order in-plane stiffness coefficients of flat plates, see eq.(62) 

αβδC   Second order in-plane stiffness coefficients of flat plates, see eq.(62) 

pCαβ   Second order in-plane stiffness coefficients of flat plates, see eq.(62) 

ppCα   Second order in-plane stiffness coefficients of flat plates, see eq.(62) 

αβM   First order in-plane flexibility coefficients of flat plates, see eq.(66) 

pM α   First order in-plane flexibility coefficients of flat plates, see eq.(66) 

αβδM   Second order in-plane flexibility coefficients of flat plates, see eq.(66) 

pM αβ   Second order in-plane flexibility coefficients of flat plates, see eq.(66) 

ppM α   Second order in-plane flexibility coefficients of flat plates, see eq.(66) 

 

αℑ   Compatibility function, see eq.(53) 

αℜ   Inverse compatibility function, see eq.(58) 

 
 
Subscripts and superscripts 
 
i, j, k,… Dummy indices, Latin letters used as subscript and superscript, range 1,2,,..,M 
α, β, γ, λ,… Dummy indices, Greek letters used as subscript and superscript, range 1,2,,..,K (K-1) 
s  Evaluated at any state Is  
m   State along prescribed piecewise linear load history in load or displacement space 
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Notation for derivatives  
 
∂   Partial derivative symbol 

η∂
∂

= i
i

q 
q&  Path derivatives with respect to arc length η 

η∂
σ∂

=σ α
α

 
&  Path derivatives of load parameter 

η∂
ε∂

=ε α
α

 
&  Path derivatives of end-shortening parameter 

η∂
Λ∂=Λ&   Path derivatives of load, non-dimensionless parameter 

 

γ

γ

η∂
∂

= i
i

q
q  

λγ

γλ

η∂η∂
∂

= i
2

i

q
q  

j

ij
i q

f
f

∂
∂

=  
α

α

η∂
∂

= i
i

f
f  

kj

ijk
i qq

f
f

∂∂
∂

=  
α

α

η∂∂
∂

=
j

ij
i q

f
f  

βα

αβ

η∂η∂
∂

= i
i

f
f  

β

αβ
α η∂

Λ∂
=Λ  

γβ

αβγ
α η∂η∂

Λ∂
=Λ   

 

γ

αγ
α η∂

ε∂
=ε  

γ

αγ
α η∂

σ∂
=σ  

γ

γ

η∂
∂= p

p  

 

α

γα
γ ε∂

η∂
=η  

 

p
p

∂
η∂
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