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Abstract - The perturbation method is applied in an incremeatheme for tracing non-linear
equilibrium paths of structures which are subjedted set of simultaneously acting external loads.
The method is based on the discretesized versitimeafion-linear stability theory and it is used for
solving non-linear algebraic equations. In ordepass limit points the direct arc length concept is
introduced. The method is especially adapted tostiation of plate buckling problems for which
both strength and in-plane stiffness properties iarportant parameters. As an example the
perturbation procedure was used for solving a fnmbate buckling problem, for which a closed

form solution exist, and the results were compagdinst a recognised non-linear finite element
program.
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1. INTRODUCTION

The most significant contribution within the fieddl non-linear buckling theory of structures
was the development made by Koiter (1945) and firssented in his classical thesis of 1945.
He classified the postbuckling behaviour accordmthe stability of the critical load itself,

and introduced useful concepts for postbucklingiamgkrfection sensitivity. Two decades
later, in the beginning of the sixties, Budiansky d&dutchinson (1964) developed this theory
further. The theory was subsequently applied tess\shell buckling problems (Hutchinson
1967, Budiansky and Amazigo 1968, Hutchinson 18&fliansky 1969). Budiansky (1974)
has provided a comprehensive summary of the theory.

The basis for this non-linear buckling theory is #pplication of perturbation methods by
which the equilibrium curve in the postbuckling gans approximated as a power series
expanded around the critical load. For unstablectires, which could be analysed with
sufficient accuracy with one single degree of faaadthe buckling capacity of a
geometrically imperfect structure was related ®ithperfection amplitude through very
compact and practical formulas. A comprehensiveerewf the theory is given by
Hutchinson and Koiter (1970).

A parallel development of a more general non-linmaskling theory was initiated in the U.K.
in the beginning of the sixties. These theorieSbwell (1965,1968), Thompson (1965),
Thompson and Hunt (1973), Huseyin (1975) and otWerg based on a discretized version of
structural non-linear theories and the static pbetion method was introduced for explicit
solutions of the postbuckling behaviour. Chilve®§T), Johns (1971), Supple (1967) and
others have studied structural models with sexaagtees of freedom for the identification
and classification of coupled postbuckling pathsoMpson and Hunt (1984) developed the
procedure further and made analogies to catastrbgioey.

The general Koiter theory have been used by semathbrs with the purpose of calculating
buckling strength of thin-walled plate and shellistures. Notable among these are Benito
and Sridharan (1985), van Erp and Menken (1991)ando and Garcea (1996). All these
applications can be classified as asymptotic irsthrese that they are based on a Taylor
expansion around the critical state.

The more traditional approach, used in commerai#tefelement programs, is to solve the
structural problem using an incremental solutioocpdure. The literature on this type of
numerical analysis is very extensive and withinghgineering field, the first publications
emerged in the early sixties in connection withdlegelopment of the finite element method.
It is not the purpose to review this topic hereibaain be stated that Riks (1972, 1979) were
among the first to formulate the arc length coné¢eppassing limit points. The Riks method
has been recognised as a powerful strategy and neceat reviews of this numerical
technique can be found in Crisfield and Shi (1221g Carrera (1994). Stoll (1994) applied
the Riks method for the detailed study of the gui@gnomenon in buckled plates.

The motivation for the present work has been ofewdfit levels. First of all it is has been the
purpose to explore the possibilities of the pewrtidn method as a numerical tool for solving
structural stability problems within the field ¢fin-walled plate and shell structures. The

Koiter theory, as described by the different ausheferenced above, is the obvious example
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of such an application. However, these applicatamesconstructed with the main purpose of
exploring the postbuckling behaviour around a@aitpoint, which is normally to be
understood as the classical buckling load. Sineg#rturbation method is based on a power
series expansion, these analyses are only valleeinlose vicinity of the critical point itself.
This is a serious restriction to their practicafuness.

However, it is obvious that the perturbation methad be used also in an incremental
scheme, in which the total equilibrium path frore tmloaded state to an advanced
postbuckled state can be followed. Such an appiité explored herein and the present
author is not familiar with similar applications thie perturbation method in the literature.

The perturbation method is used as a tool for sghalgebraic non-linear equations. The
procedure of discretization of the structural peob] which generates the algebraic equations,
can be chosen as matter of personal preferencermr wisely as function of the actual
problem in hand. For some problems the finite elgmeethod is to be preferred while for
other problems a Rayleigh-Ritz technique based Bouaier expansion of the deflections

may be a more efficient choice. The perturbatiothag as a numerical tool is equally
applicable.

The procedure herein is restricted to the studylhddt is often referred to as an imperfect
system. This means briefly that geometrical impeides are added in all degrees of freedom
and buckling deflections will start to grow fronetbnset of applied loading. Conceptually
thus only limit point buckling is handled and bifation type of buckling is suppressed.

The main field of application of the proposed pdyation procedure is seen within the field
of the development of simplified buckling modelsid means buckling models with a limited
number of degrees of freedom and which describesttinctural response with sufficient
accuracy for design purposes. Thus, the procedserithed herein is not developed to a level
that makes it competitive with full blown non-lingfanite element programs. In order to
provide this, stability and bifurcation bucklingteria have to be included. Such criteria are
readily available within the field of perturbatiomethods as part of the study of singular
solutions, but they are not explored herein.

Within the field of ship and offshore constructiomdich are mainly constructed of thin
walled stiffened plates and shells, the existingiglemethods are very simplified and very
often based on crude empirical approximations. \Withsteady development of the personal
computers more and more of the analyses of sugttgtes are done by numerical tools,
typically large linear finite element models. Trauseed emerge that facilitates strength
assessment procedures which match the detailednafmn of the actual stress flow in the
structure. The motivation for applying crude foramifor strength control is reduced and it
may be material to be saved and safety to be ghyeding more advanced design methods.
From this perspective it lies a motivation for gppl) more advanced buckling check
procedures of plates and shells.

It has been the purpose herein to focus on strexmgthstiffness properties of plates, which is
seen as the basic units in large ship and offsétouetures. By using a Rayleigh-Ritz
disctretization of deflections in terms of Foumaipansions, the buckling behaviour of plates
can be described by sufficient accuracy using eaiye few degrees of freedom and the
computer time to assess the strength is minimad.bidtkled plate can be considered as
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macro material in an overall sense and it is beliethat the perturbation procedure provides
an improved understanding of the concepts of baogkibostbuckling and imperfection
sensitivity.

With this as the motivation, the present reponttstiaa Chapter 2 with a general description of
the perturbation method and some of the basic giscesed in the general non-linear
stability theory are illustrated. For structurabiplems with multiply acting independent loads
the concept of equilibrium surface is central. Ghdpfocuses on the study of the
mathematical local shape of the equilibrium surfaeé it is shown how the perturbation
method provides this information. Chapter 2 staith a presentation of the standard load or
displacement control procedures, and it is shown these fail to predict snap buckling
behaviour. The direct arc length concept is thémoduced as a method for solving these
problems. In a mathematical language this meansreerical strategy with capability to pass
folds and limit points on the equilibrium surfadde perturbation procedure calculates the
local shape of the equilibrium surface and theiappbn of these properties is further
discussed in Chapter 3 in connection stiffnessgmegs of the structure. Within
geometrically non-linear plate theory it is shovawithe perturbation procedure provides
directly the coefficients to be used in the assessgrof the instaneous plate stiffness
properties. The concept of the macro materialtr®duced.

The perturbation procedure together with the diaectiength concept provides the path
derivatives in the direction of the prescribed Ipath. These path derivatives, used in an
incremental procedure, are used directly for trqutive equilibrium curve. As a post-
calculation feature, the associated multiple patfivdtives in each state along this curve can
be assessed. This gives the directional stiffnesfficients for the structure in all load
directions. The first order directional stiffnesgefficients calculated from the perturbation
procedure are the same as the tangent stiffnesxmagfficients used in traditional solution
procedures, which connect the incremental extdoaals to the corresponding incremental
deflections.

In Chapter 4 an unstiffened plate subjected toidiax-plane loads is analysed as an
example. Only one term is used in the Rayleigh-Bigzretization of the out-of plane
deflection and, through the use of compatibilitpditions between out-of plane and in-plane
deflections, a single degree of freedom model issdd. This gives a closed form solution
which is compared against the perturbation mettsadi un an incremental scheme and
comparisons with numerical results using the reisgghnon-linear finite element program
ABAQUS (1994) is also included. The example is edlusing both load and displacement
control, since this single degree of freedom maldels not possess snap buckling features.
The closed form solution, in terms of the macroemat coefficients, are calculated and
compared against the numerical results.

As a continuation of the study reported hereincaenextensive plate buckling model is
developed for stiffened plates in Steen (1999)t fiadel is based on a generalisation of the
Shanley model concept and the emphasis is on theaation between what is defined as
local buckling modes and overall buckling. It i®am how the interaction of buckling modes
leads to unstable postbuckling behaviour anddeimonstrated that the perturbation method,
used in an incremental scheme with the arc lergjttoatrol parameter, is able to pass the
sharp peaks and limit points in load-deflectioncgpa
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The methods developed herein assume the existéacged non-linear algebraic equilibrium
equations on total form, and as such the presgmtaxtdure is based on material
characteristics according to Hooke’s law. The adsenon-linear elastic-plastic material
characteristic requires a virtual work formulatiargeneral. This type of behaviour is not
considered in this report, but such an applicatisimg the perturbation procedure in an
incremental scheme, can be found in Steen and Asses& (1995-1, 1995-I1).

Tensor notation with the standard summation coneems used for the most part. However,
vector symbols are also introduced when found coieve.

2. DESCRIPTION OF THE PERTURBATION METHOD FOR MULTIB-
LOADS

2.1 General

As mentioned in the introduction there exist margthods for solving non-linear equations
and the choice of the most optimal is to a larggrele a matter of personal preference. In the
present work the perturbation method, introducetthénnon-linear discrete stability theory by
researchers such as Sewell, Thompsen, Huseyinthasphas been applied. The present
exposition is meant only as an introduction tortlethod and a readable full account of the
theory in the context of multiple loads can be fdumthe book by Huseyin (1975).

The present application of the perturbation procedsiused for tracing smooth equilibrium
paths. This means that bifurcation buckling is dediby considering an imperfect structural
system adding geometrical imperfections in all degrof freedom. The study of critical
points in general, as part of the study of singatdutions of the perturbation procedure, is
not addressed in the present work.

The perturbation method is a very systematic proceend it gives sets of linear equations to
be solved. The unknowns in the procedure are tieeofachange of the deflection parameters,
i.e. that is the first order rate of change, secami@r rate of change etc. of the deflection
parameters. The rate of change is defined witheidp some chosen perturbation parameter.
The clue in an automated calculation procedurieasthe perturbation parameter must be
chosen in such a way that it is always continuouslyeasing along the specified load path.
This is discussed in more detail below.

The rate of the deflection parameters or of angostate variable are called path derivatives
and as soon as these are known the incrementattefi from the known equilibrium point
to the next can be found using the power seriearesipn principle. In more standard
numerical schemes, such as Newton-Raphson, thenieeital deflections are directly the
unknowns in the procedure and not the rates oédidins. This is discussed more in detail
under Section 2.3.

The needed number of terms in a perturbation expamns a practical case will be an issue
for discussion. In the present work the expansesriot been carried out further than to the
second order which means that the curvature oédjudibrium path is evaluated. This is the
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level of expansion used in the Koiter theory, aygkther with sufficiently small increments
of the perturbation parameter, this will be a reasbe approximation. Compared to standard
incremental schemes, the second order perturbexipansion can be interpreted as a
substitute for the equilibrium control used in iteshal Newton-Raphson iterations on the
total equilibrium equations.

The selection of the perturbation parameters i @atsimportant issue in the context of
solution algorithms. The most convenient choice belto select a pure load or displacement
control, as this will give the simplest sets of atipns. However, to choose load or
displacement control in an actual case needs somidigd knowledge of the expected non-
linear response of the problem in hand.

The normal conception of load or displacement adigrthat the respective parameter is used
as a control variable. This means, say for loadrogrthat the loads are incremented along
the prescribed load path and the correspondingadedhs are calculated. However, in a
perturbation approach the chosen control variaéle o be continuously increasing along
the prescribed load path. Obviously, say for a bngkproblem, the load is not a proper
control parameter since the load will reach a maxmvalue for then to unload. This will
give a singular case at the maximum load pointlaad control will not work for the purpose
of identifying the buckling load. Exactly the saarguments can be followed in the case of
displacement control. Displacement control willmaily succeed in identifying the buckling
load, but may fail to trace the subsequent equilibrpath due to possible snap back
deflections (deflections have to be reduced in or@eachieve equilibrium).

To overcome such problems the direct arc lengtthatkis introduced. The arc length
method, in the context of the perturbation procedgives large flexibility as it can be
combined with any prescribed path in the load spaaisplacement space. For example in
standard buckling analysis it will be normal to @pea set of simultaneously acting loads.
The arc length method then follows the specifiattean load space until it ends up at this
specified load point. If the load point is outsttle buckling boundary the procedure identifies
the point along the specified load path that cpwasds to buckling and it will try to reach the
specified load point in an advanced postbucklet stat exists.

For the purpose of illustrating some of the proldémbe encountered in the solution of a
non-linear stability problem the pure load or dig@ment control cases are presented in
Section 2.2. This description is meant as an infctdn to the perturbation procedure and it
shows how the load or displacement variables gaéféicient perturbation parameters. The
equations up to second order are derived whichiges\the solution of the corresponding
path derivatives. These path derivatives, valichfiottiple loads are informing about the local
shape of the equilibrium surfaces in all directiansund any specified point. These multiple
directional path derivatives are interesting inskase that they assess the rate of growth of
each deflection coefficient gith respect to a unit change of the differentimarhey are

used as parameters in the assessment of the iogtasigfness coefficients as explained more
in detail in Chapter 3.

In Section 2.3 the multiple directional path detivas are derived in the context of the
multidimensional arc length concept. This is theagal approach, which have to be used
unless a load or displacement control is known@ipo give a stable solution for the
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problem in hand. Since the independent perturbgtémameters are chosen as the arc length
coordinates along the equilibrium surface, theesponding multiple directional path
derivatives may have little direct interest as they hard to connect to any physical
understanding. However, they can be used as pagesifet assessing the more familiar
directional stiffness coefficients of the structutas worth noting that the first order
directional stiffness coefficients are the sam#&hagangent stiffness matrix coefficients used
in traditional Newton-Raphson type of incrementdlison procedures.

For multiple loads it is necessary to define a Ipath in load space or displacement space,
whichever is the most relevant for the problemandh This is explained in Section 2.4 and it
is shown how the problem will be reduced from atipld load case to a single load case as
soon as the path in load or displacement spagesfed. Further, based on the direct arc
length concept and a single load parameter, liagaations for the first order and second
order path directed derivatives are derived. Thisiples the necessary information for
finding the displaced structural configuration tashanges along the prescribed load path.

Section 2.5 gives an overview of the total caléataprocedure seen as an incremental
scheme for tracing non-linear equilibrium pathdwite purpose of both identifying
maximum load bearing capacity and as a procedurasi&essing the current instaneous
stiffness properties along the equilibrium path.

The general problem to be considered is stifferiatep subjected to a combination of
multiple loads, Fig.1. Simultaneously acting loadsa stiffened plate element in a marine
structure are:

i) axial compression/tension (in direction of &ifers)

i) transverse compression/tension (in directiommad to stiffeners)
iii) in-plane moment at edges x const.

iv) in-plane moment at edges X const.

V) in-plane shear loads

Vi) lateral pressure, acting normal to the platnpl

Fig.1 Multiple loads acting on a stiffened plate
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Several symbols are adopted that, for convenieareegiven a rather generalised meaning. It
is helpful to define the following ones a priori:

g withi =1,2,..., M, represents the displacedfiguration of the structure and M is the
total degrees of freedom. Thergpresent the displacement vector.

Ne Wwitha =1,2,..., K, represents physical loads (axiah$verse, shear, lateral pressure
etc.).

Ay, witha =1,2,...,K, represents in-plane end-shortenirigdate edges.

All of these parameters will normally be given ar@imensional form in specific examples.

2.2 Load or displacement control

For the purpose of illustrating important aspelsts heed to be accounted for in a general
solution strategy, it is useful to start with aadission of the standard load control and
displacement control cases.

For the multiply loaded stiffened plate problemhit independent loads, acting, the
structural theory provides M equilibrium equatiombese equations may have been obtained
by finite element discretizations, Rayleigh-Ritzleique or any other preferred procedure for
transforming the continuos structural problem saditsctretized counterpart. The resulting
equilibrium equations may be written in the follogiform

f.@;,A,)=0 ihbj=12,...M;a=1.2,...K 1)

The solution of eq.(1) is written in parametricrfoas
g, =a(A,) =12,...,M; a=12,.,K (2)

If a solution in the total form of eq.(2) was aaaile it would imply that, for a set of
prescribed loads, the deflected configuration efdtructure is directly assessed and thus it
follows that stress and strains in any point indtracture as function of loads could be
calculated. However, such closed form solutionsnateavailable in general and it is
necessary to resort to a numerical solution styateg

In the form of eq.(2), the loads, are used as the control parameters, i.e. the l@dshosen
as the perturbation parameters. Eq.(2) may be &g as an equilibrium surface in the
M+K dimensional space as illustrated in Fig.2. Tokitson expanded around a known point
Is (representing any loaded state or the unloadée)) siacomes

a 1 a
0 =0+ 0, (Ao = Aa) #5807 (Ao = Ag )N = Ags) (3)

A Greek superscript on themprameters indicates partial differentiation wigspect to the
corresponding load variable. A subscript s indisdlet the variable is evaluated at an
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arbitrarily equilibrium states] A necessary requirement for the path derivatiyesnd ¢

etc. to have a unique solution is that the fun&j@g.(2), are single valued around any point
Is on the equilibrium surfaces, Fig.2. The left skatckig.2 indicates a single valued
function, which implies that the load parameter work satisfactory as perturbation
parameters. A practical example of such a caseb@ifin unstiffened plate subjected to a
normal pressure. The right sketch in Fig.2 indicatesultiply valued function, which implies
that the load parameters could not be used asrpation parameters. This represents the
general case of a buckling problem in which thel$ogeach some upper limit load (stability
or buckling boundary) for then to unload.

qi

SINGLE VALUED MULTIPLE VALUED

Fig. 2 Equilibrium surface under multiple loaflg , /\g etc.

Under load control, snap buckling to an advancablstequilibrium state, associated with a
large change in deflected form, may take place. 3ihép will be dynamic and may be very
violent. The simplest case illustrating such behawis the classical arc problem given in
standard textbooks in structural mechanics.

Alternatively, instead of loads, it would be natumachoose the in-plane edge displacements
(end-shorteningA, ) as the control parameters. The equilibrium d@quoatare then
transformed to

f.@;,4,)=0 i,j=1,2,...M:a=1,2,..K (4)

with a solution in the parametric form as
a =9 (A,) (5)

This solution may be interpreted as an equilibriumiage in the space as illustrated in Fig.2
but now with the displacemems as parameters on the horizontal axes insteacedb#us

Nq. In particular the right sketch in Fig.2 can bediss illustration of any general situation of
multiple valued equilibrium surface since the hontal axes can be interpreted as loads,
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displacements or in principle any chosen set ofrcbparameters. The solution of eq.(5)
expanded around a known statbdcomes

a 1 a
Qi =Q;s TQ; (Aa _Aa,s)+5qi B(Aa _Aa,s)(AB _Aﬁs)""” (6)

In order to find the path derivatives, which is ndefined as the rate of change with respect
to the displacements, and not the load4,, eq.(5) is substituted back into eq.(4) to give

f,(@,A,),A,)=0 i j=1,2,...,M; a=12,.,K ©)

Partial differentiation of eq.(7) with respect toyad\, gives the following set of linear
equations in terms of the unknown first order phivativesq,”

f-jqja +fia :O ia J = 1121---aM; a = 1,2,...,K (8)

The fij is used as a symbol for the partial differentiatid the function;fwith respect to any

displacement parameteg gndf,” is used a symbol for the partial differentiatidrttee
function { with respect to any control parameftgr(or Ay ).

Similarly, second order differentiation of eq.(7yep the following set of linear equations in
terms of the unknown second order path derivatiy&s

f g%’ +f'q" +1qf +1, =0 i,j,k=12,..M; af =12,...K(9)

The solution of these sets of linear equationseiims of the first order path derivativgs',

second order path derivati\xxﬁgB etc., gives parameters that describe the local tirthe
equilibrium surface in all directions in the closgeinity of an arbitrary state.I The actual
state enters the problem through the load dependefiicientsf,’, f.“ etc. since these
coefficients are functions of the actugl andA values representative for a statelh order

to determine the actual states of interest in atjwa case, the loading path in load or
displacement space has to be specified. A fixed pzh will in practice always start from the
unloaded state and this implies that the traveieralong the equilibrium surfaces may take
forms as illustrated schematically in Fig.2. Thecsipaation of arbitrarily load paths is
discussed more in detail in Section 2.4.

From this presentation it is illustrated that neitthe loads nor the displacements are suited as
control parameters due to the possibility of a mpldtvalued equilibrium surface which will

give snap buckling problems. Load or displacementrobmay be used in special cases for
which there is no chance of snap buckling. Laterasgure loads on a flat unstiffened plate is
such a case. Thus, in the general case alternaétieods are needed and this leads to the
introduction of the arc length concept described meSection 2.3.
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2.3 Direct arc length method

In view of the problems identified above, it is aloys that a very general strategy is needed to
trace solutions in the general case of severallameously acting physical loads. One of the
pioneers in the development of the perturbatiorhowivas Sewell. He published a series of
papers in the late sixties and the beginning ostheenties treating all aspects of postbuckling
behaviour of general non-linear systems. His apgrasrather mathematical and beyond the
level of the present application. However, he wasrg the first to apply a definition of the
independent perturbation parameter as a ray itotttedeflection space with a fixed

direction, Sewell(1968). The most convenient dicfor obtaining solutions was proposed

to be the direction of the tangent to the equilibricurve. Thus Sewell used the same strategy
as proposed at later stage by Riks (1979). Riked #his approach the arc length method and
many researchers have applied this concept suatlgsafconnection with incremental
numerical Newton-Raphson type of procedures.

To our knowledge no one has applied the conceptcdeagth, within an incremental
perturbation scheme, for solution of stability desbs of structures. The purpose of such a
procedure is to trace equilibrium paths acrossneige equilibrium surface with folds and
limit points, and to assess the buckling boundddgsther with the instaneous stiffness
properties. Since the arc length method was figp@sed within the field of perturbation
methods of non-linear systems, it is pertinentydd use it within this field also in a setting
that can be a viewed as an engineering orientexbapip.

In a system with M independent deflection paranseteand K independent load parameters
Nq (or deflection parametefs, ) it is assumed that there may be defined K inddpet
perturbation parameteng such that the solution to eq.(1) is always singlieied and can be
expressed in the parametric form

d =9d;(Ng)

i=12,..M;, apBy=12..,K 10
Ag = Ag(n) oy o)

Eq.(10) expanded around an arbitrary equilibriurtestayives

a 1 a
A, =0y +0," (Ne ~Nas) * 0 P(Ne =Nas)(Np —Ngs) +-+
' (11)
a 1 a
Ng =Ngs + A" (N, -na5)+5/\s '(Ng —Ngs)(N, —Ny) +--

As before, a Greek superscrgpon the gand/g indicates partial differentiation with respect
to the corresponding perturbation paramgteetc. A subscript s indicates that the parameter
is evaluated at state Theny parameters are to be chosen such as to ensule wahged
solutions around the known point From the general shape of the equilibrium sudaeith
folds etc., it will be appropriate to adopt a mditnensional arc length concept whererpe
parameters are curvilinear coordinates followirgy¢hrved equilibrium surface. We can then
imagine that the concept of using the curvilinemordinates as control parameters will map
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the folded multiple valued surface of Fig.2 (rigketch) to the left sketch with the curvilinear
coordinates)1, N2, ... etc. being stretched out as rectangular coate

di
EQUILIBRIUM SURFACE TANGENT PLANE

-
—

H e e

DEFLECTION

BUCKLING BOUNDARY
2, =0

\

Fig.3 Curvilinear coordinate®, following the equilibrium surface

Substituting the parametric solution of eq.(10piag.(1) gives

f,(@;(Ng),Ag(Ny)) =0 hbj=12,...M;0,=1,2,..K (12)
Differentiate eq.(12) once with respect to opegives

flg, +f°A," =0 i,j=1,2,...Ma,B,=1.2,..,K (13)

Here is per definitiorf,’ =of, /aq,, f," =0f, /an,, q," =dq, /on, andA," =aA,/an,.
Eq.(13) represent M*K linear equations in the tMaK+K*K unknowns qj“ ,/\B“ . Thus

there is K*K equations lacking in order to be atalesolve this first order problem. These
equations are provided through the definition ef khindependent perturbation parameters.

The definition of a set of efficient general peb@tion parameters is very important in order
to pass limit points and folds on the equilibriuanface. An intuitive approach will be to use
a set of parameters that describe the tangentedtdins to the equilibrium surface in a
known point L. Then by expanding the solution to the first, s®cor higher degree with the
tangential directions as coordinates and by spegfgmall increments along these tangents,
the neighbouring equilibrium points can be candaefl. The tangents can be considered as
following a set of curvilinear coordinatgg at k, Fig.3. This approach is a generalisation of
the arc length concept introduced by Sewell (1968)in the field of perturbation theory, as
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it considers K independent load parameters instéade. When a load path in load space or
displacement space is defined the multiple loadifipation resembles the single load case as
explained more in detail in Section 2.4.

Let us assume that a set of K coordinag$ollows the equilibrium surface. From differential
geometry (e.g. Wempner, 1973) this is the sameeagng eq.(10) as a K dimensional
surface in the M+K dimensional rectangular spadeiims of a set of K curvilinear
coordinates)q, Fig.3. Then we implicitly assume the existencéuottions in the form

d =q; (N, N50eesNk)

i=1,2,..M; a,B,v=12,.,K 14
N = NNy Nz0enNi) B.y (14)

Assuming now that one of the curvilinear coordinasgn,, represent a continuous curve
along the equilibrium surface with start in origMoreover, assuming that the coordinate
along this curve describes the arc length acrassdilibrium surface, we know that the first
order rate of change of the position vector (mea$inom origin to a pointlon the surface)
along this curve is a unit tangent vector, gaffrom mathematics we have that the tangential
ray in this point can be expressed as

(N, =Ny = Cil(qi Qi)+ Cgl(/\s —Ngs) (15)

Here (n, —n ) are the incremental coordinate in the directiotheftangent; and (g, —q,)
and (A, —/\g) represent incremental coordinates along the reilspaeictangular axes. The

cil and CB1 coefficients are the corresponding direction cesibetween the unit tangent

and the respective rectangular axes. Since thetidinal cosines are the same as the first
order path derivatives of a parametric represeamtaif a curve in space, it is a very intuitive
approach to define the tangential direction toHseihdependent coordinate.

From this it follows that a multidimensional setio€remental coordinates along the
corresponding tangential direction is defined as

r]o( _naszqia(qi _qis)+/\ﬁa(/\[3_/\[3,s) (16)
where we have used the following notation

C_or =q.°
.a _q| ) (17)
Cs =N

By requiring additionally that the curvilinear coaratesn, constitutes an orthogonal set, the
first order differentiation of eq.(16), with respés someny, gives the following set of

equations

a,°a,’ "‘/\psm/\psy =3 (18)
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The & is the Kronecker delta and eq.(18) represent afs&t*K second order equations in
the first order path derivatives. Together with(£8) a strategy for finding the solution can be
formulated. This is explained in more detail in t8et 2.4 for the case of a single load defined
as a load path in load or displacement space.

At this stage, it is pertinent to comment on thistforder perturbation problem derived here,
as compared to the Riks(1979) arc length method.Riks application was originally
formulated in terms of only one load parameter,/Sagnd for the purpose of comparison,
eq.(13) and eq.(18) will then be simplified to

flg, +f"A=0 (19a)
.4, +(A)? =1 (19D)

A dot over the parameter symbolise the path devieatith respect tay, i.e. §, =0q, /dn,
A =0A/0n andfi’\ =0f, /0N (n=s = arc length in Riks notation). Eq.(19) caséis M
linear equations and one second order equatidreinmknownsj, and A, and are the same

as given by Riks(1979). In the Riks method it isussed that these first order rates have been
computed and they are used as fixed numbers iginigée load version of eq.(16), which can
be written as

An =4, +AM (20)

In eq.(20) the following incremental parametersmisoduced;An =n-n ,
Ag; = (g; —d;s)and AA = (A=A ). For a single load parameter the total equilibrium
equations, eq.(1), are rewritten as

f,(@, +Ag,,A+AA) =0 (21)

In the Riks method\n is specified as a small number. Assuming that 8yi€valid for this
small value ofAn, eq.(20) together with eq.(21) is solved usingeavddn-Raphson iteration
procedure finding the incremental propertlsg and AA . This is what is often referred to as
the equilibrium control procedure.

By using eq.(20) an approximation is introducethim Riks procedure valid for small values
of the incremental arc length paramefgy, and special techniques are applied in order to

obtain valid solutions in the iterative procedurhis is not discussed further herein.

However, the present approach is to use the patiorbmethod in a straightforward
incremental scheme. This means that the path digawill be used directly for finding the
next equilibrium state and the use of eq.(20),2d9.4nd Newton-Raphson iterations on the
total equilibrium equations are abonded.
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The perturbation procedure is based on findinguesidg directly the path derivatives (rates)
evaluated in a known state. For the present parpnsexpansion to second order is explored,
as this is consistent with the Koiter theory. Efj)(dpecialises for a single load parameter to

. 1.
Ag; =g,An +5Qi(An)2 +.
L (22)
AN = AAn +5/"\(An)2 +..

Thus, knowing the path derivatives in a state ntbve state can be found by specifying
sufficiently small values of the arc length paraenéin . Moreover, these path derivatives are

exact in a known point and the approximation ingheurbation procedure is then related to
the problem of how may terms in the expansion ieads to be included. In the present
context only second order terms are used combingdswfficiently small values of the arc
length parametefAn . The second order term corresponds then, in @semthe equilibrium

control in the Riks method.

The formulation of the second order problem isiedrout in the following for a system of
multiple loads.

Further by differentiation of eq.(13 ) once morees with respect to sonmg gives

fraa" +flg®

_ A i=1,2,...M; o,B,yvA=12,..,K (23)
+EP0 AT AN +EPAY =0

Similarly, by differentiation of eq.(18 ) once mayies with respect to sonmg gives
00" 00" +AFA" +ASAT =0 (24)

Eq.(23) and eq.(24) constitutes a set of K*K*M+K#Klinear equations in the same number
of unknowns for finding the second order path danxes. By utilising the symmetry
properties of the second order path derivati\(@saqd/\gyA iny andA, the number of
unknowns and the corresponding equations will beed to (1/2)*(K+K)(M+K).

This sequence of differentiation can be carriedfiexiher to any order wanted. For practical
purposes the necessity for higher order path dérasis not obvious as the degree of
expansion is strongly linked to the chosen incremse® of the control parameter. In practical
implementation, the increment size can be variedragtion of degree of path complexity,
that is as function of the curvature of the pathapplying a second order expansion
approach, combined with some type of curvature wiéget increment control, equilibrium
paths can be followed. However, the general topgetecting the optimum solution strategy
will be strongly problem dependent and in the pmeseport this is not discussed in any
detail.
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2.4  Loading sequences and definition of buckling

In buckling calculations the main objective is demtify the maximum values of the
simultaneously acting physical loaflg, /A2, As.... etc. that the structure may carry. For
multiply acting loads this means it is necessarngémtify abuckling (stability) boundary
(surface) in the load space. Thigckling boundary can be described by an equation in the
form

Qu= gJ(/\l, No, N3 ) =0 (25)

Loads outside this surface may be possible, bytwhknormally represent an advanced
postbuckled or collapsed state that is of seconidapprtance in buckling assessments. Thus,
it is of main importance to identify the bucklingundary g = 0 that represents the critical
combination of loads at which the structure willlapse under the condition of load control,
see Fig.3 and Fig.4.

BUCKLING BOUNDARY A
_ =
gu=0

LOAD
-

BUCKLING BOUNDARY
gu=0

N\ \ LOAD PATHS

X‘OAD A,

Fig. 4 Buckling boundary and load paths in loadcepa

In practice, when a buckling calculation is to beried out, it is necessary to relate the loads
to each other in some way, i.e. to decide on thd [mth in load space, Fig.4. The definition
of a load path in load space is done by specifioag functions in the form

Ny =N (1) (26)

In eq.(26), t is the pseudo time parameter whiaefned as taking positively increasing
values along the load path and the load functioeslavays defined as single valued
functions of t. This is a parametric representatibthe load path in load space and the
multiple load problem is transformed to a singleapaeter problem.

An automated calculation procedure will then deteerat which point along the defined load
path that corresponds to collapse/buckling of thecture. For combined loads this means
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finding at which point the defined load path cresesbuckling boundary in load space as
indicated in Fig.4. The present perturbation proceddentifies this cross point as the
buckling point under load control. In the right rheketch in Fig.4 two different load paths is
crossing at the same point on the buckling bound&ris illustrates that elastic material
behaviour leads to a unique stability boundary pashelent of the load path.

The present perturbation procedure with arc leogtttrol is capable of tracing the
equilibrium curve beyond the buckling point. Indiospace, immediate after the buckling
boundary is reached, the equilibrium path will tzeéd in the direction of the tangent to the
path at the buckling boundary, though in the rex@idirection. The equilibrium path beyond
the buckling boundary is called the postbucklinggostcollapse) curve and represents
descending loads close to the buckling boundarg.dMoading may be sudden or more
gradual depending on the structural problem andlyBkis part of the equilibrium surface
represent unstable equilibrium states in caseaaf twntrol. However, in an advanced
deflected state the loads may start to increase mare and even exceed the first stability
boundary (e.g., as in case of snap-through of ldssical shallow arc problem).

Thus, even though stable equilibrium states in scases can be found outside the first
buckling boundary, such states are associatedquite large displacements and they will
normally have limited practical interest for desmirposes.

For the case of a single load paraméteit is possible to visualize the control parameters
the arc length along the equilibrium curve in theq space, Fig.5a. Thus, we have a unique
direction for a positive loading and the maximunsgible value (locally) foA is identified

as the load\, corresponding to collapse under load control.

q. qi qi = qi (n OL)
! EQUILIBRIUM
gl ;1 SURFACE
z
S
3 BUCKLING
- BOUNDARY
A A, A A=0
. LOAD
A=0
n BUCKLING
BUCKLING
UNDER DEAD LOADS
a) SINGLE LOAD b) MULTIPLE LOADS

Fig.5 Equilibrium surfaces under multiple loads

For a set of multiple independent loads, the deguiim surface will have folds and buckling
under load control will take place for prescribedd paths that crosses these folds, Fig.5b or
Fig.3. Viewed in the load spac&( - /A\g), the edges of the folded equilibrium surface \él
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mapped as thieuckling boundary. In the tension dominated regions no buckling laaumn
exists.

In order to reach the buckling boundary, the loathunder multiple loads has to be
specified. The most general case will be to prescai continuous, curved load path as given
by eq.(26). In practise a continuous load path bellapproximated by a set of subsequent
linear loading segments. A point m in the load spgagiven the notation

(AL, Azyees AN m=12,...L (27)

By letting the number of linear piecewise load gadbproach a high number £ [0) any
continuous, arbitrary load path can be specified.

In an incremental perturbation scheme, each litesd path sequence can be traced by the
use of a single load multipliefy. This parameter is assigned values in the ranhd&ween
any state m and m + 1, Fig.5. The index notatioh,and |+, etc. should not be confused
with the state indication of;lls+; etc. The m index is used for states along theeprese
linear prescribed load path, angdis any state on the equilibrium surface. In othverds,
along a prescribed load path in load space, therenany states between statgnland 1.

A state |, may be defined outside the buckling boundary andnay be outside the
equilibrium surface in general.

Ap
— ] 4
/
/
PIECEWISE /
LINEAR m+1 BUCKLING
LOAD I
PATH
A
m BUCKLING
CONTINUOUS BOUNDARY, g, =0
LOAD PATH ——
IS
Aa
PROPORTIONAL
LOAD PATH

Fig.6 Piecewise linear loading sequence in loadespa

The definition ofA as the single load multiplier during a generatéinstep in the specified
load path follows from
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N =N F AN = N i)

/\2 =/\2,m +/\(/\2m+1_/\2m) (28)

/\K = /\K,m +/\(/\K,m+l _/\Km)

Eq.(28) defines a piecewise proportional loadinip plarough space, i.e. féx = 0 the loads
correspond to state m, while by linearly scalingp unity, state m+1 is reached. This
procedure will be followed sequentially from thdaaded state to the final state defined.

With this definition of loading sequence under nplét loads, the equilibrium equations,
ed.(1), can be written as

fi (Qj1/\a,m + /\(/\ /\a,m )) = O (29)

am+l
whereA\ is the single load multiplier anflq m and/Aq m+1 are considered to be fixed
parameters for the actual loading segment to loedraln each linear load sequence the
solution may then be written as a function of @yk&rparameten as

a =g (n) (30)
A =NA(n)
This solution expanded aroundyives
. 1. 2
i :qis+qi(ﬂ—ﬂs)+5qi(ﬂ—ﬂs) e
' (31)

. 1 ..
A=A FAO=N) + 2 R0+

A single dot over the parameter symbolises thé dirder derivative with respect tpas
explained before, two dots over the parameters eligds second order derivative with
respect ta) etc.

In order to provide the sufficient number of eqaas, the perturbation parametghas to be
defined. As in Section 2.3 the arc length concepidopted and eq.(16), is for the single load
case, simplified to

N-n, =4 (G ~a;s) AN -A,) (32)
Together with the equilibrium equations, i.e. eg)(2his definition of the perturbation

parameter gives a sufficient set of equations faroper formulation of the problem. The
unknowns in the problem are the path derivativethefdeflection parameters ge.
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(oo PURPRINo |
.Cll 7q27 ’qM (33)

and the path derivatives of the single load muéiph, i.e.
A
A (34)

The calculation of the change of each load compiofigalong the load path follows from
the expansion

. 1 ..
Acx :/\as+/\a(n_n5)+5/\a(n_ns)2+”' (35)

The path derivatives of each load component follbbas eq.(28), i.e.

/\a = /\(/\a,m+1 _/\cx,m)
/“\cx = /“\(/\or,m+1 _/\cx,m) (36)

Having provided the necessary non-linear algel@au@tions, i.e. eq.(29) and eq.(32), the
perturbation procedure will generate a sequenegjations which solved gives the path
derivatives in state.l The following formulation is a specialisationtbé multiple load
parameter case presented in Section 2.3.

The first order partial differentiation of eq.(2&)d eq.(32) with respect tpgives

flg, +f"A=0 ij=1,...M (37a)
q,g, +A* =1 ij=1,....M (37b)

This gives M linear and one second order equatidhe M+1 unknowns. They are the single
load version of the multiple load equations aswéetin Section 2.3 and as discussed in
connection with the Riks method. Eq.(37b) is a sdaarder equation and thus two solutions
of the equations are possible. A strategy for $ielg@¢he relevant solution is needed and is
explained in the following.

A column solution matrix for state ik assumed in the form
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F AT
d,
x=|q, (38)
[Gu

First, the linear set of equations in eq.(37) asereaged to the following format

frof2 17 £,
f,0 f,° f," | @ =—5AA (39)
R AT
or in the compact form as
fg=-f"A (40)
where per definition
frfr f," d, f,
f:f; f,2 o fM q:qz M:f¥ @1)
wlfj fo e ¥ f]

a=| A (42)

= —f (43)
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The solution of eq.(40) requires a non-singularrmdt, which is always satisfied except at
critical points. In an incremental procedure thdrird is never evaluated precisely at a
critical point and thus the case of singular sohsiis avoided. However, in order to have a
complete numerical method, critical points showdddentified as part of an automated
procedure, but this topic is not pursued in thporée

By substituting eq.(42) into the second equatioaqr{37) two possible solutions for tlke
are obtained. They are denoted by as

x, =|d, A, (44a)

and

x_=|d, |A (44b)

where

A, = L (44c)
eI+ (d7 4, 4o v, )

The dconstants are defined in eq.(43).

Obviously eq.(44) provides two solutions with tlaene numerical value but with opposite
signs. In the M+1 dimensional space, spanned by thed/\, the different solutions will
both correspond to unit tangent vectors along thalierium curve. One unit tangent will be
in the direction of increasing arc lengjtand the other will be in the opposite directioheT
solution of interest is corresponding to the cammincrease of the arc length as this
describes the progress along the specified lodd pat

Which solution that corresponds to the continuogsdase of the arc length paramegewill
depend on the actual state along the equilibriutih. faypically, the positive root is the

correct in the origin (zero loads). The positivetrwill continue to be the correct until a point
is reached where the first order rate of the lca@dumeter becomes zero. This will be at the
buckling point (singular point), or more specifigaht the point where the load path intersects
the buckling boundary. Beyond this point the negatoot becomes the relevant choice, since
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this describes progress along the equilibrium serfén other words, wheA = 0 is found
along the prescribed load path, the buckling penter combined loads are reached.

In an automated calculation procedure the cor@atisn needs to be picked up at each state
evaluated. For this purpose a maximum smoothnaksspphy can be used. The maximum
smoothness of the equilibrium path can be expresselde minimum angle between
neighboring solution tangent vectors, say betwherdirection tangent vector in the previous
known stated; and the current ktate. Mathematically a maximum smoothness ooitecan

be formulated as follows.

The first order solution, eq.(37), can be writteragtangent vectdrto the equilibrium path in
the solution space. It is defined as

t:/.\i/\+QIi1+QJZ+'“ +CM-M (45)

Thei are the unit vectors along the respective axsslition space andis, eq.(36b), the

unit tangent vector. In order to provide a smoahildrium curve the angle between two
successive tangent vectors, say between the stedad L should be small. This can be
formulated by calculating the scalar product betwte corresponding tangent vectors. The
necessary condition for a smooth equilibrium patthat the scalar product is larger than
zero. This corresponds to an angle between sugeessigent vectors less than 90 degrees.
This is expressed as

qis—lqis + /\s—l/\s > 0 (46)

In eq.(46) summation is not carried out over s 3imall s as subscript is a state indicator
only.

The criterion of eq.(46) is the same as formuldg&toll(1994). The selection of the relevant
solution is to decide whether

A, >0 (47a)
or
A_<0 (47b)

Physically the positive solution corresponds ttedesbefore buckling and the negative root
corresponds to a state beyond buckling (i.e. aftecal maxima/minima ).

The perturbation procedure is very systematic hecekpansion can be carried on to any
order required. In an incremental perturbation sehehe second order expansion is
necessary as a compensation for the neglectinguititrium corrections. Second order
expansion is the level used in the classical Kditeory and it is considered to be an
appropriate approximation as long as sufficienthal increments along the equilibrium
curve is prescribed.
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Differentiation of eq.(37) with respect tpgives

f*a.q, +2f " A +1 g +£ A+ A =0 (48a)
4.4, + AR =0 (480)

Eq.(48) are N+1 linear equations in N+1 unknowndifaling the second order path
derivativesd;, A .

With the path derivativeq,, g, ...,A\,\\,..known at states) the new stateJ; is found from

ed.(31) by prescribing the incremental arc lengtfameteAn= (n-ns) as a sufficiently small
value.

2.5 Summary - incremental perturbation scheme

Chapter 2 gives a description of the perturbati@thmd as a tool for solving non-linear
structural problems with special emphasis on buagkéitrength assessment. The present
application is within the solution of non-lineagabraic equations, which typically emerge, in
structural theories formulated by using finite edgrnor Rayleigh-Ritz discretizations of the
displacement field. The most known applicationhaf perturbation method is the theory
developed by Koiter, Sewell, Thompson and othershé literature the asymptotic Koiter
theory has been used for detailed studies of pokling paths through critical points.
However, the present approach is to apply the getion method in an incremental scheme.
This means that the equilibrium curve of an impar&ructure is traced by stepping along the
equilibrium path in small increments as is dongadlitional incremental numerical schemes
typically used in commercial finite element proggamy using the perturbation method up to
a second order expansion around a known state;ahibe an alternative to the traditional
approach using Newton-Raphson iterations for dayuilm control.

For multiple acting loads it is shown how the pdraiion procedure systematically provides
parameters that describes the local shape of thélegm surface in all directions. These
parameters are not used in the solution processtljiy but are evaluated as a post-calculation
feature at each known state with the purpose ohatihg the current stiffness properties in

all external load directions. The first order sté@fs coefficients provided by the perturbation
method is the same as the coefficients in themestas tangent stiffness matrix used in
traditional finite element analyses. This applicatis more explored in Chapter 3.

In order to obtain solutions using the perturbatieethod, it is important to choose effective
perturbation parameters. Section 2.2 describestémelard load or displacement control
methods and the problems connected to their apiolicare identified. In an automated
incremental procedure the perturbation parametetdhe a continuously increasing variable
along the specified load path. Obviously, for buaklproblems applying a load control, the
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load will not be a proper parameter, while a disptaent parameter may serve the purpose.
Thus, from a general point of view, an alternativéoad or displacement control is needed
and the direct arc length concept is adopted.

The direct arc length method is described for mldtloads in Section 2.3 and it is specialised
for a single load parameter in Section 2.4. By cimagpthe arc length as perturbation
parameter the problem of passing limit points Haeen solved. The present direct arc length
method is discussed in relation to the arc lengtthod first proposed by Riks(1979) within
numerical analysis. It is identified that the fiostler perturbation solution is the same as the
Riks method, but the application of the solutionhe present perturbation scheme is
different. The perturbation procedure proposed bhpmies the first order and second order
solution directly in order to obtain the next eduium state while the Riks method applies
the first order solution together with a Newton-Rsgn equilibrium control using the total
equilibrium equations.

The purpose of the present incremental perturbgtionedure is to trace a load path across
the equilibrium surface as schematically illustdate Fig.2. The load path will in a practical
case start in the origin of a rectangular coorairsgstem, which is normally defined to be an
unloaded state. For the sake of overview it magdmeenient to illustrate the incremental
perturbation procedure in a flow chart as giveRriomn7. The starting point in a calculation
loop is any known state &nd the calculation procedure can briefly be sunsed as follows.

1. A known equilibrium state is termegaind is located on the equilibrium surface. All
state variables are treated as constants in a gtaén

2. Calculate the first order and second ordesratehange of the deflections and loads
with respect to the chosen perturbation parameésgribing progress along the
specified load path. These rates of change aredfasimg sets of linear equations
derived from the perturbation procedure. For corere, the load-deflection curve
can be viewed as a parametric space curve in a Mri€nsional rectangular
coordinate system with the arc length along theeas the independent perturbation
parameter. The rates of change are calculated #@hsgquilibrium curve. Applying
the arc length concept, this means that the fadtrorate of change corresponds to the
tangential direction of the load-deflection curveldhe second order rate of change
corresponds to the curvature. Higher order pativaiéres beyond second order can
be derived but are not considered in this report.

3. Calculate the first order and second ordesratehange of the deflections and loads,
which describes the shape of the equilibrium serfadifferent directions. These
rates of change are found using sets of lineartemnsaderived from the perturbation
procedure and they can be used for assessing tlentatiffness properties of the
structure in the different load directions.

4. Calculate the new statgilalong the equilibrium curve, corresponding togpecified
load path in load or displacement space, usingjitsteorder and second order rates of
change of the deflections and loads as found m&té&ossible limit points and snap
buckling will be identified as cross-points betweka specified load path and the
buckling boundary.
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Fig. 7 Incremental perturbation scheme
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3. STIFFNESS AND FLEXIBILITY PROPERTIES

3.1 General

In Chapter 2 the perturbation procedure was desgrits a general method for tracing
equilibrium paths in the solution space spanneMbgdependent internal deflection
parameters;gand K independent external load parametgrsr alternatively K external
deflection parameteds,. By specifying a load path in load spage,(\,,...., Ak ), or
alternatively in deflection spacAq A,.... ,Ax), the perturbation method was discussed in
the context of tracing the equilibrium path in MeK dimensional space with the localisation
of the buckling boundary as the ultimate goal.

However, the stiffness properties of the struchaee not been considered in an explicit
manner so far and this item is explored in somaildietthe present chapter. By stiffness
properties are understood the change of an exteradicomponent per unit change of a
corresponding external deflection component. Iditi@nal linear analysis the stiffness matrix
relates the external loads to the correspondinigcteins. In non-linear analyses the tangent
stiffness matrix relates the incremental load$ieodorresponding incremental deflections.

In the following the stiffness evaluations is explt as a natural part of the incremental
perturbation procedure and it is shown how the ipielpath derivatives derived in Chapter 2
are used as parameters in the assessment offthessticoefficients. The stiffness estimates
can be considered as a post-calculation featung tise multiple path derivatives already
found as part of the solution process.

In this general introduction, stiffness coefficienip to second order are derived in order to
illustrate the general principle. However, in SextB.2 dealing with non-linear plate theory,
only first order stiffness coefficients are deriasithese represent the familiar tangent
stiffness matrix and can be related to a cleariphlanderstanding.

The most general way to describe the stiffnessgotgs of a non-linear structure is to assume

the existence of solutions relating the externatifoto the corresponding prescribed external
deflections, i.e.

Ay =N (DA, D) a=1,2,.,K (49)

or alternatively, the inverse form expressing te#lattions as functions of the external loads,
i.e.

A, =D (ALA o) a=12,..K (50)

Such solutions are normally not possible to deinvelosed form, but in an incremental
perturbation procedure, the expanded form of teesdions can be utilised.

Eq.(49) gives the loads as function of deflectiand is the natural form when a load path in
the deflection space is defined. Eq.(50) givedfections as function of external loads and
is the natural form when a load path in the loaatsgs defined.
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For illustration a case with displacement contsathosen. By expanding the load-deflection
form of eq.(49) the stiffness properties appeath@asoefficients in the series, i.e.

DAy = K DD, + K s AAAA S + - aBd=12,.,K (51)

where per definition
_ 0N,
“® " an
B
1 9N,
21 000N
L OAGON 5

K

aBd=1,2,.,K (52)

The symbolA (without subscript) indicates incremental progeyind eq.(51) gives a power
series approximation around a known stat&dg is the first order stiffness coefficients which
is the same as the tangent stiffness matrix intioadl finite element analysis.dgs is the
second order stiffness coefficients representiegctirvature of the load-deflection relation.
The expansion can be carried out further, butiatstage the higher order stiffness
coefficients are only of academic interest.

The basis for calculating the stiffness coefficeeatcording to the definition of eq.(52) is to
have compatibility conditions derived in an algebfarm, i.e. the external loads are
expressed as functions of the external deflectmsthe internal degrees of freedom.

For the case of displacement control, the compiyilwionditions will be non-linear functions
in the form

Ny =Ug(Bg,05) (53)
As an example, in Chapter 4 the functidns are derived for the case of biaxial loads of
unstiffened plates.

In linear analysis eq.(53) resembles eq.(49) aaddttution will take the linearized form

Ny =Kogh, aB=12,.,K (54)

a

ap
where Ky are the elements in the linear stiffness matrrxveée from the assumption of linear
elastic material behaviour. For displacement consalutions in the form of eq.(5) is
substituted into eq.(53) to give

No = (85,0 (8p)) (55)

By using eq.(52) and differentiating eq.(55) ondthwespect to angg it follows that
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K(x[?, = aDq + al:'a aql 0,8,6: 1,2,.,K (56)
0A;  0q; 04,

Similarly, using the definition of eq.(52) and @iféntiating eq.(56) with respect to alyit
follows that

0°0, . 0°0, aq,
oo = onon. T an.0q oA
gYEs gYMi 5
azma + azma aqi aqi +6Da azqi
00,005 0q,0q; 0A;" 0A;  0q; 0A;0A;

apd=1,2,..K (57)

+(

These derivations shows that the first order stgBicoefficients kg can be calculated for a
known statedsince they depend solely on the multiple pathvagities dq; / 0A, calculated in

case of displacement control, and the derivativéseoknown compatibility function§], .

Further, the second order stiffness coefficienisedd on both the first order path derivatives
dq; /0A, and second order path derivativi¥sy; / 0A;0A, and the derivatives of the known

compatibility functions[], .

In the case of load control, the basis for the aga will be eq.(50) and flexibility
coefficients instead of stiffness coefficients deeived directly. The derivation of the
flexibility coefficients will follow exactly the sae procedure as described above, with
ed.(53) inverted giving displacements as functioineads as the basis, i.e.

A, =0, (Ag,0) (58)

Since the expression for the flexibility coefficierare equivalent to the stiffness coefficients
with the displacemenis, substituted for the loads, and vice a versa, these are not
explicitly shown.

As discussed previously, neither direct applicabbfoad nor displacement control will be an
effective strategy for solving buckling problemsg@neral and the direct arc length method

will be preferred. When applying the arc length moet as the numerical method, the load or
displacement control is to be understood solelylasther the specified load history is given

in load or displacement space.

In order to avoid too much duplication, the illaton of this general case, is left to Section
3.4 where the stiffness properties of flat platetires are described.
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3.2 In-plane stiffness properties of flat plates

In analysing a structure of which a stiffened platéhe basic unit, it is of practical value to
assess the in-plane stiffness of stiffened plamehts, which are subjected to combined in-
plane loads and lateral pressure from sea or catgppurpose may be to illustrate the
deviation from the normal assumption of linear &tasehavior described by Hooke’s law,
which are the basic prerequisite used in traditiGftaanalyses.

The instantaneous stiffness properties in the shreetions as defined by the directions of
the external loads are interesting from the poini@w of structural redundancy and
redistribution of forces. These stiffness (or flikiy) coefficients can be evaluated to any
order, however, in this chapter the derivationasshown further than to the first order. This
corresponds to the familiar tangent stiffness pribgein all load directions, which are
properties that have a clear physical interpratediod which can be seen as representing the
instantaneous linearized stiffness behaviour.

In Chapter 2 the multiple dimensional path derixedi describing the local form of the
equilibrium surface in all directions, were deriv@these path derivatives are necessary
parameters in the assessment of the stiffnessicieets as will be shown in this chapter. In
order to be complete, both load control and dispiant control are considered first as
separate cases consistent with the treatment to8et2. For the general case of load or
displacement control of the load history in combimrawith arc length control for numerical
solutions, the derivation of stiffness coefficieate shown in Section 3.4.4.

A stiffened plate is in principle a two dimensios#iucture in the 3 X plane. The boundary
of the plate lies in a flat plane and it is assurtied the plate edges remain straight during
deformation. From an overall point of view thefstifed plate may be seen as an anisotropic
macro material with general non-linear stress4straeiations. This means that the
geometrically non-linear behaviour of the entiratgfield is included in the macro material
format. From a mathematical point of view this me#rat the internal degrees of freedom, q
are hidden in the macro format (i.e. hidden ingtiéness or flexibility coefficients), but of
course they are present in the calculation of thelierium problem. Thus, the concept of a
macro material is more a conceptual model ratrear thphysical one, as it may be attractive
to see a locally buckled plate in a large strucagsoft “material” as opposed to its
unbuckled opponent.

In a material formulation it is natural to use #teess-strain symbots- € , and the following
notation is introduced

AN, N N) =(0,,0,,..0,4,P)

(59)

(A By Ay y) = (81,85, 8¢ 1)
Theay are the in-plane average stresses (or loads fewiaith) and theeg are the
corresponding relative in-plane shortenings (aveittpins) of the plate edges. It is assumed
that the plate edges is forced to remain in theegdane during deformation (plate supported
by a laterally stiff girder system or equivalemyahus the out-of plane deflections of the
plate edges are disregarded. The external dispkmevactor(e,,€,,...,.€._, )then only
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represent the in-plane relative plate edge deflastiln the present notation the lateral
pressure p is separated from the in-plane avetaggss, due to the principal difference in
response it produces.

For the present application of the in-plane loadrsmning relations of flat plates, eq.(49) can
be viewed as a generalisation of a non-linear natemv, i.e. it is written in the present
notation as

0, =0,(£.,8,,..£¢41.P) a=12,.,(K-1) (60)

EQ.(60) can be seen as a non-linear material geiseriof the plate response in which the
internal degrees of freedomage eliminated. More specifically this means #@(60) can be
classified as a macro material description of thplane plate response in the sense that both
the material law (i.e. Hooke’s law) and the noreéingeometric behaviour of the entire
platefield is included in the same formulation.

Eq.(60) is suited for strain control (strain = gkaing = relative displacement of plate edges)

since the loads are given as functions of thersrdihe functional relationships of eq.(60) are
not possible to derive in closed forms, but inraaréemental perturbation procedure these total
relations emerge in the expanded form around a krstate Jas

Ao, =C e, +C Ap

a,B,6=1,2,, (K-1) (61)
+CopsA8A8 5 +2C A, Ap +C

Apz +...

app

The macro material coefficients are defined by

c o,B8=1,2,., K1 (62)

It is illustrative to use matrix notations and &ain only the first order terms. From eq.(61)
the first order incremental relations between mngl loads and in-plane displacements are
written as
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AV C, C - Cuy Ag, Cy,
Ao C C L O Ag C
) 2 | = '21 '22 . 2(.K 1) ) 2 |y '2p Ap (63)
AOK—l C(K—l)l C(K—1)2 C(K—l)(K—l) AsK—l C(K—l)p

Cj is the tangent stiffness matrix ang, @re the coefficients representing the change -of in
plane loads per unit change of the lateral pres®lreoefficients are dependent on the state
|s at which they are evaluated.

For load control the inverted form of eq.(60) isrmeuited. This gives relations in the general
form as

€, =€4,(0,,0,,..0,,,P) a=1,2,.,K1 (64)

and the shortenings can be calculated as funatibthe specified loads. The expanded form
of eq.(64) around a known stataie

Ae, =M A0, + M Ap

aB=12,., (K1) (65
+M gA0,40; +2M g (K1) (89)

A Ap + M  AP® +---

app app

where the macro flexibility coefficients are definey

0g,
do,

MGBE

=asu
ap

appzé‘:;; a,B,8=1,2,., (K1) (66)
1 0%,
2! 00,00,
_1 0%,
P 290,0p

ap

M apsd

It is illustrative to use matrix notations and &bain only the first order terms. From eq.(65)
the first order incremental relations between sgrand in-plane loads are written as

Ag, M, My, o My Ao, M,
Ae, M, My, oo Mgy Ao,

p
M
7 Jop o (87)

Ag | Mk Mg - Mgy [[A0cs ] [ Mk
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M; is the tangent flexibility matrix and Mare the coefficients representing the change-of in
plane shortenings per unit change of the lateedsure. All coefficients are dependent on the
state { at which they are evaluated.

The present introduction defines the in-plane retés and flexibility coefficients for flat

plates. Section 3.4 illustrates how these coefiisiaare calculated using Marguerre’s non-
linear shallow plate theory.

3.3 Graphical description of stiffness properties

It may be useful to illustrate the in-plane sti§saelations or the flexibility relations
graphically. The stiffness relations are given Qy@0), i.e.

o, =0,(¢,,€,,--£¢_1,P) a=1,2,.,(K1) (68)
while the flexibility relations are the inverses.i.
g, =¢€,(0,,0,,..0.,,P) a=1,2,.,(K1) (69)

Only the stiffness point of view is explained belsince the flexibility version will be
equivalent with shorteningsy, taking the place of the loads,, and vice a versa.

From eq.(68) the (K-1) loadsg,, may be viewed as (K-1) multi-dimensional functaf the
(K-1) independent shortening parametgrand lateral pressure p. For fixed values of the
loadsay, these functions will be mapped as potential caiimehe deflection space, as
illustrated in Fig.8. The gradient to the surfaeg,(68), is per definition

0o, =% +

a

00, . _ . . :
o, op i, =Cppipg +Cppl, (70)

and the gradient vectddo, normal to the potential lines. In other words, fihgt order
stiffness coefficient<,; (andC,,) represent the components of the surface gradfehe

macro material law. Included in the macro matdael are both constitutive relations and
geometrical non-linear effects of the whole platefi In the present setting of in-plane
stiffness evaluation, the maximum stiffness willdars from Hooke’s law. Deviation from
Hooke’s law is due to initial out of flatness angtckling. Moreover, high stiffness will be
associated with marginal buckling effects while Istiifness is associated with significant
buckling effects.

If the orientation of the potential curves varissagunction on the loading, i.e. if they depend
on the combination of acting loads, this indicated buckling will influence the
maximum/minimum stiffness directions. This is mdrscussed in the example included in
Chapter 4 where also flexibility potential curves ancluded.
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The load history is defined as a path in load spkdicement space as discussed in Section 2.4.
This path will be viewed as a curve starting atdhgin and taking different directions
according to the load path definition. Say, if tbad history is defined in the load space as a
straight line it will be mapped into the displacemspace(€,,€,,...,«, )as a curved path

and vice a versa.

From the point of view of illustrating stiffnessgmerties the load history is viewed in
displacement spacg,,¢,,....ec, ,PJhe load history may be directly specified irstepace
or calculated from a load history specificatiorotigh solution of the equilibrium equations.
In any case the equilibrium solution may be writksran equilibrium path in the load-
shortening spacesy, &g, p), 02 €3, P)... €tc. as radius vectarsr..., etc.

r,(n)=o,(n)i +&,(n)z+p(), a,B=12.K (71)

Herei is the unit vector in the direction of stress ig is the unit vector in the corresponding
gg direction and,, is the unit vector in the direction of lateral ggare p. If an equilibrium
path is viewed in the displacement sp&eee,,....e._, , ifpnay take forms as illustrated in
Fig.8. Fig. 8 illustrates two different equilibriupaths 1 and 2, which intersects at a given
point. Through the same point is drawn a uniqueal curve ¢, = const.) with the
gradient pointing in the direction of increasingda,. By having only one potential curve
through a given point it is illustrated that theesgth and stiffness properties of structures,
behaving according to the linear elastic mateawal, lwill not depend on the load history.

G, = CONST. 1

Fig.8. Geometrical interpretation of load-shortgnsatiffness
The tangenvtectort, to the equilibrium path is the first derivativefseg.(71).

t, =r,(N)=0,(n)} +&M)+pn), (72)
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which is a_unitvector since is the arc length along the curve. The curvateork is
defined as the second derivatives of the radiutoveci.e. the curvature vector is given by
the second derivatives of eq.(71).

K, =f,(n)=6,(N)i +&,(n)i, +p(n)i, (73)

The unit vector along the curvature vector is agdicmly

n, =Ko =G, () L+ P, (74)
Ika] ||K T ]
where
ko] =[(84)7 +68; +(0)7] *2 (75)

The stiffness property in the direction of the Iqaath is the scalar product of the surface
gradientOo, and the unit vectot, in the direction of the load path in the displacatrspace

(1,850,840 P), 1€

C, =0o, [t a=1,2,.(K-1) (76)

a €

The presented geometrical point of view may beuldef the understanding of the stiffness
properties in general and the concept of potentiades may be illustrative for deciding the
maximum/minimum directions of stiffness of the sture. Flexibility illustrations are the

inverted point of view and both types of presentaiare given in the example in Section 4.4.

3.4  Geometrically non-linear plate theory
3.4.1 General

For the purpose of buckling calculations, the variidan(1910) equations valid for moderate
rotations have been used extensively in the liieeatHis theory is based on the classical
Love-Kirchhoff hypothesis valid for thin shells. kperre(1938) extended the von-Karmans
theory by adding initial out of flatness. This thee frequently referred to as shallow shell
theory (e.g. in Washizu(1975)) and is the basigHerequations given in the present chapter
and Chapter 4. These theories are not describaalyinletail here as the reader may find a full
account in e.g. Washizu(1975).

In Marguerre’s non-linear plate theory the comphiyocondition may be solved explicitly
giving load-shortening-displacement relations & ¢ieneral form (see eq.(53))

0, = U, (€5,0;) (77)
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In Chapter 4 the exact form of these equationgaen for a single degree of freedom plate
buckling model. These functions describe only caibpdy between in-plane and out-of
plane deflections excluding equilibrium. Eq.(77)ngerted to give

8(x :Du(oﬁiqj) (78)

When analysing a plate buckling problem the loadhag to be specified as a path either in
the load space (see Fig.6) or alternatively indisplacement space. Moreover, the most
frequent method is to express equilibrium conditioterms of the loads. Typically will be
the stationary condition of a potential energy Winmich V is expressed in terms of a set of
external prescribed loads . This leads to equilibrium equations in the form

fi(0,.0;,p) =0 (79)

When a potential energy V in terms of loads is falated, the applied external loads have
been constrained to be independent. However, iftergtd panels that are parts of larger
structures it may be more convenient to prescrilmeesexternal displacements rather than
loads allowing then for load redistribution at theundaries between different elements.
Displacement control can also be formulated udiwegootential energy principle and leads to
eqguations on the form

fi(€q.0;,p) =0 (80)
Having specified the load path, the equilibriuntestaare found along this path, using the
most appropriate solution procedure. The most sfieglprocedure will be to use the load or
displacement control technique directly, as desdriip Section 3.4.2 and 3.4.3. However, as
explained before, the more general procedure ettarc length method is normally to be
preferred and this procedure is described in Se&id.4.
The lateral pressure is per definition load intsnand is separated from the other load

components. It can be combined with either thedpagl or displacementsy, in the
definition of the load history.

3.4.2 Displacement control

For direct displacement control of the solutiorg Hasis is the equilibrium equations in the
form of eq.(80). As illustrated in Section 2.2 g@n to eq.(80) are sought in the form

q; =9;(g;.p) (81)
Substituting eq.(81) into eq.(77) gives the macetenal form

0, = U, (€5.,0i(€5.P)) (82)
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Using the definition in eq.(62) together with thergatibility condition eq.(82), gives for the
first order stiffness coefficients

Cop = o, N o, 0q; (83a)
dg;  0q; Ogg
C = o, +6Dq aq; (83b)

®9p dg, dp

The derivativel], /0g,, 0U, /0q; are readily available from eq.(77). However, théhp

derivativesoq, / dg, ,0q, / op are found solving a linear set of equations. Sulstg eq.(81)
into eq.(80) gives the equilibrium equations in fiven

f (Q;(€5,P),€5,p) =0 (84)

Differentiating eq.(84) once with respectsgogives

G Lof _
ii+i:0 (85a)
dq; dg;  Og,

G of _
iﬂ+i:o (85b)
dq; op dp

which is a set of M*K linear equations for finditige path derivativesq; /de;,dq; / op.

This shows that displacement control of the sofupficocedure gives direct calculation of the
stiffness coefficients & and Gp.

3.4.3 Load control

For direct load control of the solution, the basithe equilibrium equations in the form of
ed.(79). As illustrated in Section 2.2 solutioretp(79) are sought in the form

d; :qj(oﬁip) (86)
Substituting eq.(86) into eq.(78) gives the ingdnmacro material form
g, =U4(04,0,(04.P)) (87)

Using the definition in eq.(66) together with tr@rgatibility condition eq.(87) gives for the
first order flexibility coefficients
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Mo Eama +0Da 0q; (88a)
de;,  0Q; 0Ogg
M, = o0, , 90, oq, (88b)
op  dq; Jp

The derivativel, /9, 001, /0q; are readily available from eq.(78). However, ththp

derivativesoq; /0o, , dq; /dpare found solving a linear set of equations. Stiisig eq.(86)
into eq.(79) gives the equilibrium equations in fiven

f; (@;(05,P),04,p) =0 (89)

Differentiating eq.(89) once with respectdggives

- 0q, .
Al AT, (90a)
dq; do, 00,

- 0q, _
ii.}.i:o (90b)
dq; op 0p

which is a set of M*K linear equations for finditige path derivativesq; /da, dq; /0p.

This shows that load control of the solution pragedgives direct calculation of the
flexibility coefficients Myg and M.

3.4.4 Arc length method

As discussed in Section 2.1 the direct applicatibload or displacement control fails as
solution strategies for cases associated with pleltialued equilibrium surfaces. However, in
any case, a definition of a load path in tbe, (02, ... , p) space or in the displacement space
(¢1,€2, ..., p) is needed. Thus, from this load histosynpof view, the case can be either
load or displacement controlled. In order to obtotutions for a general case the load or
displacement control cases are combined with tpécgtion of the direct arc length method.

For illustration a load history, defined in thedospaced; , 02, ..., p), is used below.
According to the arc length procedure in SectidntBe solution of the equilibrium problem
is sought in terms of a set of independent arcttepgrameters) , Nz, ... ,Nk-1, pP)- In the
present notation the solution in the form of eq)(0ewritten as

qj :qj(r][37p) (918.)
0, =0,(Ng.P) (91b)



Page: 40
University of Oslo
Department of Mathematics, Mechanics Division
Application of the Perturbation Method to Plate Buckling Problems No. 98-1

The first order expansion of eq.(91) reads

0q; 0q;

A, =—XAn, +—Ap (92a)
"o, * op
0o 00

Ao, =—=An, +—Ap (92b)
o, = op

The path derivatives,” =dq; /an,, q," =dq, /dp, o,” =da, /dn,, o,” =do, /dp are
found from the perturbation procedure for multilgads as outlined in Section 2.2.

Substituting eq.(91a) into eq.(77) gives the mawaderial form
0, =0, (&;,9,(Ng,P)) (93)

The first order in-plane stiffness coefficients defined according to eq.(62). Using this
definition in combination with eq.(93) gives

-0
CqB = aDa + aDa aql l’]V (943.)
dg;  0qg; On, 0gg
-0

ap

op dq; on, op

The derivativesl], /de;and 00, /0q; (00, /op= 0) are readily available from eq.(77) by
forming the partial derivatives of the known fumcts [, . The missing parameters are
on,/dezandon, /dp. In order to provide these parameters eq.(783esluSubstituting
eq.(91) into eq.(78) gives

€, =04 (as(n,.P).qi(N,.P)) (95)

By differentiating eq.(95) with respect to amygives

de, _00, 99, o0, dq,

= (96)
on, 00,z 0n, 0q; dn,
Similarly, by differentiating eq.(95) with respdotp gives
00 .
de, _ o0, dag N o0, oq; (97)

ap _6% op dqg; Ip

This provides equations for the direct calculatibthe € ,* = dg, /on, andp’ =dp/an,
coefficients. However, these coefficients are theited of the coefficients used for
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calculating the stiffness parameters in eq.(94¢ ifierted coefficients are obtained by
assuming the shortenings to depend on the arcigragameters as

e(x = sq (nB 7p) (98)
The first order expansion of eq.(98) gives in nxatiotation
Ae =J An+JP Ap (99)

where the Jacobian matrices are defined as

O, 0e | 0g ]
on,  on, N
)= on, o, 0Ny :[Euy] (1002)
Oy Oy 0Ny
_anl anz ar]K+l_
and
e,
op
0,
= 5p (100b)
o€, 4
L dp |

The symbolAe is a column matrix notation for the K-1 edge saoimgs.eq, andAn is a
column matrix notation for the K-1 arc length paedensn,. Inverting eq. (99) gives

An=J"Ae-J7"3° Ap (101)

where the inverted Jacobian matrices are defined as

0g, O0t, 0,
M, on, N,
=2, e, " 9e |70/ (1022)
op 9p  9p
| 0g, O¢, 0gy, |
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on,
ap

ony
31P =| p (102Db)

Nyt
op |

These inverted Jacobians contain the final coeffitsi for evaluations of the stiffness
parameters as defined in eq.(94).

For a prescribed load history in shortening spteeprocedure for calculating in-plane
stiffness properties follows exactly the same patss described above. The loads will take
the place of shortenings and vice a versa. Thaesetis no need for a detailed presentation of
this case.

3.5 Summary

The present chapter starts with a general desumijgfi the non-linear stiffness properties of
structures. The expanded form of the non-linead-deflection relations defines the current
stiffness coefficients. Moreover, by providing caatipility conditions in a special functional
form, the connection between the stiffness coeffits and the path derivatives available from
the perturbation procedure is established.

The stiffness properties are discussed in morel dietzonnection with in-plane behaviour of
flat plates. The geometrical point of view of pdtahlines are described as a way of
illustrating the continuous change of stiffnessflexibility) of plates as a function of the
applied loading. For the purpose of having a sinmolation, the concept of macro material is
introduced embracing both the constitutive and geanally non-linear behaviour of the
whole panel into one pseudo material model.

The procedure for calculating stiffness properieat plates within Marguerre’s plate

theory is discussed. The general case of a diredeagth method and the connection to the
path derivatives for multiple loads is given a dethtreatment. As special cases are included
the more simplified load and displacement contases.
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4, APPLICATION ON A BIAXIALLY LOADED RECTANGULAR
UNSTIFFENED PLATE

4.1 General

As an example the case of a rectangular plate aigijeo biaxial compression has been
analysed. The main purpose is to illustrate thermamaterial properties in the form of
stiffness and flexibility coefficients. SecondIifaetincremental perturbation procedure as a
numerical tool has been tested even though itaiksexl that the example is very simplified as
it involves only a single degree of freedom. Theaadage of using a single degree of
freedom model is that a closed form solution exigt comparisons with numerical results is
then gives some measurements of the efficiencieptocedures. A more extensive three
degree of freedom model handling mode interactiorssiffened panels is treated in
Steen(1999).

The other purpose of the present example is to dstraie how the in-plane stiffness (and
flexibility) properties change for plates subjectediaxial loads. Particularly, the region of
compressive stresses will influence the stiffnegsperties and is of special interest.

Within the assumptions of Marguerre’s plate the®tgen (1984) showed that the potential

energy of an isotropic simply supported unstiffenettangular plate subjected to biaxial
loads and lateral pressure has the form

I

V= 235;6 E(29,0,, +0,°)%(k,” +k,*) + prY Eq,’(k, +k,)? .
-T2+ 0)K0, +K,0,) )
where per definition
q, = tﬂ U0 =t£
p p
K, = (gi)z | (104)

1

k, = (Ei)z ,

2

The potential energy V, e€q.(103), is expresseérnms of the load; in the longitudinal
direction (x-direction), the load, in transverse direction fdirection) and lateral pressure
p normal to the plate planes{girection) and this form is appropriate for loazhtrol of the
load history. Furthermore; @s the additional deflection amplitude normallte plate plane,
which is to be associated with a chosen bucklinfjléagth 7, in the x-direction and/,in

the »-direction, and g is the corresponding initial imperfection ampliguhiken to be in the
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same form. In the present application the half wengths are considered as having fixed
values. These half wavelengths can be found frgmas eigenvalue minimisation procedure
when the load history is defined. The assumptioa fated buckling shape pattern limits the
range of validity of the present model, since mold@nge during the load history is not
captured. An example, demonstrating the effechigfltmitation, is presented in Section 4.4.

The deflection parameters and go are non-dimensional versions of the lateral déflec
amplitude w and, respectively. The scaling parameter has beerechas the plate thickness
t,, see eq.(104). In eq.(103), E andre the isotropic material parameters, i.e. Yosing’
modulus and Poisson’s ratio respectively.

It was further shown (Steen 1984) that the loadtshing-deflection relations in the general
total form (i.e. eq.(77){J, functions) can be written as

E E
0, :—2(81 +V82) TS 2 (Q12 + 2q10q1)(k1 +Vk2)
1-v 8 1-v (105)
0, = E (e, +ve) -1 E (a2 +20,0)(k, +vk,)
2 1_\)2 2 1 8 l—V2 1 1041 2 1
which inverted gives (eq.(78)j, functions)
1 ™
&= E(Ol —V0,) +§ (Q12 +20,00,)K,
(106)

1 ™
€, = E (0, -vo,)+ ? (Q12 +20,,0,)K,

Equilibrium equations in the form of eq.(79) candegived from the principle of stationary
potential energy, i.e.

fl(ql,ca,p)fg—vm a=1.2 (107)

1

From the definition of eq.(107) and eq.(103) ildals that the equilibrium equation is

4 4

Tt Tt
fo =<7 B0, + 9,°)(@; + dyo) (K, +K,%) +

————Eq,(k, +k,)?
48(1—\)2) ql( 1 2)

i (108)
4
_7 (dy +d,)(k,0, +k,0,) _Fp =0
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4.2 Numerical solution — Perturbation scheme
4.2.1 General

In the following the necessary equations are gfeesolving the equilibrium problem of a
biaxially loaded plate under the condition of ageréed path in the load space. These
equations can be used for any prescribed pathniargk but herein they are used for the
purpose of illustration stiffness properties oftpta This means that the load paths are given a
special form in load space in order to providegbeght stiffness contour plots as explained

in more detail in Section 4.2.2. Alternatively,ed of equations can be derived appropriate for
displacement control and for the purpose of illtitig flexibility curves. Both approaches are
used in order to generate the results in Sectibn 4.

The definition of a single load parameferdescribing any multi-linear load path through
load space, is according to eq.(28)
0, =0, A(ol,m+1 - olm)
0,=0,,% A(Gz,m+1 - 02,m) (109)
P =P + APmss = Prm)

Eq.(109) is substituted into eq.(108), and the ldarium equations thus shift from one set to
the next, depending on which linear piece of tlalIpath that is currently traced.

The assumed perturbation solution along the piesddioad path, expanded around a state |
is

1.
Ag; =q;An +5qi (Ar])z e

1' (110)
AN = AAN +5/"\(Ar])2 +oo

The first order path derivatives of the loads are
g, = /\(Ol,m+l - Ol,m)
g, = /\(Gz,m+1 - 02,m)

p = /\(pm+l _pm)

(111)

and second order path derivatives

d-1 = /\(Ol,m+l - Ol,m)
0, = A(GZ,m+1 - 02,m)

b = /“\(pm+l _pm)

(112)
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The loads along the equilibrium path are calculéteuoh
. 1. 2
Aol - 01Arl +501(An) +..
80, = 6,00+, (n)* +-- (113)
. 1. 2
Ap = pAn +EP(AH) to

Knowing the loads, the end-shortenings may be tatled from the total relations, eq.(106).
Applying the direct arc length method for tracihg equilibrium path, the first and second
order sets of perturbation equations for the sidglgree of freedom plate buckling model is
given below.

The first order perturbation equations are takemfeq.(37), i.e. the first order solution is
found by solving the following set of equations

fia, +1'A=0

_ (114)
G0, + A =1
The coefficients in the first order equations are
fll = T[_4 E(&hz + 6q1q10 + quos)(klz + kzz) +T[—4 E(kl + k2)2
64 48(1-v?)
T[Z
_Iqlo(klo-l + k202) (115)
us 4
flA = __qlo(kl(cl,m+1 - 0-1,m) + kz(cz,m+1 - 02,m)) Y (pm+1 - pm)
4 us
The second order solution is found from eq.(48), i.
f,0, + 207G A +,78, +1,"A =0 (116)
q,8, +AA=0
The coefficients in the second order equations are
(=2 B, + )k, +k,)
1 32 1 10 1 2 (117)

=0

Following the scheme as summarised in Sectionr/Specified path in load space can be
traced.
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4.2.2 Flexibility and stiffness calculation

For the purpose of illustrating the flexibility stiffness properties of plates, potential curves
as generally described in Section 3.3, may be aseath alternative to the conventional load-
shortening presentation. It has the advantage bfacimg a lot of information of the plate’s
strength in different directions into one diagrama & is a form that is consistent with the
macro material concept. The terminology of conaot is also commonly used for
illustrating variations of two-dimensional funct®and this notation is used herein with the
same meaning as potential curves.

In Section 4.2.1 the equilibrium equation was detliin terms of loads and not displacements.
It follows then that stiffness curves may be geteetdy prescribing a set of load histories in
load space,d; - 0,) according to the pattern described below. Bymirapthe corresponding
response curves in the shortening spageg), contour lines emerge illustrating the stiffness
properties.

Since a stiffness curve is valid for a fixed vatdex load parameter, say= 0,6 0 (O is the
yield stress of the material), the load history tealse prescribed in two steps. The first step
will be to increase the load acting in one dirattisayo,, up to the desired level. This level
of o, can be reached by prescribing any general loddipabad space. A natural choice will
be to define a linear path by scaling up the loatb the actual desired value, while
simultaneously prescribing, to be zero. The next step will then be to fix thevalue while
prescribing an increased or decreased value dftttex load parameter,. By mapping the
response in the shortening spage,&,, and by retaining only the second sequence, the
potential stiffness curve will be visualised asuave valid for a fixed value of, say. By
generating a set of potential curves with the semtr@mental load valuéo,= fixed,

between each curve, a map is generated that dtestthe stiffness for load direction

The procedure described above gives potential sufrestiffness evaluations of the plate in
an overall sense. It is a way of describing théefdaability to carry loads in the different
loading directions, and it has to be seen as amaltive method for strength and stiffness
presentation. Moreover, to generate these curegsress many load histories to be calculated.

The normal case for strength evaluation will bedwe a given load history and to estimate
the strength following this prescribed load pathe present method, using the arc length
approach, provides the calculation of the stiffrmssfficients G,;, C;» and G, along the
specified path using the procedure as outlinedi@est4.4.

For the purpose of practical applications it isfubeith closed form solutions. In Section 4.3
the present single mode analysis is rewrittendorapact closed form and the stiffness
coefficients are given explicitly. In Section 4cbntour plots for both flexibility and stiffness
properties are presented for a square plate angarisons between closed form solution,
perturbation solution and numerical results usiBA®US are presented.
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4.3 Closed form solution

Eq.(108) is the equilibrium equation for the cagbiaxial loading and lateral pressure.
By defining a parameteX, as

- 12(1-v?) 6_2)2 ((¢,/1,)%0,+0y)

Mo TE t @+(0,10,)%)?

(118)

and neglecting the lateral pressure, p, eq.(10§)beaewritten in the following compact
form

Ny =—N (L+a,(q, + 30,05 + 20,,2)) (119)
d; tdy

where per definition

4
a2 :§(1_V2) 1+(€2/€l)

4 W+ (0, 10,)%)°

(120)
The parametef\; is a load parameter, representing the combinetidffact. It takes the
value of unity at the classical buckling level tmmbined loads (eigenvalues).

By substituting eq.(106) into eq.(119), with thegmse of eliminating the loads at the
expense of the shortenings, and now defining anpeter/\; as

/\s :E(E)Z ((52 /61)2 +V)€l + (V(€22 ﬁfl)z +1)€2 (121)
™t @+, 10)%)
the following closed form equilibrium equationfeaind
. 2 2
A, = (1+b, (@, + 30,050 +20y07)) (122)
g, 0y
where per definition
02 4 2
b2:3(3 VIYA+(, 1)) +12v(0,11,) (123)

AL+ (0, 110,)%)°
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For comparison, the Koiter theory (Hutchinson aritét 1970) gives the following form of
the equilibrium equation

Ao =—D— (1+3,0,%) (124)

a

4, + 0y

It is seen that the present closed form solutioplates, based on Marguerre’s plate theory, is
very similar to the Koiter equation apart from tieoms coupled to the initial imperfection
amplitude go. For small imperfection amplitudes the two sauo$ converge while for larger
imperfection amplitudes the present solution prsdicore optimistic results.

The in-plane stiffness properties, expressed bythaewill be load dependent and the
coefficients at each load level can be calculasdgithe perturbation procedure as described
in Section 3.4. However, it is possible to derinalgtical expressions for the stiffness
coefficients in the case of zero load and validafgeometrically imperfect plate. Using the
method in Section 3.4 and after a lot of tediogelia, the following expressions emerge

E (k, +vk,)?
C,= _ 2|:1_6 - A ?

1-v
C, = :L_E\\)}2 {l_g (k, +\)k2xk2 +vk1)} _c, (125)
C, = 1_EV2 {1—60(2 +A"k1)T
where per definition
A= 2t gnyoyk k) Hvkok, (126)

Q10

The same method can be used for derivation oftitieess coefficients of a geometrically
perfect plate (g = 0). In that case these coefficients are oftégrred to as the initial
postbuckling coefficients as they describe thdrggs at the point of initial buckling
following the deformations into the subsequent ipaskling region. The stiffness coefficients
are expressed as in eq.(125) but with the coefffiddecalculated from

A =3B-v?)(k,” +k,’) +12vk kK, (127)
instead of from eq.(126). Comparing eq.(126) an{l@d) shows that the initial postbuckling

stiffness properties of geometrically perfect pdadee constants and equal to the initial
stiffness of plates with large initial imperfect® (g, >>1).
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For a perfect square plate the postbuckling ssrnmefficients defined by eq.(125) and
ed.(127) takes the compact form

E*
Cll = *\ 2
1-(v)
E*V*
12 = 1—- (V*)z =Cy (128)
E*
C,, T TU
1-(v)

Here the modified material constants E* avidare defined as

B =1
2

(129)
V¥ = —% @-v)

From these simple expressions it is concludedahatlastically buckled square plate has
stiffness properties as an elastic isotropic maiterith 50% of Young’'s modulus and with a
negative Poisson effect equal to — 0.35 for steskrial withv = 0.3.

4.4 Numerical results - Comparative study

For comparison purposes between the closed formigoland the numerical perturbation
procedure a square plate with the following prapsrave been analyzed

a=1000 mm 0 E =210000 MPa
b=1000 mm n =83 v=03 (130)
t=12 mm (0. =355 MPa)

However, before presenting the non-linear resoltsHe plate, it is of interest to first illustrate
contour plots according to Hooke’s law for a matlemicro point. Flexibility curves for in-
plane strairg; for a biaxial stress situation are shown in Fig.9.
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Fig. 9. Contour plots of flexibility fog,, biaxial plane stress situation in a material pagcording to
Hooke’s law. g, 0 [ -0.6 to 0.6]er , Ag; = 0.2¢g¢ .

Results showing the non-linear response of the @leg presented in Fig. 10, 11 and 12.
These results include imperfections and geometnelimearity effects. Conceptually, these
results may be considered as material propertiashadicro material point, i.e. the plate as a
whole.

It was found most convenient to present the ressltsontour plots in the form of flexibility
curves. This was due to the non-linear finite elehtede ABAQUS(1994) which was most
conveniently run in a displacement control modditescribed straight edges. The
ABAQUS model had a mesh of 20x20 using thin sHelinents S9R5.

The non-linear macro results are presented in Gifpdthe considered near geometrically
perfect plate square plate e 0.01). It is seen that the perturbation solufmlows very
accurately the closed form solution. In the figtive closed form solution and the perturbation
solution are indistinguishable. The perturbatiolutson is based on a second order expansion
together with small increments of the arc lengttapsetem of the order of 0.01. In the same
figure are added results from the ABAQUS analykas.shown that the ABAQUS results
follows very closely the closed form solution upctrtain point for then to suddenly change
direction. This change of direction of the equililon path is associated with change of
buckling mode from a single half wave in transveatsection to three halfwaves. This
phenomenon is referred to as mode snapping intérature, and the present single degree of
freedom model is not capable of predicting suchngkaof modes.

From a structural point of view, Fig.10 illustratée sudden change of in-plane
flexibility/stiffness against relative edge shoiteye; as soon as the stability boundary
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(eigenvalues) is crossed. It is observed that émsity is increased and direction turned of the
potential curves beyond the buckling boundary. ®elwe buckling boundary (lower left part
of diagram) the loads are in tension in both diozxst and the contour lines describes Hooke’s
law. This prediction is consistent with the simptdution given in eq.(129), which gives a
50% stiffness reduction in the postbuckling regiogether with a negative Poisson effect.
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Fig. 10. Contour plots of flexibility curves forkgaxially loaded, geometrically perfect square @lat; O
[ -0.6 to 0.6)er , Ag; = 0.2 . Comparison between closed form solution, nuraégerturbation solution
and non-linear finite element results/ABAQUS.
Square plate with dimensions, a = b =1000 mm, 2tmin,4 = 0.12 mm.

In Fig.11 results are presented for the same hateyith a geometrical imperfection
amplitude o = 6 mm (qo = 0.5) and with the load axes limiting the intéireg response to
stay within the yield stress. It is shown that tloenerical perturbation procedure follows
very accurately the closed form solution and ABAQW@Sults, and the curves are almost
coincident.

From a structural point of view it is seen that dfiect of increasing the geometrical
imperfection is to give a more gradual transitietvieen the prebuckling flexibility and
postbuckling flexibility around the buckling bounga
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Fig. 11. Contour plots of flexibility curves forgaxially loaded, geometrically imperfect squaratele;
0[-0.6 to 1.08¢, Ae; = 0.Z¢. Comparison between closed form solution, numepeaiurbation
solution and non-linear finite element results/ABAK.

Square plate with dimensions, a = b =1000 mm, tmi®d = 6 mm.

As discussed in the text, contour plot of stiffnpesperties is the inverse of the flexibility.
For the purpose of being complete the stiffnesgtians for the load in the shortening
space g, €,), of the example in Fig.11, is presented in Figi#s figure also shows that the
perturbation solution coincides with the closedrf@olution and in Fig.12 it is not possible to
distinguish between them.

As seen in Fig.12 the potential stiffness curvesmaore spread in the postbuckling region
(upper right part) than in the tension region (lovedt part) where they also are oriented in
the opposite direction. This illustrates the redus#ffness properties for compressive loads
and a change of the Poisson effect from positiveéntension region to negative in the
compressive region.
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Fig. 12. Contour plots of stiffness curves for axially loaded, geometrically imperfect square @lat;
0 [-0.6 to 1.0Jo , Ao = 0.20¢ . Comparison between closed form solution, nuraéperturbation
solution.

Square plate with dimensions, a = b =1000 mm, 2tmin,d = 6 mm.

5. CONCLUSIONS

The general perturbation method for discrete systeleveloped for the purpose of analysing
stability properties of structures, is describedthie present work the main emphasis is on
tracing the complete non-linear equilibrium patinfrthe unloaded state to limit points and
with subsequent assessment of the initial postingkégion of geometrically imperfect
structures. The perturbation method is appliedougp s¢econd order expansion of the
equilibrium path and the procedure is embedded imeremental scheme. The second order
expansion is adopted as a substitute for the stdredpuilibrium control applied in more
traditional incremental numerical methods. Thelangth concept for multiple loads is
introduced for passing limit and snap back poitda@the equilibrium surface. The direct arc
length method, applied in a perturbation scheméisisussed in relation to Riks’ method,
which is a method that is accepted as one of thst gfticient in numerical analysis of
instability problems.

The incremental perturbation scheme is appliedsionple single degree of freedom system
of a biaxially loaded plate, and it is shown thre humerical results very closely compare
with a closed form solution. Included are also ltssobtained using the non-linear finite
element code ABAQUS. The present example is raingple and does not give conclusive
answers on the efficiency of the present proposedenical scheme. However, the
incremental perturbation scheme presented herbdeasdeveloped with the main purpose of
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solving buckling problems that can be describedthwetatively few degrees of freedom.
From this point of view the method works very datisory and in Steen(1999) the procedure
is applied to a more complex plate model. In thatlel the non-linear interactive response
between local and overall buckling of stiffened glans addressed.

Properties are shown for a biaxially loaded urestiéfd plate as a specific example. The
stiffness and flexibility properties are preserasccontour plots. This way of showing the
results gives a new understanding of the actudtlingcprocess under multiple loads and it
embrace a lot of information into one diagram. Thetour plots can be interpreted as an
illustration of the macro material concept in tease that it includes both the material and
geometrical non-linear behaviour of the whole pamie one diagram.

From an overall point of view, an isolated flat pbaim a large structure may be seen as macro
material and the change of in-plane stiffness pt@sedue to geometrical imperfections,
residual stresses, lateral pressure and bucklihgvieur can be all included in the macro
material description. The results emerge as ompatrmaterial parameters, which can
subsequently be used as input material properntitsge linear finite element models e.g. of
ship hulls. This approach provides a more realgitbal redistribution of the stresses in the
structure than that provided by the normal asswnqgif linear isotropic material properties
according to Hooke’s law used in standard lineadyases.
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7. NOTATION

Latin letters

a Plate length inpdirection

b Plate length inxdirection

t Plate thickness

t Pseudo time parameter

w Plate deflection normal to plate plane, use@ las amplitude

p Lateral uniform pressure acting normal to plate

Ou Buckling boundary function (g= 0; buckling boundary equation)

~
[N

Wave length of buckling pattern in direction (/, =a/m)

Wave length of buckling pattern in direction (/, = b/n)

Youngs' modulus

Poisson’s’ ratio

Number of half waves inpxdirection

Number of half waves inxdirection

Total number of degrees of freedom

Total number of independent loads (or edge disghents)
X1,X2,X3 Rectangular coordinate system

N

AZIS3I <M~

Greek symbols

OF Yield stress, (only used for scaling purposethis report)

Oq Average membrane stress

o Average membrane stress indirection, positive in compression

(o) Average membrane stress indirection, positive in compression

€a End-shortening of plate edges

€1 End-shortening of plate edges (av. strainjlisection, positive in compression
€ End-shortening of plate edges (av. straipjlivection, positive in compression
N General load parameter, non-dimension

Na General load parameter, non-dimension

AW General displacement parameter, non-dimension

A Symbol for incremental property

0 Initial plate imperfection amplitude, stresse

n Perturbation parameter, arc length along eqitlibrcurve

Na Perturbation parameter, arc length along equuilibrsurface, multiple dimensional
5% Kronecker delta

Vector, matrix, tensor symbols

fi Equilibrium functions (f= 0; equilibrium equations)
o] General degree of freedom parameter, non-dimensio
Jio Initial general degree of freedom parametersstfeee, non-dimension
d Element in column matrix, see eq.(43)
a
C.
' o Directional cosines of equilibrium path in loadfiéction space, see eq.(17)
C
B
U Symbol for vector gradient
[ Unit vector in direction of ant loaal, , see eq.(71), presentation of stiffness
ig Unit vector in direction of ang, , see eq.(71), presentation of stiffness
ip Unit vector in direction p , see eq.(71), preagan of stiffness

Iy Radius vector indy, €1, &,.., &, pP) space, presentation of stiffness
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tq Tangent vector inog, €1, €2,.., £k, P) Space, presentation of stiffness
te Tangent vector ire(, &,,.., &, p) space along prescribed load history
Ko Curvature vector ind(, €1, &,.., €k, P) Space, presentation of stiffness
IKq | Length of curvature vectar, see eq.(75)

Ng Unit vector in @q, €1, £5,.., &, P) Space along curvature veckgr

in Unit vector in solution space alofgaxis

i Unit vector in solution space alongaxis

X General solution vector, see eq.(38)

X, First solution vector, see eq.(44a)

X_ Second solution vector, see eq.(44b)

o} Displacement vector, see eq.(41)

f= [fijJ First order matrix, see eq.(41)

fh= [fi’\] First order column matrix, see eq.(41)

J= [680, /dr]BJJacobian matrix , see eq.(100a), inverted se&@2p]
JP = [Gsa /6p]Jacobian column matrix , see eq.(100b)

AW Two solutions for the first order load rate, sgg(44c)

K;B First order stiffness coefficients, see eq.(52)

K ags Second order stiffness coefficients, see eq.(52)

Cap First order in-plane stiffness coefficients @tfplates, see eq.(62)
Cap First order in-plane stiffness coefficients dftfplates, see eq.(62)
CC(BES Second order in-plane stiffness coefficientdaif fflates, see eq.(62)
CC(Bp Second order in-plane stiffness coefficientdaif fplates, see eq.(62)
CO(pp Second order in-plane stiffness coefficientdaff plates, see eq.(62)
M e First order in-plane flexibility coefficients @it plates, see eq.(66)
Mo First order in-plane flexibility coefficients @it plates, see eq.(66)

M 4p5 Second order in-plane flexibility coefficientsftdt plates, see eq.(66)
M app Second order in-plane flexibility coefficientsftdt plates, see eq.(66)
M app Second order in-plane flexibility coefficientsftdt plates, see eq.(66)
Uy Compatibility function, see eq.(53)

U, Inverse compatibility function, see eq.(58)

Subscripts and superscripts

L, k... Dummy indices, Latin letters used as subscriptsamerscript, range 1,2,,..,M
o, B, YA, ... Dummy indices, Greek letters used as subscripsapérscript, range 1,2,,..,K (K-1)
S Evaluated at any state |

m State along prescribed piecewise linear loatbhj in load or displacement space
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Notation for derivatives

9a;

—_ G(X

i _a_qj
_aqj'aCIk
P — a/\a

fjk _ of.

Partial derivative symbol

Path derivatives with respect to arc length
Path derivatives of load parameter
Path derivatives of end-shortening parameter

Path derivatives of load, non-dimensionless patam

q" = d°q,
- on,an,
fo=dh
- on,
f 1o - o f op - Of
"~ 0g@n, ' an.on,
v _ 0N
© 0ngon,



