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Abstract 
Introduction: Following organ transplantation there is a risk of the body rejecting the 

transplanted organ. To prevent this solid organ transplant recipients (SOTRs) are dependent 

on life-long immunosuppressive therapy. Tacrolimus is one of the drugs used as standard 

maintenance therapy following renal transplantation. The drug has a narrow therapeutic 

window and expresses large pharmacokinetic (PK) inter- and intrapatient variability. 

Therapeutic drug monitoring (TDM) of tacrolimus, used to optimize individual personalised 

dosage regimens, is mandatory for all SOTRs. Studies have proven that the use of population 

pharmacokinetic (PopPK) models to develop individual dosage regimens for tacrolimus 

increased the share of individuals with concentrations within the therapeutic window 

compared to standard TDM. Tacrolimus PopPK models have been presented for the 

paediatric population. However, the clinical use is limited and there is no data on successful 

extrapolation of an adult tacrolimus PopPK model to the paediatric population for which the 

adult model is valid. The aim of this thesis was to optimize a tacrolimus PopPK model used 

for adult renal transplant recipients and extrapolate it to paediatric renal transplant recipients 

to determine the lower limit of age for when the adult model is still valid. 

Method: The modelling process consisted of improving an adult PopPK model and validating 

the extrapolation of the improved model to a paediatric population. Model development and 

validation was performed in the add-on package to R, Pmetrics, using a non-parametric mixed 

effects model. Both internal and external validation was performed on the models, and the 

improved adult models were tested for their performance with limited sampling strategies 

(LSS). 

Results: The final improved model showed a better prediction of the maximum concentration 

(Cmax). The model’s performance when using a LSS was improved. When using a LSS the 

model provided slightly better prediction of the later times of the dosing interval for 

Prografâ, but tended to overestimate the Cmax. The Improved model was not successfully 

extrapolated to the paediatric population. The lower limit of age for when the adult model is 

still valid in the paediatric population was not possible to determine. 

Conclusion: The improvement of a PopPK model for tacrolimus resulted in a model with 

better performance when applied to a LSS for estimating the area under the plasma drug 
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concentration–time curve (AUC). The improved model was not successfully extrapolated to 

the paediatric population. There was no indication that the model’s performance in the 

youngest patients was worse than in the older patients in the paediatric population. Further 

improvement of the model is necessary before it can be implemented in the clinic for 

paediatric patients.   
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1 Introduction 

1.1 Renal transplantation 
The first successful renal transplantation was performed in Boston in 1954 by Joseph Murray 

(1). The transplantation was performed in a 23-year-old man with progressive chronical renal 

failure, with his monozygotic twin as the donor. Prior to the transplantation the patient’s 

condition had been maintained with periodic haemodialysis. The patient lived for 26 years 

following the transplantation without rejecting the graft and thereby became the first long-

term survivor (2).  

Two years later, Leif Efskind at the Oslo University Hospital, Rikshospitalet, led the first 

transplantation in Scandinavia using a kidney from an allogenic, ABO-incompatible donor. 

Whole body irradiation and cortisone were used as immunosuppression, and the patient lived 

for 30 days (3). Seven years later, in 1963, Ole Jacob Malm performed a transplantation at 

Oslo University Hospital, Ullevål. The donor was the mother of the patient, and the patient 

received azathioprine in combination with steroids for immunosuppression. The patient lived 

for 22 years. This was the first successful renal transplantation in Norway (3). Since 1983, all 

renal transplantations are now performed at Oslo University Hospital, Rikshospitalet (4).  

1.1.1 Immunosuppressive therapy 

To prevent the body from rejecting the transplanted organ, solid organ transplant recipients 

(SOTRs) are dependent on life-long immunosuppressive therapy (5, 6). Current 

immunosuppressive therapy has improved 1-year graft and patient survival, which is now 

over 96%, and reduced the number of rejection episodes following kidney transplantation to 

under 10% (6). In Norway, standard maintenance therapy after renal transplantation consists 

of calcineurin inhibitor (tacrolimus or ciclosporin), mycophenolic acid and glucocorticoid 

(prednisolone) (6, 7). Calcineurin inhibitors inhibits the activation of T cells by competitive 

binding to calcineurin (8, 9). Mycophenolic acid drugs inhibits the proliferation of both T and 

B cells by inhibiting inosine monophosphate dehydrogenase, which is involved in the de novo 

synthesis of guanine nucleotides (10). The inhibition of T and B cells weakens the immune 

system and response. Glucocorticoids inhibits the immune system by inducing anti-
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inflammatory genes and suppressing expression of inflammatory transcription factors such as 

activator protein 1 and nuclear factor kappa-light-chain-enhancer of activated B cells (11). 

Finding the right combination of these drugs for the patient to achieve adequate 

immunosuppression (to avoid rejection) and experience fewest possible side effects can be 

challenging as these drugs already in therapeutic doses induces a number of serious adverse 

events (SAEs) (6).  

1.2 Tacrolimus  

1.2.1 Mechanism of action 

Tacrolimus (formerly known as FK506) is a calcineurin inhibitor that binds to the cytosolic 

immunophilin FK506 binding protein 12 (FKBP12) in T-cells (12, 13). The tacrolimus-

FKBP12 complex inhibits calcineurin phosphatase activity by competitive binding to 

calcineurin which inhibits dephosphorylation and the activation of nuclear factor of activated 

T cells. This suppresses the transcription of the proinflammatory cytokines, such as 

interleukin-2, and thereby inhibits the activation of T cells (8, 12-14). The 

immunosuppression by tacrolimus prevents graft rejection (14).  

1.2.2 Adverse events and toxicity 

As calcineurin is not T cell specific the use of tacrolimus can give rise to toxicity and other 

SAEs (12). Tacrolimus has a narrow therapeutic window (15), and the risk of adverse events 

increases with increasing systemic exposure (16). However, patients might experience SAEs 

even within therapeutic doses (6, 16). SAEs of tacrolimus include nephrotoxicity, 

neurotoxicity, post transplanted diabetes mellitus, hypertension, infectious complications, and 

malignancies (16-18). Other common adverse events include hyperkalaemia, 

hypomagnesaemia (17, 18), tremor, insomnia, headache, diarrhoea and nausea (14). 

1.2.3 Pharmacokinetics 

Pharmacokinetics (PK) is the relationship between input and exposure following drug 

administration. It describes the drug concentration over a given period of time in conjunction 

with the amount of drug administered (systemic exposure–time profile), following absorption, 
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distribution, and elimination (10). Figure 1 shows a plasma drug concentration-time curve 

following administration of a single oral dose.  

 
Figure 1. The plasma drug concentration-time curve following a single oral dose of a drug portraying 
the time course of the plasma concentration, including maximum concentration (Cmax), the time of 
which Cmax occures (Tmax) and the total systemic expousre of the drug, area under the plasma drug 
concentration-time curve (AUC).  

PK parameters describes absorption, distribution and elimination, and are used to describe the 

PK in a population. Table 1 describes central PK parameters and variables.  

  

Time 
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Table 1. Central pharmacokinetic (PK) parameters and variables. PK parameters describes 
absorption, distribution and elimination of a drug. Primary PK parameters are parameters that are 
only affected by physiological variables, and not by changes in other PK parameters. Secondary PK 
parameters are affected by changes in other pharmacokinetic parameters and/or drug dose.  

Pharmacokinetic parameters               
Primary parameters  
Absorption rate constant (ka) Describes the rate at which a drug is absorbed from 

the site of administration and enters systemic 
circulation. 

Bioavailability (F) The fraction of the administered dose that reaches 
systemic circulation intact. 

Volume of distribution (Vd) A non-physiologic volume that describes the 
distribution of a drug in plasma and tissue 
compartments.   

Clearance (CL) The volume of plasma which is cleared of drug per 
unit of time.  

Secondary parameters  
Elimination rate constant (kel) The fraction of drug eliminated per unit of time. 
Elimination half-life (t1/2) The time required for the concentration of the drug 

in the body to decrease by half. 
Pharmacokinetic variables  
Area under the plasma drug 
concentration–time curve (AUC) 

The cumulative systemic exposure of a drug for the 
given period of time. 

Trough concentration (C0) The drug concentration immediately before 
administration of the next dose. 

Maximum concentration (Cmax) The highest observed plasma drug concentration 
after administration.  

Time to reach maximum 
concentration (Tmax) 

The time after administration at which the highest 
plasma drug concentration is observed. 

 

Tacrolimus expresses large PK inter- and intrapatient variability. The dose requirement can 

vary widely between patients, in addition to vary over time for each patient (18, 19). 

Following oral administration tacrolimus is absorbed rapidly in most patients. However, some 

patients have a slower and prolonged absorption. The oral bioavailability (F) ranges from 5-

93% but is usually low with a mean of 25% (19). Tacrolimus’ low F can be explained by the 

fact that the drug is a substrate of extensive first pass metabolism through cytochrome P450 

3A (CYP3A) enzymes. In addition, absorbed tacrolimus is transported back to the 
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gastrointestinal lumen by P-glycoprotein, making the metabolism through CYP3A more 

efficient (18-20).  

Tacrolimus binds broadly to erythrocytes, and the concentration of tacrolimus is on average 

15 times higher in blood than in plasma. Approximately 99% is bound in plasma (18).  

As mentioned, tacrolimus is a substrate of extensive first pass metabolism through CYP3A, 

the most important metabolizing enzymes being CYP3A4 and CYP3A5 (18, 21). The 

interpatient variability of CYP3A expression is substantial, and expression of CYP3A4 in 

liver can vary from 10- to 100-fold differences (18). As CYP3A5 expression is polymorphic, 

only carriers of the CYP3A5 *1 allele express active CYP3A5 (21, 22). Carriers of the 

CYP3A5 *1 allele have a higher metabolism of tacrolimus and may require a higher dose, on 

average 100% higher, compared to homozygous carriers (CYP3A5*3/*3) (21, 23, 24).  

In addition to CYP3A variability, differences in haematocrit and albumin concentrations, 

concomitant diseases or administration of other drugs (18, 25), bodyweight (18, 26), and non-

adherence (25) can also be causes of variability in tacrolimus PK. 

Tacrolimus PK may also change over time after transplantation, often resulting in dosage 

reduction. This is generally believed to correlate with decreased tacrolimus clearance (CL) 

and possibly increased F following increased time post-transplantation (18). Studies have also 

found that reduction of prednisolone dose and changes in haematocrit and albumin might 

contribute to this (18, 27).   

Prednisolone is a CYP3A inducer. As tacrolimus is a substrate of extensive first pass 

metabolism through CYP3A concurrent intake of prednisolone will likely increase tacrolimus 

CL and increase the dose requirement. The CYP induction might also reduce tacrolimus F due 

to increased first pass metabolism. In accordance with time after transplantation the dose of 

prednisolone is reduced, and thus the patients’ dosage requirement will likely be reduced (27, 

28).  

Although only the unbound fraction of the drug is pharmacologically active, the concentration 

of tacrolimus is measured as total concentrations in whole blood, including both unbound and 

bound tacrolimus. As tacrolimus binds extensively to erythrocytes, high values of haematocrit 

and albumin increase the amount of bound tacrolimus and may lead to an increased measured 

tacrolimus whole blood concentration without an increased therapeutic effect as the unbound 
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concentration remains unchanged (18, 29, 30). Haematocrit increases extensively following 

kidney transplantation. This makes haematocrit an important covariate to consider when 

interpreting tacrolimus data, especially during the early posttransplant period (27, 29).  

However, the use is not widespread in the clinic.  

1.2.4 Pharmacokinetic properties in the paediatric population 

Children are not just “little adults”, and so the PK of tacrolimus in the paediatric population 

differs from that of the adult population (18, 24, 31). It has been reported that children have a 

similar F to adults, but a higher volume of distribution (Vd) and CL (32-34). In addition, the 

paediatric population have a greater proportion of intrapatient variability than adults. Children 

does not have a linear relationship between weight and CL of tacrolimus (24, 32).  

Allometric scaling is a mathematical concept that describes how different physiological 

properties change in proportion to change in body size (35). It is commonly used when 

extrapolating a population model to a paediatric population to adjust for differences in body 

size between adults and children (36). In population pharmacokinetic (PopPK) modelling 

allometric scaling is used to adjust PK parameters to an appropriate body size measure.  

In paediatric PK studies it is common for the population to have a much wider relative range 

in body size than adults. CL and Vd are parameters that are normally functions of body size. 

Thus, if they are not scaled their influence on the model may be masked by the effect of body 

size (36). In general, children have a higher CL and Vd of drugs compared to adults. This also 

goes for tacrolimus (32-34). However, the relationship of CL and weight for tacrolimus in 

children is not linear (24, 32), and as allometric scaling to body size assumes that CL is 

proportional to body size this might not be an optimal solution for tacrolimus.  

1.2.5 Therapeutic drug monitoring of tacrolimus 

Therapeutic drug monitoring (TDM) is measuring the concentration of specific drugs at 

predefined time intervals and using it to optimize individual personalised dosage regimens 

(37).  For tacrolimus the trough concentration (C0) is measured in whole blood frequently 

after transplantation. The patient’s dose is then adjusted according to measured dose 

compared to target dose (38), with the patients individual characteristics as age, weight and 

genotype taken in to consideration (39). As tacrolimus has a narrow therapeutic window and 
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high inter- and intrapatient PK variability, TDM is mandatory for all SOTRs (40, 41). The 

recommendation of TDM of tacrolimus is rationalized by the correlation between tacrolimus 

blood concentration, primarily C0, and clinical outcomes (42, 43), and is strongly 

recommended by a large number of studies (42).  

1.3 Population pharmacokinetic modelling 

1.3.1 Population pharmacokinetics 

To analyse pharmacokinetic data both non-compartmental and compartmental analysis are 

relevant to use. Non-compartmental analysis is a simple method for evaluating key PK 

parameters and patient variability. The method does not rely on assumptions of the underlying 

model, is quick and can easily be automated. However, when only sparse data are available 

the method comes to short (44). Sparse data refers to data only containing C0 measurements, 

whilst rich data refers to data with drug concentration measurements drawn at least six to 

eight times during the same dose interval. 

Compartmental analysis is based on the body being divided into compartments, with the 

number of compartments being dependent on the number of exponential terms needed to 

describe the plasma concentration–time data. The model describes transportation rates and 

drug concentrations within the compartments which is result of mass transport, i.e., 

distribution between the compartments. Combined with associated covariates, a 

compartmental model can provide a greater insight into the data and improved predictability 

(45). Figure 2 shows an example of a two-compartment model for a drug.  
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Figure 2. A two-compartment model of a drug. The absorbed drug enters compartment one (X(1)). 
From X(1) the drug is either distributed to compartment two (X(2)) or eliminated from the 
compartment (K10). Ka, absorption rate constant; X(1), compartment one; K10, rate constant of 
elimination; K12, transfer rate constant from compartment one to compartment two; K21, transfer 
rate constant from compartment two to compartment one; X(2), compartment two. 

PopPK models use drug concentrations and covariates from multiple individuals within a 

population to describe the time course of drug exposure and inter- and intrapatient variability. 

PopPK can be used even with sparse data and does not require a strictly timed sampling 

schedule, as long as the exact dose- and sampling times are known (46-48). In addition, 

information of previous dosing intervals can be included to improve model predictions for the 

individual patients (48).  

In drug development, PopPK models have high utility in predicting PK aspects of drug 

candidates and is a useful tool in designing dosage recommendations. In the clinic, PopPK 

models can provide guidelines for individualised dosing based on population PK derived 

Bayesian estimates (49) that uses observed data to update the prior information in the model 

(48, 50, 51). The observed data are blood concentrations collected from the patient, often 

combined with other patient specific data as age or body weight, and the prior data is the 

distribution of PK parameters of a similar population of that to be studied (48).  

PopPK models can be based on either parametric or nonparametric methods. Parametric 

models assume that the population parameters come from a specified probability distribution 

described by other single-valued parameters as measures of central tendency, standard 

deviation or covariances. The parameter distribution is assumed to be the same for the whole 

population and is often normal or lognormal (47, 52). Parametric models can separate 

interpatient variability from intrapatient variability, but are not great for achieving a realistic 

description of populations that does not fit the model assumptions of distribution (52).   
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Unlike parametric models, nonparametric models make no assumptions about the model 

parameter distribution (47, 53).  This gives the model the ability to detect unanticipated 

outliers and subpopulations (47, 54). Nonparametric models are superior to parametric models 

in providing the distribution of parameter values for the population that has the highest 

probability of matching the true distribution, as illustrated in Figure 3. The statistical 

properties of nonparametric models make them relevant for designing precise individual 

dosage regimens (53). However, unlike parametric models, nonparametric models do not have 

the ability to separate interindividual variability from intraindividual variability (52).   

 
Figure 3. Illustration of true, nonparametric estimated and parametric estimated distribution of 
population parameter values in a population of non-normal distribution. Adapted from Jelliffe et al. 
(52). 

1.3.2 Pmetrics 

Pmetrics is an add-on package to R, a programming language and software for statistical 

computing and graphics (55),  designed for pharmacometric researchers. The package is used 

to perform non-parametric and parametric population pharmacokinetic modelling and 

simulation. 
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To estimate a distribution of the population parameters with the highest probability of 

accuracy Pmetrics creates a non-parametric mixed effects model using a calculation method 

called Non-parametric Adaptive Grid (NPAG) written in Fortran. The model created by 

NPAG consists of sets of discrete estimates for all parameters in the model with associated 

probabilities. Each set of estimates constitutes a support point.  Each subject in the study 

population can be explained by several support points, but the total amount of support points 

cannot exceed the total number of subjects (47, 54).  

NPAG determines the maximum likelihood matrix given the observed data provided, such as 

the measured drug concentration and drug dose, by searching for the most likely parameter 

values in a grid (47). A given number of grid points, based on the number of parameters in the 

model, are evenly distributed in the grid (54). However, this can be overruled by the user. 

Pmetrics then estimates probability values for each grid points. For each search low-

probability points are removed, and new grid points are added around the high-probability 

points that were not removed, called support grid points, before initiating a new search (47), 

as illustrated in Figure 4. When the increment in the maximum likelihood algorithms value in 

the last two cycles approaches 0, convergence is reached. When a predefined criterion for 

convergence is reached, the repetition of removing and adding grid points will cease. This 

implies that the parameter values of highest probability are found (47, 56, 57). 

 

Figure 4. Illustration of nonparametric adaptive grid. X represents the support points, and the circled 
X are the support points with the highest probability. Pmetrics calculates the probability of the 
support points in the grid. The low-probability points are removed, and only the points with the 
highest probability remains as support points. New support points are added around the remaining 
support points, and Pmetrics calculates the new probabilities. The iterating continues until Pmetrics 
have found the parameter values of highest probability, and convergence is reached. 
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Mixed effects model is a statistical model that includes random effects, which include 
pharmacokinetic parameters such as CL and Vd, and fixed effects which is an error model. 
The error model consists of two components representing the analytical error and extra 
process noise. The analytical error is described by standard deviation (SD). SD is estimated 
by the third-degree polynomial equation: 

𝑆𝐷 = 𝐶! + 𝐶" ∙ 𝑜𝑏𝑠 + 𝐶# ∙ 𝑜𝑏𝑠# + 𝐶$ ∙ 𝑜𝑏𝑠$ 

where obs is the observed concentration, obs2 is the observed concentration squared, obs3 is 
the observed concentration cubed, and the coefficients C0, C1, C2 and C3 are determined from 
analytical error in the local laboratory and fixed in the model (54, 58). A gamma or lambda 
function is included to describe additional process noise related to the observations and not a 
result of the analytical technique: 

𝐸𝑟𝑟𝑜𝑟 = 𝑆𝐷 ∙ 𝑔𝑎𝑚𝑚𝑎 

or 

𝐸𝑟𝑟𝑜𝑟 = /𝑆𝐷 ∙ 𝑙𝑎𝑚𝑏𝑑𝑎# 

The gamma function is multiplicative, and the lambda function is additive. Low gamma and 
lambda values that approximate 1 are considered high quality data (54, 58). 

As a minimum, a model file and a data file are required for Pmetrics to run NPAG. The data 
file is a comma-separated file (.csv). It must contain fixed patient data such as identification, 
dose, and serum concentrations as a minimum, and may also contain covariates, such as 
demographic data, genotypes and organ function. The model file is a text file containing 
information about the structural components of the model such as primary and secondary 
variables, covariates, differential equations and the error model (54).  

When a nonparametric run is performed, NPAG will search for optimal values within the 
intervals for the random parameter values set by the developer in the model file. Numerous 
combinations of different parameter boundaries are to be tested for each model contender to 
find the optimal estimated parameter values. Each time a change is made the model must be 
run again, making model development a time-consuming process.  

1.3.3 Tacrolimus population pharmacokinetic models 

Numerous PopPK models have been developed for tacrolimus (15). Previous studies have 

proven that the use of PopPK models to develop individual dosage regimens for tacrolimus 

increased the share of individuals with concentrations within the therapeutic window 

compared to standard TDM (38, 59). As tacrolimus PK parameter values tend to differ in 
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patients dependent on type of organ transplantation, PopPK models are often developed for a 

given population based on type of organ transplantation (18).  

Tacrolimus PopPK models have been presented for the paediatric population for different 

types of organ transplantation (60-82). However, the clinical use is limited. Several studies 

suggested that the starting dose of tacrolimus in renal transplants should be higher in patients 

with a lower bodyweight (62, 73, 74, 82) and CYP3A5-expressers (62, 69, 73, 74, 82). There 

is no data on successful extrapolation of an adult tacrolimus PopPK model to the paediatric 

population and the lower limit of age for which the adult model is valid.  

1.4 Aim of the study 
PopPK models are essential tools in adapting individual tacrolimus treatment. However, the 

clinical use of PopPK models in the paediatric population is limited and there is a lack of data 

on extrapolation of adult models to paediatric patients. The aim of this thesis was to optimize 

a tacrolimus PopPK model used for adult renal transplant recipients and extrapolate it to 

paediatric renal transplant recipients to determine the lower limit of age for when the adult 

model is still valid. 
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2 Materials and methods 

2.1 Computer hardware and software 
Due to the time-consuming process of running models and minor troubles with the software, 

the model development and validation were run on three computers, at times in parallel on 

two of them. Information about the computers used in this master’s thesis is presented in 

Table 2.  

The models were run using the add-on package Pmetrics (version 1.9.7) in the software R 

(version 4.1.2). The development environment RStudio (version 2021.9.2.382) was used 

when running R. For internal validation and creating plots, the add-on packages Tidyverse 

(version 2.0.0) and ggplot2 (version 3.4.2) were used.  

Table 2. Information about the processor, memory, and operating system of the computers used for 
model development and validation. Three different computers were used.  

 Processor Memory (RAM) Operating System 
Main computer: 
MacBook Pro 

1.4 GHz 
Quad-Core 
Intel Core i5 

8 GB  Apple macOS Ventura, 
Version 13.2 

Second computer: 
ASUS ZenBook 

2.3 GHz 
Intel Core 
i5-8300H  

16 GB  Windows 10 Home,  
Version 22H2 

Third computer: 
MacBook Pro 

2.3 GHz 
Quad-Core 
Intel Core i5 

8 GB Apple macOS Ventura, 
Version 13.2.1 

RAM, random-access memory. 

2.2 Population data  
The data used for model development, validation and extrapolation was obtained from adult 

and paediatric patients who underwent organ transplantation at Oslo University Hospital, 

Rikshospitalet, during the periods of 2011-2018 (40, 83-86) and 2013-2021 (87) respectively. 

The adult population data consisted of data from 136 patients from five clinical studies, 

ranging in age from 21 to 79 years (40, 83-86). The data was randomly split into two datasets: 

Development dataset consisting of 92 patients used for model development, and Validation 

dataset consisting of the remaining 44 patients used for external validation. 
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The paediatric patient data was obtained from the PedTac study, which began in 2013 with 

the aim of developing a PopPK model for personalized dosing of tacrolimus in paediatric 

transplant patients. Data from 64 patients, ranging in age from eight months to 18 years, was 

used. Of this 43 patients’ data were from renal transplantation, 17 from liver transplantation, 

and 4 from combined renal and liver transplantation. The data included information from 

early after transplantation, other hospitalization episodes, and annual follow-ups (87).  

All patients provided written informed consent for their data to be used in PopPK modelling, 

with patients younger than 16 years having their consent signed by next of kin. 

2.2.1 Preparation of the paediatric dataset 

The paediatric dataset contained both sparse and rich data. Some patients had registered 

observations of dosing and concentrations of up to a year. However, the observations came at 

large intervals, and there were more observations of doses than concentration measurements. 

For the Improved model to run on the dataset, the dataset had to be reduced to containing 

fewer observations. To datasets where made: one containing all observations, including sparse 

data, for each patient from 0 to 48 hours named the Paediatric dataset, and one containing 

only data with at least two tacrolimus measurements per dose interval named the Rich 

paediatric dataset. 

The paediatric population used four formulas of tacrolimus: Prograf®, dissolved Prograf®, 

Modigraf® and Advagraf®. As dissolved Prograf® and Modigraf® display similar properties 

as Prograf®, they were handled as Prograf® in the dataset.  

2.3 Model development 
Overall, the modelling process consisted of two main tasks. The first was to improve an adult 

PopPK model, hereby referred to as the New model, and the second was to extrapolate the 

improved model to work on the paediatric population. The New model originated from a 

previously developed model (88), hereby referred to as the Intermediate model. This is an 

improved model from the model currently in use at the clinic (89), hereby referred to as the 

Old model. The models are further described in sections 2.3.3-2.3.5.  
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The models were run in Pmetrics to estimate the distribution of the population parameters 

with the highest probability of accuracy. To do this, Pmetrics use a non-parametric mixed 

effects model; NPAG. NPAG is run by using the command NPrun(). After the run is 

completed, Pmetrics creates a R datafile containing several Pmetrics data objects. Pmetrics 

requires a model file and a data file to run NPAG.  

2.3.1 Model file 

The model file is a text file (.txt) containing information about the structural components of 

the model. It contains up to 11 blocks, where each block is marked by a hashtag (#) and a 

header. The models used in this master thesis contained the blocks #PRI, #COV, #SEC, #DIF, 

#F, #INI, #OUT and #ERR, as further described in Table 3. The order of the blocks is not 

important. However, the order of the covariates listed in #COV needs to be in the exact order 

of that in the input file. 

Table 3. Structural components of the model files used in this master’s thesis. The model file consists of 
blocks, each marked by a hashtag (#) and a header consisting of capital letters. 

Header Description 
#PRI Primary variables: model parameters that are to be estimated by Pmetrics or 

as fixed parameters with user specified values. 
#COV Covariates: subject specific data as specified in the input file, e.g., sex, 

weight, or haematocrit.  
#SEC Secondary variables: defined by equations that are combinations of primary 

variables and covariates, or other secondary variables.  
#DIF Differential equations: describing inputs and outputs of each compartment.  
#F Bioavailability: used to specify the bioavailability term 
#INI Initial conditions: used to specify the amounts in different compartments at 

time 0.  
#OUT Outputs: The tacrolimus concentration 
#ERR Error: describes the structure of the error model.  

 

2.3.2 Data file 

The data file is a comma-separated file (.csv). It must as a minimum contain fixed patient 

data, being the first 12 columns, and may also contain additional columns with covariates. 
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The order, capitalization, and names of the header of the fixed data are as presented in Table 

4. 

Table 4. Description of the fixed patient data in the data file showing the fixed order, capitalization, 
and names of the header. 

Header Description 
#ID A set of numbers or characters that identifies each individual. 
EVID Indicates type of event: 0 = observation; 1 = input; 4 = reset and input, all 

compartment values and time counter are reset to 0.   
TIME Elapsed time since the first event. The time is given in decimal hours.  
DUR The duration of an infusion. The duration is given in hours.  
DOSE The dose amount. 
ADDL The number of additional doses during interval II.  
II The interdose interval. 
INPUT Defines which input “DOSE” corresponds to. 
OUT The observation, e.g., measured concentration.  
OUTEQ Output equation number that corresponds to the “OUT” value, defined in 

the model file. 
C0, C1, C2, C3 The coefficients for the assay error polynomial for that observation. 

 

In addition to the fixed columns, the data file can also contain additional columns describing 

covariates such as demographic data, genotypes, and organ function. There are no 

requirements for the header names or order of the covariates, except that the order must be the 

same as in the model file. Figure 5 shows an extract of the data file used for model 

development.  

 
Figure 5. Extract of the data file used for model development. 
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2.3.3 Old model 

The Old model is the model currently in use at the clinic (89). The model was a three-

compartment model with absorption lag time (Tlag) and first order tacrolimus absorption. It 

was parameterized with apparent central clearance (CL/F), intercompartmental clearance 

(Q/F), central volume of distribution (Vd/F) and apparent peripheral volume of distribution 

(Vp/F). Variation in Tlag was described by time after transplantation (TXT) and fat-free mass 

(FFM). Haematocrit described variability in CL/F, Q/F, Vd/F and VP/F. CL/F, Q/F and Vp/F 

were allometrically scaled to FFM, and Vp/F was allometrically scaled to body mass index 

(BMI). FFM was calculated by using the formula: 

𝑀𝑎𝑙𝑒𝑠:										𝐹𝐹𝑀 =
𝑊𝑇 ∙ 9270

6680 + (216 ∙ 𝐵𝑀𝐼) 

𝐹𝑒𝑚𝑎𝑙𝑒𝑠:					𝐹𝐹𝑀 =
𝑊𝑇 ∙ 9270

8780 + (244 ∙ 𝐵𝑀𝐼) 

where FFM is fat-free mass in kg, WT is weight in kg and BMI is body mass index in kg/m2. 

The covariates included in the model were weight, height, sex, TXT, haematocrit, and steady 

state concentration. The error model included a lambda function.  

The Old model was based on data from 69 patients. During model development it was run on 

the Development dataset containing new rich data to see if it would improve the performance 

of the model.  

2.3.4 Intermediate model 

The Intermediate model is a model previously developed from the Old model (88). The model 

was adjusted to haematocrit and allometrically scaled to body surface area (BSA), calculated 

by the Du Bois formula (90). CYP3A5 genotype was added as a covariate and, in addition to 

TXT, used to describe CL/F. F was described by CYP3A5 genotype, TXT and type of 

tacrolimus formulation. Tlag was described by TXT and tacrolimus formulation. The 

absorption rate constant (ka) was described by type of tacrolimus formulation. FFM was 

calculated using a formula developed in renal transplant patients (91): 

𝑀𝑎𝑙𝑒𝑠:										𝐹𝐹𝑀 =
11.4 ∙ 𝑊𝑇
81.3 +𝑊𝑇 ∙ (1 + 𝐻𝐺𝑇 ∙ 0.052) ∙ (1 − 𝐴𝑔𝑒 ∙ 0.0007) 
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𝐹𝑒𝑚𝑎𝑙𝑒𝑠:					𝐹𝐹𝑀 =
10.2 ∙ 𝑊𝑇
81.3 +𝑊𝑇 ∙ (1 + 𝐻𝐺𝑇 ∙ 0.052) ∙ (1 − 𝐴𝑔𝑒 ∙ 0.0007) 

FFM is fat-free mass in kg, WT is weight in kg, HGT is height in cm and Age is in years.  

The covariates included in the model were number to identify the study the patient 

participated in, steroid dose, sex, weight, height, FFM, TXT, haematocrit, age, CYP3A5 

genotype, bioanalytical method, rich or not rich data, known or not known exact time of 

tacrolimus dosing and sampling, type of tacrolimus formulation, BMI, and BSA. The error 

model included a gamma function.  

2.3.5 New model 

Before the start of this master’s thesis, the Intermediate model was further developed to the 

New model. The New model was a five-compartmental model, as shown in Figure 6.  

 
Figure 6. A five-compartment model of tacrolimus. The model has to extra lag-compartments (X(4) 
and X(5)) to accord for the delayed absorption of Advagrafâ. The absorbed drug first enters 
compartment one (X(1)). From X(1) Prografâ is transferred to compartment two (X(2)). Advagrafâ is 
distributed between X(2), X(4) and X(5). The drug distributed to X(4) and X(5) is further transferred to 
X(2). From X(2) the drug is either distributed to compartment three (X(3)) or eliminated. X(1), 
compartment one; X(2), compartment two; X(3), compartment three; X(4), compartment four (lag-
compartment for Advagrafâ); X(5), compartment five (lag-compartment for Advagrafâ); Ka, 
absorption rate constant; K12, transfer rate constant from compartment one to compartment two; 
K14, transfer rate constant from compartment one to compartment four; K15, transfer rate constant 
from compartment one to compartment five; K42, transfer rate constant from compartment four to 
compartment two; K52, transfer rate constant from compartment five to compartment two; K23, 
transfer rate constant from compartment two to compartment three; K32, transfer rate constant from 
compartment three to compartment two; K20, rate constant of elimination.  



 
 

19 

It included the Heaviside step function (H(t)) instead of lag time. The Heaviside step function 

is a useful mathematical tool that allows for the modelling of sudden changes in a system. It is 

defined by  

𝐻(𝑡) = 0	𝑓𝑜𝑟	𝑡 < 0	𝑎𝑛𝑑	𝐻(𝑡) = 1	𝑓𝑜𝑟	𝑡 ≥ 0 

It appears only for a limited time period and vanishes outside this interval. It has no derivative 

at 0, and it’s not continuous (92).  

The Heaviside step function was added to depict the process of absorption in a realistic 

physiological manner. It was included in the description of the absorption from compartment 

1 to compartment 2, and the delayed absorption from compartments 4 and 5 to compartment 

2. Lambda was included in the function to create a gradual transition between the 

compartments. Lambda used for the Heaviside step function is hereby referred to as LAM to 

distinguish it from lambda used in the error model. LAM controls the amount of smoothing in 

the model. A larger value of LAM will result in a steep curve that resembles the use of lag 

time, while a smaller value of LAM will result in a flatter curve. 

The Heaviside step function is coded in Fortran and included in the model as  

𝐾%,' = 𝐾𝑎 ∙ R
1
2 ∙ S1 + 𝑡𝑎𝑛

("T𝐿𝐴𝑀 ∙ (𝑇 − 𝑇𝐷𝑂𝑆𝐸 − 𝑇𝑙𝑎𝑔%)W ∙
2
𝜋YZ 

where Ka,b is the limited time period for which the function appears, e.g., between 

compartment 1 and 2, Ka is the absorption rate constant of tacrolimus, LAM is the function of 

lambda, T is the relative time since the first dose of the patient, TDOSE is the time of the dose 

relative to first dose, and Tlaga is the absorption lag time.  

Type of tacrolimus formulation was used to describe Tlas, ka and intercompartment rate 
constants. F was described by formulation type and CYP3A5 genotype. Vd/F and differential 
equations for compartments 2 and 3 were allometrically scaled to BSA. The model was 
adjusted for haematocrit. All the covariates in the New model are presented in Table 5. The 
error model included a lambda function. The complete model files for the Old model, 
Intermediate model and New model are provided in Appendixes A-C. 
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Table 5. Description of the covariates in the New model. 

Header Description 
IC Initial condition. The measured trough concentration (C0) of tacrolimus. 

Equivalent to the steady-state concentration in the Old model. 
STU The study the patient participated in, identified by a number.  
STER Steroid dose in mg.  
M0F1 Sex of the patient. Male = 0, Female = 1.   
WTKG Weight in kilograms.  
HT Height in cm. 
FFFMES Fat-free mass in kg. 
TXT Time after transplantation in days. 
HCT Haematocrit in percent. 
AGE Age in years. 
CYP CYP3A5 genotype. 1 = CYP3A5 expresser, 0 = CYP3A5 non-expresser.  
ASY Bioanalytical method.  
FORM Formulation of tacrolimus. 1 = Prografâ, 2 = Advagrafâ.   
BMI Body mass index in kg/m2. 
BSA Body surface area in m2. 
TDOSE Time of dose administration relative to the first dose. 

 

2.3.6 Improvement of the New model 

The completed New model was the starting point of this master’s thesis. Testing of the model 

had shown that it was unstable when using data based on limited sampling strategy (LSS). To 

improve this, different values of LAM were tested. In the New model LAM was set to “0.1, 

100”. This means that for each patient the model will search for a value of LAM with a lower 

bound of 0.1 and an upper bound of 100. To improve the model different single values of 

LAM between 2 to 30 were tested. To do this LAM was set as a numeric value followed by 

“!”, and each value were tested on its own using the NPrun() command.  

The values of LAM that gave the best results were further tested for their performance when 

using a LSS and by external validation. The model that had the best results overall from 

internal validation, external validation and a LSS ended up as the final Improved model and 

was used for further analysis and extrapolation.  
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2.4 Model validation 
Model validation is a crucial step in PopPK modelling that involves assessing the accuracy 

and reliability of the model to ensure that it is fit for its intended purpose, such as making 

predictions in new patients (93). This is essential when selecting between multiple model 

candidates.  

Model validation allows for internal and external validation. Internal validation assesses the 

model’s performance on the same data used in the model development process, while external 

validation predicts response values for a new and unknown dataset. External validation 

provides a more realistic estimate of the model’s performance on a new cohort of patients. 

This helps to ensure that the model is not overfitting to the data used during model 

development and can be used to make predictions for new data. External validation is crucial 

when developing population pharmacokinetic models used as dose adjustment tools in a 

clinical setting (94).  

Model validation is a repetitive process that involves refining the model until an acceptable 

level of accuracy and reliability is achieved. This process may involve modifying the model 

structure, adding or removing covariates, or adjusting model parameters. 

2.4.1 Internal validation 

Internal validation was performed on each model after a run through the Development data. 

The percent root mean squared error of prediction (%RMSE), population and individual 

observed versus predicted (OP) plots, coefficient of determination (R2), weighted residuals 

plot by time and concentration, Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) were used in combination for internal validation of the models. In addition, 

individual time-concentration plots were investigated. %RMSE was the main validation 

metric, and decreased values of the metric weighted the most in the validation process in, 

supplemented with R2 and individual time-concentration plots. The PMcompare() command 

in Pmetrics was used to compare models.  
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2.4.2 External validation 

For external validation, the models were run with the Validation dataset, with the respective 

model as prior and no cycling. %RMSE, population and individual OP plots and R2 were 

examined for each model after the run.   

In addition, all the models were tested for their performance when using a LSS. The data used 

for LSS was from the Validation dataset. For the Old model, the best sampling times for LSS 

have been shown to be at 0, 1 and 3 hours after dosing for Prografâ, and so these times have 

also been used for Advagrafâ. These sampling times were used for testing all the models, 

including when testing all the models with altered LAM during model improvement. 

The final Improved model was further tested with different sampling times for LSS, with 

cycling applied, to find the optimal sampling times for both Prografâ and Advagrafâ. From 

previous studies different sampling times for LSS have been suggested for tacrolimus. The 

studies suggest different compositions of sampling times from 0, 1, 2, 3, 4 and 5 hours after 

dosing (95-99). Based on this, different compositions of three sampling times between 0 and 6 

hours after dosing were tested. The model was first tested on sampling times that were the 

same for Prografâ and Advagrafâ. Then the dataset was split in two, one for Prografâ and 

one for Advagrafâ. The split datasets were tested individually with several compositions of 

sampling times to find the optimal sampling times for each formulation. Then the sampling 

times proven best for each formulation were tested with the combined dataset. 

For runs with a LSS the %RMSE for the predicted (LSS) versus observed (Validation dataset) 

area under the plasma drug concentration–time curve (AUC) was calculated. AUC was 

calculated using the logarithmic trapezoidal rule on the simulated data using all measured 

concentrations for each individual. 

2.5 Extrapolation of the Improved model to the paediatric 
population 
The Improved model was run on the Paediatric dataset and the Rich paediatric dataset with no 

cycling. %RMSE, population and individual OP plots, R2 and plots of predictive error against 

age were examined. The model was also run on the Rich paediatric dataset without allometric 
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scaling to BSA to see how this would affect the results. This was done by changing BSA in 

the dataset to the same value used in the model file to centralize the parameter. 
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3 Results 

3.1 Population demographics 

3.1.1 Adult population 

Patient demographics for the adult population are provided in Table 6. The patient population 

mostly consisted of males who were non-expressers of CYP3A5 and using Prografâ. The 

average age of the patients was 52 years for the development dataset and 53 years for the 

validation dataset. The average dose of tacrolimus and prednisolone for both datasets were 3.5 

mg and 10 mg, respectively. The average number of tacrolimus concentration samples per 

patient was 11 for both datasets. TXT differed from 12 days to 16 years. Overall, the patient 

demographics were similar for the Development dataset and Validation dataset.  

Table 6. Demographics of the patients in the datasets used for development and validation of the adult 
models. Development dataset describes the demographics of the patients in the dataset used for 
development. Validation dataset describes the demographics of the patients in the dataset used for 
validation. The numbers show the average ± standard deviation unless otherwise stated.  

 Development dataset Validation dataset 
Patients (n) 92 44 
Age (years) 52 ± 14 53 ± 14 
Males (%) 79.3 79.5 
Weight (kg) 79.5 ± 15.5 80.1 ± 15.8 
Height (cm) 177 ± 9 176 ± 8 
BMI (kg/m2)† 25.4 ± 4.2 25.7 ± 4.3 
BSA (m2)‡ 1.96 ± 0.21 1.96 ± 0.21 
FFM (kg)§ 53.9 ± 8.3 54.0 ± 8.4 
Haematocrit (%) 38 ± 4 37 ± 4 
CYP3A5 expresser (%) 13.02 18.2 
Time after transplantation (days) 
(range)  540 (12, 3254) 531 (15, 5827) 

Tacrolimus formulation 
(Prografâ/Advagrafâ) (n) 60/32 33/11 

Trough concentration (µg/L) 5.8 ± 1.7 6.1 ± 1.9 
Tacrolimus dose (mg) (range) 3.5 (1, 15) 3.5 (1, 10) 
Tacrolimus concentration samples 
(n per patient) 11 ± 2 11 ± 2 

Prednisolone dose (mg) (range) 10 (2.5, 20) 10 (5, 15) 
BMI, body mass index; BSA, body surface area; FFM, fat-free mass; CYP3A5, cytochrome P450 3A5; 
† BMI was calculated by dividing body weight (kg) on the squared height (m2); ‡ BSA was calculated 
by using the Du Bois formula (90); § Fat-free mass was calculated by using a formula developed in 
renal transplant patients (91).  
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3.1.2 Paediatric population 

Patient demographics for the paediatric population at time of the first dose are provided in 

Table 7. The paediatric population was more evenly distributed between both sexes than the 

adult population. The average age of the patients was 11 years in both datasets. Most of the 

patients were non-expressers of CYP3A5. The average dose of tacrolimus and prednisolone 

was slightly higher in the Paediatric dataset. TXT differed from 7 days to 16 years in the 

Paediatric dataset and 7 days to 15.5 years in the Rich paediatric dataset.  

Table 7. Demographics of the patients in the datasets used for extrapolation to the paediatric 
population. The Paediatric dataset included all observations from time 0 to 48 hours. The Rich 
paediatric dataset contained only data with at least two tacrolimus measurements per dose interval. 
The numbers show the average ± standard deviation unless otherwise stated. 

 Paediatric dataset Rich paediatric dataset 
Patients (n) 108 79 
Age (years) 11 ± 5 11 ± 5 
Males (%) 55.6 51.9 
Weight (kg) 43.3 ± 21.7 41.1 ± 21.5 
Height (cm) 140 ± 29 137 ± 28 
BMI (kg/m2)† 20.5 ± 6.0 20.3 ± 6.3 
BSA (m2)‡ 1.28 ± 0.45 1.23 ± 0.44 
FFM (kg)§ 31.0 ± 14.9 29.3 ± 14.6 
Haematocrit (%) 36 ± 5 36 ± 4 
CYP3A5 expresser (%) 13.0 16.5 
Time after transplantation 
(days) (range)  1821 (7, 5949) 1802 (7, 5673) 

Trough concentration (µg/L) 5.1 ± 2.2 5.0 ± 2.4 
Tacrolimus dose (mg) (range) 3.5 (0.35, 12) 3.0 (0.35, 12) 
Tacrolimus concentration 
samples (n per patient) 2 ± 1 2 ± 1 

Dose events (n per patient) 1 1  
Prednisolone dose (mg) 
(range) 5.0 (0, 30) 3.5 (0, 20)  

BMI, body mass index; BSA, body surface area; FFM, fat-free mass; CYP3A5, cytochrome P450 3A5; 
† BMI was calculated by dividing body weight (kg) on the squared height (m2); ‡ BSA was calculated 
by using the Du Bois formula (90); § Fat-free mass was calculated by using a formula developed in 
renal transplant patients (91). 

 

 



 
 

26 

3.2 Model development 

3.2.1 Old model 

The Old model had a %RMSE of 19.3. When run on the new Development dataset %RMSE 

decreased to 6.7. AIC and BIC also decreased as shown in Table 8.  

Table 8. Results from the Old model and the Old model run on the Development dataset containing 
new rich data.  

 Old model Old model, new data 
%RMSE 19.3 6.7 
R2 0.94 0.99 
AIC 3008 2999 
BIC 3184 3053 

%RMSE, percent root mean squared error of prediction; R2, coefficient of determination; AIC, Akaike 
information criterion; BIC, Bayesian information criterion. 

Figure 7 shows population and individual OP-plots for the Old model (upper row) and the Old 

model run on new data (lower row). R2 of the individual OP-plot increased when the Old 

model was run on new data. However, R2 of the population OP-plot decreased. 
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Figure 7. Population (A) and individual (B) observed versus predicted (OP) plots for the Old model 
and population (C) and individual (D) OP plots for the Old model run on new data. R, coefficient of 
determination; p, probability. 

3.2.2 New model 

For the New model %RMSE was 5.7, R2 was 0.99, AIC was 2126 and BIC was 2214. 

%RMSE was decreased compared to the Old model. Figure 8 shows population and 

individual OP-plots for the New model. R2 of the individual OP-plot increased for the New 

model compared to the Old model, but was the same as for the Old model run on new data.  
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Figure 8. Population (A) and individual (B) observed versus predicted plots for the New model. R, 
coefficient of determination; p, probability. 

3.2.3 Improvement of the New model 

The New model was tested with different values of LAM between 2 to 30. The results of the 

runs are provided in Table 9.  
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Table 9. Results from model development of the New model with different values of lambda for the 
Heaviside step function. The table is arranged in ascending order from lowest to highest %RMSE.   

LAM %RMSE R2 AIC BIC 
22! 6.1 0.99 2571 2853 
23! 6.5 0.99 2734 2817 
18! 6.6 0.99 2794 2877 
20! 6.6 0.99 2777 2860 
30! 6.7 0.99 2742 2825 
17! 6.7 0.99 2785 2868 
19! 6.7 0.99 2853 2936 
13! 6.7 0.99 2844 2927 
26! 6.7 0.99 2743 2826 
27! 6.7 0.99 2731 2814 
16! 6.8 0.99 2803 2886 
29! 6.8 0.99 2811 2894 
12! 6.9 0.99 2889 2972 
21! 6.9 0.99 2857 2941 
28! 6.9 0.99 2793 2876 
14! 7.1 0.99 2845 2928 
9! 7.3 0.99 3008 3091 
8! 7.8 0.99 3058 3141 
11! 7.8 0.99 3215 3298 
7! 8.1 0.99 3215 3298 
6! 8.4 0.99 3216 3299 
5! 8.8 0.99 3339 3422 
10! 9.5 0.98 3527 3610 
25! 9.7 0.98 3569 3652 
24! 9.8 0.98 3554 3637 
15! 10.1 0.98 3554 3637 
4! 10.3 0.98 3731 3814 
3! 10.5 0.98 3766 3849 
2! 12.9 0.97 4177 4260 

LAM, lambda used for the Heaviside step function; %RMSE, percent root mean squared error of 
prediction; R2, coefficient of determination; AIC, Akaike information criterion; BIC, Bayesian 
information criterion. 

The values of LAM that gave the lowest %RMSE and AIC were “17!”, “18!”, “20!”, “22!”, 

“23!” and “30!”. These models, in addition to two models with a lower value of LAM (“9!” 
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and “13!”), were tested for their performance with a LSS with sampling times 0, 1, and 3 

hours after dosing, and external validation. Table 10 shows the result of these validation runs. 

The value of LAM that gave the best results overall on internal validation, external validation 

and with a LSS was “22!”. This is the final Improved model, and this was used further in the 

current analyses. 

Table 10. Results from the models with the best values of lambda for the Heaviside step function for 
external validation on the Validation dataset and with limited sampling strategy with sampling times 
0, 1 and 3 hours after dosing.   

 Validation dataset LSS 
LAM %RMSE R2 Sample times %RMSE AUC 

9! 15.7 0.96 0, 1, 3 12.3 
13! 17.7 0.96 0, 1, 3 10.9 
17! 19.7 0.96 0, 1, 3 11.5 
18! 19.3 0.96 0, 1, 3 10.6 
20! 18.2 0.96 0, 1, 3 35.0 
22! 16.1 0.96 0, 1, 3 10.2 
23! 15.9 0.96 0, 1, 3 25.9 

Sample times are in hours after dosing. LSS, limited sampling strategy; LAM, lambda used for the 
Heaviside step function; %RMSE, percent root mean squared error of prediction; R2, coefficient of 
determination; AUC, area under the plasma drug concentration–time curve. 

3.2.4 Final Improved model 

In the final Improved model lambda was set to “22!”. The model converged after 8865 cycles 

to 66 support points. %RMSE was 6.1, R2 was 0.99, AIC was 2571 and BIC was 2853.  AIC 

and BIC were increased from the New model. The result from the final Improved model is 

presented in Table 11 compared to the results of the Old model and the New model. %RMSE 

was decreased compared to the Old model and slightly increased compared to the New model. 

R2 was same as for the New model but decreased from the Old model.  

Table 11. Results from the Improved model compared to the Old model and the New model. 

 Old model New model Improved model 

%RMSE 19.4 5.7 6.1 

R2 0.94 0.99 0.99 
%RMSE, percent root mean squared error of prediction; R2, coefficient of determination. 
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Figure 9 shows population and individual OP-plots for the Improved model. The individual 

OP-plot presents a good outcome of R2 at 0.99. The population OP-plot displays a lower R2 at 

0.82.  

 

Figure 9. Population (A) and individual (B) observed versus predicted plots for the Improved model. 
R, coefficient of determination; p, probability. 

Figure 10 shows the distribution of weighted prediction error for time after dosing and for 

concentrations for the Improved model. The plot for prediction error by time shows linearity 

but has outliers at the beginning of the time course and non-constant variance. The plot for 

prediction error by concentration also shows linearity and several outliers at high 

concentrations. Both plots show some over- and underestimation made by the model, particularly 

at lower time courses and higher concentrations.  
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Figure 10. Distribution of weighted prediction error for time after dose (A) and for concentrations (B) 
for the Improved model. R, coefficient of determination; p, probability. 

Figure 11 shows individual time-concentration plots for three individuals from the 

Development dataset for Prografâ, and Figure 12 shows the plots for Advagrafâ. For both 

figures the plots at the upper row are from the Old model run on the Development dataset and 

the plots on the lower row are from the Improved model. The Old model tends to 

underestimate the predictions of the maximum concentration (Cmax). The Improved model 

shows improvement in the prediction of the concentrations compared to the Old model for 

both formulations.  
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Figure 11. Individual time-concentration plots for three individuals for Prografâ predicted by the 
Old model (upper row) and the Improved model (lower row). 
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Figure 12. Individual time-concentration plots for three individuals for Advagrafâ predicted by the 
Old model (upper row) and the Improved model (lower row).  

3.3 External validation of the Improved model 
The Improved model was run on the Validation dataset without cycling. %RMSE was 16.10 

and R2 was 0.96. Figure 13 shows population and individual OP-plots for external validation 

of the Improved model. %RMSE is increased from the final Improved model, and individual 

value of R2 are decreased. Population value of R2 is the same as for the final Improved model.  
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Figure 13. Population (A) and individual (B) observed versus predicted plots of the external 
validation of the Improved model. R, coefficient of determination; p, probability. 

The best sampling times for tacrolimus on the Old model when using LSS have shown to be 

at 0, 1 and 3 hours after dosing for Prografâ, and were also used for Advagrafâ with this 

model. LSS on the Old model gave a %RMSE for AUC of 13.1. The Old model run on the 

Development dataset resulted in a %RMSE for AUC of 12.4. Sampling times 0, 1 and 3 hours 

after dosing on the New model gave a %RMSE for AUC of 51.1. For the Improved model 

these sampling times resulted in a %RMSE for AUC of 11.5. The results are presented in 

Table 12.  

Table 12. Results from runs with limited sampling strategy on the Old model, Old model on new data, 
New model and Improved model. The sample times were 0, 1 and 3 hours after dosing for both 
Prografâ and Advagrafâ. 

 Sample times  %RMSE AUC 
Old model 0, 1, 3 13.1 
Old model, new data 0, 1, 3 12.4 
New model 0, 1, 3 51.1 
Improved model 0, 1, 3 10.2 

Sample times are in hours after dosing. %RMSE, percent root mean squared error of prediction; 
AUC, area under the plasma drug concentration–time curve. 
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3.3.1 LSS sampling times for the Improved model 

The final Improved model was tested with different sampling times for LSS to find the 

optimal sampling times for both Prografâ and Advagrafâ with the Improved model. An 

extract of the times tested, and the result of %RMSE of AUC are presented in Table 13. 

%RMSE of AUC was lowest at sampling times 0, 3 and 5 hours after dosing for Prografâ and 

0, 2 and 6 hours after dosing for Advagrafâ.  

Table 13. Results from runs using limited sampling strategy at different sampling times on the 
Improved model.   

Sample times Prografâ Sample times Advagrafâ %RMSE AUC 
0, 1, 3 0, 1, 3 10.2 
0, 2, 4 0, 2, 4 11.5 
0, 3, 5 0, 3, 5 8.1 
0, 2, 6 0, 2, 6 10.2 
0, 3, 5 0, 2, 6 5.0 

Sample times are in hours after dosing. %RMSE, percent root mean squared error of prediction; 
AUC, area under the plasma drug concentration–time curve. 

Table 14 shows the best sampling times of the Improved model and sampling times 0, 1, 3 

hours after dosing compared to the best sampling times of the Old model and the New model. 

%RMSE of AUC for the Improved model is greatly reduced from the New model, and from 

the Old model.  

Table 14. Results from runs with limited sampling strategy on the Old model, New model and 
Improved model. 

 Sample times 
Prografâ 

Sample times 
Advagrafâ 

%RMSE 
AUC 

Old model 0, 1, 3 0, 1, 3 13.1 
New model 0, 1, 3 0, 1, 3 51.1 
Improved model 0, 1, 3 0, 1, 3 10.2 
Improved model 0, 3, 5 0, 2, 6 5.0 

Sample times are in hours after dosing. %RMSE, percent root mean squared error of prediction; 
AUC, area under the plasma drug concentration–time curve. 

Figure 14 shows individual time-concentration plots for three individuals from LSS of 

Prografâ from the Old model using sampling times 0, 1 and 3 hours after dosing (middle 

row) and the Improved model using sampling times 0, 3 and 5 hours after dosing (lower row), 
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compared to observed concentrations (upper row). Both models show underestimation of 

higher concentrations for Prografâ. The Improved model provides slightly better prediction 

of the concentrations at the later times of the dosing interval.  

 
Figure 14. Individual time-concentration plots for three individuals for Prografâ predicted by the 
Old model using sampling times 0, 1 and 3 hours after dosing (middle row) and the Improved model 
using sampling times 0, 3 and 5 hours after dosing (lower row), compared to observed concentrations 
(upper row). 
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Figure 15 shows individual time-concentration plots for three individuals from LSS of 

Advagrafâ from the Old model using sampling times 0, 1 and 3 hours after dosing (middle 

row) and the Improved model using sampling times 0, 2 and 6 hours after dosing (lower row), 

compared to observed concentrations (upper row). The plots show that both the Improved 

model and the Old model over- and underestimates the concentrations for Advagrafâ. The 

Improved model overestimates the Cmax more often than the Old model, and the Old model 

more often underestimates the concentrations at the later times of the dosing interval. 
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Figure 15. Individual time-concentration plots for three individuals for Advagrafâ predicted by the 
Old model using sampling times 0, 1 and 3 hours after dosing (middle row) and the Improved model 
using sampling times 0, 2 and 6 hours after dosing (lower row), compared to observed concentrations 
(upper row). 
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3.4 Extrapolation of the Improved model to the paediatric 
population 
The Improved model was run on the datasets from the paediatric population without cycling. 

In addition, the Old model was run on the same datasets without cycling for comparison. The 

results are presented in Table 15. %RMSE was lower for the Old model than the Improved 

model on both datasets. For both models %RMSE was lower for the Rich paediatric dataset 

than the Paediatric dataset.  

Table 15. Result from the extrapolation of the Old model and the Improved model to the paediatric 
population. The Paediatric dataset included all observations from time 0 to 48 hours. The Rich 
paediatric dataset contained only data with at least two tacrolimus measurements per dose interval. 

 Old model Improved model 
Paediatric dataset   
%RMSE 31.1 44.8 
R2 0.79 0.66 
Rich paediatric dataset   
%RMSE 27.7 37.5 
R2 0.83 0.76 

%RMSE, percent root mean squared error of prediction; R2, coefficient of determination. 

Figure 16 shows individual OP plots for the Old model (upper row) and the Improved model 

(lower row) run on the Paediatric dataset and the Rich paediatric dataset. R2 was higher for 

the Old model than the Improved model on both datasets, and higher for the Rich paediatric 

dataset than for the Paediatric dataset.   
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Figure 16. Individual observed versus predicted plots for the Old model on the Paediatric dataset (A) 
and the Rich paediatric dataset (B), and for the Improved model on the Paediatric dataset (C) and the 
Rich paediatric dataset (D). R, coefficient of determination; p, probability. 

Figure 17 shows plots of mean individual prediction error against age and the RMSE against 

age for the Improved model on the Rich paediatric dataset. The plots show that there is no 

pattern in the prediction error or RMSE against age, and there is no indication that the error 

decreases with higher age. 
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Figure 17. Plots of mean individual prediction error (μg/L) against age (A) and the RMSE (µg/L) 
against age (B) for the Improved model on the Rich paediatric dataset. The dotted line in both plots 
shows the average error. RMSE, root mean squared error of prediction.  

The result from the Improved model run on the Rich paediatric dataset without allometric 

scaling to BSA is presented in Table 16 compared to the run with allometric scaling. For the 

Improved model run on the Rich paediatric dataset without allometric scaling %RMSE was 

35.1 and R2 was 0.74. Both %RMSE and R2 are slightly decreased from the run on the dataset 

with allometric scaling.  Figure 18 shows individual OP plots for the Improved model with 

and without allometric scaling to BSA. 

Table 16. Result from the extrapolation of the Improved model to the Rich paediatric dataset with and 

without allometric scaling to body surface area. 

 Allometric scaling to BSA No allometric scaling to BSA 
%RMSE 37.5 35.1 
R2 0.76 0.74 

BSA, body surface area; %RMSE, percent root mean squared error of prediction; R2, coefficient of 
determination.   
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Figure 18. Individual observed versus predicted plots for the Improved model with allometric scaling 
to body surface area (A) and without allometric scaling (B). BSA, body surface area; R, coefficient of 
determination; p, probability. 

Figure 19 shows plots of mean individual prediction error against age for the Improved model 

with and without allometric scaling to BSA. The plots show some, but not great improvement 

in the prediction for the model without allometric scaling. Where the model with allometric 

scaling tend to overestimate, the model without allometric scaling seems to be 

underestimating some more. Overall, the model without allometric scaling seems to 

underestimate for the lower ages and overestimate for the higher ages.  

 
Figure 19. Plots of mean individual prediction error against age for the Improved model with allometric 
scaling to body surface are (A) and without allometric scaling (B). The dotted line in both plots shows 
the average error. BSA, body surface area.  
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4 Discussion 
In this thesis a nonparametric mixed-effects tacrolimus PopPK model for adult renal 

transplant recipients was further developed and improved. The Improved model, a five-

compartment model including the Heaviside step function with a fixed LAM, was attempted 

extrapolated to the paediatric population. The Improved model displayed a good predictability 

of tacrolimus concentrations in the adult population. However, extrapolation to the paediatric 

population did not display adequate prediction abilities. 

4.1 Nonparametric modelling approach 
A nonparametric approach was chosen for the modelling. A parametric model has the ability 

to separate interpatient variability from intrapatient variability, but it assumes that the 

parameter distribution is the same for the whole population and often normal or lognormal 

(47, 52). It is not able to efficiently detect unanticipated subpopulations that may affect the 

PK properties of the drug as a nonparametric model does. A nonparametric model can provide 

an improved description of the true distribution of parameters, detect unexpected 

subpopulations (47, 54) and are relevant for designing precise individual dosage regimens 

(53). For these reasons, a nonparametric approach was chosen.  

4.2 Model development 

4.2.1 Inclusion of the Heaviside step function and fixed LAM 

The Old model with lag time had a good prediction of C0. However, the time-concentration 

plots show that the model’s prediction of the Cmax is suboptimal as it often tends to be 

underestimated. As a result, the model’s prediction of AUC might be improved. The model’s 

description of the absorption phase was identified as a possible point of improvement.  

The Heaviside step function was included instead of lag time in the New model to describe 

the absorption phase. Lag time is commonly used in PopPK modelling for describing the 

delay in absorption of tacrolimus. Whereas lag time provides a lag phase followed by a 

constant rate of absorption, the Heaviside step function can capture more complex absorption 

patterns. The Heaviside step function can be modified and optimized to fit individual patient 
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data, accounting for inter-individual variability in drug absorption, and provide a gradual 

transition between the compartments. Advagraf exhibits a complex absorption profile that is 

characterized by an initial lag phase followed by a rapid increase in plasma concentration, and 

then a gradual decrease over time. The traditional lag time model cannot fully capture this 

behaviour, as it assumes a constant rate of absorption following the lag phase. The Heaviside 

step function in combination with transit compartments provides a more physiological 

representation of drug absorption by allowing for a gradual absorption and transition between 

the compartments.  

LAM was included in the Heaviside step function to control the amount of smoothing in the 

model. In the New model LAM was not set as a fixed value which allowed for the model to 

search for a value of LAM for each individual. This led to an over-parameterized model. As a 

result, the model performed poorly on LSS data.  

During model improvement values of LAM from 2 to 30 were tested. As a large value of 

LAM will provide a steep curve that resembles the use of the standard lag time, no values 

higher than 30 were tested. The models with the lower values of LAM performed poorly on 

the internal validation. External validation and runs with LSS of the models with different 

fixed values of LAM showed inconsistent results. There was no clear pattern in the results 

with increasing value of LAM, and the values of LAM that performed best on external 

validation did not necessarily do best with LSS.  

In the final Improved model LAM was set to “22!”. This means that instead of estimating an 

individual value of LAM for each patient, the model sets the value of LAM to 22 for all 

patients. Setting the value of LAM to “22” without an exclamation point (!), which makes the 

model estimate the value of LAM starting at 22, was also tested, but resulted in the computer 

not being able to run the model.  

The time-concentration plots for the Improved model shows how it better predicts the Cmax for 

both formulations compared to the Old model on the Development dataset. The inclusion of 

additional lag compartments for Advagrafâ in the model resulted in a more jagged curve that 

closely follows the data. For LSS the Improved model provided a slightly better prediction of 

the later times of the dosing interval for Prografâ. For LSS of Advagrafâ the Improved 

model tended to overestimate the Cmax whereas the Old model underestimated the 

concentrations at the later times of the dosing interval. 
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4.3 External validation 
Due to lack of an independent validation cohort, the adult population dataset was randomly 

split in two to create the datasets for model development and validation. Although the dataset 

used for external validation did not include the same patients as the dataset used for 

development it does not provide a complete external validation as the data is derived from the 

same sampling as the dataset used for training the model.  

4.4 Extrapolation of the Improved model to the paediatric 
population 
Previous extrapolation of the Intermediate model to paediatric renal transplant recipients 

showed promising results (88). However, extrapolation of the Improved model to the 

paediatric population displayed poor prediction abilities. The paediatric population have a 

greater proportion of intrapatient variability compared to the adult population, in addition to a 

higher Vd and CL (32-34), and therefore this was somewhat expected. However, the 

promising results of the extrapolation of the Intermediate model (88) and the inclusion of rich 

data in the Improved model which allowed for a better description of the PK properties of the 

drug, raised hope for a more successful extrapolation.  

The poor results of the extrapolation can be due to that the model was trained on an adult 

population with different PK properties of tacrolimus than the paediatric population. In 

addition, the paediatric population was more heterogeneous than the adult population which 

may also have impacted the model's accuracy. One could argue that because of these 

differences a model for the paediatric population should be developed on data from the 

population for which it is intended to be used. However, due to limited available rich 

paediatric data it would be difficult to develop a model with detailed description of the PK 

properties. The lack of rich paediatric data may also be a reason for the poor results of the 

extrapolation. The Rich paediatric dataset contained only data with at least two tacrolimus 

measurements per dose interval. Some of the paediatric patients had only one measurement 

per dose interval and were therefor excluded from the dataset. Due to this, the Rich paediatric 

dataset included less data. In addition, although the dataset was named Rich paediatric 

dataset, the average number of tacrolimus samples per patient was 2, meaning it for most of 

the patients did not actually contain rich data, defined as 6-8 samples per dose interval. 
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Overall, the extrapolation of the Improved model did not provide adequate predictions, and 

there was no indication that the performance of the model in the youngest patients was worse 

than in the older patients in the paediatric population. Consequently, it was not possible to 

determine the lower limit of age for when the adult model is still valid.  

4.4.1 Effect of allometric scaling to body size 

It is common for the paediatric population to have a much wider relative range in body size 

than adults in PK studies, and so allometric scaling to BSA was added to the model to adjust 

for the differences in body size between the populations. Allometric scaling can prevent PK 

parameters that normally are functions of body size, such as CL and Vd, and other important 

covariates from being masked by the effect of body size (36, 100). Earlier developed 

paediatric tacrolimus PopPK models for renal transplant recipients (62, 72-74, 81, 82), liver 

transplant recipients (60, 61, 65, 67, 71, 76, 79, 80, 101, 102), hematopoietic stem cell 

transplant recipients (64, 66, 77, 103, 104) and patients with lupus nephritis (105) often 

includes body size scaling. 

However, as mentioned earlier the relationship of CL and weight for tacrolimus in children is 

not linear (24, 32) and as allometric scaling to body size assumes that CL is proportional to 

body size this might not be an optimal solution for tacrolimus. Successful paediatric PopPK 

models for tacrolimus without the inclusion of body size have been developed (63, 78, 106, 

107). Also, previous testing of tacrolimus PopPK models at the renal transplant centre at the 

Oslo University Hospital, Rikshospitalet indicated that a model not allometrically scaled to 

body size may be superior in the paediatric population compared to a model adjusted to body 

size. However, the results in this master’s thesis from the extrapolation of the Improved 

model without allometric scaling to BSA did not display an outstanding improvement of the 

results compared to the extrapolation with allometric scaling.  

4.5 Future perspectives 
The inclusion of fixed LAM in the Heaviside step function improved the model’s 

performance on LSS. However, the individual time-concentration plots show that the model 

tends to both over- and underestimate. There are no available publications on the 

implementation of the Heaviside step function to describe the absorption of tacrolimus. 
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Before the model can be used in the clinic further investigation of the effect of the Heaviside 

step function and different values of LAM is needed.  

The testing of the optimal sampling times for LSS for the Improved model found different 

sampling times for Prografâ and Advagrafâ. The Old model, currently in use at the clinic, 

uses the optimal sampling times found for Prografâ for both formulations. The findings in 

this master’s thesis might suggest that further testing of the optimal sampling times for 

Advagrafâ might improve the model’s performance with a LSS.  

The Improved model did not provide reliable predictions for the paediatric population. The 

model needs further testing and improvement before being implemented in the clinic. In 

addition, further improvement and testing of the model is necessary before establishing the 

effect of allometric scaling on the paediatric population. Although the findings of this thesis 

might indicate an improvement of the model when not including allometric scaling. Future 

testing of extrapolation to the paediatric population should ideally involve rich paediatric 

data. This could possibly improve the performance of the model substantially.  
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5 Conclusion 
In this thesis, the improvement of a PopPK model for tacrolimus resulted in a model with 

better performance when applied to a LSS for estimating AUC. The Improved model was not 

successfully extrapolated to the paediatric population. There was no indication that the 

performance of the model in the youngest patients was worse than in the older patients in the 

paediatric population. Consequently, it was not possible to determine the lower limit of age 

for when the adult model is still valid. Further improvement of the model is necessary before 

it can be implemented in the clinic for paediatric patients. The extrapolation of the model 

without using allometric scaling to body size showed some improvement of the model and 

might indicate that a model without allometric scaling could be more beneficial in the 

paediatric population. Before the effect of allometric scaling can be fully established, further 

testing of an improved model is needed.  
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Appendixes 
Appendix A: Model file for the Old model 
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PRI, primary variables; Ka, estimated absorptions rate constant; V0, estimated volume of 
distribution; CL0, estimated value of clearance; Q0, estimated intercompartmental clearance; Vp0, 
estimated peripheral volume of distribution; Tlag1, Tlag2, Tlag3; estimated absorption lag times for 
three different periods of time after transplantation; A2, drug present in compartment before 
administered dose; FA0; estimated value of bioavailability; COV, covariates; WT, weight in kg; TXT, 
time after transplantation in days; HCT, haematocrit; SSCONC, steady-state concentration; HGT, 
height in cm; SEC, secondary variables; BMI, body mass index; FFMf, fat-free mass in kg for 
females; FFM, fat-free mass in kg for males; FFMc, fat-free mass formula; BMIc, body mass index 
formula; HCTc, haematocrit formula; CL, clearance; Q, intercompartmental clearance; VP, 
peripheral volume of distribution; V, volume of distribution; KE, elimination rate constant; KCP, 
transport rate constant from central compartment to peripheral compartment; KPC, transport rate 
constant from peripheral compartment back to central compartment; INI, initial conditions; X(2), 
X(3), amount in compartments 2 and 3 at time 0; F, bioavailability; FA(1), bioavailability formula; 
LAG, lag time; TLAG, absorption lag time; OUT, outputs; ERR, error; L, lambda. 
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Appendix B: Model file for the Intermediate model 
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PRI, primary variables; Ka1, estimated absorptions rate constant for Prograf®; Ka2, estimated 
absorptions rate constant for Advagraf®; CL0, CL1, CL2, estimated values of clearance for different 
periods of time after transplantation; Q0, estimated intercompartmental clearance; V0, estimated 
volume of distribution; Vp0, estimated peripheral volume of distribution; Tlag1, Tlag2, Tlag3; 
estimated absorption lag times for three different periods of time after transplantation; TlagAdva, 
estimated absorption lag time for Advagraf®; F1, F2, F3, estimated values of bioavailability for three 
different periods of time after transplantation; Fadva, estimated value of bioavailability for 
Advagraf®; CypF, estimated effect of CYP3A5 genotype on bioavailability; CypCl, estimated effect of 
CYP3A5 genotype on clearance; COV, covariates; STU, the study the patient participated in identified 
by a number; STER, steroid dose in mg; M0F1, sex of the patient, 0=male, 1=female; WTKG, weight 
in kg; HT, height in cm; FFMES, fat-free mass in kg; TXT, time after transplantation in days; HCT, 
haematocrit; AGE, age in years; CYP, CYP3A5 genotype, 1=expressor of active CYP3A5, 0=non 
expressor; ASY, bioanalytical method; RICH, = rich data defined as 3 or more samples taken within 
the same dosing interval, 0=not rich data; EXACT: 1=the exact time for the previous tacrolimus 
dosing and the following blood samplings are known, 0=the exact time is unknown; FORM, type of 
tacrolimus formulation, 1=Prograf®, 2=Advagraf®; BMI, body mass index in kg/m2; BSA, body 
surface area in m2; SEC, secondary variables; CL, clearance; Q, intercompartmental clearance; V, 
volume of distribution; KE, elimination rate constant; KCP, transport rate constant from central 
compartment to peripheral compartment; KPC, transport rate constant from peripheral compartment 
back to central compartment; Ka, absorption rate constant; F, bioavailability; FA(1), bioavailability 
formula; LAG, lag time; TLAG, absorption lag time; OUT, outputs; CU, unbound tacrolimus 
concentration; BMAX, constant for tacrolimus binding to red blood cells; KD, association constant; 
CB, bound tacrolimus concentration; CONC, whole blood tacrolimus concentration; ERR, error; G, 
gamma. 
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Appendix C: Model file for the New model 
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PRI, primary variables; Ka1, estimated absorptions rate constant for Prograf�; Ka2, estimated 
absorptions rate constant for Advagraf®; LAM, lambda used for the Heaviside step function; K14a, 
estimated transport rate constant from compartment 1 to 4 for Advagraf�; K15a, estimated transport 
rate constant from compartment 1 to 5 for Advagraf®; K23, estimated transport rate constant from 
compartment 2 to 3; K32, estimated transport rate constant from compartment 3 to 2; K20, estimated 
elimination rate constant; V0, estimated volume of distribution; Tlag1a, estimated absorption lag time 
for Advagraf® from compartment 1 to 2; Tlag1p, estimated absorption lag time for Prograf® for 
compartment 1 to 2; Tlag2a, estimated absorption lag time for Advagraf® for compartment 4 to 2; 
Tlag3a, estimated absorption lag time for Advagraf® for compartment 5 to 2; F1, estimated value of 
bioavailability for Prograf®; Fadva, estimated value of bioavailability for Advagraf®; CypF, 
estimated effect of CYP3A5 genotype on bioavailability; CypCl, estimated effect of CYP3A5 genotype 
on clearance; COV, covariates; IC, initial condition, equivalent to steady-state concentration; STU, 
the study the patient participated in identified by a number; STER, steroid dose in mg; M0F1, sex of 
the patient, 0=male, 1=female; WTKG, weight in kg; HT, height in cm; FFMES, fat-free mass in kg; 
TXT, time after transplantation in days; HCT, haematocrit; AGE, age in years; CYP, CYP3A5 
genotype, 1=expressor of active CYP3A5, 0=non expressor; ASY, bioanalytical method; FORM, type 
of tacrolimus formulation, 1=Prograf®, 2=Advagraf®; BMI, body mass index in kg/m2; BSA, body 
surface area in m2; TDOSE, time of dose administration relative to first dose; SEC, secondary 
variables; V, volume of distribution; Ka, absorption rate constant; Tlag1, absorption lag time; K12, 
absorptions rate constant from compartment 1 to 2; K42, transport rate constant from compartment 4 
to 2; K52, transport rate constant from compartment 5 to 2; K14, transport rate constant from 
compartment 1 to 4; K15, transport rate constant from compartment 1 to 5; DIF, Differential 
equations; XP(1), XP(2), XP(3), XP(4), XP(5) inputs and outputs of compartment 1, 2, 3, 4 and 5; F, 
bioavailability; FA(1), bioavailability formula; INI, initial conditions; X(2), X(3), amount in 
compartments 2 and 3 at time 0; OUT, outputs; CU, unbound tacrolimus concentration; BMAX, 
constant for tacrolimus binding to red blood cells; KD, association constant; CB, bound tacrolimus 
concentration; CONC, whole blood tacrolimus concentration; ERR, error; L, lambda. 
 


