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Abstract 

The S1 (Sentinel 1) and S2 (Sentinel 2) missions use high-resolution satellite imagery to map 

the land surface over large swaths. With a minimum 5-day and 6-day repeat time, imagery over 

earths land can be quickly obtained in S1 synthetic aperture radar imagery and S2 optical 

imagery. Used for a wide range of studies, the S1 and S2 missions have recently been applied 

to flood inundation mapping. With a global presence and high degree damage potential of a 

flood, studies on satellite flood mapping are important to investigate. Based on this, the thesis 

proposes a flood mapping method on the powerful cloud processing platform Google Earth 

Engine (GEE). Methodology for the thesis is presented on two cases in Norway: a rain flood in 

Stjørdalen and a snowmelt flood in Sunndal. The third case study was a monsoon flood in 

Layyah, Pakistan. Gathered data products of S1 and S2 were initially filtered to enhance and 

improve quality, then visualized in different polarizations in S1 and calculated in indices in S2, 

before a flood masking map finally was created. Additional data were gathered from a DSM 

(Digital Surface Model) where misclassifications from terrain could be corrected. Each study 

area experienced problems. Clouds were present in Stjørdalen and Layyah, concealing flooded 

areas in S2 imagery. Snow cover could lead to flood misclassification in Stjørdalen. Different 

concentrations of suspended sediments found in the floodwaters of Layyah made detection of 

flood difficult in some areas. Sunndal proved small scale changes in flood could be hard to 

detect in S1 imagery due to speckle filtering options. Despite the challenges, this study found 

that implementing reference stacks, pixel and elevation masking and detection type 

comparisons significantly improved flood detection using S1 and S2 data. The results suggest 

that optical and SAR-based flood inundation mapping can provide valuable support in detailing 

flooded areas. 
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1. Introduction: Floods  
 

Caused by overflowing of rivers, lakes or coastal waters, floods can cover vast areas and inflict 

damage to infrastructure and loss of life. Flooding is a widespread disaster type, occurring in 

both cold polar and warm tropical regions. Between 2000 and 2019, the most occurring natural 

disaster was flooding (Mizutori et al. 2020). With a reported 3254 events and affecting 1.6 

billion people, flooding amounts to 44 % of all disaster events in the last two decades. Caused 

by a variety of events, such as snowmelt, rain, coastal flooding, ice jams and dam breaks, 

flooding varies in both size and duration (Roald, 2021).  

In Norway, floods occur in rivers seasonally. During spring, floods caused by snowmelt are 

prominent in the mountainous and inner parts of Norway (Roald, 2021). Snowmelt could 

initiate from rain, solar radiation or warm winds where the change in temperature could happen 

over a small or large area. Not all floods occur seasonally, such as rain floods for example, and 

these are more difficult to predict. Rain floods are a common flood type. They are often 

categorized based on duration and intensity. While some rain floods last for weeks, the shortest 

floods occur over a one-day period. Caused by high-intensity precipitation, the most intense 

short duration floods are referred to as flash floods (Merz et al. 2003). Long rain floods can be 

caused by low intensity precipitation, but occurs over several days to weeks. A long rain flood 

can cover a large area and it will often saturate the catchment and cause serious high-cost 

damages. This was seen in Southern Norway in 2017, when a long rain flood caused 500 million 

NOK in damages (Langsholt et al. 2017). In some instances, floods are caused by both rainfall 

and snowmelt, a destructive combination which can lead to large floods. In Norway, large 

historical floods, such as Storflaumen in 1860 and Vesleofsen in 1995, were generated by rain 

and snowmelt. This resulted in some of the highest flood levels ever recorded in the Lågen and 

Glomma River (Bogen et al. 2016).  

Some of the most intensive and spatially extensive floods in the world are caused by monsoons. 

Found in tropical regions, monsoons are seasonal weather patterns where winds and 

precipitation persist for a long period, during which the landscape changes completely. Regions 

affected by monsoons will usually have a dry season, followed by a wet season where average 

rainfall varies from year-to-year and could lead to large scale floods (Goswami et al. 2007). 

Two of the deadliest floods in the last decade were a result of heavy monsoon rains. Occurring 
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in Pakistan in 2010 and North India in 2013, the floods led to a death toll of 1985- and 6054 

people, respectively (Mizutori et al. 2020).  

Future predictions of the global hydrological cycle reveal a likely wetter and more flood prone 

world (Hanssen-Bauer et al. 2017). Stemming from an increase in global average temperature, 

the severity and frequency of future floods vary globally, based on the coming changes in 

greenhouse gas over the next 100 years (Alfieri et al. 2017).  In Norway, future changes in flood 

magnitude varies regionally, with Western Norway being prone to increased flood magnitude. 

Eastern and Northern Norway will likely experience a decrease (Figure 1) (Hanssen-Bauer et 

al, 2017). These changes are based on medium (RCP 4.5) and worst case (RCP 8.5) scenarios 

for global average temperature increase.  

 

 

Figure 1: Percentage change of 200- year floods in Norway for RCP 4.5 and RCP 8.5. Blue colour shows increase in flood 

magnitude and green colour shows a reduction. Source: Hanssen-Bauer et al, 2017. 
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1.1 Motivation: Flood Emergency Response 

Although dangerous, flooding is not described as a hazard, unless it involves loss of human 

lives, economic damages or other losses. Floods are most commonly hazardous around rivers 

and on floodplains. In China, the Yangtze River is populated by 75 million people and in 

Bangladesh, over 110 million people live on floodplains (Smith, 2013). In such areas, built in 

mitigation such as levees, drainage systems and reinforced buildings are ways to mitigate 

damages and loss of lives. However, mitigations are only effective to a maximum flood size, 

and in the event of a larger flood, the measures would lose its effect and impact on reducing 

hazard. Furthermore, in countries lacking financial resources, high quality mitigations are too 

costly. This leads to either no mitigation or poorly regulated construction practices (Smith, 

2013).   

Adaption is a second tool to reduce loss of life. Adaptation can be forecasting, land use planning 

and prepared response systems. One of the newest technologies developed for flood response, 

is spaceborne earth observations with satellite sensors. Satellites has worldwide coverage, and 

allow for aid in rescue operations by e.g., finding open roads and mapping affected 

infrastructure. While some of the satellites monitor the atmosphere or ocean, others such as 

Landsat 8 (L8), Sentinel 1 (S1), and Sentinel 2 (S2), map the land surface, making useful tools 

in flood monitoring. S1 is equipped with a Synthetic Aperture Radar (SAR), which is a 

detection system used to examine earth’s surface using antennas that transmit and receive light 

and electromagnetic (EM) signals. The S1 radar can penetrate cloud cover and map the 

underlying ground. Since clouds often covers inundated land during a flood, the cloud 

penetrating capability of S1 makes it a great tool in flood detection. S2 and L8 on the other 

hand does not penetrate cloud cover, but instead rely on optic sensing. This method allows for 

different detection methods in visible and near infrared wavelengths, where specific ground 

surface features can be enhanced by use of colour and wavelength comparisons and difference 

enhancements.  

New methods for mapping floods with satellite imagery are steadily developed where old ways 

of capturing images are replaced with faster and more powerful tools. A state-of-the-art method 

in flood mapping have been used in the powerful cloud processing platform Google Earth 

Engine (GEE). GEE is an open access cloud platform used to process satellite data where 

features, trends and changes on earth’s surface and atmosphere are analysed (Gorelick et al. 

2017). Being one of the world’s largest archives of satellite data, GEE offers a way of quickly 

processing large datasets, with petabytes of data from the last forty years available.  
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1.2 Research Question 

Satellite systems bring a great potential in detecting floods, and with ongoing improvements 

and advances in flood monitoring, this thesis investigates the effectiveness of flood detection 

using both S1 SAR and optical S2 images. Processing of data was done in GEE. Generated 

SAR and optical images of flooded areas were then compared with each other. Flooded areas 

were visualised and automatically detected by use of automatic flood mask method. Flood 

masks were produced and optimized by use of different methods, which include, digital surface 

model (DSM) masking, image stacks, normalized difference water index, and ratio. The 

visualization and detection of floods, were tested on three different study areas affected by 

different flood types. The study areas included a mountainous region in Norway, a valley area 

in Norway, and a flood prone plain in Pakistan, each with distinct terrain features and flood 

types that posed unique challenges to flood detection. The following research questions were 

asked:  

1. How do different terrain features and flood types affect the accuracy of flood detection 

using SAR and optical images? 

2. What are the strengths and limitations of flood detection using SAR and optical images 

in each study area?   

3.  How can the flood mask and optimization techniques be used to improve the accuracy 

of flood detection in different terrain types? 

 

 

 

2. Study Areas 

In this chapter, historical and descriptive background for each study area is presented. Two of 

the floods selected occurred in Norway; a snowmelt flood in Sunndalsføra, Møre og Romsdal 

and a rain flood in Stjørdalen, Trøndelag. The third flood occurred in Pakistan: a monsoon in 

Layyah, Punjab. Land cover descriptions in the following study areas details a 100m spatial 

resolution global land cover map from Copernicus, included for each study area (Buchhorn et 

al. 2020).  
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2.1 Study Area 1: The 2022 Gyda Flood in Stjørdal 

From January 12th - 14th, 2022, parts of the Norwegian counties Innlandet, Vestland, Møre og 

Romsdal, and Trøndelag were affected by a devastating weather event known as Gyda. Caused 

by warm and moist air transported from the Norwegian sea, the event brought record-breaking 

rainfall to the four counties, resulting in flooding over large areas. Using the international 

standard for weather warning, CAP (Common Alerting Protocol), the Norwegian 

meteorological institute sent out yellow and orange warnings days in advance. However, on the 

11th of January, the warning level was increased to the highest, red, indicating extreme weather 

(Skjerdal et al. 2022). The weather was then given the nickname “Gyda”. During the event, a 

total of 27 research stations broke the previous record for 1-day precipitation and Møre og 

Romsdal broke the county record with 153,1mm that was held since 1907 (Skjerdal et al. 2022). 

The event resulted in flooding, snow avalanches, and rock and soil slides. The insurance 

company Gjensidige estimated the damages to be around 100 million NOK (Roaldseth, 2022). 

As water levels increased, streets and buildings became overflooded. In some areas, people 

were unable to escape by car and had to be rescued by helicopter or boat. Over 70 roads were 
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closed or destroyed by the water. Stjørdalen was one of the areas greatly affected by the flooding 

(figure 2). 

 

 

Figure 2: Gyda flood. A flooded road in Stjørdalen. Source: Hofstad, (2022) 

SA1 (Study Site 1) Stjørdal, is a municipality in Trøndelag (Figures 3A-B). Surrounded by 

forest and agricultural land (Figure 3C), the Stjørdal river runs through the Stjørdal Valley with 

a city situated on the west side of the valley next to the river outlet by the Trondheim Fjord 

(NVE Atlas, 2022). According to Dagbladet, a total of 50 people were evacuated in Stjørdal 

due to the flood (Dalen et al. 2022). One couple had to be rescued by boat, as the river 

surrounded their house. Reported by NRK, the 55km long river had buildings and cars floating 

downstream (Svendsen, 2022).  

After January 14th, rainfall ended, and the Norwegian Nature Damage Agency had over 2000 

reports of damages related to the flooding. In the aftermath of the event, flooding was 

considered the main cause of the damages, accounting for 60 % (Pettersen, 2022). 

Meteorologists concluded that the rainfall was caused by an atmospheric river from the Atlantic 
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Ocean that brought warm and moist air (Skjerdal et al, 2022). Also known as a moisture 

conveyor belt, an atmospheric river can bring extreme precipitation in mountainous areas such 

as Norway (Stohl et al. 2008). Rainfall in Western Norway usually form from orographic 

precipitation. However, in winter, the air is cold enough that some of the precipitation is in the 

form of snow. Temperatures on Jan 12th were too warm and therefore led to precipitation in the 

form of rainfall. Atmospheric rivers are connected to 79 % of extreme precipitation events in 

South-Western Norway and similar events are possible in the future (Michel et al. 2021). 

Considering the damages this flood caused, mitigation for extreme rainfall events in the future 

is important.  
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Figure 3. Study area 1: Stjørdalen. A: 1:150 000 projection of the study area. B: The red square indicates location of study 

area. C: Land Cover Map by Copernicus Global Land Cover Data with 1:250 000 projection.  
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2.2 Study Area 2: Snowmelt Flood in Sunndal, June 2022.  

Taking place between June 25th and July 1st, 2022, in an intense heatwave spanning over parts 

of Western, Southern, and inland Norway, rivers and streams in mountainous areas experienced 

high discharge levels. As a result of melting snow, this flood occurred first in mountain streams, 

before it caused further flooding downstream into large rivers. Some of the rivers affected were 

Rauma, Driva, and Stryneelva (Varsom, 2022). The result of this event was erosion in streams 

and rivers, and flooding in smaller urban areas, However it was at a much smaller scale than 

initially expected due to low amounts of rain over the melting period. 

Initially, flood warnings were sent out at red level. However, this was readjusted to orange level 

on June 28th for several areas, including Sunndal. Flooding was predicted already on June 10th 

by Varsom, as snow in Northern and North Western Norway had not melted yet (Stavang et al. 

2022) (Figure 4). 

 

Figure 4: Remaining June snowpack. From left to right: (left) remaining snow in mm water equivalent, (middle) percentage 

of normal snow mm and (right) satellite pictures June 6th and 8th showing degree of snow cover. Source: Stavang et al, 2022  

 

Situated in Sunndal, Møre and Romsdal county, SA2 (Study Area 2) resulted in flooding due 

to the snowmelt (Figure 5). Sunndal is recognized by its steep and long valley. With a total 

length of 137,8km, the Driva river runs through the valley (NVE Atlas, 2022). The area is 

enveloped by high mountaintops reaching a height of 1880 m.a.s.l. on the Storkalkinn 
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mountaintop south of the river, and Hofsnebba at 1554 m.a.s.l north of the river. The terrain at 

the highest peaks is covered in snow during winter and melts in the summer months.  

Locals in Sunndalsøra were warned beforehand and prepared by moving valuable goods such 

as haybales, cars, and furniture to safe areas. The municipality checked that critical points of 

the river such as smaller streams and culverts, were open. They also tested drainage pumps 

(Bondhus, 2022). 
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Figure 5. Study area 2, Sunndal: A: 1:150 000 projection of the study area. B: The red square indicates location of study 

area. C: Land Cover Map by Copernicus Global Land Cover Data. 
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2.3 Study Area 3: Layyah, Pakistan  

Described as the worst flood in the country’s history, the 2022 Pakistan flood was the world’s 

deadliest flood since the 2020 South Asia flood. Taking place between June and October 2022, 

the flooding was caused by the yearly monsoon rainfall and melting glaciers from the 

Himalayan mountains. While the monsoon rainfall is a yearly occurrence in the country, some 

areas received more than 784 % above the average rainfall, and national rainfall was 243 % of 

the average (PMD, 2022). In addition to the water received from meltwater, the result of the 

flood was more than 3.2 trillion Rs or 14.9 billion USD in total damages and a death toll of over 

1600 people (USAID, 2022). Major river systems increased in size, extending into cities, 

farmlands, and lakes (Figure 6). Roads, bridges, and houses were destroyed by erosion and 

floating debris, causing difficulties for rescue operators to mobilize. In the aftermath of the 

flood, contaminated and stagnant water lead to lack of drinking water and caused a spread of 

diseases, including malaria and dengue.  

 

Figure 6: Aerial flood photo. The 2022 Pakistan flood in the province of Balochistan showing inundated houses and roads. 

Photo: Fida Hussain, (Guardian, 2022). 

Although around 160 million USD was allocated to the flood victims by Pakistan’s social safety 

net BISP, the rescue operations conducted by the government were described as poor (AFP, 

2022). With pledges of food and shelter, help was received too late and in small scope. 
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Government officials were reported to hoard aid for themselves, and trucks carrying supplies 

for flood victims were looted.  

Countries, organizations, banks and companies helped by donating money, assistance packages, 

relief materials, and air bridges. The immediate aid reached approximately 500 million USD, 

provided by the World Bank, the World Food Programme, the Asian Development Bank, and 

UKAid. Federal cabinet members in Pakistan also donated a 1-month salary each in aid. In a 

statement from the Prime Minister of Pakistan, the flooding was referred to as a “climate 

catastrophe”, and “Pakistan has to face the consequences of other countries emissions” (Tan, 

2022) (Baloch et al. 2022). The UN secretary and Prime Minister of Fiji gave their concerns 

regarding climate change and the future of Pakistan (AA, 2022; Clarke et al. 2022).  

A particularly affected area from the flood was SA3 (Study Area 3) in Layyah, Pakistan, located 

in the south end of the province Punjab (Figure 7). In SA3, the Indus River extends on the west-

side of the city, and it flows from North Pakistan to South, where it eventually ends up in the 

Arabian Sea at the Indus River delta. The 3180 km long river has its source in western Tibet 

where it is fed from mountain springs and glaciers, before it flows through the plains of Pakistan 

(Shreshta et al. 2015). On the west side of the study site lies Tiyar mountain, 798 m.a.sl with 

little or no vegetation in the surrounding areas. Despite being arid land, the study site is covered 

in agricultural land (Figure 7 C), where crops are fed by the southwest monsoon period (Ahmed 

et al. 2018). During the flood, the Indus River extended over agricultural and urban land with 

some areas reported by the local newspaper to have extended across 80 km (Hussain, 2022). 
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Figure 7. Study area 3: Layyah. A: 1:250 000 projection of the study area. B: The red square indicates location of study 

area. C: Land Cover Map by Copernicus Global Land Cover Data with 1:500 000 projection.  
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3. Theoretical Backgrounds   

Previous studies on the detection of floods and water bodies with GEE have been done with 

different approaches. Liu et al. (2018) developed an emergency response system for floods, 

where different stages of a flood could be presented. Data from each flood stage was gathered 

from weather and forecasting data, disaster alerts, reservoir stations, high resolution UAV 

photos, and optical and SAR imagery. Moharrami et al. (2021) provided a flood mapping 

method by the use of SAR imagery time series with a computed threshold using an algorithm 

named Otsu. Some studies have analysed inundation over larger areas, such as monsoon floods 

in Bangladesh and Kerala, India (Singha et al. 2020; Tiwari et al. 2020). In this paper, two 

methods for flood detection in GEE are presented: Flood detection with SAR and flood 

detection with optical imagery. 

3.1 Synthetic Aperture Radar  

Mounted on a moving platform, the Synthetic Aperture Radar gets its name from creating a 

virtual aperture or synthetic aperture by moving and simultaneously focusing its sensor over a 

target area (Moreira et al. 2013). With this method, high resolution images over large areas can 

be created without relying on a large antenna (Liang et al. 2021). The antennas can be mounted 

on airplanes (airborne) or satellites (spaceborne), moving over terrain while scanning the 

ground. Image width varies from up to 20 km on airplanes to 500 km for satellite sensors. The 

radar antenna is side-looking, with a set altitude and viewing geometry. Figure 8 shows the 

standard viewing geometry of SAR as the platform is moving over the ground. The flight path 

direction is called azimuth, and perpendicular to the azimuth is the slant range (Moreira et al. 

2013). The swath width gives the width or length in the perpendicular direction (slant range) of 

the azimuth (Liang et al. 2021). With a defined length given by the data take time, in addition 

to the swath width, one image is captured. The nadir track follows the azimuth directly 

underneath the sensor. While scanning the ground, the platform is moving at a near constant 

velocity (Fouad et al. 2022).  

SAR is an active radar, which means that it produces and transmits its own EM energy, where 

the signal is sent and reflected from a surface (Moser et al. 2018). The wavelength range of 

SAR signal is in the microwave spectrum (MW) (Figure 9). Ranging from <1 cm to 1 m, the 

wavelength of the MW spectrum can be divided into different bands. A band is defined as a 

wavelength segment or range withing the EM spectrum (Wasser, 2017). MW is invisible to the 

eye and grants some advantages in comparison to optical remote sensing, such as: cloud cover 

penetration and night-time ground detection (Moharrami et al. 2021; Kääb, 2004). Some bands 
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are within ranges where the signal can penetrate tree canopies. Consequently, a wide range of 

bands are used in different SAR sensors. Each sensor expresses good quality in sensing where 

its band is proven useful. Band K, X, C, S and L is used by different SAR sensors, where the 

shortest wavelength is within band K with a wavelength range of 0.75 to 2.4 cm and the longest 

wavelengths are found in band P with 30-100 cm (du Preez et al. 2016; Lucas et al. 2007). A 

study by Chiu et al. (2000) found that low frequency SAR bands, such as L band or lower can 

penetrate the canopy of short branching vegetation. This study focused on backscatter effects 

on soybean plants. Higher frequency bands such as the C band, were found to scatter at the 

canopy. Similar results were found in a study by Landuyt et al. (2020). In this study, it was 

possible to map flooding under sparsely vegetated areas using C band.  

 

Figure 8: SAR imaging geometry. Common imaging geometry of a SAR sensor on a moving platform. Source: 

(Moreira et al. 2013). 
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Figure 9: Wavelengths of the EM Spectrum: From left to right: The Ultraviolet, Visible, Near and Shortwave Infrared, TIR 

and MW spectrum. Blue, red and dark squares show different bands used in different sensors. Source: (Kääb et al. 2002). 

When a signal is sent from the antenna, the transmitted signal is scattered from the ground, and 

some energy is reflected back to the receiver. Known as backscatter, the intensity will vary 

based on the roughness and permittivity of the reflected ground object in addition to the 

wavelength of the signal (Ferro-Famil, 2016). Features such as trees, cornfields, buildings, 

water, and mountains have different geometry from each other. They will therefore reflect 

different amounts of backscatter when exposed to an EM signal. A water body and other flat 

objects result in low backscatter while rougher surface will scatter more of the signal (Tarpanelli 

et al. 2022). Consequently, the variation of backscatter on the land surface is used to interpret 

and differentiate features on land and water.  

The strength of backscatter is measured in σ˚(sigma-nought), and backscatter per unit area is 

measured in decibels dB (Hall, 1996). Backscatter intensity can be visualized with a 

brightness/darkness map, where light areas show high backscatter and dark areas show low 

backscatter. In addition to wavelength and terrain type, σ˚ will vary based on incidence angle, 

acquisition date and polarization (Manjusree et al. 2012), where polarization is defined as the 

orientation of the transmitted and received signal. It is divided into two parts: vertical and 

horizontal signal paths. Polarization of the signal can be classified into four parts:  
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1. VV: Vertical transmission and vertical reception 

2. HH: Horizontal transmission and horizontal reception 

3. VH: Vertical transmission and horizontal reception 

4. HV: Horizontal transmission and vertical reception 

Cross polarization is a channel type where the transmitter and receiver have different 

polarizations. VH and HV are referred to as cross-polarized (Strzelczyk et al. 2021). Co-

polarizations are thus the opposite, where both the transmitting and receiving signal have the 

same orientation. VV and HH are referred to as co-polarized. Since σ˚ varies with polarization, 

imagery will vary based on the polarization chosen for detection. Colour composites can be 

created from SAR data by choosing a combination of polarizations.  

Problems arise with SAR imagery when the signals sent from the satellite sensor meets tall 

structures, such as mountains. As the sensor with side-looking geometry sends out signals at an 

angle relative to the ground, mountain slopes facing away from the signal will not receive it 

and appear as shadows (Bayanudin et al. 2016). The front facing side of the mountain 

experiences a different problem, where the top and bottom parts receive signals at different 

intervals. The resulting effect is known as foreshortening, and it causes a distortion in the 

imagery, where slopes appear as compressed and bright regions. In some cases, the signals on 

the top part of the mountain are received before the bottom part. This effect is called layover 

and the mountain top appears to change position (Bayanudin et al. 2016). 

3.2 Flood Detection With SAR 

Interactions between signal and ground structures can be described by the backscatter intensity 

it produces and the path the signal takes because of the interaction (Figure 10). Signals bouncing 

off a target one time is called single bounce or single-polarization (Bai et al. 2017). Single 

bounce can vary in backscatter strength, depending on the angle of the ground structure and 

signal. If the terrain is perpendicular to the signal path, it will induce a strong signal. Also 

known as direct backscatter, this mechanism is commonly found on flat surfaces such as 

mountain slopes that are oriented perpendicular to the signal path. Water bodies and roads are 

also flat, but they are oriented at an angle where most of the signal is reflected away from the 

sensor. This mechanism is called forward scattering, and it results in a weak signal, where little 

to no signal is reflected at the sensor (Strzelczyk et al. 2021). Diffuse scattering occurs when 

the signal hits rough terrain, causing a scatter in multiple directions. Parts of the signal is 

reflected to the sensor, and part is reflected away (Figures 10 G-H). Diffuse scattering gives a 

stronger signal than forward scattering and a weaker signal than direct scattering. A signal can 
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also bounce on multiple objects, such as ground to tree or ground to building. This mechanism 

is called double bounce and results in a strong return signal (Figure 10C). Volume scattering 

happens if a radar signal hits a tree canopy, where branches and twigs causes the signal to scatter 

in multiple directions (Figure 10B) (Moghaddam et al. 1995). 

 

Figure 10: Backscatter mechanism of different surfaces. Source: Ottinger et al, 2020 

Even though the theoretical background for backscatter-ground interactions is recognized, 

mapping correct surface features using backscatter values is not easy. It requires advanced 

models with many input parameters (Freeman et al. 1998). Studies have shown that factors such 

as tree branch size, stem size and height could determine if a signal would successfully create 

a double bounce backscatter (Moghaddam et al. 1995). In areas where water surfaces occur 

under and around vegetation, backscatter in different bands (X, C, L etc.) would generally 

increase (Huang et al. 2022). Changes in water level could also change the backscatter 

mechanism (Figures 10D, E, F and I). 

Turbidity and wind could be determining factors in the backscatter value for open water features 

(Wangchuk et al. 2022; Meena et al. 2021). As more waves and stirred water gives rougher 
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surfaces than calmer water, similar backscatter changes as seen between Figures 10H and 10I 

could occur. Meena et al. (2021) found that as water gets more turbulent, waves created in rivers 

results in higher backscatter return signals. The study also found that sediments and other rough 

surfaces in the water attributed to higher return signals.  

In a study on mountain snow sensing with MW, backscatter effects on snow varied depending 

on incidence angle of the satellite, polarization, and on snowpack conditions, such as snow 

water content, permeability, and snow depth (Floricioiu et al. 2001). Surface scattering between 

ground surface and dry snow are the main contributing factor of backscatter in V, L, and C 

band. In X band however, at higher incidence angles, volume scattering is the main backscatter 

factor. In C band, snow-ground surface backscatter is the main contributor, but decrease if 

incidence angle increases and volume scattering increase (Floricioiu et al. 2001). 

These effects would also vary based on homogeneity and depth of the snowpack, as snowpack 

layers would reflect part of the signal. As the dry snowpack depth increased, the signal would 

experience attenuation and volume scattering. When the snowpack got wetter, it experienced 

less volume scattering and more surface scattering at the boundary between the top layer and 

the air. The study also found that as the incidence angle increased the main contributor for 

backscatter changed. In C band, the main contributing backscatter mechanism was ground 

surface – snow, but as the incidence angle increased, this mechanism decreased while volume 

scattering increased.  

 

 

3.3 Passive Multispectral Instrument  

Consisting of bands commonly in the visible and near infrared, passive MSI (multispectral 

optical imagery) is obtained by using a sensor that relies on the reflectivity of the sun light on 

the land surface to detect features on the ground (Nicolis et al. 2021). Some MSI sensors, such 

as Landsat 8 includes other bands, such as SWIR (short wave infrared) and TIR (thermal 

infrared) (Acharya et al. 2015). Passive sensors can be problematic, as this detection method 

can only get images in daytime and clear sky conditions. S2 is unable to view land underneath 

cloud cover. Despite these limitations, some passive sensors, such as S2 has good image quality 

and high swath widths up to 290 km (Spoto et al. 2012). Sometimes confused with 

Hyperspectral Imaging, MSI measures spaced bands instead of continuous bands (Hagen et al. 

2013). A well-known MSI visualization is the RGB colour composite, which is often used in 
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digital work, graphic design, and conventional photography. The RGB uses the red, green, and 

blue bands in the visible spectrum (Nicolis et al. 2021). With a RGB colour image, one can 

separate simple landforms and features from each other, such as water, forests, agriculture and 

buildings. To get more detailed or specifically highlight certain features in the terrain, indexes 

or formulas can be used such as band ratio, band difference, or normalized difference index. 

3.4 Flood Detection With MSI 

Normalized Difference Water Index (NDWI) is an index used with MSI imagery, where the 

goal is to visualise water surfaces. The formula for NDWI was derived by McFeeters. (1996), 

where green wavelength of the visible spectrum and near infrared spectrum (NIR) is used to 

highlight water surfaces on the ground: 

(𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅)/(𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅)  Formula 1. 

This formula considers the reflectance changes on water molecules interacting with sunlight. It 

is used to set a threshold where water surfaces and flood water surfaces can be highlighted 

(Gao, 1996; Tarpanelli et al. 2022). Several indexes exist that highlight different features of the 

surface such as:  

• Normalized Difference Turbidity Index (NDTI) which highlights turbid water  

• Normalized Difference Snow Index (NDSI) which highlights snow   

• Normalized Difference Vegetation Index (NDVI) which highlights green area density 

(Hofmeister et al. 2022; Schinasi et al. 2018).  

A newer version of the NDWI was suggested by (Xu, 2006), where the NIR spectral band is 

changed with the mid infrared band (MIR). Named the “modified NDWI” or “MNDWI”, this 

version is better suited for distinguishing built up land among water features.  

Landuyt et al. (2020) investigated floods in vegetated areas with S1 and S2 optical imagery. By 

using a combination of visible, near infrared, and short-wave infrared bands, the study tried to 

differentiate between dry land, permanent water, open flooding, and flooded vegetation. The 

study struggled to detect floods under dense vegetation, but detection in less vegetated areas 

were possible. In addition to dense vegetation, water quality also affects detection methods of 

floods. NDWI detects water bodies as values usually over 0 and dry land as negative values. 

However, in rivers with muddy water, values could change considerably and be detected as 

negative values (Xu, 2006).  
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Similarly to SAR, turbidity would alter visualization and detection of water, and experience 

problems, such as reflection changes, due to suspended sediments. Based on concentrations and 

turbulence in the water, suspended sediments in water vary and give rivers a wide variety of 

reflective values (Figure 11) (Meena et al. 2021). A combination of clay, silt, and sand, in 

addition to organic matter changes the water colour (Klemas et al. 2014). Studies have also 

found that shallow water can be challenging in flood detection (Singh et al. 2007; Jain et al. 

2020). Water mapping methods, such as the NDWI proposed by McFeeters. (1996), can 

misclassify shallow water as soil or land surface (Jain et al, 2020). Examples of changing river 

colours is seen in deltas, rivers, and tidal flats. Figure 11 shows changing water colour in two 

different areas; 11A and 11C display Bay of Fundy, 11B and 11D display Bermuda. The high-

water level difference in Bay of Fundy causes water to go from dark blue deep water to shallow 

purple water (NASA, 2006). Figures 11B and 11D shows changing colour in the water, due to 

suspended sediments from Hurricane Gonzalo.  

 

Figure 11: Imagery of different sediment-filled waters. A and C display Bay of Fundy captured with Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER). B and D display Bermuda captured with L8 imagery.  Source: 

(NASA, 2006) and (NASA, 2014). 

Rivers that experience monsoon flood are often turbulent. As the monsoon increases the 

discharge, a peak discharge is reached within a timeframe and subsequently decrease after peak 

is reached. When the discharge of the river changes, grain transport rate also changes. As the 
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suspended sediment concentration changes throughout the river, so does the reflective values 

of the river (Singh et al. 2007). If reflective values change considerably, setting a standard 

threshold value for NDWI or other detection methods could be difficult.  

Bazilova et al. (2022) takes on the difficulty of mapping glacial lakes. The study proposed a 

method for detecting water bodies in snow covered areas. Since similarities between water and 

snow cover could affect the quality of the water mapping, approaches were taken to enhance 

the differences between snow and water in optic imagery. This was done in two ways: using 

band ratio imagery instead of NDWI imagery, and by using minimum and maximum reflection 

values of a stacked annual time series. The study found that using ratio increased the difference 

between classes, but it increased the noise of the imagery. Reference stacks helped remove 

seasonal snow cover and ice on lakes, but they reduced temporal resolution. The band ratio 

proposed by Bazilova et al. (2022) was as follows:  

𝑅𝑤𝑎𝑡𝑒𝑟 =
𝑔𝑟𝑒𝑒𝑛

𝑛𝑖𝑟
    Formula 2. 

4. Data Access 

This chapter presents the different datasets and API used to investigate and further calculate 

flood detection of each subarea.  

4.1 Google Earth Engine  

In this paper, processing, creation and visualisation of satellite data was done in GEE. 

Processing the public data was done in this study with JavaScript API. Coding in the JavaScript 

environment allows the user to calculate, filter, and display different parts of the data, such as 

images or entire image collections. The calculations are done over Google Earth Engine servers, 

which allows the user to avoid time consuming computations (Gorelick et al. 2017). After the 

images were processed, they were downloaded to Google Drive. The layout for each image was 

then created in ArcGIS Pro, where legend, north arrow, reference grid, and scale bar could be 

added.  

4.2 Copernicus Mission: Sentinel 1 

The first mission was called Sentinel 1 (S1), and it launched in 2014 with the intent to monitor 

earths land, sea ice, rivers, lakes and emergency management (Fletcher, 2012). Since the launch 

of S1, the sentinel fleet has upgraded to several satellites, including: Sentinel 1, 2, 3, 4, 5p, 5, 

and 6. Further missions are being prepared for the future. Each mission concentrates on a 

specific part of earth’s environment and use a minimum of two satellites each. 
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In this study, SAR imagery is obtained from S1 data on GEE. S1 consists of two satellites: the 

currently working S1a, and S1b which decommissioned in 2022. Each satellite has a 12-day 

orbit time around earth, but imagery of areas can be further reduced to 6 days with the 

combination of both satellite sensors. The Synthetic Aperture Radar mounted on S1 transmits 

and receives its own C-band signal to detect surface changes (Fletcher, 2012). The C-band has 

a wavelength range of 4 to 8 cm, making up part of the MW range (Peebles et al. 1998). The 

S1 C-band has different polarization modes. Either single polarization (VV or HH) or dual 

polarization (VV+VH or HH+HV), with the main mode in (VV and VH) (Table 1) (Torres et 

al. 2012). Thus, S1 imagery can be acquired in either co-polarized or cross-polarized mode.   

Name Description Resolution 

pixel size 

Units  

dB (decibel) 

VV Co-polarization. Vertical transmission, 

vertical receiver 

10 m dB 

VH Cross polarization. Vertical transmission, 

horizontal receiver 

10 m dB 

HH Co-polarization. Horizontal transmission, 

horizontal receiver 

10 m dB 

HV Cross- polarization. Horizontal 

transmission, vertical receiver 

10 m dB 

Table 1: Polarizations of S1: The different names and descriptions of each polarization available for S1. 

 

S1 uses four different acquisition modes: Interferometric Wide Swath (IW), Extra Wide Swath 

(EW), Stripmap (SM), and Wave (WV). The acquisition modes have different resolutions, 

swath widths, incidence angles, and polarization options. The most applied acquisition over 

land is IW, which has a swath width of 250km, spatial resolution of 5x2 0m and dual (HH+HV, 

VV+VH) polarizations (Prats-Iraola et al. 2015; Mullissa et al. 2021). Land surface scanned in 

IW uses a technique named Terrain Observation with Progressive Scans SAR (TOPSAR). With 

TOPSAR processing, the antenna is rotating forwards and backwards along track, and images 

are acquired with three sub-swaths (Figure 12) (De Zan et al. 2006). With this technique, 

problems such as scalloping or changes in sensitivity for different distances, are reduced. This 

allows for a harmonized performance along track and a homogenous image quality. 
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Figure 12: TOPSAR acquisition: Orientation of signal sent by antenna along track.  The three sub swaths along track with 

sensor velocity Vs. Source: (De Zan et al. 2006). 

 

 

4.3 Copernicus Mission: Sentinel 2 

Optical imagery used in this study is captured from S2. S2 is a mission composed of two polar-

orbiting satellites with an attached optical MSI sensor (Spoto et al. 2012; Chen et al. 2018). 

Being a multispectral instrument, S2 can detect wavelengths in the range of visible, NIR (Near 

Infrared) and SWIR spectrum or 442.3 nm to 2202.4 nm (Meena et al. 2021). Ranges are 

divided into a total of 13 bands (Table 2). 

Name Description Resolution pixel size Wavelength  

B1 Aerosols 60 m 442,3 – 443,9nm 

B2 Blue 10 m 492,1 – 496,6nm 

B3 Green 10 m 559 – 560nm 

B4 Red 10 m 664,5 – 665nm 

B5 Red Edge 1 20 m  703,8 – 703,9nm 

B6 Red Edge 2 20 m 739,1 – 740,2nm 

B7 Red Edge 3 20 m 779,7 – 782,5nm 

B8 NIR 10 m 833 – 835,1nm 

B8A Red Edge 4 20 m 864 – 864,8nm 

B9 Water vapour 60 m 943,2 – 945nm 

B10 Cirrus 60 m  1373,5 – 1376,9nm 
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B11 SWIR 1 20 m 1610,4 - 1613,7nm 

B12 SWIR 2 20 m 2202,4 - 2185,7nm 
Table 2: Bands of S2: Band name, description and wavelength values for S2. Copernicus Sentinel data (Dataset Availability: 

2015.06.23 -). 

S2 MSI is similar to the MSI of the optical satellite in NASA’s Landsat missions. Their newest 

additions, L8 (Landsat 8) launched in 2013 and L9 (Landsat 9) launched in 2021, includes a 

TIR sensor and an operational land imager (OLI). With only 9 bands in the visible and short-

wave infrared, OLI does not include the red edge bands (Song et al. 2021). OLI has also a lower 

resolution than S2 and a revisit time of 16 days. S2 has a 5-day revisit time, excluding overlap 

of lateral swaths (Spoto et al, 2012), (Li et al 2020). Repeat time for one S2 satellite is 10 days, 

but similarly to S1, S2 is composed of two satellites, which reduces the repeat time in half. The 

S2 red edge has been proved advantageous in crop mapping. With higher spatial resolution it 

could be more efficient in accurately delineating flood edges (Song et al. 2021; Tulbure et al. 

2022). However, the Landsat mission has been in operation with multi-spectral scanners since 

the first mission launched in 1972 with Landsat 1. The long timeframe is useful in studies in 

long term changes of the land surface.  

 

4.4 Digital Surface Model: JAXA ALOS DSM 

ALOS World 3D Surface Model or AW3D is a global DSM with a spatial resolution of 30 m. 

Commissioned by the Japanese Aerospace Exploration Agency (JAXA), the Advanced Land 

Observing Satellite (ALOS) was in use between 2006 and 2011 for disaster monitoring. The 

archive of ALOS was later used in 2014 to create the world DSM from the PRISM or Panoramic 

Remote Sensing-Instrument for Stereo Mapping, which measures land elevation (Tadono et al. 

2014). Corrections to the dataset includes a void filling method called Delta Surface Fill (DSF), 

which adjusts void values resulting from rugged topography and cloud cover (Takaku et al. 

2014). One of the latest updates to the dataset was in version 3.2, where pixel spacing and sea 

masking was improved in areas above 60 degrees north (Takaku et al. 2020). This makes 

AW3D one of the few global DSM in GEE with decent quality in the northern latitudes. For 

this study, version 3.2 of the AW3D30 is used as a tool to specify terrain elevation and slope 

gradient.   

4.5 Datasets Summary 

Table 3 shows the summarized metadata of the different datasets captured for each study area. 

Images were further used to visualize and detect floods by different approaches described in 
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the method chapter. Orbit track referrers to the track the satellite follows as it orbits the earth. 

The orbit number refers to a specific orbit track.  

Study 

Area 

Dataset  Date Orbit track Orbit 

Number 

Use Nr of 

Images 

SA1 

Stjørdal 

Sentinel 1  13.01.2022 Ascending 73 Flood 1 

Sentinel 1 10.08.2021-

27.10.2021 

Ascending 73 Reference 15 

Sentinel 2  15.01.2022-

22.01.2022 

Descending 8, 51, 94 Flood 3 

Sentinel 2  06.06.2022-

01.09.2022 

Ascending and 

descending 

8, 51, 94 Reference 14 

SA2 

Sunnda

l 

Sentinel 1 28.06.2022 Ascending 44 Flood 1 

Sentinel 1 20.05.2022-

30.07.2022 

Ascending 44 Reference 10 

Sentinel 2  29.06.2022 Ascending 51 Flood 1 

Sentinel 2  20.05.2022-

30.07.2022 

Ascending and 

descending 

51, 94, 

137 

Reference 10 

SA3 

Layyah 

Sentinel 1 02.03.2022 Ascending 71 Flood 1 

Sentinel 1 02.03.2022-

25.05.2022 

Ascending 71 Reference 8 

Sentinel 2  31.08.2022 Descending 91 Flood 1 

Sentinel 2  01.03.2022-

30.05.2022 

Ascending and 

descending 

48, 91 Reference 33 

SA1, 

SA2, 

SA3 

Alos DSM 

3D 

2006-2011 Ascending and 

descending 

   

Table 3: Satellite sensor datasets of SA1, SA2 and SA3. 

5. Method 

In this section, processing, analysing, visualizing and detecting features in the landscape is 

explained. Excluding visualizing results in ArcGIS Pro, all processing steps of satellite data to 

the final product were acquired in GEE. A flowchart of each step taken is shown in Figure 13, 

and further explanations of each process is explained in the underlying chapters 5.1 to 5.6. The 

methods in this study were tested on the three different case studies: 1) SA1, The 2022 Gyda 

rain flood in Stjørdalen; 2) SA2, the 2022 snowmelt flood in Sunndal; 3) SA3, the 2022 

monsoon flood in Layyah, Pakistan. 
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Figure 13: Flowchart of processing steps for each study area. Yellow indicates all study areas included this processing step, 

red indicates only SA3 included this processing step and blue indicates SA2 and SA3 includes this processing step.  

5.1 Data Pre-processing and Filtering 

In this study, VV co-polarized and VH cross-polarized images were captured with the C-band 

S1 synthetic aperture radar. S1 data is found in the GEE image collection: 

ee.ImageCollection(“COPERNICUS/s1_GRD”).  

MSI S2 data includes the B3 band and B8 band, which is used in order to calculate NDWI. S2 

data is found in the collection: ee.ImageCollection(“COPERNICUS/S2_SR”) in GEE.  

The data provided by Copernicus S1 is pre-processed in GEE, where backscatter coefficient 

values have been changed from σ˚ to decibels dB. Negative values indicate most scatter is away 

from the sensor, and positive values indicate that most of the backscatter returns to the sensor. 
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Backscatter is visualized as pixels in GEE, where pixels have been adjusted for the incidence 

angle, topography, and variation in object-heights that could create distortions and worsen 

image quality. S1 data found on GEE is pre-processed and can be described in 5 steps: Terrain 

correction, apply orbit file, thermal noise removal, GRD (Ground Range Detected) border noise 

removal, and Application of radiometric calibration values (Bayanudin et al. 2016; ESA, 2022).  

In addition to the pre-processing steps provided by Copernicus, the user can filter the data with 

the help of different metadata properties. For this paper, the S1 data is acquired in IW, which 

has an incidence angle that varies between 29.1˚ and 46˚. Additional settings and properties of 

S1 data helps users define the polarization, swath width, and including either one or both 

orbiting tracks. The interaction between viewing angles and the surface could result in image 

distortions (Section 3.1). To reduce these effects, similar orbit direction and orbit path were 

used for reference and flood images. Speckle, also known as “salt and pepper noise”, can occur 

in S1 images and make it difficult to distinguish between different objects in the image (Belba 

et al. 2022). To reduce the speckle noise, a speckle filter created by Lemoine. (2018) was 

applied to the S1 imagery. This allows for better visualization of backscatter, but it could also 

potentially reduce or remove valuable details of land surface information.  

S1 and S2 data is obtainable in different products: level -0, level 1, and level 2, where level 0 

is the first product processed from the raw data. The S1 product used for this paper was the 

level 1 Ground Range Detected product. S2 products include level-1A, level-1B, level-1C and 

level-2A (Moskolai et al. 2022). Only level 1C and 2A is obtainable for users. In this paper, 

level 2A is used to calculate NDWI. Both level 1C and 2A follows the UTM/WGS84 projection, 

which divides land surface into multiple tiles, where each tile is 100x100 km2. S2 1C is 

described as a TOA (Top-of-atmosphere) product and 2A is BOA (Bottom-of-atmosphere) 

product, which corrects for scattering and absorption effects of the atmosphere that TOA does 

not include (Chen et al. 2018).    

5.2 Implementing algorithms for NDWI, Ratio and Backscatter  

Band 3 and 8 from S2 level 2A were used to calculate NDWI (section 3.4), where band 3 

represents GREEN, and band 8 represents NIR (Formula 1). Different scales exist for NDWI, 

but similarly to NDVI, the most used range is between -1 and 1 (Grover et al. 2015; Gao, 1996). 

To visualize different surface conditions, each pixel was given a value between -1 and 1. Table 

4 shows colours and corresponding hex colour codes for values between -1 and 1, representing 

different amounts of water on the land surface. Ranges from -1 to -0.3 is described as drought, 

dry, or no water surfaces. Ranges from -0.3 to 0 is described as moderate drought with dry or 
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no water surfaces. Ranges from 0 to 0.2 is described as humid or flooding and 0.2 to 1 is 

described as water surfaces (EOS, 2021). Adjusting these values could help detect floods in 

different terrain by supressing noise or increasing contrasts in e.g., built-up land, lakes, rivers, 

or coastal areas (Xu, 2006). These values work as a baseline for the flood thresholding with 

NDWI. However, each value is not exact and they will vary based on terrain and locations (Gu 

et al. 2008). Consequently, reference RGB images of each area were used to verify if flood 

masking was accurate or needed correction.  

Colour HEX Value NDWI Value Ratio 

Red FF0000 -1 to -0.66 0 to 0.33 

Orange FFA500 -0.66 to -0.33 0.33 to 0.66 

Yellow FFFF00 -0.33 to 0 0.66 to 1 

Light blue ADD8E6 0 to 0.33 1 to 1.33 

Blue 0BA4D6 0.33 to 0.66 1.33 to 1.66 

Dark blue 00008B 0.66 to 1 1.66 to 2 
Table 4: NDWI Colour table: Different colours and their corresponding hex value and ndwi value 

S1 imagery was visualized with a brightness/darkness map, in addition to an RGB image of the 

ratio between VV and VH. S1 reference and flood image had identical orbits to avoid including 

shadow effects in the flood thresholding. Backscatter on inundated areas vary based on different 

inundation scenarios, such as terrain type, incidence angle and flood duration (Huang et al. 

2022). A study by Manjusree et al. (2012) found an optimal range for flood detection in VV 

and VH to be -6 to -15dB and -15 to -24dB (with 20˚ to 49˚ incidence angles). These ranges 

were used as a baseline to create a flood threshold of the S1 imagery. In addition to this range, 

optical imagery was compared for further accuracy.   

In SA3, flood detection with band ratio (Formula 2) were included in addition to NDWI. 

Similarly, to the NDWI formula, ratio were calculated by the use of band 3 and 8 from S2 level 

2A. Ratio visualized different surface conditions in a range from 0 to 2, where comparisons to 

RGB flood imagery were used to find the flood threshold value. Ratio imagery used identical 

colour coding as table 4, but with a range from 0 to 2 instead of -1 to 1.  

5.3 Temporal Image Stack 

A synthetic reference image was used for each study area in addition to the flood image. By 

using a reference image, thresholds can be made that highlight only the flooded surfaces in the 

landscape. This can be done by comparing one singular image to another and detecting the 

change between them. However, singular images can be a problem as terrain can change in the 

span of a year, due to seasonal changes in the landscape. A reference image from a period of 

drought, snowfall, vegetation growth, or built-up areas, could leave out areas that usually 
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contain water. Conversely, rainfall and other floods could give an indication of more water in 

commonly dry areas. From these scenarios, the reference image could give over- or 

underestimations of inundation during flood.  

Image stacks over longer time periods have been used in different studies to remove or reduce 

outliers, such as dry days, wet days, or snow cover (Bazilova et al. 2022). This process is known 

as image or data fusion, where multiple images are combined to refine the quality of the data 

(Pohl et al. 1998). In this paper, an image stack was acquired over a 3-month time-period. The 

stacked image could then be reduced to an average of the stack. The average was calculated for 

each reference image by the use of the .mean() function in GEE. This calculation reduces an 

image collection to one synthetic image where each of the matching pixels across the stack is 

given its average value (Earth Engine, 2022). For SAR, this value was a mean backscatter 

coefficient, and for optical imagery it was a mean NDWI value. The synthetic reference image 

was further used in the thresholding of NDWI and backscatter images.  

“CLOUDY_PIXEL_PERCENTAGE” is a property that can be obtained in the S2 level 2A 

product. This property filters imagery based on the percentage of clouds found on the image, 

and is generated from the level 1C product (Braaten, 2023). It is recommended to use low cloud 

pixel percentage in flood detection, as the clouds would interfere and obstruct flooded pixels 

(Fisher, 2015). In this study, a cloud percentage of 30 % was set to the S2 reference stack to 

reduce misleading flood mapping results. It is important to note that the images could contain 

some amount of cloud pixels, and therefore visual inspections were also important.  

While the reference image was computed from a stack of multiple images, capturing several S1 

or S2 images during a flood proved to be challenging. Flooding in SA1 lasted for only 3 days, 

5 days in SA2 and 4-5 months in SA3. The short flood periods for SA1 and SA2 were shorter 

than the repeat orbit time for S1 which has a 6 day-orbit time, and S2, which has a 5 day-orbit 

time. Therefore, only one image was captured for each area during the flood.  

5.4 SEM - Slope and Elevation Mask 

Slopes and elevated areas could pose a problem for flood mapping, as shadows or the terrain 

could falsely indicate flooded areas for both S1 and S2. Since water flows from high to low 

terrain and pools up in pits or flat terrain, flooding is unlikely in long and steep slopes. 

Consequently, in this paper, a slope and elevation-masking (SEM) procedure was completed to 

improve accuracy of flood masking.  To perform the procedure, the base model AW3D was 

used to get terrain elevation data for each study area. Using a threshold of 5 degrees for slope 
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masking have proven high accuracy in flood detection (Lin et al. 2019; Wang et al. 2022). 

Consequently, a threshold was set where slopes over 5 degrees was masked. Elevation was also 

taken considered. Since rivers and small pools could fill up while also having 5-degree slopes, 

an elevation mask was set where areas above a specified limit would not include the slope mask. 

In large study areas, such as SA3, multiple DSM images covered the area and the .mosaic() 

method was used which merges overlapping images into a single image. The result was a SEM 

created with a 4-step method starting with a base DSM model captured from AW3D (Figure 

14): 

1. Acquire DSM of the study area 

2. Mask out slopes >5 degrees 

3. Mask out elevation above a set limit 

4. Combine both slope and elevation mask 

For SA1, the minimum elevation requirement was 30 m, for SA2 it was 60 m and for SA3 it 

was 250 m. These values were found by studying the terrain, where steep mountains and flat 

terrain and lakes were determining factors on where to set the limit. The slope mask was not 

applied to terrain below the elevation limit, whereas it was applied to terrain above the limit. 

The objective was to incorporate the SEM for mountainous areas, which are characterized by 

significant variations in elevation. The slope and elevation mask of each study area can be found 

in appendices I, II and III.  
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Figure 14: SEM process steps: A flowchart and corresponding DSM calculation to calculate the SEM. This figure shows SA1.  
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  5.5 Separated Pixels  

Pixel removal is a procedure to remove noise, and involves setting a threshold for specific 

number of connected pixels detected as flooded (Liang et al. 2020). In SAR images, backscatter 

intensity can vary significantly between adjacent structures. This can lead to different 

classifications between similar structures, such as water bodies, agricultural fields, grasslands 

etc. To reduce this effect on the flood detection, flooded areas were defined as areas with more 

than 8 connected pixels. Since both VV and VH flood imagery had a certain amount of noise, 

small areas could potentially be misclassified as flooded areas. If these areas were included in 

the flood masking, further processes, such as area calculations of each flood mask would also 

be overestimated.  Removed pixels for SA1, SA2 and SA3 can be found in appendices I, II and 

III respectively.  

 

5.6 Segmented Areas 

Given the map scale of each study area, detailed study of each area needed closer inspection 

and therefore a higher exaggeration level. This was done by segmenting each study area into 

smaller parts. The aim for each part was to investigate different areas, where backscatter and 

NDWI mechanisms might differ. Surface features, such as forests, rivers, and agricultural land, 

could also be inspected closer.  
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6. Results 

This section presents the results for S1 and S2 data in two chapters: Part 1: Visualization and 

Part 2: Automatic Thresholding. Each study area includes the S1 SAR imagery and AW3D 

slope and elevation model. S2 optical imagery and thresholding is included for SA2 and SA3, 

while SA1 only includes the reference S2 imagery. The flood image was obstructed by clouds. 

Thus, no thresholding for the NDWI was done for SA1.  

6.1: Visualization of Inundated Areas 

Before inundated areas were detected and masked, each study area was visualized with the 

different methods explained in section 5. Several components would lead to the availability of 

different maps for each study area. In SA1, due to clouds, S2 images were unavailable during 

the flood. SA2 had both S1 and S2 imagery of the flood. SA2 displays a small flood, and 

therefore, little difference was seen between the reference and flood image. SA3 had the largest 

flood, but also turbulent flood waters. Band ratio imagery was also included, in addition to 

NDWI and backscatter for SA3.  

 

6.1.1 SA1 Stjørdalen 

Found roughly on latitude 63.450˚, longitude 10.940˚, SA1 lies in Trøndelag, Norway. The 

flood took place between January 12th -14th, 2022, and the S1 flood images were captured on 

January 13th, while S2 flood image were captured on January 15th. In Stjørdalen during winter, 

the valley is snow-covered. Since backscatter mechanism on wet snowpacks could resemble 

water bodies, this was taken into consideration. Consequently, instead of using a stack between 

November and January, the S1 image stack was acquired during autumn, between August 10th 

and October 27th, 2021. Between this period, a total of 15 images were acquired in orbit track 

73 Ascending. 

Figure 15 shows S2 RGB images before and during flooding. The images are visualized in GEE 

by using band b2, b3 and b4, representing blue, green, and red respectively. Reference image 

A was acquired with the “.mean()” function of 5 images acquired between August 28th and 

October 4th, 2021. Each of the images had a 30% cloud cover filter. Figure 15B was acquired 

on January 15th, 2022, one day after the flood ended. The figure displays clouds obscuring the 

land surface.  Figure 15A displays the land use in Stjørdalen, where light green and brown 

agricultural land and grasslands dominate the valley floor, in contrast to the adjacent dark green 

and brown mountains.  
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Figure 15: RGB Reference and Flood image of SA1. A) Reference of SA1. B) Flood image of SA1. 
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Figure 16 shows the S1 reference and flood image with the applied VV and VH backscatter 

polarizations. Bright pixels correspond to stronger backscatter signal, while darker pixels show 

lower backscatter values. Figure 16B shows high contrast between water bodies and land for 

VH polarization, while the VV polarization in 16D shows less contrast. Dark patches around 

and near the Stjørdal river shows potentially inundated areas. These areas range between -27 to 

-20 dB in VH and -21 to -9 dB in VV (16B and 16D). The biggest change in backscatter between 

reference and flood image occurred between 6 and 9 km upstream of the river outlet. This area 

consists of agricultural land, grassland and forests around the river, and a highway north of the 

river.  S2 NDWI flood and reference images were excluded due to cloud cover obscuring view 

of the land surface.  
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Figure 16: SA1, Stjørdal Reference and Flood Images: A) Backscatter VH reference image where black and white shades 

correspond to high and low backscatter value respectively. B) Backscatter VH flood image. C) Backscatter VV reference image. 

D) Backscatter VV flood image.  

Figure 17 displays the updated image where the isolated pixels shown in red are removed. A 

connection of 8 pixels or less detected as flood is removed from the flood image. This procedure 

was done for each study area. It lessened overestimations of areas detected as inundated from 

the flood area calculations.   
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Figure 17: Separated pixels detected as flood in SA1. The small red pixels seen on the image is pixels that were removed from 

the detection method.  

 

Figure 18 display SA1 VH reference images for two different time series. The reference image 

of each study area was initially proposed to contain images from the preceding months. 

However, reference stack of winter months contained snow which could lead to 

misclassifications. SA1 backscatter reference imagery had a proposed date range from 

November, 2021, to January, 2022. The final date range used for thresholding were between 

August, 2021 and November 2022. Figure 18 A shows the proposed date range in VH, while B 

shows the final range used in change detection. Potential accumulated snow is visible as darker 

areas in A, compared to B. Darker areas with similar backscatter values as the flood threshold 

could lead to misclassifications where the flood was detected as permanent water body. 

Consequently, reference image 18 B from earlier months were used, instead of A.  



40 
 

 

Figure 18: Reference stack of SA1 in VH for two different time series. A and B: reference stack from November to January. B: 

reference stack from August to November. 

 

 

6.1.2 SA2 Sunndal 

SA2 is located roughly on latitude 62.670˚, longitude 8.600˚ near the Driva river outlet. Lasting 

between June 27th and July 1st, 2022, the S1 flood images were captured June 28th and the S2 

flood image was captured June 29th. A total of 10 images, the reference stack for S2 was 

compiled from May 20th to July 30th with a <30 % cloud cover filter. The S1 image stack was 

sampled between April 29th and July 22nd, adding up to 10 images. Each image was in ascending 

orbit track 44.  

Figure 19 displays S2 reference and flood RGB imagery of SA2. Although the smallest flood 

of the three study areas, a clear change occurs in the Driva river during flooding, as the colour 

of the river changes from a dark blue (Figure 19A) to light green (Figure 19B). Agricultural 

land, forests and houses can be found near the river. Agricultural land is also changing notably 

between 19A and 19B, where previously brown- and yellow fields changes into green fields. 

Mountains north and south of the river are snow-covered in both the reference and flood image. 

The slopes on the mountains south of the river show a white glow effect on the steepest parts 

(Figure 19b). The glow is a processing artifact in S2 level 2A caused by shadow and low 
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reflection in steep terrain hidden from the satellites line of sight. In SA2, only the north facing 

slopes experience this artifact.  
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Figure 19: RGB Reference and Flood image of SA2. A) Reference of SA2. B) Flood image of SA2. Processing artifacts is 

displayed in pink. 
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Figures 20A-B shows the calculated NDWI for the reference and flood image. With a range 

between -1 to 1, water bodies, moist or wet surfaces are shown in blue, with values ranging 

from 0 to 1. Dry surfaces are shown as yellow to red with values ranging from -1 to 0. Flowing 

along the bottom of the valley, the Driva river is seen as dark in Figures 20C - F and dark blue 

in the NDWI imagery (Figures 20A - B). The bottom of the valley has a low NDWI value in 

comparison to the south and north mountain tops that contain snow. In the S1 imagery, the north 

and east sides of the mountains have low backscatter values, while the south and west facing 

sides have higher values (Figure 20C-F).  
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Figure 20: SA2, Sunndal Reference and Flood Images: A) NDWI reference image with a scale from -1 to 1, where higher 

values appears as blue and lower values appears as red. B) NDWI flood image. C) Backscatter VH reference image. Black and 

white pixels correspond to the backscatter value from 0 to -25dB. D) Backscatter VH flood image. E) Backscatter VV reference 

image F) Backscatter VV flood image.  
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The steep mountainsides of SA2 experience shadow, foreshortening and layover effects in flood 

and reference images (Figure 21). Both VV and VH imagery experienced these effects. Figure 

21 displays mountains on the south-part of the Sunndal valley. Figures 21A and B display VH 

flood image. Shadows in shown on the east-facing mountain sides. The west-facing sides 

experienced layover, where the mountain top appeared to overlap the west-facing side. 

Foreshortening also appeared on west-facing sides, where pixels by the mountaintop appear as 

bright and compressed. Figure 21C is a slope map, showing inclination in the terrain. Several 

shadows are found on the east-sides of the steep mountain peaks. Figure 21D shows SEM and 

the VH flood mask, where some areas found within the shadow were misclassified as flooded.  
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Figure 21: SA2 Terrain distortions. A: VH flood image, B: VH flood image, VH flood mask and shadows, C: Slope map, D: 

SEM with shadow areas and VH flood mask.  
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6.1.3 SA3 Layyah 

SA3 is found on latitude 30.770˚, longitude 70.720˚, capturing parts of the Indus River close to 

the city of Layyah. Flooding on the Kabul and Indus River peaked in late August (OCHA, 

2022). S2 flood imagery were captured on August 31st, while S1 flood imagery were captured 

on August 29th.  The reference stack for S2 contains 33 images between March 1st and June 1st 

2022 and the reference stack for S1 contains 8 images between March 2nd and May 25th 2022. 

S1 images were in ascending orbit track 71. Both S1 and S2 maps were compared over the same 

area coordinates and within as similar of a timeframe as possible for reference and flood images. 

The difference of two days between the S1 and S2 flood images should be considered, and some 

differences between inundated areas of S1 and S2 are possible due to temporal differences.  

Figure 22 shows reference and flood image of SA3. Displaying a change in the landscape, 

Figures 22 A and B shows a changing coloration from red and brown to green land. In 

comparison to the reference image, the Indus River increased in area and changed its colour 

from grey to a mud-brown colour. Clouds and cloud shadows covered the western parts of the 

study area (figure 22 B).  
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Figure 22: RGB Reference and Flood image of Layyah. A) Reference image of SA3. B) Flood image of SA3.  
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Floodwater flows in the Chasma right bank channel, until it changes course and follows a 

smaller channel flowing east of Kalarwala, thus overflowing the town of Nari Shumali and the 

Indus highway before it finally reaches the Indus (Figure 23A and 24C). As water level 

increases, features such as sand banks in the river disappear and roads acts as levees stopping 

the floodwater from reaching further inland (Figure 23B). Turbulent floodwater carries course 

sediments, changing the water colour to brown. The colour of the floodwater indicates a 

concentration of sediments in the water. Figure 24C shows a change in the water colour from 

mud brown to green, displaying a change from turbulent to calmer water. The Sanghar river 

flows from west into the Indus and during the flood, the river outlet forms a delta that extends 

over farmland (Figure 24D). 

 

Figure 23: Layyah RGB flood image, segments A and B. Each segment shows areas further investigated in S1 and S2 imagery 

results. 



50 
 

 

Figure 24: Layyah RGB flood image, segments C-D. Each segment shows areas further investigated in S1 and S2 imagery 

results.  

Figures 25A-B shows the calculated NDWI for the reference and flood images of SA3. In the 

reference image, Indus River NDWI values range from -0.09 to 0.07, while in the flood image 

NDWI values have a larger range between -0.07 to 0.35. The highest NDWI values for the 

Indus could be found in the areas where the water changes from a mud brown to a blue colour, 

as seen in Figure 24C. Band ratio imagery maps a similar extent of the floodwater as the NDWI, 

and changing water properties is displayed with higher contrast from a dark blue to light purple. 

Ratio and NDWI displays a noteworthy variation in the pixel value range. Floodwater is not 

bound to a specific range, but changes as the turbidity and sediment concentration of the water 

changes. Figures 25 E and G display low backscatter values next to the Tiyar mountain range, 

with -20 to -27 dB in VH and -14 to -18dB in VV. This area is barren land with low amounts 

of vegetation and buildings. North of the Shangar River lies Taunsa city, showing high 

backscatter values in VH and VV. In 25 E and G, backscatter values of the Indus River range 
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between -25 and -20dB in VH and -17 and -13dB in VV. In 25F and H, the backscatter of the 

Indus River varied between -27 and -30dB in VH and -15 and -25dB in VV.  
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Figure 25: SA3, Layyah Reference and Flood Images: A) NDWI reference image. B) NDWI flood image. C) Band ratio 

reference image. D) Band ratio flood image. E) Backscatter VH reference image. F) Backscatter VH flood image. G) 

Backscatter VV reference image H) Backscatter VV flood image.  
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6.2: Flood Mask 

To get as accurate results as possible for flood automatic detection, optical RGB imagery and 

DEM was used as a tool to help verify inundated areas with SAR and NDWI. In some areas, 

cloud cover would block view and limit the accuracy of optical detection methods. Inundated 

areas were calculated for each study area for S1 and S2 imagery and compared to each other. 

SA1 S2 flood image was covered by >70 % clouds. Due to the high amount of cloud cover, a 

NDWI flood threshold was not possible. Following, only thresholding with SAR imagery was 

possible. Thresholding was tested for values between -15 and -24dB for VH imagery and -6 

and -15 for VV imagery. Table 4 shows the total calculated flooded areas with S1 for SA1, 

SA2, and SA3. Optimal threshold ranges in VV and VH and the resulting flood masks varied 

between -23 and -20 in VH and -15 and -12 in VV.  

 

 

 

Study 

Areas 

 

 

 

 

Backscatter Threshold Values Total Inundated Area. 

Without SEM 

Total Inundated Area. 

With SEM 

VH value (dB) VV value 

(dB) 

VH 

inundated 

area (km2) 

VV 

inundated 

area (km2) 

VH 

inundated 

area (km2) 

VV 

inundated 

area (km2) 

 

Study 

Area 1 

-15 -6 8.25 2.14 2.09 0.30 

-16 -7 11.66 3.91 4.14 0.61 

-17 -8 12.88 7.34 5.55 1.91 

-18 -9 12.10 12.30 6.42 4.58 

-19 -10 10.38 16.20 6.49 7.34 

-20 -11 8.40 16.49 5.94 8.26 

-21 -12 6.28 12.68 4.97 6.80 

-22 -13 4.50 7.47 3.98 4.52 

-23 -14 3.30 3.95 3.11 2.84 

-24 -15 2.42 2.18 2.36 1.82 

 

Study 

Area 2 

-15 -6 0.24 0.06 0.13 0.01 

-16 -7 0.26 0.07 0.10 0.02 

-17 -8 0.26 0.10 0.05 0.06 

-18 -9 0.26 0.13 0.05 0.09 

-19 -10 0.26 0.19 0.04 0.11 

-20 -11 0.29 0.26 0.05 0.13 

-21 -12 0.29 0.29 0.05 0.16 

-22 -13 0.37 0.31 0.07 0.14 

-23 -14 0.47 0.30 0.07 0.13 

-24 -15 0.57 0.34 0.05 0.13 

 

Study 

Area 3 

-15 -6 15.01 5.08 4.98 1.25 

-16 -7 22.62 6.68 10.43 2.95 

-17 -8 33.39 13.65 22.69 8.61 

-18 -9 45.05 27.00 40.10 18.64 
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Table 5: Backscatter values of inundated areas. The total inundated area for VH and VV backscatter in SA1, SA2, and SA3 and 

the corresponding threshold values. 

 

6.2.1 SA1 Threshold 

The total inundated area of SA1 was found both with and without the SEM. The range of total 

inundated area was between minimum 0.3 km2 and maximum 8.3 km2 with SEM. Without SEM, 

total inundated area was between 2.1 km2 and 16,5 km2. Figure 26 displays flooded areas in VV 

and VH, including the SEM. VH threshold were set to -20 dB and VV threshold were set to -

12 dB. The flood mask for VH and VV is displayed in red and blue respectively. Green colour 

shows areas where VH and VV masks overlap. Figure 27A and B shows flooded land around 

the river with more masked area in VH than VV.  North of figure 27A, steeper hills are masked 

with the SEM. Figure 27B shows flooding further upstream in the east-part of the river. Dark 

green forests surround the river and display no inundation (Figures 27 A and B). Farmland and 

grasslands are partially covered by the flood mask both the VH and VV flood mask. 27 C shows 

a portion of the side valley north of the Stjørdal River, where the river Gråelva flows from north 

to south in to Stjørdalselva. At an elevation of 30 m.a.s.l, only the slope-part of the SEM is 

applied in this area, and steep parts of the river are masked, leaving out possible inundated areas 

from the mapping.   

 

-19 -10 67.45 39.39 65.81 28.24 

-20 -11 107.82 48.58 107.26 40.76 

-21 -12 159.50 72.41 159.19 69.73 

-22 -13 200.94 125.85 200.80 125.41 

-23 -14 200.50 191.50 200.48 191.43 

-24 -15 180.63 210.58 180.63 210.57 



55 
 

 

Figure 26: Inundated areas SA1. Red areas show inundated areas detected in VH, blue areas show inundated areas detected 

in VV and green areas show areas where both VV and VH detects inundation. Orange areas are masked by the SEM.  
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Figure 27: SA1 Segments A-C.  
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6.2.2 SA2 Threshold 

Calculation of inundated areas for SA2 were done with S1 backscatter imagery and S2 NDWI 

imagery. SEM was also used in the calculation. NDWI threshold of SA2 was set to 0 (Table 6), 

which corresponds well to the values seen in Figure 28. The flooded area calculated for NDWI 

mask was 0.44km2 without SEM and 0.25km2 with SEM. The flood mask for backscatter values 

ranged from 0.01km2 to 0.16km2 for VV mask without SEM and 0.06km2 to 0.34km2 for VV 

mask with SEM. The VH polarization showed overall larger inundated areas from 0.05km2 to 

0.13km2 with SEM and 0.24km2 to 0.57km2 without SEM. The backscatter values with highest 

overlap with both the NDWI flood mask and the RGB image was -23dB for VH and -15dB for 

VV. Figures 28-30 displays the total area for different flood mapping methods used for SA2. 

VH threshold were set to -23dB and VV were set to -15dB. The orange-coloured SEM is also 

included in Figure 30 and covers the steep mountainsides in Sunndal. The elevation threshold 

for the SEM was 60 m in SA2 (Section 5.4) and the valley floor is below this limit, except for 

the western part in 30C, leaving slopes in and next to the river to be covered by the mask.  

 
Table 6: SA2 NDWI threshold and flooded area. 

Threshold Flooded area (Km2) 

Without SEM 

Flooded area (Km2) 

With SEM 

0 (NDWI) 0.44 0.25 
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Figure 28: SA2 NDWI flood mask.  
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Figure 29: SA2 SAR flood mask. Inundated areas are displayed in VH (red) and VV (blue). Overlapping areas are coloured 

green. 

 

 

 

 

 

 

 

 

 

 

 



60 
 

 

 

Figure 30: Inundated areas SA2. Different colours correspond to the flood detection method. The orange mask shows the SEM.  
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6.2.3 SA3 Threshold 

With an exception of the Tiyar mountain range on the western part of the map, SA3 shows little 

change in elevation and slope gradient. Flood thresholding with or without SEM shows minor 

changes in total inundated area. The area investigated in SA3 was much larger than SA1 and 

SA2. GEE was not able to calculate total flooded area of SA3 with 10m pixel size. Therefore, 

the calculations for total inundated areas in SA3 were done with 30m pixel size. This was done 

with the “scale” option, which allows pixel size of the output data to be changed. Overall, both 

NDWI and ratio flood mask results showed larger inundated areas. Capturing a total inundated 

area of over 200km2 in S1 imagery, SA3 shows a noteworthy increase in scale compared to 

SA1 and SA2 (Table 7). 

 

 

 

 

Figure 31 shows the backscatter flood mask and threshold of -23dB in VH and -15dB in VV. 

The RGB image was included as background. The mask covers areas around the Indus River. 

RGB and SAR imagery indicate different flood sizes, and some of the differences are likely a 

result of the images being captured on different dates. While S1 imagery was captured August 

29th, S2 imagery was captured on the 31th, possibly closer to the flood peak.  

Threshold  

NDWI  

Flooded area (km2) 

Without SEM 

Flooded area (km2) 

With SEM 

-0.1 (NDWI) 536.26 479.4 

0.79 (Ratio) 565.73 505.39 

Table 7: SA3 S2 Threshold values and subsequent area sums. 
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Figure 31: Layyah backscatter flood mask. Total inundated areas in VH (red) and VV (blue). Overlapping areas are coloured 

green.  

Figure 32 displays the NDWI and Ratio flood mask. The Ratio mask covers an area of 505 km2 

and the NDWI covers 479 km2. Showing the overlap where both methods detected floods, the 

green mask is dominant compared to the red and blue mask. Figure 33 displays segment A-D 

of Layyah and the NDWI and Ratio flood masks. Figure 33A shows flooding near the Chasma 

right bank channel, with clouds also covered by the flood mask. A noticeable difference 

between the optical and radar methods for mapping is displayed by the masked clouds shown 

in Figure 33A. The brown floodwater flows east from the Chasma River and overflows the city 

of Nari Shumali (Figure 33A and 33C). NDWI and Ratio flood mask were unable to detect 

flooding in this area. The flooding next to Nari Shumali were undetected, yet a larger area on 

the right-side of figure 33C were detected as flooded. Despite the colour difference of the water 

seen in Figure 24C, both the NDWI and Ratio managed to successfully detect flooding in the 
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area. Figure 33B displays the right-edge of the floodwater next to the Indus, where the road 

borders the final extent of the river eastward.   

 

Figure 32: NDWI and Ratio mask of SA3.  
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Figure 33: Segments A-D with optical flood mask. 

The S1 flood mask is displayed in Figure 34A-D. Floodmask overlap in VV and VH were 

detected in each segment. 34A displays the S1 mask penetrating cloud cover. Little flooding 

was detected in the smaller east-flowing part of the Chasma channel. 34C shows contrast 

between the VV and VH masks. In the area where water colour changes from mud brown to 

blue (Section 6.1.3), VV successfully detects flood while a smaller part is detected in VH. In 

34D, a large part of the Sanghar River is masked as flooded in VH.   
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Figure 34: Segments A-D with SAR flood mask.  
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6.3 Method comparison 

6.3.1 SEM Comparison 

In Table 8, the SEM coverage is presented as a percentage of the area initially classified as 

flooded, before being removed by the slope and elevation mask. Threshold values for S1 

imagery are given respectively for VV and VH: -12dB and -20dB for SA1, -15dB and -23dB 

in SA2 and -15dB and -23dB in SA3. The value for NDWI was 0 for SA2 (Section 6.2.2). SA3 

has a threshold value of -0.1 and a ratio threshold of 0.79 (Section 6.2.3). The highest percentage 

of 91.22% coverage in VV were found in SA2. SA3 displays the smallest changes between 

SEM and the total area, where VV and VH masks had negligible change. The comparisons for 

SA1, SA2 and SA3 are plotted in Figure 35.  

 

Figure 35: Comparisons of flood detection method, SEM and the corresponding study area.  

 

 

Detection method 

 

SA1 SA2 SA3 

VV 

 

20.9 % 91.2 % 0 % 

VH 

 

50 % 57.7 % 0 % 

NDWI 

 

 43.2 % 12.2 % 

Ratio 

 

  10.7% 
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Table 8: Mapped flooded area with >5° slope and elevation mask. Each value corresponds to the percentage of the total 

flooded area. Backscatter values are given respectively in VV and VH. - only one number after decimal 

6.3.2 Flood Mask Intersection 

For each study area, overlap between S1 VV, VH, and S2 flood masks, were calculated. Since 

SA1 did not include the NDWI flood mask, only VV and VH intersection were calculated for 

this area. For SA1, the intersection of VV and VH masks were 2.46 km2, making up 36 % of 

the VV flood mask and 41 % of the VH flood mask.  

In SA2, intersection of VH and VV were 0.002 Km2, which is 2 % of VV and 3 % of VH. The 

VV and NDWI intersection mask were 0.03 km2, 22 % of VV and 12 % of NDWI. Intersection 

of VH and NDWI mask were 0.01 km2, making up 4 % of NDWI and 14 % of VH.  

SA3 includes intersection of the ratio imagery also. Intersection of VH and NDWI mask was 

479.4 km2, making up 36 % of NDWI and 87 % of VH. Intersection of VV and NDWI mask 

was 179.44 km2, amounting to 85 % of VV and 37 % of the NDWI. Intersection of Ratio and 

VV mask was 180 km2, which is 86 % of VV and 35 % of Ratio. Intersection of Ratio and VH 

mask was 179 km2, and 89 % of VH and 35 % of Ratio. Intersection of Ratio and NDWI mask 

was 444 km2, which is 86 % of the Ratio mask and 93 % of the NDWI mask.  

Study area VH and NDWI 

intersection 

(Km2) 

VV and NDWI 

intersection 

(Km2) 

VV and VH 

intersection 

(Km2) 

Ratio and 

NDWI  

Ratio 

and 

VV 

Ratio 

and 

VH 

SA1    2.46    

SA2 0.01 0.03 0.002    

SA3 173.58 179.44 156.57 443.71 180.26 178.8 

Table 9: Flood mask intersections. Values show total area intersected between two detection methods, measured in square 

kilometre. 

6.3.3 Flood Mask and Vegetation 

Vegetation was found in each study area. Figure 36 displays combined flood masks of each 

study area and the surrounding land consisting of agricultural land and vegetation. Noticeable 

areas of dark green are likely dense forest where the detection methods are unable to detect 

flooding. Figures 36A-B display SA1, with VH and VV flood mask. Areas with dark green is 

found around the river, and is not covered by the mask. Figures 36C-D shows SA2 with S2 and 

S1 flood masks combined. Similarly to SA1, dark green forests are found around the river and 

free of any flood mask. Figures 36E-F shows SA3, with S1 and S2 flood masks. Figures 36E-

F display agricultural land and vegetation, forming square and rectangular shapes within the 

flood mask.  
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Figure 36:  Flood mask comparison of SA1, SA2, and SA3. Figure A: SA1, no mask. Figure B: SA1 with flood mask. Figure C: 

SA2, no mask. Figure D: SA2 with flood mask. Figure E: SA3, no mask. Figure F: SA3, with flood mask 
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7. Discussion  

In this chapter, the results of each study area and the implemented methods are discussed.  

7.1 Filtering Options 

7.1.1 Reference Stack 

Flood detection that relies on orbiting satellites are constrained to specific timeframes, where 

the time interval of the satellite matches the time interval in which the flood takes place. 

Additionally, flooding varies where upstream areas flood prior to the downstream. Peak floods 

for larger areas can be difficult to acquire, as the time and region of interest of the peak in one 

area might differ to the large-scale flood and other areas affected by the same weather event. 

SA1 and SA2 were flood events in Norway. Although a large flood in Norway, the Gyda flood 

only lasted for three days in Stjørdalen, and flooding in Sunndal lasted for five days. Floods 

that last five days or less are problematic as the S1 and S2 orbit times are 12 and 10 days 

respectively or six and five days if both satellites are included. Flood duration would be over 6 

days to guarantee inclusion of both S1 and S2 imagery. Land surface that stays inundated over 

longer periods would contain several S2 images, leaving the option to choose between possible 

cloud-free or less cloud covered flood imagery. In Pakistan, the 2022 flood occurred because 

of monsoon and glacier melt that lasted for months. Long flood durations, such as the Pakistan 

flood allows for several coverages of the flood in S1 and S2 imagery.  

Additional constraints of the reference stack were found in orbit filtering. Selecting single orbit 

track and number of the S1 reference stack, reduced the number of images used for reference. 

Consequently, this filtering reduced temporal resolution in the S1 reference stack.  

7.1.2 Pixel Resolution 

The scale parameter in GEE is an important tool as it specifies the pixel resolution of the image. 

While spatial resolution explains the minimum pixel size available for the image, scale 

determines the level of detail applied to the image during processing (GEE Guides, 2021). This 

detail specification is important in investigations of pixels, such as flood area calculations.  

Figure 37 display pyramiding of an image and subsampling by removing pixels until the desired 

scale is reached. In this study, the scale was determined when exporting and calculating 

inundated area extents. Pixel resolution captured on S1 and S2 imagery were initially 10x10 m, 

but later changed to 30x30 m for SA3, while SA1 and SA2 kept the original size. Pixel 

resolution were changed for SA3 due to processing problems on 10x10 m, and the image had 
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slow loading time. The resulting image and calculations of 30x30 m were less accurate with 

possible over or underestimations of flooded area. Further increase to e.g., 100x100 m would 

further reduce the accuracy of flood area sizes (GEE Guides, 2021). 

 

Figure 37: Interpretation of pyramiding of four pixels on GEE. Scale is specified at the output. Source: GEE Guides, 2021. 

 

7.1.3 Separated Pixels and Pixel Filtering 

Pixels interpreted as flood were filtered by a pixel removal algorithm and flood pixels connected 

with less than 8 other flood pixels were removed (Section 5.5). The resulting images provided 

by the algorithm became less speckled, and most of the areas detected as flooded were larger 

inundated areas. For each of the study areas, separated pixels were found to a large extent 

around the entire image. Although the removal resulted in a less speckled image, SA2 lost 

valuable information. While the NDWI mask noticed the change in river width, SAR imagery 

lost most of this information (Figure 38). The lost information was highlighted by the low 

intersection between NDWI and S1 imagery (Section 7.1.3). Prior to the pixel removal, 

reference images in VV and VH were also filtered by the refined lee algorithm, which could 

further reduce details (Lemoine, 2018) (Section 5.1). 
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Figure 38: differences between flood masks using A: no pixel removal and B: final product with pixel removal. 

 

7.2 Identifying Challenges and Effective Solutions 

 7.2.1 Incidence angle  

Floricioiu et al. (2001) found the backscatter coefficient of different surfaces to be affected by 

the incidence angle. For most natural surfaces, the VV and VH polarizations decrease as the 

incidence angle increases (Floricioiu et al. 2001). Changing incidence angles on the three study 

areas results in different backscatter on surfaces including water, vegetation, rocks, and snow 

(Section 3.2). The flood mask will also vary based on the changing incidence angle. When the 

scattering effects on water surfaces changes, the threshold will also change. The three study 

areas are located in different places with different orbit numbers. As the incidence angle varies 

depending on location, backscatter coefficient of the three areas is likely to differ. S1 has an 

incidence angle range of 29 - 46˚. The sensors used in the study by Floricioiu et al. (2001) has 

large range. However, backscatter coefficient will likely change as the incidence angle changes 

from 29˚ to 46˚.  

7.2.2 Shadow effect and clouds  

Shadow effects appear in remote sensing often because of clouds or terrain. In MSI optical 

remote sensing, shadows could pose a problem, as clouds could misclassify or obscure different 
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land cover types (Bazilova et al. 2022; Fischer, 2015). In the case of flood mapping, if the cloud 

shadow is within a similar pixel threshold range as the water surface, the shadows are 

misclassified as flooded area. In SA3, misclassifications of inundated areas from cloud shadows 

were displayed in both the NDWI and Ratio mask. To reduce or remove these effects, this study 

used two different approaches in order to improve the data. The first approach was to include 

S1 imagery, in addition to the optical imagery. With long wavelength imagery, such as the C 

band, clouds, cloud shadow, and darkness during night has little to no interference with the 

inundation mapping (Pohl et al. 1998; Hall, 1996).  

The second approach was to use the “CLOUDY_PIXEL_PERCENTAGE” property of S2 level 

2A to reduce cloud cover to 30 %. With the use of S2 level 1C, cloud removal algorithms can 

create cloud-free and shadow-free reference images, increasing the accuracy of the detection 

methods (Chen et al. 2018). This was used for all images in the S2 reference stack. With the 

use of 30 % filter, some clouds could remain in the image, and inspections of the reference 

images were needed. In addition, level 2A is not able to remove all cloud pixels and some cloud 

types and atmospheric gases has lower accuracy in pixel removal (Chen et al. 2018).  

7.2.3 Terrain Distortions  

Flood detection of SA1 demonstrates how SAR is an effective tool when the earth is covered 

by clouds. Although S1 outperforms S2 imagery in situations where clouds obstruct the earth’s 

surface, it struggles to perform in rugged terrain where terrain distortions can appear. This 

problem is seen in SA2, where the steep mountainsides experience strong shadowing effects on 

the north- and east-side of the mountains. The south and west-facing sides experienced 

foreshortening and layover effects (Section 6.1.2 and 3.1). These distortions could cause 

misinterpretation or underestimations of the flooded area. 

Reduction of these effects was done in two steps with ancillary data. The first step was done 

using S1 data for reference images acquired in corresponding orbit pass track as the flood 

images to avoid distortion effects caused by changing sensor view angles (Section 5.1, 5.2). 

The second step was the use of digital surface model AW3D and the thresholds set by the SEM 

(Section 5.5).  Demonstrated in Section 6.2, both steps improved the quality of the flood 

detection, where shadowing in rugged areas were partly or fully removed in the calculation of 

the flood mask. Previous studies with the use of DEM to remove mountain shadow effects have 

been tested with the Shuttle Radar Topography Mission Digital Elevation database (SRTM) 

(Lin et al. 2019) and HydroSHEDS (Wang et al. 2022). In both studies, a threshold of 5-degree 

slope was used. HydroSHEDS is based off elevation data obtained from SRTM. While AW3D 
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uses the PRISM sensor for DSM mapping, AW3D includes SRTM as reference information in 

quality validation (Takaku et al. 2014). A study by Trisakti et al. (2010) showed that although 

PRISM has a higher spatial resolution, both elevation models have similar elevation and 

distribution patterns.    

In a study comparing four different SAR-based flood mapping approaches, the TanDEM-X 

approach used STRM DEM to remove radar shadows and reduce misclassifications (Martinis 

et al. 2015). In this study, slope threshold of the SRTM DEM were set to 20 degrees, meaning 

slopes higher than this threshold was removed from the flood mask. The threshold was set to 

20 on the account that smaller slope threshold would lead to higher misclassifications between 

two different water mapping products. Although the study by Martinis et al. (2015) concludes 

that 20 degrees gives the best results for slope threshold, it is worth noting that TanDEM-X 

comprises of an X-band sensor. The wavelengths of the X-band signal are smaller than the 

wavelengths of the C-band satellite used in this thesis and the study by Wang et al. (2022). 

Additionally, polarization of the X-band satellite was in HH, and with a different incidence 

angle, it would produce different results than S1 in mountainous terrain.  

7.2.4 Snow Cover 

A snowpack experiences scattering at different depths where boundaries between different 

layers appear, such as: surface scattering at the air-snow boundary, volume scattering inside the 

snowpack, snow-soil scattering and volume-surface scattering (Floricioiu et al. 2001) (Section 

3.1). Additionally, the main scattering effect changes between wet and dry snow. For instance, 

the C band SAR can penetrate dry snow cover up to 20 m. However, this differs from wet snow 

with only around 3 cm penetration depth (Tsai et al. 2019). In these situations, the backscatter 

mechanisms will change from mainly volume scattering in dry-snow conditions, to single-

bounce scattering. Given that such conditions could affect changes seen on surface backscatter, 

and captured images of SA1 and SA2 were snow covered (Section 6.1.1-6.1.2), the impacts 

snow could have on flood thresholding should be considered.  

Section 6.1.1 details the potential misclassification that would occur if reference image were 

given over a period during winter. The alternative date range of November to January would 

include snow cover on the ground and some flooded areas could instead be misclassified as 

permanent water bodies. The misclassification would happen if backscatter values of the snow 

were similar or lower than the flood values. In such cases, the resulting flood mask would cover 

a smaller area. The flood imagery of SA1 were captured on January 13th, and optical imagery 

was not obtainable in this period. However pictures and news articles of the Gyda flood in 
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Stjørdalen (Section 2.1) suggest backscatter interpreted as flood were unlikely to be wet snow 

misclassified as water surfaces.    

SA2 went through melting in the form of summer heatwave and similar conditions were likely 

met for the snowpack in this area also. S2 imagery were also available for this area, and snow 

is seen on the mountaintops in both reference and flood imagery of SA2. The snow-covered 

mountaintops of SA2 were situated in steep areas and therefore removed by the SEM. Bazilova 

et al. (2022) tackled water mapping in snow covered areas by using optical band ratio imagery 

and min and max reflection values of annual reference stacks. In this study, neither ratio nor 

annual reference stacks were used to avoid snow cover misclassification. Instead, the SEM 

which were used to avoid backscatter misclassification of mountain shadow ended up being 

serendipitous in also removing large snow-covered areas of SA2 flood mask. Regarding SA1, 

flood detection using optical images was hindered by cloud cover, making it impossible to apply 

NDWI thresholding. However, if similar methods are used for mapping new study areas, the 

SEM may not be effective in handling snow cover. In such cases, the approach proposed by 

Bazilova et al. (2022), which uses ratio imagery instead, could be more suitable.  

 

7.2.5 Vegetation 

Vegetation can obscure or completely remove vision of the land surface, hiding potential 

flooded areas. Dense vegetation can be found near the rivers of SA1 and SA2, which blocks the 

visibility of water underneath the canopy. Several studies have found that the C-band were able 

to penetrate short branching and less dense vegetation, but it is unlikely to penetrate high density 

tree types, such as spruce and birch (Landuyt et al. 2020; Chiu et al. 2000). 

Section 6.3.3 compares the different threshold methods for each study area where areas of dense 

vegetation are unable to be classified as flooded. For SA1 and SA2 these areas are likely to be 

dense vegetation of either spruce, pine or birch, which is some of Norway’s most common tree 

types (NMCE, 2020). SA3 is in Pakistan which contains a large variety of tree types and biomes. 

In SA3, vegetation is in the form of both natural vegetation, such as trees and shrubs, in addition 

to agriculture and crop land. Vegetated areas in SA3 are found within the flooded region of the 

Indus where the flood mask is unable to penetrate. These areas are agricultural land, and they 

are displayed on the map with a rectangular or square outline within the flood mask. While 

some agricultural land is not detected as flooded areas, other areas around have been detected 

as flooded. Changes between areas mapped as flooded and not flooded agricultural land could 
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be the result of different vegetation planted for each area or different growth stages of the 

similar plant. While different bands experience different levels of scattering on vegetation, 

common mechanisms in each band (X, C, L, etc.) results in increased backscatter signal (Huang 

et al. 2022). 

Possible ways to detect open waterbodies with SAR have been proposed by Martinis et al. 

(2015). Martinis et al. (2015) proposed the use of X band, instead of longer wavelengths, 

creating a higher contrast between land and open water. Features on land that could appear 

smooth, such as deserts or flat uncultivated land, would experience more diffuse scattering in 

comparison to water features. Such contrast would not be seen for longer wavelengths, such as 

the C band. In shallow water with partially submerged vegetation, long wavelengths produced 

in the L band could effectively detect flooded areas (Martinis et al. 2015). Although L band 

appears to be better choice, other bands such as VV polarization in C band have been found to 

identify partially submerged features (Manjusree et al. 2012). 

In this study, only the C band were available for use in flood detection and the option between 

VV and VH polarization left different results. Twele et al. (2016) found that the contrast 

between vegetation and water surfaces were greater in the VV polarization than VH, due to 

strong backscatter signals, such as double bounce. The study also found a higher penetration 

depth into vegetation in VV than VH. VH were also found to have more variability of 

backscatter when the signal encountered vegetation. The study also found that VH were more 

sensitive to volume scattering on vegetation, and it experienced lower backscatter values for 

open areas, such as agricultural land. This led to more misclassifications between water surfaces 

and other low-value surfaces such as agricultural land, in VH than in VV.  

Given the amount of agricultural land found in each study area of this thesis, and similar 

conditions were found in the study by Twele et al. (2016), results of this thesis could experience 

similar misclassification problems. Although most agricultural land in this thesis saw little 

change in backscatter value between reference image and flood image, ideal VH and VV 

threshold had to be chosen carefully.   

 

7.2.6 Water Colour, and Contrast 

In areas where water has large changes in spectral reflectivity, the detection methods of both 

S1 and S2 struggles. This was seen in several areas in SA3, where changes between brown and 

green water were frequent. The contrasts where NDWI values changes from negative to positive 
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(Section 6.1.3) represents change from turbulent to calmer waters and a change in concentration 

of suspended sediments (Meena et al. 2021). Recommended NDWI interpretations of flooded 

land by EOS, (2021) were poor for SA3. Consequently, the NDWI threshold value was set to -

0.1 and made the flood mask capable of detecting some muddy water. Still, areas such as 

flooding near the Chasma canal were not detected.  Similar results were found in Ratio imagery, 

and lowering threshold values more lead to dry land being misclassified as flooded areas.  

As stated by Bazilova et al. (2022) (Section 3.2), NDWI could be replaced by Ratio imagery to 

enhance differences between dry land and water. However, Ratio would also make the image 

coarser and less detailed. Several studies have proposed to use SWIR in different indices, such 

as NDWI and Ratio imagery in turbid water (Amarnath, 2014; Bazilova et al. 2022). Meena et 

al. (2021) used the NDTI, and Normalized Difference Chlorophyll Index (NDCL), in addition 

to NDWI, to detect turbulence and debris filled waters.   

SAR flood detection does not experience this problem, but problems arise where differences 

between turbulent water and still water are found (Section 3.1). Choosing between polarization 

could affect results when detecting turbulent flood water (Section 3.1). Still, small differences 

seen on water bodies mapped over large areas brings problems in the mapping as this study 

uses one simple threshold for the entire area. Choosing the correct threshold to mask flooded 

areas under these circumstances are crucial and small changes would likely bring out large 

differences in the results.  

 

7.3 Flood Detection Method Comparisons 

Threshold values of S1 flood masks were based on VV and VH ranges found on different 

incidence angles by Manjusree et al. (2012) (section 5.2). Results of VH backscatter showed 

generally higher contrasts between dry land and water bodies than in VV. Differences between 

the polarizations have been found in other studies (Huang et al. 2022). While VV have been 

found to give stronger return signals in specular and double bounce scattering, VH have been 

found to give stronger return signals in volume scattering (Jo et al. 2018). Intersections between 

VV and VH showed large differences between the two flood masking methods (Section 6.3.2). 

In SA1, VH showed greater contrast on flooded areas and dry land. VV showed a large 

backscatter range on the floodwater, which could be from higher sensitivity to turbulent water 

than VH (Manjusree et al. 2012).  
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Setting correct threshold for the VH and VV mask proved to be difficult. Only small changes 

were seen between certain ranges. In SA1, small changes were seen between -12 and -11 dB in 

VV and -19 and -20 dB in VH. In SA2, small changes were seen between -22 and -23 dB in 

VH and -14 and -15 dB in VV. In SA3, small changes were seen between -22 and -23 dB in 

VH and -14 to -16 dB in VV. In those instances, the optical detection methods were a great 

supplement. Since optical data were not available for SA1, correct threshold range was 

uncertain and could either be -19 or -20 dB in VH and -12 to -11 dB in VV.  

Optical detection methods displayed turbulence and changing sediment concentrations. Small 

scale details seen in SA3 such as the changing river width were also seen with optical but not 

at same level of detail in SAR imagery. Setting the most suitable threshold value for NDWI and 

Ratio proved to be difficult because of the changing reflective properties of the water seen in 

SA3.  

For some areas, such as the Chasma right bank channel (Section 6.2.3), neither SAR nor optical 

detection methods were able to detect flooding. Normalized difference indices usually range 

between -1 and 1 (Grover et al. 2015). This study used threshold values above 0 detected as 

water surfaces, and values between 0 and 2 were by standards of Table 4, Section 5.2, 

interpreted as floods. However, in SA3 these ranges were not suitable for interpreting different 

water surface conditions.  

In all study areas, partially submerged areas with dense or sparse vegetation, the SAR flood 

mask struggled to detect floods. Similar results are found in built-up or urban areas, where roads 

and buildings create double bounce effects, leading to strong return signals (Jo et al. 2018).  

In comparison to SA1 and SA2, the SEM for SA3 brought little change to the area calculation 

in flood masking. With the exception of clouds removed over the Tiyar mountain, each 

detection method had little to no change with or without SEM in SA3. Overall, the SEM had 

the largest impact on SA2, and 91% of the total flood mask in VV were removed. The smallest 

changes were seen in SA3, where the only steep and high elevated areas were found on the west 

side at the Tiyar mountain. SA1 were also affected by the SEM, however the side valley seen 

north of Stjørdalselva were above the 30m threshold and also masked (Section 6.2.1). 

Consequently, the SEM could underestimate flooding in pools and steep river sides in the side 

valley. Recognizing all removed areas by the SEM (section 6.3.1) as “flood misclassifications” 

would be inaccurate.  
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8. Conclusion  

In this thesis, flood mapping in optical and radar imagery of three different areas subjected to 

different flood types have been studied. The first processing steps taken in this study used 

different filtering options and indices calculations of S1 and S2 imagery to highlight flooded 

areas. The second part tried automatic thresholding method, where flooded area extent was 

calculated for each study area. Results were validated using reference images, RGB imagery 

during flood, and the digital elevation model AW3D. 

The methods used in this thesis followed processing steps, where filtering and calculations of 

indices were handed out on Google Earth Engine. The platform provided high resolution and 

quick processing of data. The platform allowed for comparisons and combinations of the 

different satellite instruments: Sentinel 1, Sentinel 2 and ALOS World 3D Surface Model. 

Results from S1 and S2 data were acquired successfully in SA2 and SA3, while SA1 lacked the 

results from S2 due to complete cloud cover.  

Results of this thesis can be concluded as follows, where strengths were found in: 

• The use of two satellite sensors, Sentinel 1 and Sentinel 2, allowed for more flood 

imagery and detail limitations or strengths seen in backscatter and optical indices  

• Orbit filtering and the SEM allowed for less misclassifications seen mainly in 

mountainous areas and steep terrain. Misclassifications from shadows, foreshortening 

and layover were reduced because of these methods 

• Reference stacks as opposed to single images, allowed for a representation of average 

pixel backscatter. Outliers such as snow, other non-permanent water bodies and sudden 

changes to the landscape prior to the flood were removed or lessened as a result. This 

allowed for smaller chances of misclassifications of flooded areas 

• Pixel filtering options allowed for less noise and misclassification on the flood mask 

• The elevation threshold of the SEM, in addition to the orbit filtering were sufficient in 

misclassification removal created by shadow, layover and foreshortening effects 

Still, the methods faced constraints which affected the results: 

• Clouds obscure flooded areas in S2 imagery 

• SEM requires an elevation and slope threshold. Although water flows from high to low, 

areas with 5-degree slopes could be inundated, as water levels increase and pools up 

steep river banks and pits   
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• Orbit filtering worked well in steep and mountainous areas such as SA2, but also 

reduced number of images in the reference stack 

• Cold regions such as Norway experience snow in the winter. As snow becomes wet, 

backscatter values are reduced and snow-covered areas could be misclassified as water 

bodies in flood imagery 

• Optical and SAR detection methods of this study struggled to capture total extent of 

floods carrying high amounts of debris or sediments 

• Although reference stacks allow for a better representation of what the “average” terrain 

looks like, it also makes the image smoother. Consequently, the stacks could potentially 

remove valuable details 

In closing, this study highlights the wide varying problems seen in different floods and different 

terrain. SA1 struggled mapping flooded area due to cloud obscuring the optical imagery. SA2 

experienced distortions in the terrain and pixel resolution that could lead to misclassifications 

in S1 flood mask. SA3 struggled with changing flood water properties, such as turbulent water 

and suspended sediments. Results of the three study areas show detection methods and their 

accuracy will vary based on flood type and the terrain. Where the terrain is mountainous, SEM 

could improve the detection of floods. In flatter terrain, improvements to detection of changing 

water quality such as suspended sediments and turbulence are more important. For rain floods, 

optical imagery might not be available, while snowmelt floods could benefit with the use of 

optical imagery as it could improve the results. The timing of the flood and the temporal interval 

of images due to orbit time is crucial in order to require images during the flood. Consequently, 

either S1 or S2 imagery could be the better of the two depending on the image capture date and 

the date of the flood. Therefore, both should be considered in mapping of flooded areas. 
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9. Recommendations and Opportunities for Further Research 
 

This study found valuable use of S1 and S2 imagery in addition to AW3D for floods in varied 

terrain types. Gaps in the research were found as snow, vegetation, clouds and water turbulence 

affected the accuracy of the detection methods. This study focused only on the sentinel missions 

and their advantages in flood mapping with high spatial resolution and frequent revisit time. 

Other SAR datasets exists with different wavelength bands such as PALSAR-2 which senses 

in L-band, TerraSAR-X and COSMO-SkyMed with X-band sensor.  

The L band have been suggested in flood detection with its ability to detect water bodies in 

vegetated areas (Chiu et al, 2000; Martinis et al. 2015). Martinis et al. (2015) proposed the use 

of X-band in order to create higher contrasts between water bodies and land. Either of these 

bands could be accessed in TerraSAR-X, COSMO-SkyMed and PALSAR-2 and possibly 

improve results of the study areas. In SA3, indices were created following McFeeters, (1996) 

suggestion with GREEN and NIR bands (section 5.2). Different options of bands have been 

suggested to detect water bodies with Ratio using SWIR and NDTI, NDCL (Meena et al, 2021; 

Bazilova et al, 2022). These methods could improve the flood detection in Layyah.  

This thesis does not consider water inundation around built-up land. The detection methods 

proposed by McFeeters. (1996) struggles in and around built-up land (Xu, 2006). Xu, (2006) 

proposed to use MIR band instead of NIR to enhance open water features of NDWI imagery. 

This index was called MNDWI or Modified Normalized Difference Water Index. This index 

does also have the potential of reducing shadow noise (Xu, 2006).  

The flood detection method with S1 and S2 data were improved with use of the AW3D SEM 

for mountainous areas, however clouds remained a problem which could only be partially 

removed in optical imagery. While the S2 2A product allows for good cloud removal with the 

“CLOUDY_PIXEL_PERCENTAGE” image property, its accuracy for detailed land analysis 

can still be improved (Chen et al. 2018). A solution for cloud removal could be use of custom 

cloud masking directly from the S2 level 1C product. The cloud removal algorithm s2cloudless 

is used on the 2A product, and the algorithm is provided by Braaten, (2023). With this product, 

users can customize, or change parts of the script, such as threshold ranges and bands. If a 

unique cloud condition leaves pixels undetected by the 2A product, users could perform their 

own cloud masking. It is important to note that this would require a good understanding of the 

s2cloudless algorithm. Furthermore, this algorithm uses long computation time and may 

struggle for larger areas such as SA3.  



81 
 

Considering the potential increase in floods of different sizes and origins around the world, 

further studies on flood detection in SAR could be valuable. In Norway, studies on snowmelt 

floods could be valuable as climate change affect earlier melting seasons (Hanssen-Bauer et al. 

2017). In areas impacted by large monsoon floods such as Pakistan and India, improvements 

on detection methods for turbulent floods could be a valuable asset for rescue operations and 

damage assessment.  
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Reproducibility of Methodology 
 

The JavaScript code created in this thesis is provided in GEE under user 

mikael_raunig/master_thesis and can be found here: 

https://code.earthengine.google.com/?accept_repo=users/mikael_raunig/master_thesis.  The 

code is also openly available on GitHub: https://github.com/MikaelRaunig/Master_Thesis 

Sentinel 1 SAR GRD, Sentinel 2 level 2A and ALOS DSM: Global 30m v3.2 are all open 

source and available on GEE. 
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Appendix I: Study area 1, Stjørdalen 

 

Appendix 1A: Elevation mask of SA1. Background map is the VH reference image of SA1. 
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Appendix 1B: Slope mask of SA1. Background map is the VH reference image of SA1. 
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Appendix 1C: Pixel mask of SA1. Background map is the VH reference image of SA1. Projection is 1:40 000 for a higher 

exaggeration of pixels. 

 

 

 

 

 

 

 



D 
 

Appendix II: Study area 2, Sunndal 

 

Appendix 2A: Elevation mask of SA2. Background map is the VH reference image of SA2. 
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Appendix 2B: Slope mask of SA2. Background map is the VH reference image of SA2. 
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Appendix 2C: Pixel mask of SA2. Background map is the VH reference image of SA2. Projection is 1:40 000 for a higher 

exaggeration of pixels. 
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Appendix III: Study area 3, Layyah 

 

Appendix 3A: Elevation mask of SA3. Background map is the VH reference image of SA3.  
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Appendix 3A: Slope mask of SA3. Background map is the VH reference image of SA3.  
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Appendix 3C: Pixel mask of SA3. Background map is the VH reference image of SA3. Projection is 1:100 000 for a higher 

exaggeration of pixels.  


